

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1963 A

2

D

Final Progress Report

Project Title:

THE CHEMICAL CHARACTRISTICS OF PGB.

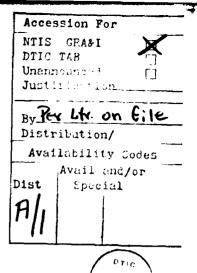
Principal Investigator:

Klaus Biemann, Ph.D. Professor of Chemistry

Department of Chemistry Massachusetts Institute of Technology Cambridge, MA 02139

Contract N00014-78-C-0421

Date of Report: August 18, 1983


09 02 002

- ----

AD-A13585,

DISTRIBUTION STATEMENT A Approved for public release; Distribution Unlimited

83

υ.

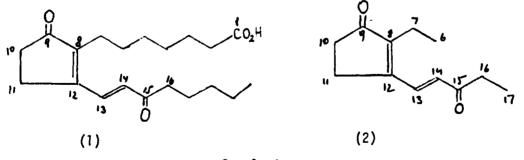
Final Progress Report

Title of Project: THE CHEMICAL CHARACTERISTICS OF PGBy

Principal Investigator: Klaus Biemann, Dept. of Chemistry Massachusetts Institute of Technology Cambridge, MA 02139

Contract N00014-78-C-0421

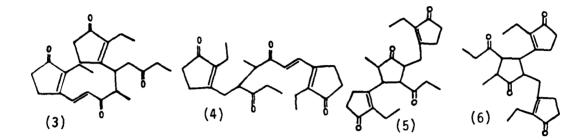
Objectives

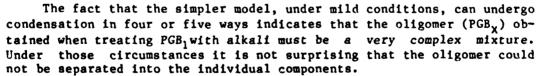

It was first attempted to separate PGB_{χ} , a biologically active material obtained upon alkali treatment of 15-keto-prostaglandin-B₁(1), into its components, determine their molecular weight and, finally, molecular structure. When it became clear that PGB_{χ} is too complex a mixture, model studies were begun.

To investigate the mechanism by which the chemically active molety in 15-keto-prostaglandin- \dot{B}_1 oligomerizes to PGB_X under alkaline conditions, the condensation of 3-ethyl-4-(3'-ketopenten-l-yl) cyclopent-2-enone (2) was investigated.

Summary of Results

A high pressure liquid chromatograph was used to separate various batches of PGB_x and its precursors. Partial separation has been achieved. Field desorption mass spectrometry of PGB_x was attempted but without success. 252 Cf plasma desorption mass spectrometry seems to indicate the presence of a mixture ranging from tetramers to octamers of 15-keto-PGB₁.

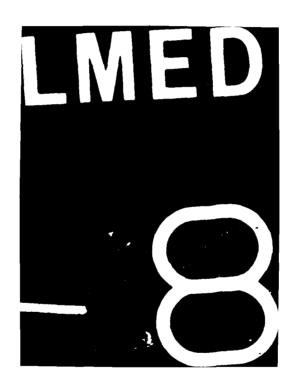

The condensation of modified models of the diene-dione molety (2) of 15-keto-PGB₁(1) was then studied. It has been found that a number of dimers are involved in this reaction. Furthermore, the results indicate that the anion at C-16 is very reactive and probably the initial step. Gas chromatography (GC), high performance liquid chromatography (HPLC), field desorption (FD), fast atom bombardment (FAB) mass spectrometry, ¹H and ¹³C-NMR were used for the analysis of the resulting mixtures of isomers and oligomers.


Conclusions

The base catalyzed condensation of the model ketone (2), when car-

ried out under conditions somewhat milder than those which convert $PGB_1(1)$ to PGB_X , produced a number of dimeric compounds. Upon separation by gas and liquid chromatography their structures (3-6) were determined by spectroscopic means and found to be most likely represented by the following:

The presence of isomer (7) is not excluded.


Just when this work was completed a paper appeared by G.L. Nelson and G.L. Verdine (Tetrahedron Letters, 23, v.1967-1970 (1982)) describing essentially the same results. Although the senior author of that paper (G.L.N.) had agreed to keep the Principal Investigator (K.B.) informed about his work to avoid duplication and to publish the results jointly or simultaneously, this was not done. We therefore decided not to publish our results separately later. This episode is typical of the lack of cooperation and communication that plagued the entire PGB, project from the outset.

Technical Reports; None

Publications: Optimization of Experimental Procedures for Fast Atom Bombardment Mass Spectrometry. S.A. Martin, C.E. Costello, and K. Biemann, Anal. Chem. 54, 2362-2368 (1982).

8/18/83

(7)

