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EXACT SOLUTIONS OF MODERATELY THICK LAMINATED SHELLS

1

By J. N. Reddy,” M, ASCE
ABSTRACT:

The paper contains an extension of Sanders shell theory for doubly-curved
shells to a shear deformation theory of laminated shells, The theory accounts
for transverse shear strains and rotation about the normal tn the shell mid-
surface. Exact solutions of the equations are presented for simply supported,
doubly-curved, cross-ply laminated shells under sinusoidal, uniformly distrib-

~uted, and concentrated pointvload at the center., Ffundamental frequencies of
cross-ply laminated shells are also presented, The exact solutions presented
herein for Taminated composite shells should serve as bench mark solutions for

future comparisons.

INTRODUCTION

There exist a number of theories for layered anisotropic shells, Many of
these theories were developed originally for thin shells, and are based on the
Kirchhoff-Love kinematic hypothesis that plane sections normal to the unde-
formed midsurface remain plane and normal to the middle surface after deforma-
tion and undergo no thickness stretching. Surveys of various shell theories
can be found in the works of Naghdi [161 and Bert [3,47, and a detailed study
of thin ordinary (i.e., not laminated) shells can be found in the monographs

by Kraus [147, Ambartsumyan [17, and Vlasov [201.

lorofessor of Fngineering Science and Mechanics, Virginia Polytechnic
Institute and State University, Blackshurg, VA 240A1
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The first analysis that incorporated the bending-stretching coupling (due
to unsymmetric lamination in composites) is due to Ambartsumyan [2]. In his
analyses Ambartsumyan assumed that the individual orthotropic layers were ori-
ented such that the principal axes of material symmetry coincided with the
principal coordinates of the shell reference surface, Thus, Ambartsumyan's
work dealt with what is now known as laminated orthotropic shells rather than
laminated anisotropic shells; in laminated anisotropic shells the individual
tayers are, in general, anisotropic and the principal axes of material symme-
try of the individual layers coincide with only one of the principal coordi-
nates of the shell (the thickness normal coordinate).

Dong, Pister, and Taylor [9] formulated a theory of thin shells laminated
of anisotropic material that is an extension of the theory developed by
Stavsky [ 97 for laminated anisotropic plates to Donnell's shallow shell
theory (see Donnell [10]). Cheng and Ho [8] presented an analysis of lamina-
ted anisotropic cylindrical shells using Flugge's shell theory (see Flugge
1121). A first approximation theory for the unsymmetric deformation of non-
homogeneous, anisotropic, elastic cylindrical shells was derived by Widera and
his colleagues [25,26] by means of the asymptotic integration of the elastici-
ty equations, For a homogeneous, isotropic material, the theory reduces to
Nonnell's equations,

A1l of the works reviewed above are based on Kirchhoff-Love's hypotheses
in which the transverse shear deformation is neglected., These theories, known
as the Love's first-approximation theories (see Love [157) are expected to
yield sufficiently accurate results when (i) the lateral dimension-to-thick-

ness ratio is large; (ii) the dynamic excitations are within the low-frequency

range; and {iii) the material anisotropy is not severe., However, application
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of such theories to layered anisotropic composite shells could lead to as much
as 30% or more errors in deflections, stresses, and frequencies,

The effects of transverse shear deformation and transverse isotropy, as
well as thermal expansion through the thickness of cylindrical shells were
considered by Gulati and Essenberg 121 and Zukas and Vinson [297. Whitney
and Sun [23,24] developed a shear deformation theory for laminated cylindrical
shells that includes both transverse shear deformation and transverse normal
strain as well as expansional strains, |

Recently, Bert and his colleagues [6,7,13] presented exact solutions for
bending and vibration of two-layer, cross-ply, thin cylindrical shells, These
solutions are limited to cylindrical shells and sinusnidal distribution of the
transverse load, and the procedure used is one similar to that used by Whitney
and Leissa [21], Whitney and Pagano [22], Bert and Chen [5], and Reddy and
Chao [17] for laminated composite plates. The present study is concerned with
the development of exact solutions for simply supported, doubly-curved, cross-
ply laminated shells, It is shown that, unlike plates, antisymmetric angle-
ply laminated shells with simply supported boundary conditions do anot admit
exact solutions. Numerical results for transverse deflection and fundamental

frequencies are presented for various cross-ply laminated shells,

NERIVATION OF EQUATIONS

Figure la contains a differential element of a doubly-curved shell,
Here (gl,gz,c) denote the orthogonal curvilinear coordinates (shell coordi-
nates) such that the £1- and g,- curves are lines of curvature on the midsur-
face =0, and - curves are straight lines perpendicular ton the surface =0,

For the doubly-curved shells discussed here, the lines of principal curvature
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Figure 1. Geometry and stress resultants of a shell
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coincide with the coordinate lines. The values of the principal radii of
curvature of the middle surface are denoted by Rl and Rz.

The position vector of a point on the middle surface is denoted by r, and
the position of a point at distance ¢ from the middle surface is denoted by R
(see Fig. 1b). The distance ds between points (51,52,0] and (£1+d§, €2+d52,0)

is determined by 1
:

= af(dgy) 2+ a(dg,)? (1)

ar
where dr, = £;dE; + LpdEy, the vectors [ and r, (Qi = -SE) are tangent to

the £ and €9 coordinate lines, and % and a, are the surface metrics
of =Ly ) » =Ly v Lo (2)
The distance dS between pnints (gl,gz,c) and (§1+dr,1,§2+d52,c+dc) is given by

(dS)2 = dR « dR

= L§(dgy )2 + L3(dgy)? + L3(de)?2 (3)
3R 3R aR
where dR = _a—gngl + _a_é_z.dgz + £ dg, and Ly, Ly, and L3 are the Lame'
coefficients
- L = L. -
L a1(1+Rl) » L a2(1+R?) y o Ly= 1 (4)
R 3R

It should be noted that the vectors —— and —— are parallel to the vectors
ar ar, % B
E-ETz E-l and 3%, = r;?

- 4




From Fig. la, the elements of area of the cross sections are

dh, = LdEyde = ay(l + %;)da?dc (5)

Let N; be the tensile force, measured per unit length along a €y~ coor-
dinate line, on a cross section perpendicular to a g£1- coordinate line. Then
the total tensile force on the differential element in the gl-direction is
Nyjapdgs. This force is equal to the integral of °1dA2 over the thickness,

h/2
M apdE, = oydAsdE (6)
192982 = [ a9t

[ where h is the thickness of the shell (z = -h/2 and ¢ = h/2 denote the hottom
and top surfaces of the shell). lsing £q. (5), we can write
h/?2

- L
N, = oy (1 + 2=)d¢ (7)
1 jh/Z 1 Ry

Similarly, the remaining stress resultants per unit length can be derived,

The complete set is given hy (see Fig. 1lc).

LI (ol s eRy) )
Nz ‘ 02(1 + C/Rl)
Ni2 06(1 + C/RZ)
Moy b/ 06(1 + C/Rl)
Joy b= e(leemy) [ de (8)
-h/?
02 04(1 + C/Rl)




R

My Col(l + C/Rz)
Mo Co,(1 + CT/R))
Mi2 C06(1 + C/Rz)
LMZ]_ \CGG(I + C/Rl) )

Note that, in contrast to the plate theory (which is obtained by setting
1/R1 = 1/R2 = 0), the shear stress resultants le and M21, and twisting mo-
ments Mjp and My, are, in general, not equal. For shallow shells, however,
one can neglect z;/R1 and C/R2 in comparison with unity. lnder this assump-
tion, one has Nyp and N,y = Ng and My, and My = Mg (of course, for spherical
shells we always have Nyp = Npy and My, = Myy),

A set of simplifying assumptions that provides a reasonable description

of the behavior of thin elastic shells is used to derive the equilibrium equa-

tions that are consistent, via virtual work, with the assumed displacement
field:
1. the thickness of the shell is small compared to the principal radii
of curvature (h/Rl, h/Ry << 1)
2. the transverse normal stress is negligible;
3. normals to the reference surface of the shé]l before deformation
remain straight but not necessarily normzl after deformation (a
relaxed Kirchhoff-Love's hypothesis);

4, The deflections are small compared with the shell thickness,

The shell under consicceration is composed of a finite number of nrtho-
tropic layers of uniform thickness, as shown in Fig. 2, In view of assumption

1, the stress resultants in £q. (8) can he expressed as

A ' e st bt s e
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Figure 2. Laminated shell geometry and lamina details




N
(N1 :M1) = py j 01(1,C)dC 1] i= 1,2,6
N, Sk
0 = £ Ky [ gdg , i=4,5 (9)
k=l © G
where N is the number of layers in the shell, Cx and Tx.1 are the top and

bottom ¢-coordinates of the k-th lamina, and Ki are the shear correction factors.
The strain-displacement equations of a shell are an approximation, within f

the assumptions made above, of the strain-displacement relations referred to k

orthogonal curvilinear coordinates. In addition, we assume that the trans- ?
verse displacement u3 does not vary with C. ! in the shear deformable theory

of flat plates, we begin with the displacement «eld

=
w
|
<
[¥8)
—
—
=
—

— 1 - _1
“1‘2’1‘“1“1)*“’1 Uy = (Lyup) v ey
where <G},Eé,65) are the displacements of a point (£;,£,,) along the
(El.i?,c)coordinates and (“1’”2’“3) are the displacements of a point

(£15E2,0). A higher-order (in C) displacement field can he assumed in place

of £q. (10). Such theories have been consideraed by Whitney and Sun 237, 1In
the interest of hrevity, although the procedures to be described can he ap-
plied to any higher-order theory, we consider only this first-order shear def-
ormation theory, Substituting Eq. (10) into the strain-displacement relations
of a orthogonal curvilinear coordinate system, and assuming that aj are con-
stant (to specialize the results to doubly-curve shells) one obtains

ep = ef + iy

€2 = g+ tx
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b T T B )

whera 4, and by are the rotations of the reference surface =0 3hout the :? -
and £, - coordinate axes, respectively, [t should be noted that the displace-
ment field in £g. (10} can be used to derive the general shear deformation
theory of laminated shells (i.e., a; are not necassarily constant),

The stress-strain relations for the k-th orthotropic lamina i~ the nata-

rial coordinate axes are jiven by

- e o

e A ey A




1 5 <y S 0 0 0 [ ]
) 32 [ 312 Eéz 0 Q0 0 Eé
ay =1 0 0 ¢4y O 0 et (13)
o5 0 0 0 Cgg 0 &
\ 3” (k) _o 0 0 0 2_66_ (k) st (k)
where E}j are the (plane stress-reduced) material stiffnesses of the lamina:
R S T - oz LT = _f
11 A 12 1-vipvpg 22 1-vy5vpq
4 7 823 » Cg5 = 613 » Cge = 6y (14)
and
E1,E5 = Young's moduli in 1 and ? material-principal directions,
respectively
Vij = Poisson's ratio for transverse strain in the j-th direction

when stressed in the i-th direction
Gp3,613,612 = shear moduli in the 2-3, 1-3, and 1-2 surfaces,
respectively.
Poisson's ratios and Young's moduli are related hy the reciprocal relations

ii%j (i =1,2). (15)

The stress-strain relations (13) transformed to the shell coordinates become

(o) = (0" ){e} (16)

are the material properties of k-th layer.

(c)
1)

where {)




The principle of virtual work in the present case yields

h/2
{n/?{fg[°§k)551*°;k)5€?*°ék)556*°§k)554+°ék)5551“1“2d51d§2}dc

o
n

J o INoef + Npoe + Nged + Myony + Mabey + Mgbig + 0, 6e3

where g is the distributed transverse load.
The governing equations of equilibrium can be derived from Eg. (17) by
. . . . . 0 .
integrating the displacement gradients in g; by parts and setting the coeffi-

cients of suj (i =1,2,3) and 50, {i = 1,2) to zero separately. Thus one

obtains .
aN N
] d 1
— +— (N, + c M) +===10
axl ax2 6 06 R1
aN 0
) 2 2
— (N, «c M ) + — + =—= =0
bxl ( 6 0 6] ax2 R7

where Co denotes the constant

1.1 1
CO = 5 (R—l- - k—] , dx, = a.dg.. (19)

-
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This term is introduced by Sanders (see [181]), and distinguishes the Sanders
theory from others., Using Eq. (13) in Eq. (8), the stress resultants

0
(N1 .Mi,Oi) can be related to (51 ,xi) by

Ni=A +B1

.. &0 .
13 3%

M= Bizef + Dyyx;

= 0 0
% = Asaca * Pascs

o
—
1

= Agged + Agged

Here A;;, Byj, and Dy (i,j = 1,2,6) denote the extensional, flexural-

extensional coupling, and flexural stiffnesses:

N Ck ()
) = -z I Q (l,C,Cz)dC- (21)

k=1 g, _, i

The equations of Love's first-approximation shell theory can be obtained

by setting ¢, = 0 in Eq. (18). Equations (18) can be specialized to flat

plates, cylindrical shells, and spherical shells, respectively, by setting

L.l 0, L = 0 and Ry = R (the xl-axis is taken along a generator of the
cylinder), and Ry = R, = R, The classical thin shell theory can be obtained
au3 u1 au3 u?
by setting ¢ - =— *+ 5~ , and ¢, = T— + 7
l axl Rl ’ 2 axz Rz

CLOSED-FORM_SOLUTIONS

The exact form of the spatial variation of the solution of Fqs., (18) can

be obtained under the following conditions:




(i) Symmetric or antisymmetric cross-ply laminates: i.e., laminates

with
A1e = R26 = B16 = Ba6 = D16 = D6 = Ags = O- (22)
(i1) Freely supported boundary conditions: k

0

Nl(O,xz) = Nl(a,xg) = MI(O,Xz) = Ml(a’XZ)

]
o

u3(0,x2) = u3(a,x2)
Ny(x1,0) = Np(xq,b) = My(x),0) = My(xq,b) = 0

Uz(Osxz) = Uz(aoxz) =

u3(x1,0) = u3(x1,b) = ul(xl,O) = ul(xl,b) =0 E
0 (23) '

¢2(0,X2) = Qg(ayxg)

(ii1) Sinusoidal (spatial) distribution of the transverse load:

01(X1,0) ¢1(X1,b)

3
a
]

g = 7 g sinex;sing, , a==F , p== (24) j

m,n

where a and b are the dimensions of the shell middie surface along

the x; and x, axes, respectively.

The exact form of the spatial variation of u; (1 =1,2,3) and o, (i = 1,2) is

given by
up(xy,xp) = 7 Up,cosaxpsingx,
Uplxy,xp) = min VpnSinax, cospxy,
u3(x1,x2) = :?: WopSinax;singx,
61 (x]5%p) = mgn XpnCOS ax) S infx, J
! by(Xsxp) = mgn YnSinax cospx,. (75)

Clearly, the solution satisfies the boundary conditions in Fq. (23).
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Substitution of Egqs. (24) and (25) into Eq. (18) yields a set of five
linear algebraic equations in terms of the unknown amplitudes U, V, W, X, and

Y. These equations can he expressed in matrix form as

- [c]ja} = {F} (26)

for bending, and

- [c1{a} = «&ST{a} (27)

for natural vibration., Here w denotes the frequency of natural vibra-

tion, {a} and {F} denote the columns

T
{8} = fuvwx,Y}, {FY = {0,0,,,,0,01, (28)
and ¢y = and S;; = Sjj are given by
c' = - a2A - 827 - c28?p _5§§.-2C 2p
11 @A 7 P%es - 0P Ve6 T T, 0866
1
c1p = - aB(Ajp + Agg ~ ¢30gg)
A A A
11 12 55
C o = af + + )
13 Rl R2 Ql
A
55
s - aB.. - a%. - 2 25
Cia a Rll 3 866 N 066 + Rl
C15 = - 08(812 + 866 + consﬁ)
= ~g2A 2:2p 2 iﬂ + 2¢_a?R
Cop = ~a®Agg - a’ciDge - BAyy - R2 “Co g6

2

g AR SR SR T




A
24
= o 2 - Y.
co5 = - @*(Bge = oPgg) - FBap *
Ay A A A
2 1 A1 M 1 P A
€y = - Aege? - A - b (e 2) - b e 2
33 55 LR nl s e o
B 8
1 P
cyy = alel + 222 - Ag)
1" omTTR, s
B, B
By By
c35 = BlRT TR, T Maa)

cqq = - a?0yy - B%gg - Ags

<45 = - aB(Pyp * Dgg)

cgs = - alDgg - 8Dy - Agq (29)
So3 = P1> Saq = Ssg = R, all other Syy = 0. (30)
where
VR ()
(PyPpsPa) = 1 [ p (1,g,c2)de (31)
) k=1 Ck_l

p(k) being the density of the k-th layer.
Similar calculation for antisymmetric angle-ply shells (A1 = Arg = Bpy =

Biz = B2 © Bg = D16 = Dog = Agg = 0) with the solution of the form




ul(xl,xz)

U2(X1,X2)

Z Up
{ Ve

sinaxlcosax7

nCOSaxsingx,

(32)

and uz, ¢, and 65 s given in Eq. (25), shows that the exact solution

is possible if and only if 1/Ry = 1/R, = 0. In other words, antisymmetric

angle-ply plates admit exact solutions but shells do not., To see this, sub-

stitute Eq. (24), last three of Eq. (25), and Eq. (32) into £q. (18). Note

that the assumed solution satisfies the following type of simply supported

boundary conditions,

NS(O’XZ) = Ns(a,xZ) = Nﬁ(xl,O) = N6(X1,b) = ()
up(0,x5) = ug(asxy) = uy(xy,0) = us(xy,0) = 0
U3(0,X1) = U3(a,X2) = U3(X1,0) = U3(X1,b) = 0 (33)
¢1(X1’0) = ¢1(x1,b] = ¢2(0,X2) = ¢2(a,x2) =0
MZ(XI,O) = Mz(xl,b) = MI(O,X2) = Ml(a,XZ) =0
From the first equation in Eq. (18), we obtain
) Ass
{[-28(A)g + cByg )T, + [-a®(Ryg - cBig] - B2(Ayg + coBog) - RlR?]V
A A A A
* [Rll * R12 * Rss]awmn + [-a®Byy - B2(Bgg v ¢ Dgg) ss]x
1 2 1 1
+ [‘GB(BIZ + 366 + C0D66)]Ymn}c05axlsinﬁx2
4 {[-a?hy - B2(A+ 2¢ B+ 2D ) - éég]u [-aB(A % Aggt 2¢ Begt c Dgg' 1V,
«Ayp- B<Rge* <Col66" C5V66 T aBlAy t Aggt 2C 66'Vmn
A, +c 8B A, +c B A
16 0 16 26 0 26 45
+ R ¥ R, * Ry ]men + [-aB(28)4 + Conlﬁ)]xmn
a2 Aas :
+ [-a?B,-8%(Byg + CDoe) + §I—]Ymn}51nax1cossx2 =0 (38)

5T PR
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For antisymmetric angle-ply laminates, the following stiffnesses are
identically zero:

Atg = Ays = By = Byp = Byp = Bgg = Dig = Dpg = Agg = 0 (35)

As a result Eq. (34) reduces to

AL A A
1, M2 Ass

- 28 - g2
[+ 280 B16%mn * Cola™ 1 = 6286V * alg— * &= * T M
) Ass .
+ (-8 ¢,Dg¢ ﬁI—)an - asc0066Ymn]c05ax151an2
2 2 2 Ass 2
* - a®Ayy - B2(Rgg + 0] - o nn ¢ [ @BlAyp + Agg + c30q6) iy
1
+ Bc (Elﬁ + EZQ)N - 2afB, X - (a2B,. + B2, )Y '} sinax,cos8x, = 0
o' R R,”"mn ~ “71716 mn 16 26’ 'mn 1 2

1 4

(36)

Thus, we get two equatinns, by setting the coefficients of c05axlsin3x? and
sinaxlcosﬁx2 to zero, from the first equilibrium equation. Similarly, we ob-

tain eight more equations from the remaining four equi]ibriuqﬂFquations. In

n

v X

mn?* °

which have no unique solution., These ten equations reduce to five when 1/R;

other words, we have ten equations in five unknowns (!)

mn* mn?* Ymn),

and 1/Ry are set to zero, as can be seen from Eq. (36). Thus antisymmetric
angle-ply shells do not admit exact solution while antisymmetric angle-ply

piates do.




rl''''''''llll'llllllllllllllllllllllllllIlIlIIIlIIlIlIlllllllllllllllllllllu_|.;|.........,.,,.,..,..,.,,,.,|,,,,,,,,_,,,,,.,,,,_,,__.Il1

19

NUMERICAL RESULTS ]

As a first example of bending, a doubly curved shell under transverse
ond
concentrated load at the center is analyzed. The following geometric[ﬁaterial

parameters are used: ¥

| Ry = R, =96.0 in., a =D = 32.0 in., h = 0,1 in,,

Ey = Ep = 107 psi, v = 0.3, intensity of load = 100 1b. (37)

This problem was also solved using the finite element method by Yang [ 277,

Table 1 contains the center transverse deflection obtained using the shear de-

formationtheory (SDT) and classical shell theory (CST) for various terms in

the series., The numerical solution of Vlasov [20] is taken from Yang's paper.

It should be pointed out that both Viasov and Yang did not consider transverse

f shear strains, [t is clear from the results that the series solution converg-
| es very slowly, The difference between the values predicted by SDT and CST
thearies is not significant because the ratios a/h = 320 and R/h = 960 are
very large (hence, the shell is essentially very thin and shallow).

To investigate the effect of transverse shear strains on the center de-
flection, the same spherical shell problem with point locad at the center or
uniformly distributed loading are analyzed, and the results are pre<ented in
Table 2. Note that for uniformly distributed l1oad, the solution given by the

50-term series is the same as that given by the 250-term series, indicating

that the convergence is achieved with 50 (or less) terms in the series, C(om-
parison of the SNT results with the CST results show that the shear deforma-
tion is significant for side to thickness ratios smaller than 10. For exam-
ple, the classical theory solution differs from the shear deformation theory

5.

"

solution by 0,35% for a/h = 20, 3.6% for a/h = 10, and 18,6% for a/h
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TABLE 1. Center transverse deflection of a spherical shell under point load
at the center (Ry = Ry = 96 in: a =b = 32 in., h = 0.1,
E = 107 psi, v = 0.3, load, P = 100 1bs) L
Theory n*=9 n=49 n=99 n=149 n=199 n=249 ,
ST 0.032594 0.039469 0,03972 0.039786 0.039814 0.039832 :
CST - - 0.03959 - 0.039647 0.039653
Vlasov - - 0.03956 - - -
(20]

*
nxn-term series; finite-element solution of Yang [27]: 0.03867 ‘

TABLE 2, Center transverse deflection (w x 103) of spherical shells under |

point load at the center and uniformly distributed load (see Table 1
for the problem data).

h n=9 n=49 n=99 n=149 n=199 n=249

Point load at the center

0.32 3.6h4 3.9019 3.9194 3.9270 3.9319 3.9356
1.60 0.,1646 N.1713 0.1735 0.1748 0.1757 0.1764
3.20 0.0349 0.0376 0.0386 1.0393 0.0397 .0400
6.40 0.0067 0.0080 0.0085 0.0088 0.0091 0.0092

Uniformly distributed load

e e — =

0.32 314,28 . 313.87 313.86 313.86  313.86 313.86
7T (314.33) (313.93)  (313.93)  (313.93)

1.60 49.701 49,695 49,695 49,695 49.695 49,695
: (49.526)  (49,523) (49.523) (49.523)

3.20 11.266 11,265 11.265 11.265  11.265 11.265
: (10.873)  (10.872) (10.872) (10.872)

Ty .

6.40 1.9774 1.9767 1.9767 1.9767 1.9767 1.9767
) (1.6669) (1.6669) (1.6669) (1.A6A9)

*
CST solution
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TABLE 3., MNondimensionalized center deflection* versus radius to thickness
ratio for cross-ply spherical shells under sinusoidally distributed
transverse loads, {a/b = 1.0; material: E]/E2 = 25, 623 = 0.2E,,
613 = 612 = 0.5E2)

0% /907 0°/90%/0° 0%/90%/90°/0%

R/a a/h=100 a/h=10 a/h=100 a/h=10 a/h=100 a/h=10
1 0.0536 4.023 0.0536 3.2590 0.0532 3.2290

2 0.2111 3.156 0.2068 5.3052 0.2054 5.2542

3 0.4634 10.062 0.4391 5.9971 0.4362 5.9387

4 0.7969 10,958 0.7237 6,2834 0,7192 6.2219

5 1.1948 11,429 1.0337 6.4253 1.0279 6.3623

10 3.5760 12,123 2.4109 6.6247 2.4030 6.5595
1030 10.653 12,373 4.3370 6.6939 4,338 6.6280

* g o= (wn3E?/qoa“] x 103 , q, = intensity of the transverse load

TABLE 4, Nondimensional center deflection versus radius to thickness ratio of
spherical shells under uniformly distributed load (19-term solution)

R/ 0°730° 0°/90°70° 0°790°/30°/0°

a a/h=100 a/h=10 a/h=100 a/h=10 a/h=100 a/h=10
1 0.0718 6.054 0.0718 4.8173 0.0715 4,8366
2 0.2855 12.668 0.2858 8.0210 0.2844 8.0517
3 0.6441 15.739 0.6224 9,.1148 0.6246 9,1463
4 1.1412 17.184 1.0443 9.5686 1.0559 9,5999
5 1.7535 19,944 1.5118 9,7937 1,5358 9,8249
10 5.5428 19.065 3.6445 10,110 3.7208 10.141
1030 16.980 19,469 6.6970  10.220 £.8331 10,251

L = e e TP



Next, the results of bending of cross-ply laminated shells are discussed.

The same geometric parameters as used in the isotropic shells are also used
for composite shells. Individual layers are assumed to be orthotropic, with

the following properties:
El = 25E2, 623 = O.ZE?, G13 = 612 = O.SE?, V12 = 0,25 (38)

Tables 3-5 contain nondimensionalized center transverse deflections of cross-
ply spherical shells under sinusoidal, uniformly distributed, and point loads,
respectively, The results are tabulated for various ratios of radius to
thickness and for two values of side to thickness., From these results it fol-
Tows that the center deflection varies rapidly with the ratio R/h for deep
shells (i.e., for large ratios of a/h) than for shaliow shells (i,e., for
small ratios of a/h),

The present solution can also be applied to special laminates,
[0°/t45°]sym = [0°/45°/-45°/-45°/45°/0°], which are used in F-16 aircraft by

General Dynamics Corporation, Ft. Worth. For the scheme, [0°/$45°] we

sym?®
have Ajp = Age = Dip = Nyp = Bij = () and therefore the solution developed in
the present study applies. Table 6 contains the nondimensionalized center de-
flections for cylindrical and spherical shells with various side to thickness
ratins and radius to side ratios.

To complete the analysis, the results of free vibration are also present-
ed. Tables 7 and 8 contain nondimensionalized fundamental frequencies for
spherical (Ry = RZ) and cylindrical shelis (R] = 1030), respectively.

Two sets of shear correction factors were used to investigate their in-

fluence on the fundamental freguencies, For a fixed ratic of R/a, the shear

correction factors have little or no effect on the frequencies for a/h = 100,

e ——
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For a/h = 10, the effect of smaller values of shear correction factors is to

\
lower the frequencies, the rate of decrease being the highest for the four- |

layer cross-ply. For identical lamination and geometry, spherical shells have

higher natural frequencies than cylindrical shells.,

TABLE 5. Nondimensionalized center def]ection* versus radius to side ratio of
spherical shells under point load at the center (10l1-term solution)

R/a 0°/90° 0°790°/0° 0°/90°/90°/0°
10 4.0164 3.7127 3.5815
20 5.7620 4.6502 4.,4678
30 6.5444 4.,9546 4.7579
40 6.9098 5.0794 4.8771
50 7.1015 5.1410 4,9360
100 7.3836 5.2273 5.0186
1030 7.4853 5,2572 5.0472
. - wh3E2
w= ) x102 ; a/b=1 , a/h =10, P = point load
Pa2

TABLE 6. Nondimensional center deflections of simply supported, special
laminates [0°/¢45° ], cylindrical and spherical shells.

a/h _ Sinuscidal loading Iniform loading*
R/a 5 10 100 5 10 100

Cylindrical Shell (R/a = ?)

2 9.4976 4.1168 N.1623 14,0224  6,1794 0.0928
4 10,5152 4,9927 0.5A97 15.6616  7.5956 N0.733

Spherical Shell (R = R, = R, R/a = 2)

2 £.7850  2.4120 0.0421 9,7344 3.4794 N, 0391
4 9.468 4.1117 0.1623 13.9936  6.1356 0.1930

* 5]1-term solution

|
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|
i
3
¥
J
1
)
i




e cmne - Pmmree

24

TABLE 7 Nondimensionalized fundamental frequencies,+ w = uﬁz/p7E2/h, versus
raaius to side length ratio of spherical shell (a/b=1).

0°/90° 0°/90°/0° ~0°/90°/90°/0°
R/a a/h=100 a/h=10 a/h=100 a/h=10 a/h=100 a/h=10
1 125.93 14.481 125.99 16.115 126.33 16.172
125.93 14.420 125.99 15.746 1726.33 15.827
2 67.362 10.749 68.075 13.382 68.294 13.447
67.361 3.5161 68.072 12.794 68.291 12.8%9
3 46,002 9.9608 47.265 12.731 47,415 12,795
46,001 9.6473 47,260 .2.077 47,410 12.178
A 35.228 9.4102 36,971 12.437 37.082 12.552
35.227 9.2644 36.9564 11.808 37.075 11.910
5 28.825 9.2309 30.993 12.372 31.079 12.437
28.825 9.0791 30.986 11.680 31.071 11.783
10 16.706 8.9841 20.347 12.215 20.380 12,280
16,704 8.8225 20.335 11.506 20.368 11.609
1030 9.6873 8.8998 15,183 12.162 15.184 12.226
9.6850 8.7317 15.167 11.447 15.168 11.551
*the first line of values corresponds to K = K2 = 5/5, and the second line :
corresponds to Kf = 0.7, K% = 0.6, L
i
Table 8 Nondimensionalized fundamental frequencies ver§85 radius to side
length of cylindrical shells (a/b =1, Ry = 10°7), |
0°/90° 0°/90°/0° 0°/90°/96°/0°
R2/a a/h=100 a/h=10 a/h=100 a/h=10 a/h=100 a/h=10
1 A5.474 93,9986 66.583 13.172 66.704 13.128
65.473 9.9018 66.580 12.578 66,700 12.567
5 34,914 9.1476 36.770 12.438 36.858 12.471
) 34,913 9.00983 36.763 11.758 36.851 11.828
3 24.516 3.9832 27.116 12.287 27.173 12.337
24.515 8.8832 27.106 11.587 27.164 11.676
4 19,509 8.9301 22.709 12.233 22.749 12.280a
19,508 8.7746 22.698 11.526 22.738 11.6722
5 16.668 8.9082 20,332 12.207 70.361 12.2A7
15.667 8.7498 20,320 11.498 20.349 11.596
10 11.R31 3.8879 16.625 12.173 16.634 12,236
11.329 8.7241 16.610 11.459 16.619 11.5A2
1030 9.6873 8.8998 15.183 12,162 15.184 12.226
(plate) 9,6350 88,7317 15.167 11.447 15,168 11.551
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CONCLUSIONS

Closed-form solutions for deflections and natural frequencies of simply
supported, cross-ply laminated and quasi-isotropic shells are derived using
the shear deformation version, developed herein, of the Sanders shell theory.
Unlike plates, antisymmetric angle-ply shells do not admit exact solutions.
The exact soltutions presented herin for cylindrical and spherical cross-ply
shells under sinusoidal, uniformly distributed, and point loads should serve
as bench mark results for approximate methods, such as the finite element and

finite difference methods.
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APPENDIX II., - NOTATION

The following symbols are used in this paper:

extensional stiffness; see Eq. (21)

J
a = curvilinear dimension of the laminate along the gl-axis
dAl,dAz = area elements perpendicular to the 51 and 52 axes
Bij = hending-extensional stiffness; see Eq. (21)
h = curvilinear dimension of the laminate along the gg-axis
Cij = coefficients defined in Eq. (29)
Eij = plane-stress-reduced material stiffness of the lamina
D j = bending stiffnesses; see Fq. (21)
EysE2 = Young's moduli in 1 and 2 material principal directions
Gy = shear moduli in the i-j surfaces, respectively
h = thickness of the shell
Ly = Lame' coefficients (i = 1,2,3)
My = moment resultants (i = 1,2,6); see Eqn. (9)
m = number of terms in the series (24) and (25)
N = total number of layers in the laminate
N; = normal stress resultants (i = 1,7,6); see fgn. (9)
n = number of terms in the series (24) and (25)
P; = rotary, and coupled-rotary inertias defined in Fqn., (31)
04 = shear stress resultants (i = 1,2); see Egn. (9)
Amn = coefficients in the expansion of the transverse load:; see fq.
(24)
R = position vector of a point in the shell
Rj = principa) radii of curvature; see Fig, 1

r = position vector of a point on the shell midsurface
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Sij = the mass coefficients defined in Eqn. (30)
Unn = amplitudes of displacement uj; see Eqn. (25)
uj = displacements of the midsurface
u, = displacements of a point in the shell
Von = amplitudes of displacement u,; see fqn. (25)
Won = amplitudes of displacement ug
Xmn = amplitudes of rotation )
Yon = amplitudes of rotation o,
a = mn/a
aj = surface metrics {i = 1,2) defined in Eq. (2)
8 = nu/b
8 = variational operator
0; = rotations about normal to the shell midsurface
€5 = strain components (i = 1,2,4,5,6); see Egn. (11)
o; = stress components (i = 1,2,4,5,6)
E; = curvilinear coordinates in the surface of the shell
' = coordinate transverse to the shell midsurface
vij = Poisson's ratios
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GEOMETRICALLY NONLINEAR ANALYSIS OF LAMINATED SHELLS

INCLUDING TRANSVERSE SHEAR STRAINS

J. N. Reddy and K. Chandrashekhara
Department of Engineering Science and Mechanics

Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

ABSTRACT

The paper contains a description of a doubly curved shell finite element
for geometrically nonlinear (in the von Karman sense) analysis of laminated
(doubly-curved) composite shells. The element is based on an extension of the
Sanders shell theory and accounts for the von Karman strains and transverse
shear strains, The numerical accuracy and convergence characteristics of the
element are further evaluated by comparing the present results for the bending
of isotropic and orthotropic plates and shells with those available in the
Jiterature, The many numerical results presented here for the geomertically
nonlinear analysis of laminated composite shells should serve as reference for
future investigations.

INTRODUCTION

Laminated shells are finding increased application in aerospace, automo-
bile and petrochemical industries. This is primarily due to the high stiff-
ness to weight ratio, high strength to weight ratio, and less machining and
maintenance costs associated with composite structures, However, the analysis
of composite structures is more complicated when compared to metallic struc-
tures, because laminated composite structures are anisotropic and character-

ized by bending-stretching coupling., Further, the classical shell theories,

which are based on the Kirchoff-Love kinematic hypothesis (see Naghdi (1] and




Bert [2]) are known to yield deflections and stresses in laminated shells that
are as much as 30% in error, This error is due to the neglect of transverse
shear strains in the classical shell theories.

Refinements of the classical shell theories (e.g., Love's first approxi-
mation theory [3]) for shells to include transverse shear deformation have
been presented by Reissner [4-67. Sanders [7] presented modified first- and
second-approximation theories that removed an inconsistency (nonvanishing of a
small rigid-body rotations of the shell) existed in Love's first-approximation
theory,

The first thin shell theory of laminated orthotropic composite shells is
due to Ambartsumyan [8,9]. In these works Ambartsumyan assumed that the indi-
vidual orthotropic layers were oriented such that the principal axes of mate-
rial symmetry coincided with the principal coordinates of the shell reference
surface. Dong, Pister, and Taylor [10] presented an extension of Donnell's
shallow shell theory [11] to thin laminated shells, Using the asymptotic in-
tegration of the elasticity equations, Widera and Chung [12] derived a first-
approximation theory for the unsymmetric deformation of nonhomogeneous, aniso-
tropic, cylindrical shells. This theory, when specialized to isotropic mate-
rials, reduces to Donnell's shell theory,

The effects of transverse shear deformation and thermal expansion through
the shell thickness were considered by Zukas and Vinson [13]. Dong and Tso
(147 constructed a laminated orthotropic shell theory that includes transverse
shear deformation, This theory can be regarded as an extension of Love's
first-approximation theory [3] for homogeneous isotropic shells, Other re-
fined theories, specialized to anisotropic cylindrical shells, were presented

by Whitney and Sun [15], and Widera and Logan [16,17].
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The finite-element analysis of layered anisotropic shells, all of which

are concerned with bending, stability, or vibration of shells, can be found in
the works of Schmit and Monforton [18], Panda and Natarajan [19], Shivakumar
and Krishna Murty [20], Rao [21], Siede and Chang [22], Hsu, Reddy, and Bert
[23], Reddy [24], and Venkatesh and Rao [25,26]. Recently, Reddy [27) extend-
ed the Sanders theory to account for the transverse shear strains, and pre-
sented exact solutions for simply supported cross-ply laminated shells. All
of these studies are limited small displacement theories and static analyses,
In the present paper, an extension of the Sanders shell theory that ac-
counts for the shear deformation and the von Karman strains in laminated an-
jsotropic shells is used to develop a displacement finite element model for
the bending analysis of laminated composite shells. The accuracy of the ele-
ment is evaluated by comparing the results obtained in the present study for
isotropic and orthotropic plate and shell problems with those available in the
literature. Numerical results for bending analysis of cylindrical and doubly-
curved shells are presented, showing the effect of radius-to-thickness ratio,

loading, and boundary conditions on the deflections and stresses.

A REVIEW OF THE GOVERNING EQUATIONS

Consider a laminated shell constructed of a finite number of uniform-
thickness orthotropic layers, oriented arbitrarily with respect to the shell
coordinates (&1.52.C)- The orthogonal curvilinear coordinate system
(gl,gz,c) is chosen such that the §1~ and 52- curves are lines of curvature on
the midsurface =0, and Z-curves are straight lines perpendicular to the sur-
face ;=0 (see Fig. 1). A line element of the shell is given by (see Reddy
(277

(d$)2 = [(1 + ¢/Ry)aydg; 12 + [(1 + /R, )apdE, ]2 + (d)?2 (1)




where @; and R; (i = 1,2) are the surface metrics and radii of curvature,

respectively, In general, a;

; and Ry are functions of g, only. For the doubly

curved shells considered in the present theory, a;

; and Rj are constant,

The strain-displacement equations of the shear deformable theory of
doubly-curved shells are given by

.0
€1 % & * &

€ = €5 *+ Uk
_ 0
€4 7 &
. .0
€5 ~ &5
€6 - €6 + CKG (2)
where
au ou ]
0. 1, 83,1 %, %
1 axy R1 2 dxy 1 X
aUZ U3 1 303 b¢2
0 = -
=+t ts (=2, k, = =—
2 ax2 R2 2 ax2 2 ax2
du du du, U ou au
o 0 O gy 2 % M2 1
6 ax2 ax1 axl Xy 6 ax2 ax1 0 ax1 ax?_
u u
3 ?
€d = ¢ + =— - =
4 2 ax2 2
€ = ¢ a—u3. - .l:l
5 1 axl R1
11 1
¢ =7 (ﬁ; -'ﬁI) (3)

Here u; denotes the displacements of the reference surface along gi(§3 =)
axes, and ¢; are the rotations of the transverse normals to the reference
surface. In Love's first-approximation theories the parameter c, is taken to

be zero, and it is introduced only in the Sanders theory.
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The stress-strain relations, transformed to the shell coordinates, are of

the form
{o} = [Q1{e} (4)
where Ogg) are the material properties of k-th layer.

The principle of virtual work for the present problem is given by

L& K k K k k
0= kzl / IQ {ag )651 + 0(2 )652 + oé )666 + cg )584 + cé )655
Ck-1
- QGU3}ala2d§1d§2dC (5)
- ) 0 0 0
= fg [Nléel * Nybey + Neee + Mibicy + Myb, + Mobg + Q) 6¢g
+ Q,6¢Q - QbuqJay ayde, dz, (6)

where g is the distributed transverse load, N; and M; are the stress and

moment resultants, and Oi is the shear force resultant:

L %
(N ’M) = z ,r 0(19C)dc ’ i= 192;6
1 1 k=1 ck-l 1
L Ok
Q' = z K2 f GdC ’ is= 4s5! (7)
1 k=1 1 Ck-l 1

where K; (i = 1,2) are the shear correction factors (taken to be Kf = K% =
5/6), and (g, _y.Gy) are the g-coordinates of the k-th layer, and L is the
total number of layers in the laminated shell.

It is informative to note that the equations of equilibrium can be

derived from Eq. (6) by integrating the displacement gradients in e? by parts




6 1
E
and setting the coefficients of bu ; (i = 1,2,3) and 565 (i=1,2) to zero
separately, We obtain [with C, = %-(%;-- %I) and dx; = a;dg; ]
- )
Ny, : ) 0, g
— +— (N, - Cc M) + =—=10
axl ze 6 o6 Rl ,
aN, Q
o) 2
=— (N + ¢ M) 4+ — + 5==10
axl 6 05 ax2 R2 |
i
301 3Q, Ny N> y
- - () =0
axl 6x2 R1 R2 3
oM M
__l + 6 - Q = 0
axl ax2 1
BM M
6 2 _
w W, 20 (8)
where
du du du du
) 3 3 ) 3 3
(u3) - ox) (Nl X, * Ng axz) * 3%, (NG %, * N, 37;) (9)

The resultants (N;, M;, 0j) are related to (e?, xi) (i,j = 1,2,6) by

_ 0
= 0
M= Biges Dy (10)
07 = Agqeq * Agse3
(11) ,
0y = Ageeq + Acgen
1~ "45%4 7 "55%5

-

Here Aij* Bij and Dyj (i,j = 1,2,6) denote the extensional, flexural-

extensional coupling, and flexural stiffnesses of the laminate:

L (k) 2Vde (5.5 =
) = ). I QTJ (1,C,C )dC (1yJ = 1s2s6)
=Gy (12)
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- k 20(k) (k) L 2n(k)
The boundary conditions, derived from the virtua)l work statement, involve
specifying either the essential boundary conditions (EBC) or the natural

boundary conditions (NBC):

£8C 18c
Uy or Nyny * (Ns - coMﬁ)n2
Uy or Nony + (N6 + coMﬁ)n2
ou ou
3 3
r (Nl X )nl (N2 X )n2
1 2
au3 au3
us or * + (NG &-2—)01 + (N5 -7;)!‘12
. +Qonp + Oy
01 or Minyp *+ MgMp
b9 or M2n2 + Msn1 (13)

where (nl,nz) denote the direction cosines of the unit normal on the boundary
of the midsurface of the sheil.

The exact form of the spatial variation of the solution of Egs. (8)-(13),
for the small-displacement theory, can be obtained under the following condi-
tions (see Reddy [27]):

(i} Symmetric or antisymmetric cross-ply laminates: i.e., laminates
with
A6 = P26 = By = Bas = D1 = Dgp = Ags = 0 (14)
(i1) Freely supported boundary condi;ions:

Nl(o,xz) = Nl(a,xz) = Ml(O,xz) = Ml(a,xz) =0

u3(0,x2) = u3(a,x2) = u2(0,x2) = uz(a,x2) =0




NZ(xl'O) = NZ(xl’b) = Mz(xl,O) = MZ(xl‘b) =0

u3(x1,0) = u3(x1,b) = ul(xl,O) = ul(xl,b) =0

02(0,x5) = 0,(a,x,) = 0;(x;,0) = ¢,(xy,b) =0 (15)
where a and b are the dimensions of the shell middle surface along
the x; and xp axes, respectively, The time variation of the load

does not influence the spatial form of the solution,

Note that the exact solution can be obtained only for cross-ply laminated
shells with simply supported boundary conditions. For general lamination

schemes, exact solutions are not available to date.

FINITE-ELEMENT MODEL

A typical finite element is a doubly-curved shell element in the SN

(e)

surface, Over the typical shell element Q' 7', the displacements

(ul,u?,u3,¢1,@2) are interpolated by expressions of the form,

N
Ui = E uld’j(xl’XZ) ’ 1 = 1’2’3
Jj=1
N j .
8= jzl %45(xpaxp) s 1= 1,2 (16)

where wj are the interpolation functions, and ug and @% are the nodal values
of u;j and Oi» respectively, For a linear isoparametric element (N = 4) this
interpolation results in a stiffness matrix of order 20 by 20. For a nine-
node quadr.tic eiement the element stiffness matrix is of order 45 by 45,

Substitution of Eq. (2-) into the virtual work principle, Eq. (9) yields

an element equation of the fcrm




[K(a)] = {F} (17)

T

where {a} = {{u;}, {u,}, {us}, {¢1}, {o51}, (K] the element stiffness matrix,

and {F} is the force vector. In the interest of brevity, the coefficients of ‘?

the stiffness matrices are included in Appendix I.
The element equations (17) can be assembled, boundary conditions can be
imposed, and the resulting equations can be solved at each load step. Note i

that the stiffness matrix [K] is a function of the unknown solution vector

{a}; therefore, an iterative solution procedure is required for each load
step. In the present study, we used the direct "teration technique, which can

be expressed as

K({a} ) 1{a)™t = (18)

where {A}r denotes the solution vector obtained in the r-th iteration (at any
given load step). At the beginning of the first load step, we assume that
{a}9 = {0} and obtain the linear solution at the end of the first iteration.
The solution obtained at the end of the r-th iteration is used to compute the
stiffness matrix for the (r+l)-th iteration. At the end of each iteration

(for any load step), the sofutions obtained in two consecutive iterations are

compared to see if they are close enough to terminate the iteration and to
move on to the next load step. The following convergence criterion is used in

the present study:

N N
[ ‘Zl |A: - A:+112// D) IA;V]U2 < 0.01 (19)
i= 1=

"

where N is the total number of unknown generalized displacements in the finite

element mesh.
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To accelerate the convergence, a weighted average of the solution from

last two iterations are used to compute the stiffness matrix:

[K(y{a}™Y + (1 - ) {a}" )] = fF) (20)

where y is the acceleration parameter, 0 < y < 1. In the present study a val-

ue of 0.25 - 0.35 was used,

NUMERICAL RESULTS

Here we present numerical results for some sample problems, To illus-
trate the accuracy of the present element, first few examples are taken from
the literature on isotropic and orthotropic shells. Then results (i.., de-
flections and strsses) for several laminated shell problems are presented.

The results for i1aminated shells should serve as references for future inves-
tigations.,

ATl of the results reported here were obtained using the double-precision
arithmatic on an [BM 3081 processor. Most of the sample problems were an-
alyzed using a 2 x 2 uniform mesh of the nine-node {quadratic) isoparametric

rectangular element.

1, Bending of a simply supported plate strip (or, equivalently, a beam) under

uniformiy distributed load.

The problem is mathematically one-dimensional and an analytical solution

of the problem, based on the ciassical theory, can be found in Timoshenko and

Womowsky-Krieger [28], The plate length along the y-coordinate is assumed to

be large compared to the width, and it is simply supported on edges parallel

e
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to the y-axis. The following simply supported boundary conditions are
assumed:

w = ¢, = 0 along edges x = 0,a. (21)

y
All inplane displacement degrees of freedom are restrained. A 5 x 1 mesh of
four-node rectangular elements in the half plate is used to analyze the prob-
lem. The data and results are presented in Fig. 2. The present result is in

good agreement with the analytical solution.

2. Clamped square plate under uniform load.

Due to the biaxial symmetry, only one quadrant of the plate is modelled
with the 2 x 2 mesh of nine-node elements (4 x 3 mesh of linear elements give
almost the same result)., Pertinent data and results are presented in Fig, 3
for side to thickness ratios a/h = 10 and 500, The result for a/h = 500 is in
agreement with the results of Way [29]. The difference is attributed to the
fact that the present model includes the inplane displacement degrees of free-
dom and transverse shear deformation,

Figure 4 contains transverse deflection versus load for clamped ortho-

tropic, cross-ply, and angle-ply plates. The Tamina properties are

Ey = 25 x 1o% N/mm2, E5 = 2 x 104 N/mm?2, Gy, = 673 = 10% N/ mm2

G93 = 0,4 x 10“ N/mmz, V12 = 0.25-

For the same total thickness the clamped orthotropic square plate is stiffer

than both two-layer angle-ply and cross-ply plates.
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3. Simply supported, isotropic spherical shell under point load.

The pertinent data of the shell is shown in Fig. 5., A uniform mesh of 2
by 2 quadratic elements is used in a quadrant. The effect of three types of
simply supported conditions on the center deflection and center normal stress

is investigated:

SS-1: u = w= ¢x = 0 at y =b; v=w-= *y = 0 at x = a
SS-2: u =V =ws= by = 0 aty=b; u=vs=ws= ¢y =0 at x = a (22)
$S-3: v =w = by = 0 at y = b; u=w-= ¢y =0 at x = a

Table 1 contains the results for the three boundary conditions. It is clear
from the results that all three boundary conditions give virtually the same
results for a/h = 160, and differ significantly (especially $S-1 differs from
both SS-2 and SS-3) for a/h = 16, Thus, the effect is more in thick shells
than in thin shells, The stress o, shown in Fig., 5 is evaluated at point x =

Y
y = 1.691" in the top layer

4, Simply supported isotropic cylindrical shell under point load.

The geometry and material properties of the shell are shown in Fig. 6.
Once again, the effect of various simply supported boundary conditions (22) on
the deflections and stresses for the prob]eﬁ is investigated using a uniform
mesh of 2 x 2 quadratic eleme~' . The results are presented in Table 2. For
the geometry and loading used here (R = 2540, a = 254, h = 12,7), the boundary
conditions have very significant effect on the solution., BRoundary conditions
$S-2 and S5S-3 give almost the same results whereas SS-1 gives about 2 1/2

times the deflection given by S$S-2 or S$S-3 boundary conditions.




5. Clamped isotropic cylindrical shell under uniform loading.

Figure 7 contains the pertinent data and results for a clamped cylindri-

cal shell (isotropic) subjected to uniform load. The results are compared

with those obtained by Dhatt [30]. The agreement is very good.

6. Clamped orthotropic cylindrical shell subjected to internal pressure,

Figure 8 contains the geometry and plots of center deflection and center
stress versus the internal pressure for the problem. The orthotropic material
properties used in the present study are:

= 6 j = 6 i = = = 6 i
E1 7.5 x 10° psi, E2 2 x 10% psi, 612 G13 623 1.25 x 10° psi

vip = 0.25 (23)

The present result, obtained using the 2 x 2 mesh of quadratic elements, is in

excellent agreement with that obtained by Chang and Sawamiphakdi [31].

7. Nine-layer [0°/90°/0°.../0°] cross-ply spherical shell subjected to

uniformly distributed load.

The following geometrical data is used in the analysis:

Rp =Ry =R = 1,000 in,, a = b = 100 in,, h =1 in, (24)

Individual layers are assumed to be of equal thickness (hi = n/9), with the
zero-degree layers being the inner and outer layers. The following two sets
of orthotropic-material constants, typical high modulus graphite epoxy materi-

al (the ratios are more pertinent here), for individual layers are used:
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Mat.-1: E; = 25 x 108 psi, E5 = 10° psi, Gy, = Gy3 = 0.5 x 106 psi
G23 = 0.2 x 106 pSi, V12 = 0.25 (25) L
|
Mat.-2: E; = 40 x 106 psi, E, = 106 psi, Gyp = Gy3 = 0.6 x 106 psi ¥

Gp3 = 0.5 x 106 psi, v, = 0.25 (26)

Figure 9 contains plots of center deflecton {(w/h) versus the load parameter
(p = q,RZ/E,N2) for the two materials. Shell constructed of Material 1
deflects more, for a given load, than the shell laminated of Material 2
(because Material 2 is stiffer), and consequently experiences greater degree
of nonlinearity. Note that the difference between the nonlinear deflections
of the two shells increase nonlinearly, indicating that the shell made of
Material 2 can take much more (ultimate) load than apparent from the ratio of

moduli of the two materials, E{z)/Egl).

8., Effect of various simply-supported boundary conditions on the deflections

of two-layer cross-ply spherical shells under uniform load,

As pointed out in Problems 3 and 4, the transverse deflection is sensi-
tive to the boundary conditions on the inplane displacements of simply sup-
ported shells., To further illustrate this effect for laminated shells, a set

of four types of boundary conditions are used, and the results are presented

in Table 3. Here S$SS-4 has the following meaning:




Once again we note that SS-2 and SS-3 give almost the same deflections.
Boundary conditions SS-1 and SS-4 give deflections an order of magnitude high-

er than those given by S5S-2 and $S-3. Thus, boundary conditions S$S-2 and $S-3

make the shell quite stiffer,

9. Two-layer cross-ply [0°/90°] and angle-ply [-45°/45°], simply-supported

{SS-3) spherical shells,

Figure 10 contains the pertinent data and results (with different scales)
for the cross-ply and angle-ply shells (of Material 2). It is interesting to
note that the type of nonlinearity exhibited by the two shells is quite dif-
ferent; the cross-ply shell gets softer whereas the angle-ply shell gets
stiffer with an increase in the applied load. While both shells have bending-
stretching coupling due to the lamination scheme (822 = - Byj nonzero for the
cross-ply shell and Byg and B, are nonzero for the angle-ply shell), tﬁe
angle-ply experiences shear coupling that stiffens the spherical shell rela-
tively more than the normal coupling (note that, in general, shells get softer
under externally applied inward load).

Figure 11 contains plots of center deflection, normal stress (-oy) and

shear stress (a,,) at x = y = 5,283" versus load for two-layer cross-ply

yz
(0°/90°) spherical shell (Material 1) under point load at the center of the
shell. The nonlinearity exhibited by the stresses (especially °yz) is less

compared to that exhibited by the transverse deflection.

10. Two-layer clamped cylindrical shells under uniform loads.

Figures 12 and 13 contain results (i.e., w, Oy» Oz versus load) for

cross-ply [0°/90°] and angle-ply [-45°/45°] clamped cylindrical shells under

uniform load. The load-deflection curve for the cros-ply shell resembles that




of the isotropic shell in Fig. 7, but exhibits greater degree of nonlinearity

(being stiffer). The angle-ply shell exhibits different type of nonlinearity

(softening type) for all loads.

11. Quasi-isotropic, clamped, cylindrical shell under uniform load.

Two types of quasi-isotropic clamped cylindrical shells are analyzed:

Type 1: [00/450/900/'45°]sym. (28)
Type 2: [0°/445°/90]g

Material 1 properties are assumed for each lamina (8 layers). The geometric
data and results are presented in Fig. 14. Compared to the results presented
in Figs. 12 and 13, the quasi-isotropic shells have the 'near-inflection'
point at higher loads; the load-deflection curve has essentially the same form

as that of the cross-ply shell (see Fig. 12).

SUMMARY AND CONCLUSIONS

A shear-flexible finite element based on the shear deformation version of
the Sanders' theory and the von Karman strains is developed, and its applica-
tion to isotropic, orthotropic, and laminated {cross-ply and angle-ply) shells
is illustrated via numerous sample praoblems. Many of the results, especially
those of laminated shells, are not available in the literature and therefore
should serve as references for future investigations. From the numerical com-
putations it is observed that boundary conditions on the inplane displacements

have significant effect on the shell deflections and stresses. Also, it is

noted that the form of nonlinearities exhibited by different lamination

b




17

schemes (i.e., cross-ply and angle-ply) is different. It would be of consid-

erable interest to verify these findings by experiments.
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Table 1.

Effect of various simply supported boundary conditions on the center

deflections and normal stress in spherical shells under point load
(E = 107 psi, v = 0.3).

Load Solution SS-1 SS-2 $S-3
P/h2 a/h=160 a/h=16 a/h=160 a/h=16 a/h=160 a/h=16
4,000 -w* 0.0155 - 0.0152 - 0.0152 -
-o,* 893 - 984 - 894 -
8,000 -w 0.0329 0.0349 0.0324 0.0255 0.0324 0.0258
-0y 1,880 6,535 1,882 6,015 1,882 6,031
12,000 0.0529 - 0.0522 - 0.0521 -
-0y 2,980 - 2,985 - 2,986 -
16,000 0.0760 0.0793 0.0752 0.0520 0.0751 0.0525
-0, 4,220 13,230 4,228 12,200 4,229 12,240
20,000 -w 0.1038 - 0.1028 - 0.1027 -
-a, 5,657 - 5,671 - 5,672 -
24,000 -w 0.1364 0.1083 0.1354 0.0792 0.1353 0.0800
-0y 7,268 20,110 7,289 18,500 7,291 18,550
28,000 -w 0.1761 - 0.1752 - 0.1751 -
-Gy 9,128 - 9,160 - 9,162 -
32,000 -w 0.2234 0.1472 0.2227 0.1072 0.2227 0.1083
-0y 11,180 27,170 11,220 24,930 11,230 25,000

* w(0,0), o, (A,A); A = 1.691
X

Table 2. Effect of various types of simply supported boundary conditions on
the deflections and stresses of anisotropic cylindrical sheill under
point load.

Load,P _

(N -w(mm) S-1_, (N/mm2) -w 5572 =g w SS3 g

Y y y
250 580422; 2.868 0.6544%4; 1.706 0.6698§4g 1,706
500 5.1626(2 5.713 1.3533(4 3.478 1.3843(4 3.477
750 7.7343(2) 8.506 2.1057%43 5.327 2.152224% 5.321

1,000 10.278(2) 11.210 2.9234(4 7.265 2.9855(4 7.242

1,250 12.733(2) 13.80 3.8241(4) 9,312 3.9017(4) 9.288

1,500 15.204(2) 16.25 4.8349(4) 11.50 4,9279(4) 11.46

1,750 17.560(2) 18.560 6.0331(5) 13.91 6.1423(5) 13.85

2,000 19.843(2) 20.730 7.5316(6) 16.66 7.6610(6) 16.57
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Table 3. Effect of various simply-supported boundary conditions on the trans-
verse deflections of cross-ply [0°/90°] spherical shells under
uniform load.

% $5-1 $5-2 $5-3 $5-4

0.50 0.3344 0.04246 0.04257 0.4592
0.75 0.5757 0.06599 0.06617 0.8255
1.00 0.9485 0.09144 0.09171 1.3845
1.25 1.6529 0.11926 0.11966 1.9589
1.50 2.2826 0.15008 0.15063 2.3597
1.75 2.6421 0.18478 0.18556 2.5951
2.00 2.8499 0.22473 0.22584 2.8074
2.25 3.0764 0.27425 0.27593 3.0284
2.50 3.2432 0.33534 0.33795 3.1948
2.75 3.4214 0.42970 0.43487 3.3719

Tt e Etert . | —— PP T
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It should be noted that although f, and f, are shown factored outside the
matrices, in the evaluation of the coefficients by the Gauss quadrature f1 and

fy are considered as parts of the integrals. For example flAll[Sll] is

evaluated by
A = {d: ¢. _ - W. W, detd
11 ax1 i xl’ZI’XZ'ZJ I"J 0

noj—

[ f A 4 bidx,dx, =
L% T2 LG

Q

where N is the numter of Gauss points, Wy and W; are the Gauss weignts, 7, and

ZJ are the Gauss points, and J, is the Jacobian of the transformation.
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Figure 2. Bending of an isotropic simply supported
plate strip under uniform load.
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Figure 4. Bending of clamped orthotropic and laminated
square plates under uniform load.
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Geometry of a cylindrical shell.
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(SS-3, Material 1), under point load.
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Figure 13. Bending of a clamped angle-ply [-45°/45°) cylindrical
shell under uniform load.
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