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EXACT SOLUTIONS OF MODERATELY THICK LAMINATED SHELLS

By J. N. Reddy, 1 M . ASCE

ABSTRACT:

The paper contains an extension of Sanders shell theory for doubly-curved

shells to a shear deformation theory of laminated shells. The theory accounts

for transverse shear strains and rotation about the normal to the shell mid-

surface. Exact solutions of the equations are presented for simply supported,

doubly-curved, cross-ply laminated shells under sinusoidal, uniformly distrib-

uted, and concentrated point load at the center. Fundamental frequencies of

cross-ply laminated shells are also presented. The exact solutions presented

herein for laminated composite shells should serve as bench mark solutions for

future comparisons.

INTROnUCTION

There exist a number of theories for layered anisotropic shells. Many of

these tneories were developed originally for thin shells, and are based on the

Kirchhoff-Love kinematic hypothesis that plane sections normal to the unde-

formed midsurface renain plane and normal to the middle surface after deforma-

tion and undergo no thickness stretching. Surveys of various shell theories

can be found in the works of Naghdi [161 and Bert [3,41, and a detailed study

of thin ordinary (i.e., not laminated) shells can be found in the monographs

by Kraus [141, Ambartsumyan FI1, and Vlasov [201.

1Professor of Engineering Science and Mechanics, Virginia Polytechnic
Institute and State University, Rlacksburg, VA 24061
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The first analysis that incorporated the bending-stretching coupling (due

to unsymmetric lamination in composites) is due to Ambartsumyan [2]. In his

analyses Ambartsumyan assumed that the individual orthotropic layers were ori-

ented such that the principal axes of material symmetry coincided with the

principal coordinates of the shell reference surface. Thus, Ambartsumyan's

work dealt with what is now known as laminated orthotropic shells rather than

laminated anisotropic shells; in laminated anisotropic shells the individual

layers are, in general, anisotropic and the principal axes of material symme-

try of the individual layers coincide with only one of the principal coordi-

nates of the shell (the thickness normal coordinate).

[ong, Pister, and Taylor [91 formulated a theory of thin shells laminated

of anisotropic material that is an extension of the theory developed by

Stavsky [ 91 for laminated anisotropic plates to Donnell's shallow shell

theory (see Donnell C10]). Cheng and Ho [8] presented an analysis of lamina-

ted anisotropic cylindrical shells using Flgge's shell theory (see Flgge

1121). A first approximation theory for the unsymmetric deformation of non-

homogeneous, anisotropic, elastic cylindrical shells was derived by Widera and

his colleagues [25,26] by means of the asymptotic integration of the elastici-

ty equations. For a homogeneous, isotropic material, the theory reduces to

nonnell's equations.

All of the works reviewed above are based on Kirchhoff-Love's hypotheses

in which the transverse shear deformation is neglected. These theories, known

as the Love's first-approximation theories (see Love f151) are expected to

yield sufficiently accurate results when (i) the lateral dimension-to-thick-

ness ratio is large; (ii) the dynamic excitations are within the low-frequency

range; and (iii) the material anisotropy is not severe. However, application



of such theories to layered anisotropic composite shells could lead to as much

as 30% or more errors in deflections, stresses, and frequencies.

The effects of transverse shear deformation and transverse isotropy, as

well as thermal expansion through the thickness of cylindrical shells were

considered by (ulati and Essenberg F121 and Zukas and Vinson [291. Whitney

and Sun [23,241 developed a shear deformation theory for laminated cylindrical

shells that includes both transverse shear deformation and transverse normal

strain as well as expansional strains.

Recently, Bert and his colleagues r6,7,131 presented exact solutions for

bending and vibration of two-layer, cross-ply, thin cylindrical shells. These

solutions are limited to cylindrical shells and sinusoidal distribution of the

transverse load, and the procedure used is one similar to that used by Whitney

and Leissa [21], Whitney and Pagano [221, Bert and Chen [5], and Reddy and

Chao [17] for laminated composite plates. The present study is concerned with

the development of exact solutions for simply supported, doubly-curved, cross-

ply laminated shells. It is shown that, unlike plates, antisymmetric angle-

ply laminated shells with simply supported boundary conditions do not admit

exact solutions. Numerical results for transverse deflection and fundamental

frequencies are presented for various cross-ply laminated shells.

DERIVATION OF EQUATIONS

Figure la contains a differential element of a doubly-curved shell.

Here (&1,&2,C) denote the orthogonal curvilinear coordinates (shell coordi-

nates) such that the &,- and &2- curves are lines of curvature on the midsur-

face C=O, and C- curves are straight lines perpendicular to the surface C=O.

For the doubly-curved shells discussed here, the lines of principal curvature

i -*-
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Figure 1. Geometry and stress resultants of a shell
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coincide with the coordinate lines. The values of the principal radii of

curvature of the middle surface are denoted by R, and R2 .

The position vector of a point on the middle surface is denoted by r,, and

the position of a point at distance C from the middle surface is denoted by R

(see Fig. Ib). The distance ds between points (tit2,0) and (ydt, C2+d&2 ,O)

is determined by

(ds) 2 = dr • dr

= aj(d 1 ) 2+ aj(d&?) 2  (1)

br

where dr = rid4j + r2d&2 , the vectors 1 and r2 ( ,i 
= -i) are tangent to

the 1 and &2 coordinate lines, and a, and a are the surface metrics

af a *C (2)

The distance dS between points (tl,, 2,C) and (%l+dr ,1 ,2+dF,2 ,c+dc) is given by

(dS) 2 = dR * dR

Lj(dej) 2 + L (d&2 )2 + Lj(dC) 2 (3)

where dR R R
wher-- d  + d 2 + dC, and L1 , L2 , and L3 are the Lame'

coefficients

L = , ( + = a (I+ L(4),I -- 1• 2  R I , t3

6 R aR

It should be noted that the vectors and - are parallel to the vectors
ar ar '
6% z r I and -: .

Fi
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From Fig. la, the elements of area of the cross sections are

dA I = L1dtidc = aI(l + R T)d~jdC

dA2 = L2d 2dC = 2+ 2 (5)

Let NI be the tensile force, measured per unit length along a 2" coor-

dinate line, on a cross section perpendicular to a &I- coordinate line. Then

the total tensile force on the differential element in the tl-direction is

Nla 2d&2. This force is equal to the integral of aldA 2 over the thickness,

h/2
N1 2 d 2  f aIdA~d (6)

-h/2

where h is the thickness of the shell (C = -h/2 and C h/2 denote the hottom

and top surfaces of the shell). Using Eq. (5), we can write

hi2

N, fh2C +-.-)d C (7)
"i f I o(1

-h/2 2

Similarly, the remaining stress resultants per unit length can be derived.

The complete set is given by (see Fig. Ic).

NI  ( ai(l + C/R2)

N2  a2 (i + C/RI )

N12  6(I + C/R2 )

N2 1  h/2 c6(1 + C/RI )

01 ' h /5(1 + C/R2 ) dC (R)
2 a-h/202 04(1 + / )
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M1  Ca1(I + ( /R 2 )

M2  Cq2(1 + C/Rl )

M12  C06(I + CIR 2 )

M21 C%(l + C/R1)

Note that, in contrast to the plate theory (which is obtained by setting

1/R1 = 1/R2 = 0), the shear stress resultants N12 and M21, and twisting mo-

ments M12 and M2 1 are, in general, not equal. For shallow shells, however,

one can neglect C/R1 and /R2 in comparison with unity. inder this assump-

tion, one has N12 and N21  N6 and M12 and M21 -M6 (of course, for spherical

shells we always have N12 N21 and M12 = M21).

A set of simplifying assumptions that provides a reasonable description

of the behavior of thin elastic shells is used to derive the equilibrium equa-.

tions that are consistent, via virtual work, with the assumed displacement

field:

1. the thickness of the shell is small compared to the principal radii

of curvature (h/R1 , h/R2 < 1

2. the transverse normal stress is negligible;

3. normals to the reference surface of the shell before deformation

remain straight but not necessarily nor'zl after deformation (a

relaxed Kirchhoff-Love's hypothesis);

4. The deflections are small compared with the shell thickness.

The shell under consiceration is composed of a finite number of nrtho-

tropic layers of uniform thickness, as shown in Fig. 2. In view of assumptinn

1I, the stress resultants in Eq. (R) can he expressed as
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Fi gure 2. Laminated shell geometry and lamina details



N 2 Ck

Oi Z Ki  f i dC i : 4,5 (9)k=1 Ck-1

where N is the number of layers in the shell, and r are the top and

bottom C-coordinates of the k-th lamina, and K. are the shear correction factGrs

1

The strain-displacement equjations of a shell are an approximation, within

the assumptions made above, of the strain-displacement relations referred to

orthogonal curvilinear coordinates. In addition, we assume that the trans-

verse displacement u3 does not vary with C. r in the shear deformable theory

of flat plates, we begin with the displacement ild

- 1 - 1
u = (Lu1) + u, u. 2 (L u2 ) + =, u3  Wu3  (1)

1 2

where (u 1 ,u 2 ,u 3 ) are the displacements of a point ( along the

( 1, 2 ,0)coordinates and (ulu 2 ,u3) are the displacements of a point

A higher-order (in ) displacement field can he assumed in place

of Eq. (10). Such theories have been considered by 11hitney and Sun r231. In

the interest of brevity, although the procedures to he described can he ap-

plied to any higher-order theory, we consider only this first-order shear def-

ormation theory. Sibstituting Eq. (10) into the strain-displacement relations

of a orthogonal curvilinear coordinate system, and assuming that ai are con-

stant (to specialize the results to doubly-curve shells) one obtains

C1 = C + Ci

E 2 F- +
C.-
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4 4

E6 = + 6 (Ii)

where

01 lu + u
I Ul u3

2 a1 bu? _U 3

£0 I u3 + i2
x2 62 2 R2

0 1 u3 +1U

0 1 N2 _ 1 3u1

I o I €I 1 1 u ]. l

6 a3 1  CX?3&

I
2 a

wreri and t. are the rotations of the reference surface : abOut tie -? -

and F, coordinate axes, respectively. It should he noted that the displace-

ment field in Eq. (In) cjm, be used to derive the general shear defornati n

theory of laminated shells (i.e., ai are not necessarily constant).

The stress-strain relations for the k-th ortnotropic lamina i- the mate-

rial coordinate axes are given by



01 Ci1  C12  0 0

G2 C 2 I- C ?_2  0 0 0 E

a4 0 0 C4 4  0 0 (13)

05 0 0 0 C5 5  0 e 5

a6 (k) 0 0 0 C6 6  (k) E (k)

where cij are the (plane stress-reduced) material stiffnesses of the lamina:

_ E1 E _ E2v12 E2
c11 - 1Cv12v21 9 c 12  1-12v21 ' 22 1-v12 v21

c44 = G2 3  , c55 = G13 , c6 6 = G12 (14)

and

EE 2  = Young's moduli in I and ? material-principal directions,

respectively

Vij = Poisson's ratio for transverse strain in the j-th direction

when stressed in the i-th direction

G2 3 , G1 3,G,2 = shear moduli in the 2-3, 1-3, and 1-2 surfaces,

respectively.

Poisson's ratios and Young's moduli are related hy the reciprocal relations

VijF j  = VjiE i  (i = 1,2). (15)

The stress-strain relations (13) transformed to the shell coordinates become

[0 (k) Ile) (16)

(k)
where Qij are the material properties of k-th layer.
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The principle of virtual work in the present case yields

h/2 (k) (k) (k) (k) (k)
0 h/ f f[,Qa 5E?+a 6  6E6.a 4  5E 4+05 8Slaja?d~jd&2}dC

h/2Q

f[N16f + N264 + N6 4 + 6 + M 26K2 + M65 d+ 1d

+ Q28Ei - q6u 3 1al2dgld 2  (17)

where q is the distributed transverse load.

The governing equations of equilibrium can be derived from Eq. (17) hy

o
integrating the displacement gradients in Ei by parts and setting the coeffi-

cients of 6ui (i : 1,2,3) and 5 i (i = 1,2) to zero separately. Thus one

obtains

x +x-(N 6 +cM 6 RM

1 (N6 - coM + -X+ 0

a01 80 2  NI  N?I .- r-i + - q) 0
3xI  8x2  1

8MI + 1%

ax I  x 2

8M6  + 42
+ 2 = 0 (18)

where co denotes the constant

1 (1 R- 1 ) , dx. a d~i •  (19)
0 22 I R
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This term is introduced by Sanders (see F181), and distinguishes the Sanders

theory from others. Using Eq. (13) in Eq. (8), the stress resultants
0

(Ni,Mi,Qi) can be related to (Ei, Ki) by

Ni = Aijeo + BijK
(ij = 1,2,6)

B. cQ + 0.
i i 3 ,J 3c

Mi = AijEO + Ai~

(20)

Q A419+ A 55E c9fl

Here Aij. Bij , and Dij (ij = 1,2,6) denote the extensional, flexural-

extensional coupling, and flexural stiffnesses:

N Ck

(Ai.. B D.) = f k lk)  (I, , 2)dC. (21)Uij i' Ij k=1 fk-1

The equations of Love's first-approximation shell theory can be obtained

by setting co 0 0 in Eq. (18). Equations (18) can be specialized to flat

plAtes, cylindrical shells, and spherical shells, respectively, by setting

I I = 0, 1- = 0 and R2 
= R (the xl-axis is taken along a generator of the•R 1 R2 RI

cylinder), and R, = R2 = R. The classical thin shell theory can he obtained
au3  u1  u3  u2

by setting 01= - x-- + q, , and 02 = -2+

CLOSED-FORM SOLUTIONS

The exact form of the spatial variation of the solution of Fqs. (1B) can

be obtained under the following conditions:

w .
. . . . . ..

lim *



14

(i) Symm~etric or antisymmwetric cross-ply laminates: i.e., laminates

with

A = 2 6  B1 6 2 2 6 2 016= 26 2A 4 5 = 0. (2

(ii) Freely supported boundary conditions:

N1(0,x2) = NI(a,x2) = M1(0,x2 ) = M1(a,x2) = 1)

u3(O~x2 ) = u3(a x2) = u2(Ox2) = u2 (a,x?) = 0

N2(x,,) = N2(xl,b) = M?(x,,) = M2(xIb) =0

u3(x,1 ) = u3(xl b) = ul(x,0) = ul(xl,b) =0

0 2(0,x 2) = 2 (a,x?) = O1(xl,fl) = 1(xI,b) =0 (23)

(iii) Sinusoidal (spatial) distribution of the transverse load:

q q qsinax1 sinox2  M, a i~ (24)
m,n

where a and b are the dimensions of the shell middle surface along

the x, and x2 axes, respectively.

The exact form of the spatial variation of ui (i = 1,2,3) and oi (i =1,2) is

given by

ul(xl,x 2) = 7 Umncosaxlsinpx?
m,n

U2(xl,x2) = 7, Vmnsinaxlcos Px2m ,n

u3(xl,x 2) = 7 Wmnsinaxisin Rx2

01(l~2)= YXmncosaxlsinpx7m~n
42(xx2  = Ymnsinaxicosox2 . P?5)

Clearly, the solution satisfies the boundary conditions in Eq. (23).
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Substitution of Eqs. (24) and (25) into Eq. (18) yields a set of five

linear algebraic equations in terms of the unknown amplitudes U, V, W, X, and

Y. These equations can be expressed in matrix form as

- [C] -= [Fl (?6)

for bending, and

- W2[S1{} (27)

for natural vibration. Here w denotes the frequency of natural vibra-

tion, {A} and JF} denote the columns

T =T {U,V,W,X,Y} , {F} T  {O,O,qmn,O,O}, (2R)

and ci ci and S..ij Sji are given by

A5Cl a2A - -2A c 2 2D 2c°02g

c111 66 0 66 0 66

c12= - 12 + A66 - co 66 )

A a A 12  55c1 3  R 1  R 2  R1

A44

c22 -c 2A66  o - -22 R2 66

2
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_,A1 2  A22  A4 4
c 2 3 = R R 2 R2

c24= (B66 - co0 66 + 112)

A44

c25 = " 2(B66  - coD 66 ) - p2B22 + 4 4

2 1~ A 1 2 1 A12 A)2
C 3 3  A A55 a

2  A 440 R R 

91l 912
c 3 4 = R + - A5 5)

,B12 B22

+ -2 A44

C44 = . a2D11 - p2066 - A5 5

.c45 =- ao(D12 + D66)

C5 5 1- a2D66 - p2D22 - A44  (29)

$11  4 + 2P2/RI, S14 = P2 , S2 = Pl + 2P2/R2, S25 = P2

$23 = P1 ' S44 = S55 = PV all other Sij = 0. (30)

where

(PIP 2 ,P3 ) k=1 f k C2)dC (31)

#(k) being the density of the k-th layer.

Similar calculation for antisymmetric angle-ply shells (A16 
= A26 

= B11

B12 = 822 = B M D 16 x 026 = A4 5 = 0) with the solution of the form

J l - ; .-" i ""1" - r-' .. .. : .. °
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u1 (xl,x2 ) = I Umnsinaxlcosox2
m,n

u2(xl,x 2) = Y VmnCOSaXlsinpx? (32)
m,n

and U3, €1, and *2 as given in Eq. (25), shows that the exact solution

is possible if and only if I/R1 
= I/R2 

= 0. In other words, antisymmetric

angle-ply plates admit exact solutions but shells do not. To see this, sub-

stitute Eq. (24), last three of Eq. (25), and Eq. (32) into Eq. (P8). Note

that the assumed solution satisfies the following type of simply supported

boundary conditions.

N6 (0,x2 ) = N6 (a,x2 ) = N6 (x1,O) = N6 (xl,b) = 0

ul(Ox 2 ) = ul(a,x 2 ) = u2 (x1,0) = u2 (xl,b) = 0

u3 (0,Xl) = u3 (a,x2) = u3 (xl,0) = u3(xl,b) = 0 (33)

• 1(xi,0) = 1(xj,b) = *?(0,x?) = 2(a,x?)= 0

M2(x1,0) = M 2(xl,b) = M1 (O,x) = MI(a,x 2 ) = 0

From the first equation in Eq. (18), we obtain

A4

{[-2aO(A16 + CoB16)]Umn + [-a2(A 6 + c11.) - R--+ c 8 45 1V

1 2+ A 1  A2 A55 A5

R I R2  R 1 mn + [- 2 11 - o 6 + R mn

+ [-aO(B12 + B66 + CoD66)]Ymn}COSaXlsinx2

+ 26 ) A55 1'2 ]m
[-2All- 02(A66+ 2co866+  0 -TUOmn + [-aDA?+ Ar6+ 2COB66 + ¢o D

66
) IVmn

A 16 +. c B 16. A 2 6 +c oB2.+A 4 5 IW1+ [-ao(2B + C D )X
I RR2 Ri ~mn 16 o 16r'rn
A I A

+ [-a 2 B16 - 2 (B2 6 + coD 26 ) + R4 Ymn5 Sinaxlcos~x= 0 (34)

* . . . ."1' " " ' . . l| " " jl i 1 I
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For antisymmetric angle-ply laminates, the following stiffnesses are

identically zero:

A16 = A26 = 811 i 812 = 822 = 866 = D16 = D26 = A45  0 (35)

As a result Eq. (34) reduces to

+ B A11  A12  -A55
- 2=CB 6 U + c 0  16 " B2B26)Vmn R R + R2q m

+ (- 2CoD6 6 R*I Xmn - cEBoD 66 Ymn cosaxis'nx 2

6{[- 2 A1 - 62(A + 266) -A55 Umn + [- ao(A12 + A66 + c2D

~6 0 6 ) R2  mn6)Vm

+ 16 B6. - 2a +
+ fCot16 + -6)Wmn -2 16Xmn -( 2R + B2R 26 )Ymn sinlcossx2 s0

(36)

Thus, we get two equations, by setting the coefficients of cosax1 sinAx2 and

sinax cosx 2 to zero, from the first equilibrium equation. Similarly, we oh-

tain eight more equations from the remaining four equilibrium equations. In

other words, we have ten equations in five unknowns (Umn , Vmn, Xmn, Ymn),

which have no unique solution. These ten equations reduce to five when I/R1

and I/R2 are set to zero, as can be seen from Eq. (36). Thus antisymmetric

angle-ply shells do not admit exact solution while antisymmetric angle-ply

plates do.



19

NUMERICAL RESULTS

As a first example of bending, a doubly curved shell under transverse
an~d

concentrated load at the center is analyzed. The following geometric~material

parameters are used:

RI = R2 = 96.0 in., a = b = 32.0 in., h = 0.1 in.,

El = E2 = 10
7 psi, v = 0.3, intensity of load = 100 lb. (37)

This problem was also solved using the finite element method by Yang 271.

Table I contains the center transverse deflection obtained using the shear de-

formationtheory (SOT) and classical shell theory (CST) for various terms in

the series. The numerical solution of Vlasov [20] is taken from Yang's paper.

It should be pointed out that both Vlasov and Yang did not consider transverse

shear strains. It is clear from the results that the series solution converg-

es very slowly. The difference between the values predicted by SOT and CST

theories is not significant because the ratios a/h = 320 and R/h = 960 are

very large (hence, the shell is essentially very thin and shallow).

To investigate the effect of transverse shear strains on the center de-

flection, the same spherical shell problem with point load at the center or

uniformly distributed loading are analyzed, and the results are prpeonted in

Table 2. Note that for uniformly distributed load, the solution given by the

50-term series is the same as that given by the 250-term series, indicating

that the convergence is achieved with 50 (or less) terms in the series. Com-

parison of the SOT results with the CST results show that the shear deforma-

tion is significant for side to thickness ratios smaller than 10. For exam-

ple, the classical theory solution differs from the shear deformation theory

solution by 0.35% for a/h = 20, 3.6t for a/h = 10, and 1A.61 for a/h = 5.

L4.
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TABLE 1. Center transverse deflection of a spherical shell under point load
at the center (RI = R2 = 96 in: a = b = 32 in., h = 0.1,
E = 107 psi, v = 0.3, load, P = 100 lbs)

Theory n*=9 n=49 n=99 n=149 n=199 n=249

SDT 0.032594 0.039469 0.03972 0.039786 0.039814 0.039832
CST - - 0.03959 - 0.039647 0.039653
Vlasov 0.03956 - -

[20]

nxn-term series; finite-element solution of Yang [271: 0.03867

TABLE 2. Center transverse deflection (w x I0 3) of spherical shells under
point load at the center and uniformly distributed load (see Table 1
for the problem data).

h n=9 n=49 n=99 n=149 n=199 n=249

Point load at the center

0.32 3.664 3.9019 3.9194 3.9270 3.9319 3.9356
1.60 0.1646 0.1713 0.1735 0.1748 0.1757 0.1764
3.20 0.0349 0.0376 0.0386 0.0393 0.0397 0.0400
6.40 0.0067 0.0080 0.0085 0.0088 0.0091 0.0092

Uniformly distributed load

0.32 314.28 * 313.87 313.86 313.86 313.86 313.86
(314.33) (313.93) (313.93) (313.93)

49.701 49.695 49.695 49.695 49.695 49.6951.60 (49.526) (49.523) (49.523) (49.523)

11.266 11.265 11.265 11.265 11.265 11.265
3.20 (10.873) (10.872) (10.872) (10.872)

6.40 1.9774 1.9767 1.9767 1.9767 1.9767 1.9767
(1.6669) (1.6669) (1.6669) (1.6669)

CST solution



TABLE 3. tondimensionalized center deflection* versus radius to thickness
ratio for cross-ply spherical shells under sinusoidally distributed
transverse loads. (a/b = 1.0; material: E/2= 25, G23 = 0.2E2 9
G13 =G,= 0.5E 2)

R/ V9V0/900/09 00/900/96076Q -
Raa/t,=100 a/h=10 a/h=100 a/h.=10 a/h=100 a/h=1O

1 0.0536 4.023 0.0536 3.2590 0.0532 3.2290
2 0.2111 8.156 0.2068 5.3052 0.2054 5.254?
3 0.4634 10.062 0.4391 5.9971 0.4362 5.9387
4 0.7969 10.958 0.7237 6.2R34 0.7192 6.2219
5 1.1448 11.429 1.0337 6.4253 1.0279 6.3623

10 3,5760 12.123 2.4109 6.6247 2.4030 6.5595
1030 10.653 12.373 4.3370 6.6939 4.3368 6.6280O

*=(w~E 2 /q 0a4) x1()3 ; intensity of the transverse load

TABLE 4. Nondimensional center deflection versus radius to thickness ratio of
spherical shells under uniformly distributed load (19-term solution)

R/ V90, 0/9"0 00/900/900/00
Ra a/h=100 a/h=10 a/h=100 a/h=10 a/h=100 a/h=10

1 0.0718 6.054 0.0713 4.8173 0.0715 4.8366
2 0.2855 12.668 0.2858 8.0210 0.2844 8.0517[
3 0.6441 15.739 0.6224 4.1148 0.6246 q.1463
4 1.1412 17.184 1.0443 9.5686 1.0559 q.5999
5 1.7535 19.944 1.5118 9.7937 1.5358 P.,q249

10) 5.5428 19.065 3.6445 10.110 3.7208 10.141
1030 16.q80 19.469 6.6970 10.220 6.8-331 10.251
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Next, the results of bending of cross-ply laminated shells are discussed.

The same geometric parameters as used in the isotropic shells are also used

for composite shells. Individual layers are assumed to be orthotropic, with

the following properties:

El = 25E 2, G23 = 0.2E 2, G13 = G12 = 0.5E?, v12 = 0.25 (38)

Tables 3-5 contain nondimensionalized center transverse deflections of cross-

ply spherical shells under sinusoidal, uniformly distributed, and point loads,

respectively. The results are tabulated for various ratios of radius to

thickness and for two values of side to thickness. From these results it fol-

lows that the center deflection varies rapidly with the ratio R/h for deep

shells (i.e., for large ratios of a/h) than for shallow shells (i.e., for

small ratios of a/h).

The present solution can also be applied to special laminates,

[Oo/±45 0]sym = [0°/450/-450/-450/450/0°], which are used in F-16 aircraft by

General Dynamics Corporation, Ft. Worth. For the scheme, ro/t450lsym , we

have A16 = A26 = 016 = =26 
= Bij = 0 and therefore the solution developed in

the present study applies. Table 6 contains the nondimensionalized center de-

flections for cylindrical and spherical shells with various side to thickness

ratios and radius to side ratios.

To complete the analysis, the results of free vibration are also present-

ed. Tables 7 and 8 contain nondimensionalized fundamental frequencies for

spherical (RI = R2 ) and cylindrical shells (Rl = 1030), respectively.

Two sets of shear correction factors were used to investigate their in-

fluence on the fundamental frequencies. For a fixed ratio of R/a, the shear

correction factors have little or no effect on the frequencies for a/h = 100.
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For a/h 1 10, the effect of smaller values of shear correction factors is to

lower the frequencies, the rate of decrease being the highest for the four-

layer cross-ply. For identical lamination and geometry, spherical shells have

higher natural frequencies than cylindrical shells.

TABLE 5. Nondimensionalized center deflection versus radius to side ratio of
spherical shells under point load at the center (101-term solution)

/a 00/900 00/900/00 00/900190°/0

10 4.0164 3.7127 3.5815
20 5.7620 4.6502 a.4679
30 6.5444 4.9546 4.7579
40 6.9098 5.0794 4.8771
50 7.1015 5.1410 4.9360
100 7.3836 5.2273 5.0186
1030 7.4853 5.2572 5.0472.- wh3E2

S= - ) x 102 ; a/b =I , a/h = 10, P = point load

Pa
2

TABLE 6. Nondimensional center deflections of simply supported, special
laminates F00/±450 ]sym cylindrical and spherical shells.

a/h Sinusoidal loading Uniform loading*
R/a 5 10 100 5 10 ion

Cylindrical Shell (R/a = 2)

2 9.4976 4.1168 n.1623 14.0224 6.17q4 0.092P
a 10.5152 4.9q27 0.5697 15.6616 7.5956 0.733

Spherical Shell (RI = = R, R/a = 2)

2 6.7850 2.4120 0.0421 Q.7344 3.4794 1).0391
4 9.468 4.1117 0.1623 13.9q36 6.1856 0.193n

* 51-term solution
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TABLE 7 Nondimensionalized fundamental frequencies, + - =Toa
2vp 2/h, versus

raaius to side length ratio of spherical shell (a/b=l).

00/900 00/900/00 00/900/900/00

R/a a/h=100 a/h=10 a/h=100 a/h=10 a/h=100 a/h=1

1 125.93 14.481 125.99 16.115 126.33 16.172
125.93 14.420 125.99 15.746 16.33 15.827

2 67.362 10.749 68.075 13.382 68.294 13.447
67.361 9.5161 68.072 12.7q4 68.291 12.8Rr

3 46.002 9.9608 47.265 12.731 47.415 12.795
46.001 9.6473 47.260 -2.077 47.410 12.178

4 35.228 9.410? 36.971 12.487 37.082 12.552
35.227 9.2644 36.964 11.808 37.075 11.910

28.825 9.2309 30.993 12.372 31.079 12.437
28.825 9.0791 30.986 11.680 31.071 11.783

10 16.706 8.9841 20.347 12.215 20.380 12.280
16.704 8.8225 20.335 11.506 20.368 11.609

1030 9.6873 8.8998 15.183 12.162 15.184 12.226
q.6850 8.7317 15.167 11.447 15.168 11.551

+the first line of values corresponds to K2 = K2 = 5/5, and the second line
corresponds to K2 = 0.7, K2 = 0.6, 1  2

corspns o1 ~'2

Table 8 Nondimensionalized fundamental frequencies veri s radius to side
length of cylindrical shells (a/b = 1, R1 =10).

00/900 00/900/00 00/90o/90o/0 °
R2/a a/h=100 a/h=10 a/h=100 a/h=10 a/h=100 a/h=10

1 65.474 9.9986 66.583 13.172 66.704 13.128
65.473 9.9018 66.580 12.578 66.700 12.567

2 34.914 9.1476 36.770 12.438 36.858 12.471

34.913 9.0098 36.763 11.758 36.851 11.828

24.516 8.9832 27.116 12.287 27.173 12.337
24.515 8.8832 27.106 11.587 27.164 11.676

19.509 8.9301 22.709 12.233 22.749 1?.289

19.508 8.7746 22.698 11.526 22.738 11.622

16.668 8.9082 20.332 12.207 20.361 12.267

15.667 8.7498 20.320 11.498 20.349 11.596

1 11.831 8.8879 16.625 12.173 16.634 12.236
11.829 8.7241 16.610 11.459 16.619 11.562

1030 q.6R73 8.8998 15.1S3 12.162 15.18a 12.226
(plate) 9.6850 R.7317 15.167 11.447 15.168 11.551
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CONCLUSIONS

Closed-form solutions for deflections and natural frequencies of simply

supported, cross-ply laminated and quasi-isotropic shells are derived using

the shear deformation version, developed herein, of the Sanders shell theory.

Unlike plates, antisymmetric angle-ply shells do not admit exact solutions.

The exact solutions presented herin for cylindrical and spherical cross-ply

shells under sinusoidal, uniformly distributed, and point loads should serve

as bench mark results for approximate methods, such as the finite element and

finite difference methods.
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APPENDIX II. - NOTATION

The following symbols are used in this paper:

Aij = extensional stiffness; see Eq. (21)

a = curvilinear dimension of the laminate along the &1-axis

dA1 ,dA2  = area elements perpendicular to the &1 and &, axes

Bij = bending-extensional stiffness; see Eq. (21)

b = curvilinear dimension of the laminate along the r2-axis

cij = coefficients defined in Eq. (?9)

cij = plane-stress-reduced material stiffness of the lamina

Dij = bending stiffnesses; see Eq. (21)

EI,E 2  = Young's moduli in 1 and 2 material principal directions

Gij = shear moduli in the i-j surfaces, respectively

h = thickness of the shell

Li = Lame' coefficients (i = 1,2,3)

Mi = moment resultants (i 1,2,6); see Eqn. (9)

M = number of terms in the series (24) and (25)

N = total number of layers in the laminate

Ni = normal stress resultants (i =1,,6); see Eqn. (Q)

n = number of terms in the series (24) and (26)

Pi = rotary, and coupled-rotary inertias defined in Fqn. (31)

0i  = shear stress resultants (i = 1,2); see Eqn. (9)

qmn = coefficients in the expansion of the transverse load; see Eq.

(24)

R= position vector of a point in the shell

Ri = principal radii of curvature; see Fig. I

= position vector of a point on the shell midsurface
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Sij = the mass coefficients defined in Eqn. (30)

Umn = amplitudes of displacement Ul; see Eqn. (25)

ui  = displacements of the midsurface

u. = displacements of a point in the shell

SVmn = amplitudes of displacement u2 ; see Eqn. (25)

Wmn = amplitudes of displacement u3

Xmn amplitudes of rotation .

=mn : amplitudes of rotation 2

a= mn/a

ai = surface metrics (i : 1,2) defined in Eq. (2)

= nn/b

6 = variational operator

$i = rotations about normal to the shell midsurface

Ei = strain components (i = 1,2,4,5,6); see Eqn. (11)

ari  = stress components (i = 1,2,4,5,6)

= curvilinear coordinates in the surface of the shell

= coordinate transverse to the shell midsurface

vij = Poisson's ratios
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GEOMETRICALLY NONLINEAR ANALYSIS OF LAMINATED SHELLS

INCLUDING TRANSVERSE SHEAR STRAINS
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ABSTRACT

The paper contains a description of a doubly curved shell finite element

for geometrically nonlinear (in the von Karman sense) analysis of laminated

(doubly-curved) composite shells. The element is based on an extension of the

Sanders shell theory and accounts for the von Karman strains and transverse

shear strains. The numerical accuracy and convergence characteristics of the

element are further evaluated by comparing the present results for the bending

of isotropic and orthotropic plates and shells with those available in the

literature. The many numerical results presented here for the geomertically

nonlinear analysis of laminated composite shells should serve as reference for

future investigations.

INTRODUCTION

Laminated shells are finding increased application in aerospace, automo-

bile and petrochemical industries. This is primarily due to the high stiff-

ness to weight ratio, high strength to weight ratio, and less machining and

maintenance costs associated with composite structures. However, the analysis

of composite structures is more complicated when compared to metallic struc-

tures, because laminated composite structures are anisotropic and character-

ized by bending-stretching coupling. Further, the classical shell theories,

which are based on the Kirchoff-Love kinematic hypothesis (see Naghdi ril and



2

Bert (2]) are known to yield deflections and stresses in laminated shells that

are as much as 30% in error. This error is due to the neglect of transverse

shear strains in the classical shell theories.

Refinements of the classical shell theories (e.g., Love's first approxi-

mation theory [3]) for shells to include transverse shear deformation have

been presented by Reissner [4-61. Sanders [7] presented modified first- and

second-approximation theories that removed an inconsistency (nonvanishing of a

small rigid-body rotations of the shell) existed in Love's first-approximation

theory.

The first thin shell theory of laminated orthotropic composite shells is

due to Ambartsumyan [8,9]. In these works Ambartsumyan assumed that the indi-

vidual orthotropic layers were oriented such that the principal axes of mate-

rial symmetry coincided with the principal coordinates of the shell reference

surface. Dong, Pister, and Taylor [10] presented an extension of Donnell's

shallow shell theory [11] to thin laminated shells. Using the asymptotic in-

tegration of the elasticity equations, Widera and Chung [121 derived a first-

approximation theory for the unsymmetric deformation of nonhomogeneous, aniso-

tropic, cylindrical shells. This theory, when specialized to isotropic mate-

rials, reduces to Donnell's shell theory.

The effects of transverse shear deformation and thermal expansion through

the shell thickness were considered by Zukas and Vinson [131. rong and Tso

[141 constructed a laminated orthotropic shell theory that includes transverse

shear deformation. This theory can be regarded as an extension of Love's

first-approximation theory [3] for homogeneous isotropic shells. Other re-

fined theories, specialized to anisotropic cylindrical shells, were presented

by Whitney and Sun £15], and Widera and Logan [16,171.
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The finite-element analysis of layered anisotropic shells, all of which

are concerned with bending, stability, or vibration of shells, can be found in

the works of Schmit and Monforton [18], Panda and Natarajan [19], Shivakumar

and Krishna Murty [20], Rao [21], Siede and Chang [221, Hsu, Reddy, and Bert

[23], Reddy [24], and Venkatesh and Rao [25,26]. Recently, Reddy [27] extend-

ed the Sanders theory to account for the transverse shear strains, and pre-

sented exact solutions for simply supported cross-ply laminated shells. All

of these studies are limited small displacement theories and static analyses.

In the present paper, an extension of the Sanders shell theory that ac-

counts for the shear deformation and the von Karman strains in laminated an-

isotropic shells is used to develop a displacement finite element model for

the tending analysis of laminated composite shells. The accuracy of the ele-

ment is evaluated by comparing the results obtained in the present study for

isotropic and orthotropic plate and shell problems with those available in the

literature. Numerical results for bending analysis of cylindrical and doubly-

curved shells are presented, showing the effect of radius-to-thickness ratio,

loading, and boundary conditions on the deflections and stresses.

A REVIEW OF THE GOVERNING EQUATIONS

Consider a laminated shell constructed of a finite number of uniform-

thickness orthotropic layers, oriented arbitrarily with respect to the shell

coordinates ( I,12 ,c). The orthogonal curvilinear coordinate system

is chosen such that the Cj- and 2" curves are lines of curvature on

the midsurface c=O, and C-curves are straight lines perpendicular to the sur-

face C=O (see Fig. 1). A line element of the shell is given by (see Reddy

£271_

(dS)2 = [(I + C/R1 )zId11 2 + [(1 + C/R2 )a2d12 ] 2 + (dC) 2 (1)



where ai and Ri (i = 1,2) are the surface metrics and radii of curvature,

respectively. In general, ai and Ri are functions of -i only. For the doubly

curved shells considered in the present theory, ai and Ri are constant.

The strain-displacement equations of the shear deformable theory of

doubly-curved shells are given by

0El = E1 + CI i

E2 = E2 + CK2

0
4 4

0

£6 £6 + C6 (2)

where

aul + u3  1 86u3 )2 K, -

1 ax1  R1  2 ax, 8x
u2  u3  I8xau3 0$2

0=S + -q- + _f -S-,
£2 X2 2 X2()2 -2 ax

o U 8u2 +u3 u3 4= L+ 2 c u2 ui
6 ax2  ax1  ax1 ax2  K6  ax2  ax1  0axi U 2

CO + u3  u 2

C +u U
1 xI  R1

c 1 1 13
2 1

Here ui denotes the displacements of the reference surface along ( 3 =3

axes, and *i are the rotations of the transverse normals to the reference

surface. In Love's first-approximation theories the parameter co is taken to

be zero, and it is introduced only in the Sanders theory.
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The stress-strain relations, transformed to the shell coordinates, are of

the form

(0 O (4)

(k)where are the material properties of k-th layer.

The principle of virtual work for the present problem is given by

Ls ~ Ck f (k)8  (k)6  (k)6  (k) (k)
0 k Il I~ f 1fQt,81+a252 + 6 6+ 04 6E4 + 05 6E5k=1 I k-1 I

- q6u 3 1} za 2d~id&2dC (5)

1 N 1  2 N 2  + 6c6 + M 6cl + M26,c2 + M6 6 + 1E

+ Q2 80 - q6u3 alazdid(2  (6)

where q is the distributed transverse load, Ni and Mi are the stress and

moment resultants, and Oi is the shear force resultant:

L Ck
(Ni,Mi) = f i(IC)dC , i = 1,2,6

k=1 Ck-1

L CkK( I oidC , i = 4,5, (7)

k=1 Ck=1

where Ki (i - 1,2) are the shear correction factors (taken to be K2 = K2=

5/6), and (Ck-1,Ck) are the C-coordinates of the k-th layer, and L is the

total number of layers in the laminated shell.

It is informative to note that the equations of equilibrium can be

derived from Eq. (6) by integrating the displacement gradients in o by parts

4"
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and setting the coefficients of 6ui (i 1,2,3) and 64i (i=1,2) to zero
separately. We obtain [with co = 1 -1 ) and d i  idij

c oM6 ) + x0

ax2 
12

ox (N6 +  coM6 +  6T2  
+  Q2 0ax 1 6 6 o6 -2

01 + -2 ( l + - q )  +
aQi ax 2 RNI1  N2  (3

aMl 6M6
- x I + x Q12

aM6  M2

x +  x2  Q2 0 (8)

where
N u3  u 3  N u3

(u3 ) =- x-- -+ N6 aT) +a 6 a6 Ze + N2 -) (9)
01 18 1  2 2 UX 1  2

The resultants (Ni, Mi, Oi) are related to (?, ) (i,j 1,2,6) by
iI

N = AijA +

M = BijC j + D. (10)
i .1 i jc

Q2= A44  + A4  0
2 44:4 45F-5(11)

= A4 5 64 + A5 5 (5

Here Aij, Bij and Dij (ij = 1,2,6) denote the extensional, flexural-

extensional coupling, and flexural stiffnesses of the laminate:

L(A LB,Dij) = k f j (1,,C 2)dc (ij = 1,2,6)

k=1 k-1 (12)
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Y Ck (k) (k) K2n (k) d
(AA, AA f (KQ K K)d

44 A45 ' 55 ~ k=1 k-1 12 45 2 55

The boundary conditions, derived from the virtual work statement, involve

specifying either the essential boundary conditions (EBC) or the natural

boundary conditions (NBC):

EBC NBC

U1 or Nln 1 + (N6 - coM6 )n2

u2  or N2n2 + (N6 + CoM6 )n2

r N u3  + u3

(j 6-) --) (N x- *2

or + (N 3)n + (N6 - 2
u36U2 11 xi

+ Q2n2  Qlnj

€1 or M1 n1 + M6n2

or M n + M n (13)
22 2 6 1 (3

where (nl,n 2) denote the direction cosines of the unit normal on the boundary

of the midsurface of the shell.

The exact form of the spatial variation of the solution of Eqs. (8)-(13),

for the small-displacement theory, can be obtained under the following condi-

tions (see Reddy [27]):

(i) Symmetric or antisymmetric cross-ply laminates: i.e., laminates

with

A16 = A26 = 816 826 016 026 = A45 = 0. (14)

(ii) Freely supported boundary conditions:

Nl(O,x2 ) = N1 (ax 2 ) = Ml(Ox 2 ) = M 1(a,x2 ) = 0

u3(O,x2) = u3 (a,x2) = u2(O,x2) = u2 (a,x2 ) = 0



N2(x1,O) = N2(x1 ,b) = M2(xIO) = M2(xlb) = 0

u3(x1 ,O) = u3 (xl,b) = ul(xl,O) = ul(xl,b) = 0

=2 (0, (a x2) = 2 (xl,O) = 1(xl,b) = 0 (15)

where a and b are the dimensions of the shell middle surface along

the x, and x2 axes, respectively. The time variation of the load

does not influence the spatial form of the solution.

Note that the exact solution can be obtained only for cross-ply laminated

shells with simply supported boundary conditions. For general lamination

schemes, exact solutions are not available to date.

FINITE-ELEMENT MODEL

A typical finite element is a doubly-curved shell element in the x1 X2-

surface. Over the typical shell element Q(e), the displacements

(u1,uV,1,2 are interpolated by expressions of the form,

N
u. F U' (Xl'X 2 , i 1,2,3

1 =1 x2)

N
Y @ l,X2 ) , i = 1,2 (16)

j=1

where 4;. are the interpolation functions, and u and t ire the nodal values

of ui and 4i, respectively. For a linear isoparametric element (N = 4) this

interpolation results in a stiffness matrix of order 20 by 20. For a nine-

node quadr-tic element tne element stiffness matrix is of order 45 by 45.

Substitution of Eq. (2',) into the virtual work principle, Eq. (9) yields

an element equation of the f(rm
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[K = {F} (17)

where {} : {{Ul}, {u2 }, 1u3 }, [ } { } , [K] the element stiffness matrix,

and {F} is the force vector. In the interest of brevity, the coefficients of

the stiffness matrices are included in Appendix I.

The element equations (17) can be assembled, boundary conditions can be

imposed, and the resulting equations can be solved at each load step. Note

that the stiffness matrix [K] is a function of the unknown solution vector

JA}; therefore, an iterative solution procedure is required for each load

step. In the present study, we used the direct *teration technique, which can

be expressed as

[K( {F} (18)

where 1 jr denotes the solution vector obtained in the r-th iteration (at any

given load step). At the beginning of the first load step, we assume that

fIj ° = {} and obtain the linear solution at the end of the first iteration.

2 The solution obtained at the end of the r-th iteration is used to compute the

stiffness matrix for the (r+])-th iteration. At the end of each iteration

(for any load step), the solutions obtained in two consecutive iterations are

compared to see if they are close enough to terminate the iteration and to

move on to the next load step. The following convergence criterion is used in

the present study:
N r r+1/ N r /
[ jll i - A. 12 ~ 1 1 j 0.01 (q

where N is the total number of unknown generalized displacements in the finite

element mesh.
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To accelerate the convergence, a weighted average of the solution from

last two iterations are used to compute the stiffness matrix:

[K(y{fA} + (1 - Y){}r)]{}r+1 = {F} (20)

where y is the acceleration parameter, 0 < y 4 1. In the present study a val-

ue of 0.25 - 0.35 was used.

NUMERICAL RESULTS

Here we present numerical results for some sample problems. To illus-

trate the accuracy of the present element, first few examples are taken from

the literature on isotropic and orthotropic shells. Then results (i.., de-

flections and strsses) for several laminated shell problems are presented.

The results for laminated shells should serve as references for future inves-

tigations.

All of the results reported here were obtained using the double-precision

arithmatic on an IBM 3081 processor. Most of the sample problems were an-

alyzed using a 2 x 2 uniform mesh of the nine-node (quadratic) isoparametric

rectangular element.

1. Bending of a simply supported plate strip (or, equivalently, a beam) under

uniformly distributed load.

The problem is mathematically one-dimensional and an analytical solution

of the problem, based on the classical theory, can be found in Timoshenko and

Womowsky-Krieger C281. The platp length along the y-coordinate is assumed to

be large compared to the width, and it is simply supported on edges parallel



to the y-axis. The following simply supported boundary conditions are

assumed:

w = (p = 0 along edges x = O,a. (21)

All inplane displacement degrees of freedom are restrained. A 5 x 1 mesh of

four-node rectangular elements in the half plate is used to analyze the prob-

lem. The data and results are presented in Fig. 2. The present result is in

good agreement with the analytical solution.

2. Clamped square plate under uniform load.

Due to the biaxial symmetry, only one quadrant of the plate is modelled

with the 2 x 2 mesh of nine-node elements (4 x 4 mesh of linear elements give

almost the same result). Pertinent data and results are presented in Fig. 3

for side to thickness ratios a/h = 10 and 500. The result for a/h = 500 is in

agreement with the results of Way [29]. The difference is attributed to the

fact that the present model includes the inplane displacement degrees of free-

dom and transverse shear deformation.

Figure 4 contains transverse deflection versus load for clamped ortho-

tropic, cross-ply, and angle-ply plates. The lamina properties are

EI = 25 x 104 N/mm 2 , E2 = 2 x 104 N/mm2, G12 = G13 = I04 N/mm 2

G23 : 0.4 x 101 N/mm 2 , v12 = 0.25.

For the same total thickness the clamped orthotropic square plate is stiffer

than both two-layer angle-ply and cross-ply plates.
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3. Simply supported, isotropic spherical snell under point load.

The pertinent data of the shell is shown in Fig. 5. A uniform mesh of 2

by 2 quadratic elements is used in a quadrant. The effect of three types of

simply supported conditions on the center deflection and center normal stress

is investigated:

SS-I: u = w = 4x = 0 at y = b; v = w : = 0 at x = a

y

SS-?: u = v = w = x = 0 at y = b; u = v = w =4y = 0 at x = a (22)

SS-3: v = w = px = 0 at y = b; u = w = y 0 at x = a

Table 1 contains the results for the three boundary conditions. It is clear

from the results that all three boundary conditions give virtually the same

results for a/h = 160, and differ significantly (especially SS-1 differs from

both SS-2 and SS-3) for a/h = 16. Thus, the effect is more in thick shells

than in thin shells. The stress ay shown in Fig. 5 is evaluated at point x =

y = 1.691" in the top layer

4. Simply supported isotropic cylindrical shell under point load.

The geometry and material properties of the shell are shown in Fig. 6.

Once again, the effect of various simply supported boundary conditions (22) on

the deflections and stresses for the problem is investigated using a uniform

mesh of 2 x 2 quadratic eleme-, The results are presented in Table 2. For

the geometry and loading used here (R = 2540, a = 254, h = 12.7), the boundary

conditions have very significant effect on the solution. Boundary conditions

SS-2 and SS-3 give almost the same results whereas SS-1 gives about 2 1/2

times the deflection given by SS-2 or SS-3 boundary conditions.
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5. Clamped isotropic cylindrical shell under uniform loading.

Figure 7 contains the pertinent data and results for a clamped cylindri-

cal shell (isotropic) subjected to uniform load. The results are compared

with those obtained by Dhatt [30]. The agreement is very good.

6. Clamped orthotropic cylindrical shell subjected to internal pressure.

Figure 8 contains the geometry and plots of center deflection and center

stress versus the internal pressure for the problem. The orthotropic material

properties used in the present study are:

E= 7.5 x 106 psi, E2  2 x 106 psi, G1 2 = G13= G23  1.25 x 106 psi

v12 = 0.25 (23)

The present result, obtained using the 2 x 2 mesh of quadratic elements, is in

excellent agreement with that obtained by Chang and Sawamiphakdi [311.

7. Nine-layer [0O/900/O.../0O1 cross-ply spherical shell subjected to

uniformly distributed load.

The following geometrical data is used in the analysis:

R1 = R2 = R = 1,000 in., a = b = 100 in., h = I in. (24)

Individual layers are assumed to be of equal thickness (hi = h/9), with the

zero-degree layers being the inner and outer layers. The following two sets

of orthotropic-material constants, typical high modulus graphite epoxy materi-

al (the ratios are more pertinent here), for individual layers are used:

If
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Mat.-1: El = 25 x 106 psi, E2 = 106 psi, G12 = G13= 0.5 x 106 psi

G23 = 0.2 x 106 Psi, v12 = 0.25 (25)

Mat.-2: E1 = 40 x 106 psi, E2 = 106 psi, G12  = G13 0.6 x 106 psi

G23= 0.5 x 106 psi, "12 = 0.25 (26)

Figure 9 contains plots of center deflecton (w/h) versus the load parameter

(P = q0R
2/E2h

2 ) for the two materials. Shell constructed of Material I

deflects more, for a given load, than the shell laminated of Material 2

(because Material 2 is stiffer), and consequently experiences greater degree

of nonlinearity. Note that the difference between the nonlinear deflections

of the two shells increase nonlinearly, indicating that the shell made of

Material 2 can take much more (ultimate) load than apparent from the ratio of

moduli of the two materials, El2/E 1

8. Effect of various simply-supported boundary conditions on the deflections

of two-layer cross-ply spherical shells under uniform load.

As pointed out in Problems 3 and 4, the transverse deflection is sensi-

tive to the boundary conditions on the inplane displacements-of simply sup-

ported shells. To further illustrate this effect for laminated shells, a set

of four types of boundary conditions are used, and the results are presented

in Table 3. Here SS-4 has the following meaning:

SS-4 w = x = 0 on x = 0 and a (27)
w = (p y = 0 on y = 0 and b
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Once again we note that SS-2 and SS-3 give almost the same deflections.

Boundary conditions SS-1 and SS-4 give deflections an order of magnitude high-

er than those given by SS-2 and SS-3. Thus, boundary conditions SS-2 and SS-3

make the shell quite stiffer.

9. Two-layer cross-ply [00/900] and angle-ply [-450/45°], simply-supported

(SS-3) spherical shells.

Figure 10 contains the pertinent data and results (with different scales)

for the cross-ply and angle-ply shells (of Material 2). It is interesting to

note that the type of nonlinearity exhibited by the two shells is quite dif-

ferent; the cross-ply shell gets softer whereas the angle-ply shell gets

stiffer with an increase in the applied load. While both shells have bending-

stretching coupling due to the lamination scheme (22 - B11 nonzero for the

cross-ply shell and B16 and B26 are nonzero for the angle-ply shell), the

angle-ply experiences shear coupling that stiffens the spherical shell rela-

tively more than the normal coupling (note that, in general, shells get softer

under externally applied inward load).

Figure 11 contains plots of center deflection, normal stress (-ay) and

shear stress (ayz) at x = y = 5.283" versus load for two-layer cross-ply

(0°/90') spherical shell (Material 1) under point load at the center of the

shell. The nonlinearity exhibited by the stresses (especially ayz) is less

compared to that exhibited by the transverse deflection.

10. Two-layer clamped cylindrical shells under uniform loads.

Figures 12 and 13 contain results (i.e., w, ay, oxz versus load) for

cross-ply [00/900] and angle-ply [-45/451] clamped cylindrical shells under

uniform load. The load-deflection curve for the cros-ply shell resembles that
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of the isotropic shell in Fig. 7, but exhibits greater degree of nonlinearity

(being stiffer). The angle-ply shell exhibits different type of nonlinearity

(softening type) for all loads.

11. Quasi-isotropic, clamped, cylindrical shell under uniform load.

Two types of quasi-isotropic clamped cylindrical shells are analyzed:

Type 1: [O0 / 4 5 °/9 0 °/-45°]sym. (28)
Type 2: [O°/±450/90]sym.

Material 1 properties are assumed for each lamina (8 layers). The geometric

data and results are presented in Fig. 14. Compared to the results presented

in Figs. 12 and 13, the quasi-isotropic shells have the 'near-inflection'

point at higher loads; the load-deflection curve has essentially the same form

as that of the cross-ply shell (see Fig. 12).

SUMMARY AND CONCLUSIONS

A shear-flexible finite element based on the shear deformation version of

the Sanders' theiry and the von Karman strains is developed, and its applica-

tion to isotropic, orthotropic, and laminated (cross-ply and angle-ply) shells

is illustrated via numerous sample problems. Many of the results, especially

those of laminated shells, are not available in the literature and therefore

should serve as references for future investigations. From the numerical com-

putations it is observed that boundary conditions on the inplane displacements

have significant effect on the shell deflections and stresses. Also, it is

noted that the form of nonlinearities exhibited by different lamination

'
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schemes (i.e., cross-ply and angle-ply) is different. It would be of consid-

erable interest to verify these findings by experiments.
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Table 1. Effect of various simply supported boundary conditions on the center

deflections and normal stress in spherical shells under point load

(E = I07 psi, v = 0.3).

Load Solution SS-1 SS-2 SS-3

P/h2  a/h=160 a/h=16 a/h=160 a/h=16 a/h=160 a/h=16

4,000 -w* 0.0155 - 0.0152 - 0.0152

-8 x 893 - 984 - 894

8,000 -w 0.0329 0.0349 0.0324 0.0255 0.0324 0.0258

-0 1,880 6,535 1,882 6,015 1,882 6,031

12,000 -w 0.0529 - 0.0522 - 0.0521 -

-x 2,980 - 2,985 - 2,986 -

16,000 -w 0.0760 0.0793 0.0752 0.0520 0.0751 0.0525

-Ox 4,220 13,230 4.228 12,200 4,229 12,240

20,000 -w 0.1038 - 0.1028 - 0.1027

-x 5,657 - 5,671 - 5,672 -

24,000 -w 0.1364 0.1083 0.1354 0.0792 0.1353 0.0800

-ax 7,268 20,110 7,289 18,500 7,291 18,550

28,000 -w 0.1761 - 0.1752 - 0.1751 -

-ax 9,128 - 9,160 - 9,162 -

32,000 -w 0.2234 0.1472 0.2227 0.1072 0.2227 0.1083

-ax 11,180 27,170 11,220 24,930 11,230 25,000

* w(0,0), OX(A,A); A = 1.691

Table 2. Effect of various types of simply supported boundary conditions on

the deflections and stresses of anisotropic cylindrical shell under
point load.

Load,P(N)dP w )y(N/mm 2 ) -W SS-2 -ay -w SS-3 -y
(N) -w(mm) _5-1 -w5_

250 2.5804(2) 2.868 0.6544(4) 1.706 0.6698(4) 1.706

500 5.1626(2) 5.713 1.3533(4) 3.478 1.3843(4) 3.477

750 7.7343(2) 8.506 2.1057(4) 5.327 2.1522(4) 5.321

1,000 10.278(2) 11.210 2.9234(4) 7.265 2.9855(4) 7.242

1,250 12.733(2) 13.80 3.8241(4) 9.312 3.9017(4) 9.288

1,500 15.204(2) 16.25 4.8349(4) 11.50 4.9279(4) 11.46

1,750 17.560(2) 18.560 6.0331(5) 13.91 6.1423(5) 13.85

2,000 19.843(2) 20.730 7.5316(6) 16.66 7.6610(6) 16.57
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Table 3. Effect of various simply-supported boundary conditions on the trans-

verse deflections of cross-ply [00/90"] spherical shells under

uniform load.

qo SS-1 SS-2 SS-3 SS-4

0.50 0.3344 0.04246 0.04257 0.4592
0.75 0.5757 0.06599 0.06617 0.8255

1.00 0.9485 0.09144 0.09171 1.3845
1.25 1.6529 0.11926 0.11966 1.9589

1.50 2.2826 0.15008 0.15063 2.3597
1.75 2.6421 0.18478 0.18556 2.5951

2.00 2.8499 0.22473 0.22584 2.8074

2.25 3.0764 0.27425 0.27593 3.0284

2.50 3.2432 0.33534 0.33795 3.1948
2.75 3.4214 0.42970 0.43487 3.3719

* *--~*--*-
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APPENDIX I

Stiffness Coefficients:

1 f u3 I f u3
Let f =  2 -xi 2 2 ax2

[K11] = A1 1[Sll] + A16([S'
2] + [S2 1]) + A66[S22]

- co(B16 ([S1
2] + [S2 1]) + 2B66[S

22] - cD 6622]) + A55 [SOO]

R2

[K 2] = A12[S12 ] + A16[S
11] + A26[S

22] + A66[S
21]

" Co(B26[$22] - B16[Si1] + cOD 66C S2 1i) + 45

-C0(B26ER I[S R R2S 0

[K 3] = f (ASIII] + A16 [S
12] + Cs 2 1]) + A66[S

22])

+ f2A12[S12 ] + A 16[S'] + A26[S
2 2] + A66[S

2 11)

+~ i $Is
0] +A 6[S

2 0 ]) + - (A12 [SIO ] + A2 [S2 ° 0

BA 16  1 +826 R2126
Co(B I-6 [S2 0] +26 ES2 0]) (A S02] + A55[sO

1 )

R 1 +2 1 1 45[

- Co[fI(B1 6 [S
2 1] + B66[S

2 2]) + f2 ( 26[S
2 2] + B66[S

2 1
] )

[K1 41 = BIllS 11] + B1[S 12] + [$21]) 26 6 $2]

-c°(D 1 6[S
21] + D66[S22]) " - A55FSOO]

RI
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[K'] = 12[S12] - B16 [S1 1] + B26 [S 2 2] + B6 6 [S 2 11

- c (D26[$ 221 + D66 [S2 1]) - 1 A4 5[sOO]

[K2 1] = [K121
T

[K22] = A2 2 [S 2 2 ] + A2 6([S1 2] + IS21]) + A6 6 [$1l] + 2coB 6 6[S -]

+ co(B 26([S121 [S2 1]) + COD6 6[$ 1 1 ] ) -A44 [Soo]

[K2 3 ] : fj(A 12[S
21] + A26 [S 22] + A16 [SIl] + A6 6 [S 1 2 ])

+ f 2 (A 2 2 [S 2 2] + A2 6 ([S 2 1 ] [S12]) + A6 6[s 1 1 ])

+ I (A12[$2 °1 + A16[S
101) + 1- (A2 [S20] + A26[$0]I

" ,86 + 26 [ 101) - I_ (A[S 0 2] +A Sol])]ToFR + R-2-)[ s-q2_ 4A4[ 45

+ cofI(B1 6[S' 1 1 + B66[S12]) + f2 (B26[S
1 2] + B66[Sll] )

[K2 4] B1 2 [S 2 1] + B2 6 [S 2 2] + B16[S'1] + B6 1 2 1

+ c°(D 16 [S''] + D6 6[SR
2]) " 2 A4 5[S°°]

[K25] : B2 9[S22] + B26 ([S2
1] + [S1 2]) + B66ES11 ]

0 (026[S12] + D66[S'']) 2- 4I [sO ]
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[K31] [231L NL Nonlinear portion of the matrix

FK32]NL [2K23]T
INL NL

[K33] = A45[S1
2] + A55[S

11
] + A44 1S2 2 ] + A4 5 [S 2 1]

+ 2[SI]](A11 f2 + 2A16f f2 + A6f 2

+ 2([S 12] + [S2 1])[ffA1 6 + (A12 + A66 )flf 2 + fIA261

+ 2[S 22](A66 ff + 2A26 fIf 2 + A2 2 f )

+ A[s1O][ s.A12 + A21 A2 A22

A16 A 12  A A

S2fl, 'Bl[SII . B,6(E$121 + r5214) + B661522]I

4 2f2 (B 2[S
2 ] + B6 6 [S12] + B26[S2 2] + B6S )

RI  )[SOll + B16  826R 9 - -R) 2 ]
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[K35] = A4 5[SI] + A44[$201

+ 2f1 (812 [S'
2] + B6 6 [$ 2 11 + B16[S

111 + B2 6 [$ 2 2]}

+ 2f2B 22 [S
221 + B26([S1

21) + 826[S211 + B66 S
11

+ (BI6 +B26[SOl] +B2 B22)[SO2]
2 2 R+ + 2

[K41 = [KI4"T, [K4 2] = [K24]T, [K4 3]NL : [K34IT

[K44] = D1llS'] + 01 6 ([S12] + [S 2 1 1) + D66 [S 2 2 ] + A55 [S° 0 ]

[K 45] = D12[S
2] + D16 [S 111 + D26 [S 2 2] + D66[S 2 1] + A45 [S 00]

[K51] = [K1ST, [K5 21 = [K25]T, [K5 3]NL K35L

[K54] = [K45]
T

[K55 1 = D S2 2 1 + D26 (S121 + [S211) + D66 [Sl'] + A4 4[S°°]

Linear L[Ka]Linear

where

ij e o a ax 1d2 ' e x2
= Qe = yx~X ' e
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It should be noted that although f, and f2 are shown factored outside the

matrices, in the evaluation of the coefficients by the Gauss quadrature f1 and

f2 are considered as parts of the integrals. For example fAIIcS''] is

evaluated by 1N N u3
f f1 11qi4,i d Idx2 =- IA -[ ( )i 'j Ix Z ,x2=Z WI WjdetJo0

e fIA J= 1 ixdd2 =2 - d=1 [

where N is the numtei of Gauss points, W, and Wj are the Gauss weights, ZI and

Zj are the Gauss points, and Jo is the Jacobian of the transformation.

WP :JNRKCI

" . .. . . . . II II I I II I I" " l iirm m -
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Figure 2. Bending of an isotropic simply supported
plate strip under uniform load.
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Figure 3. Bending of clamped isotropic square plate under
uniform load.
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Figure 4. Bending of clamped orthotropic and laminated
square plates under uniform load.
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Figure 5. Bending of a simply supported (SS-3),
isotropic, spherical shell under point
load.
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Figure 6. Geometry of a cylindrical shell.
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Figure 7. Bending of a clamped, isotropic, cylindrical shell under
uniform load.
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Figure 8. Bending of a clamped orthotropic cylindrical shell
subjected to internal pressure.
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Material 2
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4 h = I in.

R = 1000 in.
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2

0 1 1 I I I I I
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Deflection, (-w/h)

Figure 9. Bending of nine-layer cross-ply
[0°/900/0°/.. . spherical shell
subjected to uniformly distributed
load.
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0.0 0.1 0.2 0.3 0.4 0.5
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Material 2
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0.0 0.0
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Figure 10. Bending of two-layer cross-oly and angle-ply,
simply supported (SS-3) spherical shells under
uniform load.
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Figure 11. Bendingi of a cross-ply [00/900] spherical shell
(SS-3, Material 1), under point load.
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Figure 13. Bending of a clamped angle-ply [-45o/45 °] cylindrical
shell under uniform load.
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Figure 14. Bending of clamped quasi-isotropic cylindrical shells
under uniform load.
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