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ABSTRACT

This paper deals with a method of determining an astronomic position
by using the star rate of change in azimuth and zenith distance, with
respect to time. The star is observed a number of times. Coeffi-
cients of Taylor expansion, up to the third order, can be obtained
with & high degree of accuracy as a function of sections of a small
great circle of arc.

Methods of application of observed data, time, zenith distance and
azimuth are considered. They can be reduced to one arbitrarily
chosen star position. A comparison of the results so obtained gives
a test of the accuracy of the observation.

It is shown that astronomic refraction problems can be reduced using
the method described in this report.

INTRODUCTION

This report deals with the determination of astronomic latitude,
longitude and azimuth as well as the instrument coustants, in a quite
different way than of the classical methods, by using a star rate of
change of zenith angle and azimuth with respect to time, and in a way
that is independent of refraction problems. The observed times,
zenith angles, or azimuth can be reduced to an arbitrary chosen star
position, independent of the station coordinates.

A comparison of the results so obtained gives not only a test of the
accuracy of the observations, but also the kind of error committed.
Independent sets of observations are considered. A closedformula
gives accurate values of the difference between zenith angles, which
are related to pover series according to Taylor’s theorem, for
determining the station’s coordinates.
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ZENITH DISTANCES RATE AS A FUUNCTINN OF TIMF

Developing in power series according to Taylor’s theorem, the
following equation is considered:

z,-2, dz dZ 3
2
e " w lger Bt W gy (g)te .

(91°°°) must be taken in radius. Z; represents the true zenith
distances that correspond to the siéereal times 8;, and Z, the true
zenith distance that corresponds to the sidereal time 8,. The
difference between these true zenith distances are known through
computations from the closed formula:

2 cos S1 - cos (21+Z°) (l - cos Ai)
cos (zi-zo) - , (2)
1 + cos &
i
in which 4 represents the difference in azimuth between the two

observations

& = A-A; = Ll
Li,Lo = horizontal readings
S represents the great circle of arc computed from
sin l/y84 = cos & sinly (6;,-8,). (%)

Zy and 2, are observed zenith distances with respect to the times
6; and 8, , or derived by computation as can be'shown later.

To obtain a higher degree of accuracy in evaluating (21-20) ve may
choose a star whose declination is greater than that of the obser-
ver’s latitude. Observations taken before and after the star maximum
elongation angles 4 can be small, on the order of few minutes of arc,
while the changes in zenith distances have maximum variations; or we
may observe two stars with small differences in azimuth, so the term
(1= cosd) will be small. The sum of the zenith distances may not he
far from 90°, so that the second term in the numerator of equation
(2) becomes small, and therefore corrections due to refraction and
index error can be disregarded. Table 1 shows the influence of an
error of six minutes of arc in the sum of the two zenith distances.

Table 1.

8 2+ 2, cos (21+2¢,)(l-c0l a)
6’ 120° ~0.00000 076
6 120° 06’ 76
12 120° =0.00000 305
12 120° 06 Nk
18° 120 =0.00000 6RS
18’ 120 06’ AR7
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Solution by Pairs of Observstions

Any two observations provide enough information to obtain the

rate SE « In this case we have

13
z.-2 3
2" dz 1 w d4°2
—— iy, (—=)2[(8,-8 )0)2 — ., (4)
8,-8, a2 (mn] [(e;-8,)°] de 3

The second term of this equation is small and the value of
(62-91)° is expressed in degrees and fraction of it.

We have found for the differential coefficients:

a3z 4z [143 . d%z (dz)Z] s
FTLINT ot 2T Gt

and
d%Z  cos Z(sin?¢ + s1n28)-sin¢ sind(1+cos?Z)
— = 3 . (&)
de sin? 2

_Inserting equation (5) into equation (4) we get

Z.-2 %(8 -0 )o 2 2

2”1 dz 1 21 d<z dZ
—— e (] - z - fo— . (7
ei'gl it { /24 ( 180 ) (l+3 cot ;;7 (dt) )} (7

In this equation for the zenith distance we use for Z the value which
results from

Z 42 ]

1 2 1 L zdz
Z = —/ — Q-0 . R
2 ”180(z 1) atl ®

Expressing (62-91) in degrees and fractions of it, we have

z.+2 2
1772 " 2 d42
2z -—- 7.85 (°z‘°1) =3 9

d
The differential coefficient :;7- is very small, zero at the maximum
elongation, so we can compute it from equation (5) using
. ¥,
28 ——,
2
For abbreviation let

P -1/2‘ [T;? (Oz-el]"]z

{10)

a%

Qe 143 ¢t 2 ::’ ,

P
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so equation (6) is rewritten as follows:

-Z

m - _l‘ - plq (—)2)] an

and because of the size of P, we ugse the approximate value

iz 7% 1
at " 8,0, 1 - PlQ-(2,-2,)%/ (0,8 )2]) » P
£ 9% 2,72, ™%

in the brakets of equation (11), and derive the true value of the
dZ

differential coefficient rrik

Solution for Any Number of Observations

Consider a set of observations made with a theodolite in a direct
position, and a second set with & theodolite in reverse position.

Let .
i = mumber of observations in direct position
number of observations in reverse position

91,21 = time and zenith distance in direct position
j,zj e time and zenith distance in reverse position
85525 = a reference time and zenith distance

Ty = -B

Ty = 8-, '

Two sets of equations can be formed where the differential
coefficients refers to the time 6, as follows:

dz a2 a%
&y = 24-2, " 1 +1’2"‘ ’2*‘/6 I AR

(13)

az aZ i%
&5'25-2 "'d': Tj *1/2—’ TJ+/6 .13+ eee

We eliminate the second differential coefficient by postulating that

2.7 {2 ’ :
. irj 2:1- 0. (14) ;
Consider an equal number of observations in each set, that is

{= j=n.

From the sum of each set, we obtain by substraction of edquation (13):

3
I, - Ia2, .:‘.f-(zfj-z,i) Ry i—,(zz;-xrg) . as
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To satisfy equation (14) the value of 65 must be known. To obtain it
ve proceed as follows:

Let -50 be an approximate value of 90. We may select the mean value
between the last observation of the first set and the first of the
second set, so

- %-@-01

6y = > , (16)

and let x be the amount of correction to obtain 50, therefore
Oo - 0°+x 17

from which equation (13) becomes
1(8,-8,)%-5(8,-3,) -2 x [1(8,-8,) - I(e,8,)] =0 (19
and x i{s computed from

1(6,-8)2 - 1(0,-3 )2
2(1(e,-2,) - 10,3, ]

. ae)

Adding this value of x to 30, we obtain the desired value 8,. The
‘s are computed according to equation (2).

Evaluation of the Second Differantial Fquation d422/dt? .

Consider the total number of observations of each group to be
{=§=l1,2 00,0,

For the sum of each group of equations (13), two equations are fixed
as follows:

(z,-2.) dz a2z a3z
E—x—q— an=—+] —3 o, +1 2
Ty " dt /2dt 2 i /6 dt:s Xti

(20)

(z2.~2.) 4z i ,, 4% 2
e g g s Ve g I

Under the condition established in equation (14) we obtain for the
second differential equation

a2 v(zj-zo) ‘(zi-zo) 180

de? Ty A (ftj-{ti)w

. @n

{
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Let the parameters M and N be defined as follows:
1 z,)
; |
E (22) j
z—i— |
j i i
Adding the two equations (15), dividing by n and on account of ‘
equation (17) we obtain
MW dz 1 dZ
— g —— T4+T + / Tz + )T . (23)
2 dr @ i dc? Lagrny) 12“4 (2 If)
The second term in the left hand of this equation is very small and
the thrid term will also be small. To evaluate the first differen- ,
tial we must evaluate the third coefficient, which we found is .
a¥%
--—1+3 cot 2 -2 (24)
e iy =
Let
1 d%z ]
C o= = J{r,+1, )0 — 25
4n dr? 2(3 ) 180 (25)
in vhich the T‘s are expressed in degrees and fractions of it, and
let i
P=1+3 2. -—5dzz
- + cot
dt (26)
L
where d%2/dt? 1s derived from equation (16). Inserting these values
into equation (18) we obtain for evaluating the first differential
equation:
dz Q
-— . 27
-1 2 2)(X )2
| de 1= g (P0?)L(re}) (5gp) :
Evaluation of Latitude and Azimuth
Two procedures can be used, as follows:
Procedure l. Latitude can be computed through the equation:
sin ¢ = cos Z‘ sin § & sin Z- Ycos26-(dz/dt )2 . (29)
|
6 C—— -
- ,, .*'
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The plus sign is used when the star’s azimuth increases, otherwise it
is negative. The value of 2m ie derived as follows:
Let Z; be the zenith distances of the first set and Zj those of the F
second set. Let Ry and Rj be their corrections due to refraction
errors and let € be the index error and P the observer personal
equation. The first set gives: r
z, =2z, + Ry + (e+p) (29
t
The second set gives: | }
- i
- + ~ {e# 0 i
Zy =2y + Ry (esp) (30)
The Z means observed values. The value of Zy is obtained by adding
to each Z; the computed value &2y or 4Z,, we get
nz = I(z,+02,) + ] Rpsm(ese)
an
nz, - Z(zj-mzj) + 7 Rj-n(s+P) '
from which we obtain
1 -
z, - [I(z +ez,) + Z(zjuzj) + 1(rg+ Zuj) . (32)
After the latitude has been obtained from equation (28), the azimuth,
vhich is for the time 6,, is obcained from i
dz
sin A = — sec ¢ . (33)
de
Procedure 2. By observing a second star on the other side of the
meridian the azizuth is determined independently of the latitude.
Let 4z
Ve G;—]v the rate of the west star
t
dz
E= G;:)e the rate of the east star
Lv. L‘ = theodolite horizontal readings
: The azimuth is derived from
can ¥y (a4ag ) = 55 tan by (1,1, ) (36)
Let
Yy (Ag#Ag) = =
(35)
Yy (lu-le) = ¥
L.
- — e = o S erepteb ey 4
- 4




then the star’s azimuth are

Aw = X+V
Ay = x-¥ (36)

Star’s Hour Angle

The star’s hour angle t, is computed using the eguation:

dz/dc
tan t =

, (37
A~B siné

when the denominator (absolute value) is greater than the numerator,
otherwise from

A-B sind
tan Y =

dz/de
t =902 v,

The meanings of A and B are:

2
A = cos 8 cot 2

B vt Jos2s - (dz/de)? (38)

where the positive sign corresponds when the star’s azimuth
(horizontal readings) increases and negative uhﬁn it decreases.

COLLIMATION CONSTANT AND ITS FVALUATION FROM A STAR OBSERVATION

The line of sight of the instrument is in general not perpendicular
to the horizontal axis of the instrument, but forms an angle with it
. of 90%°+c where ¢ 1s a quantity called collimation to be evaluated.
Consider a disgram of a theodolite as shown in Figure 1. Let C
represent the center of the horizontal circle. Let NS he the
meridian line through C. Let the telescope be pointed to the star A,
and let CA’ be its horizontal projection. This direction CA’ has a
reading L, in the horizontal circle. Llet B, be the origin of the
horizonta! scale reading of the theodolite and let B, be its symme-
trical point. Then the angle formed by the line B Cii with respect
to the meridian line NCS is the azimuth of B B,, that is SCB. . Let
this angle be represented by B, so the ..:-"s :zzimuth Agr 15 Ag = Ls
+ B8 which represents the value when no colli- tion exist- but alwavs
a small collimation error exists 9o we must add tc L. a value SA.
This correction {s well Ynown, tuerefore -'.e star’s i:i-rth is:

Ag = Lg + B c cosec Z (39)
! wvhere the plus sign is assumed when the theodolite is in a direct
} position and negative sign when the instrument is in reverse

; position.
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Figure 1. DNiagram of a Theodolite

[
The collimation can be determined by selecting any terrestrial object
that presents sone well defined point, and at a far distance so that
the stellar focus of the telescope need not be changed to ohtain a
good definition of the point. From the horizontal readings of the
theodolite in a direct and a reverse position the collimation can be
obtained. But it appears that this collimation should not he the
same when it is derived from a star’s observations, We think that it
is more appropriate to obtain the collimation constant hy observing a
moving object, a star, which is related to the ohserver’s behavior in
observing the stars for latitude and longitude determination.
Instead of a distant terrestrial point, we suhstitute it by choosing
a circumpolar star. The rate of change of azimuth as function of
time is used to evaluate the collimation constant. The star is
observed a number of times in a direct and reverse instrument
position. The time when the star image crosses the central vertical
wire is recorded as well as the horizontal readings of the
theodolite. Let L, be the horizontal scale readings and Ty be the
corresponding times for a direct instrument position and L,, T, the
values that corresponds to the reverse instrument position;, whére

i, §=1, 2, 3,.een .

Let T, be an arbitrary time chosen between the two sets of observa-
tions, snd let us reduce all observations, to the time To through the
Taylor’s theorem, expressing all quantities in radiances and omitting
the terms higher than the third.
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f The amount BA; to be added to each Ly to reduce it to the value that

would correspond to the time Tos is
A . EXN 2.1 a3 3
AAi Ia—tai+ /2-53 01 + /63:501 (4n)
where
] 6y =Ty - To
|
The amount &A4 to be added to the readings Ll;, to reduce them also to : i
the time T , is ; Lo
¥
da a2 a3 5
- — —_— .2 1 —_— 3 :
Myt w Y "'I/Zdtz ERRRL e R “n f
|
°j = Tj - TO .
The star’s azimuth to the time T, is
Ag = Ly + B+ My + c cosec 24
and 42)
Ag =Ly + 8+ 180 + My - ¢ cosec 74
from which the collimation error results as k
1...14'18.()-1.5.4»AAj-AAi
c = —_ . (43)
cosec Z, + cosec 2Z
1 ec 2y
We do not give a detailed derivation of Taylor’'s coefficients, which
are to be used in equations (33) and (34), and give only its final
results. We find that such coefficients can be evaluated from:
dz T2 3 +W
: ; = : cosec 2V2cos Z sin & sin ¢ + sinZ - sin’ ¢ - sin? § -E
(44)
ﬁ = cot Z [l_(S_Z_)Z] - gin ¢ sin § cosed 2 (45)
2 dt
dt
dA  sin ¢ ~ cos z sin §
— (46)
dt sin%
- —‘,dzA l( in § - 2 oA ) < z (47
= {gin § - 2 — cos z) — cosec
4t dt dt
a4 d%& sin ¢ dz ,, dA 4z d2a
5°—3 ——-2cot 2 =)+ 2(=)2— -3 cot 2 ——
t dt dt 4 ‘sin de 4 dt
| (48)
1
10 4
i 4_—-‘": - — e - ——— e —ama ——— VRN ——— ‘
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EXAMPLES OF COMPUTATINN

To illustrate the process of reduction using the technique shown in
this report we consider the following observations taken on
February 22, 1955, in a place:

A = 60474589 West
¢ = 26°37722" South

with a theodolite Zeiss 1V The time was noted by a sidereal clock
whose rate was so small as not to require notice. The ‘Star’s
apparent place, a Pictoris, is:

e = 6"%7%4559]
5§ = -61°53°50"8

Tables 2 and 3 show: first column the sidereal time of observation;
second column the zenith distance after correction for refraction;
the third column are the horizontal readings. The Taylor’s coeffi-
cients shown on each table were computed according to equations (37)
through (41), from which the corrections I, II and III were made to
reduce each observation to the chosen time Tor according to equations
(33) and (34). The last column indicates the reduced azimuth with
the plus or minus of collimation coefficient according to the instru-
ment position. The collimation was computed aceording to equation
(36). The resulting value is C = 7"83,

Table 4 shows the reduced zenith angles to a common time T_. The
first column indicates the number of observations for the Sirect and
reverse instrument position. The second gives tue values of (Z - Zo)
computed according to equation (2). The third dolurm gives the
reduced zenith angles from direct observations and in column four
from reverse instrument position. From the mean values of these two
columns the index error was computed which was used toc compute the
final zenith angle reduced to the time T,.

Table 2. Telescope Direct Position,

1 2 k] 4 S = 3-4ef cosec 2
Sidereal lenith Horizontal Corrections Reduced Azimuth to
Time Angle Angle 1 n 1T I.1I.111 T, = ''Pss®ogds
R TLITEN 60°02' 15"  31Puf 31 2702703 -33720 0723 1'2876 31%4C 2nuLt 15uC
S0 36.6 12 Sk 46 14 131,64 -18.72 -0.10 v 12.8 31.241.°52
s1 05.2 16 18 45 10 122.03 -14.99 -0.07 1 06.9 3,241,182
€1 346, 19 w1 46 03 112,10 -11.5¢ -0.05  00.% 2.8e1,18
52 16.0~ 20 3% us 52 0 58.15 .7.54 .0.02 0 50.6 1.1, 150
52 51.9 28 a9 © oS a3 0 46.06 -8.72 .0.01 0 4.1 1.7+1.150
53 20.2 32 0 45 3 0 3.2 .2.97 ...0v 0 33.5 1.5e1. 140
5% 2u.5 39 43 %5 15 114,86 -0.49 0 0 4.4 0.6+1.147
1155 08.5 60 44 S5 31 45 02 4 [+} 0 [ 3} 45 2.0.1,186C
319057029041, 150C
12M0u® 2630 - 31%u5+02.0 -3°07780-1118763  0984-4'25.59  310up+36Tur.r 150C
12 0738.520 -- 31 45 02.0 -8 12.66-2 22.32 2.04 -6 3.0 1 W 29.06.°.150C
aA/at 32 -0.022u6 al/at s 0.47064
a2asqt? + -0.46399 4227912 . 0.091707

ataser? = 0.36527
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| ! i , Tadle 3. Telescope Reverse Position
g : : ' 2 b 4 S t 3-4e Ccosec I
i ’ ' Sidereal Zenith Horizontal Corrections Reduced AzZimuth o
] Time Angle Angle 1 11 I TellsIID T, « 12Mqu®2:3
h 12Nou®24 39 61960 40" 211°00Sa~ 0 0 [ [ 211%0°58. G-, VU7
» 5 u2.8 61 59 40 u0 06 47920 -1%88 9 -48.6 54.5.1.173
! 6 37.6 62 06 05 39 28 -1 20.87 -u.28 0.01 .1 25.1 €3.1.1,132
: 723.7 62 11 30 3856 -1 %9.21 .7.78 0.02 -1 56.9 £2.9-1.137
768.9 6215 37 833 -2 10.8% -11.11 0.04 -2 21.9 €4 3-1.170
A 8 28.8 65219 08 B 31 -2 29.21 -18.85 0.06 -2 43.6 £8.6-1.129 i
! 9 08.6 62 23 a8 37 41 -2 53.67 -19.57 0.10 -3 13.1 Su.1.1.128 H |
: 9 6.5 62 29 26 37 06 -3 23.1) -26.77 0.16 -3 u9.7 §5.7.1,127 . t
) 12 10 3.6 62 20 00 211 36 3 3 4PN -33.uB 0.22 -k 20.4 _ )i 40 S4.u-1.127 \
. 211°%80°58%27.1,120C
1 11 55 08.6 = 211%u0°SH727 6 W2.S5 -1 16,14 -0.77 -4'25%64 21'°%uS 1grgily, 130C
i 12 07 38.529 - 211 40 S4.27 -1 58.32 -9.08 0.07 -2 07.37 211 B u6.90-:.130C
¢ Collimation
. Direct Reverse
} , . 1105580836 319050270841, 115C = 211°45°19991.180-1.1130¢ €+ 7°8u
! 12 04 26.0 31 80 36.8141.115C = 211 %0 5u.27-180-1.130C €= 7.93
12 07 38.53 31 38 29.0641.115C = 211 38 26.90-180-1,130C c = 7.83
; ' dAsar = -0.08097 dz/0t = 0.86966
< ; d2a/at? & 0,880 : d22/dt2 & .0.03117
: ! , adasaed . 0.33528
‘ i Table 4. Reduced Zenith Angles to T, = 11" 55™ 08%.
) * DIRECY REVERSE :
) i : az Z+ 08 + ¢ Z-4 -~-c¢ z,
; 1 0%42°37"8 60°44° 5278 , 60°44°59.5
‘ ! 2 32 00.7 54.7 61.4
s 3 28 38.7 53.7 60.4
. i 4 25 11.0 52.0 58.7
! 5 20 18.7 $3.7 60.4
. ! 6 16 05.2 54.2 6n.9
: 7 12 45.3 55.3 62.0
. 8 S 11.3 S54.3 61.0
} L) 9 00 0 60 44 55.0 61.7
| 1 ~1°0631%4 60%45°8Y7 62.0
. 2 -1 14 32.3 7.7 61.0
a 3 -1 20 58.0 7.0 60.3
| : 4 -1 26 22.5 7.5 60.8
g : 5 -1 30 30.4 6.6 59.9 :
s | ; 6 -1 34 00.7 7.3 60.6 .
| i 7 -1 38 40.7 7.3 60.6
P 8 -1 4 17.7 7.3 60.6
] y ; 9 -1 48 52.7 60 45 7.3 60 44 60.6
[ i
J > 60°44°53"97 609457138 60°45°00%7
| §
? i $3.97 + € = 67738 - ¢
| €= 6.70
i c Purther sample calculations, not prasented here because of space
? é limitations, are svailable from the author upon request. ,
|
{
!







