
AD-Ai135 840 ABSTRAiCT TYPE ORIENTED DYNAMIC VERTICAL MIGRATION(U 1/3,
AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH
E M CARTER DEC 83 AFIT/CI/NR-83-74D

NCSSIFIED F/Il 912 N

UNUR Eo ohmo n o o E
EhhhhmhhhmhhhE
mhhhhhhhohhhhE
mhhhshhmhEmhhE
EhhhhhhhEmohhhI

ZZ=--n r... Z

J&.8I-I

'pj.

4 11ii1 ____0

111111L133

11111 5 jLA .

IIIII

mllg

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

.-.. d

-- , , , ,. .'-- . .7 . . '47 . ". .. - - : .

S• ABSTRACT TYPE ORIENTED DYNAMIC VERTICAL MIGRATION

By

* A Edward M. Carter

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science DTIC
December, 1983 ELECT-

Nashville, Tennessee ODEC 15 1983

DISTRIBUTION STATEMENT A S

Appioved fox public xeleasel P)
Distribution Unlimited Date:Approved : Da te :

_ - -,-- __ _ _ _ _ _

83 12 14 011

L OW "-

-i, S W P W C 1 -

SE 1, RIT Y C L A, LIFiC AT, N .F TH,'- FAGE. 'hen fOwe Ft,-,-

REPORT DOCUMENTATION PAGE 11 (t)-,LE I IV, ,s

I .EPORT NUMMER 1Z GOVT ACCESSION NO 3 QE'tPiENT', -ATALO', N ,M F.R

AFIT/CI/NR 83-74D I/b-/9].3 5 9-_ ____

4 TITLE ond Subtutl,) 5 TYPE OF REPORT & FER"')O COEREO

Abstract Type Oriented Dynamic Vertical Migration]VV S/DISSERTATION

6 PERFORMING 0-G. REPORT NUMBER

7 AUTHOR(s) S. CONTRACT OR GRANT NiJMBER(s)

Edward M. Carter

9 PERFORMING ONGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK
AREA & WORK UNIT NUMBERS

AFIT STUDENT AT: Vanderbilt University

I1 CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

AFIT/NR 1983
WPAFB OH 45433 13. NUMBER OF PAGES

185
14 MONITORING AGENCY NAME & AOORESSetH different from Controlling Office) 15. SECURITY CLASS. (of this report,

UNCLASS
15.. DECLASSIFICATION DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

I. SUPPLEMENTARY NOTES .

APPROVED FOR PUBLIC RELEASE: IAW AFR 190-17 WOLAVER

Dean for Research and

So".(IT • Professional Development

19. KEY WOROS (Continue on reverse side if necessary and identify by block number)

20. ABSTRACT (Continue on reverse side If necessary and Identify by block number)

ATTACHED

DD, FcRM?1 1473 ED TON OF" P,. S ISDBS:LETE UNCLASS

8 3 1 2 1 4 0 1 1 SE R CLASSIF.C..T... OF T-IS 'AGE 1;T-, 'ate

"-"-" ,S "A-

'4'1

COMPUTER SCIENCE

J

ABSTRACT TYPE ORIENTED DYNAMIC VERTICAL MIGRATION: 1 EDWARD M. CARTER
4d '

Dasertation under the direction of Professor R. I. Winner

- ~The study of structured programming has shown that

* through data abstraction, program reliability and maintaina-

bility can be improved. At the same time, vertical migra-

tion has been shown to be an effective way to improve the

performance of programs. Contemporary techniques, however,

* tend to address the needs of only certain classes of pro-

grams and therefore may overlook or even preclude certain

optimization opportunities. Dynamic microprogramming can

* overcome the problem of applicability of a particular verti-

cal migration by allowing the migration to be tailored for

each particular application.

This research describes a study of a technique known

as abstract type oriented dynamic vertical migration. This

technique involves determining the needs of a program in

differing execution environments and tailoring the architec-

ture of the machine to support those environments individu-

ally. The paper describes foundation work in the areas of

comput architecture, dynamic microprogramming, data

abstraction, and vertical migration and describes how these

can be in\egrated to form a computer architecture which is

adaptable to user need while providing a means of encourag-

ing modern p ogramming practices without incurring the per-

formance degr&dation as is often seen in current architec-

tures.

\4-* 7 . . . *.

The implementation of this architecture is discussed

as well as the effects of modern programming languages and

architecture implementation techniques on the proposed tech-

nique. The result of the research is that abstract type

oriented dynamic vertical migration has been shown to be an

effective technique which can be used to enhance the perfor-

Nmance of programs while providing a degree of reasoning

about the interaction of migrated function which has yet to

be attained.

Author: Edward M. Carter

Rank: Captain

Branch: United States Air Force

Title: Abstract Type Oriented Dynamic Vertical Migration

Year: 1983

Pages: 185

Degree: Doctor of Philosophy in Computer Science

Institution: Vanderbilt University

.4
,

Accession For

NTIS GRA&I
DTIC TAB 0
Unannounced F1
Justificatio

By
Distribution/

Availability Codes

Dis

0C~p

Q Copyright by Edward M. Carter 1983

All Ri.ghts Reserved

ACKNOWLEDGEMENTS

I would like to acknowledge the efforts of many people

in making this research possible. I first need to point out

that without the endless support of my wife, Margaret, and

encouragement from my three children, Aaron, Jason, and

Steven, this work could not have been completed. I would

like to forgive Steven for the month long pause he caused in

my writing. Of next importance is the contribution of my

advisor Dr. Robert I. Winner. His expertise and encourage-

ment have brought me to this stage of my work. My time at

Vanderbilt has been enjoyable for two reasons. First, the

faculty has continually challenged and encouraged me to

learn new concepts and to practice them. For this I am very

grateful. Secondly, and no less important, are the friend-

.ships which I have shared while studying here. I thank Stan

Thomas, Len Reed, Eric Roskos, Richard Johnson, Fred Nixon,

Tom Wood and many others for being special colleagues with

. -. whom I have shared many a gripe and a great deal more

laughs. The United States Air Force Academy made the time

for my study possible and the Air Force Institute of Tech-

nology provided my support. Of most importance, I will ack-

nowledge my Lord and Savior Jesus Christ in knowing Him, and

being loved by Him as being the single greatest part of my

life.

,. iii

-7 7. -7 .72 .A:

TABLE OF CONTENTS

* Page
ACXNOWLEDGEMENTS

LIST OF ILLUSTRATIONS...................Vi

Chapter

I. INTRODUCTION...................................... 1

11. BACKGROUND 3

overview 3
Problem Solving and Programming . . .:.*.*....3

Architecture....................14
Dynamic microprogramming..............19
Data Abstraction and Encapsulation21

Vertical Migration 25
Motivation 31
Problem Definition............... . .. 34
Environment. 35

III. AN APPROACH TO ABSTRACT TYPE ORIENTED MIGRATION . 37

overview *37

Previous Approaches to Architecture Redefinition . 38
Abstract Type Oriented Migration..........44
Abstract Type Definition in ATOM..........49
Architecture Synthesis in ATOM...........60
Performance Measures 78
Performance Improvement Expectations 81
Why Abstract Type oriented Migration ? 89

IV. PROGRAMMING LANGUAGE EFFECTS............92

overview . 92

Scope Effects in ATOM 92
Derived Data Types in the ATOM Environment . . . 100
Generic Data Types in the ATOM Environment . . . 103
Abstract Data Type Design in ATOM 106
Compilers in the ATOM Environment 112

iv

i

V. MACHINE ARCHITECTURE EFFECTS 115

Overview 115
ATOM in a Multiprogramming Environment. 116
Multiprocessing Environment 118Processor Implementation Issues 121
Microprogramming Architecture Effects 126
Microprogramming Architecture Requirements . . . 131

VI. IMPLEMENTING ATOM 136

Overview 136
Proposed and Implemented ATOM 136
Language Processors 144
Performance Estimation Model 149
Case Study: Matrix 155

VII. CONCLUDING REMARKS 168

Summary 168
The Significance of ATOM 174
Directions for Further Research 176

LIST OF REFERENCES 180

9v

4°

L;. :. :.-?2 ;.: ' J :9 '- : :) % ":.: .: .. :.: .:: : :."" :: :/:, _

LIST OF ILLUSTRATIONS

Figure Page

1. Hardwired Architecture Implementation 16

2. Microcoded Architecture Implementation18

3. Multi-level Interpretive Hierarchy27

4. Vertical Migration of AC 29

5. Problem Oriented Architecture Implementation . 47

6. Package Specification for COMPLEX NUMBER 55

7. Package Body for COMPLEX NUMBER 58

8. Ada Program Using Package COMPLEXNUMBER 59

9. Architecture Comparison 66

10. ATOM Architecture Synthesis Algorithm70

11. Inner Scope in CALL MICRO 72

12. Scopes in CALLMICRO73

13. Low-level Architecture Binding in ATOM 77

14. Performance Improvement Estimation 87

15. Performance Estimation Algorithm Results 88

16. The New Execution Environment of INNERSCOPE . . . 95

17. Pascal ImplementaLion of Abstract Type Complex . . 98

18. Generic Spec.fication for COMPLEXNUMBER 104

19. Complex Type Description 108

20. Factored Types 109

21. Complex Type Using Factored Types 111

22. Performance Estimation - 85% Hit Probability . . 123

vi

---.

23. C Implementation of package COMPLEX NUMBER . 138

24. C Implementation of program MY PROGRAM 139

25. Implemented ATOM Synthesis Procedure 143

5- 26. ATOM Language Processors (Part 1) 146

27. ATOM Language Processors (Part 2) 147

28. Performance Estimation Model (Part 1) 150

* 29. Performance Estimation Model (Part 2) 152

30. Matrix Test Runs (Part 1) 157

31. Matrix Test Runs (Part 2) 160

32. Matrix Test Runs (Part 3) 164

-vi

". vii

CHAPTER I

INTRODUCTION

Subsequent to the introduction of computers in the

early 1940's, much has changed in the way in 'ich computers

are used. These changes include broader app 7ation areas,

vastly increased numbers of computers, and ances in the

way in which computer programs are designed a ,nplemented.

Change has not occurred as quickly in the basic data pro-

cessing facilities, known as the architecture, of computers.

Newer and faster components have been introduced and minia-

turization has brought the mammoth early computers down to

the more manageable size of the personal computer of today

with an increase in functionality. The basic architecture

however, is still based on the von Neumann model of the

early machines. The purpose of this research is to examine

ways to improve this basic architectural schema.

In the following pages the reader will find an exami-

nation of computer architecture and how advances in the two

disciplines of software engineering and firmware engineering

can be combined to produce a computer architecture which

better supports user needs than the simple von Neumann

architectures of today. In chapter 11 the four areas of

computer architecture, dynamic microprogramming, abstract

E 1

2

data typing, and vertical migration will be surveyed.

Emphasis will be placed on how these may be adapted and

integrated to provide a better computing environment which

is oriented toward one particular problem or set of prob-

lems. Within this chapter will also be a summary of the

need for this research and a brief description of the prob-

lem to be examined.

Chapter III will present a proposed solution for the

" - problem, known as abstract type oriented migration (ATOM),

and will describe some measures which may be used in

evaluating its applicability. Chapter IV will look at some

of the effects which modern programming languages have on

ATOM. In particular the effect)f lexical scope, derived

date types, and generic data types will be examined.

Chapter V will look at the offects which modern hardware

implementation techniques, such as multiprocessing and pipe-

lining, have on the the new architecture. Within this

- chapter is an examination of ways in which ATOM may affect

future hardware decisions and capabilities of future archi-

tectures. Chapter VI will be an in-depth look at an imple-

mentation of ATOM and will study several examples of its

application. The final chapter, chapter VII, will summarize

the results of the research and describe directions which

further efforts should pursue in advancing dynamic redefini-

tion of computer architecture.

I.

I-

CHAPTER II

BACKGROUND

Overview

The purpose of this chapter is to survey the areas of

computer architecture, abstract data typing, vertical migra-

tion, and dynamic microprogramming and to highlight the work

which has been done in these areas. With this background

the reader will understand the need for ATOM and will more

readily appreciate its usage and constraints. The first

section of this chapter will briefly focus on the process of

problem solution and how the resulting solution is imple-

mented on a computer through program design and implementa-

tion. The next four sections of this chapter are dedicated

to the study of the four areas mentioned previously and how

they affect the programming environment. The final three

sections of the chapter will summarize the need for ATOM,

precisely define the problem being solved, and describe the

environment in which the research was conducted.

" Problem Solving and Programming

When a person is confronted with a problem, an orderly
V.

problem solution process is often used to determine how best

to meet the needs of the situation. The exercising of this

process may be implicit in the case of simple problems or

3

k.%

4

explicit where greater complexity is involved. The follow-

, -ing technique is e qeneralization of a large class of prob-

. lem solving techniques.

The first step is to determine the factors which

. -affect the solution; this step is often called data gather-

ing. Once this process has occurred, several different

solutions can be determined and a search begun for the best

one. After this step has been completed the final move is

" to implement the problem solution in a way which will over-

come the problem. This technique can be adapted to any

problem area without regard for its complexity.

In solving problems on computers we very often follow

this same process. The data gathering step involves col-

lecting a set of specifications describing the constraints

of the computing environment as well as the required input

data and output results. The process of determining a solu-

tion involves describing a set of data structures and algo-

rithms which access these structures to provide the

transformations from input data to results. The final step,

implementing the solution, is what is of interest in this

research.

In this step we choose a programming language and

describe our abstract problem solution in a more formal way.

This formalism is bounded by the syntax and semantics of our

chosen programming language. After the problem solution has

been translated into the chosen programming language, it

-1.-7.

5

must then be either interpreted by the computer or be

translated to a lower form of language whose syntax and

W.,- semantics are bounded not only by a formal description but

by the architecture of the computer. This architecture is

the set of facilities which the machine language programmer,

hence the compiler's code generator, sees as the most basic

tools which are available for problem solving.

in modern computers these facilities are the primitive

data types and operations on these types which we have come

to know as the instruction set. For example, we may know

that a machine can support integer, character, and floating

point objects. The problem solution, however, may need some-

thing more complex or even something more simple than what

is provided in the architecture of the machine. In other

words, the facilities required by the problem solution and

the facilities provided by the computer's architecture may

not agree. The result is that the semantics of the problem

solution must be mapped onto those which are provided by the

architecture in order for the solution to be implemented on

a computer. The problem arises that the specific needs of

the problem solution must be mapped onto an architecture

which has been generalized to support a vast range of appli-

cations and which has been optimized for hardware realiza-

tion.

The architecture of most computers today is based on

the von Neumann model of the early 1940's. In this archi-

tecture, a primitive memory model is described which is the

" * basis for the difficulties in mapping higher level struc-

tures onto the programming model of the architecture. The

characteristics of the von Neumann model are

1. A single, sequentially addressed memory.

2. A linear (one-dimensional) memory.

3. No distinction between instructions and data.

4. Meaning not being an inherent part of data.

On the other hand, a study of modern programming languages

shows that in general the following characteristics are evi-

dent:

1. Storage is a set of discrete named variables.

2. Many data types are multi-dimensional.

3. Data and instructions are not the same.

4. Meaning is an inherent part of the data.

*It is the disparity between these sets of characteristics

4-. which causes the difficulties in the mapping of abstract

* "objects and operations to architecture.

The Semantic Gap

The idea of a gap between concepts supported in the

-. architecture and those required by programmers has been

described by several authors. An interesting treatment of

the topic has been by Myers in [31]. The premise of Myers'

book is that modern computer architectures have some serious

shortcomings. He points out that these shortcomings are

°-J

7

T.." 7

based primarily on a "bottom-up" design methodology where a

group of designers or computer architects decide what data

types and operations to support. The design method is

heavily influenced by tradition and may not be affected by

* the needs of the applications to be run on the machine.

Myers defines the gap between the needs of the programmer

and the facilities of the computer architecture as the

semantic gap. This gap is primarily a measure of the differ-

ence between the concepts in high-level languages and the

concepts in the underlying computer architecture used to

* provide these facilities. As we have seen before, there is

also a semantic gap between the concepts in the problem

solution and those which appear in the programming language.

In actuality, there is a series of semantic gaps which start

at the abstract problem solution and continue through imple-

mentation of the solution on a computer.

Myers points out several examples to illustrate the

consequences of the semantic gap between the programming

model described by programming languages and the concepts

supported by contemporary architectures. For example, the

IBM S/370 PL/I compiler generates 17 machine instructions

occupying 62 bytes of memory for the following array assign-

ment:

C(I,J) A(I,J) + B(J,I)

If the optional SUBSCRIPTRANGE check is enabled the compiler

generates 75 machine instructions for a total of 274 bytes

8

of memory. Note that this comparison is simply a static

analysis of the problem and disregards dynamic behavior,

such as the number of memory fetches required for data and

instructions. An architecture which provided a primitive

array type would have required fewer instructions since it

would have known and supported the concept of arrays and

subscripts. Furthermore, runtime bound checking could be

implemented in the architecture as opposed to additional

instructions being added to the program to provide this

function.

The obvious results of the semantic gap are decreased

machine efficiency and excessive program size. In addition,

compiler and language complexity are increased to provide

facilities which are not easily implemented in the architec-

ture. Two additional problems arise, however, which are

even more serious than those already mentioned. The first

problem involves a drastic decrease in programmer produc-

tivity. In the von Neumann model, a programmer is forced

to represent his model in terms of entities supported by the

architecture. These entities may require a complex combina-

tion and interaction between more primitive structures sup-

ported by the architecture. The programmer is responsible

for implementing these interactions and for maintaining them

properly. A large portion of his programming efforts may

then be spent in ensuring that these interactions and depen-

9

dencies are maintained resulting in less time being spent on

more productive efforts.

An example can best serve to illustrate this point.

Let us assume that we must represent a student entity on a

computer. Since most computers do not have a student data

type and instructions which manipulate items of this type,

we must model the type by using the primitive types in the

architecture. We may model the student entity as a record

with some of the following components: a string of charac-

ters for a name, an integer phone number, an array of

courses each consisting of a string for course name and a

character for the letter grade. Let us also assume that

there is an integer count of courses in this record. This

type of record implies a dependency of the size of the

record on the course count field. If the object is not sup-

ported in the architecture the dependency must be enforced

by the programmer implementing the model. A change to one

item, for example the course count, which should affect

other items may be overlooked since there is no architectur-

ally enforced relationship between them. The result of this

error in the student record case may be the loss of new

course data or the retention of deleted course data. The

practice of forcing the model to fit the architecture is

like giving a workman inappropriate tools for completing a

task and expecting the job to be completed in an efficient

and timely way. Imagine the increase in the effectiveness

|. --

10

of a programmer if he could work on an architecture which is

capable of representing more closely the model which he is

I" required to produce.

The second problem, software unreliability, is perhaps

the most severe of those described. Consider once again the

array case shown before. What is the result of using an

array index which is outside the bounds of the array or,

even worse, of usi,.g an array element which has yet to be

assigned a value? Again, if the array type were implemented

as a type of the architecture, then the supporting architec-

ture could ensure that the selected element of the array was

a valid one. These represent a class of problems which

often arise and are a direct result of having to simulate

operations on types which are not supported by the architec-

ture.

The problems can be much worse when we consider other

more complex types such as stacks, queues, and dynamic list

structures. The point here is this: modern architectures

support only a small number of data types and operations on

these types, and this restriction causes unreliable software

and excessive costs. The von Neumann architecture does not

lend itself to supporting user defined data types. The

problems with the von Neumann architecture arise from its

primitive memory model. Excessive mapping of language

structures to architecture is needed to match the language

concepts to the von Neumann view of storage. The structure

, .. . 4 - . - , "~- - ". -4 - " ' - •
-

- - -
.

" °. .. - ..

~11

of data consequently must be absorbed into the logic of the

program. In addition, the von Neumann memory model is too

general in that there is a need to provide the flexibility

to use any word of memory for any purpose, i.e. instructions

or data. This can result in the possibility of executing

data or accessing instructions as data. Finally, the primi-

tive storage concept of this model implies that the instruc-

tion set must support overly simplistic operations as its

primitive operators. As a result of the von Neumann model,

there exists the dichotomy that machine architects view data

type as a property of operators while compiler writers view

data type as a property of the data itself. Some attempts

have been made to enhance the range of types supported in

architectures: these are reported in the following sections.

Object Oriented Architectures

The object model as described by Jones in [25] is both

a concept for design and a tool for implementing programs

"A and systems. An object oriented architecture uses the model

to change the perspective of the programmer. Instead of

"" viewing the memory as a linear collection of storage cells,

this architecture views memory as a heap which is used to

allocate entities known as objects. Each of these objects

is a self-identifying collection of items which share some

common properties. For example, an executable program image

may be an object which contains other objects known as seg-

. ..

71 7'

12

ments. Each of these segments is in turn another object

which contains machine instructions for carrying out the

operations of the object. The data items to be operated on

are also objects. Data structures as entities may also be

objects. For example, an array of records may be implemented

as a collection of record objects with the collection as a

-- whole also being an object.
%" An object may also contain a list of other objects as

well as access permissions for these. Most object oriented

architectures today have implemented this capability-based

system for controlling access to data. The strong point of

object oriented architectures is that they provide a level

of granularity which is adjustable to the needs of the pro-

grammer in the way objects are described. This level of

granularity is useful further in providing protection

domains for objects, the primary use of the object model in

architectures today. Several architectures have been

attempted based on this model including the iAPX-432 [38]

and Hydra:C.mmp [68]. Both of these projects have suffered

from a lack of efficiency caused by the overhead involved in

maintaining the objects of interest. The object oriented

architecture is plagued by this fault as noted by the lack

of a widely accepted object oriented processor on the com-

mercial market today.

The object oriented architecture is at the high end of

a spectrum of complexity for modern computer architectures.

Le•

L
13

Another new architecture, which is heavily influenced by

VLSI technology, is the so called reduced instruction set

computer. The next section will briefly look at this pro-

posed architecture.

"- Reduced Instruction Set Computers

The set of reduced instruction set computers (RISC) is

a class of computers which have been designed to combat the

decreased performance brought about by the semantic gap.

The premise of RISC is that by providing a simple set of

instructions which can for the most part be executed in one

clock cycle, the architecture will provide an extremely fast

model for implementing programming systems. The large number

of instructions needed to model abstract data types will

still be there and in fact will increase, but the mean time

to execute one of these instructions will decrease. The bur-

den of complexity is therefore shifted from the computer

architect to the compiler designer.

Examples of these architectures include the Berkeley

RISC-I [37], the Stanford MIPS [19], and the IBM 801 [39].

We can see that this solution does not address the complex-

ity issue brought to light by the semantic gap but simply

provides a solution to the efficiency problems which are

encountered when excessive mapping from programming language

structures to architecture is required. Although RISC

machines provide a large increase in performance, the con-

-.-. r -

14

comitant software complexity cost may not justify the adop-

tion of the architecture.

The Software Dilemma

The problems mentioned above seem to present an insur-

mountable obstacle to efficient implementation of problem

solutions. However, there is relief for this problem.

Research in the areas of computer architecture, dynamic

microprogramming, abstract data typing, and vertical migra-

tion have each contributed to improving the computing

environment in their respective areas. A combination of

these, however, can be seen as relief for many problems

presented by the semantic gap. This integrated technique,

abstract type oriented migration, will be described in

detail in chapter III. In the immediately following sec-

tions, we will be looking at each of the contributing areas

and work which has been completed in each.

Architecture

The programming architecture of a computer can be

defined as the set of functions and interfaces which are

available for use by programmers in typical programming

languages such as assembler and procedure oriented

languages. For our purpose, we can equate this to the set

of operations provided by the instruction set and the data

types on which these instructions operate. Since the advent

of the von Neumann architecture in the late 1940's, little

15

has changed in the basic schema of computer architectures

except that more complex data types and instructions are

being provided. This set of types and operations is still

established by the computer architect and restricts the

applications which can be implemented efficiently to those

" that can be mapped efficiently onto this set.

In the last ten years increasing scrutiny has been

given to this restricted set of data types and operations

and to the effect it has on reliability and maintainability

of software. Some measures have been attempted which have

to date resulted in working, yet not efficient, architec-

tures for solving this problem. For the most part, only

simple modifications to the basic von Neumann architecture

have been successful.

A computer architecture can be implemented in one of

two ways. In the first way, sequential and combinational

circuits can be built which provide the functions required

when activated by the control circuitry of the machine. This

way is called the hardwired approach. It is extremely fast,

but is built to provide a single set of functions and can

only be modified through hardware change. Figure 1

illustrates this type of architecture schematically.

The alternative method of implementing an architecture

is through microcoding. In the microcoding approach the

hardwired circuitry is replaced by a set of microinstruc-

tions which control the hardware resources and data paths of

.7'. . --. -. '~7.

16

IMACHINE LANGUAGE INSTRUCTIONS I

I 10 IINSTRUCTION I MEMORY
I CONTROL I SET I CONTROL
IHARDWARE IPROCESSOR I HARDWARE I

I I HARDWARE I

Fig. 1--Hardwired Architecture Imiplementation

17

the machine. Each bit of these microinstructions may con-

trol as small a resource as a single gate or as large a

resource as a control line to a functional unit such as the

ALU of the computer. In this approach one or more microin-

structions may replace a sequential or combinational circuit

of the hardwired approach. This approach yields a large

degree of flexibility yet costs in efficiency of execution.

Operations which were implemented in hardware are now depen-

dent on one or more microinstructions which must be fetched,

decoded, and executed from a control store. The control

store, although implemented in fast memory, adds a degree of

overhead not in the hardwired approach. The resulting payoff

is that the instruction set of the computer and hence its

architecture can be changed by simply loading the control

store with a new set of microinstructions. Figure 2

illustrates the microcode approach to architecture implemen-

tation. For the rest of this paper, the terms machine

instruction and macroinstruction will be used interchange-

ably. Similarly, macrocode and microcode will refer to pro-

grams consisting of macroinstructions and microinstructions

respectively. Since the microprogrammed approach provides

the ability to change the architecture without hardware

change, we will concentrate on this method of implementing

architectures.

18

MACHINE LANGUAGE INSTRUCTIONS I

I 10 IINSTRUCTION I MEMORY
I CONTROL j SET I CONTROL
IFIRMWARE IPROCESSOR IFIRMWARE I

I FIRMWARE I

I MICRO-INSTRUCTION
I INTERPRETERI

HARDWAREI

q

Fig. 2--Microcoded Architecture Implementation

19

Dynamic Microprogramming

For this paper, we will define dynamic microprogram-

ming as the ability of a system user to place microcode

dynamically into a writable control store, thus effectively

extending the programming architecture of the machine.

Architecture synthesis is the application for dynamic

microprogramming in which this research is most interested.

According to Stockenberg and van Dam in [50] there are two

types of architecture synthesis, manual and heuristic. The

most well known synthesis technique is manual synthesis and

has been seen in numerous applications such as language

accelerators, operating system assists, and migrations of

specific user functions to firmware. This type of migration

is very often quite complex and is usually restricted to

only a small class of programs.

In heuristic synthesis an attempt is made to discover

what portions of the program should be microcoded to yield

the best performance improvement. This second type of

architecture synthesis is of most interest to our research.

The search for the best code to place in control store is

made in an automated or semi-automated procedure so that the

complexity is reduced and the applicability of the procedure

can be greatly expanded. Earlier work by Abd-Alla [I] and

El-Ayat [11] have both found that automated techniques can

be implemented for dynamically redefining computer architec-

ture.

.4.

h | "' -. . " -"i " " ' ' " -_ 7 ' ' l . . ' " ' ' " " d b . .€b -

20

A topic of concern at this point is how to create the

microcode and load it into the control store once the func-

tions to be placed there have been discovered. One approach

to changing the architecture to match specific user needs is

through language directed computer architecture. In this

approach an architecture is synthesized by the compiler

writer when the compiler is implemented. This architecture

becomes the target or image architecture for which programs

are compiled. The implication is that this architecture will

be realized on the machine at runtime by loading the control

store with an emulator for that architecture. This emulator

is specific for all programs written in the target high-

level programming language. This approach has been used in

the design and implementation of the Burroughs B1700 and is

described in [56] and [57]. A more general method involves

describing a single high-level architecture for supporting

all programming languages. Wortman in his dissertation exam-

ined the applicability of this approach and demonstrated

such a system using a subset of PL/I [65]. This system is

similar to contemporary architectures with the exception

that the primitive operations are at a more abstract level.

The decision is still made a priori as to what data types

and operations are to be part of the architecture.

A more specific approach to synthesis is what we will

call a problem oriented architecture. This technique will

require a flexible way of describing architectures and emu-

V"_ P.,

21

lators. Gieser reports on techniques which can be used for

describing microarchitectures in [18). Other recent

advances in microprogramming language research have brought

to light the fact that high-level microprogramming languages

can be used for implementing architectures without losing

efficiency. Sint in [46] surveys a large number of these

high-level microprogramming languages. Each of the

languages described is associated with a microcode compac-

tion facility which provides for an efficient flow of con-

trol among microinstructions. Common high-level programming

*[languages have also been adapted for use as microprogramming

languages. One effort with the language C is discussed by

Ellison in [12]. Most hardware vendors which supply user

microprogrammable hardware also provide at least an assembly

language facility for user microprogramming. Some third

party software vendors supply more extensive microcoding

* packages such as the VAX Automatic Microcode Generation

facility discussed in [45).

Data Abstraction and Encapsulation

One of the largest strides in programming methodology

in recent years has been the drive toward the utilization of

structured programming techniques. Perhaps the best known

of these techniques is that of information-hiding. In

information-hiding, presented in [36), the major goal is to

"hide" the representation of data within a capsule or module

22

which provides controlled access to the data through a set

of entry points. A programmer need only know how to call

the entry point and what results to expect from the call in

order to use the encapsulated data type.

The facility may be as simple as an integer type or

arbitrarily complex. The simple facilities are normally

provided directly in the computer architecture and we will

refer to these as primitive types. The more complex facili-

ties are specific to the application and we will call these

abstract types. An abstract data type is simply a represen-

tation of a class of objects and the operations which can be

performed on them. These operations define a set of invari-

ant properties and must maintain these properties for the

type. An example of one of these properties is that all of

the data values must come from a well-defined set of allow-

able values. The operations which provide for assigning

values to objects of the type will ensure that only allow-

able values are used. In this way only values from the set

of allowable values can be given to items of the type. The

presence of these invariant properties as part of the type

description provides a useful tool for axiomatic verifica-

tion of program behavior. This verification is necessary

where types may be migrated into firmware and which effec-

tively become part of the computer architecture for the par-

ticular problem under study. Further significant research

has been accomplished which further addresses formal methods

23

for describing, implementing, and verifying the behavior of

abstract data type facilities. These works include: Gannon

[16], Thatcher [52], Jones [24], and Herlihy [20).

Some of the earliest work on abstract data types is

described in [10] and [61]. In these reports Dijkstra and

Wirth demonstrate that a program is simply a model of some

physical or abstract system which is iteratively refined

until it is implementable on a computer. In each of the

iterative steps, some information about the model is simpli-

fied or deleted to yield a new abstract description of the

model. This description is called an abstraction of the

model. For the duration of the paper, model and abstraction

are used interchangeably.

Horning in [22] lists some useful properties of data

abstraction facilities. Each of these facilities can be

seen to provide a useful tool for dynamic microprogramming.

These properties are:

1. Avoidance of repetition of code sequences.

2. Modular program structure.

3. A basis for structured programming.

4. Conceptual units for understanding and reasoning about

programs.

5. Clearly defined interfaces that may be precisely speci-

fied.

6. Units of maintenance and improvement.

24

7. A language extension mechanism.

8. Units of separate compilation.

The first property provides for a simple method of

compacting programs by avoiding repetitive sequences of

instructions. The entire sequence is replaced by a single

instruction which causes the appropriate action to be per-

formed on an object of the abstract type. The concepts of

modularity and interfacing standards form the basis for a

type mechanism by completely and unambiguously specifying

the representation of the type and the operations which can

be performed on objects of the type. The remaining concepts

give us a syntactic basis for encapsulating a type such that

controlled access to objects of the type, hence possible

migrated code, can be enforced.

Data abstraction therefore, forms a new set of types;

let us call this set the types of interest for this particu-

lar model. The components of the objects of the types of

interest are formed by combining the primitive data types

and implementing procedures to manipulate these components

to implement the abstract type. It is the responsibility of

the programmer to describe the operations on these objects

as well as their representations. It is the job of the com-

piler to translate this representation and operations into a

coherent set of directives or machine instructions which can

be understood by the architecture of the host computer.

. , - . . -

25

Data encapsulation is the process of grouping the

object representations and operations of the abstract data

type together. In modern programming languages this is done

by describing a user defined data type or structure and the

procedures which access the elements of this type. Another

requirement of encapsulation is that the objects of the

abstract type must be protected from unauthorized access.

The only method of creating, updating, or deleting these

objects must be through the provided routines. These rou-

tines maintain the invariant properties of the objects of

the abstract type.

The concepts of data abstraction and encapsulation

provide the single best opportunity of all current software

engineering techniques for improving the maintainability and

reliability of programs [4]. The associated cost is an

increase in overhead for calling the procedures which encap-

sulate the objects of the abstract type. An arclitecture

which directly supports data abstraction must account for

this overhead and eliminate a large portion of it. The suc-

cess of an abstraction oriented architecture may depend on

its ability to overcome this overhead factor while still

providing the facilities of encapsulation.

Vertical Migration

A computer system can easily be seen as a hierarchy of

interpreters. From the end-user's perspective, the computer
-. o

26

may seem to be a transaction processing facility which

operates on user requests. From a high-level language

programmer's perspective, the system may appear to be a pro-

gramming language interpreter which is based on the particu-

lar programming language being used. This hierarchy can be

followed down through the levels of language until one even-

tually can view the computer as a microprogrammed engine

which interprets macrocoded instructions. This type of sys-

tem has been studied extensively by Stankovic in [47,48,49)

and Stockenberg and van Dam in [50] and is further illus-

trated in figure 3. The collection of levels has come

to be known as a multi-level software/firmware hierarchical

system. Stankovic's research [47) has shown that moving

functions from level to level can enhance the performance of

the system as a whole. Furthermore, this same research has

shown that the interaction between the migration of several

objects can often result in less total improvement than the

sum of the individual improvements gained from those

migrated objects.

This technique, known as vertical migration, provides

a generalized n-level hierarchy which can be used for tuning

a computing environment. Note that the concept of vertical

migration allows both an upward and a downward migration of

functions as well as a horizontal migration of functions to

the same layer of the interpretive structure. Several

efforts including Tucker [54], Wilk [58], Wulf [66), and

27

- -

APPLICATION LEVELI

CALL A ---
-- - -- - - -- - - -- - - -- - - -- - -
IOPERATING SYSTEM LEVEL

AA AB CALL AC ---- >

IMACHINE LANGUAGE LEVEL 1

I ~ACA CALL ACB----

IFIRMWARE LEVEL I

Fig. 3--Multi-level Interpretive Hierarchy

28

Baker [3) have shown that significant performance enhance-

ment can be achieved through vertical migration by user

microprogramming. In this technique the user microcode

becomes a part of the architecture in that it is placed in

the control store and is available to programmers like any

other service of the architecture. Figure 4 illustrates

how the machine language function named AC from figure 3

was migrated from the machine language level to the firmware

level. Notice that the other machine-level functions which

were part of AC were also migrated to preclude mapping back

to the machine-level for these functions. Stankovic points

out that this change of intra-level mapping to inter-level

mapping for functions migrated together is a large source of

the performance improvement which can be gained through

vertical migration. He further states that the decrease in

generality from a function at a higher level is another con-

tributor to the performance improvement.

Included in vertical migration literature is a review

of methodologies used for determining what functions to

migrate. Rauscher [40] brought to light the gains that

could be made through dynamic microprogramming coupled with

vertical migration. He showed that contemporary function-

based and instruction-based migration schemes could be

adapted for dynamic vertical migration decisions by a com-

piler. With the exception of Rauscher's technique, most

methods involve only static decisions and once made appiy

VI"

29

APPLICATION LEVELI

CALL A -- -I

-- -- - -- - - - - -- - - - -- - - - -
OPERATING SYSTEM LEVELI

I AA AB CALL AC ---- >

-- - - - -- - - - - -- - - - -- - - - -
IMACHINE LANGUAGE LEVELI

FIRMWARE LEVELI

-------------------------------- I
IACA .. ACBA ACBB ACBC ACBD

- -

Fig. 4--Vertical Migration of AC

30

globally to all applications. Furthermore, sequences of

instructions are often grouped solely by their physical

proximity in the examined code and tend to be unrelated. As

a result, similar sequences which differ by only a small

degree will be migrated independently and will use more con-

trol store. Some of these sequences could avoid using addi-

tional control store by calling already migrated sequences

and passing a set of parameters for accomplishing the

desired goal.

The majority of the literature on vertical migration

concentrates on two important migration classes. Holtkamp

in [21] reports on these two classes. The first class con-

sists of migrations which are function oriented. In this

class the migrated objects are functions much like those in

programming languages.

The second class consists of migrations which are

instruction oriented. In this class sequences of instruc-

tions that occur more than once in a machine or intermediate

language program or that are frequently executed are candi-

dates for migration. Holtkamp further states that regard-

less of which of these these two classes is used for a

migration strategy, the following four steps must be per-

formed.

I. Identify suitable migration candidates.

2. Predict the performance improvement.

31

3. Migrate the objects.

4. Verify the system's behavior.

Research has been carried out in each of these areas.

Rauscher in particular has investigated the correct choice

of migration objects. Stockenberg and Stankovic have inves-

tigated performance prediction in depth. Several efforts

have been applied toward automated migration of objects once

the correct object has been chosen. Finally, much has been

written about verification of program behavior outside of

microcode and existing techniques seem readily adaptable to

microprogramming as well. As can be seen by this discus-

sion, the study of vertical migration has shown that simply

moving functions in the hierarchy can provide performance

improvement. The choice of objects to migrate however, is

very important.

Motivation

From our background so far, we can see that there are

indeed some problems with modern architectures which make

them less than desirable for implementing modern systems.

Flynn in [15] has shown that instruction sets on today's

computers have been designed to optimize hardware realiza-

tion rather than to aid the programmer in expressing his

model in an efficient way. Furthermore, the data types which

have been chosen for implementation as well as the opera-

" ions on these types have been shown to be incomplete.

32

This incompleteness is due to the fact that the architect

cannot determine the class of all possible data types which

should be available to provide efficient implementation of

all classes of applications. In an attempt to enlarge the

class of data types which are implemented in instruction

sets, some instruction sets have become overly complex. Due

to this complexity such instruction sets are not good target

architectures for compilation since the compiler has diffi-

culty mapping to anything other than simple instructions and

data types. Wulf in [67] also has noted that in an archi-

tecture with a large instruction set only a small subset of

the instructions are actually used by high-level language

compilers.

This argument leads us to believe that a problem

specific architecture is most appropriate for efficient

implementation of programs. However, the methods mentioned

previously for creating these architectures are function or

instruction oriented. This type of organization is inap-

propriate for modern software engineering practices where

separate compilation and library routine usage are

encouraged for enhanced maintenance and reliability. A

technique of architectural synthesis whereby modern program-

ming practices are encouraged and performance is enhanced is

needed.

As a result of modern programming practices such as

abstract data typing, a program now models a series of exe-

33

cution environments. Each environment is characterized by a

set of data types and objects of those types which are

available for operators to access. This state of being

available for access is known as being in scope and can be

applied to operations as well as to data objects. In previ-

ous techniques for automatic vertical migration, these

environments were coalesced into a single global environment

and the selection of objects to migrate was made from this

single set. When control store became full, the decision on

which objects to migrate was based on this single global

context. In ATOM each of the local contexts is examined and

a unique execution environment can be created for each of

these contexts in a program. This results in a closer match

of machine architecture to program model. The rest of this

report concentrates on the ATOM technique and how it can

provide these execution environments.

The result of this study can be a significant step in

closing the semantic gap between programmers, languages, and

architectures. Individually the four major areas of archi-

tecture, dynamic microprogramming, data abstraction, and

vertical migration, have not, nor were they intended to,

close this gap; they merely address symptoms of it. The

combination of these techniques into a single coherent

facility can significantly narrow this gap. This gap also is

evident in other levels of a layered hierarchical system and

34

can be narrowed in these areas through proper encapsulation

of system types such as processes, messages, etc.

The ATOM approach is not a revolutionary change but an

evolutionary one. It seeks to combine successful program-

ming methodologies with proven firmware engineering tech-

niques to provide a model specific runtime environment. The

system is flexible in that it allows the programmer to make

architectural decisions for the machine on which the program

will be run. An intuitive notion leads us to believe that

if a programmer took the time and trouble to describe an

abstract or user defined type then the objects of that type

must be of some importance. The ATOM approach seeks to

realize in the machine architecture the model which the pro-

grammer wants to simulate. The result will be a problem

oriented architecture which is tuned for a specific applica-

tion rather than a model which has been made to fit an

inflexible architecture.

Problem Definition

It is the intent of this research effort to capitalize

on the gains which have been made in both software and

firmware engineering in order to produce a working facility

for abstract type oriented migration. Our research goal

then, can be summarized as follows.

The goal of this research is to investigate the
feasibility and applicability of migrating
abstract data types into the architecture of the
machine through dynamic microprogramming. Migra-

35

tion will be automatic and will be oriented
towards the implementation of abstract data types
in the user architecture. The result will be a
program which is supported by an architecture
which more closely models the intended problem
solution than current architectures. An auxiliary
goal is to allow programs to be written using
modern software engineering techniques without
excessive runtime costs.

This research proposes to decide dynamically which

functions should be migrated into firmware to provide the

best opportunity for increased performance. The unit of

migration will be the abstract data type. The programmer

will directly influence the migration decision by describing

abstract data types and using the operations provided in the

abstract type facility. The migration decision may be

affected by such factors as the lexical level at which the

type is described, the number of objects created of the

type, the number of times the operations of the type are

used, etc. The result will be a system where the types of

interest to the programmer will be the same as the types

supported by the computer architecture. The programming

architecture is changed to match the programmer's abstrac-

tion rather than the programmer being required to refine

further his abstraction or model to gain an efficient imple-

mentation.

Environment

A description of the programming environment in which

this research is conducted is important in understanding the

LO"

36

scope of ATOM. This study will first assume that all pro-

gramming will be in high-level, procedure oriented

languages. Furthermore, this study will assume that these

languages are block structured and provide an identifier

scope mechanism. The languages must also provide an

abstract data typing facility. In accordance with contem-

porary programming practices, the languages should also

-' allow access to a large library of standard functions which

may include input/output facilities, mathematical functions,

string functions, and other application dependent pro-

cedures.

The application programming environment will consist

of diverse types of programs for many application areas.

Programs which are processor intensive will be the primary

focus of our study, however, we do not wish to preclude

other programs from our discussion. Several classes of pro-

grams will be highlighted in subsequent chapters.

The hardware environment is characterized by a general

purpose, microprogrammable computer system. This system

should be supported by some generally available system

software such as a compiler, assembler, and operating sys-

tem. The microprogramming environment should be supported

by at least a micro-assembler and compaction facility for

horizontal architectures.

CHAPTER III

AN APPROACH TO ABSTRACT TYPE ORIENTED MIGRATION

Overview

This chapter describes one approach to ATOM. The

first section examines previous techniques for problem

oriented architecture redefinition and highlights the rea-

sons why ATOM is different from previous approaches. The

next section investigates in detail how ATOM works and

describes why it is a useful method for performing dynamic

redefinition of computer architecture. The next section

looks at what language facilities are required to support

the ATOM technique for architectural redefinition. The fol-

lowing section discusses the concept of binding as related

to computer architecture synthesis and presents a character-

- ization of contemporary architectures in this light. n the

- next section the performance measurement criteria which are

to be used in subsequent discussion of the benefits of ATOM

will be developed. These measures will then be used in the

following section to derive the expected performance

improvement which can be gained using ATOM. The final sec-

tion will review the need for ATOM and summarize how it can

be applied in solving contemporary architectural problems.

37

.-

38

Previous Approaches to Architecture Redefinition

The process of architectural redefinition involves

determining what objects should become part of a problem

oriented architecture and then migrating those objects into

the control store of a microprogrammable machine. As we

have seen there are both manual and automatic methods for

redefining architectures. For the remainder of this paper

we will be looking only at automatic methods for architec-

ture synthesis. The three techniques for automatically

redefining computer architecture which we will be investi-

gating here are the instruction sequence, function oriented,

and hybrid method.

Instruction Sequence Method

The primary goal of the instruction sequence method is

to save main memory while increasing performance. This

method is based on the assumption that some instructions

will naturally follow other instructions in code sequences.

For example, branching instructicns will often follow

instructions which cause operands to be compared. These

sequences, although evident in code created by assembly

language programmers, are even more evident in code which

has been created by compilers since this code has been

created by an automated process. This process will repeat-

*. edly create the same machine code for similar high-level

language constructs. The result of this phenomenon is that

39

a large number of similar code sequences will be created by

compilers for frequently used high-level language constructs

such as assignment, condition testing, and iteration.

The instruction sequence method is best described by

Rauscher in [40] and is summarized as follows:

1. Analyze a representation of a program as produced by the

compiler to find all sequences of machine or intermedi-

ate code instructions and the number of times each

sequence occurs.

2. For each of these sequences determine the amount of

memory which will be saved by microcoding the sequence.

Note that this is actually the difference between the

amount of memory which would have been used for the

machine code representation and the amount of memory

required to execute the microprogram from the macrocoded

version of the program.

3. For each sequence calculate the total memory savings.

This is the product of the memory savings computed in

step 2 and the number of occurrences of the string found

in step 1.

4. For each sequence calculate the relative space savings.

This is the quotient of the potential savings calculated

in step 3 and the size of the equivalent microprogram to

implement the sequence.

5. Select as new instructions the sequences with the

highest relative space savings.

|.7-

40

The result of this type of migration is a savings in

* "- memory and a performance improvement in execution time. The

savings in memory occurs when all of the similar sequences

of machine or intermediate language instructions are

coalesced into a set of microinstructions which form a

• :microprogram which implements the sequence. The instruction

sequence itself is replaced by an instruction which causes

the microprogram to be executed. This process of discover-

,*. - ing sequences to migrate and including them in the micro-

- -/ store continues until the microstore is full or until all

sequences are migrated. The memory savings is then the

difference between the size of the migrated sequence and the

microcode calling sequence times the number of occurrences

of the sequence.

The performance improvement comes as a result of elim-

inating memory fetches for instructions. When the machine

or intermediate language instructions are migrated, the

instructions which implemented the sequence are no longer

needed and are replaced by a single instruction as mentioned

before. The result is that there is no need to fetch and

decode these instructions. The microstore functions in this

case much like a cache memory in that the fetch is replaced

by a much faster fetch from the microstore and a much

smaller decode time.

e .7

41

Function Oriented Method

The primary goal of the function oriented approach is

to improve performance by migrating into control store those

functions which are executed most frequently. This tech-

nique effectively creates new instructions which are part of

the instruction set of the n-wly defined architecture. This

architecture is formed by a concatenation of the existing

instruction set and the instructions created by migrating

the most frequently executed code sequences. A method for

performing function oriented migration is described by

Olbert in [34] and is summarized as follows:

1. Select a benchmark or set of benchmarks to stress the

system while examining its performance.

* 2. Analyze the system under loaded conditions.

3. Identify the areas of high software execution frequency.

4. Project the performance improvement attained by each of

the areas of high frequency.

* 5. Migrate the functions of highest execution frequency.

6. Measure the resulting system performance to determine

the amount of improvement.

The result of this technique is an architecture which

* is optimized for execution of certain functions. These func-

tions are those which were judged to be most frequently exe-

S-cuted. The result then is a system which has effectively

extended the instruction set by adding new instructions for

frequently executed functions. The performance improvement

-. -f- -.-

42

comes from the decrease in instruction fetch and decoding

time as described for the instruction sequence approach.

One of the most frequent uses of the function oriented

approach is in providing operating system assists.

An interesting variation of the function oriented

approach is one in which the benchmark step is eliminated.

In this approach, which provides a more dynamic redefinition

procedure, an estimation is made by the compiler as to which

portions of a program will be executed most frequently.

This portion of code, which may be as small as a basic block

or as large as an entire procedure or function, is then

migrated automatically. The heuristics which are used for

* -the frequency determination have received most attention.

Sammet in [43] points out that some of the earlier

versions of FORTRAN included a FREQUENCY statement in which

the programmer could specify relative branching frequencies.

This information in conjunction with iterative language con-

structs could provide a clear picture as to which parts of

programs were executed most frequently. Another suggestion

was for the compiler to prompt the user for branching proba-

*' . bilities and to use these as in the previous approach to

* * determine execution frequency. Perhaps the best known tech-

nique was described by Rauscher [40] and involved determin-

ing relative branching frequencies from structured program-

ming constructs of modern programming languages.

43

Hybrid Method

Since the instruction sequence method seeks to minim-

ize the size of programs and the function method seeks to

minimize the runtime of programs, it would seem a logical

step to combine these techniques into a single facility.

Rauscher and Agrawala report on such a facility in [403. In

this technique both the instruction sequence method and a

modified function method are used for affecting architec-

tural redefinition. This technique is summarized as fol-

lows:

1. Using the function approach calculate the branch proba-

bilities for the flow of a program within its basic

blocks and save these in a vector.

2. Using the sequence approach, find all sequences which

occur two or more times in a program and save these in a

vector.

3. For each of the sequences, calculate a weighted number

of appearances by finding the product of the number of

occurrences and the associated probability vecLor found

in step 1.

4. For each sequence, calculate the weighted savings L

finding the quotient of the product of the weighted

number of appearances times the savings of the sequences

divided by the number of microinstructions needed to

implement the sequence.

K

.- 44

5. While there is still available control store, migrate

the sequence with the largest remaining quotient found

in step 4.

6. Implement the remaining operations in the program by

standard macrocoded functions.

The result of this technique is a redefined architec-

ture which is optimized for representation of the particular

program which is being compiled. This architecture is tuned

to minimize the program size while increasing its perfor-

mance. To date, this technique has been shown to be the

most effective in describing problem oriented architectures.

Abstract Type Oriented Migration

All three techniques mentioned for redefining archi-

tecture are good techniques which have found application in

many programming environments. Modern programming languages

and software engineering practices, however, have made these

techniques become less desirable. In the case of the

instruction sequence method, migration decisions are made

based upon a static analysis of a program. This type of

analysis ignores the dynamic behavior of programs and

results in migration decisions which are based more on

memory savings than on migration of the most frequently exe-

cuted functions. In modern computer systems we find that

memory costs are rapidly falling and the need to provide

I.

-- - - - - I--J

45

memory savings is greatly overshadowed by the need to

enhance performance.

The function oriented method was found to be useful in

enhancing the performance of programs by migrating to the

control store functions which were executed most frequently.

This approach does provide performance improvement yet is

constrained by the fact that a global decision is made as to

which functions to migrate. A function which is used only

locally inside of another function and which may provide a

significant performance improvement may not be migrated if

it does not contribute as much to the global performance

improvement as some other function. The hybrid method also

is weak in that functions selected for migration on a global

basis with respect to memory savings may actually preclude

locally significant functions from being selected as migra-

tion candidates. These weaknesses of current redefinition

methods point to the need for a technique which can account

for more localized program behavior. This technique is known

as abstract type oriented migration.

Abstract type oriented migration provides the ability

to redefine dynamically the computer architecture to match

the model that the programmer is implementing on the com-

puter. This redefinition directly supports the environment

in which the program is currently executing and can be

changed to model a different environment in other parts of

the same program. Consequently, this architecture will not

46

just describe the global programming model but the local

programming models as well. The result is that the archi-

tecture which supports the model can be redefined locally

and can provide for performance improvement which is of most

significance in a particular programming environment. This

architecture will be formed by a union of a small kernel

instruction set providing general support functions and a

problem oriented instruction set for supporting the

programmer's model. The resulting architectural schema is

shown in figure 5.

Other researchers have been able to enhance the per-

formance of systems through vertical migration, however

these systems have used function oriented or instruction

oriented techniques as the basis for migration decisions. In

other words, the decision for vertical migration was made as

a result of statically or dynamically examining a sequence

of operations and determining which parts of the code should

be migrated into microstore to provide the greatest degree

of performance improvement. This type of analysis can often

be very complex and may preclude analysis of a large number

of application programs. In addition, most migration tech-

niques seek to find new global primitives which can be

applied across a system as a whole rather than for a partic-

ular program or application system.

In order to provide this type of locally determined

architecture, the level of granularity of migrated function

47

MACHINE LANGUAGE INSTRUCTIONS

I - I

I 10 I KERNEL I PROBLEM IMEMORY
ICONTROL IINSTRUCTION I ORIENTED ICONTROL
IFIRMWARE I SET IINSTRUCTION I FIRMWAREJ
I PROCESSOR I SET I

IPROCESSOR I
----- ------------------------- ------------- ---------

iN (

MICR 0- INSTRRUCCTION
INTERPRETEROR
HARDWARE

--

Fig. 5--Problem Oriented Architecture Implementation

!-

48

which accounts for program behavior and which is well

" defined by the semantics of the programming language must be

determined. As we have seen before, the abstract data type

is a good unit which can be used to describe new data types

as candidates for migration. These types include an encapsu-

lation of the representation of the type and the operations

on objects of the type. In a larger context, the locally

determined architecture will be selected from those abstract

types which are currently available to the programmer. In

the same way as current instruction sets define an architec-

ture by providing a set of data types and operations on

these types, abstract type oriented migration will define an

architecture by providing the data types and operations of

interest to the programmer.

Abstract type oriented migration is a two phased

approach to dynamic architectural redefinition. In the

first phase there is a static, horizontal migration. This

migration involves the programmer encapsulating the

representation and operations of a user defined data type

into an abstract data type. It is this phase which defines

the types which are required to support the programmer's

model. In the second phase there is the dynamic, vertical

migration. This vertical migration is the step which effec-

tively implements the architecture which is required to sup-

port the programming environment described by the program-

mer. In this two phased approach a problem oriented archi-

49

tecture can be described and synthesized in a joint effort

by the programmer and compiler to create a model specific

computer architecture.

. For a system to provide the capability to define an

K architecture which is specifically defined for a particular

programming environment we must consider several questions.

The first question is how best to describe an abstract data

-I type. An extension to this question is to examine if there

are special requirements for describing these types to be

used in abstract type oriented migration. The next section

- addresses these issues. A second question involves how

switching from one local architecture to another within a

program's execution can occur. This technique which we will

refer to as architecture binding can be provided in the

abstract type oriented migration scenario and is discussed

in a subsequent section. The effect which modern program-

ming languages will have on such an environment and the role

which machine architecture will play in this scenario are

discussed in chapters IV and V respectively.

Abstract Type Definition in ATOM

The purpose of an abstract data type in ATOM is to

form the unit which can be used in automatically synthesiz-

ing problem oriented architectures. Since the purpose of

ATOM is to provide a facility which can perform automatic

architecture redefinition, it becomes obvious that the nota-

IA

50

tion chosen for describing abstract data types must also be

capable of describing data types which are not candidates

for migration. Furthermore, the same language should also be

used for specifying algorithms to access the objects of the

types described. This leads us to the conclusion that the

selected notation should be a readily available programming

language rather than some special data description language.

The programmer should be able to program all parts of the

model in the same programming language without regard for

what is being migrated by the supporting system software.

Language Elements Required for Abstract Data Typing

Of primary importance is the ability of the selected

notation to describe the representation of a data type and

the operations on objects of that type and to encapsulate

the representation effectively. This encapsulation should

include a specification of the entry points to access

objects of the type but should not allow access to the

representation of the type except through these entry

points. This protection is necessary so that the set of

invariant properties which defines the type cannot be

violated. The encapsulation must be enforced for all rou-

tines attempting to access the objects of the type except

those which are also part of the encapsulation and which

implement the operations of the type.

51

Another requirement of the abstract type description

notation is that it should make it easy for the programmer

to derive new abstract data types from other abstract types

which have been previously defined. For example, it should

be simple to derive a weight data type from a floating point

data type once the floating point type is available. Also,

it should be simple to constrain the new type with addi-

tional restrictions not evident in the parent type. For

example, we should be able to enforce the restriction that

the objects of the weight data type mentioned before should

fall within some reasonable range of the floating point

parent type. In describing the derived type, the notation

must be capable also of copying the operations of the parent

type to the newly derived type. This transfer of operations

should be controllable through the syntax of the notation.

Since the notation will be used by programmers, we can

assume that there must be some way to translate the notation

so that it may be executed. The requirements of protection

and derivability place a large burden on the ability of the

translator to parse the programs written in the selected

notation. One example involves allowing access to the

representation of the type by procedures of the encapsulated

type and disallowing access to those procedures which are

not part of the type. A larger problem involves the ability

to implement operator overloading in a much more complex way

than is evident in most programming languages today. The

I. 52

translator must be capable of determining in an unambiguous

way which of many possible operators of the same name should

be applied in a particular expression. A simple example is

whether to use the standard addition or a user defined addi-

tion when presented with two numeric operands.

Many different languages provide abstract data type

facilities. These languages include: Clu [28], Alphard [44],

Simula [33], Ada [23], an extension of C [51], Modula [62],

Modula-II [63], and Mesa [17]. Each of these languages pro-

vides a facility for hiding the representation of data from

the user and providing controlled access to that data. Each

language however, adds its own language semantics including

rules for name visibility and identifier scope. For these

reasons it has been determined that the choice of program-

ming notation is not significant to the ATOM concept, but

the requirements mentioned previously for supporting

abstract type semantics are critical.

Another consideration of the abstract type description

notation is whether special features are required of the

language to facilitate translation to microcode for redefin-

ing the architecture. A study of high-level microprogram-

ming languages has shown that these languages do include

special features not found in common high-level procedure

oriented languages. These features however, are concerned

with direct access of low-level hardware resources and are

not required by the the high-level language programmer.

.' 1A. • . , t .. "t t' ~ .

53

Since the abit-act data type must be programmed in this

high-level notation it becomes clear that these special

high-level microprogramming language features are not only

undesirable but are also inappropriate for use in ATOM.

• .Another consideration is to determine how programmers

may identify abstract data types in the syntax of the

language which is being used. One example is a special

language construct for describing abstract types as we see

in Alphard and Clu. Another method is to compile abstract

types separately and to provide a compiler directive state-

ment which identifies the module being compiled as an

abstract data type. A final method is to define a special

abstract data type description language for use in defining

abstract data types and the operations on objects of these

types.

Ada As an Abstract Type Definition Language

The Ada programming language was selected as the

abstract type description facility of ATOM. The primary

reason for selecting Ada as the abstract type description

notation is that the language supports abstract data types

in a comprehensive way through its package construct. The

derivability characteristics described previously are also

served well by the derived data type, subtype, and generic

data type facilities of Ada. Ada type specification facili-

ties go so far as to allow hardware representation specifi-

54

cations in the declaration of the type. Another considera-

tion which has made the Ada facility desirable is the degree

to which the language has been studied.

Ada has been examined in depth by a number of people

from diverse backgrounds and has evolved in response to

their comments. The language specification has matured to

the point that a language standard has been adopted. Conse-

quently, several implementations of the full Ada language

have passed the Ada validation process and are commercially

available. Ada also provides a compiler directive facility

known as a pragma. It can be used to facilitate syntactic

identification of an Ada package as an abstract data type.

The description of an intermediate language for Ada known as

DIANA [7] also makes Ada desirable for purposes of archi-

tectural synthesis.

A simple example of an abstract data type described in

Ada follows. This example is used to familiarize the reader

with the language facilities of Ada and not as an Ada

tutorial. The reader who desires to study Ada in greater

detail should see [23]. In this example we are describing

an abstract data type for complex numbers. We are interested

in ensuring that the type is encapsulated for security as

well as being flexible enough to allow description of other

similar types.

As we discussed before, the encapsulation of an

abstract type requires that the user know the procedure

' .___. :- ~

55

package COMPLEX NUMBER is

type COMPLEX is private;

function "+"(AB:in COMPLEX)return COMPLEX;

function "-"(A,B:in COMPLEX)return COMPLEX;

function "*"(A,B:in COMPLEX)return COMPLEX;

function SETCOMPLEX(A,B:in FLOAT)return COMPLEX;

private

type COMPLEX is record
REALPART:FLOAT;
IMAGPART:FLOAT:

end record;

end COMPLEX NUMBER;

Fig. 6--Package Specification for COMPLEX NUMBER

56

names for accessing objects of the abstract type and the

results of the procedure, but need not know what the pro-

cedural code for implementing the procedure is like. Furth-

ermore, the user need not know how the objects of the type

are represented. This interface information is provided to

the user through the Ada package specification. Figure 6

shows the package specification for a complex number pack-

age, COMPLEXNUMBER. In the specification it can be seen

that there is a data type called COMPLEX and that there are

four functions for accessing objects of that type. Further-

more, it can be seen that the representation of the type

COMPLEX is a record containing a real part and an imaginary

part. Although the names of the constituent parts can be

seen, they cannot be accessed from outside the package

because the type description of COMPLEX is declared to be

private.

Declarations shown in the private part of the package

specification are not available for use outside of the pack-

age specification and body. The package specification also

names the four functions which can be used to access objects

of the type COMPLEX and provides the data types of the input

parameters and returned results. Note that although the

package seems very simple, it still can provide the level of

protection which is required for encapsulation. Also notice

that the package only encapsulates a single abstract type.

This practice is discussed in [53 and is useful in providing

57

access to only those abstract types that are required by a

particular function.

" The package body for COMPLEX NUMBER is described in

figure 7. Within the description of the package body is

specified the procedural code for the four functions of the

abstract type. Notice that three operation names which are

possibly defined for other data types have been used. These

operators, "+", "-", and "*" may be used either in infix or

prefix notation. It is the job of the Ada compiler to

determine when these operators are to be used in the place

of other similarly named operators. If COMPLEX had been

specified as a limited private type in the package specifi-

cation, functions for equality and inequality tests as well

as assignment would have to be defined since these are not

automatically provided for limited private types.

Figure 8 shows a sample program which uses the complex

number package. Note that the program starts with a with

statement. In Ada this is known as a context specification

which tells which package or packages are to be accessed in

the program. In this case COMPLEXNUMBER is the only

library unit being used. In larger programs other abstract

data types as well as other kinds of packages provided in

the programming environment could be used. Each of these

would be included in a context specification. The use

statement is placed in the context specification to make

58

package body COMPLEXNUMBER is

function SETCOMPLEX(A,B:in FLOAT)return COMPLEX is
RESULT:COMPLEX;

begin
RESULT.REAL PART := A;
RESULT.IMAGPART := B;
return RESULT;

end SETCOMPLEX;

function "+"(A,B:in COMPLEX)return COMPLEX is
RESULT:COMPLEX;

begin
RESULT.REALPART A.REAL PART + B.REAL PART;
RESULT.IMAG PART := A.IMAG PART + B.IMAG PART;
return RESULT;

end "+"-

function "-"(A,B:in COMPLEX)return COMPLEX is
RESULT:COMPLEX;

begin
RESULT.REAL PART := A.REAL PART - B.REAL PART;
RESULT.IMAG PART := A.IMAG PART - B.IMAG PART:
return RESULT;

end "-""

function "*"(A,B:in COMPLEX)return COMPLEX is
RESULT:COMPLEX;

begin
RESULT.REAL PART := (A.REAL PART * B.REAL PART) -

(A.IMAG PART * B.IMAG PART);
RESULT.IMAGPART : (A.REAL PART * B.IMAG -PART) +

(A.IMAG-PART * B.REAL-PART);
return RESULT;

end "*"-,

end COMPLEX NUMBER;

Fig. 7--Package Body for COMPLEX NUMBER

59

-- Context specification
with COMPLEX NUMBER;
use COMPLEX NUMBER;

-- A program is simply a procedure
procedure MY PROGRAM is

X:COMPLEX;
Y:COMPLEX;
RESULT:COMPLEX;

begin

-- Normal call on SETCOMPLEX
X := SETCOMPLEX(l.234,56.789);

-- Aggregate assignment
Y := COMPLEX'(56.789,123.3333);

-- Prefix call of complex addition
-- Fully-qualified reference
RESULT := COMPLEXNUMBER."+"(X,Y);

-- Infix call of complex addition
RESULT := X + Y;

-- Infix call of complex multiplication
RESULT := X * Y;

end MY PROGRAM;

Fig. 8--Ada Program Using Pack ie COMPLEX NUMBER

60

naming simpler. If the use statement were not included,

functions would have to be called by giving their fully

qualified names such as COMPLEXNUMBER.SETCOMPLEX or

COMPLEXNUMBER."+". Even though COMPLEX was described as a

private type, aggregate assignment is still allowed as shown

in figure 8 immediately following the call of SETCOMPLEX.

The aggregate form is allowed because assignment was not

prohibited in the package specification.

As can be seen from even this simple example, Ada pro-

vides useful facilities for specifying abstract data types.

It has been shown that the ability to encapsulate a type is

provided through the package construct of Ada. Furthermore,

it has been shown how the abstract type can be used in a

program through a simple context specification statement.

The more complex features of Ada which provide derivability

will be discussed in the next chapter in a discuss-on of

programming language effects on ATOM. Although these facil-

ities are provided by some other programming languages, Ada

will continue to be used as the mrAel of abstract typing in

further discussions of ATOM.

Architecture Synthesis in ATOM

Saltzer in [42] describes binding as the process of

choosing a specific lower-level implementation for a partic-

ular higher-level semantic construct. In the context of

ATOM there are two bindings. The first binding is a high-

61

level one and is concerned with selecting which components

of a program will become part of the problem oriented archi-

tecture. The second binding is a low-level one which is

concerned with mapping the high-level binding onto the

microarchitecture. The combination of these two bindings

forms a problem oriented architecture for the current execu-

tion environment. Since this execution environment can

easily change, ATOM must also be capable of changing the

problem oriented architecture to reflect this change. From

this requirement comes the dynamic binding property of ATOM.

High-level bindings are static and are determined at compile

time while low-level bindings are dynamic and are altered at

execution time.

Binding Characteristics of Architectures

An understanding of the concept of binding and how it

can be applied to architectures is essential in understand-

ing ATOM. In this section the concept of architecture bind-

ing and how it can be accomplished will be considered.

Three characteristics of binding, instruction set creation,

instruction set binding to programs, and length of binding

will be examined. This discussion will highlight how ATOC

can provide a dynamically created and bound instruction set

for each execution environment of a particular program. The

following section will then explore in more detail the bind-

ing properties of ATOM.

-, - -' -- S . " - - . .•- - - - -

62

Instruction Set Creation

Contemporary architectures and consequently instruc-

tion sets have evolved from the simple instruction sets of

early machines. As was discussed in earlier chapters these

instruction sets were primitive due to the simplicity of the

von Neumann model of storage. Little has changed in these

instruction sets except for the addition of more complex

data types and operations supporting these data types.

Currently, computer architects are responsible for making

the determination as to what data types and what operations

are supported. This decision is made when the machine is

first designed and the microcode for supporting the instruc-

tion set is written. When the design stage has been com-

pleted, the computer architects have decided what problems

will be solved by the computer and what tools are necessary

and sufficient for solving these problems.

The tools which the architects provide comprise the

instruction set of the machine. Wulf in [67] however,

points out that compiler writers do not want computer archi-

tects to provide them with the solutions to their problems

as embodied in complex instructions but what they really

need are good primitive operators from which good solutions

can be synthesized. This points to the fact that modern

instruction sets are too complex and often are difficult for

compiler writers to use efficiently. Winner argues in [59]

that if the creation of the instruction set could be delayed

63

until the actual problem hds been descr Ded, then an archi-

tecture which directly supports the problem solution could

be described and consequently provide a better architecture

for solving the problem at hand. These two extremes will be

referred to as fixed and dynamic instruction sets. Some

machines allow instruction sets to be changed more often

than in the fixed case yet do not provide facilities for

changing as often as the dynamic case. These type instruc-

tion sets will be referred to as variable instruction sets.

Instruction Set Binding

The purpose of a compiler is to translate programs

written in high-level programming languages into a form

which can be executed on a computer. During this transla-

tion process several levels of a language hierarchy are used

including source language, intermediate language, and

machine language. Myers [31] points out that although pro-

-gramming languages are far removed from the machine

language, they are affected by the architecture of the

machine as represented by the machine language. This can be

traced to the translation process where the programming

language must be mapped onto this instruction set. This

mapping is actually a binding of high-level programming

language semantics to the low-level semantics of the archi-

tecture.

- . ..- * * *

64

In both contemporary and problem oriented architec-

tures this binding occurs at compile time and determines the

architecture for the problem at hand. An alternative would

be for there to exist many instruction sets for a particular

problem, each of which represented an architecture for sup-

porting a particular execution environment of the program.

*. This is the ATOM approach. Tne extremes represented by con-

*temporary architectures and ATOM will be referred to as glo-

bal and local binding. A binding technique which is sup-

ported by a control store cache mechanism can capture some

of the sense of both global and local binding. This type of

binding will be referred to as paged binding.

Length of Instruction Set Binding

Akin to the issue of global and local binding is the

notion of how long the binding is in effect. In contem-

porary architectures with fixed instruction sets, the bind-

- ing is for the lifetime of the machine since the architec-

ture provides only one instruction set. Problem oriented

architectures provide a binding which lasts for the life of

the problem. ATOM on the other hand provides a set of bind-

ings for a particular program, each of the bindings being in

effect during one particular execution environment. If pro-

gram control leaves one environment for another one, a new

architecture may be realized for this new environment. Con-

trol may once again return to the environment which is being

65

r

left and the architecture of that environment may once again

be realized. These extremes will be referred to as long and

short bindings, respectively. Bindings which may change due

to some other notion than program locality will be referred

to as medium binding lengths.

Figure 9 summarizes the architectural characteristics

of instruction set creation, instruction set binding time,

* and binding length. From this table it can be seen that

ATOM provides a very flexible architecture which can adapt

for many differing execution environments within the same

program. For programs which exhibit highly localized execu-

tion behavior this can provide a performance improvement

which may have been overlooked by contemporary problem

oriented synthesis techniques. These techniques look only

for global solutions and do not address individual execution

environments as does ATOM. ATOM can also provide perfor-

mance improvement for programs which do not exhibit local-

ized behavior by providing an architecture which is closely

related to problem oriented architectures which have been

synthesized using the hybrid method discussed previously.

Architecture Binding in ATOM

In the architecture classes of figure 9 the last

column describes the degree to which an architecture can

. change to accommodate a specific problem solution. For

example, the von Neumann and high-level language computer

II 66

p.

Architecture Description
Class

vN Contemporary von Neumann Architecture
HLLCA High-level Language Computer Architecture [9]
AISC Adaptive Instruction Set Computer [59]
LSA Language Specific Architecture [56]
POA Problem Oriented Architecture [40]
ATOM Abstract Type Oriented Migration

a) Architecture Definitions

Architecture Creation Binding Length Flexibility
Class Time Time of Bind

vN Fixed Global Long Little
HLLCA Fixed Global Long Little
AISC Variable Paged Medium Some
LSA Fixed Global Long Some
POA Dynamic Global Long More
ATOM Dynamic Local Short Most

b) Architecture Classification

FC

Fig. 9--Architecture Comparison

67

architectures are shown to have little flexibility due to

their fixed/global instruction sets. The adaptive instruc-

tion set is shown to be more flexible because it presents a

very large instruction set. The instruction set of the AISC

can be changed but is less likely to change than that of POA

or ATOM. 'ISC's paged control store however, with a third

level of memory creates another level in the definition of

binding much in the same way that virtual memory does.

The language specific architecture in the same way is

shown to provide flexibility because it presents several

'. different architectures dependent on the number of languages

" supported. The problem oriented architecture is shown to be

even more flexible in that it changes to reflect the nature

of the problem at hand, yet it still is a single, global

solution and lacks the adaptability of the ATOM approach.

The primary emphasis of ATOM can therefore be seen as an

attempt at capturing the notion of program locality to a

higher degree than previous architecture schemes. Other

architectures such as AISC capture this idea at runtime by

using paging schemes while ATOM uses the lexical structure

of programs to gain the same information. In this section

will first be shown the method which ATOM uses to select

items to be included in a problem oriented architecture.

The following section will address the dynamic binding issue

of ATOM.

Lt

68

High-level Architecture Binding in ATOM

In deriving problem oriented architectures, current

methods depend on the approaches for architectural synthesis

which have already been discussed. These approaches,

" instruction sequence, function oriented, and hybrid method

. derive problem oriented architect.res from the intermediate

code generated by the compiler as it translates a program.

A result of this type of analysis is that the synthesized

S.- architecture is a collection of new instructions which

effectively extend the instruction set of the conventional

machine with new functions which were determined to be the

* most frequently executed functions in the program. The

result is that the new architecture is a global representa-

tion of the entire program without regard for the require-

ments of individual program units. The result is that there

is no clear relationship between the items in the new archi-

tecture and subsequently no judgement can be made as to

which items are of local importance and which are of global

* "importance.

The ATOM method takes a different approach. In ATOM

the unit of migration is the abstract data type. This unit

is a closely related group of functions which have a scope

of reference as defined by the block structure of the

language and which have a well defined structure as defined

in the abstract type definition. In the previous approachs,

no judgement could be made as to the applicability of a par-

69

ticular migrated function for an execution environment. The

result is that control store space occupied by a migrated

function which is of no importance in the current execution

environment, but which may be pivotal in subsequent environ-

ments, is wasted. The replacement of this function for the

current environment with one of more local interest could

provide an opportunity for performance improvement which had

been precluded in previous methods. The key concept of ATOM

therefore, is the logical method in which items are selected

for migration. The result is a collection of candidates for

migration where the relationship between the items are known

and the point at which they are applicable in a program is

well defined.

The architecture synthesis for ATOM is based on a pro-

cedure where the compiler collects information on abstract

data types and uses this information to create an architec-

ture which is tuned for a particular execution environment.

An execution environment is defined as a collection of one

or more program units which is defined by the types of

objects which may be accessed in that collection. These pro-

gram units are defined by the scope of reference of abstract

data types. Figure 10 shows the algorithm which is used for

architectural synthesis in ATOM.

Several points in the algorithm need clarification at

this point. The first block refers to a collection of

abstract type and scope information. This is a function

.e

70

I Compile the program collecting I
I abstract data type and scope I
I information I

I For each scope determine if new
I types have been declared. If so I
I then create a new environment I

I For each type collect esti- I
I mated control store size and I
I local profit for each routine I
I of the abstract type I

I For each routine collected de- I
I termine a global profit I

I For each environment include in I
I the control store image those I
I types which will fit into the I

control store in decreasing
I global profit order

I For each routine included in I
I control store construct a gate- I
I way to the control store I

I For each environment construct I
I an environment gateway for the I
I architecture re. finition call I

Fig. 10--ATOM Architecture Synthesis Algorithm

K r71

which is done by all compilers currently supporting abstract

types. The scope information is simply symbol table infor-

mation which is required for any translation process. The

abstract type information need only be an indicator that the

code being compiled is an abstract type. This can be sup-

plied by a compiler directive statement if the programming

language does not provide unique syntax for identifying

abstract data types.

Figure 11 shows a simple Ada program which uses the

complex number abstract data type which is implemented in

the Ada package COMPLEX-NUMBER of figures 6 and 7. In this

program the compiler must determine if there is one or two

execution environments. The determination is based on the

fact that the package, ANOTHERPACKAGE, which is contained

in the separately compiled unit INNER SCOPE may contain

other abstract data types. Figure 12 demonstrates that

there are two scopes in the program. The first scope con-

tains the items declared in the program CALL MICRO excluding

those items in INNERSCOPE. The second scope contains all

of the items in CALLMICRO which have been declared prior to

the specification of INNERSCOPE and all items in

INNER-SCOPE. If this second scc'pe contains new abstract

types and includes references -o objects of this type, then

a new environment is formed. Otherwise only one environment

exists.

-.

72

with COMPLEX NUMBER:
use COMPLEX NUMBER;

-- Most global program level

procedure CALLMICRO is
X:COMPLEX;
Y:COMPLEX;
RESULT:COMPLEX;
-- include a separate compilation unit
procedure INNERSCOPE is separate;

begin
.. Normal call on SETCOMPLEX
X := SETCOMPLEX(l.234,56.789)7

-- Scope change
-- But not always an architecture change
INNER SCOPE:
-- Return to original scope
Y := COMPLEX'(56.789,123.3333)7

end CALL MICRO;

Separate Compilation Unit

separate(CALL MICRO);
with ANOTHER PACKAGE;
procedure INNER SCOPE is

MY RESULT:COMPLEX;

begin

MY RESULT COMPLEX NUMBER.SETCOMPLEX(I.O,2.0)7
MY RESULT ANOTHER PACKAGE.XXX(X);

end INNER-SCOPE;

Fig. 11--Inner Scope in CALLMICRO

73

ICALL-MICRO

X: COMPLEX
Y:COMPLEX
RESULT: COMPLEX

IINNER-SCOPE

IMY RESULT:COMPLEX

Z :COMPLEX

Fig. 22--Scopes in CALLMICRO

74

The estimated control store size of the abstract type

can be derived by first compiling the macrocode version and

then taking as an upper bound the equivalent size of the

microcode in the emulator which implements the ccrventional

machine language. The local profit can be derived by exa-

mining the potential saving derived by an execution of the

routine in control store. The next section examines these

potential savings in more detail. This profit is effec-

tively a measure of the local execution behavior of an

abstract data type. The calculation of the global behavior

can be done in several ways. The first way uses the program

structure method of Rauscher [40] to predict the usage of

each routine of the abstract type. This method, however,

ignores the dependency which can be applied due to derived

data types.

A more applicable method is to use heuristics which

account for the interdependency of derived data types and

for the program structure. For example, data types which

are more global may be more profitable in determining global

program behavior. On the other hand, localized program

behavior may be best determined by migrating the least glo-

4. bal type in a scope. These issues will be discussed in more

detail in chapter IV. Regardless of the method used, global

profit will be a function of the local behavior as described

by the local profit and the global behavior as described by

the program structure. The implementation of scope gateways

75

and architecture redefinitions will be discussed in the next

section.

Low-level Architecture Binding in ATOM

The facility to redefine the architecture of a com-

puter dynamically to reflect the current execution environ-

ment is what makes ATOM unique among problem oriented archi-

tectures. The process of changing the architecture is

invoked when a program either enters a new execution

environment or returns from an execution environment which

-. it entered previously. Within the environment, ATOM must be

--. *capable of causing a function to be executed from either

control store or from the conventional machine level.

The architecture redefinition call or environment

gateway is the routine which is invoked at the entry to any

execution environment which effectively causes the support-

ing architecture to be changed. This call is created by

ATOM when it creates an executable program. It is responsi-

ble for loading the microcode image which has been created

using the algorithm in figure 10. This call is also respon-

sible for setting up global indicators which are used in the

subsequent gateway routines to determine if a routine is

currently implemented in the control store or is implemented

using the facilities provided by the architecture at a

higher-level. Subsequent to returning from the new environ-

ment, the environment gateway is responsible for reestab-

76

lishing the calling environment, including control store

image and global indicators.

The gateway for each routine is also created in the

ATOM architecture synthesis algorithm of figure 10. The

responsibility of the gateway routine is to act as a switch.

The switch determines where a function is currently imple-

mented and vectors the caller to the appropriate level.

This routine is also responsible for returning from the call

to the appropriate location in the caller. This is a complex

decision since the call may have come from control store or

from a higher-level function. Figure 13 shows the interac-

tion involved in utilizing these gateways.

In figure 13 the dependency of each execution

environment on the previous environment can be seen. Each

environment is responsible for ensuring that the proper

architecture is bound when it returns from a call into that

environment. The dynamic architecture binding calls are

CALL MICRO ENVIRONMENT and INNER SCOPE ENVIRONMENT. As dis-

cussed before, these calls are responsible for realizing the

architecture for supporting the current execution environ-

ment. The call labeled RESETENVIRONMENT is responsible for

4 replacing the architecture which was in existence at the

time the current execution environment was entered. The

call labeled GATEWAY is the call which is responsible for

determining if the routine which is being called is imple-

mented in the problem oriented architecture or is mapped to

77

CALL MICRO
I - CALL CALLMICRO ENVIRONMENT

I----------- ------------------------- II I INNERSCOPE I
I I CALL INNERSCOPEENVIRONMENT I

I I CALL ANOTHERPACKAGE.XXX I

I I---- -------------------------- I
I I I ANOTHER PACKAGE.XXX I II I I CALL UATEWAYI I

I I I MACRO VERSION I I

I I-------------------------------I
I ICALL RESETENVIRONMENT I
I---------------- ----- ----------- I

CALL RESETENVIRONMENT

software
--

f i rrware
--
IINNER SCOPEENVIRONMENT

I--------------------------------------I
I I ANOTHER PACKAGE.XXXII

I I MICRO VERSIONI

-- -- - -- -- - -- - -- -- - -- -

--

Fig. 13--Low-level Architecture Binding in ATOM

-Z- -7 77

78

the architecture supported by the kernel instruction set.

These vetsions of the routine are labeled MACRO VERSION and

MICRO VERSION, respectively.

It should be noted that for all programs which can be

translated to run on a particular machine, a microcode image

can be derived to represent every environment in that pro-

gram. The proof lies in the fact that the total architec-

ture is a combination of both the macrocode emulatcr and the

problem oriented architecture. If the program can be

translated so that it can run on the conventional machine,

then it can be described in at least one image, that image

being the macrocode emulator.

Performance Measures

In determining the performance of a computing system,

many variables are relevant. For complex systems these can

include queuing time, service times at various components,

transmission time of data and many others. With ATOM how-

ever, a simpler level than normally studied in performance

.- evaluations is of interest. Since ATOM effectively changes

[•the architecture of a computer, it is the method used in

fetching and executing the instructions of application pro-

grams and consequently the performance of that method in

relation to more conventional techniques with which we are

concerned. For this analysis the time that it takes to

fetch instructions, decode them, and to execute the sequence

79

of microinstructions which implements the macroinstructions

will be the primary interest. The following equation sum-

marizes the time required to execute a single macroinstruc-

tion:

TIME = FETCH + DECODE + MICROINSTRUCTION EXECUTION

As a result the total time for execution of a program will

be the sum of the independent instruction times for all of

the instructions executed in that program. The effects of

cache structures and pipelining are discussed in chapter V.

Fetch Time

Fetch time is the component of execution time which

measures how long it takes to make the instructions of a

program available for execution in the processing unit of a

computer. Total fetch time is a function of the speed at

which individual instructions are accessed and the number of

instructions which must be fetched. The access time factor

is dependent upon the speed of the memory unit from which

the instruction is being accessed. For example a memory

access from cache memory is faster than an access from main

memory since the cache memory is implemented with faster

memory devices. Some machines include a memory interface

unit which is responsible for fetching instructions at the

same time other instructions are being executed. In this

analysis we will not be concerned with this overlap.

80

Decode Time

Decode time is the component of execution time which

measures how long it takes to determine what instruction has

been fetched and to begin executing the microcode which

implements the instruction. The decode operation usually

involves inspecting the operation code and performing either

a table search or a hashing type function to determine where

in the control store the microcode to implement the current

instruction is located. The result of the decode operation

is that the control store address mechanism is initialized

so that instruction emulation can begin. Some machines

implement instruction decoding with additional hardware to

support this activity while other machines utilize the same

hardware which executes the microcode for performing the

decoding operations.

Often included in the decode phase is the calculation

of the memory address for any main memory operands. Decod-

ing time is dependent on the complexity of the instruction

set of a computer. For example some computers implement

complex instruction sets where part of the operation code

signifies a class of operations and another portion signi-

fies which operation within the class is to be performed.

Other architectures provide an operation code which is sim-

ply a vector to a location in control store which contains

an instruction which branches to the beginning of the emula-

tion routine for the decoded instruction.

* - ., - .

81

Microinstruction Execution Time

Microinstruction execution time is the component of

execution time which measures how long it takes to perform

the microoperations which implement each macroinstruction.

A simple instruction such as a register transfer may take

only one microinstruction while a complex instruction such

as a memory block move and translation may require hundreds

of microinstructions. Some machines implement interruptible

instructions which can be interrupted by the hardware of the

machine and resume execution at the point the interrupt

occurred. We will not be concerned with this type of

instruction.

Performance Improvement Expectations

In the previous discussion it was shown that there are

three components to instruction execution time and conse-

quently there are three opportunities for performance

improvement in ATOM. Some of the performance improvement

opportunities which will be discussed are opportunities

which are enjoyed by all problem oriented architectures.

However, with ATOM more opportunities will be available for

utilizing performance improvement techniques.

Fetch Time Decrease

Atom can realize a decrease in fetch time in three

* ways. The first technique is concerned with the memory

access time as described above. When a problem oriented

. - - -. - -

82

architecture is defined, a control store image is created

and is placed in secondary storage. When the architecture is

to be realized the control store image is loaded into the

control store and execution is begun. The performance

improvement is a result of the difference in time it takes

to access the control store and the main memory access time.

The microinstructions which are contained in control store

exhibit a cache-like behavior in that they are loaded into

control store only once and are then available for access

from control store rather than from main memory. In problem

oriented architectures the control store will remain loaded

with this image until the program which loaded it is com-

plete. In ATOM this is not the case since many programs may

be using their own, unique, problem oriented architecture.

Further control store changes will result from reloading

caused by changing execution environments.

The second way that ATOM can decrease fetch time is by

eliminating a large number of main memory fetches. When an

architecture is defined in ATOM a gateway is created from

the routines of abstract data types to the control store.

When the gateway decides that a routine is currently imple-

mented in control store it enters the control stcre and con-

tinues execution there. By entering control store, the rcu-

tine has bypassed the main memory fetches required to exe-

cute the instructions from main memory as opposed to execut-

[j

83

ing the microinstructions from control store. This again can

be related to the cache-like behavior of the control store.

The third way of reducing fetch time is by reducing

the number of microinstructions which are fetched due to

decreased generality of the executed code and a decrease in

the amount of mapping actions which must occur. Weidner and

Stankovic [55] point out that functions provided in a higher

level of a multi-level interpretive hierarchy provide a

level of functionality which is more general than that pro-

vided at lower levels. This is due to the fact that these

functions can accept a variety of different inputs and pro-

vide a similar transformation on these inputs. When migrat-

ing abstract data type routines into control store, the yen-

erality can be reduced since the inputs are constrained by

the encapsulation of the abstract data type. In the same

way the mapping overhead is reduced. This overhead is caused

by code beinc, required at each level of the hierarchy to

provide for calls between levels. If the entire abstract

type is migrated, then the calls will be within the same

level and again generality can be reduced. The ATOM approach

however, does not preclude calls between levels as is the

case in the work described by Weidner and Stankovic.

Decode Time Decrease

The decreases in decode time stem from the same fac-

tors discussed for fetch time. The decrease in generality

84

requires that fewer microinstruction be decoded. The result

is that overall decoding time is decreased. In the same way

as fetch time, the cache-like behavior provides a perfor-

mance improvement by trading microinstruction decoding for

macroinstruction decoding. When routines are migrated to the

control, they are effectively being decoded by the compiler.

The only decoding required is that required by the microin-

structions which implement the routine. In other words, a

set of macroinstruction decoding actions have been traded

for a set of microinstruction decoding actions. The

microinstruction decoding actions are much faster than the

decoding actions for macroinstructions. The decrease in

generality also requires that there are fewer microinstruc-

tions decoded in executing migrated routines than are

required in executing the microinstructions to implement an

equivalent set of macroinstructions.

Microinstruction Execution Time Decrease

Again, the decrease in generality experienced in

changing levels in a functional hierarchy provides improve-

ment by executing fewer microinstructions. This decrease is

largest in architectures which provide an opportunity for

compaction of microcode thereby yielding more concurrency in

the execution of functions to implement the routines of the

abstract data type. This point will be covered in more

detail in chapter V. Even in architectures which do not

85

support concurrency, the ability to decrease the number of

microinstructions executed is evident. This can be observed

by first determining the macroinstructions required for

implementing a particular function. The microcode which will

be executed by the instruction set emulator for these

macroinstructions can then be compared with the microcode

which has been directly generated for the function without

. regard for the conventional machine architecture. The

result will demonstrate the decrease in microinstruction

execution which is attributed to the decrease in generality.

For example, an access variable reference in Ada may

be compiled as the loading of a register in one machine

instruction and the accessing of the item referenced through

an index plus offset addressing scheme in the next instruc-

tion. The mi .code used to implement the register load and

index plus offset addressing instruction must be general

enough to provide features like condition-code setting, use

of any register as source and destination, and possibly even

error checking. This is not required in the same type of

operand reference in abstract data types and can conse-

quently be deleted from the code generated for a problem

oriented architecture.

Performance Improvement Estimation

Identifying those routines which provide the greatest

opportunity for performance improvement is not a difficult

86

task. By identifying these routines and determining which

abstract data types they implement, one can determine which

types to migrate. A performance improvement estimation

model has been implemented and is used for determining local

profits for architecture synthesis as described in figure

10. The model uses the algorithm of figure 14 for predict-.

ing performance improvement for a particular set of data.

The performe.ce of the model is strongly influenced by

the choice of the data set used in collecting statistics.

The result is a data dependent estimation of how the program

will perform with ATOM. This however, presents no diffi-

culty in the technique since the results are used only as a

initial estimate of local profit. Figure 15 shows the

result of using the algorithm with the complex number pro-

gram of figure 8.

In the performance estimation model, the decoding time

is a function of the machine on which the modfl is being

run. For example? this run of the vclel was performed on a

Perkin-Elmer 3220. This machine implements decoding in spe-

cial hardware rather than in the more general purpose

microinstruction execution hardware. The resulting decoding

times are derived from the decoding hardware timing charts.

Similarly, the number of microinstructions executed by tfe

emulator is derived from examining the emulator sourcE cC:*,

and determining the number of microinstructions ud:

7 D- 135 848 ABSTRACT T PE ORIENTED DYN MIC
ERTIC L MIGR TION(U)2/AIR FORCE INST OF TECH bRIGHT-PATTERSON RFB ON

UNCLSSIIED E M CARTER DEC,83 AFIT/CI/NR-83-74D F692 N

monCLsoonsEDom9o

EhhhhhhhhhhhhE
EhhhhmmhhshhhhE
EhhhhhhhohhhhE

qi . " e ' o . ' " " ° • .
•
• . " .. . , o " - " " . & ~ .. " - . -- . . .

*.j.

-'j4

I liii '~I I

111111.025

ICRCP RESOUTIO TES CHR
NAINL UEU FSANAD-16

* ~n4O

*.

87

. Compile the program collecting I
" locations, type, and number of I
"- instructions in basic blocks I

I Insert code in each basic block I
, to count the number of entries i
i into the block i

I Run the program with a data set I
I which represents expected be-
I havior of the program I

I Collect the instruction and ba- I
* I sic block data for the prograw I

4.I

I For each routine calculate the
I- expected macro version runtime
I as the sum of the products of
I the entry counts and the number

of fetchesdecodes, and micro-
I instructions executed by the
I emulator in each basic block

I For each routine calculate the
I expected micro version runtime
I as the sum of the products of
;. the entry counts and the number
I" of expected migrated microin-

structions in each basic block

I Calculate local profit as the I
I difference between macro and I
I micro versions divided by the I
I control store size I

Fig. 14--Performance Improvement Estimation

-'4. . . -.-. , -. ,- ,.. -. , .. ,,,,. . . .-.-.. , . . ,,

88

For file: complex.out
There are 16 blocks
For routine: setcomplex
There were 2 calls

There were 36 instructions executed
Decoding time is 0.000043 seconds
Instruction fetch memory accesses is 46
Executed emulator microinstructions is 248
Migrated image size is 88 instructions
Executed migrated microinstructions is 358
Calculated macro runtime is 0.000093 seconds
Calculated micro runtime is 0.000073 seconds
Potential savings is 0.000019 seconds
Savings per microword used is 0.00000018 secs/word

For routine: plus
There were 2 calls

There were 40 instructions executed
Decoding time is 0.000044 seconds
Instruction fetch memory accesses is 50
Executed emulator microinstructions is 262
Migrated image size is 107 instructions
Executed migrated microinstructions is 372
Calculated macro runtime is 0.000096 seconds
Calculated micro runtime is 0.000076 seconds
Potential savings is 0.000020 seconds
Savings per microword used is 0.00000017 secs/word

For routine: minus
There were 0 calls
For routine: times
There were 1 calls

There were 32 instructions executed
Decoding time is 0.000035 seconds
Instruction fetch memory accesses is 41
Executed emulator microinstructions is 175
Migrated image size is 183 instructions
Executed migrated microinstructions is 262
Calculated macro runtime is 0.000070 seconds

4 Calculated micro runtime is 0.000054 seconds
Potential savings is 0.000016 seconds
Savings per microword used is 0.00000008 secs/word

Fig. 15--Performance Estimation Algorithm Results

I

**..-... -.

89

executed for each macroinstruction. Note also that a 2.25%

overhead cost has been added to the execution time of the

migrated microcode to account for worst-case control store

loading for architecture redefinition. Chapter VI discusses

the use of the model in more detail.

Why Abstract Type Oriented Migration ?

In previous sections we have examined the need for a

problem oriented architecture to present an architecture

which is more closely related to the model which programmers

are attempting to represent. The result of such an archi-

tecture will be more efficient programs due to the elimina-

tion of excess mapping overhead incurred in mapping from the

programmer's model to an architecture which supports a set

of data types and operations which may not allow an effi-

cient mapping. At the same time we must also realize that

reliability and maintainability of programs which can be

gained through modern programming practices should not be

compromised. These efforts should be encouraged through

architectures that support their use and perform more effi-

ciently as a result. ATOM addresses these goals.

The significance of ATOM is that it provides an oppor-

tunity for increased reasoning about problem oriented archi-

tectures. The emphasis is no longer focused on unrelated

program units such as instruction sequences or collections

of frequently executed functions. In ATOM the emphasis is

90

placed on logically related units which form new programming

environments by directly supporting abstract data types

which form the programming model for a particular problem

solution. As a result ATOM directly supports the modern

programming practices of abstract data typing, library

usage, and separate compilation and reward the programmer

through increased program performance for their use.

"4 Library units as well as separately compiled units can

be maintained with their equivalent microcode images. These

images can be optimized as a result of use by many program-

mers. The local profit as described in figure 10 can then be

tuned through empirical data. The result is that a migration

decision can be made with more complete data. Because of

its dependence on logical program structure, the issue of

interdependence of functions can be handled in a logical

way. Reasoning about these dependencies can then be made

using the semantics of the programming language and the

semantics of the problem being modeled as represented in the

program.

Another aspect of ATOM which makes it unique is that

migration decisions are made on a local program unit basis.

In previous techniques, global behavior was the unit of

decision making. When migrating functions, it often is the

case that cont -ol store will become full and not all desired

functions may be migrated. In earlier techniques, those

functions which had greater global significance were

p.

4.
.4 " r " "' ' ' ' , , : . " , " ". s , - _ - - - . . . - . . . , _ - . . . -

91

migrated before other functions. If control store became

full, then the remaining functions were not migrated. This

' resulted in loss of performance improvement opportunities

for programs which exhibit local execution behavior. In

ATOM, these execution environments can also be supported in

control store and consequently can provide a problem

oriented architecture for each execution environment and not

just a single statically bound architecture. This technique

allows for architecture binding to occur at the latest pos-

sible moment. As a result, programs are more closely

represented in the architecture on which they are running.

Previous techniques for architecture synthesis often

used benchmarking as a technique to determine what functions

to migrate. This technique can lead to migration decisions

which are data dependent. Also, once these decisions are

made, they are reflected in the architecture without regard

for changes in data and consequently without regard for

changes in program behavior. In ATOM this is not the case.

Program structure, not data determines the units to be

migrated. As a result, heuristics can be implemented which

can account for changes in program behavior and can subse-

quently cause dynamic architecture rebinding. This can not

occur using previous techniques where there was no enforced

relationship between execution units.

94

CHAPTER IV

PROGRAMMING LANGUAGE EFFECTS

Overview

This chapter further examines how modern programming

language concepts can affect ATOM. The first concept to be

examined will be lexical scope and its effect on control

* store allocation. The use of scope and visibility rules for

determining and limiting execution environments will be

described. The following section will examine the unique

use of derived data types in ATOM. This discussion will con-

centrate on the design and implementation of primitive types

and how these typea may be used for program tuning. Next,

the concept of generic types and their implementation in

ATOM will be examined. The following section will discuss

considerations which should be made in designing abstract

data types in the ATOM environment. Finally, a short dis-

cussion of the special role of compilers in ATOM will be

presented.

Scope Effects in ATOM

The ATOM technique for dynamic vertical migration

requires that there be a method for determining parts of

programs which exhibit localized program behavior. These

program parts must also provide a description of the data

92

93

types accessible during their lifetime. In chapter III a

unit which could provide this function was introduced. This

unit, called an execution environment, was defined as a col-
4-.

lection of one or more program elements defined by the types

of objects which may be accessed in that unit. The program

elements are constructed from programming language con-

structs which are responsible for defining names of data

types, objects, and operations and which apply limits to how

these may be used. These limits on usage are also called

scopes of reference or more simply scopes. The programming

language elements in which ATOM is most interested are those

which are capable of describing and implementing the rou-

tines of abstract data types. It is the scope of these

names which define execution environments.

As discussed in chapter II there are many languages

that support abstract data typing and consequently there are

many different rules concerning the scope of names of

objects and data types. For this reason, the primary effect

of programming languages on ATOM will be to limit the abil-

ity to determine scopes and therefore limit the ability to

differentiate between execution environments. Some

languages will provide a great deal of flexibility in defin-

ing scopes while others will limit the extent of scopes.

*? This limitation in the worst case can result in there being

only one global scope for routine names. More flexible

languages which allow nesting of procedure declarations and

4.

,'4,-.~."",i "-''" . , -,. . . , - ,. . . .

' - 94

-7

94

embedded program blocks will provide more scopes and conse-

quently can describe execution environments more precisely.

The architecture synthesis algorithm of figure 10 can be

used without regard for which language is used as long as

scopes and consequently execution environments can be deter-

mined statically. It is the number of execution environ-

ments and therefore the number of generated control store

images which will change. Following are some examples in

popular programming languages of how scope may affect the

creation of execution environments.

The first example is figure 16 which shows a program

written in Ada. This program is similar to figure 11 except

that it has declared an abstract data type ANOTHERTYPE in

an inner package called ANOTHER PACKAGE. The flexibility

occurs in that the placement of the declaration of

ANOTHERPACKAGE determines whether ANOTHER TYPE is included

in the execution environment of INNER-SCOPE or not. For

example, if the declaration of ANOTHERPACKAGE had been

placed prior to the procedure specification of INNER-SCOPE

then ANOTHER TYPE would be included in the execution

*! environment of INNER SCOPE. If it follows the specification,

then ANOTHER-TYPE is not in the execution environment of

INNERSCOPE.

A problem exists in that the compiler cannot determine

if ANOTHER-PACKAGE is an abstract type or whether it is just

another package which is part of the resources required for
.4

0i.

95

with COMPLEX NUMBER;
use COMPLEX NUMBER:
procedure ENVIRONI is

-- package specification for ANOTHERPACKAGE
package ANOTHER PACKAGE is

type ANOTHER_TYPE is private:

private
type ANOTHER TYPE is ...

end ANOTHERPACKAZE:

-- package body for ANOTHER PACKAGE
package body ANOTHERPACKAGE ... end ANOTHERPACKAGE:

-- include a separate compilation unit
procedure INNER-SCOPE is separate:

begin

INNER _SCOPE;

end ENVIRONI:

Fig. 16--The New Execution Environment of INNER SCOPE

.".. .

I *l* * " *| *.* ." " - -., - . , -i. " . ' " .

96

proper execution of ENVIRON1. This problem can be solved

for individual languages by utilizing the facilities pro-

vided by the programming environment which supports the

language. In Ada, for example, there is a compiler direc-

tive statement called a pragma. This statement could be used

to specify that a compilation unit is an abstract type and

that it belongs in the program library. Subsequent context

specifications which include the new abstract type could

then know that it is an abstract data type and could use

this information in determining execution environments.

This technique assumes the presence of a standard program-

ming environment which accompanies a programming language.

Unlike many languages, Ada presupposes a complex programming

environment known as the Ada Programming Support Environment

which provides a program library facility.

An interesting addition to modern programming

languages is the ability to declare concurrent execution

units. Both Ada and Modula provide this capability in units

called tasks. In Ada, a task is declared in much the same

way as a procedure. Within the task specification is a list

of entry points for the task and within the task body is a

sequence of code to implement these entries. There also may

be a sequence of statements executed at task initiation

time. A task can be declared as either a single task object

or as a member of a task data type. The scope of reference

of a task is specified in the same way as that of a pro-

97

cedure, therefore any two tasks declared together or which

are members of the same task type will share the same scope

and consequently the same execution environment. These

tasks therefore could share the same contrcl store image and

could avoid the overhead involved in repe Pdly loading the

control store in task scheduling. This ssue rightfully

belongs in a discussion of scheduling tec .ques in operat-

ing systems.

The scope rules of Pascal provide a lesser degree of

flexibility for tailoring execution environments. Although

Pascal does not provide the facilities for enforcing encap-

sulation and hence is not adequate for supporting abstrac-

tion in ATOM, an examination of the more limited scope of

Pascal is useful. Figure 17 shows a program which is model-

ing the complex number abstract type from the previous exam-

ple. The proqram also includes a declaration similar to

ANOTHERTYPE of figure 16.

The point to note is that the limited scope rules of

Pascal are a result of the language syntax which requires

that all types for a particular program or procedure must be

declared together in a single type statement. This prohi-

bits the ability to limit the scope of a procedure and

thereby restricts the ability to limit its execution

environment. The result is that large execution environ-

ments will be produced by the architecture synthesis algo-

rithm and fewer abstract types will be placed into the con-

* . , *

98

program environ2(input,output);
type complex = record

real_part :real-,
imag_pdrt :real

end-,

vranother type=

procedure innerscope;
beg in

end-,
function setcomplex(a,b real):complex;
begin

end,
function plus(a,b complex):cc~mplex;
begin

end;,
function minus(a,b complex):complex;
begin

end,
function times(a,b complex):complex;
begin

end;,
begin

inner scope;

end.

Fig. 17--Pascal Implementation of Abstract Type Complex

99

trol store when contention occurs. This type of scope rule

causes ATOM to function in a way similar to other problem

oriented architecture synthesis techniques. A possible

solution is to modify the algorithm of figure 10 to verify

that objects of a particular type are being accessed in a

scope before considering that type for inclusion in the exe-

cution environment.

Other languages provide even more restrictive scope

rules. C, for example, does not allow nested procedure

declarations. Fortran in a similar way requires that there

is only one global level of scope which applies to function

calls. These languages provide a rigid set of scope rules

and consequently will not provide as great an opportunity

for ATOM to enhance performance. This restriction on execu-

tion environments causes ATOM to choose those data types

which have the most global influence on performance for

migration. Smaller program units which would have been

migrated by other techniques such as the instruction

sequence method are overlooked and performance, although

better than a non-migrated version, is less than that of a

version migrated by global techniques. ATOM can therefore

be seen to depend on the ability of a programming language

to provide flexible scope rules for its ability to ensure

performance improvement.

U -.

100

Derived Data Types in the ATOM Environment

A derived data type is a new data type which is formed

- by assigning the attributes, values, and operations of one

type, called the parent type, to the new type, called the

- derived or child type. In this way a new data type is

formed which, although similar to the parent type, is an

autonomous type with its own set of invariant properties

which must be maintained independent of the parent type. In

Ada a derived type inherits and overloads all of the opera-

tions, attributes, values, literals, and aggregates of the

parent type. It also derives and overloads any visible sub-

programs that have a parameter or result of the parent type

or subtype. In the process of deriving a child type from a

parent type, many languages allow certain constraints to be

applied to the new type including range, accuracy, index,

and discriminant constraints. Ada even allows a representa-

tion specification to be applied to the new child type.

The concept of derived types although complex, is very

useful in providing type descriptions which match the

programmer's model. For example, a new type called WEIGHT

may be derived from the type called FLOAT by a single state-

ment:

type WEIGHT is new FLOAT:

A range constraint can be applied by simply specifying it in

the statement which derives the new type as follows:

type WEIGHT is new FLOAT range 0.0 .. 500.0;

I"

101

Both of these examples have used Ada syntax for the deriva-

tion but the facility is similar in many languages which

support derived types.

Of primary interest to ATOM is the manner in which

these new data types are implemented. When we look at

derived types in detail, what we see is much akin to the

situation faced by compiler writers today in mapping from

high-level abstract types to the lower-level data types pro-

vided in the architecture. In this case however, both the

high-level and low-level types are abstract types provided

by the programmer and not by the machine architecture. A

complex type is formed by mapping the facilities required of

the new type onto the facilities already provided by the

programmer in the collection of user defined types.

In the case of the simple derivation, there is a one-

to-one mapping while in the case of the constrained deriva-

tion there is a more complex mapping which may involve addi-

tional range checks, index checks, or maybe even a complete

new physical representation of the type. We assume that the

operations on items of the new type are derived by first

performing the new constraint checks, then coercing the

object of the new type to the parent type using the default

conversion procedure. The operation is then performed on the

coerced object using the operation of the parent type. The

results are then coerced back to the child type using the

default type conversion procedure.

102

In ATOM this situation raises the question of whether

both the parent and child types should be migrated into the

same execution environment. Since the goal of ATOM is to

enhance performance this decision can only be made in the

light of the architecture synthesis algorithm of figure 10.

The results of this algorithm are the sole determination of

what should and what should not be migrated. The dependency

of the child type on the operations of the parent type how-

ever, raises an interesting question.

This question involves determining what effect the

dependency should have in calculating the profitability of

migrating a particular abstract data type. As discussed

before, the operations of the child type depend upon the

operations of the parent type. The calling of one of the

operations of the child type then is tantamount to calling

the constraint checking code, performing the coercion, cal-

ling the operation of the parent type, and then coercing the

results to the child type. A call of a child type operation

should therefore involve increasing the global profit of the

parent type as well as a calculation of local profit for the

code which calls the parent operation. In this way data

types which are often used as parent types will be migrated.

The ability to migrate the additional operations of the

child type in place of or at the same time as the parent

operations is provided by applying the profit calculation of

., oO ,w - o. oO -o, , , - -.

103

figure 10 and then migrating those functions deemed

appropriate for migration by the algorithm.

Generic Data Types in the ATOM Environment

The necessity of requiring strong typing in languages

which support abstract data typing has been discussed in

chapter III. The concept of strong typing however, often

makes programming inconvenient. For example, a programmer

may design and implement an excellent sorting algorithm.

This algorithm can only be programmed to sort objects of one

particular data type because all actual parameters passed to

the sorting procedure must match the formal parameters with

regard to data type. If the routine has been designed to

sort arrays of integers, an attempt to call it to sort an

array of floating point numbers will fail. Generic program

units can be used to describe a class of algorithms which

will differ only in the types of data used. The concept of

generic program units has been described to make programming

easier in languages which support strong typing.

Generic program units are simply templates which can

be used to form other program units at compilation time. In

other words, new packages and subprograms can be created

from the generic description given in the generic package or

subprogram declaration. For example, several different

kinds of complex number data types which can use varying

data types for the real and imaginary parts may be required.

L
104

generic
type CTYPE is private;

package COMPLEXNUMBER is

type COMPLEX is private;

function "+"(A,B:in COMPLEX)return COMPLEXI

fucin""A,-nCMLXreunCMLX

function "-"(AB:in COMPLEX)return COMPLEX;

~.1function SETCOMPLEX(A,B:in C TYPE)return COMPLEX;

private

type COMPLEX is record
REAL PART:C TYPE;
IMAGPART:C TYPE:

end record

end COMPLEX-NUMBER;

Fig. 18--Generic Specification for COMPLEX-NUMBER

L

105

Figure 6 describes a COMPLEX-NUMBER package which is con-

strained to using real and imaginary parts of type FLOAT

only. The generic package of figure 1S on the other hand

can be used to create different packages which have dif-

ferent types for the real and imaginary parts.

The following Ada syntax, called generic instantia-

tions, cause two new packages and consequently two new

abstract types to be created:

.1 package COMPLEXFLOAT is new COMPLEX NUMBER(FLOAT)-

package COMPLEX-DOUBLE is new COMPLEXNUMBER(DOUBLE):

Each of the two new types has a complete set of operations,

values, and attributes. Unlike derived types, there is no

dependency between the new types and any types from which

- they were formed. In Ada, as in other languages supporting

generic program units, parameters may be included in the

generic instantiation which tailor the newly created unit

- 2 for its particular needs. There are three classes of generic

a. parameters in Ada, type parameters, value and object parame-

ters, and subprogram parameters. Each of these effectively

causes a generic template to be transformed into a com-

pletely new program unit which is independent from both the

template and other program units derived from the template.

In ATOM generic abstract types are handled like any

other type which is a candidate for migration. The generic

instantiation of an abstract type introduces a new type and

therefore, expands the current execution environment and the

106

execution environment of any procedures declared in the

scope of reference of the new type. The effect of generic

types in the ATOM environment is therefore minimal and is

the same as the introduction of new abstract types.

Abstract Data Type Design in ATOM

Booch in [5] points out that there are four software

design needs which data typing meets:

1. Maintainability: the need to describe objects with a

factorization of properties.

2. Readability: the need to say something about the proper-

ties of objects.

3. Reliability: the need to guarantee that properties of

objects are not violated.

4. Reduction of complexity: the need to hide implementation

details.

As we have seen before, these characteristics are embodied

in abstract data types. Previously, we have seen that pro-

grammers paid a performance price in using techniques like

abstract data typing becaose of the overhead involved in

procedure calling. ATOM on the other hand seeks to overcome

this overhead while still providing the four characteristics

above.

In modeling intricate systems, programmers may find it

necessary to describe some very complex abstract data types.

If these abstract types are selected for migration a very

107

large amount of control store may be used. Figure 19 shows

a large, complex data type comprised of a record containing

other user-defined types. Due to the organization of the

declaration as a single unit, the entire abstract type must

be migrated if any of the operations are to be included in

the control store. Since control store is a fixed size

resource, the selection of a large abstract type for migra-

tion may preclude the migration of other types which could

contribute to a significant performance improvement. Wise

design practices however, can stop this from occurring.

In current computer architectures, it is the responsi-

bility of the compiler designer to map high-level constructs

to lower-level implementations of these constructs. This is

required since the architecture only supports a limited

number of data types. If control store contention becomes a

problem due to the large number of abstract data types, the

problem may be solved in much the same way as compiler writ-

ers do today. The technique involves factoring larger, more

complex data types into smaller abstract data types. Figure

20 shows the individual types of figure 19. Figure 21 shows

the complex type of figure 19 implemented using a factored

representation.

This technique will provide a larger number of data

types in a particular execution environment, but will pro-

vide a smaller level of granularity in migration. This

108

package TOO BIG is
type NEEDED TYPE is private;
type MORE STUFF is private;
type BIG_TYPE is private;

private
type NEEDED TYPE is ...
type MORESTUFF is
type BIG-TYPE is record

X : NEEDEDTYPE;
Y : MORE STUFF;

end record:
end TOO BIG:

package body TOO BIG is

end TOO BIG;

* Fig. 19--Complex Type Description

... - ,

109

package TYPE MORE STUFF is
type MORE_STUFF is private;

private
type MORE STUFF is

end TYPE MORE STUFF;

package TYPE NEEDED TYPE is
type NEEDED TYPE is private;

private
type NEEDED TYPE is

end TYPENEEDED TYPE;

package body TYPEMORE STUFF is

end TYPE MORE STUFF:

package body TYPENEEDED TYPE is

end TYPENEEDED TYPE;

Fig. 20--Factored Types

110
IIi

smaller level of granularity will allow other data types to

be migrated to control store while still providing some

degree of the performance improvement provided by the larger

data type. The performance improvement of the program as a

whole however, may be greater as a result of the factoriza-

tion.

The factoring of larger data types into smaller ones

amounts to finding the primitive types of a model. This

technique can be used for tuning programs which use ATOM by

allowing the programmer explicitly to influence migration

decisions. The programmer influences the decision by find-

ing the most primitive types and implementing these as

abstract types. Since other types will be created using

these types the global profit will increase and consequently

the probability of being migrated will also increase. Where

this technique was not provided in earlier methods for

describing problem oriented architectures, it can prove to

be very useful in ATOM.

Another interesting effect arises when we examine

languages which provide low-level constructs for interfacing

with the supporting machine architecture in a direct way.

Ada, like other modern system programming languages, pro-

vides a representation specification for describing the

actual format to be used in mapping data types ro the sup-

porting machine architecture. For example, objects of a set

data type may be mapped as bit vectors c.i may be packed

* J
* 4

-. 'i 111

with TYPEMORESTUFF;

use TYPE MORE STUFF;
with TYPE NEEDEDTYPE;
use TYPE NEEDED TYPE:
package TOOBIG is

type BIG_TYPE is private;

private
type BIG TYPE is record

X : NEEDED TYPE;
Y : MORE STUFF;

end record;
end TOO BIG;

package body TOO BIG is

end TOO-BIG;

Fig. 21--Complex Type Using Factored Types

------- -'-.- ,'--. .-----. - -

112

into a single memory word. Without ATOM the degree to which

the mapping can be specified is bounded by how efficiently

the mapping may be applied on the machine architecture.

With ATOM however, the efficiency of the mapping may no

longer constrain the types of mappings which can be accom-

plished. In the previous example the size of the set data

type would be bounded by the size of a memory word. At the

microcode level, which is the target architecture for ATOM,

memory word size is an artificial boundary and would no

longer constrain the mappings from abstract to primitive

type. The point is that through defining new types using

representation specifications, new primitive types can be

described which are as efficient as the primitive types sup-

ported in the machine architecture.

Compilers in the ATOM Environment

Earlier in this chapter it was shown that using high-

level programming languages which support abstract typing

was necessary to provide the scope flexibility needed by

ATOM. These languages by necessity are supported by
.'%

- software systems which include at least a compiler. These

7- "compilers are complex programs which are responsible for

ensuring that language semantics are enforced and conse-

quently that programmer's models are implemented as

described. Software which implements the ATOM technique can

be programmed with little effect on current compilers.

113

Although no additional requirements are levied on com-

pilers, some non-traditional usage is made of the products

of compilation. The symbol table which results from compi-

lation is a useful tool for the software which actually

implements the architecture synthesis algorithm of figure

10. This information, as a result of normal compilation,

contains scope information. This information is used in syn-

thesizing the execution environments and subsequently in

building the control store images required by ATOM. Com-

pilers can also be easily changed to insert the environment

and routine gateways as required by ATOM. This function how-

ever, can also be handled easily by pre-processors or link-

age editors [64].

The intermediate code prepared by the compiler can

also be a useful tool in creating control store images. This

can be used as the representation of the algorithms being

implemented by the abstract types and can then be used to

create the microcode to implement them for routines which

are chosen for migration. The intermediate code is a closer

representation of the programmer's actual problem solution

than is the macroinstructions created in the final compila-

tion phases. This occurs because the final code is yet

another mapping from the intermediate code to the actual
p .-

facilities of the machine level architecture. In other

words the intermediate code has not yet obscured theI! programmer's problem solution with the architecture provided

F2

114

by the computer architect. For this reason it can be used

in more precisely defining the problem oriented architecture

for the particular problem at hand. This intermediate code

will also be useful in determining program structuring for

use in calculating global profits.

The generated control store images can be placed into

a program library for subsequent use. Other programs which

include these routines with context specifications will sim-

ply be able to access them directly without recompilation.

Each of these routines should have stored with it a calcula-

tion of local profit as determined by examining the inter-

mediate code. These profit figures may be tuned manually or

automatically by heuristics and data gained through empiri-

cal use of the routine.

I-

|°

CHAPTER V

MACHINE ARCHITECTURE EFFECTS

Overview

This chapter will examine the effects introduced by

the interactions between ATOM and other parts of the com-

puting environment which are common to modern architecture

implementations. The first section will be an investigation

of the interaction between ATOM and other programs running

in a multiprogramming environment. Following this will be a

discussion of the effect of ATOM in a multiprocessor confi-

guration. The next section will turn attention to internal

processor issues such as cache and pipelining and will

investigate the effect of these implementation techniques on

the expected performance improvement of an ATOM environment.

Microprogramming architecture and its effect on ATOM will be

the next topic to be examined. Of primary interest will be

a discussion of the effect of vertical and horizontal

microarchitectures on the expected performance improvement

using ATOM. The final section will look at how the adoption

of ATOM as an architectural model will affect the design of

future microprogramming architectures. This section will be

looking at such issues as protection, handling of interrupt

structures, and subroutine calling.

115

. ---. . -', - , . . . i; : : : ,:

116

ATOM in a Multiprogramming Environment

The discussion of ATOM to this point has concentrated

mainly on the implementation of abstract data types in a

single program without regard for the other programs which

may be running concurrently with it. In a production

*environment ATOM will be operating with other programs, all

of which will be interested in improving their individual

performance to as great a degree as possible. In this

environment we will be concerned with two issues. The first

issue involves a policy for determining how the control

store will be managed when many programs are attempting to

load problem oriented architectures. The second issue

entails an examination of the effect of image sharing

* .between programs with the same execution environments.

In the ATOM environment the control store plays a

major role. The entire architecture redefinition process is

based on the ability to load the control store with micro-

code which implements the architecture required in the

current execution environment. The control store therefore

must become like other devices in a multiprogramming system

in that it must be sharable and must submit to a centrally

controlled scheduling policy. This sharing and consequently

the scheduling policy will greatly influence the performance

*' improvement which can be gained by programs in the ATOM

environment. During this research the control store was

117

managed like any other preemptable device and was imple-

mented with the same scheduling policy as the processor.

The control store is loaded when required through a

demand loading policy. This loading is accomplished when

the process currently running on the processor attempts to

enter the control store. Prior to entering the control store

the only requirement is that the program notify the operat-

ing system of the name of the control store image file.

Several techniques were used in managing this image includ-

ing maintaining the image on secondary store, maintaining

the image in primary store as part of the process image, and

managing a cache of control store images within the operat-

ing system kernel. The work of supporting the control store

as a virtual device is documented in [60] and was used as

the facility for implementing a modified ATOM as described

in chapter VI.

Sharing control store images is a possibility in ATOM

if centralized management of the control store is provided.

ATOM will provide the best opportunity for performance

improvement in an application environment which is charac-

terized by processor intensive activity. Many of these

types of environments such as flight simulation, weather

prediction, and process control are characterized by a small

number of data objects but a great deal of repetitive pro-

cessing such as data sampling, interpretation of data, and

device control.

118

For example, a process control application may only be

concerned with one type of sensing device and one type of

device to control, but the majority of its processing will

be spent in sampling the sensor, examining the data, and

reacting to it. If each of these entitieE were represented

as an abstract data type and if there were several programs

running concurrently which could share an image, control

store loading overhead could be reduced by sharing the con-

trol store image. The compilation of programs could also be

simplified if these abstract types were defined in a program

library thereby avoiding recompilation. As mentioned before

the local profit of these routines could be adjusted through

empirical data to predict as closely as possible those rou-

tines which provide the greatest benefit for improving per-

formance in migration.

Multiprocessing Environment

A multiprocessing environment can be characterized by

two or more processors functioning concurrently with a

shared primary memory. Within such a multiprocessing

environment there are two interesting effects which are

brought about through ATOM. The first one is a result of the

decreased usage of main memory as is described in chapter

III. The second effect is actually a side-effect of ATOM

when used in a multiprocessing environment with individually

configurable control stores for each processor.

119

The first effect is caused by the elimination of the

fetch portion of the fetch-execution cycle of conventional

machines. As described in chapter III, this decrease in

fetch time is a result of two factors, the first being a

. result of the difference between the memory speeds of pri-

mary memory and control store. The second factor however,

is the one in which we are now most interested. This factor

is brought about by a decrease in the number of memory

accesses which are required for fetching instructions from

primary memory.

As was described before, the control store functions

like a cache in that machine level instructions are no

longer fetched from main memory. In the place of these

machine level fetches, microcode which implements the

machine level instructions, is fetched directly from control

store. This latter fetch is often done on a private proces-

sor bus while the former is done on the shared memory bus.

The result of using ATOM with its decrease in fetch time is

a decrease in the usage of the main memory bus and conse-

quently an increase in excess memory bandwidth on the bus.

In a configuration with a large number of processors or with

a large amount of DMA traffic, this factor can result in a

large degree of performance improvement.

The performance estimation model discussed in chapter

III examines the performance improvement which can be gained

by, this decrease in the number of instruction fetches. Fig-

120

ure 15 shows that for a single call to the complex number

multiplication routine over forty memory accesses can be

saved. If this routine were included in a matrix multiplica-

tion routine and if this matrix routine were included in an

iterative algorithm then the performance improvement will be

greatly enhanced.

The second effect brought on by ATOM in a multipro-

cessing environment is also very interesting. This effect

is due to the ability of many multiprocessing environments

to support individually configurable control stores. In

this configuration, each processor in the machine has its

own private control store. Each of these control stores can

be loaded with a different architecture as created by ATOM.

The problem of processor scheduling is complicated by

the presence of ATOM. For maximum utilization of processor

potential, the scheduling algorithm must account for control

store loading overhead. If a process can be scheduled on a

processor which is currently running the same image which it

requires then a control store load can be avoided. For

further performance improvement, it may also be worthwhile

to schedule a class of programs on one processor if these

programs all use the same control store image. The result

of this type of scheduling algorithm is that the performance

improvement can be greater in a multiprocessor environment

if control store utilization is taken into account in

scheduling decisions.

121

Processor Implementation Issues

In the discussion of performance improvement with ATOM

. * one of the primary methods used was to decrease the fetch

and decode time for each instruction. ATOM and the use of

microprogramming however is not the only way to achieve

gains in these two areas. Two important advances outside of

microprogramming which have added to performance improve-

ment opportunities are cache memories and pipeline proces-

- sors.

In machines with cache memory, instruction speed-up is

* - achieved by decreasing fetch time. The fetch time is

decreased by keeping the most frequently executed instruc-

tions in a memory which is faster than primary memory. As

each instruction is fetched, the cache is examined. If the

instruction is in the cache then the fetch is co;nplete, oth-

erwise the fetch is performed from primary memory. The

average fetch time for each instruction is therefore

decreased and results in faster instruction execution as a

whole. As has been shown, control store acts much like a

cache in that it also holds frequently executed instruc-

tions. These instructions however, are already decoded and a

further performance improvement accrues.

Cache memory depends heavily on being able to capture

the correct set of instructions in attempting to model the

local execution environment. This notion of locality in

cache memories is related solely to the addresses from which

,.-,. . ,...L... .>, " - --

S o- . - , . . , ." - . ' . . •. % , ?

122

instructions are fetched. If proper locality can be cap-

tured the results will yield higher cache hit ratios.

Higher cache hit ratios result in greater system performance

improvement as a whole. The result is that systems which

have cache memory will not witness as great a performance

improvement with ATOM as systems without cache.

Figure 22 shows the results of running the performance

estimation model with the same data as for figure 15 but

with a cache memory and an 85% probability for a cache hit

in instruction fetch. In figure 22 the sole difference for

each routine is in the decrease in decoding time. This

decoding factor includes the time necessary to fetch as well

as the time necessary to decode the macroinstructions. Note

that it is this decrease which accounts for all of the per-

formance improvement in the cache implementation. Note also

that the machine which is being modeled shows more executed

microinstructions being executed in the migrated version

than in the macrocoded version. This is a result of three

factors.

The first factor involves the decoding mechanism of

the modeled machine. The machine being modeled is supported

by special hardware for decoding. Cache results are there-

fore optimized since no microinstructions are executed in

5decoding. The second contributing factor is that the modeled
4

machine is a vertical microarchitecture. As is discussed in

*i the next section, the fact that the microarchitecture is

6-

123

For file: complex.out
There are 16 blocks
For routine: setcomplex
There were 2 calls

There were 36 instructions executed
Decoding time is 0.000029 seconds
Instruction fetch memory accesses is 46
Executed emulator micro-instructions is 248
Migrated image size is 88 instructions
Executed migrated micro-instructions is 358
Calculated macro runtime is 0.000079 seconds
Calculated micro runtime is 0.000073 seconds
Potential savings is 0.000006 seconds
Savings per microword used is 0.00000005 secs/word

For routine: plus
There were 2 calls

There were 40 instructions executed
Decoding time is 0.000029 seconds
Instruction fetch memory accesses is 50
Executed emulator micro-instructions is 262
Migrated image size is 107 instructions
Executed migrated micro-instructions is 372
Calculated macro runtime is 0.000081 seconds
Calculated micro runtime is 0.000076 seconds
Potential savings is 0.000005 seconds
Savings per microword used is 0.00000004 secs/word

For routine: minus
There were 0 calls
For routine: times

,"0 There were 1 calls
There were 32 instructions executed-.

"

Decoding time is 0.000023 seconds
Instruction fetch memory accesses is 41
Executed emulator micro-instructions is 175
Migrated image size is 183 instructions
Executed migrated micro-instructions is 262
Calculated macro runtime is 0.000058 seconds
Calculated micro runtime is 0.000054 seconds
Potential savings is 0.000004 seconds
Savings per microword used is 0.00000002 secs/word

Fig. 22--Performance Estimation - 85% Hit Probability

Il

124

vertical in nature prohibits compaction. This inhibits the

ability to optimize performance of the migrated routines.

The final factor concerns the estimation of executed

microinstructions for the migrated routines. Weidner and

Stankovic in [55] point out that there are two sources of

optimization in vertical migration. The first opportunity

involves the speed gained in moving to a faster layer of the

interpretive hierarchy. This movement is reflected in the

performance estimation model. The second opportunity, omit-

ting excess generality, however, is not included. In the

performance estimation model the estimate of executed

microinstructions is based on a worst-case analysis which

uses the emulator microinstruction count plus some overhead

for operand fetching. The result does not account for per-

formance improvement which can be gained by eliminating

excess generality as was shown in chapter III. The resulting

performance improvement as shown by the performance estima-

tion model is therefore a lower-bound on the improvement

which can be expected.

Again as shown in chapter III, another performance

.. improvement opportunity comes from a decrease in the amount

of time required to decode instructions once they are

fetched by the processor. In ATOM it was shown that a

decrease in the decoding time can be gained by not having to

decode as many instructions. This occurs since the macro-

code which implements the migrated routines no longer needs

~..

125

to be decoded. Also the number of microinstructions actu-

ally decoded and executed is less in ATOM than for the same

macrocoded version.

In order to improve system performance, the ability to

overlap decoding with instruction fetch and execution has

been realized by pipeline processors. In these processors

several stages of instruction fetching, decoding, operand

fetching, and instruction execution may be going on simul-

taneously for various instructions. The result is that

although there is not a decrease for the amount of time to

execute a single instruction, the cumulative effect of over-

lapping instruction fetch and decode with instruction execu-

tion yields greater throughput for the processor in instruc-

tion execution. Again the result is that in systems with

pipelined processors, performance improvement will not be as

5reat with ATOM as in systems without pipeline implementa-

tion. It is not clear however, that decode and fetch time

improvements are the dominating factors for performance

improvement in systems whi.h provide a horizontal microar-

chitecture. One can imag.1 , situations in which compaction

would be the most important ictor in performance improve-

ment in vertical migration. This type system is discussed in

the next section.

126

Microprogramming Architecture Efte,:ts

In previous discussions of computer architecture the

emphasis has been placed on the view which a conventional

machine language programmer or compiler code generator will

have of the computer. This discussion will focus on a more

elementary level known as the microprogramming architecture

or microarchitecture for short. It is this level which is

seen by the instruction set emulator designer and program-

mer. Furthermore, it is this level which is the architec-

ture upon which ATOM will base its implementation of problem

oriented architectures for supporting execution environ-

ments.

*Agrawala and Rauscher in [2] state that in comparing

the microarchitecture of various machines one must consider

both the functional components of a machine including the

data paths and interactions and the design of microinstruc-

tions. Of these, the former describes the basic facilities

which are. available for the microprogrammer. The latter

however, describes the way in which the microarchitecture

will function and as such provides the information which is

needed to examine the performance of the machine. For this

reason microinstruction design is of interest in ATOM.

In previous discussion of the performance aspects of

ATOM, it was shown that there are three components to the

total execution time of a program, fetch time, decode time,

and microinstruction execution time. It has been further

-it.. .r. .

127

shown that there are significant effects on fetch and decod-

ing time which are brought about in cache and pipeline sys-

tems. The third aspect of performance, microinstruction

execution time, is of most interest when we consider

microinstruction design. A microinstruction is a collection

of one or more microoperations which can be performed at the

same time. The microarchitecture determines how many

microoperations can be packed into a single microinstruc-

tion.

A classification of microarchitectures usually divides

machines into two types. Machines which allow only one

microoperation in each microinstruction are generally called

totally vertical microarchitectures. In contrast machines

which allow several microoperations in each microinstruction

are referred to as horizontal microarchitectures. Like many

classifications the line between vertical and horizontal

architectures is not well defined. The result is that there

are many microarchitectures which fall between the two

extremes. The distinction, however is sufficient for dis-

• cussing the effect on ATOM of microarchitecture.

Vertical microarchitectures have iicroinstructions

which resemble classical machine language instructions. They

often contain one operation and one operand. Horizontal

microarchitectures on the other hand have several operations

and possibly many operands defined, either implicitly or

explicitly. Vertical machines are typically simple to pro-

128

gram while horizontal machines are usually difficult to pro-

gram efficiently. This difficulty is attributed to the abil-

ity of horizontal microarchitectures to control several

resources concurrently. It is from this ability to control

multiple resources that the potential of horizontal microar-

chitectures for improving performance arises.

Since vertical microarchitectures typically control

only one resource at a time, there is little beyond contem-

porary compiler optimization techniques which can be done to

increase the efficiency of vertical microprograms. Horizon-

- tal microarchitectures on the other hand offer a unique

opportunity for improving performance. Given a set of

microoperations which must be performed, one can build a

minimal collection of microinstructions which contains all

of the microoperations. The process in which these

microoperations can be packed together so that all of the

microoperations are performed without interfering with one

another is called compaction.

In the process of compaction, the types of interfer-

ence which can occur are data dependency, resource depen-

dency, and instruction format dependency [53]. Data depen-

* dency deals with the proper placement of microoperations

such that no operation occurs before the intended operands

" are in the correct state. Resource dependency is concerned

with scheduling the functional components of the microarchi-

tecture as well as the connecting data paths to ensure that

..

129

no two microoperations are attempting to use them at the

same time. Instruction dependency involves making sure that

* two microoperations may be placed in the same microinstruc-

tion without interfering with the encoding of either opera-

tion. Violation of any of these dependencies can result in

incorrect results from a sequence of microinstructions.

Conventional machine languages are implemented in emu-

lators which are created using the microarchitecture of the

machine. These machine instruction sets form a general pur-

pose architecture which can be used in mapping operations

from high-level programming languages to the low-level

microarchitecture. In implementing these instruction sets

microprogrammers take great care in compacting the micropro-

grams which implement each individual machine instruction.

However, since the machine language programmer can place the

machine instructions in any order and consequently the

microprograms may be executed in any order the emulator can-

not be compacted across instructions.

The equivalent to compacting across instructions can

be gained in ATOM. When each architecture for an execution

environment is created the res-.i is a series of microopera-

tions which must be performed. These microoperations can

then be compacted to form the microprogram to implement the

architecture for the execution environment. The compaction

Lcan occur across the entire problem oriented architecture

description since the complete ordering of microinstructions

" *..:* * : " ' - ° i I " "... , - , . * ,

130

is known. Currently, there are two classes of techniques

which have been used for compacting microprograms.

The first technique is called local compaction and

involves compacting only within individual basic blocks of a

microprogram. This technique as documented in [27] can pro-

vide a performance improvement in a microprogram by a factor

of 2 to 3. The second technique involves not only indivi-

dual basic blocks but also the flow of control between these

blocks. This technique is called global compaction. Recent

advances by Fisher [13] have shown that through careful

examination of execution paths of microprograms near optimum

compaction can be determined. This technique is called

trace scheduling. Nicolau and Fisher further state in [321

that if certain types of dependencies such as indirect

memory references and conditional branches can be eliminated

from programs, performance improvement can be enhanced even

more. Studies of this technique have demonstrated perfor-

mance improvements by a factor of 3 to 1000 in scientific

and numerical applications.

The result of this analysis is that in horizontal

microarchitectures ATOM can provide a significant speed-up

in microinstruction execution time. Vertical microarchitec-

tures on the other hand are limited to speed-ups which can

be derived using common compiler optimization techniques.

The technique of compiling from a high-level programming

language to vertical microcode has been demonstrated by

131

Ellison in [12]. This same paper presents an algorithm

which further converts the vertical microcode to equivalent

horizontal microoperations and compacts them to a near

optimal microprogram. More evidence as to the feasibility

of using high-level language to microcode compilers in

cooperation with microcode compaction is documented by

Fisher in [14].

Microprogramming Architecture Requirements

The contemporary usage of control store has been as a

static device which contains programs which are deemed to be

well tested and have proven to be reliable. This stems from

the fact that control stoxes have typically been used for

instruction set emulators, language or application accelera-

tors, and operating systems assists. The advent of problem

oriented architectures however, has raised the level of use

of control store from a relatively static to a dynamic dev-

ice. The implementation of ATOM will turther elevate con-

trol stores from their unique position into being just

another, and perhaps more visible level in the programming

architecture. In support of this environment the microar-

chitecture will be required to be more flexible and to pro-

vide more protection than is common in microarchitectures

today. This section looks at several areas which will

affect microarchitectures which implement ATOM.

132

Maekawa in [29] has examined some of the requirements

which microarchitecture must meet in order to support a wide

spread exploitation of user microprogramming. These

requirements form a nucleus for implementation of the ATOM

facilities. Within these requirements are listed control

store protection domains, multiple execution modes and

privileged microinstructions, and microcode trap and super-

visor calls. These facilities on the machine architecture

level provide the means of implementing common operating

system functions on current computing systems. Facilities

like these will allow implementation of new user support

features in the microarchitecture of machines implementing

ATOM.

The implementation of protection domains through the

use of privileged instructions is an interesting aspect of

the requirements of new microarchitectures. In vertical

microarchitectures this task will be relatively simple, how-

ever in horizontal microarchitectures the degree of paral-

lelism and the low-level of microinstruction encoding will

make it difficult to verify protection facilities. In con-

temporary architectures, protection facilities are imple-

mented in microcode since it is usually a protected

resource. In ATOM the microarchitecture will simply become

another programming domain and consequently protection

facilities will need to be relocated. Multi-levels of con-

trol store may become more frequently implemented to support

---•- *.-. - *

133

new protection facilities. New microarchitecture protection

domains should be capable of implementing both separation of

users as well as controlled sharing of control store.

As discussed earlier in this chapter, there exists a

need to make control stores appear less cumbersome to use.

In this way users should not have to be concerned about

other users of the control store nor any of its physical

attributes such as size, timing considerations, or schedul-

ing. Some method must be found which allows the ATOM user to

ignore the possibility that part of the currently running

program may be migrated to control store. Making the con-

trol store appear as a virtual device will relieve the pro-

grammer from any hardware considerations relative to control

store. This requires a cooperation of hardware and

software. In hardware the protection facilities mentioned

before must be implemented while in software operating sys-

tem support must be provided in scheduling as well as in

L using the control store.

Changing the contents of control store in conventional

architectures is an action which does not occur frequently.

Therefore, little has been done to examine the overhead

involved and to implement hardware to improve the perfor-

.* . mance of control store loading. In ATOM the practice of pro-

*..- cessor context switching will possibly require changing the

contents of the control store. The result will be a large

increase in the frequency of control store loading and

K -

134

unloading. Consequently, methods for increasing the perfor-

mance of control store context switching are required.

One possibility is to implement control stores with

paging capability. In this architecture some low-level sup-

port software will be required for managing control store

page faults. The result however, is that only control store

pages and not the full control store will be changed during

a context switch. Foundation work in this area has been

accomplished in implementation of the B1800 [353 and

analysis of the adaptive instruction set computer [59]. The

performance improvement would be similar to the improvement

gained in machine architectures when paging is used rather

than swapping. A simpler method would be to implement mul-

tiple control stores with context switching being affected

by simply changing the designation of the current control

store. This technique would allow preloading of the control

store before the actual context switch was required.

Perhaps the most outstanding requirement under ATOM

will be the need for larger user programmable control

stores. If users are to migrate entire abstract data types,

it will become important to provide enough control store

space to support them. The paging solutions above for imple-

menting virtual control stores can also be applied to this

problem. Larger physical control stores also are more

feasible with the marked decrease in memory cost and large

increase in speeds and densities of semiconductor memories.

p

135

The implementation of ATOM as described will reduce

the large complex instruction sets of current architectures

to smaller, simpler instruction sets. These instruction

sets, which we have referred to as kernel instruction sets,

will provide a high-level architecture for use in implement-

ing functions which cannot be migrated. The facilities pro-

vided will therefore be similar to contemporary instruction

sets but will be simpler with fewer data types and opera-

tions. The result of this action is that that more control

store space will be available for user microprogramming

without actually enlarging the control store. A side-effect

of this organization is that the operations of the kernel

instruction set will be very simple. They will implement

subroutines which will be used in writing programs which

cannot fit into control store. As a result the kernel

instruction set will actually serve as a cache of service

routines which can be called from user programmable control

store as well as from the machine architecture. These rou-

tines can then be used as utility routines from the microar-

chitecture as well as an instruction set emulator from the

machine level architecture.

CHAPTER VI

IMPLEMENTING ATOM

Overview

In this chapter a partial implementation of an ATOM

environment is examined. The first section looks at the

difference between the proposed ATOM and the implemented

environment. The topics which are examined include program-

ming language, microarchitecture, and procedural differ-

ences. The following section highlights the language pro-

cessors involved in the implementation with a short discus-

sion of how they are implemented. The next section looks at

the performance estimation model and examines its use in the

implemented ATOM environment. In the last section a case

study of ATOM migration is presented. Shown in this section

are the effects of various computing environments on the

migration of a matrix abstract data type.

Proposed and Implemented ATOM

As stated above, the implementation of ATOM which is

discussed in this section is a sample implementation which

has been developed to demonstrate the feasibility of the
ATOM approach. The major differences between the imple-

mented and the preceding proposal are simulation of abstract

data types in the programming -uage, a vertical microar-

136

137

chitecture, and manual involvement in the ATOM architecture

synthesis algorithm. The following sections address these

differences.

Programming Language

In the description of the ATOM environment it was

shown that a comprehensive abstract data type facility is

required. This implementation of ATOM was accomplished on a

Perkin-Elmer 3220(PE-3220) using UNIX.1 At the time of this

implementation, there was no compiler available which could

directly support abstract data typing and the class prepro-

cessor for C [51] was also unavailable. As a result the pro-

gramming language C [26] was used to simulate many of the

language ftstures described in chapter III. Figures 23 and

24 show the equivalent C programs for the Ada COMPLEXNUMBER

package body and program MY-PROGRAM of figures 7 and 8,

respectively.

The lack of a comprehensive scope facility in the C

language prohibited implementation of an automated architec-

ture synthesis algorithm as described in figure 10. The

algorithm was modified to allow manual intervention and is

shown in figure 25. The flexibility of the language and the

availability of the data used in the compiler's symbol table

however, made up for this deficiency. Consequently,

1 UNIX is a trademark of Bell Laboratories.

- i.. X. . -, . 2 . -.

138

struct cmplx{
float real_part;
float imag part;

typedef struct cmplx *Complex;
complex setcomplex (b,c)
float b;
float c;

complex result;

result->real part =b-
result->imag part = c;
return(resulti);

* complex plus(a,b)
complex a;
complex b:

struct cmplx result;
result.real~pr =->real_part + b->real_part:
result.imag part = a->imag_part + b->imag_part;
return(&result);,

complex minus(a,b)
complex a;
complex b;

struct cmplx result;,
result.real_part = a->real_part - b->real_part;
result.imag -part = a->imag_part - b->imag_part;
return(&result);

complex times(a,b)
complex a;
complex b;

struct cmplx result;
reslt~ea_part = (a-ra_part b bra_part)-

(a-ma_part *big_part);

result.imag_part = (a->real_part * b->imag_part) +
(a->imag_part *b->real part);

return(&result);

Fig. 23--C Implementation of package COMPLEXNUMBER

139

#include "complex.c"
main()

copex{
complex yx;

complex result;

1* Call environment entry *
set-mu('complex.image%1);

/* Make calls as before */
x = setcomplex(l.234,56.789)7
y = setcomplex(56.789,l23.3333);
result = plus(x,y),
result = plus(x,y):
result = times(x,y);

Fig. 24--C Implementation of program MYPROGRAM

140

abstract data types were simulated rather than being

directly supported by the language facility. The conse-

quences of this action include simulation of derived and

generic data types as well.

Microarchitecture

The microarchitecture provided on the PE-3220 supports

a control store made up of 4k 32-bit words each containing a

single microinstruction. The first 2k words are dedicated to

the instruction set emulator as well as the microcode sup-

port of channels, console, and error recovery. The remaining

2k words form a writable control store which can be loaded

with user microprograms. The microarchitecture supports

vertical microinstructions which are generally in a one-to-

one correspondence with the microoperations. Memory access-

ing can be accomplished in parallel with arithmetic opera-

tions. The processor however, is placed in a wait state if

an attempt is made to access the memory data register before

the memory access is complete. The result of the vertical

nature of the architecture is that little compaction can be

achieved and thus little performance improvement can be

gained by reducing the number of microinstructions executed.

To support the ATOM environment, it is necessary to

implement the control store as a virtual device which can be

shared among many users. Winner and Reed in [60] describe

the technique which was used to provide this capability

-.

1 41

under UNIX. The technique involves treating a control store

image as an extension to the currently running process and

managing the image as part of the normal machine level exe-

cutable image. The control store is demand loaded upon the

initial entry of any scheduling quantum if a fault occurs.

The interrupt facility of the microarchitecture pro-

vides the capability to test for the presence of an inter-

rupt. Upon detection of the interrupt, the program is

responsible for saving the current state of both the

microarchitecture and the macroarchitecture and to relinqu-

ish the processor and control store to other processes. In

the current ATOM implementation, interrupts are checked only

when a microcode branching instruction is being executed.

If the branch is to an address less than the current control

store address then the interrupt status is checked, other-

wise processing continues regardless of the interrupt

status.

Memory protection is provided through the memory

access controller (MAC) of the machine level architecture.

In the microarchitecture memory accesses can be either

privileged or protected. In the privileged mode addresses

are considered to be physical addresses and are not checked

for addressing error until the physical memory access is

attempted. In the protected mode memory mapping is performed

by the MAC. This mapping includes bound checking as well as

virtual to physical address mapping. In ATOM all memory

142

accesses from microprograms are performed in protected mode.

In this way memory protection is not compromised in the ATOM

environment.

Implemented ATOM Synthesis Algorithm

The major difference in the proposed and implemented

ATOM environments involves the architecture synthesis algo-

rithm. The implemented algorithm is shown in figure 25 and

is contrasted with the ideal algorithm of figure 10. As can

be seen the new algorithm includes some manual intervention

in the process of synthesizing the problem oriented archi-

tecture for each execution environment. The intervention

involves reducing performance estimation data and determin-

ing for each execution environment which data types are most

appropriate for migration. From this determination the con-

trol store images can be built using the created microcode

source programs.

The programmer is responsible for inserting calls to

the execution environment gateway, set mu. The parameters

required are control store image file name and type number.

The control store image file is created by the programmer

using the source form of the microprograms as generated by

the microprogramming version of the C compiler. The pro-

grammer is responsible for collecting the correct source

statements for the abstract types to be migrated for an exe-

cution environment into a single source file. This file is

143

I Collect data about the execu-
- tion behavior of the program I
. using the performance estima- I
I tion model

I From the performance data, I
' determine the execution envi- I
I ronments and the types to I
I include in each control store I
I image

I Place a call to each new envi- I
- ronment (set mu) at the entry I
I to the appropriate scope in I
I the program I

I Compile the program and data I
I types using the microprogram- I
I ming version of the C compiler I
r saving the created microcode I
" source file

I Using the microprogramming I
I tools, create and link a
I control store image for each I
I execution environment I

Fig. 25--Implemented ATOM Synthesis Procedure

144

then compiled and linked by the microprogramming tools to

produce a loadable control store image. The type number used

" "in the call to set mu is produced by the logical OR of all

type numbers included in the control store image file.

These type numbers are assigned and reported by the

microprogramming version of the C compiler. When exiting

from an environment, another call to set mu must also be

used to cause the previous architecture to be reloaded for

return from the current environment.

Language Processcrs

As discussed in the previous section, the implementa-

tion of ATOM requires several language processors. The pur-

pose of these translators is to create microcode source

files and to compile and link them so that they form control

store images for representing problem oriented architectures

for each execution environment. The programs contained in

• . the language processing environment come from four sources.

The C compiler (cc), assembler (as), and loader (1d) are

standard UNIX programs and are documented in [30]. The

assembly language pre-processor (premicroc) and the micro-

code creation program (microc) were created to support ATOM

research and are described in [8]. The remaining tools,

microassembler (mas) and microlinker (mulnk), are discussed

in [41] and [64], respectively. Figures 26 and 27 show the

interaction between the functional elements of the language

145

processing portion of ATOM. Note that in these figures bro-

ken boxes represent programs, boxes made of "#" characters

represent files, and boxes made of "*" represent manual pro-

cessing.

In the implemented environment emphasis was placed on

speed of implementation rather than on performance of the

resulting system. As a result maximum use was made of

existing software. As can be seen from figures 26 and 27,

conventional UNIX compilers and language processors are used

where possible. The C compiler is initially used to create

assembly language source for the abstract data types. Each

abstract type is identified by being placed in a separate

source code file. These files are then identified by a nam-

ing convention so that the language processors can identify

the code which was generated by translating them.

Premicroc is responsible for scanning the assembly

language generated by the compiler and inserting gateway

routines and identifying certain constructs which are diffi-

cult to translate to microcode such as branches and switch

statements. The result of premicroc is an annotated assembly

language program for use in creating the microcode source

program. The annotations consist of labels which follow a

predetermined naming convention so that they may be handled

in special ways by microc.

146

########## ########## ##########

C # # C # # C
Source # ... # Source # . #. # Source
Code # # Code # # Code

. ########## ########## ##########

I ccI

b 1############

Assembly
Language
Source
Code
############---------- ---1

I premicroc I

#############

Annotated
Assembly
Language
Source
Code

• #############

I as I

I ld I

###i###########

Executable
Object
Program
+ I
Symbol
Table
######II#iiii

Fig. 26--ATOM Language Processors (Part 1)

* .*. --

147

-- - ----- ######|######

I microc I------ ># Executable #
Program

'- I#######|##$####
.-" ##############

Microcode
Source
Program
##############

* Manual *

* ~Image *

* Building *

I I I
############# ############# #############
Image # # Image # # Image
Microcode # # Microcode # # Microcode
Source # ... # Source # ... # Source

-. # Program # # Program # # Program #
"' ############# ############# ######1#######

I mas

I mulnk I
I

1###########
"' " # Control #

Store
Image

?. #############

a.r

a."2 Fig. 27--ATOM Language Processors (Part 2)

148

The annotated assembly language is compiled and linked

to create an executable program image. This image also con-

tains the symbol table information which is used by the UNIX

loader and do-iugging tools. Microc uses this same informa-

tion in microcode generation. Note that in the implemented

environment a programmer is responsible for inserting calls

to the environment gateway. This routine is called setmu

and is described in the previous section of this chapter.

Microc examines the executable program and using the symbol

table information, which contains the labels inserted by

premicroc, generates the microcode source for the identified

abstract data types. The source code created at this time

includes all identified abstract types as well as the entry

point logic required for entering and returning from the

control store. This code also contains logic for exiting

microstore for handling interrupts and returning to control

store when interrupt processing is completed.

The final stage of the language processing follows

manual manipulation of the created microcode source by the

programmer. The programmer is responsible for creating

microcode source files for each of the identified execution

environments. Each of these files must contain the control

store entry, exit, and interrupt handling code previously

described. After these files are created the programmer then

assembles them with the microassembler and links them with

the microlinker. At this time the images are ready to be

ro°

149

executed when loaded by the set mu calls and entered by the

programmers macrocode program.

Performance Estimation Model

One of the requirements for determining which abstract

types to migrate in ATOM is to have some knowledge of

resulting performance improvements which result from the

migration. In chapter III it was shown that the performance

improvement of ATOM is a function of decreases in fetch,

decode, and microinstruction execution time. These times

can be calculated by carefully examining a program to deter-

mine what instructions are executed and how frequently this

execution occurs. This estimation can be made for both a

conventional program and a program which contains abstract

data types which have been migrated by ATOM. The programs

which implement the performance estimation model were

created to support the ATOM environment and include an

assembly language preprocessor (asblock), an object code

scanning program (objblock), a data collection program

(blockcnt), and a data reduction program (model). Figures

28 and 29 show a schematic diagram of the performance esti-

* mation model and follow the same conventions as the previous

figures.

The first stage of the performance estimation model

involves the programs asblock and objblock. In this stage a

program is broken into its basic blocks. The basic blocks

m

* . * ** * * | - |, * * C ,m*

150

.. ########## ########## ##########

C # # C # # C
Source # ... # Source # ... # Source
Code # # Code # # Code
########## ########## ##########

iI I

I ###############
Routine

I asblock I ------- ># Description #
- - - - - File #

:, i ###############
..- ############

Assembly
Language
Source
Code
############

as I

" ##############

Executable
Object
Program
##############

I objblock I

.- ###############
Program
Description
File

###############

Fig. 28--Performance Estimation Model (Part 1)

151

are determined by examining the assembly language code

created by the C compiler for each identified routine.

Basic blocks are formed by dividing the assembly language

program into segments of code which have only one possible

entry point and one exit point. Each of these segments is a

basic block. Code is inserted at the entry point of each

block to count the number of times the block is entered.

Code is also inserted after the block exit to determine how

many times the conditional branch at the end of the block is

not taken. This is called the fall-through count. Note that

if the block does not terminate with a branch then the

fall-through count will always equal the entry count. The

routine description file produced in this phase lists the

basic blocks and the instructions which occur in these

blocks. Objblock scans the executable image and determines

the addressing modes and locations for each of the instruc-

tions. This data is necessary for calculating correct fetch

and decode timings. At the end of this first stage a com-

plete program description has been made and is included in

the program description file.

The second stage of the performance estimation model

is the running of experiments. The data collection program,

blockcnt, runs the executable image of the program to be

analyzed. When the program is complete, it signals blockcnt

that execution is finished and the resulting counts are

ready. Blockcnt extracts the block entry and fall-through

r152

i############### ###############

Executable # # Program
Program # # Description
Image # # File
############### ###############

I I--------------------- -- -------- ------

I blockcnt I

###############
Run

Description
File

, ###############

I model I

"" I I*II
-. ###############

Result
File *
###############

'. Fig. 29--Performance Estimation Model (Part 2)

153

V_.

counts from the program and incorporates these with the pro-

K. gram description file resulting in a run description file.

The result is a complete description of the experiment

including basic block, instruction, and block entry count

data. This is the information which is used for describing

the performance improvement which can be expected in migrat-

ing abstract types.

The third and final stage of the performance estima-

tion model is to run the data reduction program, model.

Model accepts the data collected in the previous phase along

with a cache hit probability supplied by the user and esti-

mates the performance of the migrated program. The first

step of this estimation is to determine analytically the

runtime of the macrocode version of the program. This is

done by summing for each basic block the amount of time

spent in fetch and decode as well as the number of microin-

L" structions executed in implementing the instructions of the

block. These results are then multiplied by the number ofL
entries for each block of the routine. The sum of the

resulting counts is then used in calculating total macrocode

program execution time.

The result of the above procedure is a complete pic-

ture of execution time including fetch, decode, and microin-

struction execution time. The fetch, decode, and microin-

struction execution count are machine dependent and can be

contained in tables passed to the performance estimation

154

model. Machine dependent fetch and decode times may be

passed either as absolute times or as memory fetch counts

and microinstruction counts for these operations. In the

current implementation the fetch and decode times are coded

in the program while the instruction information is passed

through a table.

Model's second step is to estimate the performance of

the migrated program version. This is done in much the same

way as the macrocoded version. The runtime of each routine

is initially set to the calculated value of gateway over-

head. This involves the number of fetches, decodes, and

microinstructions required to determine if the routine being

entered is in microcode. Added to this is the number of

microinstructions required to implement the routine. This

number is estimated by determining the number of microin-

structions needed to fetch the operands according to the

addressing mode of the instruction. This number is added to

the number of microinstructions required to implement the

instruction in the instruction set emulator. This sum forms

an upper-bound on the number of migrated microinstructions

to be executed. The estimated performance of a routine is

then formed by multiplying the number of block entries for

each block times the fetch, decode, and microinstruction

count for each block. A worst-case control store loading

factor of 2.25% of total execution time is then added to

155

each routine. This number was determined through empirical

*analysis of control store loading on the PE-3220 [6].

The expected performance improvement for each routine

can be calculated by the difference between the total

estimated runtimes for the macrocode and microcode versions

of the program. Figure 15 of chapter III shows the result-

ing output from running the model for the complex number

abstract data type. Figure 22 shows the results of the same

run but with an 85% cache hit ratio. The model also calcu-

lates a parameter which illustrates the amount of potential

savings for each control store word ubed. This parameter can

be used as a local profit estimation for the architecture

synthesis algorithm of figure 10. Note that in the imple-

mented performance estimation technique, pipelin.ng is not

modeled. Statistical models however, can account for pipe-

lined behavior and can be used in enhancing the model.

Cache size is modeled as a function of the cache hit proba-

bility parameter.

Case Study: Matrix

In the preceding sections an implementation of the

ATOM environment has been presented. In this section a case

-- study of migrating a matrix abstract data type is examined.

The abstract type being migrated is a matrix containing dou-

ble precision floating point numb,-s. The matrix is dynami-

cally allocated from the C heap by calls to the runtime sup-

156

port routine malloc. The storage is returned to the heap by

a call on the runtime routine free. These routines are part

of the C library and call the operating system only when

additional memory is required for expanding the heap.

The matrix package is implemented using the language

processors described in this chapter. The entry points of

the matrix data type are mopen, assign, retrieve, mclose,

and multiply. Mopen and mclose allocate and free the

storage required to store an array of the given size. The

numbers of rows and columns are passed to mopen as parame-

ters. As mentioned before, mopen and mclose interface with

the C library as well as UNIX for maintaining the C sup-

ported heap. The function of assign and retrieve are to

store and retrieve data from the matrix. Assign is called

with three parameters which describe the value to be

inserted into the matrix and the row and column of the

designated item. Retrieve is a function which returns the

- value indicated by its row and column parameters. Multiply

uses open, assign, and retrieve to create a new matrix

formed by the product of the matrices passed as parameters.

Multiply returns a pointer to this newly created array.

Seven programs were used in the experiments listed in

figure 30a. The first set of three programs used the matrix

abstract data type but were not concerned with environment

* switching. The second set of three programs also used the

matrix data type but in addition changed execution environ-

157

Run Control Store Control Store Environment
Number Contention Sharing Switching

1 No No No
2 No No No
3 Yes No No
4 Yes Yes No
5 No No Yes
6 Yes No Yes
7 Yes Yes Yes

a) Experiment Description

Program Rows Columns User System Elapsed
Name Time Time Time
micromat IU U .1 .:U

20 20 .6 .4 :02
30 30 2.0 .4 :05
40 40 4.6 .4 :10
50 50 8.9 .4 :19
60 60 15.4 .4 :32
70 70 24.3 .5 :50
80 80 36.1 .5 1:14
90 90 51.3 .5 1:44
100 100 70.2 .5 2:22

macromat 10 10 .1 .1 :01
20 20 .7 .1 :02
30 30 2.3 .1 :05
40 40 5.4 .1 :11

50 50 10.4 .1 :21
60 60 17.9 .1 :37
70 70 28.3 .2 :58
80 80 42.1 .2 1:25
90 90 59.8 .2 2:01

100 100 81.9 .3 2:46

b) Run #1 Results

Fig. 30--Matrix Test Runs (Part 1)

158

ments. This included loading a new architecture and restor-

ing the previous architecture on return from the called

environment. The additional architecture which was needed

for environment switching was of the same size and complex-

ity as the matrix abstract data type. The first set of pro-

grams create a new matrix and perform a single matrix multi-

plication storing the results in a newly created matrix.

The programs involved were macromat, micromat, and

micromatu. These programs represented the macrocode,

migrated, and migrated but unshared microcode programs,

respectively. All three programs accomplished identical

processing.

The second set of programs included macromatenv,

micromatenv, and micromatenvu. These programs represented

the macrocode, migrated, and migrated but unshared microcode

programs, respectively. These three programs accomplished

identical p-ocessing. The major difference in this set of

programs and the former set is that environment switching

was included in the latter ano was not included in the

former. The final program, looper, was used for artifi-

cially loading the system to simulate interaction with other

programs running concurrently with the test environment. In

the figures depicting experimental results, user and system

time are reported in seconds and are actual processor utili-

zation times. Elapsed times are reported in minutes and

159

seconds and are a measure of actual program run time. Each

of the seven experiments will be disussed individually.

The purpose of the first experiment was to evaluate

the performance of an ATOM migrated program in relation to a

macrocode program which performed the same processing. In

this experiment simple matrix multiplication programs were

used for varying matrix sizes. Figure 30b illustrates the

results of the experiment. As would be expected the perfor-

mance improvement for both processor and elapsed time is

small where the matrix size is small. This is due to the

overhead of loading the control store and the limited oppor-

tunity for performance improvement caused by small matrix

sizes. The performance was degraded for very small matrix

sizes since control store loading ovLerhead was not regained.

In general the performance improvement increases as proces-

sor activity increases and seems to approach a limit of

approximately 14%. Also no e that the system time is always

higher for the migrated version. This factor is due to the

additional control store management overhead involved when

running ATOM programs.

Experiment two was designed to evaluate the influence

of background processing when running ATOM programs. In

this experiment the same matrix multiplication programs were

run as in the first experiment, but this time the background

program looper was also run. Figure 31a presents the

results from running the macrocode and migrated versions of

160

Program Rows Columns User System Elapsed
Name Time Time Time
micromat Iu iU .1 .4 :UI

30 30 2.0 .4 :06
50 50 8.9 .4 :34

100 100 70.1 .5 4:40

macromat 10 10 .1 .1 :01
30 30 2.3 .1 :07
50 50 10.4 .1 :38
100 100 82.0 .2 5:26

a) gun #2 Results

Program Rows Columns User System Elapsed
Name Time Time Time
micromatu/
micromat 100 100 70.8 .6 7:04

macroma t/
macromat 100 100 82.1 .2 8:07

b) Run #3 Results

Program Rows Columns User System Elapsed
Name Time Time Time
mcromati
micromat 100 100 70.4 .2 6:58

," macromat/
macromat 100 100 82.0 .2 8:07

-W c) Run #4 Results

Fig. 31--Matrix Test Runs (Part 2)

Of ,% -

161

the matrix program in the presence ot background processing.

Note that once again small matrix sizes resulted in a per-

formance degradation rather than performance improvement.

Performance improvement for larger matrix sizes however,

once gain appeared to approach the 14% figure. Also notice

that as expected, processor time did not change but elapsed

time increased due to the presence of background processing.

Experiment three examined the interaction between two

ATOM programs running concurrently without sharing the con-

trol store. In this case both programs were performing

similar processing however, their control store images

although supporting the same execution environment, were not

sharable. In addition the looper program was also running

to provide additional background processing. The results of

this test are shown in figure 31b. The processor times are

close to the values determined in runs one and two but the

elapsed times differ greatly. This is due to the contention

of the two programs in the scheduling of the control store.

Run four is basically the same experiment as run three

but with sharable control store images. The results of this

test are shown in figure 31c. Note that the sharing of

images provides some degree of performance improvement,

although relatively small. The major difference in these two

runs involves the decrease in the amount of system time in

the two programs. The decrease comes from decreased overhead

in managing two separate control store images when sharing

V -

-i _ , . , - - - - - - - _, : - -.. -.

162

is allowed. The percentage performance improvement in both

cases *s near the 14% factor mentioned before. The proces-

sor and elapsed time performance improvements were similar

in both cases, 12.8% processor and 12.9% elapsed for the

unshared case and 14.1% for both processor and elapsed time

in the shared case.

The final set of tests were designed to examine the

overhead involved in managing the control when execution

environments frequently change. The following programs per-

form matrix multiplication but for each program invocation

ten environment changes are executed. After each environ-

ment change one entry into the control store is made to

ensure that demand loading occurs. When the control store

is exited the matrix execution environment is restored and

another matrix multiplication occurs. This process is

repeated ten times. The macrocode version performs the same

processing with the exception that no environment switching

overhead is incurred.

Run five demonstrates the overhead involved in per-

forming this architecture switching. The results of this run

are shown in figure 32a. In this run only the macrocode and

migrated versions are running with no additional background

processing. The system time increase in the migrated ver-

sion is the expected result of additional control store

management overhead. Once again with smaller matrix sizes

performance improvement is small, while at larger matrix

Ii- - .- "

163

sizes performance improvement improves. For matrices with

50 rows and columns, the performance improvement with

environment switching is only slightly less than in the

non-switching environment, 11.2% as opposed to 11.4%.

Elapsed time improvement however, is greater with 11.8% per-

formance improvement in the switching case and only 9% per-

formance improvement in the non-switching case. This

difference is a result of added overhead in loading the new

architecture and restoring the old architecture on exit from

the new execution environment.

Runs six and seven investigate the effect of sharing

control store images with environment switching in the same

way that runs three and four investigated this effect with

no switching. The results shown in figures 32b and 32c are

similar. Elapsed times remain approximately equal with a

decrease in system time as a result of the decrease in con-

trol store management overhead. An interesting phenomenon

is the decrease in the system time from run five to runs six

and seven. In run five no background processing occurred

while in runs six and seven looper was running. It appears

that this is an artifact of the UNIX time accounting algo-

rithm which causes the high system time for the single pro-

gram run. Again a marked increase in elapsed time was evi-

dent in moving from a single program to a multi-program,

shared environment.

K 164

Program Rows Columns User System Elapsed
Name Time Time Time
micromatenv 30 30 19.8 3.1 :47

40 40 46.3 3.1 1:40
50 50 89.6 3.1 3:08

macromatenv 30 30 23.0 .2 :47
40 40 53.8 .2 1:50
50 50 104.2 .2 3:31

a) Run 45 Results

Program Rows Columns User System Elapsed
Name Time Time Time
micromatenvu/
micromatenv 30 30 19.9 1.9 2:07

50 50 90.0 2.0 9:08

macromatenv/
macromatenv 30 30 23.0 .2 2:14

50 50 104.2 .2 10:23

b) Run #6 Results

* Program Rows Clns Ue Sytm Elapsed

*Name Time Time Time
* micromatenv/

micromatenv 30 30 19.9 1.5 2:05
50 50 89.6 1.7 9:02

* macromatenv/
macromatenv 30 30 23.0 .2 2:14

50 50 104.2 .2 10:25

* - c) Run #7 Results

Fig. 32--Matrix Test Runs (Part 3)

I, 165

These seven tests indicate that the ATOM facility as

currently implemented can provide some degree of performance

* , improvement. There are two interesting points which must be

emphasized. In the implemented environment microcode is

being generated from an examination of the executable

machine language program. As a result the generated

microprogram is a mirror image of the machine language. The

problems which degrade performance for machine language pro-

grams also remain for a microprogram generated in this way.

The generated microprogram must include additional

microcode for fetching operands since on the implemented

machine this is done by the decoding hardware for machine

level instructions. The result is that a larger number of

microinstructions is executed for each machine level

instruction than is executed by the instruction set emula-

tor. The vertical nature of the microarchitecture also

prohibits microcode compaction and therefore eliminates

another source for performance improvement. The resulting

performance improvement can therefore be seen as only a

',* lower-bound to the amount of performance improvement which

can be expected in a more complete implementation of ATOM.

In the analysis and implementation of ATOM other

r abstract data types were also examined. A stack was the

first abstract type studied. Two stack operations, pop and

push, were migrated for a stack of integers. These opera-

tions were by nature very sir, ie and each involved only two

V. * ..
-

- *

166

C source language statements of executable code. In the

stack implementation no performance improvement was noticed

until a very large number of calls had been issued. This was

due to not overcoming the control store loading and manage-

ment overhead until a significant amount of time had been

spent in the control store.

The effect of algorithm design once again became evi-

dent during this study. When the code which controlled the

iteration for the test program was migrated the performance

improvement rose significantly. This was due to two fac-

tors. The first factor involved the control abstraction for

iterative processes. To implement the iteration in control

store meant that not only was the body of the loop migrated

*but also the code which caused the loop to occur. Since the

loop body was small, the relative amount of code migrated

with the for statement was large.

The second factor, which was the more significant,

involved trading many control store entries for one entry.

In the original migration, for each iteration a control

store entry was made for each call on one of the stack pro-

cedures. In the fully migrated version, just as many pro-

cedure calls were made but this time the calls were within

mi,.roc-de rather than between the macrocode and microcode

levels. The lesson to be learned is that in migrating func-

tions in ATOM, one should be aware of the implications of

167

logically grouping statements into procedures which will

become candidates for migration.

Another study migrated the entire C string library. In

a program which called each of the six routines of the

library once for a variable number of iterations, perfor-

mance improvement started to be evident with a much smaller

number of iterations than in the stack case. This was due to

the fact that each of the string routines consumed more pro-

cessor time than either of the two stack routines. The con-

trol store loading overhead was overcome early in this way.

In order to examine the effect of migrating more com-

plex data types, two of the previous data types, stack and

matrix, were merged to form a stack of matrices. For large

50x50 matrices the same performance improvement as was gen-

erated by the simple matrix example seen in the case study

was produced. In the light of the stack results this was not

surprising. The contribution of the stack routines to the

overall performance improvement was negligible and conse-

quently the results were similar to the matrix example taken

alone.

b.

Li

CHAPTER VII

CONCLUDING REMARKS

Summary

As stated in chapter II, the goal of this research is

to investigate the feasibility and applicability of migrat-

ing abstract data types into the architecture of a micropro-

grammable computer through dynamic microprogramming. A

secondary goal is to allow the use of modern programming

practices without excessive runtime costs. The reason for

performing this research is to find better ways to overcome

problems in mapping high-level programming languages onto

the architectures of conventional computer systems. The

method used for enhancing this mapping is to form problem

oriented architectures which are more closely related to the

problem being described by programmers than are conventional

architectures.

In order to accomplish this research a background

study was accomplished and is reported in chapter I. This

background analysis examined four related areas which

affected this study: computer architecture, dynamic

microprogramming, data abstraction and encapsulation, and

vertical migration. It was shown that an integration of key

* aspects of each of these areas into a single composite

168

169

facility can provide a vehicle which can be used to allow

abstract data types to be used as the unit of migration in

forming problem oriented architectures. A detailed outline

of the technique for using abstract data types was then

given. A first step in this discussion was to examine other

techniques which had been used to form problem oriented

architectures. Three techniques, instruction sequence, func-

tion oriented, and a hybrid of these two, were discussed.

In the discussion of these migration techniques, it

was shown that they are oriented to global solutions for

individual programs and ignore the possibility of applying

problem oriented architectures to execution environments

within programs. These techniques use only a small part of

the available information concerning program behavior pro-

vided by programming language semantics when creating prob-

lem oriented architectures. The ATOM technique was shown to

be a more complete method which utilizes information pro-

vided by the programmer through language constructs which

are related to data abstraction. For these reasons ATOM was

shown to be a more informed method for describing problem

oriented architectures for programs which exhibit a high

degree of execution locality.I
Another concept which was considered in the discussion

of ATOM is the notion of binding and how it relates to com-

puter architecture. In this discussion it was shown that the

process of architecture binding is performed in all com-

6i 170

puter architectures. The binding process for conventional

architectures however, is performed only once when the

machine architecture is being designed. This binding is

fixed and all programs must be mapped to the architecture

resulting from it. In ATOM however, this binding is made at

two levelsi decisions at each of these levels are made with

information concerning the specific problem being solved by

the programmer.

High-level binding was shown to be the process of map-

ping execution environments to the architecture which could

most closely represent the problem. This architecture,

unlike that of conventional machines, is not fixed but is

synthesized to support directly the program being modeled by

the programmer. The low-level mapping was then shown to be

the method used in implementing the high-level architecture

synthesized in the previous step. Again, this binding is

program specific and avoids the excessive generality which

causes decreased performance in instruction set emulators.

Since a secondary goal of the research involves per-

formance issues, an analysis of the performance improvement

expectations of ATOM was the next topic covered. In this

analysis a set of performance criteria was established and a

study of the effect of ATOM on these was undertaken. It was

shown that ATOM can provide a degree of performance improve-

ment due to decreases in fetch, decode, and microinstruction
execution time. This performance improvement depends on the

171

degree to which the program exhibits execution locality. For

programs which enter a locality and remain there for a long

period of time, the performance improvement will be greater

than for programs which do not establish strong localized

behavior.

In the original analysis of ATOM, it quickly became

evident that a conventional programming language which sup-

ported abstract data types should be used. This is motivated

by the desire to make the problem oriented architecture syn-

thesis process as transparent as possible t, the user.

Furthermore, it is desirable to allow both migrated and

non-migrated functions to be described in the same way to

facilitate program reliability and maintainability. As a

result of the decision to use conventional programming

languages, an analysis of their effect on ATOM was under-

taken. In this analysis it was shown that language scope

facilities directly affect the ability of ATOM to synthesize

problem oriented architectures.

Languages which have complex scope rules can describe

to a greater degree the abstract data types which are of

most interest in each program locality than can languages

which support only limited scopes. An example of the differ-

ences between Ada and Pascal scope rules illustrated this

point. The two concepts of derived and generic data types

were also examined in light of how they may affect ATOM. It

was shown that derived types can be implemented in ATOM and

172

that a reasonable distinction can be made between the appli-

cability of migration of both derived and parent types.

Generic data types were shown to provide new types for con-

sideration by the ATOM architecture synthesis algorithm.

The effect of machine architecture was the next topic

presented. This study highlighted the effects of different

machine implementation considerations on ATOM. The first

areas covered were the system-level architecture considera-

tions, multiprogramming and multiprocessing. It was shown

that ATOM can reduce the number of memory accesses caused by

instruction fetching and in this way can increase the amount

of excess memory bandwidth. It was also shown that sharing

of control store images can further improve the performance

of ATOM in multiprogramming environments. Also briefly dis-

cussed was the problem of scheduling in a multiprocessing

environment where each processor in the system has an

independently loadable control store.

The low-level implementation issues were then dis-

cussed. It was shown that processor implementation tech-

niques such as pipelining and cache memories can decrease

the amount of performance improvement which can be expected

with ATOM. It was also shown however that in certain cases,

ATOM can still improve performance significantly by reducing

C' the amount of generality required in program execution and

as a result reduce the number of microinstructions executed.

173

The effect of microarchitecture on performance improvement

expectation was also discussed.

It was also shown that horizontal architectures, due

to their inherent parallelism, provide a greater opportunity

for performance improvement than vertical architectures.

The effect of compaction in horizontal machines was shown to

be the major source of performance improvement opportuni-

ties. A further discussion derived the requirements for

future microarchitectures in support of ATOM-like architec-

tures. It was shown that features similar to those which

allowed multiprogramming at the machine architecture level

are required in any microarchitecture which supports

widespread user microprogramming. These facilities include

control store sharing and protection, microcode trap and

supervisor call facilities, and privileged microcode execu-

tion modes.

To support the analysis of ATOM, a partial implementa-

tion was described. This implementation includes a modified

architecture synthesis procedure which makes use of a per-

formance estimation model and microprogramming tools. The

performance estimation model was implemented to support ATOM

and describes in detail the behavior of a macrocode program

and estimates the performance behavior of the same program

when implemented with ATOM.

The microprogramming tools used in this implementation

include a microcode compiler for the C programming language

174

and a linker/loader facility for a microprogramming environ-

ment. A detailed case study was shown which describes the

behavior of a matrix abstract data type in several execution

environments. This abstract type was migrated to control

store using the implemented ATOM facility. A performance

analysis showed that even in the absence of complex migra-

tion tools and in an entirely vertical microarchitecture a

significant performance improvement could be expected with

ATOM.

The Significance of ATOM

The major effect of ATOM is that it provides a new

method for describing units of vertical migration. ATOM

exploits the intuitive notion that if a programmer describes

a data type and operations on that type then there must be

something special about the objects of that type. The ATOM

technique assumes that the programmer is describing those

data types which are the primitive types of the problem

solution. In conventional architectures the decision as to

Nwhat data types should be supported in the architecture is

* * made by the computer architect. In ATOM this decision is

influenced by the programmer who knows what data types are

actually needed for the particular problem at hand.

In other techniques for architectural redefinition,

the unit of migration is dependent upon program function. In

the techniques shown in chapter II, instruction sequences

175

are shown to be the unit which is migrated. There is no

logical interaction described between these instruction

sequences. The result, therefore, is a collection of

independent program elements which have been selected for

migration based solely on their appearance in a program in a

certain order. ATOM on the other hand uses the programming

language semantics, used by the programmer in describing the

solution to a problem, as a basis for migration decisions.

The resulting decision therefore, is a closer representation

of the problem to be solved. This results in easier mapping

to the synthesized architecture. It also provides a firm

basis for reasoning about the program and its corresponding

problem oriented architectures.

Since ATOM utilizes programming language semantics, it

can exploit other modern programming practices such as

libraries and separate compilation. These migrated routines

can be maintained in both macrocode and microcode form and

can be migrated simply by environment gateway switching.

This is in contrast to other techniques which must recompile

entire programs to determine the problem oriented architec-

ture to be implemented. An architecture created in this

*latter way is a single, global solution to the mapping prob-

lem. ATOM on the other hand provides multiple problem

oriented architectures where needed for different execution

environments of a single program. ATOM also can account for

dependencies of migrated routines by using the semantics of

.-.

176

the programming language to determine where dependencies lie

and to what degree this dependency can be exploited.

The major significance of ATOM, therefore, is that it

provides a new method of reasoning about vertical migration

units. This reasoning can be applied when making migration

decisions, tuning applications, or even when designing pro-

grams. ATOM opens the way for more formal techniques to be

applied to the analysis of vertical migration decisions. The

same techniques which have been used to verify and analyze

program behavior can now be applied to programs which util-

ize vertical migration.

Directions for Further Research

In describing the basic ATOM technique, several areas

were discovered which require further analysis. The first

of these areas involves determining if a program exhibits

the proper locality behavior required for performance

improvement in ATOM. As shown in the implementation study of

chapter VI, a performance degradation can actually occur if

control store management overhead cannot be regained. This

is a function of the complexity of the migrated routines and

the number of times the routines are called. Further

analysis of program structure can possibly determine a

better measure of local profit. Local profit could then be

examined to determine if the migration candidate meets a

177

minimal performance improvement opportunity before it is

migrated.

The potential for library use in ATOM raises the pos-

sibility that repetitive use of a package can result in more

complete information concerning local behavior of the pack-

age. Since this information is an indicator of local pro-

fit, and since local profit is used in migration decisions,

a more effective migration decision can be made if this

empirical data can be collected. Heuristics can be described

which allow a program to tune its own execution environment

based on its behavior. This same information can also be

applied to library routines to allow other programs to bene-

fit from this performance analysis. Certain artificial

intelligence techniques can then be applied to assist static

migration decisions. Expert systems can be described to

utilize this information in moving the migration decision

closer to optimal results.

In chapter IV a discussion wab presented which looked

at data type design for implementation in an ATOM environ-

ment. In this discussion the notion of data type factoring

was shown to be a method for determining data types which

are more primitive than those originally designed by the

programmer. If ATOM could perform this factoring, the per-

formance improvement for each execution environment could

approach the performance improvement gained if the execution

environment was migrated using the instruction sequence

._.

|"- -

178

approach. Primitive type detection could be carried on in

much the same way as the instruction sequence method deter-

mines migration units. In this case each instruction

sequence could be examined to determine if it actually

implements a routine which operates on objects of a new

primitive type. If this were found to be the case, the same

reasoning applied to programmer described abstract data

types could also be applied to these newly discovered primi-

tive types. Iterative application of this procedure could

therefore find and implement the true primitive data types

for the problem solution being implemented.

One of the most interesting of the problems encoun-

tered in implementing ATOM was control store management. In

ATOM one of the most difficult decisions to make is which of

the abstract types for a particular execution environment to

migrate. The technique described in this research requires

that a static decision be made concerning the most appropri-

ate types to migrate for an execution environment. This

decision is requirea since a control store is a fixed size

resource and can hold only a fixed number of microinstruc-

tions. If all data types for an execution environment could

be translated to microcode and if the control store could be

managed like a cache, such as in the adaptive instruction

set concept [59], a completely dynamic binding could be

realized. The static decision would nc longer be required.

The combination of ATOM and the adaptive instruction set

179

concept could provide for dynamic problem oriented architec-

tures even in languages such as SNOBOL which have dynamic

scopes.

."- - - --.- - - - - - - -

LIST OF REFERENCES

1. A. M. Abd-Alla and D. C. Karlgaard, "Heuristic Synthesis
of Microprogrammed Computer Architecture," IEEE Transac-
tions on Computers Vol. C-23, pp.802-807 (1974).

2. A. K. Agrawala and T. G. Rauscher, Foundations of
Microprogramming -- ArchitectureSoftware, and A plica-
tions, Academic Press, Inc., New York, New York 1976).

3. H. G. Baker and C. Parker, "High Level Language Programs
Run Ten Times Faster in Microstore," ACM SIGMICRO
Newsletter Vol. 11(3&4), pp.171-173, MICRO- Proceec-
ings Thirteenth Annual Workshop on Microprogramming
(September-December 1980).

4. G. Booch, "Object-oriented Design," ACM SIGPLAN Ada
Letters Vol. 1(3), pp.I-3.64-76 (1982).

5. G. Booch, Software Engineering with Ada, The
Benjamin/Cummings Publishing Company, Inc., Menlo Park,
California (1983).

6. R. L. Booth, Cost To Load and Enter the WCS Under UNIX
With No WCS Cache Configured, Vanderbilt University,
-a1FviT1eFTennessee (August 1983). (Unpublished)

7. K. J. Butler, et. al., Revised DIANA Reference Manual,
Tartan Laboratories (June 1982).

8. E. M. Carter, A Microprogramming System Based on the C
Programming Language, Vanderbilt University TNovember
1983). Tech. Report CS-83-07

9. Y. Chu and M. Abrams, "Programming Languages and Direct
Execution Computer Architecture," Computer Vol. 14(7),
pp. 2 2 -3 2 (July 1981).

10. E. W. Dijkstra, A Discipline of Programming, Prentice-
Hall, Englewood Cliffs, New Jersey (1976).

11. K. A. El-Ayat and J. A. Howard, "Algoritms for a Self-
tuning Microprogrammed Computer," ACM SIGMICRO
Newsletter Vol. 8(3), pp.85-91, MICRO-10 Proceedings
Tenth Annual Workshop On Microprogramming (September
1977).

180

181

12. R. Ellison, MicroC: A High Level Microprogramming
Language, Southern Illinois University (July 1978).
Master's Thesis

13. J. A. Fisher, "Trace Scheduling: A Technique for Global
Microcode Compaction," IEEE Transactions on Computers
Vol. C-30(7), pp.478-490 (July, 1981).

14. J. A. Fisher, Very Long Instruction Word Architecture
and the ELI-512, Yale University (April, 1983).
Research Report YALEU/DCS/RR-253

15. M. J. Flynn, "Computer Organization and Architecture,"
pp. 17-98 in Operating Systems An Advanced Course,
Springer-Verlag, New York, New York-1979).

16. J. Gannon, et. al. , "Data-Abstraction Implementation,
Specification, and Testing," ACM Transactions on Pro-
gramiring Languages and Systems Vol. 3(3), pp.211-223
(July 1981).

17. C. M. Geschke, et. al., "Early Experience with Mesa,"
Communications of the ACM Vol. 20(8), pp.54 0 -5 5 2 (August
1977).

18. J. L. ,ieser and R. J. Sheraga, "On Horizontally-
Microprogrammed Microarchitecture Description Tech-
niques," IEEE Transactions on Software Engineering Vol.
SE-8(6) (September 1982).

19. J. Hennessy, et. al., MIPS: A VLSI Processor Architec-
ture, Stanford University Departments of Electrical
Engineering and Computer Science (November 1981).
Technical Report No 223.

20. M. Herlihy and B. Liskov, "A Value Transmission Method
for Abstract Data Types," ACM Transactions on Programr-
ming Languages and Systems Vol. 4(4), pp.527-551
(October 1982).

21. B. Holtkamp and H. Kaestner, "A Firmware Monitor To Sup-
port Vertical Migration Decisions In the Unix Operating

J System," ACM SIGMICRO Newsletter Vol. 13(4), pp.153-162,
MICRO-15 Proceedings Fifteenth Annual Workshop on
Microprogramming (December 1982).

22. J. J. Horning, "Some Desirable Properties of Data
Abstraction Facilities," ACM SIGPLAN Notices Vol. 8(2),
pp.60-63, Proceedings of Confcrence on Data: Abstrac-
tion, Definition, and Structure (March 1976).

182

23. J. Ichbiah, "Rationale for the Design of the Ada Pro-
gramming Language," ACM SIGPLAN Notices Vol. 14(6) (June

K 1979).

24. A. K. Jones and B. H. Liskov, "A Language Extension for
Controlling Access to Shared Data," IEEE Transactions on
Software Engineering Vol. SE-2(4), pp.277-285 (December
1976).

25. A. K. Jones, "The Object Model: A Conceptual Too) for
Structuring Software," pp. 7-16 in Operating Systems An
Advanced Course, Springer-Verlag, New York, New Ycr
(1979).

26. B. W. Kernighan and D. M. Ritchie, The C Programming
Language, Prentice-Hall, Englewood Cliffs, New Jersey
T1978.

27. D. Landskov, et. al., "Local Microcode Compaction Tech-
niques," ACM Computin Surveys Vol. 12(3), pp.261-294
(July-September 1980).

28. B. Liskov, et. al., CLU Reference Manual, Springer-
Verlag, Berlin (1981). Computer Science Lecture Series
No. 114

29. M. Maekawa, et. al., "Firmware Structure and Architec-
tural Support for Monitors, Vertical Migration and User
Microprogramming," ACM SIGARCH Computer Architecture
News Vol. 10(2), Proceedings Symposium on Architectural
Support for Programming Languages and Operating Systems.

30. M. D. McIlroy, UNIX Progra,- er's Manual, Bell Labora-
tories (September 1978). Seventi Edition

31. G. J. Myers, Advances in Computer Architecture, Wiley-
Interscience, New York, New York (1982).

32. A. Nicolau and J. Fisher, "Using an Oracle to Measure
Potential Parallelism in Single Instruction Stream Pro-

L- grams," ACM SIGMICcJ Newsletter Vol. 12(4), pp.171-182,
MICRO-14 Proceedi:igs Fourteenth Annual Workshop on
Microprogramming (December 1981).

33. M. Ohlin, The CLASS and Pointer Concepts in SIMULA,
Swedish Research Institute of National Defense, Stock-
holm Sweden (31 July 1975). C10045-M3(E5)

'*D- ~AIR FARCE STTTP OIETEDH DYNIC VPRERICAB MIRO()
jD~ ARi3 FO ASRACTE IENTEH DNAICTVTERIAS TON (U AF/O

I E MI CARTER DEC 83 AFIT/CI/NR-83-74D

UNC[LASSIFIED F/6 9/2 NL

NUESE

L3.2
116

111 11111

MICROCOPY RESOLUTION TEST CH-ART
NATIONAL BUREAU OF STANDARDS- 963-A

183

34. A. G. Olbert, "Crossing the Machine Interface," ACM SIG-
MICRO Newsletter Vol. 13(4), pp.163-170, MICRO-15
Proceedings Fifteenth Annual Workshop on Microprogram-
ming (December 1982).

35. E. Organick and J. Hinds, Interpreting Machines, North
Holland Publishing Co., New York, New York (19 .

36. D. L. Parnas, "On the Criteria to be Used in Decomposing
Systems into Modules," Communications of the ACM Vol.
15(12), pp.1053-1058 (December 1972).

37. D. A. Patterson and D. R. Ditzel, "RISC I: A Reduced
Instruction Set VLSI Computer," ACM SIGARCH Computer

• .Architecture News Vol. 9(3), pp.443-457, Proceedings
Eighth Annual Symposium on Computer Architecture (1981).

38. F. Pollack, et. al., "Supporting Ada Memory Management
in the iAPX-432," ACM SIGARCH Computer Architecture News
Vol. 10(2), pp.117-131, Proceedings Symposium on Archi-
tectural Support for Programming Languages and Operating
Systems (March 1982).

" 39. G. Radin, "The 801 Minicomputer," ACM SIGARCH Computer
Architecture News Vol. 10(2), pp.39--T, Proceedings Sym-
posium on Architectural Support for Programming
Languages and Operating Systems (March 1982).

40. T. G. Rauscher and A. K. Agrawala, "Dynamic Problem-
Oriented Redefinition of Computer Architecture via
Microprogramming," IEEE Transactions on Computers Vol.
C-27(11), pp.1006-1614-(November 1978).

41. J. E. Roskos, Microprogramming Tools for Perkin-Elmer
3220 UNIX, Vanderbilt University (December 1981). Mas-
ters Thesis

42. J. H. Saltzer, "Naming and Binding of Objects," in
Operating Systems, Springer-Verlag, Berlin (1978). Lec-
ture Notes in Computer Science, Nr. 60

43. J. E. Sammet, Programming Languages: History and Funda-
mentals, Prentice-Hall, Englewodd Cliffs, New Jersey
(1969).

44. M. Shaw, ALPHARD: Form and Content, Springer-Verlag, New
York, New York (1981).

45. R. J. Sheraga, User Microprogramming for the VAX 11/780,
JRS Research Laboratories, Orange, California 7De-cember
1981). Presented at 1981 Fall DECUS SymposiumI

184

46. M. Sint, "A Survey of High Level Microprogramming
Languages," ACM SIGMICRO Newsletter Vol. 11(3&4),
pp.141-153, MICWRO-13 Proceedings Thirteenth Annual
Workshop on Microprogramming (September-December 1980).

47. J. A. Stankovic, "The Types and Interactions of Vertical
Migrations of Functions In A Multilevel Interpretive
System," IEEE Transactions on Computers Vol. C-30(7),
pp. 505-51TC-uly 1981).

48. J. A. Stankovic, Structured Systems and Their Perfor-
mance Improvement through Vertical Migration, UMI
Research Press (1982).

49. J. A. Stankovic, "Good System Structure Features: Their
Complexity and Execution Time Cost," IEEE Transactions
on Software Engineering Vol. SE-8(4), pp.3O6-318 J
T8 -.

50. J. Stockenberg and A. van Dam, "Vertical Migration for
Performance Enhancement in Layered Hardware/Firmware/-
Software Systems," IEEE Computer Vol. 11(5), pp.35-50
(May 1978).

51. B. Stroustrup, "Classes: An Abstract Data Type Facility
for the C Language," ACM SIGPLAN Notices Vol. 17(l),
pp. 42-51 (January 1982).

52. J. W. Thatcher, et. al., "Data Type Specification:
Parameterization and the Power of Specification Tech-
niques.," ACM Transactions on Programming Languages and
Systems Vol. 4(4), pp.711-732 (October 1982).

53. M. Tokoro, et. al., "Optimization of Microprograms,
IEEE Transactions on Computers Vol. C-30(7), pp.491-504
(July, 1981).

54. A. B. Tucker and M. J. Flynn, "Dynamic Microprogramming:
Processor Organization and Programming," Communications
of the ACM Vol. 14(4), pp.240-250 (April 1971).

55. T. Weidner and J. A. Stankovic, "Vertical Migration," in
The Microprogramming Handbook, ed. S. Habib. To Appear

56. W. T. Wilner, "Design of the Burroughs B1700," pp. 489-
497 in 1972 Fall Joint Computer Conference Proceedings,
AFIPS Press, Montvale, New Jersey (1972).

[.%

185

57. W. T. Wilner, "Burroughs B1700 Memory Utilization,' pp.
* 579-586 in 1972 Fall Joint Computer Conference Proceed-

ings, AFIPS Press, Montvale, New Jersey (1972).

58. P. F. Wilk and G. M. Bull, "A Strategy, Method, and Set
of Tools For A User, Dynamic Microprogramming Environ-
ment," pp. 54-61 in Systems Architecture: Proceedings of
the Sixth ACM European Regional Conference, Westbury
House, Surrey, England 119.T

59. R. I. Winner, "Adaptive Instruction Sets and Instruction
Set Locality Phenomena," in Proceedings of IEEE Interna-
tional Workshop on Computer Systems Organization (March

60.1983).

60. R. I. Winner and L. B. Reed, An Overview of Sharing the
Control Store Under UNIX, Submitted to SOFTWARE: Prac-
tice and Experience, August 1983.

61. N. Wirth, Algorithms + Data Structures =Programs,
Prentice-Hall, Englewood Clifs, New Jersey (1976-T.

62. N. Wirth, "Modula: A Language for Modular Multiprogram-
ming," Software - Practice and Experience Vol. 7(1),
pp.3-35 (January 1977).

63. N. Wirth, Modula-2, Institut fur Informatik ETH, Zurich,
Switzerland (Decelmber 1980). Nr. 36

64. T. M. Wood, A Linker and Librarian for Vertical MiLra-
tion, VandergiIt nv--ity (Decemb-193. Raster's
Th-esis

65. D. B. Wortman, A Study of Language Directed Computer
Design, Computer Systems Research Group, University of
Toronto (December 1972). Technical Report CSRG-20

66. W. A. Wulf, "Reliable Hardware-Software Architecture,"
ACM SIGPLAN Notices Vol. 10(6), pp.122-130, Proceedings
Internatonal Conference on Reliable Software (June
1975).

67. W. A. Wulf, "Compilers and Computer Architecture," IEEE
Computer Vol. 13(7), pp.41-47 (July 1981).

68. W. A. Wulf, R. Levin, and S. Harbison, Hydra: C.mvp: An
Experimental Computer S stem, McGraw-Hill Book Company,
New York, New York (19)

'*'° , ., ,*. % -. * .

1

