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CHAPTER 1

INTRODUCTION

When loaded by ordinary traffic, Portland Cement Concrete (PCC)
pavements as well as flexible pavements with high strength base materials
(eg. soil-cement, econocrete, lime-flyash aggregate, etc.), display a
slab-type behavior. This behavior is characterized by the development of
significant flexural stresses and relatively low subgrade stresses.
These pavements may have longitudinal construction joints and/or
transverse joints. Transverse joints are typically sawed or constructed
for PCC pavements, but may also occur as transverse cracks in the case of
stabilized base courses. The presence of joints and cracks makes it
important to consider such factors as load placement (ie. interior,
edge, or corner), multiple wheel loading, load transfer, etc. and their

overall impact on pavement response and performance.

[}

"
l»
).

In the calculation of stresses in slab-on-grade pavements, it is

- necessary to idealize the characteristics of the supporting medium. In

P
o

general, one of two fundamentally different hypotheses concerning the
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properties of the subgrade is used. In the first of these theories, the
soil is regarded as an elastic, isotropic and ‘iomogeneous semi-infinite
body. The term “elastic so0lid” is often used to describe this
idealization. The majority of current analyses which treat the subgrade
as a semi-infinite, elastic half-space, employ axisymmetric models.
Thus, they are only applicable to the interior condition -ie. where the
load 1is away from any edge. Furthermore, most such analyses can only
handle a single~wheel load; exceptions include MWELP (61), BISAR (62), as
well as certain Pickett and Ray Charts (52). Accommodation of
multiple-wheel loads has not yet been achieved in the case of ILLI-PAVE
(16), a stress dependent (nonlinear), elastic model, described in Chapter

3.

In the other support characterization theory, the subgrade 1is
regarded as a flexible bed, with surface pressure proportional to surface
deflection at each point, while adjacent unloaded areas are not at all
affected. This idealization is commonly termed as a “dense liquid” or a
Winkler subgrade. Finite element program ILLI-SLAB (1,2) employs a
Winkler -type subgrade and can be used to study two-layer, cracked
pavement sections, load transfer by aggregate interlock and/or dowels,
variable slab thickness, variable subgrade support and complex
multi-wheel loading, at any position on the pavement. This model has
been validated and extensively tilized in various University of Illinois

studies (1,25,54).
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In the original version of ILLI-SLAB, the modulus of subgrade
reaction, k, obtained from the plate ioad test, is used for subgrade
characterization, This is in conformity with general engineering
practice, as well as several other finite element models. The value of k
can be varied from node to node according to a pattern specified by the
user at the beginning of the analysis. Note that k is independent of
stress/deflection level, being essentially a linear, low stress modulus.
Most subbase-subgrade support systems, however, display a stress-level
dependent load-deflection response. Typically, a softer (lower k)

response is exhibited at higher magnitudes of stress/deflection.

The purpose of this study is to develop deflection dependent support
relations and incorporate these into ILLI-SLAB to accommodate deflection
dependent subgrade behavior. Various models previously proposed are
reviewed in Chapter 2, with special attention paid to those that can be
used to simulate nonlinear subgrade response. Thompson and Robnett (13)
have proposed a resilient modulus characterization for the “elastic
solid” foundation, This not only introduces soil nonlinearity, but also
-perhaps more importantly-~ accounts for the apparent increase in subgrade
stiffness, produced by rapidly moving, repeated loads. The aim of this
study 1is to develop a similar resilient modulus characterization for the

“dense liquid” foundation.

Data for the development of the necessary algorithms are obtained
using ILLI-PAVE to simulate repeated plate loading tests, as described in

Chapter 3. Equations are derived relating the resilient modulus of




subgrade reaction, Kp, and deflection. Note that this is no longer the
modulus, k, derived from the static plate load test, but a modulus
characterizing subgrade response to a repeated (impulse-type) test. The
latter loading condition is considered more appropriate for the type of

moving loads applied by modern-day aircraft traffic.

Chapter 4 examines in more detail computer program ILLI-SLAB
currently used in pavement design and analysis, as well as several other
finite element programs. By comparing ILLI-SLAB results with those from
other programs and from Westergaard”s theory, the validity of the
ILLI-SLAB model is confirmed. A number of recommendations are also made

for its most efficient utilization.

The stress dependent subgrade algorithms developed in Chapter 3 are
incorporated into ILLI-SLAB through an iterative scheme. This change is
described, together with several other improvements, in Chapter 5.
Finally, typical results from the revised version of ILLI-SLAB are

presented in Chapter 6, where the effects of the proposed changes are

evaluated.
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2.1 LITERATURE REVIEW
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In this section, several models proposed for the characterization of
.. subgrade support systems --other than that of the semi-infinite, elastic
el half-space-— are reviewed. The emphasis is on models that could be used

to simulate stress dependent (nonlinear) subgrade response. The
!! resilient, semi-infinite half-space characterization developed by

Thompson and his co-workers (13), is discussed separately in Section 2.2.

: ’ff The simplest representation of an elastic soil medium is the Winkler ‘
Foundation (3). Winkler assumed the elastic foundation to be represented
by a bed of closely spaced, independent, linear springs. The stiffness
of the springs, generally referred to as the modulus of subgrade
s reaction, is usually denoted by the symbol k (psi/in.). The modulus of
- subgrade reaction relates the reaction pressure (q) to the deflection (w)

at a given location in the subgrade through the equation:
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q(x) = kw(x).
Most current rigid pavement design procedures are based on the Winkler

model.

The subgrade modulus, k, is calculated wusing data from 30-in.
diameter plate 1load tests (Fig. 2.la). ASTM standards (4) include
non-repetitive (ASTM D119) and repetitive (ASTM D1195) static plate load
tests. The Corps of Engineers (CE), however, only uses a non-repetitive
static plate load test (5). The Air Force Engineering and Services
Center routinely conducts plate bearing tests in its airfield pavement
evaluation activities. Correlations between k, CBR and soil
classification have been suggested by various agencies. These
correlations are widely used, since plate load tests are expensive and

time consuming.

A typical plate pressure - plate deflection relation for a
fine-grained soil shows a noniinear, stress softening trend (Fig. 2.1b).
The modulus of subgrade reaction is usually calculated using either the
CE or the PCA procedure. In the CE procedure (5), k is determined for a
plate pressure of 10 psi and the corresponding deflection. Using the PCA
procedure (6), k 1is evaluated at a plate pressure corresponding to a

50-mil (0.050-in.) plate deflection.

A more sophisticated representation of an elastic soil medium would
consider the nonlinearity of the springs and more accurately approximate

the stress softening behavior of a fine~grained subgrade. Two of the
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(a) Typical setup for Plate Load Test

k = 233 psi/in.

o

)
a,
o
Z
o 16 k = 166 psi/in.
- 3
39
- k = 315 psi/ip/
o
@
o o8 l
5 &
i < *“k = 199 psi/in.
L .
o k = 210 psi/in.
. 0 s 4 A ’e
‘:3 10 20 30 40 50 60
. Displacement, w (mils)
(b) Typical Plate Load Test Results (After Ref. 63)
o Fig. 2.1 Plate Load Test
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more widely wused nonlinear models in geotechnical engineering are the
hyperbolic and Ramberg-Osgood models. Both models were originally
developed to reconstruct stress-strain curves, but are easily adapted to

pressure~deflection data.

The hyperbolic model (7) assumes the plate pressure-deflection (p-w)

plot is a hyperbola (Fig. 2.2a). The equation has the form:

L b + aw

where “a” and “b” are empirical constants.

If the equation is rearranged, a relationship of the form:
1_w_
X - p - b + aw

can be obtained. On transformed axes (Fig. 2.2b), this equation plots as
a straight line with a slope of “a” and an intercept of “b”°. The term

(1/b) is equivalent to the initial stiffness, k.

The Ramberg-Osgood function (7) 1is usually expressed in the

following form (Fig. 2.3):

r
Y R 43 | P for first loadi..2
W p p
y y y
w-w  p-p P-p, T
> © - ° +a | 9 | for reloading
w 2p 2p
y y y
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where wy and py are the deflection and plate pressure at yielding,

respectively, and W, and P, are the extreme values of w and p for the
cycle. The values of the constants “a” and “r” must be determined
experimentally. The Ramberg-Osgood model is especially suited for cyclic

loading situations, where both the loading and unloading curves are of

interest.

A third model used to account for the nonlinearity of the subgrade
springs 1is an empirical equation developed by Butterfield and Georgiadis
(8). The basis of the equation is an idealization proposed by Burland
and Lord (9). The equation is characterized by three parameters: an
initial stiffness ko, a final stiffness k; and a pressure axis intercept

q, (Fig. 2.4). The form of the equation is:

q =9, (1-em{—(ko—kf)w/qu})+kfw

A major drawback of one-parameter models (including the Winkler and
nonlinear spring models) is their inability to adequately describe the
behavior of a half-space. In a physical sense, this means that no
deflection is possible outside the loaded area, as deflection at any
point is only a function of pressure at that point. In reality, some
deflection inevitably occurs outside the loaded area. It 1is this

inaccuracy that led researchers to look for a second parameter to

describe elastic foundation response (10).
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G, Subgrade -Reoction

w, Displacement

- Fig. 2.4 Parameters for Butterfield and Georgiadis Empirical Equation
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One of the earliest two~parameter models was the Filonenko—-Borodich
Foundation (3). In addition to the vertical springs which are common to
the one-parameter models, this foundation includes a stretched elastic
membrane (Fig. 2.5). The elastic membrane which is subjected to a
constant tension field of T is connected to the top end of the springs to
develop some interaction among them. The amount of interaction is a
direct function of T. The relation between subgrade stress (q) and

deflection (w) is of the form:

q = kw - TVzw

where 7 2 is the Laplace operator in x and y.

Another two-parameter model 1is the Pasternak Foundation (3).
Pasternak considered the existence of shear interactions between the
spring elements by tying the springs together at the top with a plate
consisting of incompressible vertical elements that deform only by
transverse shear. The relation between pressure and deflection is very
similar to that of the Filonenko-Borodich Foundation, with T replaced by

G (the plate shear modulus) so that:

q = kw - szw

Butterfield and Georgiadis (8), expanding on an idealization first
proposed by Engesser (l11) and using the Pasternak Foundation, developed a
loading equation using two stiffness parameters, one for the compression

springs and one for the shear springs. Engesser (11) proposed that for
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the case of a beam on an elastic foundation, the modulus of subgrade

reaction could be represented by an equation of the form:

k = a+ (b/B)

where “a” and “b” are constants and B is the breadth of the bean.
Butterfield and Georgiadis (8) suggested that the pressure applied on a
rigid square plate (BxB) is balanced by two sets of forces. The first is
the pressure due to the displacement of the vertical springs directly
beneath the plate and the second the shear force around the edge of the
plate, which is a direct function of the deflection of the springs in the

unloaded region (Fig. 2.6). The equation derived is:

w
o

q=tki + (4g>°/B) [ [paw/ /2] p dw ]
(o]

where q is the subgrade stress , W, is the displacement of the plate, k
is the compression spring stiffness and g is the shear spring stiffness.
Note that the second term is dependent on B, while the first term is not.
The parameters k and g are nonlinear functions of w, and are independent

of the plate size.

For a given displacement, thc above equation can be reduced to the

form:

with constants “a” and “b” directly dependent on k, g, and LA
Butterfield and Georgiadis (8) showed that the values of “a” and “b”

could be calculated for a given displacement from two different size
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. _’

plate tests. The values of k and g can then be back-calculated from “a

and “b”.

All of the models discussed previously, with the exception of the
Ramberg-Osgood model, were developed for static loading conditions.
However, it appears that these models may also be applicable for the
resilient subgrade response to repeated loading, since the
pressure—deflection plots for both loading conditions are very similar in
shape. Butterfield and Georgiadis (12) proposed a model that could
predict the cyclic load behavior of plates of any size from two in-situ
tests: a conventional plate bearing test and a single-load level cyclic

plate test. From these two tests, the following empirical equations were

developed:
Qc
ku = ko - C2 6: [1 + C3 log { N/(QC/QU)}] for unloading
Qe
kr = ko - Cl 6: for reloading

where k : initial stiffness;
ke: final stiffness;

: load axis intercept;

Q_.: cyclic load;

k_: reloading stiffness;

k : unloading stiffness;

C

1» €2, C3: experimentally determined constants;

N :number of cycles.




17

These equations can be used to predict the nonlinear response of a

plate for any number of cycles at any locad level.
2.2 RESILIENT, SEMI-INFINITE HALF-SPACE

2.2.1 General

The resilient behavior of a soil or material is an important
property for pavement analysis and design. A commonly used measure of

resilient response is the "resilient modulus", defined by:

g =D
R €

=]

where:
Ep: resilient modulus;
op: repeated deviator stress;

€t recoverable axial strain.

Repeated unconfined compression or triaxial testing procedures are
often used to evaluate the resilient moduli of fine-grained soils and
granular materials. Resilient moduli are stress dependent: fine-grained
soils experience resilient modulus decreases with increasing stress,

while granular materials stiffen with increasing stress level.

R
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2.2.2 Fine-Grained Soils

Two stress dependent behavior models have been proposed for
describing the stress softening behavior of fine-grained soils. The
arithmetic model is demonstrated in Figures 2.7 and 2.8, and the semi-log
model is shown in Fig. 2.9, Extensive resilient laboratory testing,
nondestructive testing, and pavement analysis and design studies at the
University of Illinois have indicated that the arithmetic model (Fig.

2.7) is adequate for pavement analysis activities.

In the arithmetic model, the value of the resilient modulus at the
break~point in the bilinear curve, E.. (Fig. 2.7), is a good indicator of
a s0il”s resilient behavior. The slope values, K, and K,, display less
variability and influence pavement structural response to a smaller
degree than Ep.., Thompson and Robnett (13) developed procedures for
predicting the resilient behavior of fine-grained soils based on soil
classification, soil properties, and moisture content. They suggested
the following regression equations relating ERi with static soil modulus,
E, and unconfined compressive strength, q:

Ep; =3.36 +1.9E
where: ERi =0.8 + 307 q,

ERi'E : Moduli, ksi

q,: Unconfined compressive strength, psi

It is seen that Ep: js substantially greater than static E, due to

the stiffer soil response to repeated, short-duration loads. The

ERi-deviator stress relations developed for Illinois soils

T
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Fig. 2.8 Typical Stress Dependent Resilient Behavior of a Fine-
Grained Soil [AASHTO A-7-6(36)].
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(Fig. 2.10), are representative of soils exhibiting stress softening

behavior (13). 1

2.2.3 Granular Materials

In contrast to fine-grained soils, granular materials stiffen as the
stress level increases. Repeated load triaxial testing is used to

characterize the resilient behavior of granular materials. The resilient

modulus is a function of the applied stress state, as follows:

Sl

ER = resilient modulus

[T

K , n = experimentally derived factors

[« ]
n

first stress invariant = 9y + 263

(Note: o0, = 04 in a standard triaxial compression test)

>y a—talan

Figure 2.11 is an Ep-¢ relation for a sandy-gravel (GW in the Unified

System).

Rada and Witczak (14) have summarized and analyzed statistically

A e

extensive published resilient moduli data for a broad range of granular
materials. The average values and ranges for K and n are presented in j

Table 2.1 for several granular materials and coarse-grained soils.
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o TABLE 2.1

TYPICAL RESILIENT PROPERTY DATA (14)

-
Granular Material Number of
. Type Data Points K* (psi) n*
tE: Mean Standard Mean Standard
: Deviation Deviation
R Silty Sands 8 1620 780 0.62 0.13
Sand-Gravel 37 4480 4300 0.53 0.17
o3 Sand-Aggregate Blends 78 4350 2630 0.59 0.13
v Crushed Stone 115 7210 7490 0.45 0.23
. * E_ = K8" where
a ‘
ER = resilient modulus, psi
i K,n = experimentally derived factors from repeated triaxial testing Jlata
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2.2.4 Other Materials

Stabilized materials such as soil-cement, cement-aggregate mixtures,

soil-lime mixtures, 1lime-flyash-aggregate mixtures and similar high

strength--high modulus materials are frequently used as base and subbase

layers. These materials are normally characterized as constant modulus

a8 materials.
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CHAPTER 3

DEVELOPMENT OF STRESS DEPENDENT SUPPORT MODELS FOR ILLI-SLAB

3.1 THE ILLI-PAVE MODEL

The data required for the development of an algorithm which would be
incorporated into ILLI-SLAB to account for stress dependent response of
typical subgrade soils, were derived by simulating repeated plate load
tests wusing finite element program ILLI-PAVE (16). This considers an
axisymmetric solid of revolution as shown 1in Fig. 3.1. The program
employs nonlinear, stress depend- 't material models (see Section 2.2) and
failure criteria for granular  materials and fine-grained soils
(15,16,17). The principal stresses in the granular and subgrade layers
are modified at the end of each iteration so that they do not e¢xceed the

strength of the materials as defined by the Hohr-Coulom. theory of

failure.
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Studies comparing measured and ILLI-PAVE predicted load-deformation
responses, reported by Raad and Figueroa (16), Suddath and Thompson (18),
Traylor (19), and Hoffman and Thompson (20), yielded favorable results.
The ILLI-PAVE approach has been successfully utilized in developing a
highway flexible  pavement overlay design procedure based on
nondestructive testing data analyses (2!), as well as mechanistic
thickness design procedures for secondary road flexible pavements (22)

and soil-lime layers (23).

3.2 SIMULATION OF RLPEATED PLATE LOAD TESTS

ILLI-PAVE was used to simulate repeated plate loading tests on
various subgrades. The rigid plate condition was represented by a &4-in.
thick steel loading plate (ES =30 x 106 psi). Plate diameters of 30,
21, and 15 in. were considered. Various plate pressures were applied.
For each loading condition, a resilient (recoverable) deflection was
determined from the ILLI-PAVE analysis. The resilient modulus of
subgrade reaction (KR) is analogous to k, but is calculated by dividing

the plate pressure by the calculated resilient plate deflection.

The four subgrade types introduced earlier (very soft, soft, medium,
and stiff) were investigated. Pertinent subgrade properties and
characteristics are summarized in Table 3.1. Resilient moduli-repeated

stress level relations for these subgrades are shown in Fig. 2.10.
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Unit Weight

(pcf)

Coefficient Earth
Pressure at Rest

Poisson's Ratio

ERi (ksi)

E, -~ Mode
(psi)*

Friction Angle

(degree

1

)

Cohesion, psi

* =
ER Ko

el

(E

R)
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TABLE 3.1

MATERIALS PROPERTY SUMMARY

TN PP P rerre—w

Subgrade

Very

Soft Soft Medium Stiff Gravel

110.0 115.0 120.0 125.0 135.0
0.82 0.82 0.82 0.82 0.6
0.45 0.45 0.45 0.45 0.38
1.00 3.02 7.68 12.34 -
- — - — 500089
0.0 0.0 0.0 0.0 40.0
3.1 6.5 11.4 16.4 0.0

K, and 6 in psi)

R
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Applied plate pressures ranged from 2 psi to nc psi (¢ is the
subgrade cohesion). Pressures larger than 7c are not of practical
interest, since at higher pressures significant permanent deformation

(rutting) will occur in the subgrade.

Plate pressure versus resilient displacement data are presented 1in
Figures 3.2 and 3.3. Resilient modulus of subgrade reaction (KR) versus
plate deflection relations for the various subgrades are shown in Figures
3.4 through 3.7. The subgrades show a definite softening behavior
(reduced Kp) with increasing pressures. The softening behavior is most
pronounced for the soft subgrade (Fig.3.5), where Kp at a pressure of nc
is approximately 60% of Ky at 2 psi. For a given plate pressure and
subgrade type, a decrease in plate size results in a stiffer plate

response (KR increases).

3.3 ALGORITHM DEVELOPMENT

The ILLI-PAVE plate pressure-deflection data were analyzed using
different theories and empirical equations described in Section 2.1,
above (Table 3.2). The Ramberg-Osgood model and Butterfield and
Georgiadis” cyclic plate-bearing model may be better suited for the case
where both the loading and unloading pressure-deflection curves .re of
interest. However, these models did not provide a good fit for ILLI-PAVE
resilient data. The hyperbolic model and Butterfield and Georgiadis’ two
parameter model did not adequately describe the ILLI-PAVE resilient

pressure-deflection data either.
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The empirical equation proposed by Butterfield and Georgiadis
! provided the best fit with the ILLI-PAVE data. This equation was
% modified for  presenting the ILLI-PAVE ©plate pressure-resilient
displacement data. A normalized deflection parameter (w/Dy) was
- substituted into the equation in place of w, where Dy represents the
i deflection at a plate pressure of wc psi (rc corresponds to the upper
oy bound for plate pressures considered in the ILLI-PAVE analyses). The
o resulting equation is:
W w
p=A [1-exp{-A G -4Ap} J+4, -4y +2
s y y
where:
- p : plate pressure;
w : plate deflection;
Dy : deflection factor for a given subgrade type (very soft; soft;
n medium; stiff);
Al’ Ag,... : subgrade constants.
- If this equation is divided through by the plate deflection, w, the
. p/w term is KR, the resilient modulus of subgrade reaction. The final
Kp algorithm is:
> w w
A [1-exp{—A2 G -A3) Fl+a, G- ay +2
- y Y
KR "
-
o
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Regression analyses were used to develop four equations (one for
each type of subgrade). The equation parameters for a 30-in. diameter
plate are summarized in Table 3.3, Values of the correlation
coefficient, R, standard error of estimate and coefficient of variation
for the equations are also presented in Table 3.3. To be consistent with

the subgrade resilient modulus-stress level relations (see Fig. 2.10),

Kp is assumed to be a constant for pressures less than 2 psi.

Note that the resilient modulus of subgrade reaction, KR’ obtained
from these algorithms, has values much greater than the corresponding
static subgrade modulus, k, for any given soil. This is consistent with
the observation that soils exhibit a much stiffer response when loaded by

rapidly moving loads, rather than static loads. A similar observation

was made earlier in relation to the values of ERi and static E (Section

2.2.2).

3.4 SUBBASE EFFECTS

——mEE s B e

A layer of granular material is frequently used as a subbase in PCC
pavement construction. The structural contribution of the granular
material layer is generally acknowledged by assigning an increased design

k to the granular layer-subgrade system (6,24).

L . . .
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Plate load tests, employing a 30-in. diameter plate on a granular
subbase-subgrade soil support system, were simulated using ILLI-PAVE.
The properties of the granular subbase (gravel) are listed in Table 3.l.
Three different granular subbase thicknesses (8, 16 and 24 in.) were
considered. The applied plate pressure was 2c (¢ = subgrade cohesion).
Figure 3.8 shows the effect of granular layer thickness on KR for each of
the four subgrades. It may be concluded that the introduction of a
granular subbase up to 8-in. thick, has a pronounced beneficial effect
on Ko, For higher thicknesses of subbase, the Kp-thickness effect
decreases with an increase 1in the thickness of the granular subbase.
Subbase thickness has only a slight effect within the 8 to 24-in.

thickness range considered. The comments made in the previous section

with regard to the seemingly high Kp-values, apply here as well.

Plate pressure effects were also evaluated for an 8-in. granular
subbase layer thickness and a "soft" subgrade type. Plate pressures of
¢, 2¢, and nc psi were considered., Comparative data for the no-subbase
and subbase conditions are shown in Fig. 3.9, Plate pressure has only a
nominal effect. The stress stiffening behavior of the granular material
counteracts to some extent the stress softening behavior of the

fine-grained subgrade.
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Fig. 3.8 KR - Granular Subbase Thickness Effects
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————em Sl = e s a2

The effect of a high strength/modulus subbase for a PCC pavement can
be considered by increasing k for the stabilized subbase-subgrade system.
This procedure is recommended by the Portland Cement Association and the

Federal Aviation Administration,

The ILLI-SLAB program considers the stabilized subbase as a fld ural
subbase beneath the PCC layer. This i1s a more desirable procedure than
using an increased k, since the elastic properties of the subbase and its

degree of bonding with the PCC slab can be considered.
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CHAPTER 4

THE FINITE ELEMENT METHOD AS APPLIED TO SLAB-ON-GRADE DESIGN

4.1 GENERAL

The determination of stresses and deflections in slab-on-grade
pavements with joints and/or cracks has been a subject of major concern
for several years. For many pavement structures it has been virtually
impossible to obtain analytical (closed form) solutions because of the
complexity of geometry, boundary conditions, and material properties,
unless certain simplifying assumptions are made. These, however, result
in a modification of the characteristics of the problem. Since all the
analytical (closed form) solutions are based on an infinitely large slab
with no, or at most one discontinuity, they cannot be applied tc analysis
of jointed or cracked slabs of finite dimensions, with or without load

transfer systems at the joints and cracks.
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With the advent of high speed digital computers, solution of these
complex structural problems has been greatly facilitated. One of the
most powerful methods that have evolved is the "Finite Element Method".
This method §f analysis 1is applicable to a wide range of complex,

boundary value problems in engineering.

In the Finite Element Method the system to be analyzed is
represented by an assemblage of subdivisions or discrete bodies called
"finite elements". These elements are interconnected at  specific
locations called '"nodes" or "nodal points". Functions are developed to
approximate the distribution or variation of the actual displacements
over each finite element. Such assumed functions are called
"displacement functions" or "shape functions". Relationships are then
established between these generalized displacements (usually denoted by
{d}) and the generalized forces (usually denoted by {p}) applied at the
nodes, using the principle of virtual work or some other variational
principle. This element force—displacement relationship is expressed in
the form of element stiffness matrices (usually denoted by [k]), each of
which incorporates the material and geometrical properties of one

element, viz.,

(k] {d} = {p}

The overall structural stiffness matrix, [K] is then formulated by
superimposing the 1individual element stiffness matrices wusing the
topological (element connectivity) properties of the structure. This

"global" stiffness matrix is wused to solve a set of simultaneous
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equations of the form:
(k] {D} = {P}
where:
{P} = applied nodal forces for the whole system;
{D} = resulting nodal displacements for the whole system.

Various models have been developed for analyzing pavement systems
using finite element (f.e.) techniques. A brief review of some of these

follows. -

4.2 THREE-DIMENSIONAL MODELS

All models reviewed in this study, except those described in the
present section, are basically two-dimensional finite element models.
The problem of a slab of finite dimensions on grade, however, involves
processes that take place in three-dimensional space. Therefore, the
response of the slab and the subgrade to loading, temperature and
moisture changes etc., ideally requires a three-dimensional finite
element model for accurate simulation. Nevertheless, there are several
advantages to simulating the three-dimensional effects using
two-dimensional finite element models. First, the difference in cost
between a three-dimensional and two-dimensional calculation of the same
mesh fineness can be several orders of magnitude depending on the size of
the problem. In the three-dimensional case, there is a higher chance
that any given mesh will exceed the memory core capacity of the computer.

Second, due to its much lower cost, it is practical in a two-dimensional
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analysis to increase the mesh fineness in selected =zones, thereby
increasing the accuracy with which the smaller scale phenomena can be
observed. Even more important is the fact that three-dimensional
analysis is beyond the state-of-the art of most engineering design
groups. If three-dimensional finite element analysis were to be
recommended as part of a standard pavement analysis procedure, it is

doubtful that many designers would make use of the procedure.

On the other hand, theoretical analyses involving three-dimensional
models are very desirable, not only in the investigation of those aspects
that simply cannot be handled by a two-dimensional method, but also in
providing helpful insight for the improvement and the better
interpretation of the results of two-dimensional analyses. For example,
the interaction between a 1loaded dowel and the surrounding concrete
constitutes a three-dimensional state of stress. This interaction
depends on the dimensions and elastic properties of the dowel bar and
concrete slab, as well as any looseness between the dowel bar and the
surrounding concrete. This makes the conventional dowel-concrete
interaction model employed in the two—~dimensional finite element programs
not applicable. In the original development of ILLI-SLAB, Tabatabaie and
Barenberg (25) performed a three-dimensional analysis of the concrete
slab near the joint and around the dowel, in conjunction with the
two-dimensional analysis of the jointed slab, to establish a realistic

dowel-concrete interaction.
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Such a two-stage analysis of the jointed pavement system provides a
more reasonable engineering approach. A two-dimensional analysis is
first performed, followed by a three-dimensional analysis of specific
limited segments of the pavements. Results from the two-dimensional
analysis are used as boundary conditions for the segments to be analyzed

using the three-dimensional analysis.

In the original ILLI-SLAB study (1), the solid SAP finite element
program developed by Wilson (26) was employed for the three-dimensional
analysis. Figure 4.1 shows a typical finite element mesh used for the
three-dimensional analysis of a small section of the concrete slab near
the joint and around a dowel bar. Three-dimensional, 8-noded,
isoparametric elements with three translational degrees-of-freedom (dof)
per node, originally developed by Irons (27) were employed to represent
the slab segment under study. The subgrade was idealized by spring
elements. Dowel bars were modeled as beam elements with flexural and
shear deformations. Either spring or elastic elements were used to
represent thé interaction between dowel bars and the surrounding
concrete. In the regions where the dowel bar exerted pressure on the
concrete, very stiff springs or very high elastic modulus elements were

used to simulate this contact condition.

As a result of this and later analyses, the dowel bar is wmodeled in
the two-dimensional ILLI-SLAB analysis by a bar element with one torsion
and one deflection degree-of-freedom. This is preferable to both the

original model, in which the bar element had one bending and one

[ R . S O OO PPN . 2T,
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Fig. 4.1 A Typical F. E., Mesh Used for 3-Dimensional
Analysis (After Tabatabaie, et al, 1979 - Ref. 1)
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deflection degree-of-freedom, and to a third choice, that of a bar

element with all three degrees—of-freedom.

Another three~dimensional finite element program was developed by
Wilson and Pretorius (28) for the analysis of pavements. The program
uses a constant strain prismatic solid element defined as a
three-dimensional solid that has constant two-dimensional geometric
shapes and infinite third dimension. Thus, the element properties can be
varied at will in the transverse (x,z) plane, but are limited to 12
linearly elastic material types. These properties remain constant along
the prisms in the longitudinal (y) direction. The system is essentially
two-dimensional, with the third dimension introduced into the idealized
structure by expressing the load as a Fourier series in this direction.
Stresses and deformations caused by each Fourier term are summed, and the
process 1is continued until further additions become insignificant. This
program has been used to study the fatigue behavior of a cement-treated
layer (29), reflection cracking through bituminous overlays (30),
cracking in a treated pavement base layer (31), edge loading effects (32)
and other problems. Execution times ran in the range of 30 to 35

minutes; a typical ILLI-SLAB run takes 5 to 10 seconds.

e ok M ‘s . A 8 . P R

- Sy

alaa s




53

4.3 THE DISCRETE ELEMENT MODEL

This method is closer to a finite difference rather than a finite
element solution to the problem of a medium-thick plate on a Winkler
foundation. It was developed at the University of Texas (33,34,35) for
the solution of problems involving discontinuous plates and slabs. The
model is based on a physical representation of the slab as an assemblage
of elastic springs, rigid bars and torsional bars grouped in a system of
orthogonal beams (Fig. 4.2). The joints in the model are connected by
rigid bars that are in turn interconnected by torsion bars representing
the plate twisting stiffness, C. The flexible joint models the
concentrated bending stiffness, D and the effects of Poisson”s ratio, u.
The modulus of subgrade support, k is represented by independent elastic
springs. The deflection at each joint 1is the wunknown. The basic
equilibrium equations are derived from the free body of a slab joint with
all appropriate internal and external forces and reactions. These
equations sum the vertical forces at each joint and th. moments about

each individual bar.

Computer programs developed at the University of Texas wusing the
discrete element model are designated by the acronym SLAB. These
programs can accommodate complex problems involving any combination of
loads and boundary conditions, as well as a variety of discontinuities
(cracks and joints) and support conditions. Thus, Hudson and Matlock
(34) analyzed the case of partial subgrade support. The method was later

extended for the elastic solid foundation (36,37). Ayyash et al (38)
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Fig. 4.2 Discrete Element Model of a Plate or Slab
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used the program in a study of the effect of cracking on bending

stiffness of a continuously reinforced concrete pavement (CRCP).

The discrete element model is helpful in visualizing the problem and
forming the solution. It gives reasonable values for deflections but may
be inaccurate in determining stresses along the edges. Furthermore,
problems exist in the analysis of joints, cracks and gaps under the slab
because of the nature of the method (39/1). The major advantages of the
finite element over the discrete element method are that elements of
various sizes can easily be incorporated in the analysis and no special

treatment is needed at a free edge (40).

4.4 KENTUCKY

In this study, KENTUCKY denotes a finite element program developed
at the University of Kentucky (40,41). The analysis is based on the
classical theory of medium—thick plates and employs the 4-noded, 12-dof
element, known as ACM or RPB12 in the finite element literature. The
subgrade is modeled as a Winkler foundation by attaching four spring
elements at the corners of each plate bending element. The program was
developed for determining deflections and stresses in a system composed
of a single-layer pavement arranged in series of up to three rectangular
slabs, with or without load transfer at the transverse joints. The
externally applied 1loads are converted to a system of statically
equivalent nodal loads which often are not work equivalent to the applied

loads.
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The program can be used to investigate the effect of partial
slab-subgrade contact. Problems involving partial contact are aaalyzed
first by assuming the slab and subgrade are in full contact. If they are
indeed in full contact, the problem is considered solved. Otherwise, an
iterative procedure is employed. The reactive forces at the nodes out of
contact are set to zero and the process 1is repeated until the assumed and
the calculated contact patterns are the same. This procedure considers
the self-weight of the slab, allowing for some “precompression” of the

subgrade springs produced by this weight.

Joints are modeled by equating the sum of the forces at each pair of
nodes at a joint to the externally applied force(s) there, and by
requiring that the deflections at these nodes be related according to the
prescribed 1load transfer efficiency at the joint. This procedure
destroys the symmetry of the stiffness matrix and results in an upper
half band which is greater than the lower half. It is thus necessary to
store both the upper and lower bands, at a considerable memory core
expense. Bar elements are not used in modeling dowel bars because dowels
are considered unable to transmit moments from one slab to the other over

the very small joint width (39/1,25:Discussion).
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4.5 WESLIQID

This program constitutes an enhanced version of KENTUCKY (39/1,2).
Only the additions and/or changes to KENTUCKY made at Waterways

Experiment Station in the preparation of WESLIQID will be described here.

WESLIQID can handle slab thicknesses and moduli of subgrade reaction
which vary from node to node and any number of slabs arranged in any
arbitrary pattern. The only restriction is the amount of wmemory core
required. The pavement can consist up to two layers, bonded or unbonded.
WESLIQID retains the KENTUCKY model in which the support springs are

connected only at the nodal points.

Once the subgrade reactive forces at each mode are determined,
stresses ard strains in the soil are computed using Boussinesq”s or
Burmister”s equations. An equivalent elastic modulus, E, corresponding
to tae subgrade modulus, k, is introduced for this purpose.
Superposii.ion is employed to compute the response to each of the nodal

forces.

Four options 2re provided for specifying load transfer at the
joints. Three involve shear transfer only while the fourth involves
moment transfer. They are:

(a) Efficiency of Shear Transfer: The load transfer efficiency is
specified as a ratio of the vertical deflections at two adjacent

nodes on either side of the joint.
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(b) Spring Constant: According to Chou (39/1), the use of imaginary
shear transfer springs along the joint is more realistic than
specifying a load transfer efficiency because the springs take
into consideration the shear force at joint. The spring
constant, defined as a force to cause unit deflection, 1is
specified by the user.

(c) Diameter and spacing of dowels: Chou (39/1) considers this to be
most straightforward and to yield results far superior to the
other two options. This option applies only to cases where
dowels are the only load transfer device. Dowel diameter,
spacing and modulus of dowel support are specified by the user.
The selection of the latter is a design decision depending upon
the tightness with which the dowels are held in the concrete,
the type of dowels, strength of concrete and method of
construction.

(d) Efficiency of moment transfer: This is defined as a fraction of
the full moment which is determined by assuming that the
rotations on both sides are the same, rather than as the ratio

of the rotations at two adjacent nodes on either side of the

joint. A moment transfer efficiency of 1007 implies equal
rotations on both sides of the joint. A =zero moment transfer
efficiency requires that the moment of all nodal points along
the joint is zero, although rotations may not be =zero. Unless
the efficiency 1is 0.0 or 1.0 at all joints it is necessary to
analyze the problem twice. First, an efficiency of 1.0 is

assumed for all joints where the real efficiency is not equal to
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zero, to determine the “full moments” along the cracks. These
moments are multiplied by the real moment transfer efficiency

and are applied as extermal moments during a second analysis.
4.6 FINITE

This is a general purpose computer system for the analysis of linear
and nonlinear structures, developed at the Universities of Illinois and
Kansas (42,43)., FINITE supports a wide variety of elements, from the
simplest one- and two-dimensional symmetric elements, to nonsyumetric
elements, some types of hybrid elements and elements with varying

degrees-of-freedom at each node.

For the purposes of this study, the term FINITE mode! refers to a
representation of the slab on grade system using the RPB12 (or ACM)
element for plate bending (44) with 4 supporting SPRING elements for the
subgrade. This model is identical to that used in KENTUCKY and WESLIQID.
In contrast to the latter two models --which use statically equivalent
loads--, FINITE uses a work equivalent load vector (44) to convert
applied external loads to nodal loads. The FINITE model 1is wused to
analyze a single slab with full contact and yields results identical to

those obtained by the “SPRINGS” option of revised ILLI-SLAB.

R T Dtdtodeahaads PPN P U A S ——e —




N

60

4.7 ILLI-SLAB

ILLI-SLAB was developed at the University of Illinois in 1977 for
structural analysis of jointed, one- or two-layer concrete pavements with
some load transfer system at the joints (1,2). The ILLI-SLAB model is
based on the classical theory of a medium-thick plate on a Winkler
foundation (49), and can evaluate the structural response of a concrete
pavement system with joints and/or cracks. It employs the 4-noded,
12-dof plate bending (ACM or RPB12) element (44). The Winkler type
subgrade 1s modeled as a uniform, distributed subgrade through an
equivalent mass formulation (55). This 1is a much more realistic
representation than the four concentrated spring elements in WESLIQID and

FINITE. A work equivalent load vector is used (44), as in FINITE.

“he assumptions regarding the concrete slab, stabilized base,
overlay, subgrade, dowel bar, keyway, and aggregate interlock can be
briefly summarized as follows:

(i) The small deformation theory of an elastic, homogeneous
medium—thick plate is employed for the concrete slab, stabilized
base and overlay. Such a plate is thick enough to carry
transverse load by flexure, rather than in-plane force (as would
be the case for a thin membrane), yet is not so thick that
transverse shear deformation becomes important. In this theory,
it is assumed that lines normal to the middle surface in the
undeformed plate remain straight, unstretched and normal to the

middle surface of the deformed plate, each lamina parallel to
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the middle surface is in a state of plane stress, and no axia
or in-plane shear stress develops due to loading.
(ii) The subgrade behaves as a Winkler foundation.

(1ii) In case of a bonded stabilized base or overlay, full strain
compatibility exists at the interface, or for the unbonded case
shear stresses at the interface are neglected.

(iv) Dowel bars at joints are linearly elastic, and are 1located at
the neutral axis of the slab.

(v) When aggregate interlock or a keyway is used for load transfer,
load 1is transferred from one slab to an adjacent slab by shear.
However, with dowel bars some moment as well as shear may be

transferred across the joints.

Various types of 1load transfer systems, such as dowel bars,
aggregate interlock, keyways, or a combination of these can be considered
at the pavement joints. The model can also accommodate the effect of a
stabilized base or an overlay (either with perfect bond or no bond).
Thus, ILLI-SLAB provides several options, that can be used in analyzing
the following problem types:

1. Jointed concrete pavements with load transfer systems at the

joints.

2. Jointed reinforced concrete pavements with cracks having

reinforcement steel at the cracks.

3. Continuously reinforced concrete pavements.

4, Concrete shoulders with or without tie bars.

5. Concrete pavements with a stabilized base or an overlay,
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assuming either a perfect bond or no bond between the two
layers.
6. Concrete slabs of varying thicknesses and moduli of elasticity,

and subgrades with varying moduli of support.

The program inputs are:

(a) Geometry of the slab, including the type of base or overlay,
load transfer system, subgrade, and slab dimensions.

(b) Elastic properties of the concrete, stabilized base or overlay,
load transfer system, and subgrade.

(¢) Loading.

-

Ei The outputs given by the program are:

. (a) Nodal stresses in the slab, stabilized base or overlay.

L: (b) Vertical surface stresses of the subgrade.

‘; (¢c) Nodal deflections and rotations.

5 (d) Reactions on the dowel bars.

;? (e) Shear stresses at the joint for the aggregate interlock and
" keyed joint systems,

The model was verified by comparison with the available theoretical

solutions and the results from experimental studies (1,25).
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4,8 TYPICAL RESULTS AND COMPARISONS

4.8.1 Objectives

The purpose of the analyses described in this section is threefold:

(1) Recent modifications (described in Chapter 5) to essential
features of ILLI-SLAB, viz. the subgrade stiffness matrix, as well as
the addition of several higher-level routines (eg. free-form input,
contouring, subgrade types, stress dependence, etc.) have created the
need for a revalidation of the program. Such revalidations have been
carried out in the past since the publication of Ref. 1 in 1979, by
various graduate students as part of their studies and research at the
University of Illinois. These, however, have been incomplete and
remained scattered in the private files of each worker. As a result, no
benefit could be derived from them by ILLI-SLAB users at large. Several

of these unpublished studies are referenced in this section.

(2) In the preceding sections several available models were
reviewed. Completeness demands that typical results be presented and
comparisons made between ILLI-SLAB and other programs. The purpose of
such comparisons 1is primarily to provide a further means for validating
the ILLI-SLAB model, rather than to assert the superiority of one
particular model. Different models may perform better than others
depending on the problem considered. It is obvious that the restricted

scope of the analyses presented in this report do not exhaust the
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capabilities of each model.

(3) The most efficient utilization of the capabilities of ILLI-SLAB,
as well as any of the other programs, greatly depends upon the extent of
the user”s familiarity with simple and yet very important factors
affecting the program”s performance. The analyses presented herein aim
at providing some guidelines that can be applied by the user when

ILLI-SLAB is employed in typical pavement design and analysis problems.

4.8.2 Problems Investigated

In the present study the following questions are addressed using a
well-designed factorial of ILLI-SLAB and WESLIQID runs:

(i) How does the revised version of ILLI-SLAB compare to that used
in the validation presented in Ref. 1? (As the reader may
already know, the conclusion of this wvalidation was that
ILLI-SLAB agreed with Westergaard very well).

(ii) How should the circular loaded area assumed by Westergaard be
modeled in ILLI-SLAB? What 1is the effect on response of
different ways of loaded area representation?

(iii) Since ILLI-SLAB can accommodate partially loaded elements, what
is the effect of load placement with respect to the finite
element mesh? Is there any particular configuration which can
be recommended to the general ILLI-SLAB user?

(iv) Finite element theory requires that in the limit of mesh

refinement, the finite element solution should .pproach the
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correct closed-form solution (if available). Is this true of
ILLI-SLAB? If not, why not?

(v) How does slab size affect the manner in which ILLI-SLAB results
approach the Westergaard solution? Are the empirically
developed slab size criteria verified by the finite element
method, or do they require redefinition?

(vi) What is the effect of element aspect ratio? How important is it
to have square elements?
(vii) How 1is the relation between Westergaard and f.e. solutions

affected by the extent of the loaded area?

To provide answers to these questions, the interior loading
condition was chosen. This condition has been extensively studied and is
well understood. Theoretical analyses are available and they have been
found to be much closer to observed pavement behavior than for any other
loading condition. This condition also lends itself for a factorial of
simple runs using finite element programs at a relatively low cost. The
conclusions drawn from the investigation of the interior condition are

believed to be general enough to apply to other conditions as well.

“
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4.8.3 Comparison of the Present Version of ILLI-SLAB to That Developed

by A. Tabatabaie

The original ILLI-SLAB code contained several errors, notably in the
formulation of the stiffness matrix for the subgrade. These have now
been corrected (see Chapter 5), but this created a credibility problem
for the excellent agreement with Westergaard theory reported in Ref. 1.
In order to verify the results obtained during that study, the same
factorial of ILLI-SLAB runs was performed using the updated version of
the program and the results are compared to those reported by Tabatabaie

et al (1) in Table 4.la.

The original factorial (1) consisted of 3 slab thicknesses, 12, 16
and 20 in. and 3 moduli of subgrade reaction, 50, 200 and 500 psi/in. A
25-ft. square slab was used in the analysis. As will be shown in a
later paragraph, this slab may be slightly smaller than the minimum
requirement for the development of the Westergaard infinite slab
condition, in view of a large radius of relative stiffness. The modulus
of elasticity and Poisson”s ratio of the concrete slab were assumed to be
5x108 psi and 0.15, respectively. A single load of 50 kips was modeled
as a 15 in, x 15 in. area with a load intensity of 222.2 psi. The
results were compared with the Westergaard solution in which the 50 kip
load is distributed over a circular area 15 in. in diameter (WESI in
Table 4.la). Some results tabulated in Table 4.la are also plotted in

Fig. 4.3. The mesh used for these runs is shown in Fig. 4.4,
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TABLE 4.1

(a) REVALIDATION OF ILLI-SLAB

L] RUN k h 2 DEFLECTION (mils) BENDING STRESS (psi)
No. (psi/in.)  (in.) (in.) Ref. 1 Revised WESI Ref. 1 Revised WESI
ILLI-SLAB ILLI-SLAB
o 1 50 61.95 36.3 35.8 32.3  562.9 562.4 528.0
. 2 200 12 43,81 16.9 16.6 16.1 488.0 487.2 461.9
3 500 34.84 10.3 10.1 10.1  443.2 442.3 418.2
?fj 4 50 69.55 29.4 29.1 25.7  431.1 430.9 399.1
~ 5 200 14 49.18 13.8 13.5 12.8 376.3 375.8 350.5
. 6 500 39.11 8.3 8.2 8.0 341.9 341.3 318.4
o 7 50 76.87 24.6 24.4 21.0 340.4 340.3 311.5
; 8 200 16 54.36 11.5 11.3 10.5 300.4 300.1 274.3
- 9 500 43,23 6.9 6.8 6.6 273.0 272.5 249.8
E v 10 50 90.88 18.9 18.8 15.1  226.4 226.4 203.9
o 11 200 20 64.26 8.5 8.4 7.5 205.4 205.3 180.1
i u 12 500 51.10 5.1 5.0 4,7 187.4 187.1 164.4
A
t..}} Notes:
' Finite Element Solution Theoretical Solution (WESI)
Slab: 25'x25' (;ZL-=3-3 to 8.6) P = 50,000 1b.
E = 5x106 psi p = 282.94 psi
U= 0.15 a=7.,5"
p = 222.2 psi Equations used:
L A = 15"x15" interior Special Theorv - Infinite Slab-Circular load
al s
: Mesh: Fig. 4.4 g, = 0.275 (1 + 1) %= (4log, . =+ 1.069)
. i h2 10 b
. .- 2
ﬁ -~ 5, = —— [ - % (0.217 = 0.367 log ;]
3 boska” £ '
i Y
b = +l.6a" + h® - 0.675h for a < 1.724
= a for a > 1.72%
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TABLE 4.1 (Cont'd)

(b) COMPARISON WITH WESTERGAARD SOLUTIONS

1 RUN DEFLECTION (mils) BENDING STRESS (psi) o ‘
- No. WESI WESII REVISED WESI WESIT Revised
- ILLI-SLAB ORD. SP. ORD. SP. ILLI-SLAB
a THEORY THEORY THEORY THEORY WESIII ]
-~ 1 32.3 32.2 35.8 52G.3 528.1 497.3 508.4 495.2 562.4 3
2 16.1 16.0 16.6 454.5 462.3 431.6 442.7 429.5 487.2
| 3 10.1 10.0 10.1 411.1 418.9 388.3 399.4 386.2 442.3
- 4 25.7 25.6 29.1 398.4 399.1 381.5 386.4 379.9 430.9
5 12.8 12.7 13.5 350.0 350.7 333.2 338.0 331.6 375.8
6 8.0 8.0 8.2 318.1 318.8 301.3 306.1 299.8 341.3
7 21.0 21.0 24.4 315.7 311.5 302.8 303.0 301.6 340.3
8 10.5 10.4 11.3 278.7 274.5 265.8 265.9 264.6 300.1
9 6.6 6.6 6.8 254, ¢ 250.0 241.3 241.5 240.2 272.5
10 15.1 15.1 18.8 213.5 203.9 205.3 199.7 204.5 226.4
11 7.5 7.5 8.4 189.8 180.1 181.5 175.9 180.8 205.3
12 4,7 4.7 5.0 174.1 164.5 165.9 160.3 165.1 187.1
Notes:
See Table 4.1(a) for values of k,h,%2 and Notes on F. E. Solution and WESIL. !
Theoretical Solutions )
1
WESII, WESIII Equations Used:
2
3 P .22, 1 - a
P = 50,000 1b. WEST, WESIL: o, = EE»(1+U) ;5 [({in Tt s )1 j
p = 222.2 psi (Ordinary Theory .
Circular Load)
2 1
éi=-ll; u-+%? ({ﬁn3?}+y-%)@0] 1
8k~ - o ’
a = 8.46" (WESII) For Special Theory, substitute b fuv a in Equation for 9+ 1
¢ = 15" (WESIII) WESIIT: Substitute c' for a in Equation for S where
(Ordinary Theory % -1 1

. . [S] .
E’ Square Load) ¢' = ——— ¢ ¢ = side of square load i
V2
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x Westergaard (WESI)

Revised ILLI-SLAB

Finite Element Solution

Slab: 25! x 25'

E 5x107 psi

p =0.15

p = 222.2 psi

A = 15" x 15" interior

Theoretical Solution (WESI)

o P = 50,000 1b.
P 282.94 psi
a=7.5"

X
&0
§ ———

R —

1 | 1 1

200 300 400 500
Subgrade Modulus, k (psi/in.)

Revalidation of ILLI-SLAB




L Bt B e T rpp—— . T p—— ——y—y

70

P“,‘a 11
7oy

’r‘/;

Fig. 4.4 F. E. Mesh Used for Revalidation of ILLI-SLAB (Mesh I)
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For the cases considered the results of the updated version are
slightly improved compared to those of the original version. The
difference between the two versions is very small, from an engineering
viewpoint. Any conclusions reached by previous studies using the

original version are considered valid.

4.,8.4 Effect of Load Representation

In Table 4.lb comparisons of the finite element solution are
rresented with three different Westergaard idealizations, WESI, WESII and
WESIII. The difference is the way the square or rectangular loaded area
in ILLI-SLAB is modeled for Westergaard’s analysis. WESI is the same
representation as used in Ref. 1 and was retained here for consistency.
It essentially matches the total load, P and the diameter of the loaded
area (which is assumed to be equal to the side of the square loaded area
in the finite element solution). As a result, the louad intensity used in
the finite element solution (222,20 psi) is different from that 1in the

Westergaard idealization (282.94 psi).

A more rigorous representation is attempted in WESII where the total
load (P) and the load intensity (p) are matched, while the diameter of
the equivalent circular load is chosen to retain the same area, despite
the fact that this leads to a higher diameter than the side of the square

element (16,92 in. cf. 15.0 in.).
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Finally, in WESIII the load is treated as a square of the same side

\ AR

length and load intensity as in the f.e. analysis. Such a solution is

A

.
L 2
e
P

only available for the maximum bending stress of the interior condition.

-
«

e e 2 Bin Jhas coind

The following equations were used in Ref. 1 for the Westergaard

solution:
P ;
g, = 0. + v) — = :
¢ 275 (1 ) ¥ (4 log , + + 1.069)
;=2 (1 a’ (0.217 - 0.367 1 3
3, = ——— - = . - 0. og, . —
i 8k22 22 10 2
/. 2 2

b = l.6a” + h - 0.675h for a < 1.724h

= a for a » 1.724h

(NB:- The equation for deflection is misquoted in Ref. 1 without the
factor of 8, evidently due to a typographical error. Also, in the

calculation of b, the factor 1.724t is wrongly stated as 1.74h).

In the expression for the interior stress, an equivalent radius, b

!l:; was introduced by Westergaard (45) to account for the effect of shear
;{i' stresses in the vicinity of the applied load. This effect 1s neglected
;}{f in the ‘"ordinary theory" of medium~thick plates, in which the true

radius, a, is used. The validity of this semi-empirical adjustment and
of the resulting '"special theory" has been debated by various
investigators [see, for example, Scott (10) ], but a discussion of this
issue would be beyond the scope of this report. It is considered,
however, that the results of a f.,e. solution as obtained from ILLI-SLAB,
should be comparnd to Westergaard’s '"ordinary theory', because both

ignore the effect of shear stresses., Such a comparison 1is much more
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meaningful as will be shown below.

The following general form of the Westergaard equations was used in

this study (WESII):

2
-3 N B 22 4 _ 1,7 2
i = 24 (l + rJ) hz [{an a } Y + 2 + 37 (L) ]
S SR EITE SR N
i 8k£2 27 23 4 2
y = Euler's Constant (= 0.577 215 664 901 532 860 61 ...)

These equations differ from those quoted above inasmuch as the
former are a specialized and simplified (hence, not as rigorous) version
of the latter. Furthermore, the general equation for interior stress
includes Westergaard”’s “supplementary" 0, stress (46). Although this
usually makes only a small contribution, it is included here for

completeness.

To obtain the interior stress in the case of a square loaded area
(WESIII), the radius of the circular load, a, in the equation above, is
replaced by a constant c¢”, related to the length of the side of the

square, c, as follows:

2
The resulting expression is not stated explicitly by Westergaard, but

follows directly from his theory (47,48). Timoshenko  and

Woinowsky-Krieger (49) provide a theoretical justification for this
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A ae,

solution by showing that, loaded by the same total load P, a square side

Aahe Lo

¢ and a circle radius a, give the same maximum interior stress.

PLIT il i

(a
4

Table 4.1b shows that the WESII representation yields, in general,

lower deflections and bending stresses than WESI (with deflections being i

T RGN 2
N PPN

much less sensitive). Furthermore, the discrepancy between the finite

b .
3 element responses and WESII is greater than that with WESI, indicating i
!! that using WESI may tend to conceal some of the differences between
'? Westergaard and the finite element analysis. WESI appears to agree
better with the finite element solution. It is shown below that this %
"improvement'" is only apparent.
]
8
Note in Table 4.lb that both the finite element deflections and
bending stresses are slightly higher than Westergaard”s. Deflections are ;i
much less sensitive to changes in load representation and are closer to :i
theory than bending stresses. This agrees with the observation that
deflections are much less sensitive to changes in the finite element ;ﬂ
discretization and even formulation. Computer program validations which )
quote only comparisons of theoretical and calculated deflections (50) may ]
be misleading. “
K
As will be noted in subsequent paragraphs, the difference between j

calculated and theoretical responses may be attributed to:

r ..
Amteaba

1. The 25-ft. square slab may be too small to develop the

Westergaard infinite slab condition thus leading to higher

PN SN
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b calculated deflections. This should also lead to somewhat lower
_u. calculated stresses, however, a feature not observed in Table

4.1b;

T
< ey
’

2., The placement of the load on top of a single node (Fig. 4.4)

-! leads to higher calculated stresses and deflections;

o 3. The use of elements with aspect ratios much different from
C;; unity. Note that the mesh in Fig. 4.4 was used in Ref. 1 and
oo is retained here for conmsistency;

o8 4. The relatively large size of the loaded area. This is deemed to
:%: be the most important factor in this case.

| sow

4.8.5 Effect of Load Placement with Respect to Finite Element Mesh

The effect of load placement with respect to the finite element mesh

was investigated for one of the cases presented in Table 4.1 (k = 200

. psi/in. and h = 14 in.). Three different mesh configurations were used:
-~ Mesh I (Fig. 4.4) is the one used for all runs in Table 4.1 and has the
.ii load placed on top of one central node, without any corner nodes;
;ﬁ - Mesh II (Fig. 4.5) introduces & corner nodes in addition to the central
P . node, thus turning the 9x9 mesh in Fig. 4.4 into an 11xll mesh,
E e requiring 71% more memory spaces to execute. It is, however, considered
- a closer representation of reality;
w -Mesh III (Fig. 4.6) has the & corner nodes but the central node is
missing. It is thus a 10x10 mesh, requiring only 32% more memory spaces
L;; to execute than Mesh I.
¢
L.
|
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Fig. 4.5 Effect of Load Placement (Mesh II) ]
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Fig. 4.6 Effect of Load Placement (Mesh III)

N Y LN T N, LT T N N T N N T TN T O O Sy . — - el m -—nnaad




A it at Al S i it A A e ) & AN LS e Senl S et iy ~adiie

78

.. IT‘I"E r

Comparisons among the results of these configurations and the

results of the Westergaard idealizations WESI, WESII and WESIII are shown j

A KN
A

4
a

in Table 4.2, It is observed that the deflections are again largely ;

s

Eani g Saljuk Bav §

4
P

insensitive to these changes, but they do follow the same pattern as

calculated bending stresses. Of the three meshes, Mesh II yields the 3

best results compared to Westergaard’s (close and slightly conservative).

..
A
o
-

Mesh I offers an attractive alternative, especially for those cases where
a coarser mesh must be used. The results obtained with this mesh are
slightly more conservative. Table 4.2 indicates that where possible,
Configuration III must be avoided. Despite the extra effort involved in l
using this mesh as compared to Mesh I, the results are unconservative by

a greater percentage. -

In view of the above results, it 1s recommended that either 31
Configuration I or Configuration II be used, the decision being a ]

trade-of f between extra computer core usage and accuracy. A similar

recommendation was made by Costigan (51) who conducted a detailed ?ﬁ

investigation of this effect. At a future stage of this research, it 1is

L e

Py

proposed to add an automatic mesh generator that will provide the user

with an "optimum" mesh for the specified problem using the guidelines

“:&—

developed here.
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TABLE 4.2

EFFECT OF LOAD PLACEMENT WITH RESPECT TO F.E.

MESH

(c)

Mesh III: 10x10 mesh (Fig. 4.6)

Finite Element Solution

Slab: 25'x25'

E

=T - T

= F " 0

=0

k" Al h b al ot odan Sn s

5x106 psi

0.15

2.2 psi
c"ad" interior
15"

200 psi/in.
14"

49,18"

0.305

bR USSP R, I TP W Y. WA U I Yoy TN T R T MY S A S N U N e e L T L U I, T L P T -'-"z-j

ja-}
] |

WESI

= 50,000 1b.

282.94 psi

7.5"
(circular)

= RUN MESH MEMORY DEFLECTION BENDING STRESS

o No. USED SPACES mils % WESII psi Z WESIII

2 5 MEHTI 20171 13.5 106 375.8 113

o 21 MESH II 34507 13.4 106 348.3 105

. 22 MESH IITI 26711 13.1 103 257.5 78
WESI - - 12.8 - 350.0 -
WESII - - 12.7 - 333.2 -

L WESIII - - unavailable - 331.6 -

ey

) Notes:

ol (a) See also Table 4.1(b) for more details

. (b) Mesh I: 9x9 mesh (Fig. 4.4)

1 Mesh IT: 11x11 mesh (Fig. 4.5)

Theoretical Solutions

Ordinary Theory
WESII

50,000 1b.
222.2 psi

8.46"
(circular)

WESIII

P = 50,000 1b.

p = 222.2 psi

c = 15"
(square)
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4.8.6 Convergence Characteristics of ILLI-SLAB upon Mesh Refinement

In its present as well as its original version, ILLI-SLAB employs
the 12 degree-of-freedom plate element (44) which is referred to in the
literature as the RPB12 or ACM element. The dimensions of this
rectangular (or square) element are 2a by 2b. It is a 4-node, 3-dof per
node plate bending element formulated using classical medium-thick plate
theory. Deformations due to transverse shear are neglected in this
formulation. Recause all terms of a complete fourth order polynomial are
not present in the assumed displacement shape (15 terms would be
required), the element 1is non-conforming, ie. slopes normal to
interelement boundaries are not continuous. However, the element is
capable of correctly reproducing constant strain (curvature) states.
Therefore, convergence to the exact solution is assumed as the element
mesh is refined. What is not guaranteed is that convergence will be

monotonic, ie. consistently from above or from below.

To check the convergence characteristics of ILLI-SLAB, a factorial
of runs was designed which would permit the examination of the effect of
mesh refinement without interference from limitations due to finite slab
size and element aspect ratio. It will be noted in a subsection below
that minimum slab size, L for the development of the Westergaard infinite
slab condition with respect to stresses seems to be about 3.5 times the
radius of relative stiffness, 1 of the slab., For the 127x127 slab used,
parameters were chosen that gave 1 equal to 23.16 in. ie. an (L/1)

ratio of 6.2. Thus no slab size problems can be expected, at least as
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far as stresses are concerned.

The thickness, h of the slab was chosen as 15 in. despite the fact
that this meant a higher radius of relative stiffness than would be
obtained with a thinner slab. The objective here was to allow the
investigation of element sizes smaller than h, since it had been pointed
out by previous investigators that elements this small produced a
stiffening effect. The other parameters used for this factorial are
shown in Table 4.3a. Square elements were used to eliminate any aspect
ratio effects, but their size varied from run to run depending on how
many were available to fill the 12-ft.x12-ft. slab used. The ratio of
element size, 2a to the thickness, h of the slab used varied between 4.8
when 4 elements were used, to 0.8 when 144 elements were used. The mesh
used for the latter case is shown im Fig. 4.7. Also shown in Table 4.3a
are the results from two Westergaard idealizations of the problem, one
where P and p were matched using a circular load (WESII) and another for

a square load (WESIII).

The results shown in Table 4.3a are presented graphically in Fig.
4,8, It is noted that for the cases studied, as the mesh is refined both
deflection and bending stress converge monotonicaly from below to a
theoretical value that would be obtained in the limit of refinement. In
the case of deflection, this is slightly higher than the Westergaard
value for the corresponding problem. This is probably due to the lack of
an exact solution for a square load, as well as as the finite size of the

slab (L/1=6.2; see below). In this study, deflections are compared to
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EFFECT OF F.E.

MESH FINENESS

RUN No. LDEFLECTION BEXDING STRESS

No. Elements (mils) 4 WESIT  psi % WESIII

32 4 4.8 1.06 91 4.53 27

33 16 2.4 1.23 106 9.68 59

34 64 1.2 1.25 108 14.22 86

35 144 0.8 1.24 107 16.34 99
WESTII - 1.16 - 16.61 -
WESIII - unavailable - 16.54 -
Notes:

Finite Element Solution:

Slab:
Elements:

=0 e’ T0 o e
fl

12'x 12"
2ax2a

0.5x106 psi
100 psi

¢""xc" interior

500 psi/in.
23.16"

(= 6.2% square)

Revised ILLI-SLAB

Theoretical Solutions

See Table 4.1b for equations used.
Ordinary Theory

= 2500 1b

100 psi

2.82" (circular: WESII)
= 5" (square: WESIII)
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the theoretical values for an equivalent circular load of the same area
as the square load (WESII). The observed discrepancy is very small. It
is also noted that the convergence rate of deflection is much faster than
that of bending stress, the limit solution being reached at values of

(2a/h) as small as 2 to 3.

On the other hand, the bending stress converges to the corresponding
Westergaard solution, but at a smaller value of 2a/h (=0.8). Note that
this comparison is with Westergaard”s ordinary theory for a square load
(WESIII). The stress from a special theory analysis would be 12.8 psi
and this could lead to unjustified conclusions with respect to the f.e.
method. The ‘true cause of this discrepancy is, of course, that the
special theory and the f.e. method based on medium—thick plate theory
are not directly comparable, since the first accounts (in some
semi-empirical fashion) for the effect of shear stresses in the vicinity

of the load, while the latter does not.

The problem was further investigated by using a similar factorial of
WESLIQID runs, as well as runs using the “SPRINGS” option in revised
ILLI-SLAB. As mentioned previously, this option is identical to the
FINITE model. In Table 4.3b, the results from these runs are compared to

those from ILLI-SLAB.

It is observed that all three models exhibit basically the same
behavior, ie. they monotonically converge from below to the same limit

values. No "bending over" is observed with mesh refinement. The effect
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of mesh refinement on the distribution of deflections and stresses is
shown in Figs. 4.9 and 4.10, respectively. Deflections are fairly
insensitive, especially outside a region of about twice the size of the

loaded area. Stress differences persist relatively longer.

4.8,7 Convergence Characteristics of ILLI-SLAB upon Slab Size Expansion

As mentioned earlier, the closed-form Westergaard solution assumes a
slab of infinite dimensions, although in practice empirical guidelines

have been developed for the least slab dimension required to achieve the

Westergaard "“infinite slab" condition. These guidelines are summarized

Y
*2'ad

in Table 4.4. It is the purpose of this part of the present study to

,'oin
4

examine if and how ILLI-SLAB converges to the Westergaard solution as the

|4

slab size is increased and establish whether the empirical guidelines in

2]

Table 4.4 are verified by the finite element method.

v,
’

‘P

E The same parameters were used for this factorial of runs as in the
. study of mesh refinement, giving again a radius of relative stiffness, 1
L of 23.16 in. The element size was kept at 18 in. (ie. 2a/h=1.2). The

mesh used for these runs shown in part in Fig. 4.l1l. The pattern shown

is repeated in all 4 directions to give the required slab size.

The results from this investigatiun are given in Table 4.5, where
they are compared to the corresponding Westergaard values. The same
results are presented graphically in Fig, 4.12, Both deflection and

bending stress converge co a theoretical value for an infinite slab. The
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TABLE 4.4

THEORETICAL AND EMPIRICAL SIZE LIMITATIONS FOR
THE WESTERGAARD SOLUTION

Loading Minimum Side Length
Condition Theoretical Practical

Interior 112 64
Edge 112 62
Corner Unavailable

£ = radius of relative stiffness
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convergence of deflection is from above, indicating that a smaller slab
g settles more than a bigger one in a "punch-like" fashion. Bending stress
. converges from below, as expected. The rate of convergence, defined as
the slab size at which the solution is essentially that for an infinite
slab, is different for deflection (L/1=9.3) than for bending stress
(L/1=3.5). Surprisingly, deflection appears to be much more sensitive to
slab size changes for (L/1) values of 1less than 3, because of the
above-mentioned ‘"punch-like" effect. The limit value approached by the

deflection is the Westergaard solution.

The value to which bending stress converges upon slab size expansion

is exactly that which would be expected for the given mesh fineness

- (2a/h=1.2) as shown in Table 4.3a. This indicates that, fineness effects

\ apart, stress converges to the theoretical value for L/l values of about i
4

. 3.5. In Table 4.5, the stress is not expected to approach the 5

Westergaard solution by any appreciable amount upon further slab

expansion, simply because the discrepancy observed arises from mesh

ekl

fineness effects, as shown in Table 4.3a.

It is interesting to note the similarity in behavior patterns

between ILLI-SLAB and “SPRINGS”. This reinforces the observations above.




S

e
ay s
-+ r D,

]

95

4.8.8 Effect of Element Aspect Ratio

The effect of element aspect ratio was investigated by the factorial
of runs with WESLIQID shown in Table 4.6. Theoretically, best results
are obtained when the aspect ratio is kept close to unity, ie. the
elements are as close to square as possible. This postulate is -rne out

in Table 4.6.

Figures 4.13 and 4.14 show how the aspect ratio affects - :tion
and stress distributions. It is observed that deflection is largely
insensitive --as always-— to any changes. The bending stress
distribution is also insensitive except in a small region surrounding the
loaded area. The radius of this region is approximately twice the radius
of the loaded area. Within this region, a departure of aspect ratio from

unity may cause significant errors.

4,8.9 Effect of Size of Loaded Area

In his attempt to develop equations for a loaded area of finite
size, Westergaard used an approach which essentially consists of first
deriving a solution for a point load. Then, the loaded area is split
into a number of small subareas, each subarea being replaced by a
statically equivalent point load acting at its center. A summation is
performed over these subareas. In the limit of refinement, this

summation tends to an exact integration (52). Westergaard suggests that

his equations are valid for any size of loaded area and that, in fact,
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TABLE 4.6

EFFECT OF ELEMENT ASPECT RATIO

RUN ASPECT
NO. RATIO DEFLECTION BENDING STRESS
mils % WESII psi % WESIII
91 or 86 1 1.22 105 16.67 100
92 2 1.21 104 16.07 97
93 3 1.21 104 15.19 92
94 4 1.20 103 14.29 86
96 6 1.18 102 12.65 76
WESII 1.16 16.61
WESIII unavailable 16.54
Notes:
Finite Element Solution (WESLIQID) Tl 2oretical Solutions
Slab: 12'x12' (= 6.2% square) See Table 4.1b for equations used.
Elements: 2ax2b Ordinary Theory
E = 0.5 x 106 P = 2500 1b.
U =0.15 p = 100 psi
p = 100 psi a = 282" (circular: WESII)
2a = 6" ¢ = 5" (square: WESIII)

2b = 2a x (Aspect Ratio)

" x ¢" interior

"

5"
= 500 psi/in.
= 23.16"

= 0.216
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his "New Formulas" (48) assume that "the average width and length of the
footprint of the tire is greater than the thickness of the slab in all

significant cases".

Losberg (53) showed that the stress and deflection equations
presented by Westergaard and widely used in practice, are only the first
one or two terms of a rapidly converging infinite series. Westergaard”s
supplementary stress, 0, mentioned above, for example, is an additional
term of this series. The rate of convergence can be expected to vary

depending, among other things, upon the size of the loaded area.

Timoshenko and Woinowsky-Krieger (49) state that the equations apply
only when the radius of the loaded area is "small in comparison with 1".
[Scott (10) attributes this restriction to the fact that "in the
derivation of the equation a term of approximate value 0.l ¢2/12 vas
omitted”. This cannot be the real cause of the restriction imposed by
Timoshenko and Woinowsky-Krieger, since in most cases (even when the

radius of the loaded area is not "small in comparison with 1") this term

is, indeed, negligible.]

In this study, the effect of the size of the loaded area was
investigated using the f.e. method. Table 4.7 shows a factorial of
ILLI-SLAB runs and comparisons with Westergaard”s ordinary theory
solutions. To eliminate slab size, mesh fineness and aspect ratio
effects, a large (L/1=9.33) and fine (2a/h=0.6) mesh was used, consisting

of square elements (aspect ratio=l1,0). The results in Table 4.7 are
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TABLE 4.7

EFFECT OF SIZE OF LOADED AREA 4

e B e . .
PO T L. . P I I A R S -t a . - . STl . . St . . et
L. PP NRP B I PO PG DU N S P P PR PR PR P PN GNP P SO P GBS S PV VW P VPP T T T Y S ORI W &

RUN p c DEFLECTION BENDING STRESS {
No. (psi) (in.) ¢/ mils % psi %
WESII WESTII

108 200 3.54 0.153 1.18 102 18.12 97

107 175 3.78 0.163 1.17 101 18.01 99

106 150 4,08 0.176 1.17 101 17.87 100

105 125 4.47 0.193 1.17 101 17.68 103

101 100 5.00 0.216 1.17 101 17.40 105

102 75 5.77 0.249 1.17 102 16.96 108

103 50 7.07 0.305 1.16 101 16.17 112

104 25 10.00 0.432 1.15 102 14,23 115

Notes:

(a) The theoretical values WESII and WESIII (not explicitly given here)
were obtained for a circular and a square load respectively using
the equations given in Table 4.1b, for P = 2500 1lb and p as shown
above.

(b) Finite Element Solution

Slab: 18'x18' (%

Element Size: 9"x9" (%é = 0.6)
Number of Elements = 576

= 9.33)

E = 0.5 x 10° psi
u=0.15

A=2c¢" x c¢" interior
h = 15"

k = 500 psi/in.

L = 23.16"

NEEED
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plotted in Fig. 4.15.

i

It is observed that the Westergaard stress values apply for a loaded

]
"%
s

f!-"l

area whose side length, ¢ (if square) is about 0.2 times the radius of

relative stiffness, 1; if the load is circular, its radius must be about

0.11. As (c/1) or (a/l) increases, f.e. stresses become progressively

——

higher than Westergaard”s.

=

4.,8,10 Preliminary Recommendations

The following preliminary recommendations can be made at this stage:

;-=.l‘
o .y
Sl
PP

1. The 1load(s) must be placed over the finite element mesh with at

least one node at the anticipated location of maximum response.

For example, in the case of interior loading, a central node

ey

must be provided. Otherwise, the results must be carefully
interpreted. Any peaks in response missed by the finite element
analysis because of node spacing, must be reconstructed.

0 2, The finest mesh practicable must be used. Accuracy of 992 can

be expected if the element size, 2a, is about 0.8 times the
thickness of the slab. A fine zone equal to twice the size of
the loaded area(s) is recommended, with progressive decrease in
fineness outside this area.

The convergence characteristics of the work -equivalent uniform
subgrade model (option IST = 6; ‘WINKLER® in modified ILLI-SLAB)
are slightly better than those of the “SPRINGS” option (IST=7 in

modified ILLI-SLAB).
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4, Element aspect ratio should be kept close to unity, particularly i
in a region around the loaded area(s), extending to two radii of |

the loaded area. Within this region, this recommendation is a

requirement.
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CHAPTER 5

MODIFICATION OF ILLI-SLAB

5.1 AIMS OF MODIFICATIONS

For the benefits of the Finite Element Method to be fully realized,
it is highly desirable that programs using this method:
(i) Accept easy to compile, user-oriented input data, restricted to
the absolute minimum required and eliminating, where possible,
potential pitfalls for the user;

(ii) Employ carefully selected default value. that will reduce the

amount of input data required;

(iii) Perform error checks, especially in the case of default values,
so that errors that are concealed by the otherwise normal
execution of the program will be avoided;

(iv) Be free of code errors;

(v) Organize the output so that it is neat, meaningful and

f Y Oy

user-oriented;

(vi) Incorporate skillful data-base management for the efficient 1

utilization of available memory core;
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(vii) Provide basic and higher-level routines; and
(viii) Present the results in a summary and a graphical form.

The modifications of ILLI-SLAB presented below aimed at providing these

capabilities.
5.2 STRESS DEPENDENT SUBGRADE

The development of relationships between the resilient subgrade
modulus, KR and deflection, w is described in Chapter 3 of this report.
It was desirable to incorporate these relationships into ILLI-SLAB
through an iterative procedure which would compare support values (KR)
corresponding to calculated deflections with previously determined
vaives. New support values would be assigned for a subsequent iteration
until compatibility was achieved between support system stress and/or
deflection and the user prescribed support relation/pattern.
Furthermore, it was desirable to have the capability to assign variable
support values to selected (or all) nodes according to a user prescribed
relation/ pattern. These aims were achieved with the introduction of

subroutine ITERATE.

The general expression for the relation between KR and w as
developed in this study (30-in. diameter plate) is:
K = (1/w){A) [1-exp{-Ay ([w/D ] - A3 )}1+a, ([w/Dy] -A3),,)
=A s
s /b, | if [w/Dy 1 <a3.
where A}, A,, Aq, A4, Ag, Dy are regression parameters determined from

plate load tests simulated wusing ILLI-PAVE. By specifying these

VPR R I P S - S P P A D SRR e G ST S
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parameters, the user can define another stress dependent subgrade.
During this study, parameter sets for the following broad subgrade types
(Fig. 2.10) have been developed and are now a part of the revised version

of ILLI-SLAB:

1. VERY SOFT (Kp = 300 psi/in.)

2. SOFT (Rp = 425 psi/in.)
3. MEDIUM (KR = 725 psi/in.)
4, STIFF (Kg = 1000 psi/in.).

The figures in parentheses are recommended initial (small deflection)
values, for fast convergence. As noted in Section 3.3, above, KR is
significantly higher than the <corresponding static k=-value,
reflecting the increased subgrade stiffness in response to rapidly

moving loads.

Other options available in modified ILLI-SLAB are:

5. OTHER : The user specifies the regression parameters individually to
obtain a different KR versus w relation.

6. WINKLER: This is the stress independent, uniform Winkler subgrade,
available in the original version of ILLI-SLAB.

7. SPRINGS: Support is provided by 4 springs at the corner of the
element (stress  independent). This option allows direct
comparison—validation with FINITE,

Option 0 specifies that support varies from node to node and requires

that the user proceed to assign one of the above 7 options to each of the

|
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nodes. In the case where most nodes have one type of support, the EXCEPT
option in the free-form mode allows specification of exceptions only,

rather than of each node.

Subroutine ITERATE is structured to allow easy modification of the

regression equations and/or addition of other subgrade options.

When one of the stress dependent subgrade types are used, subroutine
ITERATE provides a procedure for checking convergence, updating support
values and proceeding with another iteration, 1if necessary. The user

controls this procedure by three variables:

1. ITMAX: Specifies the maximum (total) number of iterations desired.
Usually 3 iterations are sufficient; a value of ITMAX =6 is
recommended;

2., TOLl: Convergence tolerance for updated KR compared with Kp from the
previous iteration. A value of TOLl = 0.05 ie. 5% is recommended;

3. TOL2: Convergence tolerance for the percentage of nodes at which TOLl
is not satisfied. Again, a wvalue of TOL2Z = 0.05 Iie. 5%2 is
recommended.

Through a fourth parameter (IOT), the user is allowed to specify the

output type desired. Thus, he may opt to have only partial output during

intermediate 1-erations (stresses not calculated or printed), reserving
full output of deflections and stresses for the last iteration; or he may

choose to have full output for each iteration.

L ey

v
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5.3 CONTOURING CAPABILITY

During a study conducted in the Summer of 1981, Computer Program
ILLI-SLAB was revised and the facility to generate contours of stresses
azd deflections was incorporated into it (54). This was done through
subprogram CONT, which accepts as input data results from ILLI-SLAB.
Subroutine CONTOUR in this subprogram passes these results to a number of
NCAR subroutines. The software used in these subroutines has been
developed at the National Center for Atmospheric Research (NCAR), and 1is
made available with the restriction that NCAR be acknowledged as the
source of the software in any resulting research or publications. For
more information on the use of NCAR Contouring Software, the reader
should refer to NCAR literature. Sample contour plots are shown in
Fig. 5.1. A very brief outline of the Software, especially as used in

the revised version of ILLI-SLAB is given below.

The NCAR Graphics Software consists of graphics utilities such as
corntour plotting, three-dimensional surface drawing, and world map
projections. These utilities perform graphic output using low level
graphics subroutines in the NCAR System Plot Package (SPP). This
consists of subroutines to draw, move, plot characters, clear the
plotting surface, and similar subroutines. The output of the SPP is not
a plot, but a file (called "NCARMC") of “‘metacode” which contains the
plotter instructions. NCARMC, the Metacode File, is device independent -
it contains instructions to drive an "ideal" ploiter or graphics device.

This file is interpreted by a Translator for a specific device. The

s e T e o et ~ s . o, Y . RS s,
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Translator does the actual plotting.

The most important family of NCAR subroutines used in ILLI-SLAB is
CONRAN. This 1is the name of a family of routines for the contouring of
irregularly distributed data. The family consists of 4 versions: CONRAQ,
CONRAN (used for two versions), and CONRAS. CONRAQ, the quick version,
plots contours, perimeters, titles and messages. CONRAN, the standard
version, adds 1line labeling, contour dash patterns, and plots relative
highs and lows (this is the version in ILLI-SLAB). CONRAN, smooth
version, adds splines under tension for smoothing of contour lines.
CONRAS, super version, adds the elimination of contours when crowding
with other contours or text occurs. CONRAQ is the fastest and smallest.

The packages get progressively bigger and slower as features are added.

CONRAN plots contour lines using random, sparse or irregular data
sets. The data is triangulated and then contoured. Contouring is

performed using interpolation of the triangulated data.

5.4 TOWARD MORE EFFICIENT MEMORY CORE UTILIZATION

A major problem encountered by ILLI-SLAB users is that any attempt
to refine the mesh used, especially when it is desired to investigate the
stability and convergence of the numerical solution or when several slabs
are used, faces the possibility of exceeding machine memory core

capacity. This problem has been addressed by the introduction of the

capability to take advantage of any symmetry lines that may exist. In
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the modified ILLI-SLAB version, the user has the following options:

1. No lines of symmetry exist (ISYM=0);

2. The x—-axis is a line of symmetry (ISYM=1);

3. The y-axis is a line of symmetry (ISYM=2);

4. The x- and y-axes are both axes of symmetry (ISYM=3).

Care was taken to introduce these options without imposing a burden on
the user during the preparation of the input data. Particularly
undesirable are requirements to include the node numbers for the nodes
along the line(s) of symmetry. In the new version of ILLI-SLAB, the
various options related with symmetry are specified by using a single

input variable (ISYM), which may even be omitted if no symmetry exists.

Still on the issue of economizing memory core, several methods are
continuously being investigated for better data-base management through
the use of overlays. These are incorporated into ILLI-SLAB as they are
developed. The possibility of breaking the program into two or more
subprograms to be loaded and executed separately and sequentially is also
investigated. Already the contouring subroutines have been separated
from the main body of the program and placed in subprogram CONT with
appreciable savings. Another group of routines offered for such a
separation are those related to the free-form input capability. A
subprogram could be easily created from these routines to read free-form
input data and prepare them for the main body of ILLI-SLAB. A library of
routines 1s envisaged at the end of this effort which will contain all
necessary routines but only those needed for any given run will be

loaded.
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5.5 CORRECTION OF SUBGRADE STIFFNESS MATRIX

One of the major advantages of ILLI-SLAB, over other available
programs, eg. WESLIQID or FINITE, is that the Winkler type foundation is
no longer modeled by four concentrated springs at the corners of each
slab element. Through an equivalent mass formulation, a uniform,
distributed subgrade is provided. The formulation for the derivation of
the stiffness matrix for this subgrade (1) follows the same steps as the
one presented by Dawe, 195 (55), who first derived this matrix. In
Dawe”s equivalent mass formulation, the product of mass per unit area and
plate thickness (p h), replaces the subgrade modulus, k (or Kp). Similar
derivations using different sign conventions are also presented by

Przemieniecki (5) and Zienkiewicz (44).

The subgrade stiffness matrix used in ILLI-SLAB was compared to each
of the matrices presented in these publications, which were further
compared to each other, with due allowance for differences in sign
convention. The result of this was the corrected formulation as included
in the modified version of ILLI-SLAB, A typographical error in the
matrix in Ref. 44 was also detected: element (3,1) should be +461, as

also given in Ref. 57.

The corrections in the stiffness matrix are most obvious in the
results of symmetric problems, where identical responses are obtained at
corresponding points, as expected. Although the change in the results of

a typical run may only range from 3% to 5%, it is important to have a
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o balanced formulation, to ensure the good behavior and convergence of the
: . numerical solution.
: \ 5.6 SPECIFICATION OF LOADED AREAS IN TERMS OF GLOBAL COORDINATES
| .
) In its original version, ILLI-SLAB required that input data for
loaded areas be specified in terms of local (element) coordinates. In
- this system, the origin is set at the lower left corner of each element
. - and the axes extend from 0 to 2a in the x-direction and 2b in the
: ;ﬁ: y-direction, for a typical element of dimensions 2ax2b. The implication
== of this was that the user had to go through the following steps when
specifying the loaded areas for his problem:
1 ' 1. Determine the element numbers of the loaded elements, adhering to a
fixed numbering sequence, ie. from bottom to top from left to right.
B} It should be noted that depending on the fineness of the mesh used,
] each loaded area (such as a wheel imprint) might apply a load on 4 or
more elements. Thus, a large number of partially or fully loaded
ui: elements might be needed to define the loading pattern in all but the
simplest situations;
-
. 2. For each of the loaded elements, determine the extend of the loaded
- subarea in terms of the 1local element coordinate system. These
= coordinates should then be specified, one subarea per card, together
with the load intensity in each case;
- V 3. In case of a change in the f.e. mesh used, such as when making the
mesh finer, the process must be repeated.

L L T Y T



I T ————-

As a result of the complexity of this process, especially when used,

as it was, with the fixed form input format, a large portion of all

3 \;.

|\ L

:} problems encountered by ILLI-SLAB users was related to specifying loading
2

“~

:j pattern data. To overcome these difficulties, Subroutine SUBAREA was

coded to allow input data specification in terms of the global coordinate
system. In this system, the origin is located at the lower left corner

of the slab arrangement and the axes extend to the extreme corners of the

arrangement in both the x- and y- directions. The advantages of this

system are obvious:

1. Element numbering, although retained internally, does not enter into
input data preparation;

2. Only as many loaded areas as actually exist need be specified. The
global coordinates of the extent of each now acquires an improved
physical meaning for the user;

3. The global coordinate system is independent of the mesh wused, being

solely determined by the arrangement of slab(s) analyzed.

The output from ILLI-SLAB now includes both the loaded areas as
specified and the loaded subareas generated by Subroutine SUBAREA. The
user familiar with the original version of ILLI-SLAB will recognize that
the latter are identical tc the input data the user would have had to
prepare for the original version. A comparison of the two sets of
information illustrates the significant improvement in input data

specification achieved by Subroutine SUBAREA.




RAANRLASUMERSE A AN AR N AP S A A A A AR i S S A ARe. Jate JhEn Sk 2 |

115

5.7 FREE-FORM INPUT CAPABILITY

With the addition of several new subroutines, ILLI-SLAB can now
accept free-form input data using a Problem Oriented Language (POL)
consisting of simple, easy-to-remember English-like statements. This has
been made possible by accessing the SCAN Library of routines developed at
the Civil Engineering Systems Laboratory (CESL), Department of Civil
Engineering, University of Illinois at Urbana~Champaign (58,59,60). SCAN
has been used as a teaching and research tool for a number of years at
the University of Illinois. It is also the front end of the POLO System,

including FINITE, and is used in a number of production systems at CESL.

Free-form input data for ILLI-SLAB are classified into ¢ Groups,
each defined by a Key-Word. Three of these Groups belong to Block 1 and
the remainder to Block 2. Data in Block 1 must be read in first since
they determine the amount of memory core required for a given rumn. Apart
from this restriction in sequence, data can be read in any order desired
by the user. Listed in Table 5.1 are the Key-Words defining each Data

Group and a brief explanation of these.

Only those parameters that are different from the default values
need be provided when using the free-form input capability. This will
save time in preparing the input data file and executing the program.
The free-form subroutines are set up to issue diagnostic_error messages
before execution in the event of improper input data. These greatly

facilitate debugging the input data file and are particularly useful to
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TABLE 5.1

FREE-FORM DATA GROUPS AND KEY WORDS

KEY-WORD

TITLE

NUMBER

CONTOUR

COORDINATES

PROPERTIES

T.OADED

LOAD

ITERATIVE

SYMMETRY

EXPLANATION

The title for a given problem; this
will appear on the first page of the
output.

Declaration of number of nodes, slabs,
layers, and loaded areas.

Specification of contouring requests,
if any, and of pertinent variables.

Specification of nodal coordinates
along the x- and y-axes.

Specification of properties of top
and bottom layers (if any) and of
the subgrade.

Specification of loaded area limits
and of load intensity.

Specification of load transfer type
(if any), of direction and of
pertinent variables.

Specification of iterative scheme to
be used (if any), including number
of iterations, convergence tolerances
and output type.

Specification of lines of symmetry
(if any)
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the new user of ILLI-SLAB.

Use of the free-form input capability will be described in complete
detail in an updated User”s Manual. Figure 5.2 shows a comparison
between the fixed-form and the free-form input dita files for a typical

run.

5.8 MISCELLANEOUS CHANGES

In addition to providing a user-oriented input data capability, it
is desirable to have a user-oriented presentation of the results from a
given run. The presentation of results in a graphical form as achieved
by using the contouring subroutines is a major step in this direction. A
lot can be done, however, with the actual printed output of ILLI-SLAB.
Early in this study, particular attention was directed toward improving
the output format by the introduction of appropriate carriage control
characters, elimination of unnecessary lines of output (such as stresses
in layer 2 when only one layer is used!) and replacement of these by
other meaningful output information. The changes incorporated in the
revised version of ILLI-SLAB aim at providing a well-organized, clear
echo of the input file--so that the parameters and loading conditions
used can be checked——, as well as giving the user a neat, usable output.
Thus the appearance of the title page was enhanced (the date of the last
update of the program is also shown on this page). The output now
includes a listing of nodal coordinates as generated by the program. Of

most interest to the user, however, is the summary of maximum values of
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TITLE "#%&* RUN DROO3: COMPARISON OF TWQ TYPES OF INPUT FORMAT *%*x
NUMBER OF NODES IN X DIRECTION SLABS 1 11

NUMBER OF NODES IN X DIRECTION SLABS 2 11

NUMBER OF NODES IN Y DIRECTION SLABS 1 8

NUMBER OF SLABS 2

NUMBER OF LOADED AREAS 1

NUMSER OF LAYERS 1

COORDINATES OF NODES IN X DIRECTION O 8 140 170

190 210 220 225 230 235 240 240 245 250 255 260 270

290 310 340 400 480

IN Y DIRECTION O 5 10 15 20 39 60 120

PROPERTIES OF TOP LAYER

THICKNESS 10

TOP LAYER ELASTIC MODULUS 4000000

POISSON RATIO 0.15

OF SUBGRADE MODULUS 430.9

TYPE SOFT

LOADED AREAS

1 IN X DIRECTION FROM 230 TO 240 AND IN Y DIRECTION FROM 0 TO 5
WI1H PRESSURE 270

SYMMETRY X

LOAD TRANSFER IN X DIRECTION TYPE AGGREGATE INTERLOCK AGGREGATE
INTERLOCK FACTOR 1000000

NUMBER OF ITERATIONS 6

TOLERANCE FOR SUBGRADE MODULUS 0.05

TOLERANCE FOR NUMBER OF NODES 0.05

OUTPUT TYPE FULL

(a) Free-forr Input Data

1
*%%* RUN DR0OO3: COMPARISON OF TWO TYPES OF INPUT FORMAT *%%%

11 11 0 8 0 1 1

000000 50
0.0 %.0 140.0 170.0 190.0 210.0 220.0 225.0
230.0 235.0 240.0 240.0 245.0 250.0 255.0 260.0
270.0 290.0 310.0 340.0 400.0 480.0
0.0 5.0 10.0 15.0 20.0 30.0 60.0 120.0
2 1 0 430.9
10.0 4.000E+06 0.150
0
1.0E+06
270.0 230.0 240.0 0.0 5.0
2 6 0.05 0.05 1
000000

(b) Fixed-form Input Data

Fig. 5.2 Comparison of Free-form and Fixed-form Input Data Files
for Run DROO3 (See Table 6.2; Fig. 6.1)
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deflection and stresses and the nodal numbers at which these occur given
at the end of the output. The output from ILLI-SLAB is now particularly
suited for the Page Printer System (PPS), which produces good quality
printouts on 8.5 x ll-in. forms, punched for a standard 3-ring binder.

Such printouts may be directly included in a report.

A second group of changes involved the elimination of several code
errors ("bugs") that were revealed during this study. Comparisons with
FINITE show that at least the major routines of ILLI-SLAB, such as

stiffness matrix assembly, inversion, solution and determination of

stresses and deflections are probably free of any code errors.
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CHAPTER 6 ;;

TYPICAL EFFECTS USING MODIFIED ILLI-SLAB

E 6.1 CASES CONSIDERED ’ i

»
P
”

To illustrate the capabilities of ILLI-SLAB and the impact of the
l! modifications described in Chapter 5, a number of demonstration runs were

o performed. The results obtained from these runs are presented and

P
. «
TR Bl o

. discussed in this Chapter.

sheiddl,

Two typical pavement cross—sections are considered in this

. 4
2 investigation (Table 6.1). The first is a 10-in. Portland Cement ;

Concrete (PCC) Pavement, consisting of 20-ft. square panels, with or -
i without 1load transfer between adjacent slabs. The second pavement :
S section is a 12~in. pavement incorporating a stabilized base layer with ;

a modulus (E) of 1.5 x 190 psi. This pavement consists of 15-ft. by
12-ft. panels and 1is typical of pavements proposed for the USAF

Alternate Launch and Recovery Surfaces (ALRS) Program. j




(a)

(b)

(c)

PARAMETERS FOR DEMONSTRATION RUNS

PCC Pavement Section

Slab: 20' x 20" panels

h = 10"

E=4x lO6 psi

u = 0.15

k = 150 psi/in. or 'SOFT'

ALRS Pavement Section

Slab: 12' x 15
h = 12"
6 .
= 1,5 x 10" psi
0.15
120 psi/in. or 'SOFT'

= T
i H) !

Loading Patterns

(i) F - 4: 10-in. X 10-in.
(ii) C-130: 2 21-in. x 21-in.
(iii) F-111: 20.2-in. x 15.5-in.

@ 270 psi
@ 100 psi
@ 150 psi

’:-_ v L —— Rttt Rt it A A A S it A e IR R Te— (—’
-
. 121
TABLE 6.1
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The two pavement sections are loaded by three typical USAF aircraft
loading patterns: the F-4, the C-130 and the F-111. A typical soft i

subgrade is assumed using two alternative ways of characterization. The

first 1is the conventional static subgrade modulus, k, which was assigned
a value of 120 to 150 psi/in. using the “WINKLER” option in ILLI-SLAB.
The second 1is the proposed resilient modulus, KR , which was set at 425
psi/in. wusing the “SOFT” option. Associated with the latter option, is

stress dependence, provided by the iterative scheme in ILLI-SLAB.

The f.e. meshes used for the demonstration runs are shown 1in
Figures 6.1 through 6.9. For the cases involving load transfer, a second
"mirror image" panel was added to the right of the panels showed in these

figures. Note that the ALRS runs involving load transfer are of academic

AR bdoded . SBees. S Nele . Aot aa ca

interest only, since load transfer systems are not recommended for such

sections. ;

The major results from the demonstration rums are summarized in ?
Table 6.2, In an effort to clarify the picture presented by these
results, three distinct effects are identified:

(a) Effect of Load Transfer; d

s

(b) Eftect of Resilient Modulus; and

(c) Eftect of Stress Dependence--Iterative Scheme. J

These effects are discussed separately below.
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6.2 DISCUSSION OF RESULTS

6.2.1 Effect of Load Transfer

To investigate the impact of load transfer systems, load transfer by
aggregate interlock was provided in some runs and these are compared to
those in which only one panel was used. It was intended to investigate
the two extreme cases, that of no load transfer (LTE = 0%) and that of
full load transfer (LTE = 100%). For the latter, an aggregate interlock
factor (AIF) of 1 x 108 was specified, producing 1load transfer

efficiencies (LTE) between 97% and 99% (see Table 6.2).

Under conditions of full load transfer, maximum deflection is
reduced to half its value for the condition of no load transfer. The
effect of load transfer on maximum bending stress is shown as a stress
ratio in Table 6.3. The Table indicates that full load transfer stress
is about 0.6 times the no load transfer value. It is also observed that
the proposed change to a resilient modulus subgrade characterization has
only a minor effect in this respect. As expected, the 1load transfer
effect is more pronounced (albeit only very slightly) in the case of the

less stiff ALRS pavement.
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TABLE 6.3

EFFECT OF LOAD TRANSFER

PAVEMENT ATIRCRAFT SUBGRADE STRESS RATIO
PCC F-4 k=150 psi/in. 0.61
'SOFT' 0.62
C-130 'SOFT' 0.62
ALRS F-4 k=120 psi/in. 0.59
'SOFT' 0.61
C-130 'SOFT' 0.62

Notes: (a)

(b)

(c)
(d)

All runs for edge loading condition

o for LTE  100%
STRESS RATIO = - foc LTE = 0
max.

where LTE load transfer efficiency

Deflection across joint on unloaded side
Max. Deflection along joint on loaded side

The corresponding DEFLECTION RATIO is 0.50 for LTE = 1007.

All comparisons for first iteration.
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6.2.2 Effect of Resilient Modulus Characterization

As explained in Chapter 3, it is considered that a resilient modulus
subgrade characterization would be more appropriate for airfield pavement
systems under transient loads, than the conventional static plate 1load
test subgrade modulus. The k-value used to characterize the subgrade in
f.e. programs like ILLI-SLAB should be replaced by a stress dependent

KR—value, which at low stress levels is substantially greater than k. In

the cases analyzed in this report, the subgrade was assumed to have a
static k value of 120 to 150 psi/in. This is considered equivalent to
the stress dependent “SOFT” subgrade option in ILLI-SLAB. The low stress
level Kp-value for this subgrade is 425 psi/in., according to the

algorithms proposed in Chapter 3.

The effect of this change is shown in Table 6.4 in the form of
“before"” and "after" deflection and stress ratios. The former are seen
to vary between 0.40 and 0.56, while the latter have values between 0.80
and 0.90. Thus, the proposed resilient modulus subgrade characterization
leads to smaller calculated deflections and stresses, with stresses being
affected to a smaller extent than deflection., Table 6.4 also shows that
the impact of the proposed change is more significant as the load becomes
more severe (C-130 instead of F-4) and/or the pavement system is less

stiff (ALRS rather than PCC pavement).
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TABLE 6.4
EFFECT OF RESILIENT MODULUS
PAVEMENT AIRCRAFT  SPECIFIED DEFLECTION STRESS ]
LTE (%) RATIO RATIO .
PCC F-4 0 0.55 0.88 i
100 0.56 0.90 )
C-130 100 0.49 0.81 }
ALRS F-4 0 0.46 0.87
100 0.47 0.89
C-130 100 0.40 0.80
Notes: (a) All runs for edge loading condition

Max. deflection for 'SOFT'
Max. deflection for 'WINKLER'

(b) DEFLECTION RATIO

ARk

Max. stress for 'SOFT'
Max. stress for 'WINKLER'

(c) STRESS RATIO

(d) All comparisons for first iteration.

)
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6.2.3 Effect of Stress Dependence —— Iterative Scheme

Associated with the stress dependent options in ILLI-SLAB, including
“SOFT” employed in these demonstration runs, is an iterative scheme. 1In
this scheme, at the end of each iteration a check is performed for the
compatibility of calculated deflections and assumed support pattern (i.e.
KR—values). A new iteration is performed after updating the support
pattern until specified convergence tolerances are achieved. As seen in
Table 6.2, no more than two iterations were required to achieve
convergence in these runs. This may indicate that the tolerances TOLl

and TOL2 of 5% used are fairly liberal.

Table 6.5 is an attempt to filter out the effect of the iterative
scheme, by presenting in terms of deflection and stress ratios, the
responses after the first and after the last iterations. Deflection
ratios range between 1.00 and 1.14 while stress ratios fall between 1.00

and 1.07. Thus the effect of the iterative scheme is to increase the

maximum deflections and stresses obtained after the first iteration,
thereby counterbalancing some of the change produced by the resilient

modulus described in Section 6.2.2, above.

Since the application of the iterative scheme increases execution
time, it is important to draw some conclusions as to when such an
increased expense is justified by the changes in response produced.

Table 6.5 shows that the iterative scheme effect becomes substantial (ie.

in the region of 10% or more) for the more severe loading patterns (edge
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TABLE 6.5

EFFECT OF STRESS DEPENDENCE

R A dndis hagh 4

LOAD PAVEMENT AIRCRAFT SPECIFIED DEFLECTION STRESS
POSITION LTE (%) RATIO RATIO
Edge PCC F-4 0 1.03 1.01
100 1.00 1.00
C-130 0 1.10 1.05
100 1.03 1.02
F-111 0 1.04 1.07
ALRS F-4 0 1.06 1.02
100 1.01 1.00
C-130 0 1.14 1.07
100 1.05 1.03
F-111 0 1.12 1.05
Interior PCC F-4 0 1.00 1.00
C-130 0 1.00 1.00
F-111 0 1.00 1.00
Notes: (a) All runs for 'SOFT' subgrade
_ Max. deflection for last iteration
(b) DEFLECTION RATIO = Max., deflection for first iteration
(¢) STRESS RATIO _ Max. stress for last iteration
Max. stress for first iteration
(d) Convergence Tolerances: TOL1 = 5%
TOL2 = 5%
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rather than interior; F-111, C-130 rather than F-4), on the less
competent pavement systems (ALRS rather than PCC section; LTE = 07 rather

than LTE = 100%).

In general, the effect of the iterative scheme 1is mnot dramatic.
This may be attributed to the fact that the algorithms used in the
present version of ILLI-SLAB were developed by simulating rigid plate
load tests wusing ILLI-PAVE. The plates used in these tests are much
stiffer than any ordinary pavement slabs, and their radius of relative
stiffness, 1, 1is much higher than the values encountered in pavement
slabs. Westergaard (46) as well as other investigators have pointed out
the effect of the radius of relative stiffness on subgrade-—pavement

system response.

Finally, Table 6.6 presents the combined effects of the resilient
modulus and of the iterative scheme. The deflection ratios range between
0.42 and 0.57 and are, in general, substantially lower than the
corresponding stress ratios, which lie between 0.82 and 0.90. This
indicates that the impact of the proposed changes 1is much more
significant with  respect to deflection rather than stresses.
Furthermore, the effects are more pronounced in the case of the more

severe load patterns and/or the less competent pavement systems.
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TABLE 6.6 {

COMBINED EFFECT OF PROPOSED CHANGES

PAVEMENT  AIRCRAFT SPECIFIED DEFLECTION STRESS

LTE (%) RATIO RATIO

PCC F-4 0 0.57 0.89
100 0.56 0.90

C-130 100 0.50 0.83

ALRS F-4 0 0.49 0.89
100 0.47 0.90

C-130 100 0.42 0.82

Notes: (a) All runs for edge loading conditionm.

Max. deflection after changes
Max. deflection before changes

[ - (b) DEFLECTION RATIO =
<

F _ Max. stress after changes
o (c) STRESS RATIO = Max. stress before changes

(d) Changes consist of:

(i) Subgrade Characterization by resilient modulus,
KR (= 425 psi/in.: 'SOFT'), instead of static

subgrade modulus k (= 120 or 150 psi/in);

(ii) Stress dependence-iterative scheme.
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CHAPTER 7

CONCLUDING REMARKS

The U.S. Air Force 1is continuously confronted with problems

concerning:

1. The ability of an existing pavement to accommodate current and/or
different types of aircraft loading;

2. The development of rehabilitation/reconstruction recommendations for
existing pavements;

3. The design of new pavements;

4, The advantages/disadvantages of various aircraft gear configurations
and wheel loadings; and

5. The effectiveness of new materials and pavement cross-sections.

Classical slab-on-grade pavement analysis procedures ({such as those
proposed by Westergaard), cannot accommodate nonlinear subgrade support

conditions, complex loading patterns, cracked secticns with varying load

transfer efficiencies, and subbase effects. The modified ILLI-SLAB model
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developed in this study alleviates many of these inadequacies.

Computer program ILLI-SLAB (1), originally developed at the
University of Tllinois, offers great flexibility in modeling loading
conditions [i.e. position, size and in%ensity of loaded area(s)] and
load transfer systems. The obj-:tive of this study was to modify the
subgrade model in ILLI-SLAB from a simple, linear spring (Winkler) type,
to a stress dependent (more accurately, a deflection dependent) model, in
which the resilient subgrade modulus, K , decreases with increasing

R

deflection, w.

In the first stage of the investigation, KR was defined as a
function of w for the four subgrade types (very soft, soft, medium, and
stiff) characterized by Thompson and his co-workers (13) and used in
computer program ILLI-PAVE, By simulating repeated plate load tests
using ILLI-PAVE, a relationship of the following form was obtained

between KR and w:

A [1- exp {-a, (—‘E,’—y - AP+ 4, <;;—y - A,

“r ~ w

in which:
Al,...A5: Constants, functions of subgrade type;

Dy:Constant, function of plate size;

KR: Resilient subgrade modulus, in psi/in.;

w: Deflection in inches,

PP . o
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This model was incorporated into ILLI-SLAB using an iterative
scheme. According to this, a selected initial value of KR (dependent on
subgrade type) is corrected after each iteration. After a number of
iterations, the values of K; before and after the last iteration differ
by only a specified small percentage. The impact of the iterative KR
model was investigated for several typical pavement systems subjected to
interior and edge loading. Some of the sections included 1load transfer

systems.

The effect of a granular subbase on KR was also examined. It was
found that Kp is increased by the introduction of a 4~ to 6~in. granular
layer. However, in the subbase thickness range of 8 to 24 1in., this

effect is not pronounced.

The major effect of the proposed KR model stems the difference
between the value of the resilient subgrade modulus (initial KR value
assigned in the iterative procedurz) and the static k typically utilized.
The effect of iterative analysis is limited, and becomes more pronounced
for conditions producing more severe pavement responses (thin structural

sections, traffic overloads, edge loading, no load transfer).

Future phases of the investigation will be directed toward further
verifying the proposed model. Pavement response data from
well-documented laboratory or field studies will be analyzed with the
modified ILLI-SLAB program. Such data are available in the literature,

from State and/or Federal agencies, or, if necessary, can be collected in

A e e . -
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a test program conducted by the investigators.

Further analytical verification of the model will be provided by
comparisons with other existing computer programs such as GEOSYS, FINITE,
BISAR, VESYS, KENTUCKY, CHEVRON, etc.. The comparative data thus
collected will facilitate a reconsideration of current design practice
which is primarily based on Westergaard theory. There is a need to
under~stand, for example, the discrepancies between Westergaard and
ILLI-SLAB results, especially for edge and corner conditions and to
determine whether, indeed, some of Westergaard”s analyses are "erroneous

from a theoretical standpoint” (53).
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APFENDIX

INPUT GUIDE FOR ILLI-SLAB

(REVISED VERSION: FEB. 198)

Finite element program ILLI-SLAB provides solution for deflections
and stresses due to traffic loading in concrete pavements with joints
and/or cracks. Longitudinal and transverse joints may have any one or a
combination of 1load transfer systems such as dowel bars, aggregate
interlock, and keyways. ILLI-SLAB is also capable of handling a
stabilized base or an overlay, by assuming either perfect bond or no bond
between the two layers. Thickness of the slab, concrete modulus of
elasticity and modulus of subgrade reaction can be varied from node to

node.

The concrete pavement can consist of 1, 2, 3, 4, or 6 slabs separated
by one longitudinal and two transverse joints. The slabs are numbered
from 1 to 6, beginning from left to right in the direction of the x-axis,

and from bottom to top in the direction of the y-axis. Each slab is

divided into rectangular elements of various sizes. The elements and
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nodes are numbered consecutively from bottom to top along the y-axis and

from left to right along the x-axis. Joints are treated as rectangular

e elements having zero width.

: The wheel loads may be applied to any of the slabs, and stresses and
;iT deflections at all nodes in the slab, stresses in the stabilized base or
A:; overlay, vertical stresses in the subgrade, and transferred loads by the

dowel bars are computed.

This revised version incorporates the facility to generate contours
Sy of stresses and deflections. Cards No. 3 and No. 24 contain relevant

: . directions.

The program can accept either fixed-form or free-form type of input.

- The guide detailed below is for fixed-form input.
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. Card No. 0.
) LFORM
I1
A
IFORM = A numeric flag indicating type of input data
type used;
= 0, for free-form input;
A =1, for fixed-form input.

Card No. 1.

L AR S

SRR TITLE

] 20A4

TITLE

An 80-column 1label of alphameric characters
o used to identify the problem. This label will

appear on the first page of the output.
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2.

STl vy rm———"

used;

no symmetry lines are used;

x—-axis is a line of symmetry;

y-axis is a line of symmetry;

x-axis and y—-axis are lines of

N1X N2X N3X N1Y N2Y NFOR ISYM

I5 I5 15 I5 15 15 I5

N1X = Number of nodes in x-direction in slabs 1 and
4,

N2X = Number of nodes in x—-direction in slabs 2 and
5.

N3X = Number of nodes in x-direction in slabs 3 and
6.

N1Y = Number of nodes in y-direction in slabs 1, 2,
and 3.

N2Y = Number of nodes in y—-direction in slabs 4, 5,
and 6.

NFOR = Number of loaded areas.

ISYM = Numeric flag indicating whether symmetry lines

symmetry.

~




Card No. 3.

LANEL St e 4

ICON(I), I=1,6

ISTEP

611

I4

ICON(I) = A numeric flag

indicating which contour

plots, if any, are desired;

ICON(1) =1, if
=0, if

ICON(2) = 1,
wanted;

= 0, if

ICON(3) =1, if

ICON(4) = 1,

ICON(5) =1, if
Layer 2

=0, if

ICON(6) 1,

contours of deflection are wanted;

not.

if contours

not.
contours of
are wanted;
not.

if contours
are wanted;
not.
contours of
are wanted;

not L]

if contours

Layer 2 are wanted;

=0, if

not.

of subgrade

x-stress

of y-stress at bottom

x-stress

at bottom

at bottom

of y-stress at bottom

NB: ICON(5) and ICON(6) must be set to O,

stress are

of

of

of

if
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NLAYER=1 (see Card No. 6).

ISTEP = An integer specifying the density of the
Virtual Grid in the contouring routines. The
value of 40 produces pleasing contours. For
coarser but quicker lower the value. For
smoother but longer time raise the value.

ISTEP should be less than 200.

Card No. 4 (Use as many as needed).

& XC(I), I=1,N1X+N2X+N3X
) 8F10.3
- XC(I) = x-coordinate of node I.

Card No. 5 (Use as many as needed).

YC(I), I=1,N1Y+N2Y

> 8F10.3

YC(I) = y-coordinate of node I.




Card No, 6.

NSLAB NLAYER COMP CK

m I5 15 I5 F10.3
: NSLAB = Number of slabs: 1, 2, 3, 4, or 6.
o NLAYER = Number of layers: l or 2.
. COMP = Composite action factor;
:i* = 0, if no bond exists between the slab and
e .
stabilized base or overlay;
: =1, if complete bond.
, CK = Subgrade modulus, if subgrade modulus at all
. points is the same;
;‘ = 0.0, if not.
.
- Card No. 7.
o
- CTl1 CEl v(1)
F10.3 E10.3 F10.3

CTl = Top layer thickness, if this is the same at all
" nodes;
e = 0.0, if not.
py
e
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|
CEl = Modulus of Elasticity for top layer, if this is

the same at all nodes; :j
; = 0.0, if not. g
. V(1) = Poisson’s ratio of top layer. .
) .
4

3
E Card No. 8 (Read only if CT1=0.0; use as many as needed). ;j

TI(I), I=1,((NIX+N2X+N3X)*(NLY+N2Y)) 1

&F10.3 ;i

T1(I) = Thickness of the top layer at node I.

Card No. 9 (Read only if CE1=0.0; use as many as needed).

E1(I), I=1,((NLX+N2X+N3X)*(N1Y+N2Y))

8F10.3

E1(I) = Modulus of Elasticity of the top layer at node

I.
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Card No. 10 (Read only if NLAYER=2).

bl O ot

L . R
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CT2 CE2 v(2)
%. F10.3 E10.3 F10.3
:%t CT2 = Bottom layer thickness, if this is the same at
all nodes; L

AR

0.0, if not.

is CE2 = Modulus of Elasticity for bottom layer, if this
r is the same at all nodes;
g' = 0.0, if not.

V(2) = Poisson”s ratio of bottom layer.

o

STy
f

Card No. 11 (Read only if CT2=0.0; use as many as needed).

T2(I), I=1,((N1X+N2X+N3X)*(N1Y+N2Y))

8F10.3

T2(I) = Thickness of the bottom layer at node I.
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Card No. 12 (Read only if CE2=0.0; use as many as needed).

E2(I), I=1,((NIX+N2X+N3X)*(NLY+N2Y))

8F10.3

E2(I) = Modulus of Elasticity of the bottom layer at

node I.

Card No. 13 (Read only if CK=0.0; use as many as needed).

SUB(I), I=1,((N1X+N2X+N3X)*(N1Y+N2Y))

8F10.3

SUB(I) = Modulus of subgrade reaction at node I.

Card No. 14 (Read only if N2X or N3X are not equal to 0).

LTDX

I5

LTDX = Type of load transfer in x~direction;

I R Y S A U e L }

J
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= 0, if aggregate intelock or keyway;

1, if dowel bars;

2, if a combination of dowel bars and aggregate

interlock or dowel bars and keyway.

Card No. 15 (Read only if LTDX=l or 2).

DIN DOUT DE DS DL DJW DPR DCI
F10.3 Fl10.3 E10.3 Fl0.3 Fl0.3 Fl1l0.3 F10.3 El10.3
DIN = Inside diameter of the dowel bars;
= 0.0 for solid round bars.
DOUT = Outside diameter of the dowel bars.
DE = Modulus of elasticity of the dowel bars.
DS = Spacing of the dowel bars.
DL = Length of the dowel bars.
DIJW = Joint width.
DPR = Poisson”s Ratio of the dowel bars.
DCI = Dowel-Concrete Interaction.
DCI for a round steel dowel bar may be determined from

either Friberg”s dowel analysis or from the relation developed

based upon a three-dimensional dowel analysis:
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(a) Friberg’s Analysis:
DCI={K**0.75%D**2,5}/{0.041*D**0,75+0.0004*%K**0,2 5%y}
(b) Three-dimensional Analysis:

DCI={E**0.75}/{(0.057-0.010*D)*(0.810+0.013*%h)*(1+0.414%*w)}

where
E = Concrete modulus of Elasticity, psij;
D = Dowel diameter, in.;
h = Slab thickness, in.;
w = Joint width, in.;
K = Modulus of dowel support, psi/in.

Card No. 16 (Read only if LTDX=0 or 2).

AGGX.

E10.3

AGGX = Aggregate Intelock Factor in x-directionm.

(Use a large value, eg. AGGX=1.000E+08, for

keyways).
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Card No. 17 (Read only if N2Y is not equal to 0).

LTDY

I5

LTDY = Type of load transfer in y-direction;

0, if aggregate intelock or keyway;

1, if dowel bars;
= 2, if a combination of dowel bars and aggregate

interlock or dowel bars and keyway.

Card No. 18 (Read only if LTDY=1 or 2).

DIN DOUT DE DS DL DJW DPR DCI

F10.3 F10.3 E10.3 Fl0.3 Fl0.3 Fl0.3 Fl0.3 EI0.3

-

See Card No.l5 for notations.
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Card No. 19 (Read only if LTDY=0 or 2).

AGGY

E10.3

AGGY = Aggregate Intelock Factor in y-direction.
(Use a large value, ez. AGGY=1.000E+08, for

keyway) .

Card No. 20 (Read NFOR times).

PRS XX1 XX2 YY1 YY2

F10.3 Fl10.3 Fl10.3 F10.3 Fl1l0.3

PRS

Tire pressure.

XX1, XX2 = Lower and upper limits of the loaded area
in x-direction, in global coordinate system.

YYl, YY2 = Lower and upper limits of the loaded area

in y~direction, in global coordinate system.

Note: The changes in this card are necessary after the

addition of CUBROUTINE SUBAREA which generates loaded suiLareas

with respect to specified mesh and local coordinate system.

PR S 2

head

“t

PRy

Py




Card No. 21.

IST ITMAX TOL1 TOL2 IOT

IST = A numeric flag for subgrade type:

= 0, if support varies from node to node (See
Card No. 22);

=1, for VERY SOFT subgrade;

= 2, for SOFT subgrade;

= 3, for MEDIUM subgrade;

= 4, for STIFF subgrade;

! = 5, for OTHER subgrade (see Card No. 23.);

=6, for WINKLER energy consistent, uniform
subgrade (not stress dependent);

- =7, for SPRINGS subgrade (not stress

dependent).

Recommended values for k in first iteration:

. - VERY SOFT: Kp= 300 psi/in.

SOFT: K

R= 425 psi/in.
MEDIUM: Kp= 725 psi/in.
STIFF: Kp= 1000 psi/in.

| OTHER: Kp= A5/DY psi/in. .

1 ITMAX Maximum number of iterations desired.

* TOL1

Tolerance for KR (Recommended value= 0.05, 1ie.
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5%)

TOL2

Tolerance for % points exczeding TOLl
(Recommended value= 0.05, ie. 5%).
I0T = Numeric flag for output type:

= 0, for partial output during intermediate

iterations.
=1, for full output during intermediate

iterations.

. ( Note: A new iteration is performed if the
ratio of the number of nodes at which the
s updated Kp is more than TOLl (%) off the

previous Ky, to the total number of nodes,

exceeds TOL2 (%) ).

Card No. 22 (Read only if IST=0; use as many as needed)..

NST(I), I=1,((NIX+N2X+N3X)*(NLY+N2Y))

815

[ NST(I) = Subgrade Type (IST) under node I.
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| Card No. 23 (Read only if IST=5).

Al A2 A3 A4 A5 DY

F10.5 F10.5 F10.5 F10.5 F10.5 F10.5

o, _—
Al, A2, A3, A4, A5, DY = Parameters for the regression

equation defining Ky as as function of w, for
30" plate.

? General form of the equation:

- Kp= {Al[1-exp{-A2(w/DY-A3)}]+A4(w/DY-A3)+.}/w
Kg= A5/DY. if w/DY<A3.

- where

l w: deflection, in inches;

Kp: resilient subgrade modulus, in psi/in. .

Card No. 24 (Read only if contours are to be plotted).

Ll JCON(I), I=1,6 RATIO

611 F10.7

JCON(I) = A numeric flag indicating over which slabs
the contours requested in Card No.3, are to be

plotted;




e W R g Y s g W gy — T —— Y TR T— -v~1
.o . - e - L . Pac - 03 A Sl " N
|

{
A- 18 ‘
|
JCON(1) = 1, if contours over Slab 1 are to be :
4
plotted; i
= 0, if not.
JCON(2) =1, if contours over Slab 2 are to be
plotted; E
= 0, if not. ;
JCON(3) = 1, if contours over Slab 3 are to be f
plotted;
= 0, if not. ]
JCON(4) =1, if contours over Slab &4 are to be 1
plotted;
= 0, if not. K
JCON(5) = 1, if contours over Slab 5 are to be
plotted; i
= 0, if not. 1
JCON(6) =1, if contours over Slab 6 are to be .
plotted; J
= 0, if not. .
RATIO = A factor by which the y-scale is multiplied; 3}

RATIO=1.0 specifies x- and y-scales are equal.
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