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CHAPTER 1

INTRODUCTION

When loaded by ordinary traffic, Portland Cement Concrete (PCC)

pavements as well as flexible pavements with high strength base materials

(eg. soil-cement, econocrete, lime-flyash aggregate, etc.), display a

* slab-type behavior. This behavior is characterized by the development of

significant flexural stresses and relatively low subgrade stresses.

These pavements may have longitudinal construction joints and/or

transverse joints. Transverse joints are typically sawed or constructed

for PCC pavements, but may also occur as transverse cracks in the case of

stabilized base courses. The presence of joints and cracks makes it

MM important to consider such factors as load placement (ie. interior,

edge, or corner), multiple wheel loading, load transfer, etc. and their

overall impact on pavement response and performance.

In the calculation of stresses in slab-on-grade pavements, it is

necessary to idealize the characteristics of the supporting medium. In

general, one of two fundamentally different hypotheses concerning the

.'.I
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properties of the subgrade is used. In the first of these theories, the

soil is regarded as an elastic, isotropic and 'Lomogeneous semi-infinite

- body. The term 'elastic solid' is often used to describe this

idealization. The majority of current analyses which treat the subgrade

as a semi-infinite, elastic half-space, employ axisymmetric models.

Thus, they are only applicable to the interior condition -ie. where the

load is away from any edge. Furthermore, most such analyses can only

handle a single-wheel load; exceptions include MWELP (61), BISAR (62), as

well as certain Pickett and Ray Charts (52). Accommodation of

*.) multiple-wheel loads has not yet been achieved in the case of ILLI-PAVE

(16), a stress dependent (nonlinear), elastic model, described in Chapter

3.

In the other support characterization theory, the subgrade is

regarded as a flexible bed, with surface pressur proportional to surface

deflection at each point, while adjacent unloaded areas are not at all

affected. This idealization is commonly termed as a 'dense liquid' or a

Winkler subgrade. Finite element program ILLI-SLAB (1,2) employs a

Winklet-type subgrade and can be used to study two-layer, cracked

pavement sections, load transfer by aggregate interlock and/or dowels,

variable slab thickness, variable subgrade support and complex

multi-wheel loading, at any position on the pavement. This model has

been validated and extensively itilized in various University of Illinois

studies (1,25,54).

* . . ... ..
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In the original version of ILLI-SLAB, the modulus of subgrade

reaction, k, obtained from the plate load test, is used for subgrade

% characterization, This is in conformity with general engineering

practice, as well as several other finite element models. The value of k

can be varied from node to node according to a pattern specified by the

user at the beginning of the analysis. Note that k is independent of

"' stress/deflection level, being essentially a linear, low stress modulus.

Most subbase-subgrade support systems, however, display a stress-level

dependent load-deflection response. Typically, a softer (lower k)

response is exhibited at higher magnitudes of stress/deflection.

The purpose of this study is to develop deflection dependent support

* relations and incorporate these into ILLI-SLAB to accommodate deflection

U dependent subgrade behavior. Various models previously proposed are

reviewed in Chapter 2, with special attention paid to those that can be

used to simulate nonlinear subgrade response. Thompson and Robnett (13)

have proposed a resilient modulus characterization for the 'elastic

solid' foundation. This not only introduces soil nonlinearity, but also

" "-perhaps more importantly- accounts for the apparent increase in subgrade

- stiffness, produced by rapidly moving, repeated loads. The aim of this

study is to develop a similar resilient modulus characterization for the

'dense liquid' foundation.

Data for the development of the necessary algorithms are obtained

using ILLI-PAVE to simulate repeated plate loading tests, as described in

Chapter 3. Equations are derived relating the resilient modulus of

.....
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subgrade reaction, KR, and deflection. Note that this is no longer the

modulus, k, derived from the static plate load test, but a modulus

characterizing subgrade response to a repeated (impulse-type) test. The

latter loading condition is considered more appropriate for the type of

moving loads applied by modern-day aircraft traffic.

* Chapter 4 examines in more detail computer program ILLI-SLAB

currently used in pavement design and analysis, as well as several other

finite element programs. By comparing ILLI-SLAB results with those from

other programs and from Westergaard's theory, the validity of the

ILLI-SLAB model is confirmed. A number of recommendations are also made

for its most efficient utilization.

The stress dependent subgrade algorithms developed in Chapter 3 are

incorporated into ILLI-SLAB through an iterative scheme. This change is

described, together with several other improvements, in Chapter 5.

Finally, typical results from the revised version of ILLI-SLAB are

presented in Chapter 6, where the effects of the proposed changes are

evaluated.

.°° *



CHAPTER 2

PAVEMENT SUPPORT CHARACTERIZATION

2.1 LITERATURE REVIEW

In this section, several models proposed for the characterization of

subgrade support systems --other than that of the semi-infinite, elastic

* half-space-- are reviewed. The emphasis is on models that could be used

to simulate stress dependent (nonlinear) subgrade response. The

resilient, semi-infinite half-space characterization developed by

Thompson and his co-workers (13), is discussed separately in Section 2.2.

- The simplest representation of an elastic soil medium is the Winkler

a Foundation (3). Winkler assumed the elastic foundation to be represented

-by a bed of closely spaced, independent, linear springs. The stiffness

of the springs, generally referred to as the modulus of subgrade

reaction, is usually denoted by the symbol k (psi/in.). The modulus of

subgrade reaction relates the reaction pressure (q) to the deflection (w)

at a given location in 1e subgrade through the equation:

Li

4 • •
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q(x) kw(x).

Most current rigid pavement design procedures are based on the Winkler

model.

The subgrade modulus, k, is calculated using data from 30-in.

diameter plate load tests (Fig. 2.1a). ASTM standards (4) include

non-repetitive (ASTM D1196) and repetitive (ASTM D1195) static plate load

tests. The Corps of Engineers (CE), however, only uses a non-repetitive

static plate load test (5). The Air Force Engineering and Services

Center routinely conducts plate bearing tests in its airfield pavement

evaluation activities. Correlations between k, CBR and soil

classification have been suggested by various agencies. These

correlations are widely used, since plate load tests are expensive and

time consuming.

A typical plate pressure - plate deflection relation for a

fine-grained soil shows a nonlinear, stress softening trend (Fig. 2.1b).

The modulus of subgrade reaction is usually calculated using either the

CE or the PCA procedure. In the CE procedure (5), k is determined for a

plate pressure of 10 psi and the corresponding deflection. Using the PCA

* procedure (6), k is evaluated at a plate pressure corresponding to a

50-mil (0.050-in.) plate deflection.

A more sophisticated representation of an elastic soil medium would

consider the nonlinearity of the springs and more accurately approximate

the stress softening behavior of a fine-grained subgrade. Two of the
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more widely used nonlinear models in geotechnical engineering are the

hyperbolic and Ramberg-Osgood models. Both models were originally

developed to reconstruct stress-strain curves, but are easily adapted to

pressure-deflection data.

The hyperbolic model (7) assumes the plate pressure-deflection (p-w)

plot is a hyperbola (Fig. 2.2a). The equation has the form:

w
P b +aw

where 'a' and 'b' are empirical constants.

If the equation is rearranged, a relationship of the form:

-=-=b + aw
k p

can be obtained. On transformed axes (Fig. 2.2b), this equation plots as

a straight line with a slope of 'a' and an intercept of "b'. The term

(/b) is equivalent to the initial stiffness, k.

The Ramberg-Osgood function (7) is usually expressed in the

following form (Fig. 2.3):

r
w = + a - for first loadig
w p p
y y y

.w w P P P Po2 =2 + a I p for reloading

y y y

" Y.
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Wy

Fig. 2.3 Ramberg-C-sgood Model for Loading and Unloading



where Wy and py are the deflection and plate pressure at yielding,

respectively, and w0  and po are the extreme values of w and p for the

cycle. The values of the constants 'a' and 'r- must be determined

experimentally. The Ramberg-Osgood model is especially suited for cyclic

loading situations, where both the loading and unloading curves are of

interest.

A third model used to account for the nonlinearity of the subgrade

springs is an empirical equation developed by Butterfield and Georgiadis

(8). The basis of the equation is an idealization proposed by Burland

and Lord (9). The equation is characterized by three parameters: an

initial stiffness ko, a final stiffness kf and a pressure axis intercept

-q u (Fig. 2.4). The form of the equation is:

q = q (1- exp { - (k - kf) w/qu } ) + kf w

A major drawback of one-parameter models (including the Winkler and

*" nonlinear spring models) is their inability to adequately describe the

behavior of a half-space. In a physical sense, this means that no

deflection is possible outside the loaded area, as deflection at any

. point is only a function of pressure at that point. In reality, some

- deflection inevitably occurs outside the loaded area. It is this

inaccuracy that led researchers to look for a second parameter to

describe elastic foundation response (10).

U '
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One of the earliest two-parameter models was the Filonenko-Borodich

Foundation (3). In addition to the vertical springs which are common to

the one-parameter models, this foundation includes a stretched elastic

membrane (Fig. 2.5). The elastic membrane which is subjected to a

constant tension field of T is connected to the top and of the springs to

develop some interaction among them. The amount of interaction is a

direct function of T. The relation between subgrade stress (q) and

-.- deflection (w) is of the form:

q kw - TV2W

where 2is the Laplace operator in x and y.

Another two-parameter model is the Pasternak Foundation (3).

1 Pasternak considered the existence of shear interactions between the

spring elements by tying the springs together at the top with a plate

consisting of incompressible vertical elements that deform only by

transverse shear. The relation between pressure and deflection is very

*4 similar to that of the Filonenko-Borodich Foundation, with T replaced by

G (the plate shear modulus) so that:

2
q = kw - GV w

Butterfield and Georgiadis (8), expanding on an idealization first

proposed by Engesser (11) and using the Pasternak Foundation, developed a

loading equation using two stiffness parameters, one for the compression

springs and one for the shear springs. Engesser (11) proposed that for

". .o
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the case of a beam on an elastic foundation, the modulus of subgrade

reaction could be represented by an equation of the form:

k = a + (b/B)

where 'a' and "b' are constants and B is the breadth of the beam.

Butterfield and Georgiadis (8) suggested that the pressure applied on a

rigid square plate (BxB) is balanced by two sets of forces. The first is

the pressure due to the displacement of the vertical springs directly

beneath the plate and the second the shear force around the edge of the

plate, which is a direct function of the deflection of the springs in the

unloaded region (Fig. 2.6). The equation derived is:

w
0

kw + (4g 05/B) f [pdw/ 2/ p dw
0 0

where q is the subgrade stress , w° is the displacement of the plate, k

is the compression spring stiffness and g is the shear spring stiffness.

Note that the second term is dependent on B, while the first term is not.

The parameters k and g are nonlinear functions of w and are independent

of the plate size.

For a given displacement, the above equation can be reduced to the

form:

bq a B

with constants 'a' and 'b' directly dependent on k, g, and w

Butterfield and Georgiadis (8) showed that the values of 'a' and 'b'

could be calculated for a given displacement from two different size

I%
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plate tests. The values of k and g can then be back-calculated from 'a'

and 'b'.

All of the models discussed previously, with the exception of the

Ramberg-Osgood model, were developed for static loading conditions.

However, it appears that these models may also be applicable for the

resilient subgrade response to repeated loading, since the

pressure-deflection plots for both loading conditions are very similar in

shape. Butterfield and Georgiadis (12) proposed a model that could

predict the cyclic load behavior of plates of any size from two in-situ

tests: a conventional plate bearing test and a single-load level cyclic

plate test. From these two tests, the following empirical equations were

developed:

k = - C [I + C3 log { N/(Qc/Q)}] for unloading
uQ

k =k -Cl u  for reloading

where ko: initial stiffness;

kf: final stiffness;

Qu: load axis intercept;

Qc: cyclic load;

kr: reloading stiffness;

k : unloading stiffness;

C1 2, experimentally determined constants;
1, C 3

N :number of cycles.
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These equations can be used to predict the nonlinear response of a

plate f or any number of cycles at any load level.

2.2 RESILIENT, SEMI-INFINITE HALF-SPACE

2.2.1 General

The resilient behavior of a soil or material is an important

property for pavement analysis and design. A commonly used measure of

resilient response is the "resilient modulus", defined by:

E R

where:

E R: resilient modulus;

ayD: repeated deviator stress;

E :recoverable axial strain.

Repeated unconfined compression or triaxial testing procedures are

often used to evaluate the resilient moduli of fine-grained soils and

granular materials. Resilient moduli are stress dependent: fine-grained

soils experience resilient modulus decreases with increasing stress,

* while granular materials stiffen with increasing stress level.
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2.2.2 Fine-Grained Soils

Two stress dependent behavior models have been proposed for

describing the stress softening behavior of fine-grained soils. The

arithmetic model is demonstrated in Figures 2.7 and 2.8, and the semi-log

model is shown in Fig. 2.9. Extensive resilient laboratory testing,

nondestructive testing, and pavement analysis and design studies at the

University of Illinois have indicated that the arithmetic model (Fig.

2.7) is adequate for pavement analysis activities.

In the arithmetic model, the value of the resilient modulus at the

break-point in the bilinear curve, ERi (Fig. 2.7), is a good indicator of

a soil's resilient behavior. The slope values, K1 and K2 , display less 4
variability and influence pavement structural response to a smaller

degree than ERi. Thompson and Robnett (13) developed procedures for

predicting the resilient behavior of fine-grained soils based on soil

classification, soil properties, and moisture content. They suggested

othe following regression equations relating ERi with static soil modulus, I
& E, and unconfined compressive strength, qu:

ERi 3.36 + 1.9 E

where: ERi = 0.86 + 307 qu

ERI? E : Moduli, ksi

qu : Unconfined compressive strength, psi

It is seen that ERi is substantially greater than static E, due to

the stiffer soil response to repeated, short-duration loads. The

ERi-deviator stress relations developed for Illinois soils

'°1



19

In.K5

o ERi

Rpeaed Deviator stress, O D

of Fine-rained 
SOilS



2)0

!4

IPAVA 8

12

Optimum W-0.4%

10-

w

0

C

4

Optimum W+I.8%

2-

01 1_
0 5 10 15 20 25 30

Repeated Deviator Stress, 0 -D' Psi

Fig. 2.8 Typical Stress Dependent Resilient Behavior of a Fine-
Grained Soil [AASHTO A-7-6(36)].



21

30

I PAVA B

20-

Optimum W-O0.4 %

10 Log ER: 1.182 -0.021 O-D

w

4-

2- Log ER: 1.029 -0.037ooD

b 5 10 15 20 25 30 35

Repeated Deviator Stress, aD, Psi

* . Fig. 2.9 Semi-Log Model for Stress Dependent Resilient Behavior of a
Fine-Grained Soil [AASHTO A-7-6(36)].



22

(Fig. 2.10), are representative of soils exhibiting stress softening

behavior (13). 4

2.2.3 Granular Materials

In contrast to fine-grained soils, granular materials stiffen as the

stress level increases. Repeated load triaxial testing is used to

characterize the resilient behavior of granular materials. The resilient

modulus is a function of the applied stress state, as follows: -

R= Ke n

rR K

where:

ER = resilient modulus

K , n = experimentally derived factors

e = first stress invariant = a1 + 2C 3

(Note: a2 = a3  in a standard triaxial compression test)

Figure 2.11 is an ER-e relation for a sandy-gravel (GW in the Unified

System).

Rada and Witczak (14) have sumnarized and analyzed statistically I
extensive published resilient moduli data for a broad range of granular

materials. The average values and ranges for K and n are presented in

Table 2.1 for several granular materials and coarse-grained soils.

*1

A - -- - - - . -
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TABLE 2.1

TYPICAL RESILIENT PROPERTY DATA (14)

Granular Material Number of
Type Data Points K* (psi) n*

Mean Standard Mean Standard
Deviation Deviation

- . Silty Sands 8 1620 780 0.62 0.13

Sand-Gravel 37 4480 4300 0.53 0.17

Sand-Aggregate Blends 78 4350 2630 0.59 0.13

Crushed Stone 115 7210 7490 0.45 0.23

ER = KOn where

ER = resilient modulus, psi

K,n = experimentally derived factors from repeated triaxial testing Jata

I
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2.2.4 Other Materials

Stabilized materials such as soil-cement, cement-aggregate mixtures,

soil-lime mixtures, lime-flyash-aggregate mixtures and similar high

strength--high modulus materials are frequently used as base and subbase

layers. These materials are normally characterized as constant modulus

materials.

in

r•o
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CHAPTER 3

DEVELOPMENT OF STRESS DEPENDENT SUPPORT MODELS FOR ILLI-SLAB

3.1 THE ILLI-PAVE MODEL

The data required for the development of an algorithm which would be

incorporated into ILLI-SLAB to account for stress dependent response of

typical subgrade soils, were derived by simulating repeated plate load

tests using finite element program ILLI-PAVE (16). This considers an

axisymmetric solid of revolution as shown in Fig. 3.1. The program

!* employs nonlinear, stress depend t material models (see Section 2.2) and
-I

failure criteria for granular materials and fine-grained soils

(15,16,17). The principal stresses in the granular and subgrade layers

are modified at the end of each iteration so that they do not cxceed the

strength of the materials as defined by the 4ohr-CoulomL theory of

failure.
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Studies comparing measured and ILLI-PAVE predicted load-deformation

responses, reported by Raad and Figueroa (16), Suddath and Thompson (18),

Traylor (19), and Hoffman and Thompson (20), yielded favorable results.

The ILLI-PAVE approach has been successfully utilized in developing a

highway flexible pavement overlay design procedure based on

nondestructive testing data analyses (21), as well as mechanistic

thickness design procedures for secondary road flexible pavements (22)

and soil-lime layers (23).

3.2 SIMULATION OF RLPEATED PLATE LOAD TESTS

ILLI-PAVE was used to simulate repeated plate loading tests on

various subgrades. The rigid plate condition was represented by a 4-in.

thick steel loading plate (Es = 30 x 106 psi). Plate diameters of 30,

-21, and 15 in. were considered. Various plate pressures were applied.

*For each loading condition, a resilient (recoverable) deflection was

determined from the ILLI-PAVE analysis. The resilient modulus of

subgrade reaction (KR) is analogous to k, but is calculated by dividing

the plate pressure by the calculated resilient plate deflection.

The four subgrade types introduced earlier (very soft, soft, medium,

and stiff) were investigated. Pertinent subgrade properties and

characteristics are summarized in Table 3.1. Resilient moduli-repeated

stress level relations for these subgrades are shown in Fig. 2.10.

* "*
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TABLE 3.1

MATERIALS PROPERTY SU IMARY

Subgrade

Very
Soft Soft Medium Stiff Gravel

Unit Weight 110.0 315.0 120.0 125.0 135.0
(pcf)

Coefficient Earth 0.82 0.82 0.82 0.82 0.6
- Pressure at Rest

Poisson's Ratio 0.45 0.45 0.45 0.45 0.38

E (ksi) 1.00 3.02 7.68 12.34 --
Ri

50
ER - Model -- -- -- -- 5000F"

L (psi)*

Friction Angle 0.0 0.0 0.0 0.0 40.0
(degree)

Cohesion, psi 3.1 6.5 11.4 16.4 0.0

*E = KOn  (E K, and e in psi)

5:R

4-
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Applied plate pressures ranged from 2 psi to iTc psi (c is the

subgrade cohesion). Pressures larger than 7c are not of practical

S-' interest, since at higher pressures significant permanent deformation

(rutting) will occur in the subgrade.

m

Plate pressure versus resilient displacement data are presented in

* .Figures 3.2 and 3.3. Resilient modulus of subgrade reaction (KR) versus

plate deflection relations for the various subgrades are shown in Figures

- 3.4 through 3.7. The subgrades show a definite softening behavior

(reduced KR) with increasing pressures. The softening behavior is most

pronounced for the soft subgrade (Fig.3.5), where KR at a pressure of 7c

is approximately 60% of KR at 2 psi. For a given plate pressure and

subgrade type, a decrease in plate size results in a stiffer plate

response (KR increases).

33.3 ALGORITHM DEVELOPMENT

* * The ILLI-PAVE plate pressure-deflection data were analyzed using

different theories and empirical equations described in Section 2.1,

above (Tabie 3.2). The Ramberg-Osgood model and Butterfield and

. Georgiadis' cyclic plate-bearing model may be better suited for the case

where both the loading and unloading pressure-deflection curves -e of

interest. However, these models did not provide a good fit for ILLI-PAVE

resilient data. The hyperbolic model and Butterfield and Georgiadis" two

parameter model did not adequately describe the ILLI-PAVE resilient

pressure-deflection data either.
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The empirical equation proposed by Butterfield and Georgiadis

provided the best fit with the ILLI-PAVE data. This equation was

modified for presenting the ILLI-PAVE plate pressure-resilient

displacement data. A normalized deflection parameter (w/D y) was

substituted into the equation in place of w, where D represents the
y

deflection at a plate pressure of 'rc psi (rc corresponds to the upper

- bound for plate pressures considered in the ILLI-PAVE analyses). The

"-. -resulting equation is:

p A 1 [1- exp { -A2 (.w- -A 3 ) } ] + A4 (- -A 3) + 2

y Y

where:

* p : plate pressure;

w : plate deflection;

Sy : deflection factor for a given subgrade type (very soft; soft;

*medium; stiff);

Al, A2 ,... : subgrade constants.

If this equation is divided through by the plate deflection, w, the

* p/w term is KR, the resilient modulus of subgrade reaction. The final

" KR algorithm is:

A1 [1- exp { -A 2 (-- -A 3) } ] + A4 ( - -A 3) + 2

KR: WYY

R w
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Regression analyses were used to develop four equations (one for

each type of subgrade). The equation parameters for a 30-in. diameter

plate are summarized in Table 3.3. Values of the correlation

coefficient, R, standard error of estimate and coefficient of variation

for the equations are also presented in Table 3.3. To be consistent with

the subgrade resilient modulus-stress level relations (see Fig. 2.10),

KR is assumed to be a constant for pressures less than 2 psi.

Note that the resilient modulus of subgrade reaction, KR, obtained

from these algorithms, has values much greater than the corresponding

static subgrade modulus, k, for any given soil. This is consistent with

the observation that soils exhibit a much stiffer response when loaded by

rapidly moving loads, rather than static loads. A similar observation

was made earlier in relation to the values of ERi and static E (Section

2.2.2).

3.4 SUBBASE EFFECTS

3.4.1 Effect of a Granular Subbase

A layer of granular material is frequently used as a subbase in PCC

pavement construction. The structural contribution of the granular

material layer is generally acknowledged by assigning an increased design

k to the granular layer-subgrade system (6,24).

[i" 1
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Plate load tests, employing a 30-in. diameter plate on a granular

subbase-subgrade soil support system, were simulated using ILLI-PAVE.

The properties of the granular subbase (gravel) are listed in Table 3.1.

Three different granular subbase thicknesses (8, 16 and 24 in.) were

considered. The applied plate pressure was 2c (c = subgrade cohesion).

Figure 3.8 shows the effect of granular layer thickness on KR for each of

the four subgrades. It may be concluded that the introduction of a

granular subbase up to 8-in. thick, has a pronounced beneficial effect

on KR. For higher thicknesses of subbase, the KR-thickness effect

decreases with an increase in the thickness of the granular subbase.

Subbase thickness has only a slight effect within the 8 to 24-in.

thickness range considered. The comments made in the previous section

with regard to the seemingly high KR-values, apply here as well.

Plate pressure effects were also evaluated for an 8-in. granular

subbase layer thickness and a "soft" subgrade type. Plate pressures of

c, 2c, and 7c psi were considered. Comparative data for the no-subbase

and subbase conditions are shown in Fig. 3.9. Plate pressure has only a

nominal effect. The stress stiffening behavior of the granular material

counteracts to some extent the stress softening behavior of the

fine-grained subgrade.

6
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3.4.2 Effect of a Stabilized Subbase

The effect of a high strength/modulus subbase for a PCC pavement can

be considered by increasing k for the stabilized subbase-subgrade system.

This procedure is recommended by the Portland Cement Association and the

Federal Aviation Administration.

The ILLI-SLAB program considers the stabilized subbase as a flt ural

subbase beneath the PCC layer. This is a more desirable procedure than

using an increased k, since the elastic properties of the subbase and its

degree of bonding with the PCC slab can be considered.

i
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CHAPTER 4

THE FINITE ELEMENT METHOD AS APPLIED TO SLAB-ON-GRADE DESIGN

4.1 GENERAL

The determination of stresses and deflections in slab-on-grade

pavements with joints and/or cracks has been a subject of major concern

for several years. For many pavement structures it has been virtually

impossible to obtain analytical (closed form) solutions because of the

complexity of geometry, boundary conditions, and material properties,

unless certain simplifying assumptions are made. These, however, result

in a modification of the characteristics of the problem. Since all the

analytical (closed form) solutions are based on an infinitely large slab

with no, or at most one discontinuity, they cannot be applied to analysis

of jointed or cracked slabs of finite dimensions, with or without load

transfer systems at the joints and cracks.
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With the advent of high speed digital computers, solution of these

complex structural problems has been greatly facilitated. One of the

most powerful methods that have evolved is the "Finite Element Method".

This method of analysis is applicable to a wide range of complex,

boundary value problems in engineering.

In the Finite Element Method the system to be analyzed is

represented by an assemblage of subdivisions or discrete bodies called

"finite elements". These elements are interconnected at specific

locations called "nodes" or "nodal points". Functions are developed to

approximate the distribution or variation of the actual displacements

over each finite element. Such assumed functions are called

"displacement functions' or "shape functions". Relationships are then

established between these generalized displacements (usually denoted by

{d)and the generalized forces (usually denoted by (p)) applied at the

nodes, using the principle of virtual work or some other variational

p. principle. This element force-displacement relationship is expressed in

the form of element stiffness matrices (usually denoted by [k]), each of

which incorporates the material and geometrical properties of one

Awn element, viz.,

[k] (d) = (p)

The overall structural stiffness matrix, [K] is then formulated by

superimposing the individual element stiffness matrices using the

topological (element connectivity) properties of the structure. This

"1global" stiffness matrix is used to solve a set of simultaneous
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equations of the form:

[K] {D} = (P}

where:

{P} = applied nodal forces for the whole system;

{D} = resulting nodal displacements for the whole system.

Various models have been developed for analyzing pavement systems

using finite element (f.e.) techniques. A brief review of some of these

follows.

4.2 THREE-DIMENSIONAL MODELS

All models reviewed in this study, except those described in the

present section, are basically two-dimensional finite element models.

The problem of a slab of finite dimensions on grade, however, involves

processes that take place in three-dimensional space. Therefore, the

response of the slab and the subgrade to loading, temperature and

moisture changes etc., ideally requires a three-dimensional finite

element model for accurate simulation. Nevertheless, there are several

advantages to simulating the three-dimensional effects using

two-dimensional finite element models. First, the difference in cost

between a three-dimensional and two-dimensional calculation of the same

mesh fineness can be several orders of magnitude depending on the size of

the problem. In the three-dimensional case, there is a higher chance

that any given mesh will exceed the memory core capacity of the computer.

Second, due to its much lower cost, it is practical in a two-dimensional

;-.1
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analysis to increase the mesh fineness in selected zones, thereby

increasing the accuracy with which the smaller scale phenomena can be

observed. Even more important is the fact that three-dimensional

analysis is beyond the state-of-the art of most engineering design

groups. If three-dimensional finite element analysis were to be

recommended as part of a standard pavement analysis procedure, it is

doubtful that many designers would make use of the procedure.

On the other hand, theoretical analyses involving three-dimensional

models are very desirable, not only in the investigation of those aspects

that simply cannot be handled by a two-dimensional method, but also in

providing helpful insight for the improvement and the better

interpretation of the results of two-dimensional analyses. For example,

u the interaction between a loaded dowel and the surrounding concrete

constitutes a three-dimensional state of stress. This interaction

depends on the dimensions and elastic properties of the dowel bar and

* . concrete slab, as well as any looseness between the dowel bar and the

*.surrounding concrete. This makes the conventional dowel-concrete

interaction model employed in the two-dimensional finite element programs

-not applicable. In the original development of ILLI-SLAB, Tabatabaie and

Barenberg (25) performed a three-dimensional analysis of the concrete

slab near the joint and around the dowel, in conjunction with the

two-dimensional analysis of the jointed slab, to establish a realistic

dowel-concrete interaction.
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Such a two-stage analysis of the jointed pavement system provides a

more reasonable engineering approach. A two-dimensional analysis is

* first performed, followed by a three-dimensional analysis of specific

limited segments of the pavements. Results from the two-dimensional

analysis are used as boundary conditions for the segments to be analyzed

using the three-dimensional analysis.

In the original ILLI-SLAB study (1), the solid SAP finite element

program developed by Wilson (26) was employed for the three-dimensional

analysis. Figure 4.1 shows a typical finite element mesh used for the

three-dimensional analysis of a small section of the concrete slab near

the joint and around a dowel bar. Three-dimensional, 8-noded,

isoparametric elements with three translational degrees-of-freedom (dof)

per node, originally developed by Irons (27) were employed to represent

the slab segment under study. The subgrade was idealized by spring

elements. Dowel bars were modeled as beam elements with flexural and

shear deformations. Either spring or elastic elements were used to

represent the interaction between dowel bars and the surrounding

concrete. In the regions where the dowel bar exerted pressure on the

concrete, very stiff springs or very high elastic modulus elements were

used to simulate this contact condition.

As a result of this and later analyses, the dowel bar is modeled in

the two-dimensional ILLI-SLAB analysis by a bar element with one torsion

and one deflection degree-of-freedom. This is preferable to both theI'! original model, in which the bar element had one bending and one
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Fig. 4.1 A Typical F. E. Mesh Used for 3-Dimensional
Analysis (After Tabatabaie, et al, 1979 R'.1
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deflection degree-of-freedom, and to a third choice, that of a bar

element with all three degrees-of-freedom.

Another three-dimensional finite element program was developed by

Wilson and Pretorius (28) for the analysis of pavements. The program

uses a constant strain prismatic solid element defined as a

three-dimensional solid that has constant two-dimensional geometric

shapes and infinite third dimension. Thus, the element properties can be

varied at will in the transverse (x,z) plane, but are limited to 12

linearly elastic material types. These properties remain constant along

the prisms in the longitudinal (y) direction. The system is essentially

two-dimensional, with the third dimension introduced into the idealized

structure by expressing the load as a Fourier series in this direction.

Stresses and deformations caused by each Fourier term are summed, and the

process is continued until further additions become insignificant. This

program has been used to study the fatigue behavior of a cement-treated

layer (29), reflection cracking through bituminous overlays (30),

cracking in a treated pavement base layer (31), edge loading effects (32)

and other problems. Execution times ran in the range of 30 to 35

minutes; a typical ILLI-SLAB run takes 5 to 10 seconds.
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4.3 THE DISCRETE ELEMENT MODEL

This method is closer to a finite difference rather than a finite

element solution to the problem of a medium-thick plate on a Winkler

foundation. It was developed at the University of Texas (33,34,35) for

the solution of problems involving discontinuous plates and slabs. The

model is based on a physical representation of the slab as an assemblage

of elastic springs, rigid bars and torsional bars grouped in a system of

orthogonal beams (Fig. 4.2). The joints in the model are connected by

rigid bars that are in turn interconnected by torsion bars representing

the plate twisting stiffness, C. The flexible joint models the

concentrated bending stiffness, D and the effects of Poisson's ratio, ;i

The modulus of subgrade support, k is represented by independent elastic

springs. The deflection at each joint is the unknown. The basic

equilibrium equations are derived from the free body of a slab joint with

all appropriate internal and external forces and reactions. These

equations sum the vertical forces at each joint and th ' moments about

each individual bar.

Computer programs developed at the University of Texas using the

discrete element model are designated by the acronym SLAB. These

programs can accommodate complex problems involving any combination of

loads and boundary conditions, as well as a variety of discontinuities

(cracks and joints) and support conditions. Thus, Hudson and Matlock

(34) analyzed the case of partial subgrade support. The method was later

extended for the elastic solid foundation (36,37). Ayyash et al (38)
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U7

Fig. 4.2 Discrete Element Model of a Plate or Slab
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used the program in a study of the effect of cracking on bending

N stiffness of a continuously reinforced concrete pavement (CROP).

The discrete element model is helpful in visualizing the problem and

forming the solution. It gives reasonable values for deflections but may

be inaccurate in determining stresses along the edges. Furthermore,

* problems exist in the analysis of joints, cracks and gaps under the slab

because of the nature of the method (39/1). The major advantages of the

finite element over the discrete element method are that elements of

various sizes can easily be incorporated in the analysis and no special

treatment is needed at a free edge (40).

* 4.4 KENTUCKY

In this study, KENTUCKY denotes a finite element program developed

at the University of Kentucky (40,41). The analysis is based on the

S classical theory of medium-thick plates and employs the 4-noded, 12-dof

element, known as ACM or RPB12 in the finite element literature. The

subgrade is modeled as a Winkler foundation by attaching four spring

elements at the corne'rs of each plate bending element. The program was

developed for determining deflections and stresses in a system composed

of a single-layer pavement arranged in series of up to three rectangular

slabs, with or without load transfer at the transverse joints. The

externally applied loads are converted to a system of statically

equivalent nodal loads which often are not work equivalent to the applied

loads.
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The program can be used to investigate the effect of partial

slab-subgrade contact. Problems involving partial contact are aaalyzed

first by assuming the slab and subgrade are in full contact. If they are

indeed in full contact, the problem is considered solved. Otherwise, an

iterative procedure is employed. The reactive forces at the nodes out of

contact are set to zero and the process is repeated until the assumed and

the calculated contact patterns are the same. This procedure considers

* the self-weight of the slab, allowing for some precompression" of the

subgrade springs produced by this weight.

Joints are modeled by equating the sum of the forces at each pair of

nodes at a joint to the externally applied force(s) there, and by

requiring that the deflections at these nodes be related according to the

.2 prescribed load transfer efficiency at the joint. This procedure

-. destroys the symmetry of the stiffness matrix and results in an upper

- half band which is greater than the lower half. It is thus necessary to

- . store both the upper and lower bands, at a considerable memory core

expense. Bar elements are not used in modeling dowel bars because dowels

are considered unable to transmit moments from one slab to the other over

the very small joint width (39/l,25:Discussion).

-.
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4.5 WESLIQIDU

This program constitutes an enhanced version of KENTUCKY (39/1,2).

Only the additions and/or changes to KENTUCKY made at Waterways

Experiment Station in the preparation of WESLIQID will be described here.

WESLIQID can handle slab thicknesses and moduli of subgrade reaction

* which vary from node to node and any number of slabs arranged in any

arbitrary pattern. The only restriction is the amount of memory core

required. The pavement can consist up to two layers, bonded or unbonded.

WESLIOID retains the KENTUCKY model in which the support springs are

connected only at the nodal points.

S Once the subgrade reactive forces at each mode are determined,

stresses ard strains in the soil are computed using Boussinesq's or

Burmister's equations. An equivalent elastic modulus, E, corresponding

U to tne subgrade modulus, k, is introduced for this purpose.

Superposiion is employed to compute the response to each of the nodal

forces.

Four options are provided for specifying load transfer at the

joints. Three involve shear transfer only while the fourth involves

moment transfer. They are:

(a) Efficiency of Shear Transfer: The load transfer efficiency is

specified as a ratio of the vertical deflections at two adjacent

nodes on either side of the joint.
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(b) Spring Constant: According to Chou (39/1), the use of imaginary

shear transfer springs along the joint is more realistic than

* specifying a load transfer efficiency because the springs take

into consideration the shear force at joint. The spring

constant, defined as a force to cause unit deflection, is

specified by the user.

(c) Diameter and spacing of dowels: Chou (3911) considers this to be

most straightforward and to yield results far superior to the

other two options. This option applies only to cases where

dowels are the only load transfer device. Dowel diameter,

spacing and modulus of dowel support are specified by the user.

* The selection of the latter is a design decision depending upon

the tightness with which the dowels are held in the concrete,

the type of dowels, strength of concrete and method of

construction.

(d) Efficiency of moment transfer: This is defined as a fraction of

the full moment which is determined by assuming that the

- - rotations on both sides are the same, rather than as the ratio

of the rotations at two adjacent nodes on either side of the

joint. A moment transfer efficiency of 100% implies equal

rotations on both sides of the joint. A zero moment transfer

efficiency requires that the moment of all nodal points along

the joint is zero, although rotations may not be zero. Unless

the efficiency is 0.0 or 1.0 at all joints it is necessary to

analyze the problem twiue. First, an efficiency of 1.0 is

assumed for all joints where the real efficiency is not equal to
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zero, to determine the 'full moments' along the cracks. These

moments are multiplied by the real moment transfer efficiency

and are applied as external moments during a second analysis.

4.6 FINITE

This is a general purpose computer system for the analysis of linear

and nonlinear structures, developed at the Universities of Illinois and

Kansas (42,43). FINITE supports a wide variety of elements, from the

simplest one- and two-dimensional symmetric elements, to nonsy~imetric

elements, some types of hybrid elements and elements with varying

degrees-of-freedom at each node.

UFor the purposes of this study, the term FINITE model refers to a

representation of the slab on grade system using the RPB12 (or ACM)

element for plate bending (44) with 4 supporting SPRING elements for the

subgrade. This model is identical to that used in KENTUCKY and WESLIQID.

In contrast to the latter two models --which use statically equivalent

loads--, FINITE uses a work equivalent load vector (44) to convert

Mapplied external loads to nodal loads. The FINITE model is used to

analyze a single slab with full contact and yields results identical to

those obtained by the 'SPRINGS' option of revised ILLI-SLAB.

Lj
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4.7 ILLI-SLAB

ILLI-SLAB was developed at the University of Illinois in 1977 for

structural analysis of jointed, one- or two-layer concrete pavements with

some load transfer system at the joints (1,2). The ILLI-SLAB model is

based on the classical theory of a medium-thick plate on a Winkler

foundation (49), and can evaluate the structural response of a concrete

pavement system with joints and/or cracks. It employs the 4-noded,

12-dof plate bending (ACM or RPBI2) element (44). The Winkler type

subgrade is modeled as a uniform, distributed subgrade through an

equivalent mass formulation (55). This is a much more realistic

representation than the four concentrated spring elements in WESLIQID and

FINITE. A work equivalent load vector is used (44), as in FINITE.

The assumptions regarding the concrete slab, stabilized base,

overlay, suagrade, dowel bar, keyway, and aggregate interlock can be

briefly summarized as follows:

(i) The small deformation theory of an elastic, homogeneous

medium-thick plate is employed for the concrete slab, stabilized

base and overlay. Such a plate is thick enough to carry

transverse load by flexure, rather than in-plane force (as would

be the case for a thin membrane), yet is not so thick that

transverse shear deformation becomes important. In this theory,

it is assumed that lines normal to the middle surface in the

undeformed plate remain straight, unstretched and normal to the

middle surface of the deformed plate, each lamina parallel to

i 
i -. .• -'.- o- ., .
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the middle surface is in a state of plane stress, and no axia

or in-plane shear stress develops due to loading.

(ii) The subgrade behaves as a Winkler foundation.

(iii) in case of a bonded stabilized base or overlay, full strain

compatibility exists at the interface, or for the unbonded case

shear stresses at the interface are neglected.

(iv) Dowel bars at joints are linearly elastic, and are located at

the neutral axis of the slab.

'a(v) When aggregate interlock or a keyway is used for load transfer,

load is transferred from one slab to an adjacent slab by shear.

However, with dowel bars some moment as well as shear may be

* transferred across the joints.

Various types of load transfer systems, such as dowel bars,

aggregate interlock, keyways, or a combination of these can be considered

at the pavement joints. The model can also accommodate the effect of a

p stabilized base or an overlay (either with perfect bond or no bond).

Thus, ILLI-SLAB provides several options, that can be used in analyzing

the following problem types:

.4u"1. Jointed concrete pavements with load transfer systems at the

joints.

2. Jointed reinforced concrete pavements with cracks having

reinforcement steel at the cracks.

3. Continuously reinforced concrete pavements.

4. Concrete shoulders with or without tie bars.

5. Concrete pavements with a stabilized base or an overlay,

[o.
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assuming either a perfect bond or no bond between the two

layers.

6. Concrete slabs of varying thicknesses and moduli of elasticity,

and subgrades with varying moduli of support.

The program inputs are:

(a) Geometry of the slab, including the type of base or overlay,

load transfer system, subgrade, and slab dimensions.

(b) Elastic properties of the concrete, stabilized base or overlay,

load transfer system, and subgrade.

(c) Loading.

The outputs given by the program are:

(a) Nodal stresses in the slab, stabilized base or overlay.

(b) Vertical surface stresses of the subgrade.

(c) Nodal deflections and rotations.

(d) Reactions on the dowel bars.

(e) Shear stresses at the joint for the aggregate interlock and

keyed joint systems.

The model was verified by comparison with the available theoretical

solutions and the results from experimental studies (1,25).

'.
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4.8 TYPICAL RESULTS AND COMPARISONSa

- 4.8.1 Objectives

The purpose of the analyses described in this section is threefold:

(1) Recent modifications (described in Chapter 5) to essential

features of ILLI-SLAB, viz. the subgrade stiffness matrix, as well as

the addition of several higher-level routines (eg. free-form input,

contouring, subgrade types, stress dependence, etc.) have created the

need for a revalidation of the program. Such revalidations have been

-? carried out in the past since the publication of Ref. 1 in 1979, by

various graduate students as part of their studies and research at the

U University of Illinois. These, however, have been incomplete and

-" remained scattered in the private files of each worker. As a result, no

benefit could be derived from them by ILLI-SLAB users at large. Several

n of these unpublished studies are referenced in this section.

(2) In the preceding sections several available models were

m reviewed. Completeness demands that typical results be presented and

comparisons made between ILLI-SLAB and other programs. The purpose of

such comparisons is primarily to provide a further means for validating

the ILLI-SLAB model, rather than to assert the superiority of one

* particular model. Different models may perform better than others

depending on the problem considered. It is obvious that the restricted

scope of the analyses presented in this report do not exhaust the

, -. - - - --"



64

capabilities of each model.

(3) The most efficient utilization of the capabilities of ILLI-SLAB,

as well as any of the other programs, greatly depends upon the extent of

the user's familiarity with simple and yet very important factors

affecting the program's performance. The analyses presented herein aim

at providing some guidelines that can be applied by the user when

ILLI-SLAB is employed in typical pavement design and analysis problems.

4.8.2 Problems Investizated

In the present study the following questions are addressed using a

well-designed factorial of ILLI-SLAB and WESLIQID runs:

(i) How does the revised version of ILLI-SLAB compare to that used

in the validation presented in Ref. 1? (As the reader may

already know, the conclusion of this validation was that

ILLI-SLAB agreed with Westergaard very well).

(ii) How should the circular loaded area assumed by Westergaard be

modeled in ILLI-SLAB? What is the effect on response of

different ways of loaded area representation?

(iii) Since ILLI-SLAB can accommodate partially loaded elements, what

is the effect of load placement with respect to the finite

element mesh? Is there any particular configuration which can

be recommended to the general ILLI-SLAB user?

(iv) Finite element theory requires that in the limit of mesh

refinement, the finite element solution should .pproach the
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correct closed-form solution (if available). Is this true of

- ILLI-SLAB? If not, why not?

(v) How does slab size affect the manner in which ILLI-SLAB results

approach the Westergaard solution? Are the empirically

developed slab size criteria verified by the finite element

method, or do they require redefinition?

" (vi) What is the effect of element aspect ratio? How important is it

* to have square elements?

(vii) How is the relation between Westergaard and f.e. solutions

affected by the extent of the loaded area?

To provide answers to these questions, the interior loading

condition was chosen. This condition has been extensively studied and is

well understood. Theoretical analyses are available and they have been

found to be much closer to observed pavement behavior than for any other

loading condition. This condition also lends itself for a factorial of

simple runs using finite element programs at a relatively low cost. The

conclusions drawn from the investigation of the interior condition are

believed to be general enough to apply to other conditions as well.
|e.

I %--o
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4.8.3 Comparison of the Present Version of ILLI-SLAB to That Developed

by A. Tabatabaie

The original ILLI-SLAB code contained several errors, notably in the

formulation of the stiffness matrix for the subgrade. These have now

been corrected (see Chapter 5), but this created a credibility problem

for the excellent agreement with Westergaard theory reported in Ref. 1.

In order to verify the results obtained during that study, the same

factorial of ILLI-SLAB runs was performed using the updated version of

the program and the results are compared to those reported by Tabatabaie

et al (1) in Table 4 .1a.

The original factorial (1) consisted of 3 slab thicknesses, 12, 16

and 20 in. and 3 moduli of subgrade reaction, 50, 200 and 500 psi/in. A

25-ft. square slab was used in the analysis. As will be shown in a

later paragraph, this slab may be slightly smaller than the minimum

requirement for the development of the Westergaard infinite slab

condition, in view of a large radius of relative stiffness. The modulus

of elasticity and Poisson's ratio of the concrete slab were assumed to be

5x10 6  psi and 0.15, respectively. A single load of 50 kips was modeled

as a 15 in. x 15 in. area with a load intensity of 222.2 psi. The

results were compared with the Westergaard solution in which the 50 kip

load is distributed over a circular area 15 in. in diameter (WESI in

Table 4.1a). Some results tabulated in Table 4.1a are also plotted in

Fig. 4.3. The mesh used for these runs is shown in Fig. 4.4.

?7.
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- TABLE 4.1

(a) REVALIDATION OF ILLI-SLAB

RUN k h z DEFLECTION (mils) BENDING STRESS (psi)

No. (psi/in.) (in.) (in.) Ref. 1 Revised WESI Ref. 1 Revised 11.1-ESI
ILLI-SLAB ILLI-SLAB

1 1 50 61.95 36.3 35.8 32.3 562.9 562.4 528.0
2 200 12 43.81 16.9 16.6 16.1 488.0 487.2 461.9

3 500 34.84 10.3 10.1 10.1 443.2 442.3 418.2

4 50 69.55 29.4 29.1 25.7 431.1 430.9 399.1

5 200 14 49.18 13.8 13.5 12.8 376.3 375.8 350.5

6 500 39.11 8.3 8.2 8.0 341.9 341.3 318.4

7 50 76.87 24.6 24.4 21.0 340.4 340.3 311.5

8 200 16 54.36 11.5 11.3 10.5 300.4 300.1 274.3

9 500 43.23 6.9 6.8 6.6 273.0 272.5 249.8

10 50 90.88 18.9 18.8 15.1 226.4 226.4 203.9

11 200 20 64.26 8.5 8.4 7.5 205.4 205.3 130.1

U 12 500 51.10 5.1 5.0 4.7 187.4 187.1 164.4

Notes:

Finite Element Solution Theoretical Solution (WESI)nL
Slab: 25'x25' ( 3.3 to 8.6) P = 50,000 lb.

E = 5xlO 6 psi p = 282.94 psi

.. = 0.15 a = 7.5"

p = 222.2 psi Equations used:

A = 15"x15" interior Special Theory - Infinite Slab-Circular Load

Mesh: Fig. 4.4 0.275 (1 + ) (41Og + 1.069)
. -~ 4o +109

- P [( a a

8k'[2 Z 2 (0.217 - 0.367 logo 

• b = bl.6a + h - 0.675h for a < 1./_4

= a for a > 1.7 2 4
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TABLE 4.1 (Cont'd)

(b) COMPARISON WITH WESTERGAARD SOLUTIONS

RUN DEFLECTION (mils) BENDING STRESS (psi)
No. WESI WESII REVISED WESI 1'ESII Revised

ILLI-SLAB ORD. SP. ORD. SP. ILLI-SLAB
THEORY THEORY THEORY THEORY WESIII

" 1 32.3 32.2 35.8 52G.3 528.1 497.3 508.4 495.2 562.4
2 16.1 16.0 16.6 454.5 462.3 431.6 442.7 429.5 487.2

" 3 10.1 10.0 10.1 411.1 418.9 388.3 399.4 386.2 442.3

4 25.7 25.6 29.1 398.4 399.1 381.5 386.4 379.9 430.9
5 12.8 12.7 13.5 350.0 350.7 333.2 338.0 331.6 375.8
6 8.0 8.0 8.2 318.1 318.8 301.3 306.1 299.8 341.3

7 21.0 21.0 24.4 315.7 311.5 302.8 303.0 301.6 340.3

. 8 10.5 10.4 11.3 278.7 274.5 265.8 265.9 264.6 300.1
9 6.6 6.6 6.8 254.. 250.0 241.3 241.5 240.2 272.5

1 10 15.1 15.1 18.8 213.5 203.9 205.3 199.7 204.5 226.4
11 7.5 7.5 8.4 189.8 180.1 181.5 175.9 180.8 205.3

- 12 4.7 4.7 5.0 174.1 164.5 165.9 160.3 165.1 187.1

Notes:

See Table 4.1(a) for values of k,h,Z and Notes on F. E. Solution and WKNSI.

Theoretical Solutions

WESII, WESIII Equations Used:

P = 50,000 lb. UTESI, W4ESII: ai [ 3 P 2 - + 1 + - (a)1.2-r a 2 32
p = 222.2 psi (Ordinary Theory

Circular Load)

[ 1+ - ( + _ n I 5)(a)I i 8k72 2 ..

a = 8.46" (WESII) For Special Theory, substitute b fL a in Equation for o..

c = 15" (WESIII) WESIII: Substitute c' for a in Equation for (7., where

(Ordinary Theory
Square Load) c' c; c side of sqtnare load

v/2
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Finite Element Solution
600 Slab: 25' x 25'

E = 5x10 psi
Interior p = 0.15

Stress, o. p = 222.2 psi
1 \ A = 15" x 15" interior

Theoretical Solution (WESI)
.500 P = 50,000 lb.

p = 282.,94 psi
a = 7.5"

40 

hh 1 2"
400

30 h= 14"

300 0

h= 16"w 0 -

• " 200
-- h= 20"

* Revised ILLI-SLAB

100 c Westergaard (WrESI)

"I I I I

100 200 300 400 500

Subgrade Modulus, k (psi/in.)

Fig. 4.3 Revalidation of ILLT-SLAB
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_ _ _ _ I _ _ _ _ _ _ _ _ _ _ _ _ _

Fig. 4.4 F. E. Mesh Used for Rovalidation of ILLI-SLAB (Mesh I)

6
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For the cases considered the results of the updated version are

slightly improved compared to those of the original version. The

difference between the two versions is very small, from an engineering

viewpoint. Any conclusions reached by previous studies using the

-original version are considered valid.

4.8.4 Effect of Load Representation

In Table 4.1b comparisons of the finite element solution are

presented with three different Westergaard idealizations, WESI, WESII and

WESIII. The difference is the way the square or rectangular loaded area

in ILLI-SLAB is modeled for Westergaard's analysis. WESI is the same

representation as used in Ref. 1 and was retained here for consistency.

It essentially matches the total load, P and the diameter of the loaded

area (which is assumed to be equal to the side of the square loaded area

in the finite element solution). As a result, the luad intensity used in

Kthe finite element solution (222.20 psi) is different from that in the

Westergaard idealization (282.94 psi).

.- o°

A more rigorous representation is attempted in WESII where the total

load (P) and the load intensity (p) are matched, while the diameter of

the equivalent circular load is chosen to retain the same area, despite

the fact that this leads to a higher diameter than the side of the square

element (16.92 in. cf. 15.0 in.).

t _
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Finally, in WESIII the load is treated as a square of the same side

length and load intensity as in the f.e. analysis. Such a solution is

only available for the maximum bending stress of the interior condition.

The following equations were used in Ref. I for the Westergaard

solution:

= 0.275 (1 + 1-) P  (4 log + 1.069)
h h2  l0 b

2
p 2"~~ ? 2 - [i- (0.217 0.367 .2-logO 10

,-...-: 8k ,%

b = 1.6a + h - 0.675h for a < 1.724h
= a for a ) 1.724h

(NB:- The equation for deflection is misquoted in Ref. 1 without the

factor of 8, evidently due to a typographical error. Also, in the

calculation of b, the factor 1.724b is wrongly stated as 1.74h).

In the expression for the interior stress, an equivalent radius, b

was introduced by Westergaard (45) to account for the effect of shear

stresses in the vicinity of the applied load. This effect is neglected

in the "ordinary theory" of medium-thick plates, in which the true

radius, a, is used. The validity of this semi-empirical adjustment and

of the resulting "special theory" has been debated by various

investigators [see, for example, Scott (10) 1, but a discussion of this

issue would be beyond the scope of this report. It is considered,

however, that the results of a f.e. solution as obtained from ILLI-SLAB,

should be compared to Westergaard's "ordinary theory", because both

ignore the effect of shear stresses. Such a comparison is much more
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meaningful as will be shown below.

The following general form of the Westergaard equations was used in

this study (WESII):

3 P 2Z I - 2
- 2T ( + ) h [{n -- } Y +3+  +

_ 2-_ a 5 2

" = P -- - [ I + 1 - Z{ n -! }- + Y 5 ) (

AI 8kk 2  21T 24 z

y = Euler's Constant (= 0.577 215 664 901 532 860 61 .

These equations differ from those quoted above inasmuch as the

former are a specialized and simplified (hence, not as rigorous) version

of the latter. Furthermore, the general equation for interior stress

includes Westergaard's "supplementary" M2 stress (46). Although this

usually makes only a small contribution, it is included here for

completeness.

U

To obtain the interior stress in the case of a square loaded area

(WESIII), the radius of the circular load, a, in the equation above, is

replaced by a constant c', related to the length of the side of the

square, c, as follows:

-l e 42 C

" The resulting expression is not stated explicitly by Westergaard, but

- follows directly from his theory (47,48). Timoshenko and

Woinowsky-Krieger (49) provide a theoretical justification for this
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solution by showing that, loaded by the same total load P, a square side

c and a circle radius a, give the same maximum interior stress.

Table 4.1b shows that the WESII representation yields, in general,

lower deflections and bending stresses than WESI (with deflections being

much less sensitive). Furthermore, the discrepancy between the finite

element responses and WESII is greater than that with WESI, indicating

that using WESI may tend to conceal some of the differences between

Westergaard and the finite element analysis. WESI appears to agree

better with the finite element solution. It is shown below that this

"improvement" is only apparent.

Note in Table 4.1b that both the finite element deflections and

bending stresses are slightly higher than Westergaard's. Deflections are

much less sensitive to changes in load representation and are closer to

theory than bending stresses. This agrees with the observation that

deflections are much less sensitive to changes in the finite element

discretization and even formulation. Computer program validations which

quote only comparisons of theoretical and calculated deflections (50) may

be misleading.

As will be noted in subsequent paragraphs, the difference between

calculated and theoretical responses may be attributed to:

1. The 25-ft. square slab may be too small to develop the

Westergaard infinite slab condition thus leading to higher
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calculated deflections. This should also lead to somewhat lower

U calculated stresses, however, a feature not observed in Table

-' 4.1b;

2. The placement of the load on top of a single node (Fig. 4.4)

- leads to higher calculated stresses and deflections;

3. The use of elements with aspect ratios much different from

unity. Note that the mesh in Fig. 4.4 was used in Ref. 1 and

* is retained here for consistency;

4. The relatively large size of the loaded area. This is deemed to

be the most important factor in this case.

4.8.5 Effect of Load Placement with Respect to Finite Element Mesh

The effect of load placement with respect to the finite element mesh

was investigated for one of the cases presented in Table 4.1 (k =200

g psi/in, and h = 14 in.). Three different mesh configurations were used:

-Mesh I (Fig. 4.4) is the one used for all runs in Table 4.1 and has the

load placed on top of one central node, without any corner nodes;

-Mesh II (Fig. 4.5) introduces 4 corner nodes in addition to the central

node, thus turning the 9x9 mesh in Fig. 4.4 into an llxll mesh,

* requiring 71% more memory spaces to execute. It is, however, considered

a closer representation of reality;

-Mesh III (Fig. 4.6) has the 4 corner nodes but the central node is

missing. It is thus a lOxlO mesh, requiring only 32% more memory spaces

to execute than Mesh I.
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Fig. 4.5 Effect of Load Placement (Mesh II)
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Comparisons among the results of these configurations and the

results of the Westergaard idealizations WESI, WESII and WESIII are shown

in Table 4.2. It is observed that the deflections are again largely

insensitive to these changes, but they do follow the same pattern as

calculated bending stresses. Of the three meshes, Mesh II yields the

best results compared to Westergaard's (close and slightly conservative).

Mesh I offers an attractive alternative, especially for those cases where

a coarser mesh must be used. The results obtained with this mesh are

slightly more conservative. Table 4.2 indicates that where possible,

Configuration III must be avoided. Despite the extra effort involved in

using this mesh as compared to Mesh I, the results are unconservative by

a greater percentage.

In view of the above results, it is recommended that either

Configuration I or Configuration II be used, the decision being a

trade-off between extra computer core usage and accuracy. A similar

recommendation was made by Costigan (51) who conducted a detailed

investigation of this effect. At a future stage of this research, it is

proposed to add an automatic mesh generator that will provide the user

with an "optimum" mesh for the specified problem using the guidelines

developed here.

i

. .
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U TABLE 4.2

EFFECT OF LOAD PLACEMENT WITH RESPECT TO F.E. MESH

RUN MESH MEMORY DEFLECTION BENDING STRESS
* No. USED SPACES mils % WESII psi % WESIII

5 ME H I 20171 13.5 106 375.8 113
21 MESH 11 34507 13.4 106 348.3 105
22 MESH III 26711 13.1 103 257.5 78

WESI - - 12.8 - 350.0

WESII - - 12.7 - 333.2
WESIII - - unavailable - 331.6

Notes:

- (a) See also Table 4.1(b) for more details

(b) Mesh I: 9x9 mesh (Fig. 4.4)
Mesh II: llxll mesh (Fig. 4.5)
Mesh III: 10x1O mesh (Fig. 4.6)

(c) Finite Element Solution Theoretical Solutions

Slab: 25'x25' Ordinary Theory
E = 5xlO6 psi WESI WESII WESIII

V = 0.15 P = 50,000 lb. P = 50,000 lb. P = 50,000 lb.

p = -!)'.2 psi p = 282.94 psi p = 222.2 psi p = 222.2 psi

A = c"." interior
a = 7.5" a = 8.46" c = 15"

c = 15" (circular) (circular) (square)

k = 200 psi/in.

h = 14"

Z = 49.18"
... 0.305

. . ". , 1,-.. ,t ,. . . , - -- - - - - - - - - - -
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4.8.6 Convergence Characteristics of ILLI-SLAB upon Mesh Refinement

In its present as well as its original version, ILLI-SLAB employs

the 12 degree-of-freedom plate element (44) which is referred to in the

literature as the RPB12 or ACM element. The dimensions of this

rectangular (or square) element are 2a by 2b. It is a 4-node, 3-dof per

node plate bending element formulated using classical medium-thick plate

theory. Deformations due to transverse shear are neglected in this

formulation. Because all terms of a complete fourth order polynomial are

not present in the assumed displacement shape (15 terms would be

required), the element is non-conforming, ie. slopes normal to

interelement boundaries are not continuous. However, the element is

capable of correctly reproducing constant strain (curvature) states.

Therefore, convergence to the exact solution is assumed as the element

mesh is refined. What is not guaranteed is that convergence will be

monotonic, ie. consistently from above or from below.

To check the convergence characteristics of ILLI-SLAB, a factorial

of runs was designed which would permit the examination of the effect of

mesh refinement without interference from limitations due to finite slab

size and element aspect ratio. It will be noted in a subsection below

that minimum slab size, L for the development of the Westergaard infinite

slab condition with respect to stresses seems to be about 3.5 times the

radius of relative stiffness, 1 of the slab. For the 12'x12' slab used,
-J

parameters were chosen that gave 1 equal to 23.16 in. ie. an (L/l)

ratio of 6.2. Thus no slab size problems can be expected, at least as
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far as stresses are concerned.

The thickness, h of the slab was chosen as 15 in. despite the fact

that this meant a higher radius of relative stiffness than would be

obtained with a thinner slab. The objective here was to allow the

investigation of element sizes smaller than h, since it had been pointed

out by previous investigators that elements this small produced a

stiffening effect. The other parameters used for this factorial are

shown in Table 4.3a. Square elements were used to eliminate any aspect

ratio effects, but their size varied from run to run depending on how

many were available to fill the 12-ft.xl2-ft. slab used. The ratio of

element size, 2a to the thickness, h of the slab used varied between 4.8

when 4 elements were used, to 0.8 when 144 elements were used. The mesh

used for the latter case is shown in Fig. 4.7. Also shown in Table 4.3a

are the results from two Westergaard idealizations of the problem, one

where P and p were matched using a circular load (WESII) and another for

a square load (WESIII).

The results shown in Table 4.3a are presented graphically in Fig.

4.8. It is noted that for the cases studied, as the mesh is refined both

deflection and bending stress converge monotonicaly from below to a

theoretical value that would be obtained in the limit of refinement. In

the case of deflection, this is slightly higher than the Westergaard

value for the corresponding problem. This is probably due to the lack of

- an exact solution for a square load, as well as as the finite size of the

slab (L/I=6.2; see below). In this study, deflections are compared to
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, 'ABlE 4.3

(a) EFFECT OF F. E. ESH FINENESS

RUN No. of () DEFLECTION BEN'DING STRESS
No. Elements h (mils) % lESII psi % WESIII

32 4 4.8 1.06 91 4.33 27
33 16 2.4 1.23 106 9.68 59
34 64 1.2 1.25 108 14.22 86
35 144 0.8 1.24 107 16.34 99

WESII - - 1.16 - 16.61 -

WESIII - - unavailable - 16.54 -

Notes:

Finite Element Solution: Revised ILLI-SLAB Theoretical Solutions

Slab: 12'x12' (= 6.2' square) See Table 4.lb for equations used.

Elements: 2ax2a Ordinary Theory

E = 0.5x106 psi P = 2500 lb
ij = 0.15 p = 100 psi

p = 100 psi a = 2.82" (circular: WESII)
A = c"xc" interior c = 5" (square: WESIII)
C = 5"
h = 15"

k = 500 psi/in.
Z" = 23.16"

C
- = 0.216

LI

' N
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the theoretical values for an equivalent circular load of the same area

as the square load (WESII). The observed discrepancy is very small. It

is also noted that the convergence rate of deflection is much faster than

that of bending stress, the limit solution being reached at values of

(2a/h) as small as 2 to 3.

On the other hand, the bending stress converges to the corresponding

Westergaard solution, but at a smaller value of 2a/h (=0.8). Note that

this comparison is with Westergaard's ordinary theory for a square load

(WESIII). The stress from a special theory analysis would be 12.8 psi

and this could lead to unjustified conclusions with respect to the f.e.

method. The true cause of this discrepancy is, of course, that thb

special theory and the f.e. method based on medium-thick plate theory

are not directly comparable, since the first accounts (in some

semi-empirical fashion) for the effect of shear stresses in the vicinity

of the load, while the latter does not.

The problem was further investigated by using a similar factorial of

WESLIQID runs, as well as runs using the 'SPRINGS' option in revised

ILLI-SLAB. As mentioned previously, this option is identical to the

FINITE model. In Table 4.3b, the results from these runs are compared to

those from ILLI-SLAB.

It is observed that all three models exhibit basically the same

behavior, ie. they monotonically converge from below to the same limit

values. No "bending over" is observed with mesh refinement. The effect
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of mesh refinement on the distribution of deflections and stresses is

shown in Figs. 4.9 and 4.10, respectively. Deflections are fairly

insensitive, especially outside a region of about twice the size of the

loaded area. Stress differences persist relatively longer.

4.8.7 Convergence Characteristics of ILLI-SLAB upon Slab Size Expansion

As mentioned earlier, the closed-form Westergaard solution assumes a

slab of infinite dimensions, although in practice empirical guidelines

have been developed for the least slab dimension required to achieve the

Westergaard "infinite slab" condition. These guidelines are summarized

in Table 4.4. It is the purpose of this part of the present study to

- . examine if and how ILLI-SLAB converges to the Westergaard solution as the

slab size is increased and establish whether the empirical guidelines in

Table 4.4 are verified by the finite element method.

The same parameters were used for this factorial of runs as in the

study of mesh refinement, giving again a radius of relative stiffness, 1

of 23.16 in. The element size was kept at 18 in. (ie. 2a/h-1.2). The

mesh used for these runs shown in part in Fig. 4.11. The pattern shown

is repeated in all 4 directions to give the required slab size.

The results from this investigation are given in Table 4.5, where

they are compared to the corresponding Westergaard values. The same

results are presented graphically in Fig. 4.12. Both deflection and

bending stress converge Lo a theoretical value for an infinite slab. The

--.. . . -- . - . . . . . . .
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TABLE 4.4
4,:.

THEORETICAL AND EMPIRICAL SIZE LIMITATIONS FOR
THE WESTERGAARD SOLUTION

Loading Minimum Side Length
Condition Theoretical Practical

Interior i£ 6Z
Edge IiN 6Z
Corner Unavailable

Z. = radius of relative stiffness

.'

.4.,

.4

.4
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Fig. 4.11 Effect of Slab Size: F. E. Mesh
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convergence of deflection is from above, indicating that a smaller slab

settles more than a bigger one in a "punch-like" fashion. Bending stress

converges from below, as expected. The rate of convergence, defined as

the slab size at which the solution is essentially that for an infinite

slab, is different for deflection (L/1=9.3) than for bending stress

(L/1-3.5). Surprisingly, deflection appears to be much more sensitive to

slab size changes for (L/l) values of less than 3, because of the

above-mentioned "punch-like" effect. The limit value approached by the

deflection is the Westergaard solution.

The value to which bending stress converges upon slab size expansion

is exactly that which would be expected for the given mesh fineness

(2a/h=l.2) as shown in Table 4.3a. This indicates that, fineness effects

apart, stress converges to the theoretical value for L/I values of about

3.5. In Table 4.5, the stress is not expected to approach the

Westergaard solution by any appreciable amount upon further slab

expansion, simply because the discrepancy observed arises from mesh

fineness effects, as shown in Table 4.3a.

It is interesting to note the similarity in behavior patterns

between ILLI-SLAB and 'SPRINGS'. This reinforces the observations above.

,-.

...
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4.8.8 Effect of Element Asvect Ratio

The effect of element aspect ratio was investigated by the factorial

of runs with WESLIQID shown in Table 4.6. Theoretically, best results

* are obtained when the aspect ratio is kept close to unity, ie. the

elements are as close to square as possible. This postulate is mrne out

in Table 4.6.

Figures 4.13 and 4.14 show how the aspect ratio affects .tion

and stress distributions. It is observed that deflection is largely

insensitive --as always-- to any changes. The bending stress

distribution is also insensitive except in a small region surrounding the

loaded area. The radius of this region is approximately twice the radius

of the loaded area. Within this region, a departure of aspect ratio from

unity may cause significant errors.

4.8.9 Effect of Size of Loaded Area

In his attempt to develop equations for a loaded area of finite

size, Westergaard used an approach which essentially consists of first

deriving a solution for a point load. Then, the loaded area is split

into a number of small subareas, each subarea being replaced by a

statically equivalent point load acting at its center. A summation is

performed over these subareas. In the limit of refinement, this

summation tends to an exact integration (52). Westergaard suggests that

his equations are valid for any size of loaded area and that, in fact,
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TABLE 4.6

EFFECT OF ELEMENT ASPECT RATIO

RUN ASPECT
NO. RATIO DEFLECTION BENDING STRESS

mils % WESII psi % WESIII

91 or 86 1 1.22 105 16.67 100
92 2 1.21 104 16.07 97
93 3 1.21 104 15.19 92
94 4 1.20 103 14.29 86
96 6 1.18 102 12.65 76

WESII 1.16 16.61
WESIII unavailable 16.54

Notes:

Finite Element Solution (WESLIQID) T ,oretical Solutions

Slab" 12'x12' (= 6.2Z square) See Table 4.1b for equations used.
Elements: 2ax2b Ordinary Theory
E = 0.5 x 106 P = 2500 lb.
P = 0.15 p = 100 psi
p = 100 psi a = 2.82" (circular: WESII)
2a = 6" c = 5" (square: WESIII)

2b = 2a x (Aspect Ratio)
A = c" x c" interior
c = 5"
h = 15"
k = 500 psi/in.
Z = 23.16"
- = 0.216

2a
h 0.4

*-. .h
. z•r , ,
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his "New Formulas" (48) assume that "the average width and length of the

footprint of the tire is greater than the thickness of the slab in all

significant cases".

Losberg (53) showed that the stress and deflection equations

presented by Westergaard and widely used in practice, are only the first

one or two terms of a rapidly converging infinite series. Westergaard's

supplementary stress, 'r2 mentioned above, for example, is an additional

term of this series. The rate of convergence can be expected to vary

depending, among other things, upon the size of the loaded area.

Timoshenko and Woinowsky-Krieger (49) state that the equations apply

only when the radius of the loaded area is "small in comparison with 1".

[Scott (10) attributes this restriction to the fact that "in the

derivation of the equation a term of approximate value 0.1 c2/12 was

omitted". This cannot be the real cause of the restriction imposed by

Timoshenko and Woinowsky-Krieger, since in most cases (even when the

radius of the loaded area is not "small in comparison with 1") this term

is, indeed, negligible.]

In this study, the effect of the size of the loaded area was

investigated using the f.e. method. Table 4.7 shows a factorial of

ILLI-SLAB runs and comparisons with Westergaard's ordinary theory

K solutions. To eliminate slab size, mesh fineness and aspect ratio

effects, a large (L/1-9.33) and fine (2a/hf0.6) mesh was used, consisting

of square elements (aspect ratio-l.0). The results in Table 4.7 are
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TABLE 4.7

EFFECT OF SIZE OF LOADED AREA

RUN p c DEFLECTION BENDING STRESS

No. (psi) (in.) c/ mils % psi %

4 WESII WESIII

108 200 3.54 0.153 1.18 102 18.12 97

107 175 3.78 0.163 1.17 101 18.01 99
106 150 4.08 0.176 1.17 101 17.87 100

105 125 4.47 0.193 1.17 101 17.68 103
101 100 5.00 0.216 1.17 101 17.40 105

102 75 5.77 0.249 1.17 102 16.96 108
103 50 7.07 0.305 1.16 101 16.17 112

104 25 10.00 0.432 1.15 102 14.23 115

Notes:

(a) The theoretical values WESII and WESIII (not explicitly given here)

were obtained for a circular and a square load respectively using
the equations given in Table 4.1b, for P = 2500 lb and p as shown

above.

(b) Finite Element Solution

Slab: 18'x18' (1- = 9.33)

Element Size: 9"x9" (2a= 0.6)
h

Number of Elements = 576

E = 0.5 x 106 psi
= 0.15

A = c" x c" interior

h = 15"
k = 500 psi/in.
Z = 23.16"

I-



101

plotted in Fig. 4.15.

It is observed that the Westergaard stress values apply for a loaded

area whose side length, c (if square) is about 0.2 times the radius of

relative stiffness, 1; if the load is circular, its radius must be about

0.11. As (c/l) or (a/l) increases, f.e. stresses become progressively

higher than Westergaard's.

4.8.10 Preliminary Recommendations

The following preliminary recommendations can be made at this stage:

1. The load(s) must be placed over the finite element mesh with at

least one node at the anticipated location of maximum response.

For example, in the case of interior loading, a central node

i must be provided. Otherwise, the results must be carefully

interpreted. Any peaks in response missed by the finite element

analysis because of node spacing, must be reconstructed.

2. The finest mesh practicable must be used. Accuracy of 99% can

be expected if the element size, 2a, is about 0.8 times the

thickness of the slab. A fine zone equal to twice the size of

the loaded area(s) is recommended, with progressive decrease in

fineness outside this area.

3. The convergence characteristics of the work equivalent uniform

subgrade model (option IST = 6; 'WINKLER' in modified ILLI-SLAB)

are slightly better than those of the 'SPRINGS' option (IST=7 in

modified ILLI-SLAB).

.* *
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4. Element aspect ratio should be kept close to unity, particularly

in a region around the loaded area(s), extending to two radii of

the loaded area. Within this region, this recommendation is a

requirement.

k
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CHAPTER 5

MODIFICATION OF ILLI-SLAB

5.1 AIMS OF MODIFICATIONS

For the benefits of the Finite Element Method to be fully realized,

it is highly desirable that programs using this method:

(i) Accept easy to compile, user-oriented input data, restricted to

the absolute minimum required and eliminating, where possible,

potential pitfalls for the user;

(ii) Employ carefully selected default value, that will reduce the

4 amount of input data required;

(iii) Perform error checks, especially in the case of default values,

so that errors that are concealed by the otherwise normal

execution of the program will be avoided;

(iv) Be free of code errors;

(v) Organize the output so that it is neat, meaningful and

user-oriented;

(vi) Incorporate skillful data-base management for the efficient

utilization of available memory core;
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(vii) Provide basic and higher-level routines; and

U (viii) Present the results in a summary and a graphical form.

S. The modifications of ILLI-SLAB presented below aimed at providing these

capabilities.

5.2 STRESS DEPENDENT SUBGRADE

_ The development of relationships between the resilient subgrade

modulus, KR and deflection, w is described in Chapter 3 of this report.

It was desirable to incorporate these relationships into ILLI-SLAB

through an iterative procedure which would compare support values (KR)

. corresponding to calculated deflections with previously determined

values. New support values would be assigned for a subsequent iteration

until compatibility was achieved between support system stress and/or

deflection and the user prescribed support relation/pattern.

Furthermore, it was desirable to have the capability to assign variable

support values to selected (or all) nodes according to a user prescribed

relation/ pattern. These aims were achieved with the introduction of

S." subroutine ITERATE.

The general expression for the relation between KR and w as

. developed in this study (30-in. diameter plate) is:

KR - (1/w){Al.[l-exp{-A2 ([w/Dy] - A3 )}]+A 4 ([w/Dy] -A3)+2}

46- -A5 /Dy , if [w/Dy I <A3.

where A1, A2, A3, A4, A5, D are regression parameters determined from

plate load tests simulated using ILLI-PAVE. By specifying these

v..-.'..', ..-...-...,... .. . . ........ .. .. . ,.. . . . . ""
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parameters, the user can define another stress dependent subgrade.

During this study, parameter sets for the following broad subgrade types

(Fig. 2.10) have been developed and are now a part of the revised version

of ILLI-SLAB:

1. VERY SOFT (KR = 300 psi/in.)

2. SOFT (KR = 425 psi/in.)

3. MEDIUM (KR = 725 psi/in.)

4. STIFF (KR = 1000 psi/in.).
R

The figures in parentheses are recommended initial (small deflection)

values, for fast convergence. As noted in Section 3.3, above, KR is

significantly higher than the corresponding static k-value,

reflecting the increased subgrade stiffness in response to rapidly

moving loads.

Other options available in modified ILLI-SLAB are:

5. OTHER : The user specifies the regression parameters individually to

obtain a different KR versus w relation.

6. WINKLER: This is the stress independent, uniform Winkler subgrade,

available in the original version of ILLI-SLAB.

7. SPRINGS: Support is provided by 4 springs at the corner of the

element (stress independent). This option allows direct

comparison-validation with FINITE.

Option 0 specifies that support varies from node to node and requires

that the user proceed to assign one of the above 7 options to each of the

JA
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nodes. In the case where most nodes have one type of support, the EXCEPT

option in the free-form mode allows specification of exceptions only,

rather than of each node.

Subroutine ITERATE is structured to allow easy modification of the

regression equations and/or addition of other subgrade options.

When one of the stress dependent subgrade types are used, subroutine

" ITERATE provides a procedure for checking convergence, updating support

values and proceeding with another iteration, if necessary. The user

controls this procedure by three variables:

1. ITMAX: Specifies the maximum (total) number of iterations desired.

3Usually 3 iterations are sufficient; a value of ITMAX = 6 is

recommended;

2. TOLl: Convergence tolerance for updated KR compared with KR from the

p nprevious iteration. A value of TOLl = 0.05 ie. 5% is recommended;

3. TOL2: Convergence tolerance for the percentage of nodes at which TOLl

* is not satisfied. Again, a value of TOL2 = 0.05 ie. 5% is

recommended.

- .Through a fourth parameter (lOT), the user is allowed to specify the

output type desired. Thus, he may opt to have only partial output during

intermediate ierations (stresses not calculated or printed), reserving

* * full output of deflections and stresses for the last iteration; or he may

choose to have full output for each iteration.
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5.3 CONTOURING CAPABILITY

During a study conducted in the Summer of 1981, Computer Program

ILLI-SLAB was revised and the facility to generate contours of stresses

aLd deflections was incorporated into it (54). This was done through

subprogram CONT, which accepts as input data results from ILLI-SLAB.

• "Subroutine CONTOUR in this subprogram passes these results to a number of

NCAR subroutines. The software used in these subroutines has been

* '- developed at the National Center for Atmospheric Research (NCAR), and is

•. made available with the restriction that NCAR be acknowledged as the

source of the software in any resulting research or publications. For

more information on the use of NCAR Contouring Software, the reader

should refer to NCAR literature. Sample contour plots are shown in

Pig. 5.1. A very brief outline of the Software, especially as used in

the revised version of ILLI-SLAB is given below.

The NCAR Graphics Software consists of graphics utilities such as

coLtour plotting, three-dimensional surface drawing, and world map

projections. These utilities perform graphic output using low level

graphics subroutines in the NCAR System Plot Package (SPP). This

consists of subroutines to draw, move, plot characters, clear the

plotting surface, and similar subroutines. The output of the SPP is not

a plot, but a file (called "NCARMC") of "metacode" uhich contains the

plotter instructions. NCARMC, the Metacode File, is device independent -

it contains instructions to drive an "ideal" plotter or graphics device.

This file is interpreted by a Translator for a specific device. The

*" .- .. .** *... . .. *. . * . * o
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CONTOURS OF X-STRESS PT BOTTOM OF LPYER i- SLRB I

* ,L /

; 0- 0. 15

E = 3 X 10 psi.. * ,'),,;,=,X t 6  
psi

l?,I k = 150 psi/in.

- / I' p 270 psi

I vSlab: 240 X 120 in.

I /

CONTOURS OF Y-STRESS PT BOTTOM OF LPYER I- SLPB 1

. 5 SI

%;..

~Fig. 5.1 Sample Contour Plots
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Translator does the actual plotting.

The most important family of NCAR subroutines used in ILLI-SLAB is

CONRAN. This is the name of a family of routines for the contouring of

irregularly distributed data. The family consists of 4 versions: CONRAQ,

CONRAN (used for two versions), and CONRAS. CONRAQ, the quick version,

plots contours, perimeters, titles and messages. CONRAN, the standard

version, adds line labeling, contour dash patterns, and plots relative

highs and lows (this is the version in ILLI-SLAB). CONRAN, smooth

version, adds splines under tension for smoothing of contour lines.

CONRAS, super version, adds the elimination of contours when crowding

with other contours or text occurs. CONRAQ is the fastest and smallest.

The packages get progressively bigger and slower as features are added.

CONRAN plots contour lines using random, sparse or irregular data

sets. The data is triangulated and then contoured. Contouring is

performed using interpolation of the triangulated data.

5.4 TOWARD MORE EFFICIENT MEMORY CORE UTILIZATION

A major problem encountered by ILLI-SLAB users is that any attempt

to refine the mesh used, especially when it is desired to investigate the

stability and convergence of the numerical solution or when several slabs

are used, faces the possibility of exceeding machine memory core

capacity. This problem has been addressed by the introduction of the

capability to take advantage of any symmetry lines that may exist. In



the modified ILLI-SLAB version, the user has the following options:

1. No lines of symmetry exist (ISYM=O);

2. The x-axis is a line of symmetry (ISYM=.);

3. The y-axis is a line of symmetry (ISYM=2);

4. The x- and y-axes are both axes of symmetry (ISYM=3).

Care was taken to introduce these options without imposing a burden on

the user during the preparation of the input data. Particularly

undesirable are requirements to include the node numbers for the nodes

along the line(s) of symmetry. In the new version of ILLI-SLAB, the

various options related with symmetry are specified by using a single

input variable (ISYM), which may even be omitted if no symmetry exists.

3 Still on the issue of economizing memory core, several methods are

continuously being investigated for better data-base management through

-"the use of overlays. These are incorporated into ILLI-SLAB as they are

n developed. The possibility of breaking the program into two or more

subprograms to be loaded and executed separately and sequentially is also

investigated. Already the contouring subroutines have been separated

from the main body of the program and placed in subprogram CONT with

S. appreciable savings. Another group of routines offered for such a

separation are those related to the free-form input capability. A

subprogram could be easily created from these routines to read free-form

input data and prepare them for the main body of ILLI-SLAB. A library of

routines is envisaged at the end of this effort which will contain all

necessary routines but only those needed for any given run will be

loaded.

-,"
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5.5 CORRECTION OF SUBGRADE STIFFNESS MATRIX

One of the major advantages of ILLI-SLAB, over other available

programs, eg. WESLIQID or FINITE, is that the Winkler type foundation is

no longer modeled by four concentrated springs at the corners of each

slab element. Through an equivalent mass formulation, a uniform,

distributed subgrade is provided. The formulation for the derivation of

the stiffness matrix for this subgrade (1) follows the same steps as the

one presented by Dawe, 1965 (55), who first derived this matrix. In

Dawe s equivalent mass formulation, the product of mass per unit area and

plate thickness (p h), replaces the subgrade modulus, k (or KR). Similar

derivations using different sign conventions are also presented by

Przemieniecki (56) and Zienkiewicz (44).

The subgrade stiffness matrix used in ILLI-SLAB was compared to each

of the matrices presented in these publications, which were further

compared to each other, with due allowance for differences in sign

convention. The result of this was the corrected formulation as included

in the modified version of ILLI-SLAB. A typographical error in the

matrix in Ref. 44 was also detected: element (3,1) should be +461, as

also given in Ref. 57.

The corrections in the stiffness matrix are most obvious in the

results of symmetric problems, where identical responses are obtained at

corresponding points, as expected. Although the change in the results of

a typical run may only range from 3% to 5%, it is important to have a
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balanced formulation, to ensure the good behavior and convergence of the

numerical solution.

5.6 SPECIFICATION OF LOADED AREAS IN TERMS OF GLOBAL COORDINATES

In its original version, ILLI-SLAB required that input data for

- loaded areas be specified in terms of local (element) coordinates. In

-. this system, the origin is set at the lower left corner of each element

and the axes extend from 0 to 2a in the x-direction and 2b in the

y-direction, for a typical element of dimensions 2ax2b. The implication

of this was that the user had to go through the following steps when

* specifying the loaded areas for his problem:

3 1. Determine the element numbers of the loaded elements, adhering to a

* fixed numbering sequence, ie. from bottom to top from left to right.

It should be noted that depending on the fineness of the mesh used,

each loaded area (such as a wheel imprint) might apply a load on 4 or

*more elements. Thus, a large number of partially or fully loaded

elements might be needed to define the loading pattern in all but the

simplest situations;

2. For each of the loaded elements, determine the extend of the loaded

subarea in terms of the local element coordinate system. These

coordinates should then be specified, one subarea per card, together

* with the load intensity in each case;

3. In case of a change in the f.e. mesh used, such as when making the

mesh finer, the process must be repeated.
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As a result of the complexity of this process, especially when used,

as it was, with the fixed form input format, a large portion of all

problems encountered by ILLI-SLAB users was related to specifying loading

pattern data. To overcome these difficulties, Subroutine SUBAREA was

coded to allow input data specification in terms of the global coordinate

system. In this system, the origin is located at the lower left corner

of the slab arrangement and the axes extend to the extreme corners of the

arrangement in both the x- and y- directions. The advantages of this

system are obvious:

1. Element numbering, although retained internally, does not enter into

input data preparation;

2. Only as many loaded areas as actually exist need be specified. The

global coordinates of the extent of each now acquires an improved

physical meaning for the user;

3. The global coordinate system is independent of the mesh used, being

solely determined by the arrangement of slab(s) analyzed.

The output from ILL I-SLAB nov includes both the loaded areas as

specified and the loaded subareas generated by Subroutine SUBAREA. The

user familiar with the original version of ILLI-SLAB will recognize that

the latter are identical to the input data the user would have had to

prepare for the original version. A comparison of the two sets of

information illustrates the significant improvement in input data

specification achieved by Subroutine SUBAREA.
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5.7 FREE-FORM INPUT CAPABILITY

With the addition of several new subroutines, ILLI-SLAB can now

accept free-form input data using a Problem Oriented Language (POL)

consisting of simple, easy-to-remember English-like statements. This has

been made possible by accessing the SCAN Library of routines developed at

* the Civil Engineering Systems Laboratory (CESL), Department of Civil

Engineering, University of Illinois at Urbana-Champaign (58,59,60). SCAN

- has been used as a teaching and research tool for a number of years at

the University of Illinois. It is also the front end of the POLO System,

including FINITE, and is used in a number of production systems at CESL.

* Free-form input data for ILLI-SLAB are classified into 9 Groups,

each defined by a Key-Word. Three of these Groups belong to Block I and

the remainder to Block 2. Data in Block 1 must be read in first since

they determine the amount of memory core required for a given run. Apart

from this restriction in sequence, data can be read in any order desired

* -by the user. Listed in Table 5.1 are the Key-Words defining each Data

Group and a brief explanation of these.

Only those parameters that are different from the default values

need be provided when using the free-form input capability. This will

save time in preparing the input data file and executing the program.

The free-form subroutines are set up to issue diagnostic error messages

before execution in the event of improper input data. These greatly

facilitate debugging the input data file and are particularly useful to
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TABLE 5.1

FREE-FORM DATA GROUPS AND KEY WORDS

GROUP KEY-WORD EXPLANATION

1 TITLE The title for a given problem; this
will appear on the first page of the
output.

BLOCK 2 NUMBER Declaration of number of nodes, slabs,
1 layers, and loaded areas.

3 CONTOUR Specification of contouring requests,
if any, and of pertinent variables.

4 COORDINATES Specification of nodal coordinates
along the x- and y-axes. .

5 PROPERTIES Specification of properties of top
and bottom layers (if any) and of
the subgrade.

BLOCK 6 LOADED Specification of loaded area limits
2 and of load intensity.

7 LOAD Specification of load transfer type
(if any), of direction and of
pertinent variables.

8ITERATIVE Specification of iterative scheme to
be used (if any), including number
of iterations, convergence tolerances
and output type.

9SYMMETRY Specification of lines of sylmmetry
(if any)
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the new user of ILLI-SLAB.

*1* Use of the free-form input capability will be described in complete

detail in an updated User's Manual. Figure 5.2 shows a comparison

between the fixed-form and the free-form input dita files for a typical

run.

-' 5.8 MISCELLANEOUS CHANGES

a.-..In addition to providing a user-oriented input data capability, it

is desirable to have a user-oriented presentation of the results from a

given run. The presentation of results in a graphical form as achieved

by using the contouring subroutines is a major step in this direction. A

U lot can be done, however, with the actual printed output of ILLI-SLAB.

Early in this study, particular attention was directed toward improving

the output format by the introduction of appropriate carriage control

characters, elimination of unnecessary lines of output (such as stresses

in layer 2 when only one layer is used!) and replacement of these by

other meaningful output information. The changes incorporated in the

revised version of ILLI-SLAB aim at providing a well-organized, clear

echo of the input file--so that the parameters and loading conditions

used can be checked- as well as giving the user a neat, usable output.

Thus the appearance of the title page was enhanced (the date of the last

update of the program is also shown on this page). The output now

includes a listing of nodal coordinates as generated by the program. Of

most interest to the user, however, is the summary of maximum values of
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0
TITLE ".*RUN DR003: COMPARISON OF TWO TYPES OF INPUT FORMAT**"
NUMBER OF NODES IN X DIRECTION SLABS 1 11
NUMBER OF NODES IN X DIRECTION SLABS 2 11
NUMBER OF NODES IN Y DIRECTION SLABS 1 8
NUMBER OF SLABS 2

*NUMBER OF LOADED AREAS 1
NUMBER OF LAYERS 1

*COORDINATES OF NODES IN X DIRECTION 0 80 140 170
*190 210 220 225 230 235 240 240 245 250 255 260 270

290 310 340 400 4 8
IN Y DIRECTION 0 5 10 15 20 39 60 120
PROPERTIES OF TOP LAYER
THICKNESS 10
TOP LAYER ELASTIC MODULUS 4000000
POISSON RATIO 0.15
OF SUBGRADE MODULUS 430.9
TYPE SOFT
LOADED AREAS
1 IN X DIRECTION FROM4 230 TO 240 AND IN Y DIRECTION FROM 0 TO 5

* WI~h PRESSURE 270
SYMMETRY X
LOAD TRANSFER IN X DIRECTION TYPE AGGREGATE INTERLOCK AGGREGATE
INTERLOCK FACTOR 1000000
NUMBER OF ITERATIONS 6
TOLERANCE FOR SUBGRADE MODULUS 0.05
TOLERANCE FOR NUMBER OF NODES 0.05
OUTPUT TYPE FULL

(a) Free-formr Input Data

SRUN DR003: COMPARISON OF TWO TYPES OF INPUT FORMAT
11 11 0 8 0 1 1

000000 50
0.0 80.0 140.0 170.0 190.0 210.0 220.0 225.0

230.0 235.0 240.0 240.0 245.0 250.0 255.0 260.0
270.0 290.0 310.0 340.0 400.0 480.0

*0.0 5.0 10.0 15.0 20.0 30.0 60.0 120.0
*2 1 0 430.9
*.10.0 4.OOOE+06 0.150

0
1 .OE+06

270.0 230.0 240.0 0.0 5.0
2 6 0.05 0.05 1

000000

(b) Fixed-form Input Data

Fig. 5.2 Comparison of Free-form and Fixed-form Input Data Files
* for Run DR0O3 (See Table 6.2; Fig. 6.1)
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deflection and stresses and the nodal numbers at which these occur given

. at the end of the output. The output from ILLI-SLAB is now particularly

suited for the Page Printer System (PPS), which produces good quality

printouts on 8.5 x 11-in, forms, punched for a standard 3-ring binder.

Such printouts may be directly included in a report.

A second group of changes involved the elimination of several code

,- errors ("bugs") that were revealed during this study. Comparisons with

-" FINITE show that at least the major routines of ILLI-SLAB, such as

stiffness matrix assembly, inversion, solution and determination of

stresses and deflections are probably free of any code errors.

U

pI

if-
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-CHAPTER 6

TYPICAL EFFECTS USING MODIFIED ILLI-SLAB

6.1 CASES CONSIDERED

To illustrate the capabilities of ILLI-SLAB and the impact of the

modifications described in Chapter 5, a number of demonstration runs were

performed. The results obtained from these runs are presented and

discussed in this Chapter.

Two typical pavement cross-sections are considered in this

investigation (Table 6.1). The first is a 10-in. Portland Cement

Concrete (PCC) Pavement, consisting of 20-ft. square panels, with or

without load transfer between adjacent slabs. The second pavement

section is a 12-in. pavement incorporating a stabilized base layer with

a modulus (E) of 1.5 x 106 psi. This pavement consists of 15-ft. by

12-ft. panels and is typical of pavements proposed for the USAF

Alternate Launch and Recovery Surfaces (ALRS) Program.

' :-. -.. :- " " . ... .o- . . _. - . .. ., . • - -. • - .- " , . -
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TABLE 6.1

PARAMETERS FOR DEMONSTRATION RUNS

(a) PCC Pavement Section

Slab: 20' x 20' panels

h = 10"

SE = 4 x 10 psi

= 0.15

k = 150 psi/in, or 'SOFT'

-.i (b) ALRS Pavement Section

Slab: 12' x 15'

h = 12"
E = 1.5 x 106 psi

'- i = 0.15

k = 120 psi/in, or 'SOFT'

1(c) Loading Patterns

(i) F - 4: 10-in. x 10-in. @ 270 psi

(ii) C-130: 2 21-in. x 21-in. @ 100 psi

(iii) F-ill: 20.2-in. x 15.5-in. @ 150 psi

'-.

,'%

'.4'

-q
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The two pavement sections are loaded by three typical USAF aircraft

loading patterns: the F-4, the C-130 and the F-ill. A typical soft

subgrade is assumed using two alternative ways of characterization. The

first is the conventional static subgrade modulus, k, which was assigned

a value of 120 to 150 psi/in, using the 'WINKLER' option in ILLI-SLAB.

The second is the proposed resilient modulus, K which was set at 425

psi/in, using the 'SOFT' option. Associated with the latter option, is

stress dependence, provided by the iterative scheme in ILLI-SLAB.

S.
°

The f.e. meshes used for the demonstration runs are shown in

Figures 6.1 through 6.9. For the cases involving load transfer, a second

"mirror image" panel was added to the right of the panels showed in these

figures. Note that the ALRS runs involving load transfer are of academic

interest only, since load transfer systems are not recommended for such

sections.

The major results from the demonstration runs are summarized in

Table 6.2. In an effort to clarify the picture presented by these

results, three distinct effects are identified:

(a) Effect of Load Transfer;

(b) Eftect of Resilient Modulus; and

(c) Effect of Stress Dependence--Iterative Scheme.

These effects are discussed separately below.
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6.2 DISCUSSION OF RESULTS

6.2.1 Effect of Load Transfer

A To investigate the impact of load transfer systems, load transfer by

aggregate interlock was provided in some runs and these are compared to

those in which only one panel was used. It was intended to investigate

the two extreme cases, that of no load transfer (LE =0%) and that of

full load transfer (LTE =100%). For the latter, an aggregate interlock

fatr (AIF) of 1 x10 was specified, producing load transfer

efficiencies (LTE) between 97% and 99% (see Table 6.2).

Under conditions of full load transfer, maximum deflection is

U reduced to half its value for the condition of no load transfer. The

-4 --effect of load transfer on maximum bending stress is shown as a stress

ratio in Table 6.3. The Table indicates that full load tr~nsfer stress

p is about 0.6 times the no load transfer value. It is also observed that

the proposed change to a resilient modulus subgrade characterization has

only a minor effect in this respect. As expected, the load transfer

atm.effect is more pronounced (albeit only very slightcly) in the case of the

less stiff ALliS pavement.

S.L. .
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TABLE 6.3

EFFECT OF LOAD TRANSFER

PAVEM1,ENT AIRCRAFT SUBGRADE STRESS RATIO

PCC F-4 k=150 psi/in. 0.61
'SOFT' 0.62

C-130 'SOFT' 0.62

AIRS F-4 k=120 psi/in. 0.59
'SOFT' 0.61

C-130 'SOFT' 0.62

Notes: (a) All runs for edge loading condition

J for LTE 100%
(b) STRESS RATIO =max.

C for LTE = 0max.

where LTE = load transfer efficiency

Deflection across joint on unloaded side
Max. Deflection along joint on loaded side

(c) The corresponding DEFLECTION RATIO is 0.50 for LTE = 100%.

(d) All comparisons for first iteration.

de..
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6.2.2 Effect of Resilient Modulus Characterization

As explained in Chapter 3, it is considered that a resilient modulus

subgrade characterization would be more appropriate for airfield pavement

systems under transient loads, than the conventional static plate load

test subgrade modulus. The k-value used to characterize the subgrade in

f.e. programs like ILLI-SLAB should be replaced by a stress dependent

*' KR-value, which at low stress levels is substantially greater than k. In

the cases analyzed in this report, the subgrade was assumed to have a

static k value of 120 to 150 psi/in. This is considered equivalent to

the stress dependent 'SOFT' subgrade option in ILLI-SLAB. The low stress

level KR-value for this subgrade is 425 psi/in., according to the

algorithms proposed in Chapter 3.

The effect of this change is shown in Table 6.4 in the form of

"before" and "after" deflection and stress ratios. The former are seen

to vary between 0.40 and 0.56, while the latter have values between 0.80

and 0.90. Thus, the proposed resilient modulus subgrade characterization

leads to smaller calculated deflections and stresses, with stresses being

affected to a smaller extent than deflection. Table 6.4 also shows that

the impact of the proposed change is more significant as the load becomes

more severe (C-130 instead of F-4) and/or the pavement systen is less

stiff (ARS rather than PCC pavement).

. . -.- . .
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TABLE 6.4

EFFECT OF RESILIENT MODULUS

PAVEMENT AIRCRAFT SPECIFIED DEFLECTION STRESS
LTE () RATIO RATIO

PCC F-4 0 0.55 0.88
100 0.56 0.90

C-130 100 0.49 0.81

AIRS F-4 0 0.46 0.87

100 0.47 0.89

C-130 100 0.40 0.80

Notes: (a) All runs for edge loading condition

~b' EFLETIO RATO =Max. deflection for 'SOFT'
Max. deflection for 'WINKLER'

_Max. stress for 'SOFT'(c) STRESS RATIO Max. stress for 'WINKLER'

(d) All comparisons for first iteration.
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6.2.3 Effect of Stress Dependence -- Iterative SchemeV
Associated with the stress dependent options in ILLI-SLAB, including

'SOFT' employed in these demonstration runs, is an iterative scheme. In

this scheme, at the end of each iteration a check is performed for the

compatibility of calculated deflections and assumed support pattern (i.e.

KR-values). A new iteration is performed after updating the support

pattern until specified convergence tolerances are achieved. As seen in

Table 6.2, no more than two iterations were required to achieve

convergence in these runs. This may indicate that the tolerances TOLl

and TOL2 of 5% used are fairly liberal.

Table 6.5 is an attempt to filter out the effect of the iterative

scheme, by presenting in terms of deflection and stress ratios, the

responses after the first and after the last iterations. Deflection

ratios range between 1.00 and 1.14 while stress ratios fall between 1.00

and 1.07. Thus the effect of the iterative scheme is to increase the

maximum deflections and stresses obtained after the first iteration,
F..

thereby counterbalancing some of the change produced by the resilient

-modulus described in Section 6.2.2, above.

Since the application of the iterative scheme increases execution

time, it is important to draw some conclusions as to when such an

increased expense is justified by the changes in response produced.

Table 6.5 shows that the iterative scheme effect becomes substantial (ie.

in the region of 10% or more) for the more severe loading patterns (edge

* P C



TABLE 6.5

EFFECT OF STRESS DEP ENDENCE

LOAD PAVEMENT AIRCRAFT SPECIFIED DEFLECTION STRESS

POSITION LTE (P) ATIO RATIO

. Edge PCC F-4 0 1.03 1.01

100 1.00 1.00

C-130 0 1.10 1.05
100 1.03 1.02

F-ill 0 1.04 1.07

ALRS F-4 0 1.06 1.02
100 1.01 1.00

C-130 0 1.14 1.07
100 1.05 1.03

F-Ill 0 1.12 1.05

Interior PCC F-4 0 1.00 1.00

C-130 0 1.00 1.00
F-Ill 0 1.00 1.00

, Notes: (a) All runs for 'SOFT' subgrade

(b) DEFLECTION RATIO Max. deflection for last iteration
Max. deflection for first iteration

-'Max. stress for last iteration
(c) STRESS RATIO Max. stress for first iteration

(d) Convergence Tolerances: TOLl = 5%

TOL2 = 5%

..
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rather than interior; F-ill, C-130 rather than F-4), on the less

a competent pavement systems (ALRS rather than PCC section; LTE = 0% rather

than LTE = 100%).

In general, the effect of the iterative scheme is not dramatic.

This may be attributed to the fact that the algorithms used in the

present version of ILLI-SLAB were developed by simulating rigid plate

load tests using ILLI-PAVE. The plates used in these tests are much

* stiffer than any ordinary pavement slabs, and their radius of relative

stiffness, 1, is much higher than the values encountered in pavement

slabs. Westergaard (46) as well as other investigators have pointed out

the effect of the radius of relative stiffness on subgrade--pavement

*system response.

Finally, Table 6.6 presents the combined effects of the resilient

modulus and of the iterative scheme. The deflection ratios range between

0.42 and 0.57 and are, in general, substantially lower than the

corresponding stress ratios, which lie between 0.82 and 0.90. This

indicates that the impact of the proposed changes is much more

AW M significant with respect to deflection rather than stresses.

Furthermore, the effects are more pronounced in the case of the more

severe load patterns and/or the less competent pavement systems.

L"

I:.* * ~-- * . .
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TABLE 6.6

COMBINED EFFECT OF PROPOSED CHANGES

PAVEMENT AIRCRAFT SPECIFIED DEFLECTION STRESS
LTE () RATIO RATIO

PCC F-4 0 0.57 0.89
100 0.56 0.90

C-130 100 0.50 0.83

ALRS F-4 0 0.49 0.89
100 0.47 0.90

C-130 100 0.42 0.82

Notes: (a) All runs for edge loading condition.

Max. deflection after changes
( LRMax. deflection before changes

.(c) SE RATIO Max. stress after changes
Max. stress before changes

(d) Changes consist of:

(i) Subgrade Characterization by resilient modulus,
KR (= 425 psi/in.: 'SOFT'), instead of static

subgrade modulus k (= 120 or 150 psi/in);

(ii) Stress dependence-iterative scheme.

4
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I

CHAPTER 7

t

CONCLUDING REMARKS

The U.S. Air Force is continuously confronted with problems

*concerning:

1. The ability of an existing pavement to accommodate current and/or

different types of aircraft loading;

2. The development of rehabilitation/reconstruction recommendations for

existing pavements;

3. The design of new pavements;

4. The advantages/disadvantages of various aircraft gear configurations

and wheel loadings; and

5. The effectiveness of new materials and pavement cross-sections.

Classical slab-on-grade pavement analysis procedures (such as those

proposed by Westergaard), cannot accommodate nonlinear subgrade support

conditions, complex loading patterns, cracked sections with varying load

transfer efficiencies, and subbase effects. The modified ILLI-SLAB model
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developed in this study alleviates many of these inadequacies.

Computer program ILLI-SLAB (1), originally developed at the

University of Illinois, offers great flexibility in modeling loading

conditions [i.e. position, size and in'ensity of loaded area(s)] and

load transfer systems. The obj--tive of this study was to modify the

subgrade model in ILLI-SLAB from a simple, linear spring (Winkler) type,

to a stress dependent (more accurately, a deflection dependent) model, in

- which the resilient subgrade modulus, KR, decreases with increasing

S. deflection, w.

In the first stage of the investigation, KR was defined as a

function of w for the four subgrade types (very soft, soft, medium, and

stiff) characterized by Thompson and his co-workers (13) and used in

computer program ILLI-PAVE. By simulating repeated plate load tests

using ILLI-PAVE, a relationship of the following form was obtained

between KR and w:

A1 [1- exp {-A2 ( -- A3 )}] + A4 (D-- A3 )+ 2

KR=Y Yw

in which:

Al,...A5: Constants, functions of subgrade type;

D y:Constant, function of plate size;

KR: Resilient subgrade modulus, in psi/in.;

w: Deflection in inches.
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This model was incorporated into ILLI-SLAB using an iterative

S ~~scheme. According to this, a selected initial value of KR dpneto

subgrade type) is corrected after each iteration. After a number of

- iterations, the values of KR before and after the last iteration differ

by only a specified small percentage. The impact of the iterative K R

model was investigated for several typical pavement systems subjected to

interior and edge loading. Some of the sections included load transfer

systems.

*The effect of a granular subbase on K R was also examined. It was

found that KR is increased by the introduction of a 4- to 6-in, granular

* - .layer. However, in the subbase thickness range of 8 to 24 in., this

effect is not pronounced.

* . The major effect of the proposed KR model stems the difference

between the value of the resilient subgrade modulus (initial K R value

assigned in the iterative procedura) and the static k typically utilized.

The effect of iterative analysis is limited, and becomes more pronounced

- . *for conditions producing more severe pavement responses (thin structural

sections, traffic overloads, edge loading, no load transfer).

- Future phases of the investigation will be directed toward further

verifying the proposed model. Pavement response data from

well-documented laboratory or field studies will be analyzed with the

* modified ILLI-SLAB program. Such data are available in the literature,

from State and/or Federal agencies, or, if necessary, can be collected in
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a test program conducted by the investigators.

!

Further analytical verification of the model will be provided by

comparisons with other existing computer programs such as GEOSYS, FINITE,

BISAR, VESYS, KENTUCKY, CHEVRON, etc.. The comparative data thus

collected will facilitate a reconsideration of current design practice

which is primarily based on Westergaard theory. There is a need to

unde.-stand, for example, the discrepancies between Westergaard and

ILLI-SLAB results, especially for edge and corner conditions and to

determine whether, indeed, some of Westergaard's analyses are "erroneous

from a theoretical standpoint" (53).

.9

-p
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APPENDIX

INPUT GUIDE FOR ILLI-SLAB

(REVISED VERSION: FEB. 1983)

Finite element program ILLI-SLAB provides solution for deflections

and stresses due to traffic loading in concrete pavements with joints

and/or cracks. Longitudinal and transverse joints may have any one or a

combination of load transfer systems such as dowel bars, aggregate

interlock, and keyways. ILLI-SLAB is also capable of handling a

stabilized base or an overlay, by assuming either perfect bond or no bond

between the two layers. Thickness of the slab, concrete modulus of

elasticity and modulus of subgrade reaction can be varied from node to

node.

The concrete pavement can consist of 1, 2, 3, 4, or 6 slabs separated

by one longitudinal and two transverse joints. The slabs are numbered

from 1 to 6, beginning from left to right in the direction of the x-axis,

and from bottom to top in the direction of the y-axis. Each slab is

divided into rectangular elements of various sizes. The elements and
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nodes are numbered consecutively from bottom to top along the y-axis and

from left to right along the x-axis. Joints are treated as rectangular

elements having zero width.

The wheel loads may be applied to any of the slabs, and stresses and

deflections at all nodes in the slab, stresses in the stabilized base or

overlay, vertical stresses in the subgrade, and transferred loads by the

dowel bars are computed.

This revised version incorporates the facility to generate contours

of stresses and deflections. Cards No. 3 and No. 24 contain relevant

directions.

The program can accept either fixed-form or free-form type of input.

The guide detailed below is for fixed-form input.
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Card No. 0.

---
IFORM

I1

IFORM = A numeric flag indicating type of input data

type used;

= 0, for free-form input;

= , for fixed-form input.

Card No. 1.

TITLE

*20A4

TITLE = An 80-column label of alphameric characters

used to identify the problem. This label will

appear on the first page of the output.

. . .
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Card No. 2.

NIX N2X N3X NlY N2Y NFOR ISYM

15 15 15 15 15 I5 I5

NIX = Number of nodes in x-direction in slabs 1 and

4.

N2X = Number of nodes in x-direction in slabs 2 and

5.

N3X Number of nodes in x-direction in slabs 3 and

6.

NY = Number of nodes in y-direction in slabs 1, 2,

and 3.

N2Y = Number of nodes in y-direction in slabs 4, 5,

and 6.

NFOR = Number of loaded areas.

ISYM = Numeric flag indicating whether symmetry lines

are used;

=0, if no symmetry lines are used;

1, if x-axis is a line of symmetry;

=2, if y-axis is a line of symmetry;

-3, if x-axis and y-axis are lines of symmetry.



A- 5

Card No. 3.

-
ICON(I), I=1,6 ISTEP

m611 14

ICON(I) = A numeric flag indicating which contour

plots, if any, are desired;

ICONOl) = 1, if contours of deflection are wanted;

= 0, if not.

ICON(2) 1, 1, if contours of subgrade stress are

wanted;

- 0, if not.

ICON(3) - 1, if contours of x-stress at bottom of

Layer 1 are wanted;

= 0, if not.

a. ICON(4) = 1, if contours of y-stress at bottom of

Layer 1 are wanted;

= 0, if not.

ICON(5) = 1, if contours of x-stress at bottom of

Layer 2 are wanted;

= 0, if not.

ICON(6) = 1, if contours of y-stress at bottom of

Layer 2 are wanted;

= 0, if not.

NB: ICON(5) and ICON(6) must be set to 0, if
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NLAYER=1 (see Card No. 6).

ISTEP = An integer specifying the density of the

Virtual Grid in the contouring routines. The

value of 40 produces pleasing contours. For

coarser but quicker lower the value. For

smoother but longer time raise the value.

ISTEP should be less than 200.

Card No. 4 (Use as many as needed).

XC(1), I=1,N1X+N2X+N3X

8F10.3

XC(I) = x-coordinate of node I.

Card No. 5 (Use as many as needed).

YC(I), I=I,NlY+N2Y

8F10.3

YC(1) = y-coordinate of node I.
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Card No. 6.

NSLAB NLAYER COMP CK

15 15 15 FI0.3

NSLAB = Number of slabs: 1, 2, 3, 4, or 6.

NLAYER = Number of layers: 1 or 2.

COMP = Composite action factor;

= 0, if no bond exists between the slab and

stabilized base or overlay;

= 1, if complete bond.

CK = Subgrade modulus, if subgrade modulus at all

points is the same;

= 0.0, if not.

Card No. 7.

am CT CEl V(1)

F10.3 E10.3 F10.3

CTI = Top layer thickness, if this is the same at all

nodes;

= 0.0, if not.

'°-S
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CEl = Modulus of Elasticity for top layer, if this is

the same at all nodes;

= 0.0, if not.

VQl) =Poisson's ratio of top layer.

Card No. 8 (Read only if CTl=0.0; use as many as needed).

Tl(I), I=1,((NlX+N2X+N3X)*(NIY+N2Y))

8FI0.3

TI(I) -Thickness of the top layer at node I.

Card No. 9 (Read only if CElO0.0; use as many as needed).

El(I, I-l,((NlX+N2X+N3X)*(NlY+N2Y))

8F10 .3

ElI) Modulus of Elasticity of the top layer at node

I%.
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Card No. 10 (Read only if NLAYER=2).

CT2 CE2 V(2)

F10.3 ElO.3 F10.3

CT2 Bottom layer thickness, if this is the same at

all nodes;

= 0.0, if not.

CE2 = Modulus of Elasticity for bottom layer, if this

is the same at all nodes;

-0.0, if not.

V(2) = Poisson's ratio of bottom layer.

Card No. 11 (Read only if CT2=O.0; use as many as needed).

T2(1), I=l,((NlX+N2X+N3X)*(NlY+N2Y))

8F10.3

T2(I) =Thickness of the bottom layer at node I.
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Card No. 12 (Read only if CE2=0.0; use as many as needed).

E2(I), I=l,((NlX+N2X+N3X)*(NlY+N2Y))

8F10.3

E2(I) -Modulus of Elasticity of the bottom layer at

node 1.

Card No. 13 (Read only if CK=0.O; use as many as needed).

SUB(I), I=l,((NlX+N2x+N3x)*(N1Y+N2Y))

8FI0.3

SUB(IM Modulus of subgrade reaction at node I.

Card No. 14 (Read only if N2X or N3X are not equal to 0).

LTDX

15

LTDX Type of load transfer in x-direction;
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= 0, if aggregate intelock or keyway;

= , if dowel bars;

= 2, if a combination of dowel bars and aggregate

interlock or dowel bars and keyway.

Card No. 15 (Read only if LTDX=l or 2).

• DIN DOUT DE DS DL DJW DPR DCI

F10.3 F10.3 El0.3 FIO.3 F10.3 F10.3 F10.3 ElO.3

DIN = Inside diameter of the dowel bars;= 0.0 for solid round bars.

DOUT = Outside diameter of the dowel bars.

DE = Modulus of elasticity of the dowel bars.

DS = Spacing of the dowel bars.

DL = Length of the dowel bars.

DJW = Joint width.

DPR = Poisson's Ratio of the dowel bars.

DCI Dowel-Concrete Interaction.

DCI for a round steel dowel bar may be determined from

either Friberg's dowel analysis or from the relation developed

based upon a three-dimensional dowel analysis:

"lk
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(a) Friberg's Analysis:

DCI={K**0.75*D**2.5}/{0.041*D**0.75+0.0004*K**0.25*w}

(b) Three-dimensional Analysis:

DCI=(E**0.75)/{(0.057-0.010*D)*(0.810+.013*h)*(1+0.414*w)}

where

E = Concrete modulus of Elasticity, psi;

D = Dowel diameter, in.;

h = Slab thickness, in.;

w = Joint width, in.;

K = Modulus of dowel support, psi/in.

Card No. 16 (Read only if LTDX=O or 2).

------------------------------------------------------------------------

AGG[
-------------------------------------------------------------------------

El0.3
-------------------------------------------------------------------------

AGGX --Aggregate Intelock Factor in x-direction.

(Use a large value, eg. AGGX;1.OOOE+08, for

keyways).

I
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Card No. 17 (Read only if N2Y is not equal to 0).

LTDY

15

LTDY = Type of load transfer in y-direction;

- 0, if aggregate intelock or keyway;

= 1, if dowel bars;

- 2, if a combination of dowel bars and aggregate

interlock or dowel bars and keyway.

Card No. 18 (Read only if LTDYI or 2).

DIN DOUT DE DS DL DJW DPR DCI

F10.3 F10.3 E10.3 F10.3 F10.3 F10.3 Fl0.3 E10.3

See Card No.15 for notations.

L,
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Card No. 19 (Read only if LTDY=0 or 2).

AGGY

E10.3

AGGY = Aggregate Intelock Factor in y-direction.

(Use a large value, eg. AGGY=I.000E+08, for

keyway).

Card No. 20 (Read NFOR times).

PRS XXI XX2 YYI YY2

F10.3 F10.3 FlO.3 FI0.3 F10.3

PRS = Tire pressure.

XX, XX2 = Lower and upper limits of the loaded area

in x-direction, in global coordinate system.

YY1, YY2 = Lower and upper limits of the loaded area

in y-direction, in global coordinate system.

Note: The changes in this card are necessary after the

addition of SUBROUTINE SUBAREA which generates loaded suareas

with respect to specified mesh and local coordinate system.

[o. " - - - -
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Card No. 21.

IST ITMAX TOLl TOL2 IOT

15 15 F5.3 F5.3 15

IST = A numeric flag for subgrade type:

= 0, if support varies from node to node (See

Card No. 22);

= 1, for VERY SOFT subgrade;

= 2, for SOFT subgrade;

= 3, for MEDIUM subgrade;

= 4, for STIFF subgrade;

= 5, for OTHER subgrade (see Card No. 23.);

= 6, for WINKLER energy consistent, uniform

subgrade (not stress dependent);

n 7, for SPRINGS subgrade (not stress

dependent).

Recommended values for k in first iteration:

VERY SOFT: KR= 300 psi/in.

SOFT: KR= 425 psi/in.

MEDIUM: KR= 725 psi/in.

STIFF: KR= 1000 psi/in.

OTHER: KR= A5/DY psi/in.

ITMAX = Maximum number of iterations desired.

TOLl = Tolerance for KR (Recommended value= 0.05, ie.
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5%)

TOL2 = Tolerance for % points exc- eding TOLl

(Recommended value= 0.05, ie. 5%).

1OT = Numeric flag for output type:

= 0, for partial output during intermediate

iterations.

1, for full output during intermediate

iterations.

( Note: A new iteration is performed if the

ratio of the number of nodes at which the

updated KR is more than TOLl (%) off the

previous KR, to the total number of nodes,

exceeds TOL2 (%)).

Card No. 22 (Read only if IST=O; use as many as needed)..

.ST(I), I=1,((NIX+N2X+N3X)*(NY+N2Y))

r815

NST(I) = Subgrade Type (IST) under node I.

I .
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Card No. 23 (Read only if IST=5).

Al A2 A3 A4 A5 DY

FIO.5 F10.5 FIO.5 F10.5 F10.5 FIO.5
--

Al, A2, A3, A4, A5, DY = Parameters for the regression

equation defining KR as as function of w, for

30" plate.

General form of the equation:

KR= {Al[l-exp{-A2(w/DY-A3)}]+A4(w/DY-A3) -f§/w

KR= A5/DY. if w/DY<A3.

where

S w: deflection, in inches;

KR: resilient subgrade modulus, in psi/in.

U

Card No. 24 (Read only if contours are to be plotted).

JCON(1), 1=1,6 RATIO

611 FIO.7

JCON(I) = A numeric flag indicating over which slabs

the contours requested in Card No.3, are to be

plotted;

I_
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JCON(1) = 1, if contours over Slab 1 are to be

plotted;

= 0, if not.

JCON(2) = 1, if contours over Slab 2 are to be

plotted;

0, if not.

JCON(3) = 1, if contours over Slab 3 are to be

plotted;

= 0, if not.

JCON(4) = 1, if contours over Slab 4 are to be

plotted;

= 0, if not.

JCON(5) = 1, if contours over Slab 5 are to be

plotted;

= 0, if not.

JCON(6) = 1, if contours over Slab 6 are to be

plotted;

= 0, if not.

RATIO = A factor by which the y-scale is multiplied;

RATIO=1.0 specifies x- and y-scales are equal.
I..
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