

1. THE VOCODER PROJECT- SYSTEM DESCRIPTION AVD SOFTWARE

L.1. tbals ofthe Froect
- Since the invention of the first vocoder system a half century ago. a steady

trend towards lower-cost and more conipact realizations of speech analysis and
synthesis systems have been evident (1). The vocoder we designed at UCB was a
result of the desire to integrate the entire function of such a system into a sin-
gle MOS/LSI circuit. At the same time, the opportunity was used to develop a
more general design philosophy to facilitate the implementation of other signal-
processingt functions with the same technology. We created a library of standard
circuit functions, the design of which reflects the direction we took in terms of
system organization and processor architecture. Essential to this effort was the
availability of a modest but well-thought-out collection of computer-aided design
tools, and a close association between ourselves and the designers of these tools.

1.2. System Description and Configuration
Vocoder systems encode and decode speech at low bit rates by taking

advantage of the short-term stationarity of speech. Generally an interval of
time known as a frame is established, over which time the speech signal is
assumed to be stationary. Frames tend to be from 10 to 25 ms in length. For
each frame a set of parameters is extracted from the input speech by the
speech analyzer, and for each set of parameters a frame of synthetic speech
may be generated by the speech synthesizer. The set of parameters for the
frame typically consists of between 30 and 150 bits of data. The DOD low-bit-rate
speech transmission standard specifies 22.5 ms frames consisting of 54 bits
each. For a typical 8 kHz sample rate the frame is therefore 160 samples in
length.

Our vocoder circuit is intended for use in a system similar to Fig. 1.1. Input
and output speech data are transmitted in digitized form to and from the
vocoder through a 12-bit parallel bus called the "speech data bus" (S bus). This
data is transferred each sample period. Parameter data is through an 6-bit
"parameter data bus" (P bus). Finally, a serial stream of parameterized data is
transferred from the host microcomputer and a serial port.

Although virtually the entire vocoder algorithm is implemented by the
vocoder circuit, the host is responsible for putting the parameter data into the
required format for transmission and for performing the inverse operation for 1o0Tc
received data. This consists mostly of applying coding tables to the data such
that the bit rate is reduced. So while the bit rate between the host and the
vocoder might be 10,000 bits/sec in each direction, the bit rate between the
host and the external serial link is typically 2400 bits/sec.

A second function of the host is to interpolate and filter the data being Accession For
transferred to the vocoder. In a typical configuration the frame length for -

transfers between the host and the vocoder might be 1/2 or 1/4 the frame GTIS -RA&I
length for transfers between the host and the serial interface. The quality of the DTIC TAB
vocoded speech is improved if simple interpolation algorithms are used to inter- Unannounced
face between the two frame rates. The frame rate for transfers between the Justification-
host and the -ocoder may be set by the host, and is referred to herein as the
"internal frame rate." B h*.,

The total amount of processing involved is compatible with a medium-level Distribution/
single chip microcomputer with 2k of internal ROM space for program and table
look-up.

Dist Spec U1i

SPEECH

01 RNIAL CLOCK
NTERFACE Ili F

AID

SINGLE VOCOOER 12
CHIP E CHIP

PARAMETER
DATA BUS

IC

DATA BUS

_ .l P EEcH

OUTPUT

Figurel.1 System configuration

1.3. Agorithins

1.3. 1. Spectral Analysis
Vocoder algorithms are generally classified according to the method used

for spectral analysis. This portion of the vocoder system generally requires the
most computation, and also largely determines the quality of the vocoded
speech. Of the several methods possible for implementing a Linear prediction
analysis of a speech signal, the adaptive lattice algorithm was chosen as being
the most appropriate for an LSI implementation. This algorithm, described
among others by Kang (2) (who calls it the flow- form LPC algorithm), exhibits
the following advantages: 1) As an adaptive algorithm, it does not require the
storage of a frame's worth of input data. as would be needed by a block-method
analysis; 2) Its adaptation characteristics are regarded as superior to other
adaptive algorithm such as gradient methods; 3) The arithmetic precision

j '*1-

r--J(= "' - " nm* L aL r

required for the computation is not as great as other methods, particularly
those involving matrix inversion, making the use of floating-point arithmetic
unnecessary; 4) The lattice analyzer yields reflection coefficients directly, which
are the preferred form for low-bit-rate transmission and the specified form for
the DOD speech transmission standard; 5) The residual signal is generated
automatically by the analysis filter, facilitating use in voice-excited or
basebtnd-encoded vocoder schemes.

In the analysis the speech signal first passes through a preemphasis net-
work Fig. 1.2. improving the distribution of the reflection coefficients, which are
otherwise highly skewed (2). This is followed by 10 identical filter stages,
detailed in Fig. 1.3. Each stage contributes one zero to the analysis filter.

INPure 1.2 PreemphTsia flow chart

FigUiui.) The ten-pole lattice analyzer

The precision requirements for the calculations involved can be understoodby noting that there are three types of data being handled: the reflection
coefficients, which are dinensionle; data that is dimensionally equal to the

41-

speech signal, including the A and B signals; the C and D signals (see Fig. 1.4),
which are dimensionally speech squared.

CIO * CO - Co

k 1 00

DD

Figure 1.4 The ten-pole lattice synthesizer

High level simulation of this algorithm indicates that representing the
reflection coefficients as eight bit quantities does not degrade the spectral accu-
racy significantly. In order to achieve a dynamic range of 30 dB without degra-
dation. and 45 dB with only minor degradation, simulation indicated a required
precision of 16 bits for the A and B signals/. and 26 bits for the C and D signals.
The hardware design reflects these varying precision requirements for the
different data.

J.3.2. Pitch AnalVsis
The diversity of pitch detection and voicing decision algorithms/ is even

greater than that of spectral analysis. The algorithm used in our system is the
Gold Pitch Tracker described by Gold and Rabiner (3) (the particular algorithm
used is referred to as the "first modification in (3)). In this approach, the input
speech is first low-pass filtered, and then applied to a peak detector. From this,
six signals are formed, each a combination of the current sample, previous peak
and previous valley of the low-pass filtered waveform. These six signals are fed
into six identical elementary pitch detectors, which are a type of phase-locked-
loop circuit that attempts to track its input and produce an estimate of the
period. Thus six estimates of the pitch are produced. To generate a single pitch
estimate, these six estimates are compared by a so-called "scoring algorithm."
which selects one of the six as the most likely estimate of the pitch period. If
there is not sufficient agreement among the six estimates the speech is con-
sidered unvoiced - being noise-like rather than periodic.

The low-pass filter used consists of two cascaded single pole sections. It was
found convenient to schedule the execution of the scoring algorithm so that a
score is determined for one of the six pitch estimates each period of the input
speech. Thus. every six sample periods new pitch/voicing determination is
made.

The simple scoring method given for this algorithm in (3) is susceptible/ to
occasional single-frame pitch errors, which degrade the quality of the vocoded

-4-

speech. Although a more elaborate scoring algorithm is given which improves
the situation, the single frame errors may be easily filtered out on a frame-by-
frame basis. This filtering is not implemented in the vocoder circuit/ but may
be included in the host microcomputer. The filtering is composed of the follow-
ing substitutions: 1) A single voiced frame in an unvoiced segment is replaced by
an unvoiced frame; 2) A single unvoiced frame/ in a voiced segment is replaced
by a vot'ced frame with the pitch period being the average of the previous and
following/ frames; 3) The pitch period of a voiced frame is constrained to be
between the values for the previous and the following frames, inclusive; 4) The
pitch period of a frame following an unvoiced/voiced transitions/ replaced by
that of the following frame; 5) The pitch period of a frame preceding a
voiced/unvoiced transition is replaced by that of the previous frame.

1.3.3. Synthesis
The synthesizer portion of a vocoder system consists of two functions: An

excitation generator, which simulates spectrally flat voiced and unvoiced excita-
tion waveforms; and a synthesis filter, which imparts the desired spectral shape
to the signal.

It is common practice to use some waveform other than a simple periodic
pulse as the voiced excitation. The waveform must/ be reasonably flat over the
frequency range of interest. Since the human ear is nearly completely phase-
deaf, an all-pass waveform will sound nearly identical to a simple pulse. How-
ever, the all-pass waveform is less likely to overload the synthesis filer and
hence contributes to dynamic range.

Both a pulse and an all-pass waveform have a DC component that needs to
be subtracted out to allow smooth voiced/unvoiced/ transitions. A high pass
waveform avoids this requirement. It is used an unvoiced excitation that has a
pulse each sample whose sign is the output of a pseudo-random generator.

The synthesis filter is the all-pole lattice filter shown in Fig. 1.4. A new set
of reflection coefficients is used each frame. These coefficients are updated
asynchronously/ at the beginning of each frame, resulting in a smooth synthesis
if the internal frame rate is less than about 10 ms.

1.4. Mcroprograv Description

L.4.1. General Description
In this section the various programs which make up the microcode are dis-

cussed.

The microprogram consists of the following seven segments:

I. Filter main program
2. Filter subprogram
3. Correlator main program
4. Correlator subprogram
5. Pitchtracker main program
6. Pitchtracker subprogram
7. Miscellaneous signals

These segments are represented, respectively, by six source programs:
fmain.s, fsub.s, cmain.s, csub.s, pmain.s. psub.s; and one raw data file:
umrom.4.r. Along with ten raw data Nos that specify the decoder programming
for the control roms (decoder.l.r. etc.). these seven files are translated by an

-4-

P " " , A

assembler ("assemble.sh") Into the following layout flies of the programmed
ROM's.

rom. 1 - filter main program 1/2
rom.2 - filter main program 2/2
rom.3 - filter subprogram 1/2
rom.4 - filter subprogram 2/2
rom.5 - correlator main program 1/2
rom.6 - correlator main program 2.2
rom.? - correlator subprogram 1/2
rom.B - correlator subprogram 2/2
lrom.I - pitchtracker subprogram 1/3
Iror.2 - pitchtracker subprogram 2/3
lrom.3 - pitchtracker main program 1/3
urom.2 - pitchtracker main program 2/3
urom.3 - pitchtracker main program 3/3
urom.4 - miscellaneous signals
decoder.l - filter. correlator main program 1/2
decoder.2 - filter, correlator main program 2/2
decoder.3 - filter. correlator subprogram 2/2
decoder.4 - filter. correlator subprogram 2/2
Idecoder.I - pitchtracker subprogram 1/3
ldecoder.2 - pitchtracker subprogram 2/3
Idecoder.3 - pitchtracker subprogram 3/3
udecoder. 1 - pitchtracker main program 1/3
udecoder.2 - pitchtracker main program 2/3
udecoder.3 - pitchtracker main program 3/3 miscellaneous signals

The assembler "assemble.sh" performs the following operations:

1) Calls the individual assemblers "algor," "casrn," and "pasm" for the filter,
correlator. and pitchtracker respectively.

2) Runs editor scripts to break up the assembled output according to how the
roms are segmented in hardware.

3) Runs "romgen" scripts to generate the layout of the roms.

The individual assemblers translate each line of the source file into a line in
the output file. The source file line is broken into fields, the first of which is
always a colon. Subsequent fields are compared to entries in a table and result
in the setting or resetting of the appropriate bits in the output word. If a field is
recognized as specifying a memory operation, the subsequent field is expected
to be the memory address.

I.4.2. Filter P'rogram
The filter main program 'fmainrs" implements preemphasis and dem-

phasis/ functions. on the input and output speech, and a two pole low-pass filter
whose output is sent to the pitchtracker. These functions are described by the
flow charts in Fig. 1.2 and 1.5. The filter subprogram'fsub.s," executed ten
times per speech ample, implements the ten-pole lattice analyzer in Fig. 1.3 and
the ten-pole lattice synthesizer in Fig. 1.4. Signal names in these flow charts
correspond to symbolic addresses in the source programs.

Figure 1 .5 Deemphasis flow chart

Symbolic Address Memory Location Symbolic Address Memory Location
A 11 D2 21
BO 9 D3 22
BI 8 D4 23
B2 7 D5 24
B3 6 D6 25
B4 5 D728
B5 4 D8 27
B6 3 D9 28
B7 2 DIO 29

1O Dll 30
B9 0 E17

BlO 31 H 15
C 18 F 14

DO 19 C13
Dl 20

In addition to the above symbolic address names, the prefixes "next" and
"last" are used to refer to locations as addresses during the next or previous
speech sample (see description of the Filter Address Generator). For example.
"next-B(0)" and "last-A" both refer to location 10. In the source listings below "R
N" means "read from memory location N." 'W" means "write." "RX N" means
"read from memory location (N+ contents of index register)" (the index regis-
ter is incremented each time the subroutine is called). If a signal name (or
names) occur(s) at the end of the assembly instruction, the corresponding con-
trol line(s) will be active during that instruction cycle (refer to hardware docu-
mentation). As an example of the code fmain.s is shown below.

Imain.
: r:=sr/2 acc:=ks~sr+acc
s r:sr/2 acc:=kssr+acc

R~ac:=ksr 6acc
W D(l) writelatch acc:=mem
RC sdben
RH sr:=mem/2 acc:zmem
WD(O)sr.=mem/2 acc:usr writelatch
acc:sr+acc or:sar/2 in writelatch
W E acc:asr+acc ar:unr/2
acc:asr+acc

I- I 9L~.

wrltelatch sdben
:RE
: R last-E acc:=men
: R last-E acc:=acc sr:=mem/2
: R last-E acc:=sr+acc sr:=-mem/2
: ar.=-mem/2 acc:=sr+acc

R E sr:=sr/2 acc:=sr+acc
: R E sr:=mem/2 acc:=sr+acc
: sr:=mem/2 acc:=sr+acc
: W next-H acc:=sr+acc
: W A writelatch
: W next-B(0)
:RF
: sr:=-mem/2 acc:=mem
: R E sr:=sr/2 acc:=acc
sr:=mem/2 acc:=sr+acc in writelatch
: W C sr:=sr/2 acc:=acc

R G acc:=sr+acc
W next-F writelatch sr:=mem/2
acc:=sr+mem sr:=sr/2
acc:=sr+acc
W next-G writelatch out2
exit

1.4.3. Correlclor Program
The correlator program is executed 11 times per sample; only 10 of these

are needed, corresponding to one calculation of the normalized cross-
correlation at each stage in the lattice analyzer. Figure 1.6 is a signal flow chart
of the correlator program. Two memory locations, C and D. are used, for a total
of twenty locations for the correlator processor.

A2+63

K N M AG ITU DE

I "

figure 1.6 Correlator fl6w chart

1.4.4. Ptchtracker Program

The pitchtracker main program, executed once each sample, does the following:

i , _-

I) Detect peaks and valleys in the input.
2) Maintain values for "last peak" and "last valley."
3) Form six signals, signal(O)-signal(5):

signal() = input

signal() = input
signal(2) = input - (last valley)

signal(3) = input + (last valley)
signal(4) = input - (last peak)
signal(5) = input + (last peak)

4) For each sample, compare "score" for current candidate to "top score" and if
larger, update "top score" and "winner."

5) Every six sample, compare "winner" to voicing threshold, and if larger, place
it in output buffer, if not, clear output buffer. Also clears "topscore."

The pitchtracker subprogram is executed six times per sample, operating
mostly on indexed variables. Suppose then that 'T' is a value of 0 to 5 represent-
ing the iteration of this subprogram. The following operations are performed:

1) Increment the pitch period counter PPC(i), and compare with blanking inter-
val.

2) If greater, decay threshold and do step 3 below; otherwise skip step 3.
3) If signal(i) is a peak for i=O, 2 or 4, or a valley for i = 1, 3 or 5, and signal(i) is

greater than threshold(i), then start a new pitch period for the i-th pitch
detector by setting:

- threshold(i) = signal(i)
-last pitch period = current pitch period
- current pitch period = pitch period counter

- pitch period counter = 0.

4) Compare the "current candidate" with "pitch period," "last pitch period," and
("Pitch period" + "last pitch period"). In each case, if they agree to within
"window" tolerance, increment "score." The "current candidate" is the "pitch

period" from one of the six pitch detectors and changes each sample.
In this way the program computes "score" for one of the six pitch detectors

each sample, and compares the six scores every six sample and determine a
new winner, which is then placed in an output buffer. The output buffer is

transmitted each sample.

1,4,.5. RefJnannts
Although the vocoder algorithm used is suitable for most applications there

is potential for improvements in several aspects, which are detailed below.

1) E timation filters: As described above, each reflection coefficient is the nor-
malized cross-cofrelation of two signals, and this correlation is estimated by a
single-pole low-pass filter with a corner.frequency of 20 Hz. An improvement in
adaption.properties is achievable if a two-pole estimation filter is used. with both
poles at 53 Hz.

2) Reflection coefficient selection: The adaptive lattice algorithm calculates a
new set of reflection coefficients every sample periodL The current algorithm
simply decimates this data to the internal frame rate prior to encoding and

I _ _

transmission. Better performance may result if the coefficients are averaged
with a rectangular window or selected when the residual energy is at a
minimum. Listening tests indicate that the improvement is more pronounced
for the case of the two-pole, higher-cutoff estimator described above.

3) Pitch tracker: The pitch tracker algorithm used works well for male speakers
but cinnot track the higher fundamental frequency in female voices. Tech-
niques presented in (3) could be incorporated to eliminate this deficiency.

1.5 References

(1) Flanagan et al.: "Speech Coding," IEEE Trans. on Communications, Vol. COM-
27, No. 4, April 1979, pp. 710-737.

(2) G. S. Kang: "Application of Linear Prediction Encoding to a q Vr-;'te Digitizer,"
NRL Report 7774. October 31, 1974.

(3) Gold. Rabiner: "Parallel Processing Techniques for Estimatir itch Periods
of Speech in the Time Domain."

2. THE VOCODER PROJECT- HARDWARE

2. 1. Technology
The vocoder system is implemented as an N-channel, deple~lon-load MOS

circuit of dimensions 225x265 mils (5.7x6.7 mm). The chip contains 27,000
transistors. Topological design rules are those of Mead & Conway (1), modified
to be more conservative for metal contacts and to allow buried contacts. Rules
regarding the placement of storage nodes were added to guard against dynamic
hazards. DC electrical rules are essentially those of Mead & Conway.

AC electrical rules were also developed. The delay time through any critical
path must be less than 2/3 of what is needed for functionality, when estimated
by Spice simulation using a set of "quasi-worst-case" parameters. This set of cir-
cuit parameters is characterized by worst-case values for transistor conduc-
tance factor, conductor sheet resistance and field capacitance, and by typical
values for threshold and supply voltages, body doping, junction depth and lateral
diffusion.

2.2. Design *pro ach
The most important organizational decision for a design such as this, is how

the rather diverse collection or functions that comprise the algorithm should be
mapped onto hardware elements. At one extreme, the hardware could be parti-
tioned to look like a signal flow graph of the algorithm, with each stage of the
processing implemented with an independently operating circuit. At the other
extreme, the hardware could consists of a single processor with sufficient func-
tionality and speed that it may be programmed to implement the entire algo-
rithm. The first approach would suffer from inflexibility and a lack of regularity,
making the design task more difficult. The second approach would make it hard
to take advantage of the potential for concurrent execution of the different
functions. The single processor would, also have to be powerful: LPC vocoders
have been successfully implemented on three semi-custom MOS/LSI processors
(2).

The approach taken here is midway between the above two extremes. The
main features are:

1) The bulk of the processing is done by three processing units, identical in
design but differing in details of configuration such as word length and size of

-10-

data memory.
2) Remaining processing is done by a small collection of custom elements.
3) The three main processors, as well as the more specialized circuitry, are con-

trolled by a single control sequencer.

This approach has several advantages. The main processor design is kept
simple, and therefore is both compact and has high performance. since it is not
required to be capable of implementing aU aspects of the algorithm. The
remaining special function circuits account a relatively small percentage of the
total area of the circuit. They were therefore designed using a small library of
cells (designed by us). rather than in a full-custom fashion, without a large area
penalty. The shared control circuitry provides an area advantage that would not
be available if the entire Vocoder was not fully integrated.

SPEECH
DATA BUS

SPECIAL CIRCUITS:

FILTER 2 EXCITATION GENERATOR

0 FILTER ADDRESS INDEXING

3 CONR REF COEF SUFFER

CORRELATOR (PROGRAM S QGUARING CIRCUIT
~~COUNTERS gm

AND 'tI PITCH TRACKER AODRESS INDEX
"----M)0 PITCH TRACK-R CONDITION

CODE LOGIC14TCH
TRqACKER ,__ [l

a PARAMETER I/OBUFFERS

PAAETIER

DATA iUS

Figure 1.7 Hardware block diagram

-11-

.. . . , i.... ...I I I Il".. .

2.3. Fnction of the Different Blocks
Figure 1.7 presents the blocks of the circuit, minus the bonding pads and

their drivers. The three main processors are termed the Filter, Correlator and
Pitch Tracker. The function of these and of the other blocks of the circuit, in
terms of the algorithm previously described, will be discussed in what follows.
All datibetween blocks is transferred bit-serially, except as noted. Fiter: This
processor performs linear filtering on the speech signal. This includes preem-
phasis and the inear portion of the analysis filter; the synthesis filter and dem-
phasis/; and the low-pass filter that is the first part of the pitch tracker algo-
rithm. The word size in this processor is 16 bits, with a data memory of 32
words. Data from the external Speech Data Bus (SDB) is transmitted in parallel
to this block.

Squaring Circuit: The function of multiplying speech data by speech data is
replaced by a squaring/ operation. This circuit uses shifters and a look-up table
to approximate the squaring operation. The output o this circuit is fed into the
Correlator through a parallel port.

Correlator: This processor implements the estimation low-pass filters and some
division operations. The word size is 26 bits, and the data memory contains 20
words.

Ezcitation Generator: This circuit generates the excitation signal needed for
synthesis as described in Section 1.3.3. The output signal is fed into the Filter
through a parallel port.

Pitch Tracker: This processor implements the Gold pitch-tracking algorithm,
including peak detector, elementary pitch detectors and scoring algorithm. The
word size is 18 bits, with a data memory of 42 words. Five of these memory loca-
Lions are read-only constants.

Filter Address Generator: Implements a base register, index register, and
address arithmetic for the Filter processor.

Pitch Tracker Address Generator. Performs a similar function for the Pitch
Tracker.

Reflection Coefficient Buffer: Stores the reflection coefficients calculated by the
Correlator until they are needed by the Filter processor for the analysis filter.

Cbndtio'n Code Circuit: Unlike the Filter and Correlator, the Pitch Tracker
needs conditional operations to implement such functions as peak detection and
determining the beginning of a pitch period. This circuit consists of three condi-
tion code flags and a small PLA-based finite state machine. Instead of the more
typical conditional branch instruction, a conditional write operation is
employed, which performs a write operation to data memory only if the condi-
Lion code flag is set.

Phrameter 10 Buffer: Consisting mostly of register arrays, analysis and syn-
thesis parameters are stored here on their way to and from the host microcom-
puter. Also part of this circuit is a frame counter programmed by the host,
determining the number of samples in each internal frame.

Cbntroler: Program counters and read-only memory, providing control and tim-
ing signals for all other circuits. The processors and other circuits require in

general horizontal control words, totaling 50 bits for all circuits. The total
amount of read-only storage is abr 'it 5200 bits.

2.4. Processor Architecture

Initial investigations into the possibilities for signal processor architecture
led to tM!e following conclusions:

1) Pipelining should be used to allow concurrent arithmetic operations and data
memory operations.

2) Pipeline segmentation within the arithmetic unit should be the minimum
necessary to achieve full arithmetic unit utilization to avoid latency in the data
path.

3) Parallel/serial multiplication is efficient for most applications; full parallel
multipliers consume large amounts of area and power, while bit-serial multi-
pliers require excessive amounts of control circuits. A single accumulator
architecture allows parallel/serial multiplies and divides with a minimum of
hardware.

The processor consists of a random-access data memory. an arithmetic
unit, and a 10 port section.

The data memory can perform a read or write operation each clock cycle.
Dynamic three-transistor cells are used. There is no provision for address arith-
metic of any sort; external circuits must generate the address if anything other
than direct addressing (such as indexing) is required.

The arithmetic unit consists of four registers, a complementer. an adder,
and a certain amount of multiplexing and gating. The memory output register
(MOR) is a master-slave register which is loaded each cycle with the output of
the data memory. Its output feeds the complementer, which under program
control will give the true, complement, or absolute value of its input.

The shift register (SR) is a master-slave register which under program con-
trol will either load or shift right (arithmetic). In the first case this register gets
the output of the complementer divided by two; in the second case it gets its
previous contents divided by two. Thus the possible values that maybe loaded
into this register were summarized as follows:

SF-= (MOR)/2
SR =-(MOR)/2
SR = I (MOR/2 1
SR= (SR)/2

When performing a parallel-serial multiply or divide operation, this register
is used to shift right repeatedly on successive cycles. This presents a sequence
of partial products to the adder inputs.

The adder is bf the saturating variety: if an overflow is detected, the output
will be the maximum positive or negative number that can be represented, for
positive or negative overflow respectively. A fractional 2's complement number
system is assumed.

The output of the adder is loaded into the accumulator, Given the possible
values for the adder inputs, the following summarizes the values that may be
loaded into the accumulator:

ACC:= 0

-18-

ACC:= (MOR)
ACC:= (ACC)
ACC: =SR)
ACC:= SR) + (MOR)
ACC:= (SR) + (ACC)

On"additional feature of the accumulator, included to allow for a parallel-
serial decision operation. is an "accumulate-if-positive" control; when this
feature is used, the output of the adder is loaded into the accumulator only if it
is positive.

The output of the accumulator drives the M-bus, which feeds the memory
input latch (MIL)> This latch is transparent, and may either be loaded or hold
data under program control. All memory write operations store the data in this
latch; by holding the latch transpparent. the accumulator is written directly into
memory.

All 10 transfers are also passed via the M-bus. Provided are parallel input
and output ports, two serial output ports, and one serial input port. The fashion
in which the arithmetic unit is used to multiply a word in data memory by a
signed coefficient is straightforward. The coefficient is fed serially, MSB first,
into the appropriate control inputs for the processor. Divide operations are
slightly more complex. Two words of positive data stored in the data memory
can be divided to produce a quotient 5.etween 0 and I.

2 5. 7Yiig aind CantroL
Discussion of timing and control issues for the vocoder circuit can be

divided into two broad categories/: Timing related to the internal frame rate at
which parameters are transferred to and from the host microcomputer, and
timing related to the speech sample rate. The first category applies to the
Parameter 10 Buffer, whose data is updated each frame. The second category
applies to the entire rest of the circuit, the choice of adaptive algorithms as
opposed to block methods implies that essentially all processing is repreated at
the speech sample rate. resulting in simpler implementation for the control
sequencer.

To reduce the overhead requirements on the host, it is desirable to transfer
all analysis and synthesis parameters as a single block of data once per frame,
leaving the remainder of the frame for the host to perform its tasks uninter-
rupted. This is done by having the Vocoder provide to the host a "End-of-Frame"
(EOF) signal which either interrupts, or is polled by the host. The interrupt is
acknowledged when the host initiates a data transfer, which occurs asynchro-
nously with internal clocks in the Vocoder. Synthesis parameters are double
buffered, i.e., parameters transferred to the Vocoder one frame are used by the
synthesizer the following frame. Analysis parameters are loaded into the
parameter buffer-during the last sample of each frame, to be transferred to the
host following the beginning of the subsequent frame. This buffering arrange-
ment is very non-restrictive on both the host and the remainder of the Vocoder.
The price paid foe this flexibility is that the Parameter 10 Buffer is relatively
large and consumes 15% of the chip area..

The remainder of the Vocoder in general performs the same sequence of
operations each sample period. Most processing is linked to the operation of the
Filter processor so the timing for Filter will be discussed first.

The Filter executes a 32 instruction main program and ten times a 32
instruction subroutine each sample interval. Each time the subroutine is called.
the memory addresses may be automatically incremented using an optional
Indexing addressing scheme.

-14-

Each instruction requires a complete 2-phase clock cycle for execution,
hence there are 352 clock cycles per 125 microsecond sample interval, giving a
system clock frequency of 2.818 MHz. The main program implements preem-
phasis. demphasis/,. and the pitch-tracker low-pass filter. In addition. 10
transfer between Filter and the external speech data bus is handled during the
main program.

The subroutine implements the synthesis filter and the linear portion of the
analysis filter, as described in Section 1.4.2. One pole (or zero) of each filter is
implemented by each execution of the subroutine.

Timing considerations for Correlator. Excitation Generator. Squaring Cir-
cuit. Reflection Coefficient Buffer, and Filter Address Generator are closely
related to the Filter timing. Also, the transfer of reflection coefficients to and
from the Parameter 10 Buffer occurs in synchronism with the execution of the
subroutine by the Filter processor.

In the case of the Pitch Tracker, the sequence of operations is also
repeated each sample, but the timing sequence is different. There is a 37
instruction main program, and a 43 instruction subroutine, with the subroutine
being repeated 6 times. The main program implements the peak-detector part
of the Gold pitch tracker algorithm, while the 6 iterations of the subroutine
implement the 8 elementary pitch detectors. Portions of the scoring algorithm
are implemented by both the main program and the subroutine. Put together,
295 instructions are executed, meaning that the Pitch Tracker processor is idle
for 5? of the 352 cycles.

Sequencing control is dominated by a 9 bit, mod 352 program counter, con-
sisting of a mod 32 counter for the five least significant bits (LSB). and a mod 11
counter for the four most significant bits. This counter addresses the control
ROM for all functions except the Pitch Tracker subroutine. The four MSB's of the
program counter indicate which iteration of the Filter main program is being
executed, and hence are made globally available for indexing purposes. A sec-
tion of control ROM containing code for the Pitch Tracker subroutine is
addressed by a separate subroutine program counter (SUBPC).

CONCLUSIONS
At this time the chip has been completely designed and the individual

blocks are in various stages of being evaluated. The complete circuit as shown
in Fig L8 has several layout errors as well as program errors. We are planning
to make the appropriate corrections and have a complete working chip by the
end of 1983.

We feel the design approach used here has great merit and we are now using it in
the design of several other chips for speech synthesis and recognition. We plan
to continue this work and develop the software tools so that an algorithm
developer will be able to design a chip with only a minimal amount of actual lay-
ouL

-15-

w1lZi

IM C-

MIW

viT4i

2

t

O-Z
WT

Ir
fez

x 2 a v
I

Figure 1.8 The complete chip

