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I.  INTRODUCTION 

The purpose of this effort was to modify an existing computer code 

(Ref. 1) for more efficient computation of viscous flowfields in and about 

hollow projectile shapes. (See Fig. 1.)  The existing code solves the axi- 

symmetric thin-layer equations on domains consisting of a single element 

or module.  A typical grid for a problem of this type is shown in Fig. 2. 

Grids of this type suffer from several problems.  First of all, skewness 

problems in such a grid prevent accurate solutions and can even lead to 

instabilities.  Secondly, computed inefficiency exists due to the concentration 

of points where they are not needed.  Finally, this type of grid results in 

severe and undesirable gradients in geometric parameters near the inflow 

boundary intersection with the projectile axis.  Of course these grid prob- 

lems can be quite detrimental to the quality of the computed solution and 

can result in excessive CPU time requirements. 

The method chosen to eliminate these grid problems was to develop a 

modular grid system.  The schematic of such a system is shown in Fig. 3.  A 

grid system of this type has several attractive features.  First, points are 

concentrated where they are needed.  For example, sufficient refinement is 

obtained in the boundary-layer regions without forced refinement where it is 

not needed.  Also,the number of vertical points in Region 2 is independent 

of that in Region 3.  This prevents the wasted computation on the inside of 

the projectile that existed for the original grid.  Secondly, the geometric 

parameters are well behaved in the corner where the inflow boundary inter- 

sects the projectile centerline.  In addition, this type of grid system 

virtually eliminates skewness problems. 



There are same  disadvantages of this type of grid system, also.  First, 

it requires grid generation, flow solution, output, etc.,for each distinct 

region rather than just one domain.  In addition, the interfaces between 

the distinct regions of the grid require special consideration since the 

separate grids need not have continuous mappings across these interfaces. 

For example, between Regions 1 and 2 the grid suddenly changes from a very 

fine mesh to a coarse one.  As a result of these special considerations, the 

coding logic for performing the block-tridiagonal inversions through these 

interfaces becomes very complex and is compounded further by the fact that 

the strong-conservation-law form of the governing fluid equations is 

employed.  This fact will become obvious in the development of the required 

interface operators. 

The fundamental notion employed in this work is that second-order 

accurate central-difference approximations for first and second derivatives 

on a uniformly spaced grid in computational space may be replaced by second- 

order accurate approximations on an unequally spaced grid in computational 

space without compromising the tridiagonal structure of the difference 

operator.  This is demonstrated in the following section. 

II.  CONCEPT TESTING 

The notion of employing finite-difference approximations to an unequally 

spaced grid in computational space is tested on a one-dimensional model prob- 

lem governed by the nonlinear viscous Burgers' equation 

9u , 3f    9 u      _  u 
9T+9^=y72-'    f = — (1) 

dx 

subject to the boundary conditions 



u(0,t) = 1 

u(l,t) - 0 

and the initial conditions 

ri ,  x = 0 
u(x,0) = < 

Lo ,  0 < x < 1 

The exact steady-state solution to this problem is 

u = u tanh ^j (1 - x) 

where u solves the transcendental equation 

u - 1   -u/y 
TT—r- = e 
u + 1 

This problem was chosen for several reasons.  First, the exact solution is 

known; thus, a precise measure of the error generated by the finite-difference 

scheme is known.  Second, for sufficiently small values of y, a steep gradi- 

ent in the solution exists near the right boundary of the domain. (See Fig. 4.) 

This behavior is similar to that which exists in a boundary-layer region. 

Thus the domain can be partitioned into two grids:  a fine mesh near the 

right boundary and a coarse mesh elsewhere.  Since y can be adjusted to 

position the steep gradient either completely within the fine mesh or so that 

it crosses the intermesh boundary, the required intermesh operators can be 

severely tested with this problem. 

Equation (1) must be transformed to computational space according to 

the mapping X = t^ ^ = ^(x).  Note that actually two mappings are employed, 

one for the fine grid and one for the coarse grid.  The mapped equation is 

9T 
+ Sc 3? - ySc\ -t2 " VCS 3C/ 



Consistent with the tubular projectile code, the Beam-Warming implicit 

numerical integration scheme in delta form (Ref. 2) is used to solve this 

equation.  The scheme is expressed as 

1 - BAT M a' 
2   2 

1 3  n 
^3f U - y 3 9? 

■Au 

= - AT 
xr 3? 

+ y 3 S? 

-2 n 
y 3 u 
2   2 x^ 3r 

(2) 

where 3 = 1 yields Euler implicit time differencing and 3 = 1/2 yields 

trapezoidal time differencing.  Conventional central-difference approxi- 

mations are used interior to both fine and coarse meshes.  However, at the 

intermesh point where x = 1 - 6 (see Fig. 5), a special formula must be 

applied for the derivative approximations.  This is derived as follows.  Con- 

sider a transformation from computational space back to physical space into 

an arc length variable such that 

3_  cU 3_ 
35  35 94 

where 4 is arc length along the 5 direction.  Note that this mapping can be 

performed locally at x = 1 - 6 from either the fine mesh computational 

system or the coarse mesh system.  The 9/94 derivative is then approximated 

using a second-order accurate formula for an unequally spaced grid.  The 

factor 9.4/9 5 simply makes the difference approximation consistent with which- 

ever grid the 9/9 5 is meant to apply to.  Of particular importance is the 

fact that this procedure will work on a multidimensional problem provided 

continuity of slope across interfaces exists for all grid lines.  Second 

derivatives in computational space transform back to arc length dependence 
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according to 

92 / 3£\2 af_      92-6  a 

ac2 '   l a^   342     ac2 ^ 

The arc length derivatives are differenced according to 

34' 

2   fAQ   V(') 1 ,,. 
rvl-s v-J (3) a (•)       2    fAo    v(') 

.2 " A 

^ =-i-flA(.) +A w— - ATTII"^' - v7(,)] (4) 

where A,V refer to conventional forwcird and backward difference operators, 

respectively, and A,V alone indicate operation on the arc length parameter, 

4.  For example, A=A4 = 4-4..  The factors 9-4/H and 824/a£;2  are 

approximated by one-sided finite differences using the arc length data on 

whichever side is appropriate. 

The result of the procedure just outlined, insofar as the tridiagonal 

algorithm is concerned, is simply a modification to the algebraic equation 

corresponding to the intermesh point.  This requires a change in the row 

of the tridiagonal matrix corresponding to this point.  Also, the right-hand 

side derivatives at this point must be differenced according to the procedures 

just discussed.  Let point p be the intermesh point.  Then p + 1 is in the 

fine mesh and p - 1 is in the coarse mesh.  The difference scheme represented 

by Eq. (2) is represented at this point as 

a Au , + b Au + c Au , = -t 
p  p-1   P  P   p  P+l   p 

where 
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fi   = 
.    \6l       1 /V  AJI       A ncn\ Xl^l       1      /V   .   n       A n n\ 
ATi^A-rT(AAf +vVf j + ^-^rrrrlAAu +vVu) 

xl n 
n       Vu11 2      /Au Vu   \ t.      _1_/V  . n       A n n\ 

= -^fe[4f(rT 2 
4t 

+ ^- u V)V        C^   (A + V)VJ      x*    p-1   (A + V)V 

+ V)V J 

and 

b    =  1  -   BATv. 
p ^.2 

4t       u 

AA2   _2 /I       1\ __1 /V       A\ 
45    A +  VlA +  V/+ 45C A +  V\A "  V/ 

x*  A +  V I A       V /   +     ^3     Cr? A +  V I A       V / 

c    ■  -  BAT-l-^ I-6*2   ..  2   r    ,   i 
6* 
^un 

p ]    #2  I   C     (A +  V)A CC     (A +  V)A )        x*    p+1   (A +  V)A 

3    05   (A +  V)A 

where superscript * indicates that the quantity is evaluated with a one- 

sided difference approxijnation or a selected side of the intermesh boundary. 

The star quantities must all be evaluated on the same side for consistency 

of the equation although which side is selected is optional. 

This intermesh differencing was employed and various test cases were 

run.  The results demonstrated that this concept is a valid one.  Figure 6 

illustrates the steady-state error distribution for the case u=0.2, 6 =0.2 

12 



using the Euler implicit scheme (8=1) at a Courant number of 10.  Various 

values of y and 6 were used and the results didn't differ appreciably from 

those shown so long as y ^ 0.1 and no adverse clustering was used in either 

of the fine or coarse mesh regions.  Adverse clustering is defined as follows, 

Define A, - (1 - «)/», and Af = 6/Nf where N,, Nf represent the number of 

mesh intervals in the coarse and fine mesh, respectively.  Next, form the 

ratio R = Af/Ac.  Clustering in either region which causes 

P+l   P ^ 
-*■ — <   R x  - X 
p  p-1 

is defined as adverse clustering.  This type of clustering caused the error 

distribution to grow but was not of concern since such adverse clustering is 

not used in practice.  Finally, solutions could not be obtained for y < 0.1 

no matter what Courant number was used.  This was true even for the limiting 

case of 6= 0.5 and Nc = Nv which corresponds to an equally spaced mesh over 

the entire domain.  Thus, it was shown that this problem was unrelated to the 

new operators for unequally spaced grids.  It is suspected that this problem 

is a result of using central differences for convective terms when the 

effective Reynolds number is sufficiently large (y sufficiently small). 

Summarizing this section, the concept of unequally spaced operators 

was introduced and tested on a model equation.  The results of this test 

prove the feasibility of the concept.  The remaining sections expand the idea 

to the tubular projectile problem. 
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Til.  GRID GENERATION 

Figure 3 illustrates the new modularized grid system to be employed. 

The actual generation of the grid is accomplished with a hyperbolic grid 

generation scheme as described in Ref. 3.  The first step is to generate the 

fine grid for Region 1 with this generator.  The grid for Region 1 is 

marched out a distance sufficient that this grid contains the entire boundary 

layer.  The outer boundary of Region 1 then serves as a portion of the upper 

boundary of Region 3 and the lower boundary of Region 2.  The grid line 

emanating from the projectile leading edge is constrained to be horizontal 

and is extended to the inflow boundary.  This line separates Regions 2 and 3 

forward of the fine mesh boundary.  The grid for Region 2 is then generated 

from the starting line consisting of the. straight section forward of the fine 

mesh continued by the upper portion of the outer boundary of the fine mesh. 

This starting line is marched up to a distance above the projectile of a 

few chord lengths.  The grid for Region 3 is obtained in a similar fashion 

except that the starting line is marched down until every point corresponding 

to the last C = constant line is below the projectile centerline.  Then the 

points along each E,  = constant line are adjusted along this curve so that 

the last 5 = constant line coincides with the projectile centerline.  The 

orthogonal nature of this grid generator provides the needed slope continuity 

condition across the intermesh boundaries.  It should be noted that the grid 

in Region 3 is not quite orthogonal after the readjustment process to fit the 

grid to the projectile centerline; however, it is nearly so in practice.  An 

actual grid generated with this scheme is shown in Fig. 7. 

Application of the implicit approximate-factored integration scheme to 

a grid system such as the one shown in Fig. 7 (schematic in Fig. 3) is far 



from arbitrary.  There exists a special sequence (not unique) of operations 

which taken together result in the final solution on the existing grid 

system.  The structure of the sequence chosen for the present study and 

seme motivation for this choice is the subject of the next section. 

IV.  INTEGRATION SCHEME TOPOLOGY 

The integration scheme used may be represented as 

ft-JLAO = RHS 12 

where Q.,. {L are the factored finite-difference operators in the two compu- 

tational coordinate directions.  The order in which the directions appear is 

arbitrary but this choice can be made to result in easier application of 

boundary conditions.  In this study it was necessary to solve-fy.fi AQ = RHS 

in some regions and fi Q AQ = RHS in others for simplicity.  In general, the 

solution algorithm consists of four major steps: 

1. Given Q , compute RHS. 

2. Solve JJ U* = RHS for U* by inverting block tridiagonal system. 

3. Solve fi AQ = U* for AQ by inverting block tridiagonal system. 

4. Compute new Q by Q   = Q + AQ. 

Steps 2 and 3 involve the ^ and ^ direction operators which, as mentioned, 

may appear in either order.  The application of the integration scheme to 

the tubular projectile problem with the present modularized grid involves 

proper sequencing of the £ and £ inversions.  This is best described by 

itemizing each step.  (Refer to Fig. 8.) 

1.  Perform the ^-inversion on interior of Region 3. 

Solve firU* = RHS for U* = fLAo. 

15 



2. Perform the ^-inversion on the interior of Region 2. 

Solve JVu* = RHS for U* = fi AQ. 

3. Perform the ^-inversion in Region 1. (Include outer boundary.) 

Solve fij-U* = RHS for U* = fi AQ. 

4. Perform the ^-inversion along the forward cut (leading edge grid 

line) from inflow boundary to the projectile leading edge (line 

AC). 

5. Perform the ^-inversion along the trailing edge cut. (See line DE 

of Fig, 8.) 

6. Perform the ^-inversion for leading edge region 'a' 

(from H to I).  (Solve ft AQ = u* for AQ.) 

7. Perform the ^-inversion for leading edge cut in the fine mesh. 

This is region 'b'. 

8. Perform the C~inversion for region 'c' above the projectile. 

9. Perform the ^-inversion for region 'd' below the projectile. 

10.  Perform the ^"inversion for region 'e,1  the trailing edge region. 

The remaining portion of this section serves as an explanation of the ten 

steps involved in taking one integration step on this modular grid.  Steps 

1 and 2 are self-explanatory except to say that line ABG for Step 1 and 

line ABF for Step 2 are excluded from the ^-inversion at this point.  Step 3 

involves the ^-inversion around the projectile including the outer boundary 

of Region 1 (GBF).  Note that when the intermesh boundaries are involved, 

a reference side must be selected for computing the geometric data (metrics, 

Jacobian, etc.) and, in this case, the reference side is taken to be the 

Region Iside.  Step 4 does a 5""inversion along the leading edge line from 

16 



the inflow boundary to the projectile.  Since in the fine mesh this com- 

putational direction is actually the negative C direction, the metrics— 

(?x' V V must be used for (^x' \'   ^z)   durin9 this inversion when working 

in Region 1.  Note that for this inversion there is a sudden change in the 

grid.  As a result, at this interface point between the fine and coarse 

mesh, special differencing is required as discussed in relation to the model 

problem presented earlier.  This is further discussed in the next section. 

Step 5 does the ^-inversion along the trailing edge cut.  This, of course, 

involves the evaluation of the RHS along the intermesh boundary which requires 

special difference operators in the ^-direction.  At this point, all 

?-inversions are complete.  Step 6 performs a vertical inversion in region 

'a' taking vertically up to be the positive computational coordinate.  Since 

this is opposite to the actual ^-direction in Region 3 the C-metrics in 

Region 3 must be scaled by -1 for this inversion.  Note that again this 

sweep is through an intermesh boundary.  Following Step 6, AQ is known in ■ 

region 'a/  which includes point L.  This value of AQ is required 

for Step 7 which performs the ^-inversion for the leading edge cut in the 

fine mesh only.  This AQ serves as a known boundary condition for the ^-inver- 

sion of Step 7.  The result of Step 7 is to generate AQ along the leading 

edge cut in the fine mesh (region 'b').  Step 8 performs a ^-inversion from 

body to outer boundary in region 'c' above the projectile.  Again an inter- 

mesh boundary is crossed in this inversion.  Step 9 performs a (^-inversion 

from body to projectile centerline (region 'd').  This step also involves 

an intermesh boundary.  Step 10 involves a ^-inversion from the projectile 

centerline vertically up to the outer boundary of Region 2 (region 'e')- 

17 



Note that this inversion crosses three intermesh boundaries.  The 

inversion direction is opposite of the actual ^-direction in Region 3 and 

the lower part of Region 1 so the metrics again must be scaled by -1 in 

these regions. Following these 10 steps and  the application of boundary con- 

ditions at the projectile surface and the outflow boundaries, the value of 

AQ is known everywhere.  Thus, an integration step can be completed. 

The next section deals with the actual intermesh operators employed. 

V.  INTERMESH OPERATORS 

This section details the approach for performing an inversion across 

an intermesh boundary.  Special differencing is required for convective 

terms, viscous terms and smoothing terms.  Each of these is discussed in a 

general setting. 

A.  Convective Terms 

A typical convective term for the strong-conservation-law form of the 

governing equations can be expressed as 

where a represents one of the computational coordinates, G represents geometry 

related information such as combinations of metrics and Jacobian, and <{) re- 

presents the physical flow quantity.  Consider the application of such a term 

at an intermesh point, p, as shown in Fig. 9.  Express this term as 

(G*)a = Ga* + G4a*4 

where -6 is the arc length along the coordinate line.  In general (J> is 

continuous across the interface but G is not.  As a result, G and 4  are a    a 

evaluated with one-sided finite differences on whichever side is taken to 

18 



be the reference.  This choice is arbitrary so long as the same choice is 

made for all terms in the equation.  <j) is evaluated at point p and 4) is 

approximated by the second-order accurate formula 

4     p-1    Tp    rp+l l^J 

where 

. - -    A u .   V - A V 
V(A + V)  '     b     AV~ '     c = A(A + V) 

Thus the result for the convective term is 

ma = (GV) Vl + (Ga + G4ab)<,>p + (G4ac) Vl 

which retains tridiagonal structure. 

B.  Viscous Terms 

A typical viscous term may be generally expressed as 

(u G (t) ) 

where G,4) are as before and y represents a viscosity or conductivity factor, 

This expression can be transformed to an arc length derivative as 

(y G Va = [VaG + ^^a + yG4aa]*4 
+ [liG4X4 

(6) 

The factors 6^  Ga,  A^  are all evaluated with one-sided finite differences. 

H^ and ^ are approximated by the same formula used for the convective term 

example.  $,  is approximated by the second-order accurate formula. 

-64    rp-l    Yp     p+1 K   ' 

where 

A  - 2 2 
V(A + V)  '      e " " AV  '      f = A(A + V) 

The result of these one-sided formulas gives 
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(y G ♦a)a-  [(G4^a)yp_1 +  (G^^b + G0ia + G4aa)yp +  (^y^] (a*^ + b^ + c<j>p+1) 

+  iMG62
a) (d^^ + e<Dp + f<|>p+1) 

which again is consistent with the required tridiagonal structure.  All of 

the viscous terms have this form and are treated in this fashion at the 

intermesh boundaries. 

C.  Smoothing Terms 

The Beam-Warming algorithm does not operate effectively without added 

smoothing terms.  The needed presence of these terms requires interface 

operators for them, too.  On the implicit or left-hand side of the equations, 

a second-order smoothing term is employed.  This term is identical in form 

to the typical viscous term, Eq. (6), with y replaced by 1.  Thus, no further 

discussion of this term is needed.  On the right-hand side of the equations, 

a fourth-order smoothing term is employed.  On the interior of a region 

(i.e., at point i = j or k in Fig. 9), this term has the form 

^ 7? = *i+2 
+ *i-2 " 4*i+l " 

4*i-l + 6*i (8) 

where §  is the conservative dependent variable vector unsealed by the 

transformation Jacobian.  This term may be expressed as 

2 
Act4 -— (d)    )  = Aa2(d) +4 - 2*      ) 

9a i+l i-l i 

where 

Aa\a£ ■ ^i+ h-i - 2h 

when £ = i+l, i-l, and i.  Although this is perfectly equivalent to Eq. (8) 

20 



when applied to points other than p-1, p, and p+1, this formula provides 

a mechanism for making a consistent fourth order smoothing across the 

interface boundary.  For example, if applied to point p-1, the result is 

2 
Aot  (d)        +4 -24 ) 

P P-2 p-1 

where 

aa p-3        p-l p-2 

2 
Aad) ■ *        + <i>    - 2<b 

aap-l        P"2        P P"1 

and ^   is determined just as in Eq. (6) with y = G = 1 with the result 
P 

2 
d)   = 4  d) + 4 d) raa    aar4   aT44 

P 

where (j) and *  are differenced according to Eqs. (5) and (7), respectively. 

Note that 4  and 4 must be evaluated with one-sided differences on the aa    a 

left of the interface in this case.  An identical approach is used to 

evaluate the smoothing term at point p+1.  That is, use 

2 
Act (d)    + d>   - 24    ) 

p+2     p     p+1 

where 

2 
Aad)    ■♦.-, + ♦.,- 24 „ 

aap+2   P+
3   P+1    P+2 

2 
Aad)     =d)   +d)-2d) 

aap+l   p+2   p    p+1 

and <p is determined as before except that 4  and 4 must be evaluated 
aa ^      aa    a 
P 

on the right of the interface. 

The only remaining task is to determine the smoothing term applicable 
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at point p.  This is done by satisfying a global conservative property 

(see Ref. 4) along the typical grid line indicated in Fig. 9.  This 

requires that the sum of the smoothing terms at all the points along 

this line equals zero.  Let S represent the smoothing term of interest. 

Then So for t  = p-3,...,p+3 becomes 

S  ," <&  ,--44) .  +  6<t>     , - 4*  „ + <}'  -, p-3  Yp-5   Yp-4   rp-3   Tp-2  Tp-1 

S  o = 4)  >,-4c})  ,+6(J)  ^-4<{) ,   + $ p-2   yp-4    Tp-3    Tp-2    p-1   p 

p-1  Vp-3   *p-2   Lyp-1   PL wp       'l/p+l 

s • ♦ , + <3 - a - y )(()  + (B + e_ - 2)4) + (3 - a - YT)4> ., + <t> p    p-2 L    R  p-1     L    R     p R    L p+1 p+1   p+2 

p+1   'R^p-l   Ryp   Rvp+1    Yp+2   Tp+3 

S  „ " 4i  -44  , + fid)  ^-44  , + <}> p+2   Yp    vp+l    Yp+2    rp+3   Yp+4 

S  , = 4>  , - 4*   +6(}>  , - 44  ,, + 4  c p+3   Yp+1    p+2    rp+3    Yp+4   rp+5 

where 

a = 5 + Aa (-6  a + 4 d\ 
L        \ aali aL ; 

6 = 2 - Aa2/*  b + 42 e^ 
L         V aaL aL ' 

Y = Aa (4  c + 4 f) 
'L    \ aa    a / 

a=5 + Aa/.6  c + 4 f) 
R       \ aaR aB / 

B„ » 2 - Aa2/4  b + 42 e) R        I aa a / 

Y,, = Aa (6 
R    \ c 

a + 4  dl 
aa^    a,, / 

R    R 

The constants a, b, c, d, e, f are those used in Eqs. (5) and (7). The 

subscripts L and R indicate on which side of the interface boundary the 

arc length derivatives are evaluated. 

22 



The smoothing philosophy indicated here is employed at all inter- 

face boundary points and their inunediate neighbors. 

VI, CONCLUDING REMARKS 

The tubular projectile code has been extensively modified to incor- 

porate an efficient grid system consisting of three distinct modules. 

The Beam-Warming implicit algorithm has been modified to apply to the 

regions of module interfaces.  Feasibility of such module interfaces with 

discontinuous metrics was tested on a model problem with positive results. 

New operators were derived and employed for use at interface boundaries. 

These operators include applications for convective terms, viscous terms, 

and smoothing terms.  The topology for implementation of the new factored 

algorithm is complex and was described in Section IV.  The resulting 

computer code is quite different in character than the original version, 

though many similarities exist in its structure; its size is roughly 

three times the size of the original.  This code currently resides on the 

Ballistics Research Laboratory Launch and Flight Division's VAX computer. 

An extensive debugging effort still remains, following which some 

test cases will be computed and compared to existing data. 
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Figure 1.    Hollow Projectile 
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Figure 2.    Typical  C-Grid for Hollow Projectile Problem 
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Figure 3. Schematic of New Grid System 
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INDEPENDENT  VARIABLES 

Figure 4. Typical Solution of Nonlinear Viscous Burgers' Equation 
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Figure 5. Dual Mesh for Concept Testing 
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Figure 8. Integration Scheme Topology 
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Figure 9. Arbitrary Coordinate Line Through an Intermesh Boundary 
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