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= INTRODUCTION
Tﬁq For more economical vibration testing of systems or components, it is advis-
. able to design a large test platen to allow attachment of numerous items to the
’: shaker. Often, when performing reliability demonstrations in accordance to MIL-
Y STD-781C (ref 1) or environmental testing in accordance with MIL-STD-810C (ref
: 2), expensive testing time can be reduced if many items are tested simultaneously
LS oa one platen. However, serious difficulties arise if this test platen resonates
':F at a frequency that falls within that of the test plan, causing some components
Y to be subjected to much higher vibration amplitudes than others. Also one corner
ot of the platen may resonate at a different frequency from other corners (ref 3),

* This variation in frequencies was encountered during reliability testing of the
hybrid collective protection equipment. The platen, onto which the test speci-
mens were mounted, resonated at each corner at a different frequency, thereby

‘zﬁ causing uneven vibration loads into items being tested.

N

ALV

2 Naturally, 1if at a certain frequency, one test specimen is more suspect to
n vibration fatigue than another, the test may provide erroneous failure data for

test analysis. A problem such as this can defeat the entire purpose of the test
¥ and cause confusion as to the correct classification of a vibration-caused fail-

L )
«:ﬁ} ure (ref 4). If fixture resonance is suspect, the failure would be classified as
;;‘: non-relevant and would not be included in reliability calculations.
%4
BENDING MODES OF A RESONATING PLATEN
" !.;
:iﬁ The Spring-Mass System
0
PN
When any structural system vibrates such that the mass (or inertia) force is
¥ identical to the spring (or stiffness) force, the system will reach what is knowm
A as its natural frequency. On a complex structure, this can occur at any number
'\ﬁf of frequencies when different components combine or separate into different sub-
-2*: systemg, each with its own natural frequency. Experience has shown, however,
Lot that when a test platen is loaded with many items to be vibrated on an electro-
dynamic shaker, the corners will go into resonance at one or possibly two lines
gl of bending. Thegse lines of bending occur where there 18 sudden increase in
e, platen stiffness.
N
ge®
Vfi Sudden Stiffness Caused By Change in Area Moment of Inertia
:'5 Usually test platens are made with a constant thickness. Where the platen
b is bolted onto the shaker head, there is a stepped 1increase in area moment of
3,; inertia. The portion of a platen which extends towards a corner from a 45-degree
104 line, starting from one edge of the platen and tangent to the point of contact of
‘ the shaker head, will be the most likely portion to first go into resonance.
Re This cantilever effect is illustrated in figure I. All four corners will go into
Ca!
A
o
N
L) 1
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SHAKER HEAD

THE LINE FROM WHICH (HIDDEN VIEW)
CANTILEVERED BENDING
STARTS

Plan view of test platen illustrating the line of bending starting
at the shaker head
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resonance along their respective lines., The corner with the heaviest specimen
loading will have the lowest natural frequency. Likewise, the corner with the
lightest specimen loading will have the highest natural frequency. The other two
corners will fall somewhere in between.

Stiffness Caused By Even Platen Loading

When sufficient test specimens are loaded into each corner to equalize the
effective mass of each corner, all four corners will have the same natural fre-
quency. This is most probable when all test specimens are identical and laid out
identically with respect to the corners. This forces the bending to take place

along lines connecting the midpoints of adjacent edges of the platen as shown in
figure 2.

In this mode of bending, the natural frequency of a platen is somewhat
higher than in the mode illustrated in figure 1. This 1s because the distance C
from the line of bending to the corner is shorter. (The equations found in the
next section will show this.) Therefore, it is expedient to calculate the nat-
ural frequency for both lines of bending since at any time during a test, a spec-

imen may have to be removed for investigation, thus destroying the symmetrical
mass loading of the corners.

DETERMINING THE NATURAL FREQUENCY OF A PLATEN'S CORNERS

General Platen Design Considerations

Several limiting restraints must be considered in designing a vibration
platen with a natural frequency higher than the frequency spectrum required by a
test plan. The most obvious restraints are:

l. The maximum size allowed in the environmental chamber.

2. The minimum s8ize required to hold the number of test specimens
required by the reliability test plan.

3. The total dead weight load on the shaker's voice coil.

4, The higher the dead weight load, the less sinusoidal displacement the
shaker is capable of delivering.

The final point is the single, most limiting factor in designing a platen with a
natural frequency higher than the frequency spectrum required on a test plan,
The shaker is protected from damaging extremes in displacement by limit switches
which automatically turn off power to the shaker.,
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- Because of these limitations, particularly the last one, consideration must
X be given to the total weight of all components making up the dead weight on the
’ voice coil. This includes not only the test specimens, but also any adapters,
power cables, bolts, and, of course, the platen. Since the platen is usually the

: single greatest contributor to the load on the shaker head, it 1s ordinarily made
: from a plate of low density material. However, the combined masses of all of
- these items contribute to determining the natural frequency of a platen.

hY

X The Natural Frequency of a Single Plate Platen

2 The most common platen in use is made from a metal plate of a single
j material. The natural frequency of such a platen is determined in equation 1.

{Experimentally, at Smith Industries in Clearwater, Florida, equation 1 was found
to be accurate to within 0.5%7 in determining the natural frequency of an unloaded
corner. The equation's accuracy will largely depend upon how much the loads of
the non-corner test specimens vary from the corner-most specimen. However, the
load created by corner items is the most critical in determining the system's
natural frequency.)

] 3
: fN - 5.522 ’w Eh (1)
J - c? — + ph

- A

28 s 4 4. &

NOTE: Equation 1 resulted from combining equations A-10, A-14, and A-36
in the appendix.

of*
y where
J
4 fy = natural frequency, hertz
A = area displaced by the corner-most test specimen, in.2
C = distance extending from the midpoint of the line of bending to the
corner of the platen (figs. 1 and 2), in.
p = density of the material from which the platen is manufactured,
1b/in,3
')
N E = modulus of elasticity, 1b/1n.2
N h = thickness of platen, in.
d W = weight of corner-most test specimen mounted on platen, 1lb
.
1
h 5
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As shown by equation 1 and figures 1 and 2, if the resonant frequency

increased to where it exceeds the highest required in the test plan, then atten-
tion must be given to:

" (NG

»
..

1. Keeping the distance C from the platen corner to the shaker head
or other reinforcement as short as possible. This 18 usually done by making the
platen as small as possidle.

& ) ""‘).'

’I Wt
L

2. Making the platen thickness h as great as possible and yet not
overload the voice coil's displacement limits.

3. Placing the test specimens with the least weight per given area
W/A at the corners of the platen and the heaviest ones towards the center.

M i
2,
','V‘.'.'. 2 2

4, Keeping the ratio of modulus of elasticity tc - density of the
test platen E/p as high as possible.

This requires accurate planning and layout of the test platen optimize these
. four points and yet be within the overall weight limitations of <haker.

- There are times, however, when none of these parameters .un be optimized
3 to prevent the platen's natural frequency from falling within the the test plan's
= required frequency band. An added disadvantage 1is the fact that aluminum,
-} because of its low weight and reasonably favorable E/p ratio, is the most fre-
) quently used test platen material, The undesirable feature of aluminum is its
. poor vibration damping characteristics as shown in table 1. If and when a
platen's corner goes into resonance, the applitude ratio can be expected to
exceed, 10 to 1, the input at the shaker head.

Determining the Natural Frequency with Structural Damping in the Platen

As previously stated, aluminum is the preferred material for test platens
because of its low density, machinability, and ductility. However, as shown in
table 1, aluminum's specific damping capacity 1is low. Nodular iron, on the other
hand, is preferred by machinery engineers because of its compromise of relatively
high strength, machinability, and ductility with moderately good damping charac-
teristics (ref 5). Nodular iron's density and E/p ratio make it marginal for use
on electrodynamic shakers., However, a platen could be designed that would uti-
lize two materials (for example, alummium and nodular iron) and synergitically
gain the desirable characteristics of both.

PPN D

-
ol

CcCLa.

o The Sandwich, Three Plate, Two-~Material Platen

X When a beam bends, the farther away its molecules are from the neutral
axis, the greater the strain. 1If the beam is vibrating, it is these outer wole-

N cules that have the greatest amount of kinetic energy and, therefore, the great-
) est potential for damping. If an aluminum plate (or a plate of some other low
K density material) can be sandwiched between two relatively thin plates of high
r damping material, and 1if the plate 18 excited at 1its natural frequency, the
N
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! increase in amplitude of a resonating corner should be minimal. Just as it was

. possible to calculate the natural frequency of a platen made of a single mate-

‘ rial, it is possible to calculate the natural frequency of a2 sandwich design. It
can be dore using the following equation:

hy3E; + 8hy3 E, + 6h2h,E, + 12 hih,2E,

1 £ = 22222 - (2)
C2 X"’ p1h1 + 2 p2h2

- NOTE: Equation 2 was derived by combining equations A-106, A-19, and
A-36 from the appendix.

i fy = natural frequency, hertz
3
. P} = density of inmner plate, lb/in.3

pp = density of outer plates, lb/in.3

E, = modulus of elasticity of inner plate, lb/in.2

E, = modulus of elasticity of outer plates, 1b/in.2

h; = thickness of inner plate, in.

C = distance extending from midpoint of the line of bending to the
corner of the platen (figs. 1 and 2), in.

h, = thickness of a single outer plate (assuming that each outer plate
is the same thickness), in.

W = weight of the corner-most test specimen, 1b

A = area displaced by the corner-most test specimen, in.2
The Two Plate, Two-Material Platen

In some designs, preference can be given to platens with the same thin plate
of high hysteretic damping material bolted semi-permanently to the shaker head
onto which a custom made, thick aluminum plate can be bolted. The top plate of
high damping material 1is not used. This also provides good damping characteris-
tics (but not so good as the sandwich type) and cuts platen manufacturing and
3 setup costs. However, it must be remembered that two materials mounted in this
. way may curve at the corners if the test progiram includes great temperature
3 changes. This would be caused by the differences in the two materials' tempera-
ture coefficients of expansion. (However, it will probably not be a problem if
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the plate of high specific damping capacity is kept relatively thin as compared
with the aluminum plate.) The formula for the natural frequency of this configu-

ration is:

3 ) h) 2 . Ep o 3 " Ejh, . hz)2
El[hl +1h1(N--—) g-he + 12— (b1 - N+
5.522 2 Ey £y 2/ )
fn = 2 W 3
C A + p1h; + pohy
2 2
Eih;, + ZEZ h1h2 + Eoh,
The value N = which is the distance
2E,h; + 2E5h, from the top surface

of the platen to the
neutral axis, in.

NOTE: Equation 3 1s a combination of equations A-10, A-21, A-23, and
A-36 from the appendix.

where
fy = natural frequency, hertz

p; = density of upper plate, 1b/4n.3

p, = density of lower plate, 1b/in.3

E; = modulus of elasticity of upper plate, 1b/1in.2
Ey = modulus of elasticity of lower plate, 1b/in.2
h; = thickness of upper plate, in.

hy = thickness of lower plate, in.

C = distance extending from the midpoint of the line of bending to the
corner of the platen (figs. 1 and 2), in.

. W = wyeight of the corner-most test specimen, lb
A = area displaced by the corner-most test specimen, in.2
The reason for equation 3's being more complex than equations 1 and 2 is that the

neutral axis of bending 1is not at the geometric center of the platen's cross-
sectional thickness.
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Background on Damping

Damping 1is the energy dissipating quality of a material. This dissipation
occurs when some of the kinetic energy of a vibrating system is converted to heat
energy. When a structure vibrates at its natural frequency, the mass (or

Fe 7.4

9
.

- inertia) force is in dynamic equilibrium with the spring (or stiffness) force and
-r: 90 degrees out of phase with the exciting force. Therefore, the only structural
A force available to oppose the exciting force is that of the damping ‘orce. If
é: the material has little damping, the sinusoidal velocity must be high -, keep the
o structure in dynamic equilibrium, which also causes the displacement to

increase. If the damping qualities are too minute to keep the displacement low
is* and the excitation remains in the natural frequency range too long, the structure
o will fail from fatigue.
FAL
*:4 The damping coefficient 18 easy to measure experimentally in a completed
oy structure, but is very difficult to determine theoretically in the design stage
i of a complex structure, such as an entire automobile. A platen, however, is
N1 relatively simple and it is possible to derive equations of damping energy for
\3 such a structure. The final units are in.-1lb/cycle for the entire resonating
i'i? corner of the platen and, as such, are useful in comparing one design with
et another. Furthermore, experimental data can be directly compared with calculated
. data by measuring the energy per cycle into a platen corner at resonance and

. comparing it with equations provided in this report.
e
:5 Hysteresis Damping
Materials have two types of damping qualities, viscoelastic and hyster-

roe etic. - The former will not be discussed because it pertains mostly to polymetric
IR materials. Hysteretic damping occurs where the stress—-strain curve on loading
ﬁ.ﬁ does not colncide with the stress-strain curve on unloading. The area between
;;J the two curves represents the amount of kinetic energy that has been dissipated
o as heat energy (ref 6). A hysteresis loop which illustrates this energy dissipa-
- tion is shown in figure 3.
S0
o~
‘iﬁ Specific Damping Capacity Values
ot
e
- Specific damping capacities (%-per-cycle) of many materials for given shear
;& stresses are contained in table 1. Values in the specific damping capacity
- column are to be used where the symbol ¥ appears in the formulas to calculate the
f}’ relative damping capacity in platens. The validity oi applying values obtained
::: . from shear-stress tests to an obvious bending stress application, is supported by
B\ the intricate test methodology of collecting the data.
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\z THE SPECIFIC DAMPING CAPACITY OF COMMERCIAL ALLOYS AT ROOM
' 1 TEMPERATURE
’ The specific damping capacity which is normally measurcd on solid cylinders stressed
. in torsion is defined as the ratio of the vibrational strain energy dissipated during
' one cycle of vibration to the vibrational strain energy at the beginning of the cycle.
i . W
3 3‘ ‘ zpcnﬁc ‘f w/‘:a
> Al Compoaition ¢, mpn shear stress
& ” porsion % | aapucuy v | bt
< Mno-Cu (quenched from 850°C agesl | g0¥; Mn-10%), Cu 21 3,000
2 br ot ¢423°C) + 899, Mu-13% Cu 27 3,000
Sov, Mn-20v, Cu 23 4,000
’ 70%; Mn-30% Cu pes §,000
g 60°%, Mn-40°, Cu 4 3,000
"-,' .. $0%, Mn-30%, Cu 3 3,000
~ NE-Ti (Nitinol) §9°, Ni-439% Ti 26 30,000
=", T-D Nickel 2'3% Thoria 107 10,000
o Mallory No-chat " - 94 50,000
e Cast Irons )
B High carbon inoculated flake isron a-g',’.'C. 1-9% .Si,Px-o?. Mn, 20:7% Ni, 19'3 §,000
1-9% Cr, 0-13%
Spun cast iron $:3¢ ,’s:(;. 'S9%° .C., 1:9% Si, 0'4% Ma, 108 3,000
o
J Noe-inoculated flake iron ;-3° .;,g. SI'I','. Si, o'3s% Mn, o014% P, 8 $,000
".; Inoculated flake iron 3'3% .C". 2'2% Si, 03% Mn, o014% P, 73 $,000
‘20 0'03%
B ‘—: Austenitic flake grapbite 3-5%36. 19% Si, 1% Mn, 20:9% Ni, 7 $,000
) 1:9% Cr, 0:03% P, 003% §
. Alloyed Aske graphite 31408 C, 2% Si, 6% Mn, 0-7% Ni, (3] $,000
- 04% Mo, 0-24% P, 0-03% S
X Nickel-cupper austenitic flake a-”':’ C 1'92’ Si, 1-28%, Mn, x%-a". Ni, 39 5,000
= i/‘ Cu, 2 s Ct, 00 % P, 004% §
. Undercooled flake graphite | 3:25% C, 2:2%, S‘. [ ‘,. Mn, 0-35% Ti, 39 3,000
ja titoniun/Co, treated o14'% P, 0:03%, S
2 ‘-; Annealed ferritic nodular 39% C, 189, Si. 04% Mn, 0-76% Ni, 28 5,000
» t' (o:-:a% Mg, 0'03% P, 0:01% S, <0-003¢)
¥ ! Pearlitic roalleable B.S. 3313/1961 Grade B.33/4 28 8,000
o Blackhcart matleable B.S. 310 1938 Grade B.232/14 13 4,000
L As cast peaclitic nodular 3-665 C, 1:8% Si, 04% Mn, 0-76% Ni, 14 $,000
=, a % bg, v03% P, 0-01% §, <0-003%
N S C mild stesl, normalized
R N.3 - o1 # normali | 8 $,000 .
" B.S.1407 (silver steel Spgz;dued o-z 5,000
>, B.S.1407 (silver steel Water quenched 800°C 0§ 3,000
'R B.S.1407 (silver steel) Water quenched 800°C aged 100°C 1§ br 02 $,000
e EN.33/T 3:, Ni, 1% Cr, 0:3% C o8 3,000
e E.N.12/ ) 18 N1, 0% € 03 3,000
] E.N.19/ 14 Cr’ 0:3% Mo, o % C o1s. 3,000
B.S. S62 12 ’. }?-{.% C. 6ucnehed tempered to 38 3,000
22 3: N
E.N.s8B 189, %r. [ 3 NI‘ 6% Ti,01% C. Solution 18 5,000
- treated xuzo C water quenched .
- N.M.C. 063% C 3:%69% Cr, 8:6° Ni, 73% Mn. oy $,000
o : Solution treated 1050°C, water quenched
o E.N. s8A 189 Cr, 8% Ni. 0:1¢%; C. Solution treated o3 §,000
o 1030°C, water quenched
Q.u
i Ccrpa Alloys
lidure] 6 As cast "33 3.0n0
Gunmetal 88¢; Cy, 10% Za, 2% S0 10 4,000
m Brass (B.S. 263) As extruded o4 4,000
e Hulurel § A cast o4 3,000
" Hidurel » As cant 029 3,000
4 High teusile brase . As cast 033 3,000
B Novostoa - o123 3,000
Fod
.- Aluminium Alloys
o Duralumin (H.E. 1 — o1y 4,000
- RR37 {DTD sooq W.P.) - 030 3,000
. RK33 (DTD so14 W.P. -— 010 3,000
) Hjduminjutu 300 (S.A.P.) ¢ — 3o §,000
':-\ sl rlde Lu. s .
Ly )
e BMaznesium Alloys d
N DTD sooy - Mg/2a/2:/Th 7~t 3,000
4 B.S. ra28 Mg/Zo/Mn (¥ 3,000
A7) DTD 731A Mg/Zn/Ze o6 3,000
<y Maguesium Elekiron Mg/Ag 2t o4 3,000
ooy M.S.R. Alloy
- Reforanco: D. Birchon, Enginesring Mateials end Design, Sept., Oct., 196¢. By permission.
1
!
~
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To determine the specific damping capacity, accurate and repeatable test
procedures had to be set up to measure the deflection of a vibrating system.
Methods, other than torsion, available to measure the required stresses would
require long gage lengths and stresses of about 60Z of the fatigue limit of many
materials. Such test apparatus would be unwieldly and the values would be at
stress levels too high for many vibration difficulties, including this one.
Because of these limitations, a torsional device was used as a test standard.
The values of the specific damping capacity are usable for vibration problems in
any stress mode where the stresses are relatively low as compared to the elastic
limit (ref 7).

The Single Plate Platen

The equation for the total damping energy of a resonating corner of a
platen becomes:

2

¥cé (3 + oh)

D= (4)
45 E h3

NOTE: This equation substitutes the values of V, from equation A-14 and
Z from equation A-10 into equation A-44,

where
D = total damping energy, in.-1b/cycle
¥ = gpecific damping capacity, Z/cycle
W = weight of corner-most test specimen, 1b

C = distance extending from the midpoint of the line of bending to the
corner of the platen (figs., 1 and 2), in.

A = area displaced on platen by corner-most test specimen, in.2
p = density of plate material, 1b/1n.3

E = modulus of elasticity, 1b/1n.2

=2
[ ]

plate thickness, in.
The Three Plate, Two—-Material Platen

The platen which has a center plate of a low density o1 low specific
damping capacity Y material and 1is sandwiched between two 1identical plates of
high density Py, high specific damping capacity Y material, may offer a solution

12
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to a serious vibration problem. It 1s an ideal compromise of total weight on the
shaker head, natural frequency, and damping. The equation for this design
becomes:

3 hy 3 3
W 2 T ¥ (m+h)l ¥y b ¥
[ZQK + p1h; + 2pzhg)] ch L SEE + E; - ——giz—— )
D 3 3
j hy 4hy E; 2 Ep 2 Ep ]2
45| =+ 5~ (ET) + hy hZ(E—l-) + 2hh, (E_l)
4

NOTE: This equation is derived from substituting the values of Vue ©f
equation A-19 and Z of equation A-10 into equation A-45.

where
D = total damping energy, in-1b/cycle
¥, = specific damping capacity of inmer plate material, %/cycle
¥, = specific dampigg capacity of outer plate material, %/cycle
W = weight of corner-most test specimen, 1b

. C = distance extending from the midpoint of the line of bending to the
corner of the platen (figs. 1 and 2), in.

A = area displaced on platen by corner-most test specimen, in.2
P} = density of inner plate material, 1b/in.3

p, = density of material of outer plates, 1b/in.3

E; = modulus of elasticity of inner material, 1b/in.2

E9 = modulus of elasticity of outer material, lb/in.2

hl = thickness of inner plate, in.

hy = thickness of a single outer plate (assuming each has the same
thickness), in.

The Two Plate, Two-Material Platen

The two plate, two-material platen may be mwore economical in its use of
a material of high density and high specific damping capacity to be used as a
permanent mounting fixture for a custom—made specimen mounting plate. It is not

13
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quite so efficient in terms of damping per unit weight as the three-plate,

material design, but may be efficient enough for the convenience it offers.

equation is used to obtain the total damping energy:

D =

two-

This

where

(6

in

the

6 (3 3, Y2 3 3]
¢ (E"‘ prhy + pohp){ = [N + (h; - N) ]"’—[(hz*'hl - N) - (hy - N)
A E E,
3 3 2
hy hy\2 Ezhy Ep hy 2
810 ——6—+2h1N—2— +6E1 +2E—1-h2(h1-N+—2—)
2 2
Eyh; + 2Ephjhg + Ejhy
The value N = , in.
2 Eyhy + 2 E)h,
NOTE: This equation 6 1is derived by combining the values of VHN
equation A-23 and Z in equation A-10 with equation A-46.
D = total damping energy, in.-lb/cycle
Y, = specific damping capacity of upper plate material, X/cycle
¥, = specific damping capacity of lower plate material, Z/cycle
C = distance extending from the midpoint of the line of bending to

corner of the platen (figs. 1 and 1), in.
W = weight of corner-most test specimen, lb.
A = area displaced on platen by corner-most test specimen, in.2

P, = density of upper plate material, 1b/in.3

py = density of lower plate material, lb/in.3
E, = modulus of elasticity of upper plate material, lb/in.2

Ey = modulus of elasticity of lower plate material, 1b/in. 2

=2
—
"

thickness of upper plate, in.

-
[
(]

thickness of lower plate, in.

N = distance from top surface of upper plate to the neutral axis

14
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After completion of all equations required to calculate the total damp-
ing energy of a given platen design, the next consideration is material selec-
tion., Generally, in addition to the qualities of density, modulus of elasticity,
and specific damping capacity, several other qualities are important. Others are
availability, ductility, and machinability, Coefficients of expansion may be
important for the two plate, two-material platen undergoing very wide temperature
extremes., Ideally, all of the plates would have the same expansion coefficients.

THE FEEDBACK SIGNAL FOR VIBRATION CONTROL PURPOSES

The Feedback Control Problem

The electrodynamic shaker's amplitude of vibration is determined by the
amount of current that flows through the voice coil. Since this current is con-
stantly changing direction as well as magnitude in the presence of high magnetic
field, it forces the voice coil to move. Since the voice coil has a shaker head
attached to it and the platen 18 attached to the shaker head, the transducer
(usually an accelerometer) responsible for the feedback signal can be mounted
anywhere, in a non-resonant condition. However, when the natural frequency of
the platen's corners is within the frequency spectrum dictated by the test plan,
this simplicity will not work.

1f, for example, the accelerometer is placed in the center of the platen,
the test specimens mounted on the corners will experience loads far in excess of
what are required in the test plan. I1f, on the other hand, the accelerometer is
placed at any one corner, the specimens in that corner will be the only ones
following the test program. The others will receive either more and less vibra-
tion than they are supposed to receive. This will happen even with a platen with
good dampening energy characteristics. The answer lies with some type of vibra-
tion averaging.

With five accelerometers, one at each corner and one in the middle of the
platen, the acceleration of each possible resonating location and the one non-
resonating location can be measured. These signals can be summed and divided by
five in one of two ways (discussed later). However, the main advantage of this
18 an averaging of vibration input error. For example, if the test plan calls
for an input of l-g acceleration and at a specific frequency one corner wants to
resonate at 3 g's with this input, the actual vibrational acceleration put out by
the shaker will be the sum of all locations, which is 1 + 1 + 1 + 1 + 3 = 7,
divided by the number of accelerometers, 5, which 1s an average of 1.4. The
controller reduces the shaker's output until it senses l-g. All corners will get
an 0.714~g input except the resonating one which will receive 2.143 g's. This is
not what the program specifies, but it is an improvement over 3 g's.

15
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Feedback Averaging Techniques

Modern digital computerized vibration controls may possibly come with inter-~
faces which can average five signals and use the result as the feedback control
signal., These are costly, however, and many test laboratories cannot afford such
capital expenditures. However, it is possible to use five operational amplifiers
to sum the accelerometer signals and a sixth one to divide the summed signal by
five to get a single signal back to the main controller. In effect, this becomes
an on-line analog computer which is relatively inexpensive and versatile for a
number of other instrumentation tasks in a test laboratory.

CONCLUSIONS AND RECOMMENDATIONS

It may not be possible to design a vibration test platen with a natural
frequency higher than the frequency spectrum of the test plan, but several
methods could be tried to get the natural frequency as high as possible:

1. Keep the sides of the platen as short as possible.

2. Place at the extreme corners the test specimens which have the light-~
est weight per area of platen displaced. Heavier items should be placed toward
the platen's center.

3. Choose a material which has a high modulus:density ratio.

4. Make the platens as thick as possible within the shaker's dead weight
limitations for the maximum sinusoidal displacement required.

After all of the above techniques have been tried, then materials with high
specific damping capacities should be tried. Since the usual materials with good
damping characteristics have high densities as compared with materials with poor
damping characteristics, it may be necessary to devise a multiple plate platen.
Such a platen would concentrate the low density plates near the neutral axis and
at least one, and preferably two, plates of high specific damping capacity in the
areas of high bending strains.

If it is known from the natural frequency calculations that the platen will
have a corner that will resonate, then the feedback for control purposes should
be planned accordingly. The choices are either an analog device which can aver-
age the signals from several platen locations, or, if possible, a digital com-~
puter that has real time capability to average the signals. An averaged feedback
signal will provide the overall optimized vibration load on the test specimens.
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APPENDIX

NATURAL FREQUENCY OF A CANTILEVERED RIGHT-TRIANGULAR PLATE
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Introduction

Each corner of a shaker's test platen behaves as a cantilevered right trian-
gular plate when it resonates. If loading 1is equal on all four corners, they
will resonate at the same frequency. If the loading is unequal, the corners will
not only resonate at different frequencies, but the cantilevered line from which
the bending originates way shift as well. Therefore, any generalized equation
must be in terms of (1) the distance from the corner of the platen to the line
where the bending begins as illustrated in figures | and 2 of the text, (2) equi~-
valent mass loading, (3) area moment of inertia, and (4) Young's Modulus of elas-
ticityo

Raleigh Method of Natural Frequency Calculation

The Raleigh Method of natural frequency calculation has been found to pro-
duce values which agree closely with experimental findings if accurate assump-
tions are made of the physical characteristics of the vibrating system. The
equation for this method 1sA~!:

dex

W= g
2
fY dx

(A-1)

where
w = natural frequency, rad/s
Y = equation for the deflection of the vibrating system, in.

g = acceleration due to gravity, which is a constant of 386.4 in./s2
The deflection is found by solving the fourth order differential equationA"2

d“y W, (A-2)

ety SR e—

dx* EI

H. M. Hansen and Paul F. Citenea, Mechanics of Vibration, John Wiley and
Sons, New York, 1952,

E. P. Popov, Mechanics of Materials, Prentice-Hall, New York, 1952.
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I = area moment of inertia, in.4

*
"
Loe
d
) where
o
J
; Wr = is the total loading on the vibrating system, 1b/in.
0
3 E = Young's Modulus of Elasticity, lb/:l.n.2
N
=

The primary problem in solving equation A-2 is determining the generalized
- expregsions of W, and I for a loaded, heterogeneous, right triangular, canti-
) levered plate. The load will be calculated first.

Calculation of Load

-
-t

The load contribution on the natural frequency of a vibrating system
includes the mass of the system itself and any attached test specimens. On a
test platen, this can be a difficult problem because::

o

- l. The mass of the vibrating triangular plate, which is a corner of the
P, platen, increases as a squared function (if the thickness is constant) as the
o distance increases from a corner to the line of bending.

-

-, 2. The mass per displaced area of the various mounted test specimens can
< vary greatly.

The load equation will be developed in two parts, one load for the vibrating
triangular plate Wp, and the other for the attached test items Wee They will be

combined to form a final load express WT.

v N
AT

=Ly %y
A &

Mass Load of the Vibrating Triangular Plate

s

i M

The load shall be calculated in terms of the weight of a right trian-
gular plate whose mass 1s distributed from the 90-degree corner to the canti-
= levered edge. The distributed weight is then defined as:

Wp =p a (A-3)

where

Wp = distributed load of the plate, lb/in.

. 4rd
N "1‘1_ WSt

p = density of the plate material, lb/in.3

> a = the cross-sectional area of the triangular plate at distance x
\ from a platen's corner,

e 22
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Since the width of the triangle varies with the distance from x = O, then so does
the cross-sectional area and the distributed weight. Figure A-1 shows a right

N triangular plate which has been bisected into two 45-degree triangular plates of
I thickness h. The equation for the cross-sectional area of a triangular plate
5 cross section is
N daj = dzdy
> Since
! dz = 2dx (A-4)
“~
- then
3
\
" da = 2dx dy
h
x 2
a=2/[ dx [ dy
° ch
2
a = 2hx (A-5)

By substituting equation A-5 into equation A-3, the distributed weight
for the triangular plate is obtained:

Wp = 2 phx (A-6)

If the platen is constructed of three plates and two materials such as
in a sandwich arrangement, the individual densities, p, and p,, and thicknesses,
h|!l and h2, of each material are used. In such case, the equation would look like
this:

Wp = 2x (p;h; + 20,h,) (A-7)
The 2 inside the brackets is for the two outside plates of the same thickness hy.

The natural frequency of a cantilever is most affected by masses that
are farthest from the edge of bending. The greater this mass, the lower the
system's natural frequency happens to be. This is because the natural frequency
is related to the deflection, and the deflection for a cantilevered system is
greatest at the free end. Therefore, to greatly simplify the deflection equa-
tion, one can assume that the weight per unit area of the corner-most test item
is the same for the entire triangular plate being considered. (Test prudence
would dictate, wherever possible, that the lightest items per square inch go at
the extreme corners and the heavier items go towards the center of the platen to
get the highest natural frequency.) Include the weight of the test 1item, the
adapters, and the boltheads to obtain the most accurate estimate of the canti-
lever's loading. This total specimen weight will be designated as W_. Next,
calculate the area displaced on the platen by the test item and all associated
hardware and designate this area as A. This provides a load pressure of W/A in

23
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pounds per square inch for the corner-most position on the test platen. However,
what is needed is the equivalent distributed load that varies as the right tri-
angular area expands from the corner to the line of bending. This load increases
at the same 2x multiplier as the mass of the plate does (equation A-5) so the
equation for the weight distribution of the test items is

W
wx = 2 ry x (A-8)

The justification for using the corner-most 1loading for the entire triangular
plate is that the heavier test specimens that are closer to the line of bending
have a relatively low contribution on the deflection. This assumption will yield
a slightly higher calculated natural frequency than will actually be experienced,
but the difference should be negligible.

Total Load Equation

The total load cquation on a right triangular plate is
WT =W, + Wp
or

W
Wy = 2(K+ p1h; + 2 pohy) x (A-9)

Since only the x value is variable, for purposes of simplifying the differential
equation, we will make the substitution

W
zZ =2 (K+ o1h; + 2 pyhy) (A-10)
One should realize that the subscripts are used only on platens made of one
material sandwiched between two others. For a single material platen
z = 2(3 + ph).
Then

Wp = 2x (A-11)
Calculation of Area Moment of Inertia
The Single Plate Platen

The area moment of inertia of the cross section varies with x the came
as the area does (fig., A-1). The equation for the area moment of inertia of a
rectangular section is

3

h
dl = 1z dz (A-12)

y . sfundic e D Suhdan

L8

where dz is the change in width of the cross section.
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From equation A-4, the width varies (dz) as the distance from the corner doubles
(2dx) or:

dz = 2dx

therefore
3
- th (A-13)

To keep the calculations as simple as possible

h3
Let V8 =5 (A-14)

therefore

g = VgX (A-15)

The three plate, two-material platen increases the difficulty of calcu-
lating the area moment of inertia because the area moment of inertia derivations
require a complicated "section transformation” using the modulus of elasticity of
each material used, This is not considered in the single-plate model.

The technique of section t:ransforxnationA"3 used to develop equivalent

cross sections is illustrated in figure A-2, Essentially, the outer plates have
their width 1increased by the ratio of the modulus of elasticities of the outer
plates over the inner plate:
where

Zp = the transformed width, in.

z = the geometric width, in.

E, = modulus of elasticity of the outer material, 1b/in.2

E, = modulus of elasticity of the inner material, 1b/1n.2

It has already been established from figure A-1 that

z = 2x
E;
z, = 2 ET x (A-17)

A-3 E. P. Popov, Mechanics of Materials, Prentice-hHall, New York, 1952,
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At This value of 2z, can now be used to calculate the area moment of 1inertia. The
equation is now written, in its most general form, using Popov's methods (fig.
A-2):

IHG=h1;Y+2[h§TIx]+2[h2(2 )("_"'T) ]

where
Iyc = the area moment of inertia of one material sandwiched between two
others with the neutral axis of bending the cross—sectional geo-
metric center, 1in.
hl = thickness of center material, in.
h, = thickness of each of the outer plates, in.
3 3
h; 4 h, [E; 2 [E2 2( E2 8)
IHG= T+ 3 E_l. + h; hj -EI + 2 hjh, E; x (A-1
To simplify future calculations, let:
3 3
hl 4 hZ E, 2 (Ez Eo
Vyn = + =)+ h; h + 2 h1h2 - (A-19)
¢ "8 3 E) 2\E, Ey
then
Iy = Vuc* | (A-20)

The Two Plate, Two—Material Platen

. Next 1is an examination of the equations for two plates vibrating to-

h gether where the neutral axis of bending is not at the cross-sectional geometric

t., center of the two plates. This 1s 1likely to occur in the design of a semi-

o permanent plate with high specific damping characteristics that attaches to a

Ei shaker head onto which all future light weight, special purpose platens are to be
- bolted. This example is illustrated in figure A-3.

The first step is to calculate the transformation of the width of the
lower plate. This was calculated previously in equation A-17 and is:
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The equation to find the location of the neutral axis as measured from the top of
the platen, using figure A-3d as a basis for the calculation, is

el f32) + 4 )x () +4 ma)
.-

' 2x(h,) + z(;-?-) x (hy)

2 2

N=—7 R FTER, (A-21)

Knowing the neutral axis, we can now write the equation for the area moment of
inertia of a two material test platen

E; 3
. 3 . 22 2
h) hns Ej Ej h;
I“N-Tx+2xh1N-—f +—'6'—x+2E—1'n2x hl—N+T (A-22)
E; 3

3 —
h, h\2 Ep ™2 Ep hyy 2
IHN. T"'Zhl(N"—'z‘) +—T'—+2'E—1h2(h1-n+'2— X

Again, as in the last equation A~18, it is too unwieldy to use in future calcula-
tions, so let

3 2 3 2
h) h)\* Ezhp Eoh, hj
Vlm=T+2h1N-2—-} +-6--—E-1---+2E—1 hy = N+ 5 (A-23)
Therefore
IHN = VHN X (A-24)
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This completes the preliminary calculations necessary to calculate the
deflection equation for a cantilevered right triangular plate.

Derivation of the Deflection Equation

As stated in equation A-2, the deflection of a beam is:

d—"l-—w—
dx* EI

The solution to this fourth order differential equation, fortunately, is four
eagy steps of integration, They are:

S = [Wdx + Vo (A-25)
M = [SdX + Mo (A~26)
M
0= f T dx + Oo (A-27)
Y = [odX + Yo (A-28)
where
S = ghear load in plate, 1b

M = moment load in beam, in.-1b

0 = slope, rad,

Y = deflection, 1in.

The mathematical work will follow these steps with integration starting from the
free end and going to the fixed end as shown in figure A-1.

Shear Calculation

From equation A-25
S = [Wdx + Vo
From equation A-l1

W= 2x
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. Then
A
S = [Zxdx + Vo
3 -l 2
_ . S 7 X + Vo
< at x=0 S =0, then V, = 0
g Therefore:
s, Z
- § =3 x? (A-29)
)
.- Moment Calculation
2 From equation A-26
- M = [Sdx + Mo
‘ Substituting the value of S from equation A-29 into the above equation:
4 2
. M=/ % Zx dx + Mo
~ 1,3
X - e o
M 3 Zx Mo
- at x = 0, M = 0, then Mo = 0
..; 1 3
) M=z 2x (A-30)
< Slope Calculation
o
y From equation A-27:
6!
. M
o= [ EI dx + Oo
' From equations A-15, A-20, and A-24, we know that the area moment of
" inertia I with a subscript equals a constant V with the same subscript multiplied
- times the variable x. Therefore, to simplify calculations:
I=vx (a-31)
. We can now substitute A-30 and A-31 into equation A-27 and get:
¥ zx3
K 0 f6 vy 9X + 0o
N 3
N ix
- 0 18 EV + Oo
N
N
Q‘
‘
8
S 29
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At x = C (figs. 1 and 2), O = 0

_::J‘ zc3

«." t § - EE—

¥ Then @ = -~ T8 &

o Therefore:

e | Zx3 zc3

0= Ts—‘xav - THEY (A-32)
i

5 Deflection Calculation

AR

%

From equation A-28:

%2 Y = 0dx + Yo

v Substituting in the value from equation A-32 we get:
b1
L\ Z 3 3

s, - X - ZC

B 1 f<18 BV 18 EV) dx + Yo
2N
't
- 4

_ Zx" 2C3x

o Y "2 Teev T YO
v
.~ At x = C, (figs. 1 and 2 in main text of this report), Y = O
& Then

o = ZE4 _ _zc!

Ry 18 EV 72 EV

:“’1 Yo = zc'&
° T 2% Ev

ju Therefore:

-4.'.

ﬁ: Y = Zx" _ 2C3x + zZcH
72 EV 18 EV ' 24 EV
Tu; 7 , (A~-33)
- uo_ 4

AN

5%
s It is this deflection equation that will be used to calculate the natu-

ral frequency of the test platen.
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Calculation of Natural Frequency

Equation 1 provides the Raleigh equation for determining the natural fre-
quency of a vibrating system. It is:

o = ,8 (Ydx
f

Y2ax

This requires an additional integration step of the numerator and an additional
integration step after squaring in the denominator. So we will:

let k = Ydx

From equation A-33 and figures 1 and 2 from main text of this report:

C
Z
k -£ [ﬂ (xl’ - 4C3x + 3C“)J dx

«-—2_[8 ¢5 .
[Ydx = k 3 (5 c) (A~34)

The equation will be left in this form to simplify calculations later.

Now, let:

i = [ v2x

2
j = I [72 = (x* - 4C% + 3c")] dx

2
i= f(anv) (x8-~ 8C3x5 + 6C4x* + 16C6x2 - 24C7x + 9¢8)dx
o

2 9
3 ~(-ﬁ?—ﬁ) (-(9:— -% c3ct +§ c*cs + ;6 cbc3 ~ 12¢7c2 + 9c“c)
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£,

N

¥

L %2 e

Z \2¢10 120 , 108 480 270\
3 (7zzv) (36 30 * 90 * 90 " "90/°

3= v = (355) 4 C° (A-35)

Now substitute equations A-34 and A-35 into equation A-2:

(73 ©°)
g

Z \2.10% 4
7 G5)e

To put the final solution into the more convenient units of hertz:

w= 2% fN
w
=7

then:

£ = _1~\/72 EV (6)(45)(386.4)
N2V aes)(106)c

e oL o /[16,465 BV

N 2r z cY
£, = 12128 4[5V (A-36)
c2

The main text of this report contains this equation with the values of V and
Z (with applicable subscripts) substituted into it and simplified into the forms
available for easy use. These equations should provide the fixture designer with
reasonably accurate frequency calculations for decision-making purposes.
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TOTAL DAMPING ENERGY
How Damping Occurs

When materials with hysteresis damping are cycled, the stress-strain line
upon loading does not coincide with the line upon unloading. Figure 3 of the
text is a sample of how a hysteresis loop of such a material would look when
plotted. The area enclosed inside the loop is the damping or heat energy that is
dissipated during cycling. Obviously, the loop would close into a straight line
if the material were free of damping. In a resonating corner of a platen, every
molecule that is being compressed and pulled is dissipating heat energy. It 1is
this energy that is of interest to the vibration engineer if different designs
are to be considered.

Column ¥ of table 1 in the main text of this report contains the ratio of
vibrational strain energy of one cycle to that energy at the beginning of the
cycle. This is called the specific damping capacity. 1If one could determine the
strain energy U in a corner of a platen that has deflected from a neutral-
through-one complete cycle and back to neutral again and multiplied it by ¥, one
would have the total damping energy D in the units of inch-pounds per cycle.
This 1is the standard measurement used by vibration engineers to compare
designs. It can also be wmeasured on structures already built in a vibration
laboratory.A'

Energy Method of Strain Analysis

As cited by Popov, the equation for determining the elastic strain energy in
a beam which is being deflected from its neutral axis to a stress level o (or 25%
of a vibration cycle) 1is:
2
- [ -
U= g av (A-37)
Since a vibrating beam will return to its neutral axis and then deflect the oppo-
site direction, the total energy U that 1s available for dissipation is four
times that of a quarter cycle.

2
U= zg— av (A-38)

A-4 Cyril M. Harris and Charles E. Crede, Shock and Vibration Handbook, second
edition, McGraw-Hill, New York, 1976.
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where
V = total veclume of material being strained, in.3
o = bending stress, 1b/1n.2
The total damping energy D then would be:
D=V = vf 2%3 av (A-39)

The derivative of the volume dV is the product of the derivatives of:

dx = measured from the corner of the platen to the line of bending (fig.

/ A-2)
- dz = the direction 90 degrees from dx and parallel to the line of
bending
dy = the up-and-down direction from the neutral axis
Therefore
dv = (dx)(dy)(dz)

However, it has already been determined that:
dz = 2dx
then
av = 2dx%dy | (A-40)
Finally, as shown by Popov, the formula for bending stress is:
o= %1 (A-41)

By substituting equations A-40 and A-41 into equation A-39 and simplifying a
generalized triple integral equation for a vibrating platen corner:

p =2t fff (-Jl) dx2dy (A-42)

This equation can be used to calculate the total damping energy of all three
types of platens discussed in the text of the report.

Single Plate Platen

By substituting the value of I from equation A-15 and the value of M from
equation A-30 into equation A-42, the damping equation for the single plate
platen can be obtained:
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(&)

2
p =&y kot

dx2dy

v2x2
8

The solution results from integrating the variable y from the neutral axis to
th/2, then x from zero to x and from zero to C.

C x 'E
yz22 2
D= rrf x“y2dx2dy (A-43)
9y 2 E h
8 O"2'
3yz2 Cx — n3ws2 C x
p = —n¥2 [ xtax? - ZRYED_ 7p pugy2
216 v2E °° 216 v2E °°
8 8
3yy2 c
D-z._L.YZ_. [ x5dx
1080 v2Eg °
8
. 3wr2p06 3yp2n6
D = g 3226 ndvz%c (A-44)

6480 V2 E 3240 V 2 E
8 8

It is this equation that appears as equation 4 in the main text of the report
with the values of Z and Vg from this appendix substituted into it.

The Three Plate, Two-Material Platen

This platen is handled by a three-part equation:
where
Dy = the damping of the inner plate with its specified material

Dy = the damping of the whole platen, assuming it was made of only the
outer specified material

Dio = the damping of the inner plate if it was made of the outer mate-
rial
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By referring to figure A-2d, one can see the source of the dimensions for the
following equation (taken from A-~43) and the value of the moment of inertia from
equation A-20:

h

1 3

h,3y; z2c® (——-+ h2> ¥, 22¢®  hy3v, z2¢h
D = + -2 - :

2 2 2
3240 V.2 E, 405 v, .2 E, 3260 V.7 E,

D =

(A-45)

3 (hl 3 3
72¢6 <h1 1 N5+ hz) Y2 h Wz)
+

- — -
405 v, 2\ 8K E, 8E,

It is this equation that a%?ears as equation 5 in the main text of the report
with the values of Z and Vae from the appendix substituted into it.

The Two Plate, Two-Material Platen

Figures A-3d and A-3e illustrate not only the dimensions of a two plate, two
material platen, but also the complexity for probiem soiution. For example, the
limits of integration in equation A-43 for the y direction are from the bottom of
the plate -h/2 to the top of the plate h/2. This same integration procedure was
applicable for equation A-45., This procedure cannot be used for this problem
because of its unsymmetrical geometry. This will require a four-part equation:

D =Dy +D 1 +D5-Dyo

where

the damping of the less dense material above the neutral axis
Dy 1 = the damping of tue less dense material below the neutral axis

Dy, = the damping of the more dense material assuming it was used
entirely below the neutral axis

Diio = the damping of the more <“:nse material assuming it was used from
the neutral axis to a di —ance hl-N below the neutral axis

Equation A-43 will be the basis for ca.cu'ating the damping of this system,
except the constant in the moment of inertial formula is VuN from equation A-24:




the body of the report

as equation 6.
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X

x“dsz

- (h; - N)

3]

CxN X (hl
y, 22 ,/. [
D = x4y2dx2dy + xy2dx2dy
00O
9VHN2 E,
Cxhy+(hy =N Cx (h)~N)
¥, 22 -
+ ff f x"yzdxzdy - fj f x"*y2dx 2dy
9VHN2 E, 0o0o0 000
¥, 22 C x
D = [N3 [ [ x“4ax2 + (n; - N) j f L*dx2]
- o 0 [0 JEe]
27VHN2 ]
¥, z2 3 Cx 3 C
+ [(hz +h; -N [ x%4x2-(h;-N [ [
27VHN2 E> oo oo
¥,22¢® 3 ¥,22¢h 3
D= N3+ (h; - N) (hp + hy - N)
81ov, 2 E, 810v 2 E,
2 6 ¥y 3 ¥ 3 3
p = 2-C ET.[Na + (h) - N) ] 5 [(hg +h;-N) - (%, -N) ] (A-46)
2
810 V.

This equation, with the values of Z, V,y, and N substituted into it is found in
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y AXIS

z AXIS x AXIS

x = ¢ AT THE LINE OF BENDING

y = h/2 WHEN MEASURED FROM
THE NEUTRAL AXIS TO TOP
PLATE SURFACE

S z = 2c AT THE LINE OF BENDING

N SINCE IT IS A LEG OF A 450

K TRIANGLE AND THERE ARE

TWO TRIANGLES OR z = 2x

Figure A-1. Illustration of triangular plate to be used to calculate the
cross-sectional area at the edge of bending
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MATERIAL
(a) t (b) {c)
A TYPICAL CROSS-SECTION VARIATION OF STRAIN IN ELASTIC STRESS DISTRIBUTION

OF A TWO MATERIAL, THREE A THREE PLATE PLATEN OF IN A THREE PLATE PLATEN OF
PLATE PLATEN TWO MATERIALS CAUSED BY TWO MATERIALS CAUSED BY A

A BENDING MOMENT BENDING MOMENT

E2
2——x

le—

~N

I 2
L L LLL —
N |

NEUTRAL
AXIS

{e)
STRESS DISTRIBUTION IN
(d) EQUIVALENT PLATEN

SECTION TRANSFORMATION
FOR EQUIVALENT PLATEN

"2 /}////// —

Figure A-2. Sectional transformation of a two material, three plate platen
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LOW DENSITY,
LOW DAMPING
MATERIAL

NEUTRAL
AXIS

r 1 =N\

(a) {b) {c)

HIGH DENSITY,
HIGH DAMPING
MATERIAL

A TYPICAL CROSS-SECTION VARIATION OF STRAIN IN ELASTIC STRESS DISTRIBUTIO
OF A PLATEN MADE OF TWO A TWO MATERIAL PLATEN |N A TWO MATERIAL PLATEN
MATERIALS OF DIFFERENT CAUSED BY A BENDING CAUSED BY A BENDING MOMEN
THICKNESSES MOMENT

2x

§\\
h, N 7
'S NN N ST N

w0

{e)
2o STRESS DISTRIBUTION IN
1 EQUIVALENT PLATEN

(d)

SECTION TRANSFORMATION
FOR EQUIVALENT PLATEN

Figure A-3, Sectional transformation of a two material, two plate platen
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