
7(D-Ai35 815 DESIGN CONSIDERATIONS OF PLATENS FOR VIBRATION TESTING /i.
(U) ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
DOVER NJ PRODU L J LIPP NOV 83 ARPRD-TR-83003SITD SBI-AD-E40i 11b F/6 14/2 NL

soIIImlllllll
lollsllllllllEIIIIIIIIIIII
IEIIII



-'111L2 111P.

* i t-IH

1111.2 , I__,il .

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

" 
4

4,q 4- 4.t.* * . , .- ... " ". m
•

. " * . -~ .4 ' ', ' . m, " - ' '



AA

AD-Ed01 110

TECH VUAL RWOR ARPADTR40OO

' ,iGN CONSIDERATIO- S OF PLATENS FOR VIBRATION TESTING

LouiIl JACmmO upp

NOVEMBER 1983

U.S. AM RESEARCH AND DEVELOPMEN CENER
PIST ASUANCE IEEUSAT

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

0M.

Im~mJ 1 NOV29 1963

A.



4 . V .1 Wo

don

Destroy 'w he notogr s)edd. ho

not Meurm to th tglzator.



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (1mn Date ntored)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
R DBEFORE COMPLETING FORM

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

Technical Report ARPAD-TR-83003 h"

4. TITLE (nid Subtitle) S. TYPE OF REPORT & PERIOD COVERED

DESIGN CONSIDERATIONS OF PLATENS FOR VIBRATION Final
TESTING

6. PERFORMING ORG. REPORT NUMBER

7. AUTNOR(A) s. CONTRACT OR GRANT NUMBER(e)

Louie Jackson Lipp

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

ARDC, PAD AREA a WORK UNIT NUMBERS

Chemical Systems Div [DRSMC-QAC-P(A)] IM463721DJ30

Aberdeen Proving Ground, MD 21010

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
ARDC, TSD November 1983

STINFO Div (DRSMC-TSS(D)] 13. NUMBER OF PAGES
Dover, NJ 07801 43

14. MONITORING AGENCY NAME & ADDRESS(Qi different fmm Controlling Office) 15. SECURITY CLASS. (of this report)

Unclassified

IS .e. DECLASSI FI CATION/ DOWNGRADING
I "SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIUTION STATEMERT (of the ab ract entered In Block 20, If different from Report)

i. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on reveree aide If necessary and Identify by block nimnber)

Vibration testing

*: Reliability testing
Structural damping
Resonating test platens
Acceleration control of vibrating test platens

206 ATRACT M(oae mes s N neeey AndeMatify by block mmber)

Vibration testing, particularly when performed in reliability test chambers, is

J *very costly. Discussed in this report are design ccnsiderations for a vibration
test platen which will accept several test specimens for simultaneous testing.
Well designed platens will provide more meaningful results and reduce test time
and costs through maximum utilization of test hardware. Specific points covered
are:

... , ,,(cont)

D JIM , ja13 ECI1loO ov65 SOU LETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Wmen Date Entered)

• ~~~~~. ._ . .- , . . .. . . . . .. .. . . . . • -. .". . ."." . .



UJNCLARqITTD
SSCURITY CLASSIFICATION OF THIS PAGE-UU- DMa S t*td)

20. ABSTRACT (cont)

Bending modes at the platen's frequency

Determining the resonant frequency of a test platen

Determining the damping energy of a platen design

Obtaining signal feedback for vibration control purposes

Deriving equations for resonant frequencies and damping energies

.1

UNCLASSIFIED
I SECURITY CI. ASSIFICATION OF THIS PAGE(ft~en Data Enf*erlo

.'C._ -,, •, .• , ;/ i" "- i ,

I



CONTENTS

Page

Introduction 1

* Bending Modes of a Resonating Platen 1

The Spring-Mass System I
Sudden Stiffness Caused by Change in Area Moment of Inertia 1
Stiffness Caused by Even Platen Loading 3

Determining the Natural Frequency of a Platen's Corners 3

General Platen Design Considerations 3
Determining the Natural Frequency with Structural Damping in 6
the Platen

Total Damping Energy 9

Background on Damping 9
Hysteresis Damping 9
Specific Damping Capacity Values 9

The Feedback Signal for Vibration Control Purposes 15

The Feedback Control Problem 15

Feedback Averaging Techniques 16

Conclusions and Recommendations 16

References 17

Appendix - Natural Frequency of a Cantilevered Right-Triangular 19
Plate

, Distribution List 43

! Acce.si'n For
r1'; Cr¢.A&I1

A £NiiajilttT %odes

Aval ar-d/or

Dist ( Special

%' ~ ~ * * *. *'.. * S.. *. ~ .(



... - -. :- .. .!.. . . ... . .. .. . ..... '. * .4. . : . _ ......... . ..... .... ... _.

INTRODUCTION

For more economical vibration testing of systems or components, it is advis-
able to design a large test platen to allow attachment of numerous items to the
shaker. Often, when performing reliability demonstrations in accordance to MIL-
STD-781C (ref 1) or environmental testing in accordance with MIL-STD-810C (ref
2), expensive testing time can be reduced if many items are tested simultaneously
on one platen. However, serious difficulties arise if this test platen resonates
at a frequency that falls within that of the test plan, causing some components
to be subjected to much higher vibration amplitudes than others. Also one corner
of the platen may resonate at a different frequency from other corners (ref 3).
This variation in frequencies was encountered during reliability testing of the
hybrid collective protection equipment. The platen, onto which the test speci-
mens were mounted, resonated at each corner at a different frequency, thereby
causing uneven vibration loads into items being tested.

Naturally, if at a certain frequency, one test specimen is more suspect to
vibration fatigue than another, the test may provide erroneous failure data for
test analysis. A problem such as this can defeat the entire purpose of the test
and cause confusion as to the correct classification of a vibration-caused fail-
ure (ref 4). If fixture resonance is suspect, the failure would be classified as
non-relevant and would not be included in reliability calculations.

BENDING MODES OF A RESONATING PLATEN

The Spring-Mass System

When any structural system vibrates such that the mass (or inertia) force is
identical to the spring (or stiffness) force, the system will reach what is known
as its natural frequency. On a complex structure, this can occur at any number
of frequencies when different components combine or separate into different sub-
systems, each with its own natural frequency. Experience has shown, however,
that when a test platen is loaded with many items to be vibrated on an electro-
dynamic shaker, the corners will go into resonance at one or possibly two lines
of bending. These lines of bending occur where there is sudden increase in
platen stiffness.

Sudden Stiffness Caused By Change in Area Moment of Inertia

Usually test platens are made with a constant thickness. Where the platen
is bolted onto the shaker head, there is a stepped increase in area moment of
inertia. The portion of a platen which extends towards a corner from a 45-degree
line, starting from one edge of the platen and tangent to the point of contact of
the shaker head, will be the most likely portion to first go into resonance.
This cantilever effect is illustrated in figure 1. All four corners will go into
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Figure 1. Plan view of test platen illustrating the line of bending starting
at the shaker head
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resonance along their respective lines. The corner with the heaviest specimen
loading will have the lowest natural frequency. Likewise, the corner with the
lightest specimen loading will have the highest natural frequency. The other two
corners will fall somewhere in between.

Stiffness Caused By Even Platen Loading

When sufficient test specimens are loaded into each corner to equalize the
effective mass of each corner, all four corners will have the same natural fre-
quency. This is most probable when all test specimens are identical and laid out
identically with respect to the corners. This forces the bending to take place
along lines connecting the midpoints of adjacent edges of the platen as shown in
figure 2.

In this mode of bending, the natural frequency of a platen is somewhat
higher than in the mode illustrated in figure 1. This is because the distance C
from the line of bending to the corner is shorter. (The equations found in the
next section will show this.) Therefore, it is expedient to calculate the nat-
ural frequency for both lines of bending since at any time during a test, a spec-
imen may have to be removed for investigation, thus destroying the symmetrical
mass loading of the corners.

DETERMINING THE NATURAL FREQUENCY OF A PIATEN'S CORNERS

General Platen Design Considerations

Several limiting restraints must be considered in designing a vibration
platen with a natural frequency higher than the frequency spectrum required by a
test plan. The most obvious restraints are:

1. The maximum size allowed in the environmental chamber.

2. The minimum size required to hold the number of test specimens
required by the reliability test plan.

3. The total dead weight load on the shaker's voice coil.

4. The higher the dead weight load, the less sinusoidal displacement the
shaker is capable of delivering.

The final point is the single, most limiting factor in designing a platen with a
natural frequency higher than the frequency spectrum required on a test plan.
The shaker is protected from damaging extremes in displacement by limit switches
which automatically turn off power to the shaker.

3
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Because of these limitations, particularly the last one, consideration must
be given to the total weight of all components making up the dead weight on the
voice coil. This includes not only the test specimens, but also any adapters,
power cables, bolts, and, of course, the platen. Since the platen is usually the
single greatest contributor to the load on the shaker head, it is ordinarily made
from a plate of low density material. However, the combined masses of all of
these items contribute to determining the natural frequency of a platen.

The Natural Frequency of a Single Plate Platen

The most common platen in use is made from a metal plate of a single
material. The natural frequency of such a platen is determined in equation 1.
(Experimentally, at Smith Industries in Clearwater, Florida, equation I was found
to be accurate to within 0.5% in determining the natural frequency of an unloaded
corner. The equation's accuracy will largely depend upon how much the loads of
the non-corner test specimens vary from the corner-most specimen. However, the
load created by corner items is the most critical in determining the system's
natural frequency.)

N - 5.52 2 ./ h)

0 + ph

NOTE: Equation 1 resulted from combining equations A-10, A-14, and A-36
in the appendix.

where

fN= natural frequency, hertz

A - area displaced by the corner-most test specimen, in.
2

C - distance extending from the midpoint of the line of bending to the
corner of the platen (figs. I and 2), in.

p - density of the material from which the platen is manufactured,

lb/in.
3

E - modulus of elasticity, lb/in.2

h - thickness of platen, in.

W- weight of corner-most test specimen mounted on platen, lb

5



As shown by equation I and figures 1 and 2, if the resonant frequency
- increased to where it exceeds the highest required in the test plan, then atten-

tion must be given to:

1. Keeping the distance C from the platen corner to the shaker head
or other reinforcement as short as possible. This is usually done by making the
platen as small as possible.

2. Making the platen thickness h as great as possible and yet not
overload the voice coil's displacement limits.

3. Placing the test specimens with the least weight per given area
*W/A at the corners of the platen and the heaviest ones towards the center.

4. Keeping the ratio of modulus of elasticity to density of the
test platen E/p as high as possible.

This requires accurate planning and layout of the test platen optimize these
four points and yet be within the overall weight limitations of qhaker.

There are times, however, when none of these parameterb _An be optimized
to prevent the platen's natural frequency from falling within the the test plan's
required frequency band. An added disadvantage is the fact that aluminum,

. because of its low weight and reasonably favorable E/p ratio, is the most fre-
quently used test platen material. The undesirable feature of aluminum is its
poor vibration damping characteristics as shown in table 1. If and when a
platen's corner goes into resonance, the applitude ratio can be expected to
exceed, 10 to 1, the input at the shaker head.

Determining the Natural Frequency with Structural Damping in the Platen

As previously stated, aluminum is the preferred material for test platens
because of its low density, machinability, and ductility. However, as shown in
table 1, aluminum's specific damping capacity is low. Nodular iron, on the other
hand, is preferred by machinery engineers because of its compromise of relatively
high strength, machinability, and ductility with moderately good damping charac-

* teristics (ref 5). Nodular iron's density and E/p ratio make it marginal for use
on electrodynamic shakers. However, a platen could be designed that would uti-
lize two materials (for example, alumnium and nodular iron) and synergitically
gain the desirable characteristics of both.

The Sandwich, Three Plate, Two-Material Platen

When a beam bends, the farther away its molecules are from the neutral
axis, the greater the strain. If the beam is vibrating, it is these outer mole-
cules that have the greatest amount of kinetic energy and, therefore, the great-
est potential for damping. If an aluminum plate (or a plate of some other low
density material) can be sandwiched between two relatively thin plates of high

;" damping material, and if the plate is excited at its natural frequency, the

% 6
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increase in amplitude of a resonating corner should be minimal. Just as it was
possible to calculate the natural frequency of a platen made of a single mate-
rial, it is possible to calculate the natural frequency of a sandwich design. It
can be dope using the following equation:

522+ 8h2
3 E2 + 6h1

2h2E2 + 12 hh 2
2E

fN C2  VW(2
c~2~J + p1hl + 2 P2h2

NOTE: Equation 2 was derived by combining equations A-10, A-19, and
A-36 from the appendix.

fN - natural frequency, hertz

P1 = density of inner plate, lb/in.
3

P2 - density of outer plates, lb/in.
3

E, = modulus of elasticity of inner plate, lb/in.
2

E2 - modulus of elasticity of outer plates, lb/in.
2

hi - thickness of inner plate, in.

C = distance extending from midpoint of the line of bending to the
corner of the platen (figs. 1 and 2), in.

h2 = thickness of a single outer plate (assuming that each outer plate
is the same thickness), in.

W = weight of the corner-most test specimen, lb

A - area displaced by the corner-most test specimen, in.
2

The Two Plate, Two-Material Platen

In some designs, preference can be given to platens with the same thin plate
of high hysteretic damping material bolted semi-permanently to the shaker head
onto which a custom made, thick aluminum plate can be bolted. The top plate of
high damping material is not used. This also provides good damping characteris-
tics (but not so good as the sandwich type) and cuts platen manufacturing and
setup costs. However, it must be remembered that two materials mounted in this
way may curve at the corners if the test progr-am includes great temperature
changes. This would be caused by the differences in the two materials' tempera-
ture coefficients of expansion. (However, it will probably not be a problem if

7



the plate of high specific damping capacity is kept relatively thin as compared
with the aluminum plate.) The formula for the natural frequency of this configu-
ration is:

3 h, 2 3 E2h2  h2 2

JEl hl+ 12hi N - +) + h2 + 12 -- h - N + jI '" = 5.522 1

n C2  W 4 p1hl + P 2h 2

2 2
Ejh 1 + 2E2 hjh 2 + E 2h2

The value N - which is the distance
2Elh I + 2E2h2  from the top surface

of the platen to the
neutral axis, in.

NOTE: Equation 3 is a combination of equations A-10, A-21, A-23, and

A-36 from the appendix.

where

fN - natural frequency, hertz

P1 - density of upper plate, lb/in.
3

P2 ' density of lower 
plate, lb/in.

3

E1 - modulus of elasticity of upper plate, lb/in.
2

E2 - modulus of elasticity of lower plate, lb/in.
2

hI - thickness of upper plate, in.

h2 - thickness of lower plate, in.

C - distance extending from the midpoint of the line of bending to the
corner of the platen (figs. I and 2), in.

-"W - weight of the corner-most test specimen, lb

A - area displaced by the corner-most test specimen, in.
2

The reason for equation 3's being more complex than equations I and 2 is that the
neutral axis of bending is not at the geometric center of the platen's cross-
sectional thickness.

.-
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TOTAL DAMPING ENERGY

Background on Damping

Damping is the energy dissipating quality of a material. This dissipation
occurs when some of the kinetic energy of a vibrating system is converted to heat
energy. When a structure vibrates at its natural frequency, the mass (or
inertia) force is in dynamic equilibrium with the spring (or stiffness) force and
90 degrees out of phase with the exciting force. Therefore, the only structural
force available to oppose the exciting force is that of the damping '-rce. If
the material has little damping, the sinusoidal velocity must be high -- keep the
structure in dynamic equilibrium, which also causes the displacement to
increase. If the damping qualities are too minute to keep the displacement low
and the excitation remains in the natural frequency range too long, the structure
will fail from fatigue.

The damping coefficient is easy to measure experimentally in a completed
structure, but is very difficult to determine theoretically in the design stage
of a complex structure, such as an entire automobile. A platen, however, is
relatively simple and it is possible to derive equations of damping energy for
such a structure. The final units are in.-lb/cycle for the entire resonating

corner of the platen and, as such, are useful in comparing one design with
another. Furthermore, experimental data can be directly compared with calculated
data by measuring the energy per cycle into a platen corner at resonance and
comparing it with equations provided in this report.

Hysteresis Damping

Materials have two types of damping qualities, viscoelastic and hyster-
etic. • The former will not be discussed because it pertains mostly to polymetric
materials. Hysteretic damping occurs where the stress-strain curve on loading
does not coincide with the stress-strain curve on unloading. The area between
the two curves represents the amount of kinetic energy that has been dissipated
as heat energy (ref 6). A hysteresis loop which illustrates this energy dissipa-
tion is shown in figure 3.

Specific Damping Capacity Values

Specific damping capacities (%-per-cycle) of many materials for given shear
stresses are contained in table 1. Values in the specific damping capacity
column are to be used where the symbol T appears in the formulas to calculate the
relative damping capacity in platens. The validity o.L applying values obtained
from shear-stress tests to an obvious bending stress application, is supported by

4the intricate test methodology of collecting the data.

9
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Figure 3. Typical stress-strain hysteresis loop for a material experiencing
cyclic stress

10



Table 1.
THE SPECIFIC DAMPING CAPACITY OF COMMERCIAL ALLOYS AT ROOM

TEMPERATURE

The specific dampin capacity which is normally measured on solid cylinders stressed
in torsion is definedas the ratio of the vibrational strain energy dissipated during
one cycle of vibration to the vibrational strain energy at the beg'inniing of the cycle.

31"'Cific Sur/Glee
Alloy Cm.iaj i. pint shear stress

________________ 1_ 1 ________________ ohcay ~ (lb ins)
Ma-C (quenched Irons 83o1C ap.I I on%M,-o Cu 213000

2 br at 425"C) 83% Xl-g Cu :7 5,0000

So M-20o C11 23 $0040
f0w in-3o% Cu 42 5.000

Eo% If-4(J 0 CU 42 SA0W.
MITiI~tn.) 4*3n-5go, Cu 33 .0NJT Ntt)55-. NI-45% Ti s6 zo.oouT-D Nickel 2-3% Thoria 10.7 30,000Mallory No-chat 9*4 10,000

Call ]rows
High carbon inoculated Bake iron VS.% C. 3-9% Si, 1-0% Mo. 20-7% N. 19'3 5.000

1 -1% Cr. 0-13% PISpun cast iron 3-57' -39%, G.C.. z-9% St. 0-4% MD. :081 5.000
Noe.Inacuiated flake iron 3 aV ,-'-% St. -5% Mm. 0:14% P. 3-3 31000

Inoculated sk iron ~ %C. S-2% St. 0-3% 1111 0-14% P, 7*3 5,000

'.Austenitic sks graphite 2304 e. v'g% Si. i% No 20-7% NI. 7.1 SAM
!~% Cr. 0-o3*, P, 0-03! S*Alloyed Bake graphite 4 1~ C. 6, Si. a.6%l 1. o-10, Ni, g*s g.0m

-0- * %10. 0- 4% P. 0-03%o
Nickel-copper austenitic Bake 2*350 C r 1-bS -3o.og~ P. o 201 Ni 39 3.0
Underccoled Bake graphite gWs 6C, 2-2% S., no'. n., ogg*% Ti, 3,9 3.000titoiiurn/Cot trated 0-14'i P. 0-03% S

Anleoritic nodular y%L 1-1% 9i, 0-0 4 n, o760% NI, 2. 35000

Blacklseart malleable BS. gtoz9gg8Grade 3.22,14 133 5,000As cast pearlitic nodular 36 C VV; Si, 0-4% Me, 0-76% Ni, 1-4 g.00
o6% 'Mil, Q-031% P, 001t% S. <0'003%

E.N.3 o-i?% C mild steel, normalized 5
3.5.: 407 (AIMe Steel) Splserodijed c-0 g 0B.S.: 407 (Silver steel) Water qusenched Bm*C os3 g.00
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Gituetl 6Ascast 3-.0 4n
Gitans 88% Cu. to% Za, a% s 1*0 $.c.

Iile 3As cast 0-4 g,00mHidurel Aas t013 ga.00
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Nojw4~etoo 0-2g 3.m0

* Alstqaaim Alloys
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To determine the specific damping capacity, accurate and repeatable test
procedures had to be set up to measure the deflection of a vibrating system.I, Methods, other than torsion, available to measure the required stresses would
require long gage lengths and stresses of about 60% of the fatigue limit of many
materials. Such test apparatus would be unwieldly and the values would be at
stress levels too high for many vibration difficulties, including this one.
Because of these limitations, a torsional device was used as a test standard.

The values of the specific damping capacity are usable for vibration problems in
any stress mode where the stresses are relatively low as compared to the elastic
limit (ref 7).

The Single Plate Platen

The equation for the total damping energy of a resonating corner of a
* platen becomes:

1 W 2

TC6 (*+ ph)
D = - (4)

45 E h
3

NOTE: This equation substitutes the values of V. from equation A-14 and
Z from equation A-10 into equation A-44.

where

D - total damping energy, in.-lb/cycle

T - specific damping capacity, %/cycle

W - weight of corner-most test specimen, lb

C - distance extending from the midpoint of the line of bending to the
corner of the platen (figs. 1 and 2), in.

A - area displaced on platen by corner-most test specimen, in.
2

p - density of plate material, lb/in.
3

E - modulus of elasticity, lb/in.
2

h - plate thickness, in.

The Three Plate, Two-Material Platen

The platen which has a center plate of a low density p1 , low specific
damping capacity Y material and is sandwiched between two identical plates of
high density P2 , high specific damping capacity T material, may offer a solution

12



to a serious vibration problem. It is an ideal compromise of total weight on the

shaker head, natural frequency, and damping. The equation for this design
becomes:

3 hl h 3 3

C -h6l ( - 2 Y2 h T 2

[2(t + pihl + 2P2h2)]2 C6  + h
A 8E E2  8E2 (5)

D=ff

3 3
h, 4h2  E2  2 E2  2fE2 12

4051 (T) + h, h2( -) + 2hlh 2  IL -6+ -ElEl El

NOTE: This equation is derived from substituting the values of VHG of
equation A-19 and Z of equation A-10 into equation A-45.

where

D - total damping energy, in-lb/cycle

- specific damping capacity of inner plate material, %/cycle

2 specific damping capacity of outer plate material, %/cycle

W - weight of corner-most test specimen, lb

C - distance extending from the midpoint of the line of bending to the
corner of the platen (figs. 1 and 2), in.

A - area displaced on platen by corner-most test specimen, in.
2

P1 " density of inner plate material, lb/in.
3

P2 - density of material of outer plates, lb/in.
3

E, - modulus of elasticity of inner material, lb/in.
2

E2 - modulus of elasticity of outer material, lb/in.
2

hI - thickness of inner plate, in.

h2 - thickness of a single outer plate (assuming each has the same
* thickness), in.

The Two Plate, Two-Material Platen

J

The two plate, two-material platen may be more economical in its use of
a material of high density and high specific damping capacity to be used as a
permanent mounting fixture for a custom-made specimen mounting plate. It is not

13
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quite so efficient in terms of damping per unit weight as the three-plate, two-
material design, but may be efficient enough for the convenience it offers. This
equation is used to obtain the total damping energy:

K C6 w + p1h, + P2h2) i[N 3 + (hl - N) 3 ] + F2 [(h2 + hl - N)3- (hl - N1

D-

hl 2 E2h2  E2  h2 2

810 + !hl N + - -  + 2 - h 2 (h 1 - N + --)

6l+l2 2

Ehj 2+ 2E 2hlh 2 + E 2 h 2
The value N = , in.

2 Elh ] + 2 E2h2

NOTE: This equation 6 is derived by combining the values of VHN in
equation A-23 and Z in equation A-10 with equation A-46.

where

D = total damping energy, in.-lb/cycle

- specific damping capacity of upper plate material, %/cycle

-2 - specific damping capacity of lover plate material, %/cycle

C - distance extending from the midpoint of the line of bending to the
corner of the platen (figs. 1 and 1), in.

W - weight of corner-most test specimen, lb.

A = area displaced on platen by corner-most test specimen, in. 2

Pi 1 density of upper plate material, lb/in.
3

P2 = density of lower plate material, 
lb/in.3

'" E1 - modulus of elasticity of upper plate material, lb/in.2

E2 - modulus of elasticity of lower plate material, lb/in. 2

- thickness of upper plate, in.

h2 - thickness of lower plate, in.

N - distance from top surface of upper plate to the neutral axis

14
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After completion of all equations required to calculate the total damp-
ing energy of a given platen design, the next consideration is material selec-
tion. Generally, in addition to the qualities of density, modulus of elasticity,
and specific damping capacity, several other qualities are important. Others are
availability, ductility, and machinability. Coefficients of expansion may be
important for the two plate, two-material platen undergoing very wide temperature
extremes. Ideally, all of the plates would have the same expansion coefficients.

THE FEEDBAC SIGNAL FOR VIBRATION CONTROL PURPOSES

The Feedback Control Problem

The electrodynamic shaker's amplitude of vibration is determined by the
amount of current that flows through the voice coil. Since this current is con-
stantly changing direction as well as magnitude in the presence of high magnetic
field, it forces the voice coil to move. Since the voice coil has a shaker head
attached to it and the platen is attached to the shaker head, the transducer
(usually an accelerometer) responsible for the feedback signal can be mounted
anywhere, in a non-resonant condition. However, when the natural frequency of
the platen's corners is within the frequency spectrum dictated by the test plan,
this simplicity will not work.

*' If, for example, the accelerometer is placed in the center of the platen,
the test specimens mounted on the corners will experience loads far in excess of
what are required in the test plan. If, on the other hand, the accelerometer is
placed at any one corner, the specimens in that corner will be the only ones
following the test program. The others will receive either more and less vibra-
tion than they are supposed to receive. This will happen even with a platen with
good dampening energy characteristics. The answer lies with some type of vibra-
tion averaging.

With five accelerometers, one at each corner and one in the middle of the
platen, the acceleration of each possible resonating location and the one non-
resonating location can be measured. These signals can be summed and divided by
five in one of two ways (discussed later). However, the main advantage of this
is an averaging of vibration input error. For example, if the test plan calls
for an input of 1-g acceleration and at a specific frequency one corner wants to
resonate at 3 g's with this input, the actual vibrational acceleration put out by
the shaker will be the sum of all locations, which is 1 + 1 + 1 + 1 + 3 = 7,
divided by the number of accelerometers, 5, which is an average of 1.4. The
controller reduces the shaker's output until it senses 1-g. All corners will get
an 0.714-g input except the resonating one which will receive 2.143 g's. This is
not what the program specifies, but it is an improvement over 3 g's.

15
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Feedback Averaging Techniques

Modern digital computerized vibration controls may possibly come with inter-
faces which can average five signals and use the result as the feedback control
signal. These are costly, however, and many test laboratories cannot afford such
capital expenditures. However, it is possible to use five operational amplifiers
to sum the accelerometer signals and a sixth one to divide the summed signal by
five to get a single signal back to the main controller. In effect, this becomes
an on-line analog computer which is relatively inexpensive and versatile for a
number of other instrumentation tasks in a test laboratory.

CONCLUSIONS AND RECOMMENDATIONS

It may not be possible to design a vibration test platen with a natural
frequency higher than the frequency spectrum of the test plan, but several
methods could be tried to get the natural frequency as high as possible:

1. Keep the sides of the platen as short as possible.

2. Place at the extreme corners the test specimens which have the light-
est weight per area of platen displaced. Heavier items should be placed toward
the platen's center.

3. Choose a material which has a high modulus:density ratio.

4. Make the platens as thick as possible within the shaker's dead weight
limitations for the maximum sinusoidal displacement required.

After all of the above techniques have been tried, then materials with high
specific damping capacities should be tried. Since the usual materials with good
damping characteristics have high densities as compared with materials with poor
damping characteristics, it may be necessary to devise a multiple plate platen.
Such a platen would concentrate the low density plates near the neutral axis and
at least one, and preferably two, plates of high specific damping capacity in the
areas of high bending strains.

If it is known from the natural frequency calculations that the platen will
have a corner that will resonate, then the feedback for control purposes should
be planned accordingly. The choices are either an analog device which can aver-
age the signals from several platen locations, or, if possible, a digital com-
puter that has real time capability to average the signals. An averaged feedback
signal will provide the overall optimized vibration load on the test specimens.

1
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*' Introduction

Each corner of a shaker's test platen behaves as a caitilevered right trian-
gular plate when it resonates. If loading is equal on all four corners, they
will resonate at the same frequency. If the loading is unequal, the corners will
not only resonate at different frequencies, but the cantilevered line from which
the bending originates may shift as well. Therefore, any generalized equation

must be in terms of (1) the distance from the corner of the platen to the line

where the bending begins as illustrated in figures I and 2 of the text, (2) equi-
valent mass loading, (3) area moment of inertia, and (4) Young's Modulus of elas-
ticity.

Raleigh Method of Natural Frequency Calculation

The Raleigh Method of natural frequency calculation has been found to pro-
duce values which agree closely with experimental findings if accurate assump-
tions are made of the physical characteristics of the vibrating system. The
equation for this method isA-1:

- g - (A-i)
fy 2dx

where

w - natural frequency, rad/s

Y - equation for the deflection of the vibrating system, in.

g - acceleration due to gravity, which is a constant of 386.4 in./s 2

The deflection is found by solving the fourth order differential equationA
- 2

d4Y WT (A-2)
* - m

dx 4  El

A-i H. M. Hansen and Paul F. Citenea, Mechanics of Vibration, John Wiley and

Sons, New York, 1952.

A-2 E. P. Popov, Mechanics of Materials, Prentice-Hall, New York, 1952.
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where

WT - is the total loading on the vibrating system, lb/in.

E - Young's Modulus of Elasticity, lb/in.
2

I - area moment of inertia, in.4

The primary problem in solving equation A-2 is determining the generalized
expressions of W and I for a loaded, heterogeneous, right triangular, canti-
levered plate. Te load will be calculated first.

Calculation of Load

The load contribution on the natural frequency of a vibrating system
includes the mass of the system itself and any attached test specimens. On a
test platen, this can be a difficult problem because:.

1. The mass of the vibrating triangular plate, which is a corner of the
platen, increases as a squared function (if the thickness is constant) as the
distance increases from a corner to the line of bending.

2. The mass per displaced area of the various mounted test specimens can
*vary greatly.

The load equation will be developed in two parts, one load for the vibrating
triangular plate Wp, and the other for the attached test items Wx . They will be
combined to form a final load express WT.

Mass Load of the Vibrating Triangular Plate

The load shall be calculated in terms of the weight of a right trian-
'. gular plate whose mass is distributed from the 90-degree corner to the canti-
'" levered edge. The distributed weight is then defined as:

Wp - p a (A-3)

where

Wp - distributed load of the plate, lb/in.

P - density of the plate material, lb/in.
3

a = the cross-sectional area of the triangular plate at distance x
from a platen's corner.

22
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K Since the width of the triangle varies with the distance from x = 0, then so does

the cross-sectional area and the distributed weight. Figure A-1 shows a right
triangular plate which has been bisected into two 45-degree triangular plates of
thickness h. The equation for the cross-sectional area of a triangular plate
cross section is

da1 - dzdy

Since

dz = 2dx (A-4)

then

da - 2dx dy

h
x "

a -2 f dx f dy
o -h

2

a - 2hx (A-5)

By substituting equation A-5 into equation A-3, the distributed weight

for the triangular plate is obtained:

Wp = 2 Phy. (A-6)

If the platen is constructed of three plates and two materials such as
in a sandwich arrangement, the individual densities, p1 and 02 , and thicknesses,
h and h2, of each material are used. In such case, the equation would look like
this:

Wp - 2x (plh I + 2p2h2 ) (A-7)

The 2 inside the brackets is for the two outside plates of the same thickness h2.

The natural frequency of a cantilever is most affected by masses that
are farthest from the edge of bending. The greater this mass, the lower the
system's natural frequency happens to be. This is because the natural frequency
is related to the deflection, and the deflection for a cantilevered system is
greatest at the free end. Therefore, to greatly simplify the deflection equa-
tion, one can assume that the weight per unit area of the corner-most test item
is the same for the entire triangular plate being considered. (Test prudence
would dictate, wherever possible, that the lightest items per square inch go at
the extreme corners and the heavier items go towards the center of the platen to
get the highest natural frequency.) Include the weight of the test item, the
adapters, and the boltheads to obtain the most accurate estimate of the canti-
lever's loading. This total specimen weight will be designated as W • Next,
calculate the area displaced on the platen by the test item and all associated
hardware and designate this area as A. This provides a load pressure of W/A in
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V
pounds per square inch for the corner-most position on the test platen. However,
what is needed is the equivalent distributed load that varies as the right tri-
angular area expands from the corner to the line of bending. This load increases
at the same 2x multiplier as the mass of the plate does (equation A-5) so the

" equation for the weight distribution of the test items is
b; w

Wx -2 Wx (A-8)
x A

The justification for using the corner-most loading for the entire triangular
plate is that the heavier test specimens that are closer to the line of bending
have a relatively low contribution on the deflection. This assumption will yield
a slightly higher calculated natural frequency than will actually be experienced,
but the difference should be negligible.

Total Load Equation

The total load equation on a right triangular plate is

WT = Wx + Wp

or

WT = 2A X+ p1h, + 2 P2h2) x (A-9)

Since only the x value is variable, for purposes of simplifying the differential

equation, we will make the substitution

Z W + p1hl + 2 P2 h2) (A-10)

One should realize that the subscripts are used only on platens made of one
materi~l sandwiched between two others. For a single material platen
Z - 2(j+ ph).

Then

WT = Zx (A-Il)

Calculation of Area Moment of Inertia

The Single Plate Platen

The area moment of inertia of the cross section varies with x the same
* as the area does (fig. A-I). The equation for the area moment of inertia of a
*. rectangular section is

dl - h dz (A-12)k12

'., where dz is the change in width of the cross section.
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From equation A-4, the width varies (dz) as the distance from the corner doubles
(2dx) or:

dz 2dx

therefore
h3xs 6 (A-13)

To keep the calculations as simple as possible
h3 (AI4

Let V 5 = h3

therefore

I =VX (A-15)

The three plate, two-material platen increases the difficulty of calcu-
lating the area moment of inertia because the area moment of inertia derivations
require a complicated "section transformation" using the modulus of elasticity of
each material used. This is not considered in the single-plate model.

The technique of section transformationA- 3 used to develop equivalent
cross sections is illustrated in figure A-2. Essentially, the outer plates have
their width increased by the ratio of the modulus of elasticities of the outer
plates over the inner plate:

," E2

z -z (A-16)T

where

zT = the transformed width, in.

z = the geometric width, in.

E2 - modulus of elasticity of the outer material, lb/in.2

E modulus of elasticity of the inner material, lb/in.
2

It has already been established from figure A-I that

z = 2x
~E2

zT -2 x (A-17)
%T

A-3 E. P. Popov, Mechanics of Materials, Prentice-hall, New York, 1952.
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This value of zT can now be used to calculate the area moment of inertia. The
equation is now written, in its most general form, using Popov's methods (fig.
A-2):

.. h1
3 Y rh 3 E2  E 1  h 2

'HG = T + ILT 7-E 1 x (2y,-+ T-)

.. where

IHG - the area moment of inertia of one material sandwiched between two
others with the neutral axis of bending the cross-sectional geo-
metric center, in.

4

h1 - thickness of center material, in.

h thickness of each of the outer plates, in.

h, 4 h 2 (E 2 \ 2 E) (E
[ 6 hl2()

IHG = -+ k j+ hl h 2 . + 2 hlh 2  x (A-18)

To simplify future calculations, let:

3 3

hl h2 + 2 hjh2 (A-19)

then

IHG E VHGX (A-20)

The Two Plate, Two-Material Platen

Next is an examination of the equations for two plates vibrating to-
gether where the neutral axis of bending is not at the cross-sectional geometric
center of the two plates. This is likely to occur in the design of a semi-
permanent plate with high specific damping characteristics that attaches to a
shaker head onto which all future light weight, special purpose platens are to be
bolted. This example is illustrated in figure A-3.

The first step is to calculate the transformation of the width of the
lower plate. This was calculated previously in equation A-17 and is:

26
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E2

ZT 2 x

The equation to find the location of the neutral axis as measured from the top of
the platen, using figure A-3d as a basis for the calculation, is

2x (h ( + (-)x (h2)(hI +I h2)

N- E2

2x(hi) + x (h2)

2 2
Ejhj + 2 E2hlh 2 + E2h2

N- 2 Elh I + 2 E2h 2  (A-21)

Knowing the neutral axis, we can now write the equation for the area moment of
inertia of a two material test platen

E2 3

y~-h2

33

IN x + 2xhl I - + --- G =-  x + 2 E h2 x (I - N + (A-22)

3E2 3

I[,N " + 2 hl N -- + 6 + 2 h2 (h - N + T- x

Again, as in the last equation A-18, it is too unwieldy to use in future calcula-
tions, so let

*3 3 2

hlhIN 2  E2h2 3 E 2 h 2  / h 2  2

VHN = +2hi -7) +TE- + 2 I- N+ (A-23)

Therefore

IHN V HN x (A-24)
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This completes the preliminary calculations necessary to calculate the
deflection equation for a cantilevered right triangular plate.

Derivation of the Deflection Equation

As stated in equation A-2, the deflection of a beam is:

d~y W

dx4  El

The solution to this fourth order differential equation, fortunately, is four
a, easy steps of integration. They are:

S - fWdx + Vo (A-25)

M: - [SdX + Mo (A-26)

0 - f !L dx + Oo (A-27)
-a El

-ay - rodX + Yo (A-28)

where

S - shear load in plate, lb

'.- H- moment load in beam, in.-lb

0 = slope, rad.

Y = deflection, in.

* The mathematical work will follow these steps with integration starting from the
free end and going to the fixed end as shown in figure A-i.

Shear Calculation

From equation A-25

S- fWdx+ Vo

From equation A-I

W Zx
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Then

S - fZxdx + Vo

*t Za i n x 2 + VS- -=1 x + vo
2

at x = O S - O, then Vo  O

Therefore:

z
S - x2  (A-29)

Moment Calculation

From equation A-26

H - fSdx + Mo

Substituting the value of S from equation A-29 into the above equation:

M . fi Zx dx + Mo

1 3

M 6-zx +MO

at x M O 0, then Ho - 0

3
M - Zx (A-30)

Slope Calculation

From equation A-27:

0- f dx + 0

From equations A-15, A-20, and A-24, we know that the area moment of
inertia I with a subscript equals a constant V with the same subscript multiplied
times the variable x. Therefore, to simplify calculations:

I - Vx (A-31)

We can now substitute A-30 and A-31 into equation A-27 and get:

Zx3

0 - '--Vx dX + Oo

0 Zx2
18 EV+
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At x - C (figs. I and 2), 0 - 0

Then OD - ZC 3

18 EV

Therefore:

Zx3  ZC3

T 1 E - T (A-32)

Deflection Calculation

From equation A-28:

Y - 0 dx + Yo

Substituting in the value from equation A-32 we get:

n JW -"V - W-v-EV) dx + Yo

Y =Zx4 ZC3x + Yo
.- 72 EV 18 EV

At x - C, (figs. 1 and 2 in main text of this report), Y 0

Then

ZC4  ZC4Yo m-
18 EV 72 EV

Yo ZC

24 EV

Therefore:

Y Zx4  ZC3x ZC

2 +(A-33)

Y 72- (x - 4C3x + 3C4)

It is this deflection equation that will be used to calculate the natu-
ral frequency of the test platen.

3
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Calculation of Natural Frequency

Equation I provides the Raleigh equation for determining the natural fre-
quency of a vibrating system. It is:

S- g 
Y d x

fy2dx

This requires an additional integration step of the numerator and an additional

integration step after squaring in the denominator. So we will:

let k - Ydx

From equation A-33 and figures I and 2 from main text of this report:

k - C [Z (X4 - 4C3x + 3C4) dx

k 72EV 5 - 2C3C2 + 3C4

fYdx - k Z (6 C (A-34)
72 EV ( 5 /)

The equation will be left in this form to simplify calculations later.

Now, let:

j " f y2dx

C-"7 (x4 - 4C 3x + 3C4 ) ] 2 dx

(7-ZEV)2 (X8 _ 8C3x 5 + 6C4x4 + 16C 6x 2 
- 24C 7x + 9C8 )dx

*- ) ( Z C3C6 + C4 C5  +6 C 6C 3 
- 12C 7C 2 + 9C8C
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+\f1 2 108 4 80 270 C
TF I% EV} 90 90~ 90 +90 90/

- 2 104 C5
•J fy2dx 72 ) (A-35)

Now substitute equations A-34 and A-35 into equation A-2:

P""!f Z C5

"" ~g &7-T-N' ( s
7 2 0
_ E) (4-)--c 9

To put the final solution into the more convenient units of hertz:

w- 2w fN

N 2w

then:

f 1F/72 EV (6)(45)(386.4)
SN 2 z(5)(1O4)C 4

f 1 14,445 EV
N 271 Z C4

f 19.128 EV (A-36)
N C2

The main text of this report contains this equation with the values of V and
Z (with applicable subscripts) substituted into it and simplified into the forms
available for easy use. These equations should provide the fixture designer with
reasonably accurate frequency calculations for decision-making purposes.
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TOTAL DAMPING ENERGY

How Damping Occurs

When materials with hysteresis damping are cycled, the stress-strain line

upon loading does not coincide with the line upon unloading. Figure 3 of the

text is a sample of how a hysteresis loop of such a material would look when

plotted. The area enclosed inside the loop is the damping or heat energy that is

" dissipated during cycling. Obviously, the loop would close into a straight line

if the material were free of damping. In a resonating corner of a platen, every

molecule that is being compressed and pulled is dissipating heat energy. It is

this energy that is of interest to the vibration engineer if different designs

are to be considered.

Column T of table I in the main text of this report contains the ratio of

vibrational strain energy of one cycle to that energy at the beginning of the

cycle. This is called the specific damping capacity. If one could determine the

strain energy U in a corner of a platen that has deflected from a neutral-

through-one complete cycle and back to neutral again and multiplied it by Y, one

would have the total damping energy D in the units of inch-pounds per cycle.

This is the standard measurement used by vibration engineers to compare

designs. It can also be measured on structures already built in a vibration
laboratory.A

- 4

Energy Method of Strain Analysis

As cited by Popov, the equation for determining the elastic strain energy in

a beam which is being deflected from its neutral axis to a stress level a (or 25%

of a vibration cycle) is:

Ui - f! 2 dV (A-37)
S2E

Since a vibrating beam will return to its neutral axis and then deflect the oppo-

site direction, the total energy U that is available for dissipation is four

times that of a quarter cycle.

U, 4

aY
2

u - f -dV (A-38)

A-4 Cyril H. Harris and Charles E. Crede, Shock and Vibration Handbook, second

edition, McGraw-Hill, New York, 1976.
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where

V - total "olume of material being strained, in.
3

a = bending stress, lb/in.2

7... The total damping energy D then would be:

D - (U - 'rr 2-- dV (A-39)
E

The derivative of the volume dV is the product of the derivatives of:

*dx = measured from the corner of the platen to the line of bending (fig.
A-2)

dz - the direction 90 degrees from dx and parallel to the line of
bending

dy - the up-and-down direction from the neutral axis

Therefore

dV - (dx)(dy)(dz)

However, it has already been determined that:

dz - 2dx

then

dV - 2dx2dy (A-40)

Finally, as shown by Popov, the formula for bending stress is:

SMy (A-41)I

By substituting equations A-40 and A-41 into equation A-39 and simplifying a
generalized triple integral equation for a vibrating platen corner:

D . L r A'I_.) dx2dy (A-42)

This equation can be used to calculate the total damping energy of all three
types of platens discussed in the text of the report.

Single Plate Platen

By substituting the value of I from equation A-15 and the value of M from
equation A-30 into equation A-42, the damping equation for the single plate

platen can be obtained:

'"34



D - V 2 X dx 2dyEVs 2 x 2

The solution results from integrating the variable y from the neutral axis to
"1 *h/2, then x from zero to x and from zero to C.

h
;, ,y z 2  2

D - - r r x4y 2dx 2dy (A-43)
9V 2E h

8 0 0

h3Z 2  C f X4dx2  
- h 3tyZ2  C f x'4dx2

. 216 V 2 E 00 216 V 2 E 00
. 8 5

h3yZ 2  C

D- 2 f X 5dx

1080 V 2 E 0
~s

h3VZ 2C6  h 3yZ2C6 (
D =2 =(A-44)

4 6480 V 2 E 3240 V 2 E

*i It is this equation that appears as equation 4 in the main text of the report
with the values of Z and Vs from this appendix substituted into it.

The Three Plate, Two-Material Platen

This platen is handled by a three-part equation:

D - DI + Do - DI0

where

DI - the damping of the inner plate with its specified material

"D o - the damping of the whole platen, assuming it was made of only the
outer specified material

DIO the damping of the inner plate if it was made of the outer mate-
rial
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By referring to figure A-2d, one can see the source of the dimensions for the
following equation (taken from A-43) and the value of the moment of inertia from
equation A-20:

hj 3' 1 Z2C6  (2 + h 2)'Y 2 Z2 C h 1
3T2 Z

2C 6

SD - +-

3240 V240 VHG E 2

40 HG40V 2EH

D=- 2 (T h 2  hiP) (A-45)
45VHG 2(8E1  928E 2

It is this equation that apears as equation 5 in the main text of the report
S with the values of Z and VHG from the appendix substituted into it.

The Two Plate, Two-Material Platen

Figures A-3d and A-3e illustrate not only the dimensions of a two plate, two
material platen, but also the complexity for problem solution. For example, the
limits of integration in equation A-43 for the y direction are from the bottom of
the plate -h/2 to the top of the plate h/2. This same integration procedure was
applicable for equation A-45. This procedure cannot be used for this problem
because of its unsymmetrical geometry. This will require a four-part equation:

D D + D + D -D
we UI LI LO LIQ

i where

UI the damping of the less dense material above the neutral axis

DLI - the damping of tie less dense material below the neutral axis

DLO - the damping of the more dense material assuming it was used
entirely below the neutral axis

DLIO f the damping of the more '=nse material assuming it was used from
the neutral axis to a di *ance h -N below the neutral axis

Equation A-43 will be the basis for caicu'ating the damping of this system,
• .except the constant in the moment of inertial formula is VHN from equation A-24:

'4 4HN
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C xN C x (hj- N)D'rlz fff x d~y+fff 4y2xd
D1f fx 4 y2dx 2dy +x ydxd

9V 2E 0 00 00 0

ff 1
+27v' 2 [I71+N

9VHN2 E 0

i2  Z
2  3 C 1

fN r~x + 4h -N fh - N) dx2 2

h2 + hl N2 x dx 2  2

07 2 0 0 0-. VHN2 E2 oEo, o o

,,z T1 Z 2 Z 2 C 6 )3Cx

D; 81VD N3 (h -x) 80 Ex(2 +  " (hl - N)' j x

2HN 2 I l ON 2

z 2 3+ 3 + T2 3 3]

-"c+ -h 2 + h I - +) t x hdx - NhI  - N) (A.-x4dx

"~ D["N (hl - N +-r + h I N)
3 h

810 VHN2 L I

This equation, with the values of Z, VHN, and N substituted into it is found in
the body of the report as equation 6.
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y AXIS

x 0

z AXIS x AXIS

* ..'. "

NOTES x c TTELNEO EDN

NOES x c AT THE LINE OF BENDING

* SINCE IT IS A LEG OF A 450
0 TRIANGLE AND THERE ARE

TWO TRIANGLES OR z=2x

Figure A-1. Illustration of triangular plate to be used to calculate the
cross-sectional area at the edge of bending

39

. - . *-.



". . - .7

. ,'-"" HIGH DENSITY.- / / / / ]1

. HIGH DAMPING h2MATERIAL

LOW DENSITY,
LOW DAIN

MATERIAL

I - NEUTRAL

IAXIS
HIHDEN SISITY1 _______

HIGH DAMIGh
MATERIAL h

(a) 1b) 10
A TYPICAL CROSS-SECTION VARIATION OF STRAIN IN ELASTIC STRESS DISTRIBUTION

OF A TWO MATERIAL, THREE A THREE PLATE PLATEN OF IN A THREE PLATE PLATEN OF
PLATE PLATEN TWO MATERIALS CAUSED BY TWO MATERIALS CAUSED BY AA BENDING MOMENT BENDING MOMENT

hE2

h__ 
NEUTRAL

AXIS

h2

2X (e)
?:4STRESS DISTRIBUTION IN

(d) EQUIVALENT PLATEN
SECTION TRANSFORMATION

FOR EQUIVALENT PLATEN

Figure A-2. Sectional transformation of a two material, three plate platen
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Figure A-3. Sectional transformation of a two material, two plate platen
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