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Abstract. Within the framework of an existing purely mechanical, rate-ty-pe
theory of plasticity detailed calculations are presented for certain types
of material response during stress and strain cycling in a uniaxial
homogeneous deformation. These features pertain specifically to material
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of strain, and a type of saturation hardening caused by strain cycling
between any two fixed values of strain when the mean value of stress (in
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1. Introduction

Starting from a general theory of plasticity developed in stress space

by Green and Naghdi [1,2] and its formulation relative to strain space by

Naghdi and Trapp [3], Caulk and Naghdi [4] have discussed hardening response

and in particular have compared the predictions of the theory with two sets

of experimental results. In (4], with the limitation to small deformation,

systematic specialization of the constitutive equations of the general theory

were specifically applied to saturation hardening and other types of stress

or strain cycling were not considered. Additional developments of saturation

hardening in the context of strain-space formulation were discussed by Casey

and Naghdi [5]; and, for the class of materials for which detailed compari-

sons with experiments were made in [4], the results for saturation hardening

in [4] and [5] are equivalent.

More recently, the stress and strain cycling has also been discussed by

Drucker and Palgen [6], who employed an approach to plasticity different from

that of strain-space formulation utilized in [4,5]. In the course of their

development, Drucker and Palgen [6] have also discussed the material response

appropriate for unsymmetric plastic cycles of stress or of strain. While it

may not be obvious at first sight, one would expect that a suitable specializa-

tion of the general theory should be capable of accommodating the type of

unsyunetric cycles mentioned and discussed by Drucker and Palgen [6]. The

purpose of this paper is to show that this is the case. In particular, in

what follows we demonstrate the predictive capability of the theory in [1,2,3]

for two types of uniaxial material response, namely

1) ratcheting of strain caused by stress cycling between fixed
values of stress in tension and compression (not necessarily
equal in magnitude) similar to that shown in Fig. 1 and

1.



2) progressive relaxation to zero of the mean stress caused by
strain cycling between any two fixed values of strain similar
to that shown in Fig. 2.

The above two types of responses in the light of experimental results

were described and discussed by Drucker and Palgen [6, p. 480]. By way of

background and for definiteness, some features of these two types of responses

are recalled here with reference to a uniaxial homogeneous deformation in a

tension-compression test. In the context of small deformation, let e and s

stand, respectively, for the component e11 of the strain tensor and the

component sll of the stress tensor . Then, a stress cycle such as

A B 1C1D 1E 1FA 2 in Fig. 1 consists of loading in one direction from some chosen

value of stress, say at Al, to a limiting value of stress at C followed by

reversing the direction of loading until another limiting value of stress

(not necessarily equal to that at C1) is reached at F and the direction

of loading is again reversed until the stress reaches a value at A2 equal

to that of the initial choice at A1. More generally, again with reference

to Fig. 1, during the nth cycle (n =1,2,3,...) the response which begins at

any point such as A n,B ... , or Fn and ends at a corresponding value of

stress at A nl,B n+l ..., or F n+ constitutes a stress cycle. Consider

now a specimen cyclically loaded into the plastic range between stress

limits whose average is nonzero i.e., stress limits which are unsymmetric

about the strain axis in the s-e plane. During a typical stress cycle of

this kind (e.g., A2B2C 2D2E2F2A2 in Fig. 1) the strain at the beginning and

end of the cycle (and hence also the minimum and maximum values of strain

attained during the cycle) vary from one cycle to the next. Evidently,

A distinction between the Cauchy stress tensor or either of the Piola-
Kirchhoff stresses is unnecessary when only a small deformation is being
considered.
§This feature is referred to in [6] as "unsymmetric cycles of stress in
the plastic range."
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experimental observations (see, for example Dolan [7, Fig. 14]) indicate

that if the average of the stress limits is positive, both the minimum

and maximum strains attained in a given cycle can progressively increase

from one cycle to the next. Similarly, it may be inferred from the dis-

cussion in Sandor's book [8, pp. 97-100) that if the average of the stress

limitn is negative, then both the minimum and maximum values of strain

attained in a given cycle can progressively decrease from one cycle to the

next. Thus, while the stress limits remain fixed for repeated cyclic

loading, the strain limits of the cycles can be progressively displaced

along the strain axis from one cycle to the next A well-known phenomenon

of this type, called ratcheting of strain, refers to progressive increase

in plastic strain during cycling between any two fixed values of stress

levels. Evidently such a progressive increase in plastic strain may take

place irrespective of the starting point in the cycle. Indeed, as is clear

from Fig. I, the strains at Anl, Bn+l, ..,Fn+ 1 all have been increased along

the e-axis from the values of strain at A ,B, ...,F.

For cycling in the plastic range between fixed strain limits, on the

other hand, for most metals the extent of the elastic range during each

successive strain cycle increases (or decreases) until a limiting periodic

response is reached in which the stress-strain curve of each succeeding

cycle is the same (see Fig. 3). This phenomenon, which was previously dis-

cussed in [4], is sometimes called saturation hardening and a material is

said to saturate when it reaches this limiting behavior. Moreover, if the

The terminology of the average of the stress level is referred to in [6]
as the "mean stress" and "mean stress in the cycle."

The strain limits of the cycles will be displaced in the positive strain
direction if the average of the stress limits is positive (as depicted in
Fig. 1) and in the negative strain direction if the average of the strain
limits is negative (see [8, Fig. 98]).

3.



specimen is cycled between fixed strain limits whose average is nonzero, it

has been observed by Morrow and Sinclair [9] and by Dolan [7, Fig. 15]

that for a certain class of materials the average of the limiting stresses

in the cycle will progressively relax and tend to zero. For example, with

reference to Fig. 2, the average value of the stresses at C and F (n > 3)n n

tends to zero for repeated cyclic loading between fixed strain limits.

For completeness, we also briefly indicate in Fig. 3 the prediction of the

theory (by means of the procedure of the present paper) for the case of

saturation hardening, and examine its comparison with that in [4].

§See also [6, Fig. 2].

4.



2. Basic Equations

Using a strain-space formulation of plasticity, we summarize here the

basic equations of a purely mechanical theory contained in the papers of

Green and Naghdi [1,21, Naghdi and Trapp (31 and Casey and Naghdi [5). In

addition to the strain tensor eKL , we assume the existence of a symmetric

second order plastic strain eL and a scalar K representing a measure of

work-hardening. It is assumed that the stress tensor sKL is given by a

constiutive equation of the form

KL SKL(U) , U MN(eN~e,) (1)

and that, for fixed values of ep  and K, (1) can be inverted in the form

eKL eKL(V) , V (s,.,,,epN,K) (2)

The response functions s KL and e KL in (1) and (2) are taken to be smooth.

We admit the existence of a smooth yield (or loading) function g(U) in

strain space such that for fixed values of (eL, K) the equation g(U) = 0

represents a closed orientable hypersurface of dimension five enclosing a

region of strain space. With the use of (2)1, we obtain a corresponding

function f(V) through the formula

g(U) = g(eN(V),ePK) = f(V) (3)

Because of the assumed smoothness of 2) for fixed values of (epLK)

K

the equation f(V) = 0 represents a hypersurface in stress space having the

same geometrical properties as the hypersurface in strain space.

The loading criteria of strain-space formulation will be regarded as

primary. Also, for our present purpose, it is sufficient to consider only

a special case of the stress response in which sKL in (1)1 is independent

5.
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of K and its dependence on the variables (e. eP) occurs only through the

difference e -ep . Then, the constitutive equations for the rate of

plastic strain e k and rate of work-hardening parameter K during loading

(i.e., when g =0 and g >0) may be expressed as (see the development between

Eqs. (36)-(42) in [5]):

KL F+A asKL K ic = CKLeKL (4)

where

S=eL KL (,)

a aS KL ( f +2 CKL) r + A >0 (6)as ~ aKL 3e sK e 3K K3 KL eKL ,KL

and where the response coefficients C are functions of the variables (1),.

KL I.

It should be noted that in obtaining the expression (4)1 a condition resulting

from a work inequality proposed in [10] has been also imposed on the con-

stitutive equation for plastic strain rate.

The characterization of strain-hardening behavior by means of the rate-

independent quotient f/g, with f =(3f/asKL)SKL, is discussed in [5]. More

recently, a scalar quantity D is defined in [11] in such a way that does not

presuppose a condition of loading and is such that during loading it has

the same value as f/g. For our present purpose, the scalar function € can

be defined as [12, Eq. (4.13)]

r' ' (7)

and a particle of an elastic-plastic material is then said to exhibit [11,12]

The scalar g is defined by Eq. (5) below.
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hardening behavior if and only if D >0 , (a)

softening behavior if and only if 0 <0 , (b) (8)

perfectly plastic behavior if and only if =0 (c)

Moreover, the strain-hardening response of a material is said to saturate

to one of the values {Kh K s0} and exhibits either (a) saturation

hardening, (b) saturation softening and (c) saturation to perfectly

plastic behavior, in that order, if

Kh>o , (a)

lim K <0 , (b) (9)
s

to 
(c)

7.



3. Special Constitutive Response Functions

It is convenient to prescribe the various constitutive response functions

in terms of the components of deviatoric stress tKL and deviatoric strain yKL'

namely

TKL SKL-s 6KL , TKK 0

(10)

YKL eKL -e 6 KL ' YKK 0

with similar definition for the components of deviatoric plastic rain

Yp where s and e are the mean normal stress and mean normal s
KL'

respectively. In the context of small deformation and for mater - which

are isotropic in the reference state, we specify the stress response by

generalized Hooke's law and this can be written in the form

TKL = 2(YKL-KL)  ' = , (11)

where w is the shear modulus of elasticity and k is the bulk modulus.

In regard to the characterization of material response to stress and

strain cycling of the types referred to under 1) and 2) in Section 1, we

first observe that it is the translation of the yield surface (whose

interior represents the elastic domain), and not its size, which is

particularly significant here. For the response described under 1) in

Section 1, while the plastic strain progressively increases from one cycle

to the next, the overall translation of the yield surface in stress space

is not significantly different between the later and earlier cycles. For

the response described under 2) in Section 1, on the other hand, the amount

of translation of the yield surface in stress space becomes progressively

smaller as the material is cycled between fixed strain limits. In the yield

function utilized previously by Caulk and Naghdi [4, Eq. (40)], the quantity

representing translation of the yield surface in stress space can be regarded

8.



as a constant represented by a times the plastic strain. Hence, at a given

value of plastic strain the translation of the yield surface is determined

independently of the loading history. By contrast, in our present discussion

it is important to account for the effect of loading history pertinent to the

translation of the yield surface. A simple way to achieve this is to

generalize the restricted equations of Caulk and Naghdi [4, Eqs. (40), (56)

and (70) 1] by replacing the constant coefficient a with a scalar function a

of the work-hardening parameter K which is 0(1). In particular we take ci

to be linear in K, with an initial value c when K =K and a value a at

saturation when K =K S Thus, we specify the loading function in the form

TKL (2 KL)(KL 2 KL

41 4 [YL I (I +()YKL[K - (ip I[)YL -< K g ,(
(t L 41 c) ' 2 KL 4W K
4 [K(1+ 4iK) Pl -(+ 4 y K"

with a(<) given by

(ao0- Os )K + (so - sLK
ci(K) o 5 50 05(13)

OL(K)K -K0 s

It should be noted that for the special case in which a =cc =cx, a(K) becomes

simply a and the loading functions (12) reduce to those used by Caulk and

Naghdi [4, Eqs. (40)i, (56), (70) 1]. In (12 ,  C K(K)YL may be interpreted

as the center of the yield surface in the deviatoric stress space.

Similarly, the quantity (1 + - c(K))Y may be interpreted as the center

of the yield surface in deviatoric strain space. The size of the loading

surfaces (which represents the extent of the elastic region) depends on the

work-hardening parameter K.

Supplementary to (12) and (13), we also need to specify the work-

hardening coefficients CKL in (4). As noted earlier, a significant feature

9.



of the material response described under 1) and 2) in Section 1 is the trans-

lation of the yield surface, and not its size. However, with reference to

the phenomenon of saturation hardening examined in [4], it is the size of

the yield surface which is of particular interest. In order to account

also for saturation hardening, it is sufficient to specify CKL in the same

form as that in [4, Eq. (56)2], by

K-K

C (7 ( K 0 )(ay +Y p
KL 1K-K KL 2KLs o

K-K

K -K 0 )(T+KL +nYP (14)
s o

where 81,82,Ko and K are constants and where with the use of (11) 8 and n

are given by 81 =2pi8 and a2  -214.

With the constitutive equations (1l)-(14), it follows from (6) that on

the yield surface the scalar functions A and r assume the values

A = 8VK > 0 (f =g =0) (15)

0' -a sC
r = 2 1 +2 P K K--)(TKL 2 YKL yK ] (  +Y )2 Y_

KL 2 KL KLE~M +NN (16)M0 s (16)

(f = g =0)

where the quantities B and n are given by

K-K K-K(K) (T _K S-l n J n(K) (Z (_-- s rn (17)
0 S 0 S

subject to the restrictions

6(K) -- n ) =0 . (18)

In view of (7), (15) and (6)3., it is easily seen that the strain-hardening

The hardening response coefficient in [4] is denoted by MKL instead of
C KL of the present paper.

10.



is characterized by

$=1 >A'+A' (19



4. Uniaxial Cyclic Loading

Consider now a homogeneous extensional deformation sustained by a

uniaxial stress s11 = s(t) say. Adopting the notations ell e, e 1 =e

as in [4,5] in matrix notation we write

ItKLII--3 sI'KLI , I - * K (20)

where the constant matrix IIbKLI1 defined by

2 0 0

IhKLII 0 -1 0 (21)

0 0 -1

is introduced for convenience. For the uniaxial homogeneous deformation under

discussion, each of the two variables e and s is represented as a line in

the s-e plane (corresponding to the six-dimensional strain space and stress

space). The yield surfaces are now points on these lines and the elastic

range (corresponding to the interior regions of the yield surfaces) is a

line segment between these points. The midpoint of the line segment cor-

responds to the center of the yield surface and the length of this line

segment corresponds to the size of the yield surface whose interior

represents the extent of the elastic region.

The loading function (12) now assumes the simplified form

2 3~ p2 Le2)
(s - 3a(K)e) - K 2)

and the constitutive equations (11) and (4) with (14) reduce to

s = E(e -eP) (23)

We have used the form (14)2 rather that (14)1 simply to make the form
of the resulting equations more compact.

12.



and

4 EAs
= E (s ae P)e

). 4 (24)

-4E +Q)(s - + + (--) (s - - e )ep ( s +1 -ep)
0 s

K ^(K)s + n1 rd)eP)e,p (25)

where E is Young's modulus. In the uniaxial case under discussion, A is

still given by (15) but on the yield surface r and € assume the values

-^ 4 ( -A 3....o -a 333
r = 2aK + ( [ C- )(s -. aeP)eP](9s .neP)(s - ( ep ) (26)
1 3 K -K 42 4

0 s

and

F1€ =D (27)

Then, from (23)-(25), we have

8 ^ 3Ap
d 8 C s + .1-nep )

dK 2(s*n (28)ds r1 (8

For the special case in which the coefficients ,a ,n,a satisfy the

conditions

a = a = a (say) , 2n +a = 0 , (29)

after adopting (29)1,2 and making use of the condition f =0 with f given by

(22), rl given by (26) reduces to

r1O 2(c+8)oK (30)

and (28) becomes

±28(K) 41-K(31)

d s .8 + (K )

13.



where in writing the right-hand side of (31) again use has been made of the

condition f =0 with f given by (22) and the plus and minus signs correspond

to tensile and compressive values of the stress.

In view of (6)3 and (7), in the present discussion r can also be used

to characterize the strain-hardening behavior. Keeping this in mind and the

fact that K >0, it follows from (30) and definitions in (8) that

> 0 for hardening , (a)

a +5(K) < 0 for softening , (b) (32)

0 for perfectly plastic (c)

The results (32) hold only for the special case in which the various coef-

ficients satisfy (29)1,2. They are the same as those noted previously in

[12] but are obtained here in a slightly different manner.
th

Consider now a typical umiaxial cyclic loading which, for the n

cycle in the s-e plane, passes through the two points -- such as An and D

in Fig. 1 -- whose (e,s) coordinates are (neP,0) and (n e,O) and such that
1' 2'

where the notation of double vertical bars signifies absolute value of the

quantity in question, and where min and max refer to the minimum and maximum

tthvalues of plastic strain attained during the nt cycle. Let the maximum value

of compressive and tensile stresses attained during the nth cycle be denoted
respectively by s1 and s2# and similarly during the n cycle designate the

maximum and minimum values of the strain respectively by ne2 and ne1. Then, by

(23) the maximum and minimum values of the plastic strain are given by

nep .ne 1 n n p n In (34)2 •2  T 2  , •1  1e - r 'I . 34

From the condition f &0 with f specified by (22), the uniaxial stress s

on the yield surface is found to be

14.
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s = 0c)eP - (35)

where the plus and minus correspond to tensile and compressive values of

s respectively.

Next, as in [4], we suppose that there is a limiting value K of the
s

work-hardening parameter K as t -, i.e.,

lim = K (36)S

so that with the help of (18) and (25)

lim K = 0 (37)

Then, from (35), (13) and (34), the limiting value of the mean stress in a

cycle may be represented as

lira s =lim n1 (n nS2 )  3 nim[ne+ ne2 1 +n s (38)t-. mean - 2 = i 8 e -1 2 (38)

or after a slight rearrangement as

3Et 3Ea
urn s im( ( e + n ,) - e (39)

mean= (8E6 - ) 1 e1  e)- 4E+3a meanVOW
c  

s n
"
KO S

where for cycling between fixed strain limits (for which the superscript

n may be suppressed) we have defined

I ni nemean T lim( e1 +ne 2) (40)

to be the mean value of the strain limits. Moreover, in view of (18) and

(36), from (26), (27), (15) and (13) we obtain

lim 0= s < . (41)t-" as +4 11

Hence, if a S >0, then by (9) and (41) the material saturates to the value
*S

It should be noted that for repeated cyclic loading the number of cycles
is a monotonically increasing function of time so that in the present
development the limits at t - and as n .m can be interpreted to be
equivalent.

15.



Kh given by the right-hand side of (41). Correspondingly, with as =0, the

right-hand side of (41) vanishes and by (9)3 the material saturates to

perfectly plastic behavior. Since eP/; adeP/ds, with the help of (23)

and (24) we obtain
4 3 ̂

dep  3 4 ae(42)
ds 3 a -a 3 ^ )a(s - T ae + 1 + K (f - y S~s- "oeP) eP ) Bs + yep)

0 S

and the slope of the stress-strain curve during loading is given by

ds de -1 1 dep - (

At initial yield this has the value

ds 1 4/3 -1 (44)

=O,ic=K

In the limit as t -, it follows from (43) and (42) that*

U -ds = if Ot =0 (4Sa)1 mde stow

ds 3Eas 9pkKh if OL >0 (4Sb)
lm de * 4E+3 = 3k+pK s

where in writing the second of (45b) use has been made of (41) and (9a) and

the elastic constants V and k were introduced earlier in (11).

To demonstrate the predictive capability of the basic theory for the

type of response described under 1) and 2) of Section 1, we consider now a

uniaxial elastic-plastic state specified by

S a ep =e * A 0 ,K = K (46)

and suppose that the material is unloaded from this state and the load is

reversed umtil it again yields in the reverse direction at s =s (2) For fixed

values of ep and K, s1). and s(2) correspond to the two roots of (22) given
*The condition (4Sa) also follows from the first of (4Sb) with a =0.

16.
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by (35). It follows from the sum and difference of these roots that

1 2

* I l) (2))2 * 2 (1) s(2)

A value of Kc follows from f =0 at initiation of yield and i is calculated
o 5

from (47)1 and the experimental data from stress reversals at saturation.

It follows from (39) and (45b)1 that

lim s

lim ds = t- mean
t
- de e mean

so that a value for the quantity a may be determined either from (45b) and5 1

the measured slope of the stress-strain curve at saturation, or from (39)

and the limiting value of the mean stress in strain cycling between fixed

strain limits. An elastic-plastic state between the initial yield and

saturation is specified by (46). After evaluating C13) at K =K and

equating the result to (47), there results

s +S K -K K -K(1) )) (___) + as , (49)
0 3 e p  K -K K*-K

s s

where K is calculated from (47) Next, we introduce (49) into (44) to

determine 6 from the expression for the slope of the stress-strain curve at

initial yield. Since n does not occur in the yield function and does not

appear in either of the limiting slopes (44) or (45a,b), its value must be

determined by using the general expression resulting from (42) and (43).

Hence, we need to measure the slope of the stress-strain curve at several

points during loading between the initial yield and saturation. The value

of K at such a loading point may be determined from (22) and (13), or from

(47) if it is at the point of a stress reversal. This value is then used in

(42) and (43) to estimate an appropriate value for n.

17.



The above procedure is suggested as one way of determining the material

constants, and is by no means unique.

For purposes of illustration, we now specify the material constants

for a material similar to the 2024-T351 aluminum alloy considered in [4].

In particular, we assume the same values for E,K0 and Ks as those given in

[4, Eqs. (92) and (93)]. In addition, we specify as to be zero so that the

mean stress will progressively relax and tend to zero during strain cycling.

Now instead of using the procedure outlined in the preceding paragraph, the

coefficients ao,B and n were adjusted until the predicted stress-strain curve

exhibits ratcheting behavior under a loading program of stress cycling between

umsymmetric stress limits In this way, one is able to choose the material

constants as

° 0 B 0, 0. 03 2. 110-3-- 0.14 a s  0 -, 0.I,- - .
E 0 E

IC
0 -5 s -()

= 1.8 x10 - = . 10 xl(E 2  E 2

E =69 GPa

Stress-strain response curves were calculated by explicit numerical integra-

tion of (24) using the values (50) for the material coefficients. The

calculated uwiaxial material response to stress cycling between fixed

unsymmetric stress limits is shown in Fig. 1, and the calculated response to

strain cycling between two sets of fixed strain limits is shown in Fig. 2.
s*

From (15), (26), (35), (27) and the values in (50) , the value of 0 is

calculated to be 0.10 at initial yield and it tends to zero at saturation.

Finally, a brief comparison is made of the prediction of the theory with

experimental results for 304 stainless steel reported by Pugh et al. [13].

This manner of determining the coefficients ao,$ and n is analogous to the
procedure used in [4] for obtaining different coefficients.

Also assuming a value v =0.3 for Poisson's ratio, with (50). the shear
modulus p is calculated to be 26.5 GPa.
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Employing the procedure described earlier [see the paragraph followin

(45)), the material constants were determined to be

C 14 O 2  s -3 3.2 xl0-2

E ' E 1.7 X1

nK K- -1.2 xl0 O = 5.4 x10 S = 2.7 X06 (51)
E2  E2  E2

E = 123 GPa

The caluclated reponse is shown in Fig. 3 along with the experimental curves

for the first three cycles from [13], as well as the results calculated

previously by Caulk and Naghdi [4]. The only noteworthy difference between

the present calculations and those in [4] is that the stress level at

saturation matches the experimental data even more closely in the present
*

calculations. From (15), (26), (35) and (27), (9), (41) and the values in

(51), the value of 4? is calculated to be 0.029 at initial yield, and it tends

to the value Kh =0.0053 at saturation.
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As in [5) assuming a value v -0.3 for Poisson's ratio, u is calculated
to be 47.3 GPa.

19.



References

1. Green, A. E., and Naghdi, P. M., "A General Theory of an Elastic-Plastic
Continuum," Archive for Rational Mechanics and Analysis, Vol. 18, 1965,
pp. 251-281.

2. Green, A. E., and Naghdi, P. M., "A Thermodynamic Development of Elastic-
Plastic Continua," Proceedings of the IUTAM Symposium on Irreversible
Aspects of Continuum Mechanics and Transfer of Physical Characteristics
in Moving Fluids, eds. Parkus, H., and Sedov, L. I., Springer-Verlag,
1966, pp. 117-131.

3. Naghdi, P. M., and Trapp, J. A., "The Significance of Formulating
Plasticity Theory with Reference to Loading Surfaces in Strain Space,"
International Journal of Engineering Science, Vol. 13, 1975, pp. 785-797.

4. Caulk, D. A., and Naghdi, P. M., "On the Hardening Response in Small
Deformation of Metals," Journal of Applied Mechanics, Vol. 45, 1978,
pp. 775-764.

5. Casey, J., and Naghdi, P. M., "On the Characterization of Strain-
Hardening in Plasticity," Journal of Applied Mechanics, Vol. 48,
1981, pp. 285-295.

6. Drucker, D. C., and Palgen, L., "On Stress-Strain Relations Suitable
for Cyclic and Other Loading," Journal of Applied Mechanics, Vol. 48,
1981, pp. 479-485.

7. Dolan, T. J., "Nonlinear Response Under Cyclic Loading Conditions,"
Proceedings of the Ninth Midwestern Mechanics Conference, Madison,
Wis., 1965, pp. 3-21.

8. Sandor, B. I., Fundamentals of Cyclic Stress and Strain, University
of Wisconsin Press, Madison, Wisconsin, 1972.

9. Morrow, J., and Sinclair, C. N., "Cycle-Dependent Stress Relaxation,"
Symposium on Mechanisms of Fatigue, ASTH STP 237, American Society
for Testing and Materials, 1958, pp. 83-109.

10. Naghdi, P. M., and Trapp, J. A., "Restrictions on Constitutive
Equations of Finitely Deformed Elastic-Plastic Materials," Quarterly
Journal of Mechanics and Applied Mathematics, Vol. 28, 1975, pp.
2S-4b.

11. Casey, J., and Naghdi, P. M., "A Remark on the Definition of Hardening,
Softening and Perfectly Plastic Behavior," Acta Mechanica, Vol. 48,

1983, pp. 91-94.

12. Casey, J., and Naghdi, P. M., "Strain=Hardening Response of Elastic-
Plastic Materials," in Constitutive Laws for Engineering Materials:
Theory and Application, John Wiley and Sons Ltd. (in press).

13. Pugh, C. E., et al., "Current Recommended Constitutive Equations for
Inelastic Design Analysis of FFTF Components," ORNL-TM-3602, 1972.

20.



Captions for Figures

Fig. I: Calculated umiaxial stress-strain response in s-e plane to

cyclic loading between fixed values of stress in tension and

compression (not necessarily equal in magnitude) resulting in

ratcheting of strain. The material constants used in the

calculation are given by Eq. (50).

Fig. 2: Calculated wiiaxial stress-strain response in s-e plane showing

progressive relaxation to zero of the mean stress caused by

strain cycling between any two fixed values of strain. The

material constants used in the calculation are given by

Eq. (50).

Fig. 3: Comparison of theoretical cyclic stress-strain behavior for

304 stainless steel with the experimental data of reference [13].

The theoretical stress-strain curves (C- are calculated using

the material constants in (51); the theoretical curves (---)

are those calculated previously in 14]; and comparison with the

experimental data --- ) is shown for the first three strain

cycles only, since curves for additional cycles would crowd the

figure.
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