
I AD-A135 794 THE EXTENSION AN APP A ONAO GLOBAL COMPACTON /

TECHNIO SE FON HORIZON..U AtL UNV ANEW HAVEN CT DEPT

OF 0OMPUTEN SCINC J A FSHER OH NOV 83

UNC(ASSIFED ARO H84H A-E DAAG"81K-17 H/ K/U NL

*flfflfflfll~~ 841

l2

11111I2

uln'-' IIII'

MICROCOPY RESOLUTION ILSI CHARI

NAT 1 = FiLII I l I ,IO I. I I I

Unc lass ified
SECURITY CLASSIFICATION OF THIS PAGE 'egn D.t. Irfovud)

REPOR DOUETTINPG READ INSTRUCTIONS
REPOT DCUMNTATON AGEBEF~ORE COMPLETING FORM

IREPORT NUMBER 12.,GOVT ACICES1 NNo. RECIPIENT'S CATALOG NUMBER

4. TITL E (and S.6tle) S. TYPE OF REPORT & PERIOD COVERED

Te Extension and Application of Global Compaction FINAL - 9/1/81 to 8/31/83

E**,- Tchniuesfor orionta Scentiic ode6. PERFORMING ORG. REPORT NUMBER

7. AUTwOR'.J 8. CONTRACT OR GRANT NUMBER(*)

Y) Joseph A. Fisher DAAG 29 81 K 0171
-9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT. TASK

Yale nivesityAREA 4 WORK UNIT'iNUMBERS

~% Department of Computer Science P-18483EL
New Haven, CT 06520

Il. CONTROLLIiNG OFFICE NAME AND ADDRESS 12. REPORT DATE

U. S. Army Research Office 11/8/83
S Post Office Box 12211 13. NUMBER OF PAGES

Research Triangle Park, NC 27709 3_____________

1.MONITORING AGENCY NAME & AODRESS(If different ftm Controlling Office) IS. SECURITY CLASS. (of this reort)

Unclass i fi
IS*. DECL ASSI FICATMON/ DOWN GRADINFG

SCH EDULE

10 DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

-TO

17. DISTRIBUTION STATEMENT (of the abserect entered In Block 20. it different from Rvpo) Ij93

18. SUPPLEMENTARY NOTES

The view, opinions, and/or findinns contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
Position, ,)olicy, or decision, unless so designated by other documentation

19. PKEY WORDS (Continwe an reverse side It necessary old identify by block number)

AP164-GENERATOR, TRACE SCHEDULING, ELI

CL.

O & ABTRACT C(~fna m- revrmiN if nomagewd l denifl, by block nuslb.,)

This report summarizes the work completed in applying trace scheduling to the
Floating Point Systems AP 164 array processor. We are involved in an ongoing

i project focused upon trace scheduling. The two main aspects of the project are
L. the development of a trace scheduling compiler and to design a single instruction
L.. multiple data (SIKD) floating point machine that is optimized for trace
S scheduling. The aspect of this project which has been done under this ARO grant

was the development of a trace scheduler for the AP164 attached processor. This

AIR 143nD~O UNCLASSIFIED

83 12 13 167 SECURITY CLASSIFICATION OF THIS PAGE (Wren Des Entered)

UNCLASS IFI ED
IECURITY CLASSIFICATION OF THIS PAGEIWhm 000 Zn#OftEJ

20.
architecture is the most common example of a SIMD machine for which the user
writes code. The AP164 offers limited parallelism in that it has three alu' s
and a limited cross-bar.

UNCLASS IFI ED
SRCUMITY CLASSIFICATION OF ?..IS 0ACI(WAen Date Enterd)

The Extension and Application of Global Compaction
Techniques for Horizontal Scientific Code

Final Report

Joseph A. Fisher

November 21. 1983

U. S. Army Research Office

DAAG 2981 K 0171

Yale University

Approved for Public Release
Distribution Unlimited

CI,.
'CCI

The view. opinions, and/or findings contained in this report are those
of the author(s) and should not be construed as an official Department
of the Army position, policy . or decision, unless so desipated by other
documentation.

4

Status of the AP164-Generator

- This report summarizes the work coiproeted in applying trace scheduling to the Floatig Point
Systems AP184 array processor. We-are involved in an ongoing project-foosedupon trace

scheduling. The two main aspects of the project are the development of a trace scheduling

compiler and to design a single instruction multiple data (SIMD) floating point machine that is

optimized for trace scheduling. The aspect of this project which has been done under this ARO

grant was the development of a trace scheduler for the AP14 attached processor. This

architecture is the most common example of a SIMD machine for which the user writes code.

The AP164 offers limited parallelism in that it has three alu's and a limited cross-bar.

The compiler can now compile several of the test codes used by the package. This includes
most arithmetic code involving conditionals, scalars, vectors, and loops. For simple loops it is

competitive with the FPS compiler, which has recently been improved for tight loops. For code

involving nested loops preliminary evaluation indicates that it performs better. Work on the

code generator and the trace scheduling package is proceeding, although ARO in not involved in

the funding.

The code generator is a module in the trace scheduling package being developed at Yale.

Another code generator is for a highly parallel processor, ELI, being designed in the same project.

The ELI is being designed to be highly suitable for the compiler methods of this project. The

compiler is separated into co-routines with very clear interfaces. The modules are 1) the
bookkeeper, 2) the disambiguator, and 3)the code generator. No changes are made to the first

two modules to change the code generator. Furthermore only a handful of functions are needed

for each interface.

. . . .

ARO DAAG29 81 K 0171 Final Report 2

While the ELI is being designed for a compiler to write the code, the AP164 was designed for
code generation by hand. The compilers for it enable it to do large jobs, but not with the

efficiency that carefully written apal would give. Furthermore, as it offers only limited
parallelism, it is not the best environment for trace scheduling. The original model (API20) had

no compiler for years and then only realitively weak ones, which greatly limited its use. This
work will attempt to explore the benefits of trace scheduling for this limited architecture.

Sample test programs have been compiled by 1)trace scheduling using an AP164 crcie generator,

2)basic block schedulin& using the same code generator, and 3)using the FPS compiler. The
timings from running these with sample data will serve as data for a preliminary evaluation of

trace scheduling for the AP104.

Trace scheduling is implemented by the bookkeeper picking the traces, deciding where to rejoin
traces, and doing the bookkeeping necessary to keep the program valid. The traces are handed

one by one to the code-generator, which then schedules it as straight line code.

Each trace is a sequence of n address instructions with the main trace being tbe most likely
path through the flow graph representing the program. As the important traces extend across

basic block boundaries and have only jumps out from them, a high degree of parallelism has been
found in them. The job of a code generator within a trace scheduler is to utilize this parallelism
and keep the functional units busy. For the two machines being considered (the FPS164 and the
ELI), the main emphasis of the code generators is in finding optimal paths to and from functional

units.

Our main heuristic is to use a scheduling order based upon a demand driven analysis of the
trace's DAG. The demand driven scheduling, starts at the output variables of an ordered DAG.
It then sees what has to be scheduled, to schedule the outputs. This typically would involve a
call to the scheduler to schedule the needed variables. This recursive calling of the scheduler
produces variables when they are needed or consumed.

The main body of work was done on a DEC-20 using a dialect of LISP. Starting with some
code in one of several higher level languages, a module in the trace scheduler hands the compiler
naddr traces with various bookkeeping information. The generator first forms a symbol table,
then using a DAG from the ELI code generator generate a machine level schedule using demand
driven techniques. The schedule is then converted into Apal and transferred to the VAX 780 to
which the FPS164 is attached. There it is verified by simulation or execution.

The major difference between this generator and the ELI generator, is that the AP164
generator tries many different paths for each naddr operation. On the ELI paths can be very
long and the hardware offers a great deal of parallelism and symmetry, so it is expected that the
shortest path (in time and distance) will be adequate. The API64 is such that paths can easily
conflict with each other and keeping paths open to the four floating inputs of two alu's will
require several options to be explored. Since the paths are short it is hoped that the overhead

ARO DAAG29 81 K 0171 Final Report 3

will not be too great.

The basic stages the generator performed by the generator are generation of the symbol table

and DAG, finding a list of paths by which the naddr can be performed, picking the best paths,
binding the best path to the schedule, and extracting the Apal language program from the

schedule. The order of naddr scheduling will be based upon Ruttenberg's demand driven

ordering of the DAG developed for the ELI.

At the end of this grant period, the following pieces have been built and are working. The

symbol table work is done. The paths are generated for all function units, data pads, and scalar

pads for arithmetic code. Path picking is done based upon the shortest in time path, and all

binding steps are performed. The extraction of Apal is working for this subset of the full FPS164

machine. (Register assignment is done by hand as this is not implemented yet.)

Since the last progress report, the major piece of the machine that was included was the

memory. This has allowed the inclusion of procedures to compile loading and storing of vector

elements to and from memory. Also register spilling and loading can then be included. Once all

of these pieces are working improvements on the live-dead analysis are needed. These can be

ported from the ELI code generator. At the conclusion of the granting period, major traces can

be compiled successfully for a large body of code. These traces do not need the missing modules,

which are the register allocator, a complete live-dead analysis, and a module to start with

variables in one set of locations and move them to an arbitrarily different set of final locations.

The interface with the bookkeeper has been implemented and is finished except for the

improvements that are needed in the live-dead analysis. Trace scheduling has been tested on

some small basic sections of code with good improvements over basic block scheduling. This now
working scheduler will be enhanced step by step such that it can deal with the full set of test

problems.

As examples of the present compiler, we present examples involving two algorithms. These are

the main traces of a dotproduct and a matrix multiply, both not unrolled and unrolled. For the

not unrolled dotproduct, 3 cycles per interation of the loop for the FPS compiler, while 27 cycles

for the trace scheduler. For unrolling five times, the FPS: 87 cycles, the trace scheduler: 27
cycles. The matrix multiply was 40 cycles with no unrolling for the FPS and 38 cycles with two

unrollings for the trace compiler. Thus the dotproduct results were one term in 3 (FPS) or 5.4
(trace) cycles for best cases for each. For the matrix multiply it was FPS:40 and trace:18 cycles

for best case. Futhermore for the unrolled dotproduct it was FPS:17.4 vs trace:5.4. Our analysis

of these and other results, is that loop folding performs better for the simplest loops but as loop

complexity increases the trace scheduling method perfoms better.

At this time it would seem that the main stumbling block to achieving a full compiler in a

reasonable amount of time is the irregularity of the architecture of the API64 and the tendency

of that to reflect itself in the code. The architecture doesn't lend itself well to any abstract

? t- __

ARO DAAG29 81 K 0171 Final Report 4

model. The machine is a combination of cross bar and busses with many unusual features.

The work is also directed at yielding a module that can be used by the numerical analysis
group. Important subroutines hopefully will be compiled using the trace scheduler. These can be
written in "tiny lisp" which allows full expression of structured fortran concepts. It will also
allow careful expression of the algebra to achieve a minimal critical path. Thus the code can be
tuned by the numerical analyst without having to resort to apal. While the FPS compiler can be
used for the outer control parts such as command parsing and I/0.

Further it is hoped that insight into the workings of trace scheduling will be of benefit to the
development of this technique. For example the present results are consistent with the
supposition that for simple loops, trace scheduling will remain competive with software pipelining
and loop folding if it unrolls the loops. Futhermore that for nested loops and loops involving
complex conditionals, trace scheduling will perform significantly better. Also the interaction of
the AP104 architecture and the trace scheduler, should help in sorting what machine features
enhance trace scheduling and which are in conflict with it. This information will be of use in
designing ELI.

I~4.-J

LIST OF PUBLICATIONS

J. A. Fisher.

COMPUTER SYSTEMS ARCHITECTURE AT YALE The Enormous Longword
Instruction (ELI) Machine Progress and Research Plans.

Technical Report 241. Yale University Department of Computer
Science, July, 1982.

J. A. Fisher.
Very long instruction word architectures and the ELI-512.
Technical Report 253. Yale University Depertment of Computer

Science, April, 198.

Apeered in 10th Annual International Architecture Conference,
Stockholm, JUNE '63.

John C. Ruttenberg A Joseph A. Fisher.
Lifting the Restriction of Aggregate Data Motion in.
In IEEE International Workshop on Computer Systems Organization,

pages 211-215. IEEE, March, 1983.

