AD-A135 794 THE EXTENSION AND APPLICATION OF GLOBAL COMPACTION 1"
TECHNIQUES FOR HORIZON..{U} YALE UNIV NEW HAVEN CT DEPT
OF COMPUTER SCIENCE J A FISHER 08 NOV 83
UNCLASSIFIED ARD-18483.5-EL DAAGRO-B1-K-D171 F/G 9/2 NL

END

aTE i
FINED

nnc i




1.0 &= ha
S

s

22 s s

B

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAL O STANDARES (e &




Unclassi fied /8483, 5-EC

SECURITY CLASSIFICATION OF THIS PAGE When Date Entered)
READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
. REPORY NUMBER 2. Go\ﬁjccsgsxﬁa NO.J 3./ RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

The Extension and Application of Global Compaction | FINAL - 9/1/81 to 8/31/83
Techniques for Horizontal Scientific Code

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

AD-AI35 7174

Joseph A. Fisher DAAG 29 81 K 0171 i
9. PERFORMING QORGANIZATION NAME AND ADDRESS 10. ::g2R‘Al'loEnL‘EUSrTT.NPuﬂ“OBJEEg;. TASK
Yale University
Department of Computer Science P-18483EL i‘
New Haven, CT 06520
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPQRYT OATE i
U. 5. Army Research Office 11/8/83 ;
Post Office Box 12211 '3.NuuaERoF’AGES
Research Triangle Park, NC 27709
T4, MONITORING AGENCY NAME & ADORESS(I! diferent trom Controlling Oltice) V5. SECURITY CLASS. (of this report) y
Uncl i
TSe. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

168 DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited.

PR Y 3403030

4
17. DISTRIBUTION STATEMENT (of the sbatrect entered in Block 20, !f different from Repor) o T Ug
. o

‘-
L

3

18. SUPPLEMENTAARY NOTES

The view, opinions, and/or findinas contained in this report are those of the
aut@of(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation

19. KEY WORDS (Continue on reverse aide if necessary and identify dy block number)

AP164-GENERATOR, TRACE SCHEDULING, ELI

20 ABSTRACY (Tonrthuue an reverse oide !t nexvevary and identify Py dlock number)

This report summarizes the work completed in applying trace scheduling to the
Floating Point Systems AP 164 array processor. We are involved in an ongoing
project focused upon trace scheduling. The two main aspects of the project are
the development of a trace scheduling compiler and to design a single instruction
multiple data (SIMD) floating point machine that is optimized for trace
scheduling. The aspect of this project which has been done under this ARO grant
was the development of a trace scheduler for the AP164 attached processor. This

OME FILE Copy

FONEN
DD e EDITION OF ! NOV 63 1S ORSOLETE UNCLASSIFIED

sg s; ].:2 1 :; ]-(SlZ' SECURMITY CLASSIFICATION OF THIS FAGE (When Deta Entered)

R Y




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE/When Dete Entered)

20.

architecture is the most common example of a SIMD machine for which the user
writes code. The AP164 offers limited parallelism in that it has three alu's
and a limited cross-bar. :

ro

UNCLASSIFIED '

SECURITY CLASSIFICATION OF THIS PAGE(When Dats Entered) 1

T .




The Extension and Application of Global Compaction
Techniques for Horizontal Scientific Code

Final Report

Joseph A. Fisher

November 21, 1983

U. S. Army Research Office

DAAG 2981 K 0171

Yale University ; '

Approved for Public Relesse
Distribution Unlimited

The view, opinions, snd/or findings contsined in this report sre those
of the suthor(s) and should not be construed ss sn officisl Department
of the Army position, policy, or decision, uniess so designated by other

documentation.




Status of the APlB4-Gener_ator
~’ This report summarizes the work comﬂeted in applylng trace schedulmg to the Flogung Point
Systems AP164 array processor. We-are involved in an ongoing pmpct-(ooused/ upon trace
scheduling. The two main aspects of the project are the development of a trace scheduling
compiler and to design a single instruction multiple data (SIMD) floating point machine that is
optimized for trace scheduling. The aspect of this project which has been done under this ARO
grant was the development of a trace scheduler for the AP164 attached processor. This
architecture is the most common example of s SIMD machine for which the user wmes code.
The AP164 offers limited parallelism in that it has three alu's and a limited cross-bar

The compiler can now compile several of the test codes used by the package. This includes
most arithmetic code involving conditionals, scalars, vectors, and loops. For simple loops it is
competitive with the FPS compiler, which has recently been improved for tight loops. For code
involving nested loops preliminary evaluation indicates that it performs better. Work on the
code generator and the trace scheduling package is proceeding, although ARO in not involved in
the funding.

The code generator is a module in the trace scheduling package being developed at Yale.
Another code generator is for a highly parallel processor, ELI, being designed in the same project.
The ELI is being designed to be highly suitable for the compiler methods of this project. The
compiler is separated into co-routines with very clear interfaces. The modules are 1) the
bookkeeper, 2) the disambiguator, and 3)the code generator. No changes are made to the first
two modules to change the code generator. Furthermore only a handful of functions are needed
for each interface.

L

I - . T R s R S e A T : 4.1..?5%}:2} PR




ARO DAAG29 81 K 0171 Final Report p]

While the ELI is being designed for a compiler to write the code, the AP184 was designed for
code generation by hand. The compilers for it enable it to do large jobs, but not with the
efficiency that carefully written apal would give. Furthermore, as it offers only limited
parallelism, it is not the best environment for trace scheduling. The original model (AP120) had
no compiler for years and then only realitively weak ones, which greatly limited its use. This
work will attempt to explore the benefits of trace scheduling for this limited architecture.
Sample test programs have been compiled by 1)trace scheduling using an AP164 ccde generator,
2)basic block scheduling using the same code generator, and 3)using the FPS compiler. The
timings from running these with sample data will serve as data for a preliminary evaluation of
trace scheduling for the AP164.

Trace scheduling is implemented by the bookkeeper picking the traces, deciding where to rejoin
traces, and doing the bookkeeping necessary to keep the program valid. The traces are banded
one by one to the code-generator, which then schedules it as straight line code.

Each trace is a sequence of n address instructions with the main trace being thz most likely
path through the flow graph representing the program. As the important traces extend across
basic block boundaries and have only jumps out from them, a high degree of parallelism has been
found in them. The job of a code generator within a trace scheduler is to utilize this parallelism
and keep the functional units busy. For the two machines being considered (the FPS164 and the
ELI), the main emphasis of the code generators is in finding optimal paths to and from functional
units.

Our main heuristic is to use a scheduling order based upon a demand driven analysis of the
trace’s DAG. The demand driven scheduling, starts at the output variables of an ordered DAG.
It then sees what has to be scheduled, to schedule the outputs. This typically would involve a
call to the scheduler to schedule the needed variables. This recursive calling of the scheduler
produces variables when they are needed or consumed.

The main body of work was done on a DEC-20 using a dialect of LISP. Starting with some
code in one of several higher level languages, a module in the trace scheduler hands the compiler
naddr traces with various bookkeeping information. The generator first forms a symbol table,
then using a DAG from the ELI code generator generate a machine level schedule using demand
driven techniques. The schedule is then converted into Apal and transferred to the VAX 780 to
which the FPS164 is attached. There it is verified by simulation or execution.

The major difference between this generator and the ELI generator, is that the AP164
generator tries many different paths for each naddr operation. On the ELI paths can be very
long and the hardware offers a great deal of parallelism and symmetry, so it is expected that the
shortest path (in time and distance) will be adequate. The AP164 is such that paths can easily
conflict with each other and keeping paths open to the four floating inputs of two alu’s will
require several options to be explored. Since the paths are short it is hoped that the overhead




ARO DAAG29 81 K 0171 Final Report 3

will not be too great.

The basic stages the generator performed by the generator are generation of the symbol table
and DAG, finding a list of paths by which the naddr can be performed, picking the best paths,
binding the best path to the schedule, and extracting the Apal language program from the
schedule. The order of naddr scheduling will be based upon Ruttenberg's demand driven
ordering of the DAG developed for the ELI.

At the end of this grant period, the following pieces have been built and are working. The
symbol table work is done. The paths are generated for all function units, data pads, and scalar
pads for arithmetic code. Path picking is done based upon the shortest in time path, and all
binding steps are performed. The extraction of Apal is working for this subset of the full FPS164
machine. (Register assignment is done by hand as this is not implemented yet.)

Since the last progress report, the major piece of the machine that was included was the
memory. This has allowed the inclusion of procedures to compile loading and storing of vector
elements to and from memory. Also register spilling and loading can then be included. Once all
of these pieces are working improvements on the live-dead analysis are needed. These can be
ported from the ELI code generator. At the conclusion of the granting period, major traces can
be compiled successfully for a large body of code. These traces do not need the missing modules,
which are the register allocator, a complete live-dead analysis, and a module to start with
variables in one set of locations and move them to an arbitrarily different set of final locations.

The interface with the bookkeeper has been implemented and is finished except for the
improvements that are needed in the live-dead analysis. Trace scheduling has been tested on
some small basic sections of code with good improvements over basic block scheduling. This now
working scheduler will be enhanced step by step such that it can deal with the full set of test
problems.

As examples of the present compiler, we present examples involving two algorithms. These are
the main traces of a dotproduct and a matrix multiply, both not unrolled and unrolled. For the
not unrolled dotproduct, 3 cycles per interation of the loop for the FPS compiler, while 27 cycles
for the trace scheduler. For unrolling five times, the FPS: 87 cycles, the trace scheduler: 27
cycles. The matrix multiply was 40 cycles with no unrolling for the FPS and 36 cycles with two
unrollings for the trace compiler. Thus the dotproduct results were one term in 3 (FPS) or 5.4
(trace) cycles for best cases for each. For the matrix multiply it was FPS:40 and trace:18 cycles
for best case. Futhermore for the unrolled dotproduct it was FPS:17.4 vs trace:5.4. Our analysis
of these and other results, is that loop folding performs better for the simplest loops but as loop
complexity increases the trace scheduling method perfoms better.

At this time it would seem that the main stumbling block to achieving a full compiler in a
reasonable amount of time is the irregularity of the architecture of the AP164 and the tendency
of that to reflect itself in the code. The architecture doesn't lend itself well to any abstract




ARO DAAG29 81 K 0171 Final Report 4

model. The machine is a combination of cross bars and busses with many unusual features.

The work is also directed at yielding a module that can be used by the numerical analysis
group. Important subroutines hopefully will be compiled using the trace scheduler. These can be
written in "tiny lisp” which allows full expression of structured fortran concepts. It will also
allow careful expression of the algebra to achieve a minimal critical path. Thus the code can be
tuned by the numerical analyst without having to resort to apal. While the FPS compiler can be
used for the outer control parts such as command parsing and 1/0.

Further it is hoped that insight into the workings of trace scheduling will be of benefit to the
development of this technique. For cxample the present results are consistent with the
supposition that for simple loops, trace scheduling will remain competive with software pipelining
and loop folding if it unrolls the loops. Futhermore that for nested loops and loops involving
complex conditionals, trace scheduling will perform significantly better. Also the interaction of
the AP164 architecture and the trace scheduler, should help in sorting what machine features
enhance trace scheduling and which are in conflict with it. This information will be of use in
designing ELL.

i —amah




LIST OF PUBLICATIONS

J. A. Fisher.

COMPUTER SYSTEMS ARCHITECTURE AT YALE The Enoraous lLongword
Instruction (ELI) Machine Progress and Research Plans.
Technical Report 241, Yale University Departaent of Computer

Science, July, 1982.

J. A. Fisher. '
Very long instruction vord architectures and the ELI-512. ‘
Technics! Report 263, Yale University Departsent of Cosputer
Science, Aprif, 1983. 3
Appesred in 10th Annus! International Architecture Conference,
Stockholm, JUNE °'83. |1

John C. Ruttenberg 8 Joseph A. Fisher.

Lifting the Restriction of Aggregate Dasta Motion in.

In IEEE International Workshop on Computer Systems Organization,
psges 211-216. [IEEE, March, 1983.




