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Summary

The robust analysis of linear models based on R-estimates involves an

estimate of a scale parameter which is used in the analysis as a standard- -

izing constant. The consistency of previous estimates of this scale para- V
I

meter required that the underlying errors be symmetrically distributed. This

assumption is not always warranted, for instance in survival models. A new

estimate is proposed for the scale parameter and it is shown to be consis-

tent for nonsymmetric and symmetric error distributions. With this new scale

estimate, a complete robust analysis of a linear model can be accomplished

without assuming symmetry. The small sample properties of the analysis are

examined in a Monte Carlo study of several different situations.

/

Some keywords: general linear hypothesis; linear model; R-estimates; rank
statistics; regression; robust analysis.
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1. Introduction and Summary.

McKean and Hettmansperger (1976, 1978) proposed a robust analysis of

linear models based on Jaeckel's (1972) robust R-estimate of regression

coefficients. This analysis is analogous to the least squares analysis of

variance, indeed the geometry of the two analyses are quite similar, McKean

and Schrader (1980). The R-analysis is also a generalization of R-proce-

dures in the simpler location problems and, in particular, it inherits their

asymptotic relative efficiency properties with respect to least squares.

Small sample power studies, Section 4 and Hettmansperger and McKean (1983),

support these asymptotic efficiencies. The R-analysis, thus, offers the

user a versatile, robust alternative to least squares for analyzing linear

models.

The R-analysis requires the estimation of a scale parameter, T , which

is used as a standardizing factor in the associated R-test for a general

linear hypothesis and in the standard error of an R-estimate. The estimate

of T proposed by McKean and Hettmansperger (1976) is consistent under the

assumption of symmetrically distributed errors. There are many situations,

though, when the assumption of symmetry is unrealistic. For example many of

the parametric models used for survival time have skewed distributions, see

Chapter 2 of Miller (1981). In accelerated failure time models, Chapter 2 of

kalbfleisch and Prentice (1980), the log of survivor time is cast in a linear

model whose error structures have skewed distributions. Many of these skewed

distributions also have long tails in which case a robust analysis is espe-

cially attractive.

In this paper we propose an estimate of T for the case of Wilcoxon

scores. The proof of its consistency, Sections 3 and 5, does not require

symmetry. Using this estimate of scale the R-analysis of McKean and
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Hettmansperger is asymptotically valid for both symmetric and non-symmetric

error distributions. Further, as noted in Section 2, by utilizing the theory

of Sievers (1983) the asymptotic theory of the R-analysis based on Wilcoxon

scores can be obtained under much milder regularity conditions on the design

matrix than those assumed by Jureckova (1971) and Jaeckel (1972).

Asymptotic theory serves as a useful guideline for the R-analysis but

for practical use an investigation of its small sample properties is required

as discussed in Section 4. The estimate of T is based on residuals and

certain small sample corrections are necessary for its use in standardizing

the R-test statistics. We present the results, Section 4, of a Monte Carlo

study which included both symmetric and skewed distributions over several

different designs. On the basis of this study, the R-analysis utilizing the

new estimate of T performed as well as that using the old for the symmetric

distributions and performed better for the skewed distributions. Both the

old and the new were robust with respect to least squares. On the basis of

the theory and this study, we would recommend using the R-analysis with the

estimate of T found in Section 3.

2.1 Notation and assumptions.

Let Y be an n x I vector of observations which follows the linear

model

Y - al + X8 + e (2.1)

where o is the intercept parameter, I denotes an n x I vector of ones,

is a p x I vector of parameters, X is an n x p design matrix, and e

is an n x I vector of independent and identically distributed errors which

have the common density function f(x). We will assume that X has full



column rank p and, since the model includes an intercept parameter, that

the column averages of X are zero. We denote general linear hypotheses

as,

H 0: HB - 0 versus HA: HE 0 0, (2.2)

where H is a q x p matrix of full row rank.

Let Q denote the column space of X. We can express the model (2.1)

equivalently as

Y " + e* , Q (2.3)

where e* - al + e. Letting w denote the (p - q) -dimensional subspace of

constrained by HB - 0, the hypotheses (2.2) can then be expressed as

H : I W versus H C MW
0 A

Let P denote the projection matrix onto S2.

The asymptotic distribution theory discussed in this paper requires some

assumptions on the subspace n and the underlying density f(x). We will

consider sequences of subspaces n' indexed by the sample size n, which

have a common dimension p and which satisfy

lim max h.. = 0 (A.1)
n - l<i<n iin

where hi. n  is the ith diagonal element of the projection matrix P . For
nasymptotic inference concerning 8 we will further assume that the sequence

of design matrices X satisfiesn

lim I XI X E r is positive definite. (A.2)n n n

We will often suppress the subscript n on n and X.

' . . ... . ... ... .. . .. ... .. . " ~' " . . . ., ,. -- . = .
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For the density function f(x) we will assume the following:

(i) f is absolutely continuous;

2
(ii) f(f,/f) f dx < (B.1)

(iii) T , [121/2ff2dx]-I < Co.

2.2 R-analysis.

The part of model (2.1) involving 6 is often termed the deviations

from means model. Least squares inference for 8 is based on the scuared

semi-norm

JuJ LS . , u _ , (2.4)

which can also be written as

2 1 )2lluilLs " n-IZ j(u u. (2.5)

For the Wilcoxon inference on 6, the squared differences in (2.5) are

replaced by the absolute differences; that is, the R-semi-norm is given by

H1uIIR - (2(n + 1)//i)1 u - u.j, u e Rn . (2.6)

:L<j

The factor in parentheses is a standardization constant. The R-semi-norm

can be expressed more familiarly as

IIu1IR - (-1i'/(n + ))I (R(u ) ((n + 1)/2))u,

where R(u.) is the rank of u. among ui, ... , U, see Hettmansperger and

McKean (1978).

The estimate of 0 obtained from this semi-norm, that is, a value of 8

which minimizes JJY - XBIIR ,  is the R-estimate proposed by Jaeckel (1972)

for Wilcoxon scores. In terms of Model (2.3), McKean and Schrader (1980)

defined as a best R-predictor of Y when U R minimizes



IlY - UIIR, U E 1. Jaeckel obtained the asymptotic distribution of these

R-estimates under conditions more restrictive than those above; however,

Sievers (1983) showed that under (A.1), (A.2), and (B.1) the distribution of

OR is approximately N(B, T2(X'X) - ) where T is defined in

The least squares test statistic of the hypotheses (2.2) is based on a

comparison of the squared distance, in terms of the norm (2.4), between Y

and each of the subspaces w and Q. Analogously McKean and Hettmansperger

(1976) proposed as an R-test statistic

F - Ily - R I IH - UIIR (2.8)

R (p - q)i/2

where j and _p are best R-predictors of Y from the subspaces w and

0 and T is an estimate of r. Similar to least squares, the numerator of

F is a comparison of R-distances between Y and the subspaces w and S1.
R

The test is to reject H0  in favor of HA for large values of F . McKean

and Hettmansperger showed that under H0  and regularity conditions,

(p - q)FR  has an asymptotic chi-squared distribution with (p - q) degrees V

of freedom, provided r is a consistent estimate of T. Using Sievers'

(1983) development, the conditions (A.1), (A.2), and (B.l) suffice for the

regularity conditions.

A Wald type of test for H0, based on the full model R-estimate, is to

reject H for large values of the statistic,

B = R)(XX)H) (HOR) (2.9)
(p - q)T

Unlike their least squares counterparts the R-statistics B and FR are

not algebraically equal; however they have the same asymptotic null distri-

bution and asymptotic relative efficiency, see Hettmansperger and McKean

(1983). The statistic B is similar to Bickel's (1976) test based upon

pseudo-observations obtained from an M-estimate of 8.
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Although the asymptotic theory suggests chi-squared critical values,

from previous Monte Carlo studies we have found it best to compare the sta-

tistics FR and B with F-critical values having p - q and n - p

degrees of freedom. This is discussed further in Section 4.

3. Estimate of T.

In order to use the R-analysis, the scale parameter T, (B.1), needs

to be estimated. In the simple location problem under the additional assump-

tion of a symmetric distribution, Lehmann (1963) proposed a consistent esti-

mate of T based on the length of a distribution free confidence interval

for the location parameter. For the R-analysis of linear models, McKean and

Hettmansperger (1976, 1978) proposed using Lehmann's estimate of T computed

from the residuals. Under the assumption of symmetrically distributed errors

they showed the estimate was consistent. For the asymptotic distribution

theory of the R-analysis, though, this was the only place where symmetry was

invoked. In this section we propose a new estimate of T and show that it

is consistent under the assumptions (A.1), (A.2), and (B.). The R-analysis

of Section 2.2 can thus be employed for both symmetrically and nonsymmetri-

cally distributed errors.

We find it more convenient to work with the parameter y defined by

Y - (V1 2 T) -I - iff2 (3.1)

Note that the difference of a pair of error random variables,

e.* - e.* a e. - e., has as its density,

g(t) - ff(x)f(x - t)dx. (3.2)

This suggests estimating Y with an estimate of g(O).
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Let Z denote the vector of R-residuals,

Z - R (3.3)

where _p, M X is a best R-predictor of Y from 2. We are interested in

the differences of the residuals, Z. - Z. and since these are symmetric

about 0, we need only consider the set of Iz i -Z.I for i < j. The

corresponding empirical distribution function is

(t)~~ -(-1.
G (t) O(IZj -Zil, t) (3.4)

n<j .1

where 0(u,v) - 1 or 0 if u < v or u > v. Our estimate of y is a

measure of the slope of G at 0, namelyn t

y -G (t /-)/(2 tn) (3.5)

where t is the ath quantile of G (t). The corresponding estimate of T
an

is

T (1 ( )l (3.6)

Some discussion on the choice of a can be found in Section 4.

The consistency of t is noted in the following theorem which is

proved in more generality in Section 5.

Theorem 3.1. Consider a sequence of linear model;; which satisfies assump-

p P
tions (A.1), (A.2), and (B.1). For 0 < a < 1, r.

If T is estimated by T of (3.6) then the R-analysis discussed in

Section 2.2 is asymptotically valid for both symmetric and non-symmetric

error distributions. It can thus be used for instance in the applications

mentioned in Section 1. The small sample properties of T are discussed in

the next section.

° " . ~- " . . -)-. .. . ..'-~, '.
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The algorithm we employ to compute y is an iterative procedure which

exploits the relationship between G and the Wilcoxon two sample processn

defined below. This procedure avoids the storage and sorting of the (f)
2

differences, requiring only vectors of length 2n.

In order to define the two sample process consider as one sample the

residuals ZP,...,Z n  and as a second sample exactly the same set of

n

W (t) I R(Z. - t) - n(n + )/2
i I1

where R(Z. - t) denotes the rank of Z. - t amongI. I

Z I - t,...Z n - t, Zi p... ,Zn  For t > 0, it can be sho rnat

G (t) = 1 -I W (t).n 2 n

The quantile t can be obtained by solving the equation 1 -( )-IWnCt ) = a,

which can be solved iteratively using a modified version of regular falsi

similar to the algorithm presented by McKean and Ryan (1977).

In the simple location problem Schweder (1975) proposed an estimate of y

which is basically a window estimate and he recommended a uniform window sym-

metric about zero. Assuming pi = 0 for all i so that no nuisance parame-

ters need be estimated, his estimate is

.(Y - Y , hn/2)/n
2 hn

= ((n - 1)/n)Gn(hn/2)/hn + (1/nhn)

A G (h /2)/h
n n n

where h is the width of a uniform window. The estimate (3.5) is seen to
n

be similar to this type of estimate with a window width of 0 (n- /2). Inp

proving consistency and asymptotic normality, Schweder assumed the window

width satisfies n h n , ruling out the 0(n- 1/ 2 )n )cases, and recommended
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h - O(n-I 3 .i

n

Our estimate y differs from SCol-.vuer's estimate by allowing for the

estimation of nuisance parameters in using residuals rather than jid vari-

ables. Also it uses a window width estimated from the data. In an actual

application of Schweder's estimate the choice of an appropriate s for

-1/3
h n sn is difficult to make and his Monte Carlo study indicates thatn

the bias of the estimate is sensitive to the choice made.

4. Small Sample Properties

In this section we discuss a Monte Carlo study of the performance of T on

F and B in several small sample cases that reflect problems arising in
R

practice. The results show that some modification is necessary to obtain

satisfactory results. After some small sample corrections are made, the new

R-method performs quite well. It is a definite improvement over the old

R-method for nonsymmetric distributions and is superior to least squares

methods in maintaining level and power for nonnormal distribitions.

The performance of T as an estimate of T can be studied by examining

bias and mean square error. Instead of this we chose to examine directly how

well ; standardizes the test statistics F and B. The inclusion of B
R

in the study gives information on how well i performs for confidence inter-

vals since confidence regions for 6 based on a R" can be obtained by

inverting the test statistic B for appropriate H matrices.

The scale estimate T is based on residuals which tend to be less vari-

able than independent observations. This effect diminishes for large sample

sizes, but for smaller sample sizes the dependence among residuals may cause T

to regularly underestimate T. An indication of this effect is shown in

Figure 4.1. This figure shows graphs of the empirical distribution functions
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functions of the differences le. - e I of random errors and of the

differences of R-residuals jZ. - Z.I for one simulation of lognormaiI J

variables in design A below. This figure is typical of many others we have

examined. Note that the differences of R-residuals are stochastically

smaller than the differences of the independent observations. As a result,

the estimate of slope y is larger for residuals than for actual errors and

the reciprocal is then biased downward.

One of the more successful corrections we considered was the standard

least squares correction, namely,

* ^p)) 1 /2.
-* t(n/(n - . (4.1)

As noted in Figure 4.1, this has the effect of increasing the horizontal

coordinate used in the slope estimate and thus decreasing the slope.

Another small sample correction that improved the empirical results is

to use a critical value from the F distribution with p - q and n - p

degrees of freedom instead of a chi-square critical point. The R-analysis

then uses the same critical values as the least squares analysis.

4.2 Monte Carlo Study

The empirical study here considers the tests based on FR  and B with

r* of (4.1) used in the denominator. Results are reported here for T*

based on quantiles a - .80 and .90 with the corresponding test statistics

denoted F (a) and B(a). The rank statistic of Hettmansperger and McKean
R

(1976, 1978), which is appropriate for symmetric error distributions, is also

included and denoted by FO. It uses the numerator of FR standardized by

Lehmann's estimate of T (see section 3). The specific estimate we used is

given in formula (2.7) of Hettmansperger and McKean (1978) based on an 80%



confidence level and with the same small sample correction as expressed in

(4.1) here. The least squares analysis, denoted by LS, is also included to

provide a reference point and show the potential gain in using the

R-analysis instead of the classical analysis.

The R-analyses were computed by using the k-step R-estimates with

k - 2. McKean and Hettmansperger (1978) noted the close agreement between

the analyses based on the 2-step estimates and those based on the fully

iterated estimates, which we have confirmed in a small pilot study. The

analyses based on the k-step estimates have the same asymptotic properties

while taking much less time to compute. The M-estimates of Huber (1973)

were used as starting values. The estimates of T were computed by an

iterative routine as noted in Section 3. The actual algorithms used are des-

cribed in Hettmansperger and McKean (1983).

We examined the behavior of the tests over three designs. Ons was the

same unbalanced 2 x 2 design considered by McKean and Hettmansperger (1978)

which has cell sizes of nl1= n22 3 8 and n 12 = n2 1 = 5. We considered

the three hypotheses: H0, average row effects the same; H02 , average

column effects the same; and H0 3 , no iteraction. For this design, which

we label A, the sample size is 26, p = 4, and p - q = I for all three

hypotheses.

The other two designs each involve two regression lines. The design

matrices are of the form,

For design B the 1 denotes a vector of 10 ones and x is the vector

(-I,-.8 ... ,-.2,.2,...,1)'. Design C was a larger version of B, with the

x vector consisting of the 20 values, (-1, -.9,..... ,...,l)'. For

each design we considered the three hypotheses: H 01 , same intercept; H0 2,
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same slope; And H03 , same regression line. Thus the sample sizes for the

designs are 20 and 40, p is 4 for both designs, and p - q is I for

the first two hypotheses and 2 for the third hypothesis.

Four error distributions were considered in this study. Two of the dis-

tributions were symmetric: the standard normal (N) with distribution func-

tion O(x) and a contaminated normal (CN) with distribution function

F(x) - .8 5 (x) + .15 D(x/7). The other two distributions were skewed: a

lognormal (L) with distribution function F(x) - O(log x) and a skewed

contaminated normal (SCN) with distribution function

F(x) - .820(x) + .18'D((x - 1.9)/13.5). The last is a moderately skewed dis-

tribution proposed by Draper (1981).

The normal variates were obtained by the transformation on a pair of

uniforms as proposed by Marsaglia and Bray (1964) while the uniforms were

generated by the algorithm UNI developed by Gross (1979).

For each situation, a design and a distribution, we ran 1000 simula-

tions. Both empirical levels and powers were investigated. ; e chose alter-

natives to give, for the most part, a spectrum of the power curves.

4.3. Results.

We will summarize our results for the tests in terms of empirical levels

and powers for three alternatives. For a nominal ..05 level, the empirical

levels are recorded in Table 4.1 and the powers are in Tables 4.2 - 4.5. The

results for nominal levels .01 and .10 were similar. Since the results

are based on 1000 simulations, two standard errors for the levels is about

.014. In Table 4.1 a plus indicates that the value is above .05 by two

standard errors while a minus indicates that it is below.



13

The effect of a on the estimate of T is apparent from Table 4.1.

The levels for a - .90 are generally much more conservative than those for

- .80. Although not tabled, we found that this trend continued for a - .95.

The choice of a seems important. In this study the value of a - .80

produced the best results. Note that the Wald type test is slightly more

liberal, at a - .80, than the drop in dispersion test. The comparison of

interest is between D and F R(.8). Their empirical levels for the

symmetric distributions are quite close. This is true for the skewed con-

taminated normal; however, ia the case of the lognormal the levels of D are

much smaller.

For the empirical powers we only tabled the results, of the procedures.

based on a - .80. The table index for the alternatives is the parameter

- 2-1(HO)'(H(X'X)- 1H')- 1 HE where B is the vector of alternatives. Hence A

is the non-centrality parameter for the least squares F-test at the standard

normal.

For the normal distribution, least squares dominates, as it theoretical-

ly should, over all the R-procedures but not by that much. The R-proce-

dures essentially have the same power, among themselves. The reverse is true

for the contaminated normals where all the R-procedures are substantially

more powerful than least squares over all the designs. Among the R-proce-

dures, perhaps D0  has a slight edge. The same is true for the skewed

contaminated normals except that the R-procedures based on the new estimate

of T behave slightly better. For the lognormal distribution the new

R-methods are more powerful than D over all the designs. In this case the

procedure D0  tends to be conservative, especially in the large Design C;

however, even here it is more 0owerful than least squares.
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5. Consistency for the Scale Estimate

We will consider a more general estimate of T based upon a weighted

empirical distribution function given by

Ha(t) = a. *q( z. - zj , t) (5.1)
ni 1. 1

where Z is the vector of R-residuals given by (3.3) and the weights aij

are non-negative, La.. a 1, and satisfyii

2 2
n aij B2 (5.2)

n-1
for some constant B0. The unweighted case, a i (2)-td 2 provides the

estimate of t found in Section 3. Other weights can be used for special

purposes. For instance, in analysis of variance models and stratified sam-

pling models where the data arise naturally in groups, the use of weights a..13

- 0 if Z., Z. are from different groups would leave the estimate dependent

only on the within-group variation of the data. Estimates with this feature

have been proposed by Draper (1981). As in Section 3, for 0 < O < I define

an estimate of y by

Yn a H (t //n)I(2 t a//) (5.3)

where t is the ath quantile of H (t).~n

Consider a sequence of models Yn -n + en vhere n e 0n' Q

satisfies the assumptions (A.l) and (A.2), and the vector of errors e

satisfies (B.1). Since the estimator yn is translation invariant,without

loss of generality we will assume that the true value of P4 is U. Thesen

assumptions will hold for the remainder of the paper.

In order to facilitate the following proofs consider the subset M of
n

. ,.
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a n  defined by

Mn {n a Q < A1, (5.4)

where A > 0 is a given constant. By assumption (A.1) it follows that,

lir sup max lpin - Uinl - 0. (5.5)
rr-Pn EMn 1<iJ

For 6 > 0 we construct a covering Mn, ... , Myn of M as follows:

Let C be an n x p matrix whose columns form an orthonormal basis for 9 nn n

Let D - {e E RP: 11611 < Al, where A is given in (5.4). Since D is

compact we can find an integer K along with points ell ... ,8K in D such

that DZUDk where D, M {: IHe - 6k1 < 6}. Defining Mkn - Cn(Dk) for

k - 1, ... , K, it follows that H C UMkn. For any such covering of Mn k n

let

dikn sup{Pjn - "in: Pn ':4kn} (5.6)

dL i ,'kn
ijkn in - in: 0n

where k - I, ..., K and 1 < i j < n. We need the following inequality:

Le-mma 5.1. For > > 0 let Mln, ... n be the associated covering of

M . Then for k = 1, ... , K0

- I U L 2 2p(
(djkn-ijk n)

Proof:

Let c. denote the ith row of the matrix C . Then
in n

d .  su{C - c. )'0: E D }  Since D is compact we have d.
Ljkn J Ln k k ijkn

(C.n- C.n)'6U for some 8 k C 1 Similarly dk (C - c. )'8 t
in ijk ijk k* jkn jn in ijk

for some 8 L e Dk . By the Cauchy-Schwarz inequality we then obtain
U k k

Aa16-
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(1/n) [ (d. - dL )2 21 1- I2
i<j ijkn ijkn _<q (/n) IIc. il Le ik

< 2d42 O (/n) I (c ji - Cn) 2 2&2 P.

i ij jnj Itk jl

Define the process

R(/) i' H n) )- 2t-(,w h er e ' " H { t ./- nnt, Y1 )n a 2 itX ,~

where Hn(t/i/ , ry, Yn) =  .. *((Yjn - r.n)- (¥ '1. -n rn 1 , t/YW/l.

Lemma 5.2. Under the above assumptions, for ,n E Mn  and t > 0,

PnR (t, nnI Y ) o. 0 as n - m.
n ns n

Proof:

RnCt, nn - n ai CWj - 2 t y/n

where Wij =ClIYj-Yi-dLij t/n) and d = rijn - ni. Using

E(Wlj) = G(d +t/n) - G(d t/n)

=g(&ij ) (2t /Vn)

where - d Ij < t//n and y = g(0) , it follows that

E(R t,nn,Y)) 2t I aij(g(&ij) - g(O)).
i<j

By (5.2), (5.5), and the continuity assumed for g, E(Rn(t, nn Y)) * 0

as n-p.

Using assumption (5.2) and 1W ij < 1, a standard argument shows that

var(R n(t' nn' Yn)) -" 0 as n * With the mean and variance tending to

zero the lemma follows.

This lemma shows that In Hn(t/nisn., Y n)/2t converges in

probability to y but the result is not strong enough since an appropriate

t must be chosen to fit the data and the nuisance location parameter l
n

must be estimated. The following the'orem shows that the convergence in the
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lema is uniform and this will allow the construction of a suitable estimate

of Y.

Theorem 5.1. Let t0  and A. be positive numbers. Then

sup IRa(t, Y) O as n .
n Yn --nn n ' , Ot<t 0

Proof of Theorem 5.1

This proof is somewhat long and it will be divided into pieces with some

lemmas. Begin by choosing any c > 0. Choose 6 > 0 sufficiently small so

that 4I/fp g(O)B 6< C/6, there B is specified in (5.2). For this 6
00

form the coverings M.k, k 1 1,...,K and the extreme differences d and
formthe overngs k"ij kn

d.ik of (5.6). Choose S' > 0 so that 6g(0)6' < e/6. Partition the

interval T - [0, tJ0 into subintervals T ...,TM of width less than 6'.

For each m - 1,...,M let

t - sup(t: t e T } and t L . infft: t E T }.m m m m

Then for each m 1 1,... ,M

Itm tmL <  (5.7)

For each k - 1,... ,K and m 1 I,... ,M, define

1, if Y . e (d£ L -

j L ijkn m ijkn tL/aIn)

S..(k,m) or Y. - Y. e (d + t /Fn, :du
"" a i jk ijk + m

0, otherwise

for I < i c j < n and Qk,m Ia. .S(km).

Lema 5.3 For each k a 1,...,K and m ,

sup IRn(t, n, Y) - R n(t, n Y) C Qk,m + ZY6'
t,t'ET n

n. ML.................................................. ...,
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Proof: Fix k and m and write

R(t, t. Y) - R Ct', n', Y) - 'n a..(W. - w!.) - 2y(t - t')
n n i<j LJ Ij ii

I j i ijY L 1

S11. n in and d!.0 n! - !. Inspection of possible cases shows
i jn in ij jn in

that Wij - W' .< Sij(k,m) for all I < i < j < n, all ni, n' Mkn and

all t, t' e T . Then the lemma follows.

Since g is continuous at 0, there is a 6" > 0 such that Idl < 6"

implies g(d) < 2 g(O). Then from (5.5) there exists an integer N such

that

< dL < dU

< ijkn - ijkn < (V/2) (5.8)

for all k-,...,K, all I < i < j < n and all n > N 1

Lemma 5.4. For all k - 1,...,K and m 1 1,...,M,

(a) there exists an integer N2  such that

E(Qk,m) < (e/6) + 4 g(0)6' for all n > N2 , and

(b) var(Qk) - 0 as n -.
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Proo f:

E(Qk'm) - rn I a i j E(Sij(k'm))
I <21

M"w'n Z a 2 QG{(d k t L ) - G(dL - /tU, )Ii dijkn - ijkn tU

+ IG(dUjk + tU/,vn) - Gdj+ tL/Ar)]}

- "~ X- Gt~d/vkn

i<j+ [G21  U U/r)-G( L +t' tL )vI

(kj in))ijk ~ +j n - i n m+ g( iJ (k'm))[di kndi L +  t - tL rl

whr L < dU tL F L Lwhere dijkn- m < .. j n - dijkn - n and dijkn+ t/n<

V1 j (k,m) < diJkn+ t m/'n for all 1 < i < j < n.

Now there is an integer N2 > N1 such that t 0 /n < 6"/2 for all

n > N2. This along with (5.8) implies

-6" < & ij(k,m) < 6" and -&" < V i(k,inL < &"

for all 1 < i < j < n and all n > N2. Then by the choice of S" it

follows that

U L U LE(Q k, m) < rn 4 g(O) a. .[d ..k - d ijkn (t m - tm /

<.4g . - dL.k] + 4 g(O)d'< 0) L jij[dijkn ijkn

from (5.7) for all n > N2 ' Applying the Cauchy-Schwarz inequality and Lemma

5.1 and 5.2 yields part (a).

The second part of this lemma follows from Lemma 5.1 and the fact that

IS ij(k,m)J < 1 with a standard variance argument.

Choose an arbitrary E' > 0. For each k 1, ... , K and

a = I, ... , M choose a sequence rtn £ Mkn, n 1, 2, ... and a number
t Tk.

m .~
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Lemma 5.5. There exists an integer N3  such that

P('R. (m rk' Yn ) I  >  C/3) < E'/2KM I

for all k - 1, ... , all m -1, ..., M and all n > N3 .

Proof: Apply Lemma 5.2 for each of the finite number of pairs (k,m).

Witr these preliminaries completed, the proof of the theorem will now be

completed. For each k a 1, ..., K and m a 1, ..., M write

P( sup (Rn(t,nnY) >C)
teT m ,n rEn n n

k k

< P( sup IRn(trn,Y) -Rn(t ,nk,Y)I + IR (tmnn,Y_ )

< P(Qknm+2Y ' + iRn(tmkYn)>E)M n I l r

= P(Qkm-E(Qkm) +E(Qkm) +2 6 '+ Rn(tm+RY_)I >

kk

P(Q,m E(Qkm) + R( , + k' > 2/3)

k

P(,-E(Qk)>e/3)+P(IR (t'nn'Yn)I
- 'k,m k,m - n n n

2< (9W ) Var(Q,) + ('/2KM)

< C'IcfA

where Lemma 5.3 was used in the third line; Lemma 5.4 (a) and the choice of

6' were used in the fifth line; Chebyshev's inequality and Lemma 5.5 were

used in the seventh line; and the last line follows from Lemma 5.4 (b) since

the first term in the seventh line above can be made less than E '/2KM for
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all k,m for n sufficiently large, say for n > N4 > N3 . Finally,

P( sup IR(t,nn,Yn)i >e)
0<tct 0 , 9n.M

M K
I I P( sup R (t,rL ,Y_) > C)

m-i k-i tcT nMk n n

M K

m-i k-i

for all n >N and this completes the proof.

This leads to our final result for the parameter T. Define

T (/'-2 where y is defined in (5.3).
- P

Theorem 5.2. Under the assumptions (A.1), (A.2), and (B.1), Tna T,

for 0 < < I.

Proof: Assuming condition (A.2) holds, first note that (A.2) is equivalent

to the condition,

lim max ' ik l:- 0, for k I, ... , p,
n- l<i_ n

where x. is the (i,k)th element of any basis matrix X for Z . It
Lk n

then follows from Sievers (1983) that 11nI is bounded in probability

where Pn C 9 is the best R-predictor of Y . This can be used to selectn fl n

a A> 0 so that P(Il'nl1 > A) is arbitrarily small for sufficiently large
A p

n. From Sievers (1982), t -) t as n- where t is a positive

constant. Let tO of Theorem 5.1 be a number larger than t . Then by

Theorem5.i, IRn(tna , ln, Y n) 0 in probability and the conclusion

fo 1 lows.

. . . . . . ,,;- . ,,.,< : ... .- , , , . . . . : ,.. .:',..,
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n-Theorem 3.1 is the special case of Theorem 5.2 when a.j (f .
ij 2
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TABLE 4.1 EMPIRICAL 05 LEVELS

A. UNBALANCED 2 x 2 DESIGN

ERROR DISTRIBUTION

NORMAL CN SCN LOGNORMAL

HYPOTH HYPOTH HYPOTH HYPOTH

(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

LS 044 035- 059 026- 035 041 056 051 042 045 066 + 039

D 038 036 056 044 046 042 050 054 050 034 055 042

D(.8) 042 036 063 041 042 040 049 059 051 050 075 + 054

D(.9) 039 035- 060 032- 035- 029- 047 057 048 040 065 + 042

B(.b) 046 030- 064 042 043 044 052 065 + 061 057 087 + 061

B(.9) 044 032- 058 026- 032- 028- 046 054 052 U38 065 + 043

B. SMALL PARALLEL DESIGN

(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

LS 057 044 053 024 038 027 039 040 031 044 047 038

D 053 038 045 040 038 029 041 043 038 048 040 042

D(.8) 056 046 045 036 038 028 040 047 041 060 045 051

D(.9) 051 040 043 028 024 019 039 036 034 046 034 033

B(.8) 056 048 059 033- 040 041 047 052 050 067 + 050 073

B(.9) 050 040 048 025 026 024 033 035 027 044 030 046

C. LARGE PARALLEL DESIGN

(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

LS 053 043 057 033 033 029 045 046 045 036 045 03b

DO  054 044 U56 050 048 046 047 048 040 030 039 027

D(.8) 051 047 056 048 046 044 048 050 042 050 064 049

D(.9) 053 045 053 039 046 035- 042 046 040 042 046 040

B(.8) 057 049 063 047 047 045 044 049 046 055 065 + 062

B(.9) 052 049 059 032" 039 028- 038 043 037 037 047 045
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Table 4.2 EMPIRICAL POWERS: Normal Distribution

A. UNBALANCED 2 x 2 DESIGN

H0 1  H02 H03

A 0.0 1.3 3.0 6.9 0.0 1.3 3.0 6.9 0.0 1.7 3.4 10.
LS 044 346 642 950 035 335 645 951 059 421 695 985
D 038 324 608 926 036 315 599 939 056 390 655 979
D(.8) 042 324 600 924 036 320 601 936 063 383 657 978
B(.8) 046 322 591 913 030 318 583 931 064 376 641 976

B. SMALL PARALLEL DESIGN

H0 1  H02 H03

0.0 2.0 3.2 7.3 0.0 1.9 3.3 7.3 0.0 .9 1.6 3.4
LS 057 464 650 938 044 466 666 947 053 180 304 550
D 053 42b b15 923 038 418 614 925 045 157 241 471
D(.8) 056 424 622 922 046 412 616 922 045 155 252 463
B(.6) 05b 425 602 912 048 402 608 922 059 159 252 497

C. LARGE PARALLEL DESIGN

H0 1  H0 2  H0 3

0.0 2.5 5.0 7.2 0.0 2.8 6.2 10.1 0.0 5.5 8.8 14.0
LS 053 562 854 951 043 655 933 994 057 823 944 995
D 054 533 635 933 044 621 919 989 056 790 933 993
D(.a) 051 531 835 937 047 623 918 989 056 783 934 991
B(.8) 057 530 832 935 049 607 912 987 063 773 936 989
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TABLE 4.3 EMPIRICAL POWERS: Contaminated Normal Distribution

A. 2 x 2 UNBALANCED DESIGN

HH H
H0 1  02 03

A 0.0 2.3 6.9 12.3 0.0 2.3 6.9 12.3 0.0 3.4 10.0 28

LS 026 183 350 497 035 186 339 478 041 221 423 707

D 044 392 699 863 046 382 677 865 042 422 804 976

D(.8) 041 387 682 858 042 368 663 852 040 414 793 972

B(.8) 042 364 664 858 043 353 661 862 044 403 799 978

B. SMALL PARALLEL DESIGN

H0 1  H02 H03

A 0.0 2.0 3.2 7.3 0.0 1.9 3.3 7.3 0.0 2.3 4.8 8.2

LS 024 152 222 391 038 156 228 393 027 114 219 327

D 040 243 369 673 038 264 388 666 029 192 370 584

D(.8) 036 227 367 670 038 255 377 653 028 181 353 580

B(.8) 033 220 352 663 040 242 362 640 041 181 358 581

C. LARGE PARALLEL DESIGN

H0 1  H02 03

x 0.0 2.5 5.0 7.2 0.0 2.8 6.2 LO.1 0.0 5.5 8.8 14.0

LS 033 137 246 310 033 178 320 435 029 208 291 436

D 050 308 551 734 048 396 687 875 046 503 705 865

D(.8) 048 298 552 730 046 387 666 871 044 501 710 865

B(.8) 047 295 544 732 039 341 661 845 045 490 716 876
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TABLE 4.4 EMPIRICAL POWERS: Skewed Contaminated Normal Distribution

A. 2 x 2 UNBALANCED DESIGN

H01 H0 2  H03

0.0 3.0 6.9 12. 0.0 3.0 6.9 12. 0.0 1.7 3.4 10.

LS 056 299 536 739 051 296 545 759 042 181 322 b37

D 050 385 726 882 054 405 726 906 050 256 440 818

D(.8) 049 400 733 899 059 411 733 914 051 266 454 837

B(.8) 052 392 722 896 065 405 729 918 061 267 437 832

B. SMALL PARALLEL DESIGN

H i  H2 H3
H01 (302 H03

A 0.0 2.0 3.2 7.3 0.0 1.9 3.3 7.3 0.0 2.3 4.8 8.2

LS 039 208 306 532 040 208 312 556 031 171 310 460

D 041 263 388 b78 043 277 402 711 038 217 403 598

D(.8) 040 276 397 692 047 272 404 708 041 214 404 616

B(.8) 047 266 389 689 052 259 401 693 050 215 408 609

C. LARGE PARALLEL DESIGN

H0 1  H02 H03

0.0 2.5 5.0 7.2 0.0 2.8 6.2 10.1 0.0 5.5 8.8 14.0

LS 045 227 411 535 046 274 481 671 045 338 491 669

D 047 363 619 762 048 396 705 885 040 540 720 898

D(.8) 048 376 622 768 050 400 715 6S3 042 558 731 902

B(.8) 044 367 621 767 049 396 709 885 046 562 733 900
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TABLE 4.5 EMPIRICAL POWERS: Lognormal Distribution

A. 2 x 2 UNBALANCED DESIGN

H0 1  H02 H03

0.0 1.3 3.0 6.9 0.0 1.3 3.0 6.9 0.0 1.7 3.4 10.

LS 045 167 335 543 066 196 329 583 039 234 381 695

D 034 2bO 516 807 055 274 507 826 042 365 602 924

D(.8) 050 371 *25 867 075 371 b38 882 054 480 716 957

B(.6) 057 353 b37 882 087 352 633 894 061 482 713 964

9. SMALL PARALLEL DESIGN

H0 1  H02 H03

x 0.0 2.0 3.2 7.3 0.0 1.9 3.3 7.3 0.0 .9 1.6 3.4

LS 044 236 338 582 047 240 367 588 038 090 143 274

D 048 345 480 775 040 330 501 784 042 120 183 369

D(.8) 060 430 593 848 045 430 615 853 051 152 239 475

B(.8) 067 419 590 850 050 408 612 867 073 173 244 475

C. LARGE PARALLEL DESIGN

H101 H02 H03

A 0.0 2.5 5.0 7.2 0.0 2.8 6.2 10.1 0.0 5.5 8.8 14.0

Lb 03b 265 441 559 045 280 485 655 036 374 521 b89

D0  030 470 753 888 039 497 828 938 027 664 836 953

D(.8) 050 613 850 937 064 649 895 969 049 812 921 976

B(.8) 055 612 870 949 065 658 906 980 062 832 938 991
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