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The robust analysis of linear models based on R-estimates involves an
estimate of a scale parameter which is used in the analysis as a standard-
izing constant. The consistency of previous estimates of this scale para-
meter required that the underlying errors be symmetrically distributed. This
assumption is not always warranted, for instance in survival models. A new
estimate is proposed for the scale parameter and it is shown to be consis-
tent for nonsymmetric and symmetric error distributions. With this new scale
estimate, a complete robust analysis of a linear model can be accomplished
without assuming symmetry. The small sample properties of the analysis are

examined in a Monte Carlo study of several different situations.

, .

Some keywords: general linear hypothesis; linear model; R-estimates; rank
statistics; regression; robust analysis.




1. 1Introduction and Summary.

McKean and Hettmansperger (1976, 1978) proposed a robust analysis of
linear models based on Jaeckel's (1972) robust R-estimate of regression
coefficients., This analysis is analogous to the least squares analysis of

variance, indeed the geometry of the two analyses are quite similar, McKean

and Schrader (1980). The R-analysis is also a generalization of R-proce-
dures in the simpler location problems and, in particular, it inherits their
asymptotic relative efficiency properties with respect to least squares.
Small sample power studies, Section 4 and Hettmansperger and McKean (1983),
support these asymptotic efficiencies. The R-analysis, thus, offers the
user a versatile, robust alternative to least squares for analyzing linear
models.

The R-analysis requires the estimation of a scale parameter, T, which
is used as a standardizing factor in the associated R-test for a general
linear hypothesis and in the standard error of an R-estimate. The estimate
of T proposed by McKean and Hettmansperger (1976) is consistent under the

assumption of symmetrically distributed errors. There are many situations,

though, when the assumption of symmetry is unrealistic. For example many of
the parametric models used for survival time have §kewed distributions, see
Chapter 2 of Miller (1981). 1In accelerated failur; time models, Chapter 2 of
kalbfleisch and Prentice (1980), the log of survivor time is cast in a linear
model whose error structures have skewed distributions. Many of these skewed
distributions also have long tails in which case a robust analysis is espe-
cially attractive.
In this paper we propose an estimate of 1t for the case of Wilcoxon

scores. The proof of its consistency, Sections 3 and 5, does not require

symmetry. Using this estimate of scale the R-analysis of McKean and




Hettmansperger is asymptotically valid for both symmetric and non-symmetric

error distributions. Further, ag noted in Section 2, by utilizing the theory
of Sievers (1983) the asymptotic theory of the R-analysis based on Wilcoxon
scores can be obtained under much milder regularity conditions on the design
matrix than those assumed by Jureckova (1971) and Jaeckel (1972).

Asymptotic theory serves as a useful guideline for the R-analysis but
for practical use an investigation of its small sample properties is required
as discussed in Section 4. The estimate of T 1is based on residuals and
certain small sample corrections are necessary for its use in standardizing
the R-test statistics. We present the results, Section 4, of a Monte Carlo
study which included both symmetric and skewed distributions over several
different designs. On the basis of this study, the R-analysis utilizing the
new estimate of T performed as well as that using the old for the symmetric
distributions and performed better for the skewed distributions. Both the
old and the new were robust with respect to least squares. On the basis of
the theory and this study, we would recommend using the R-analysis with the

estimate of T found in Section 3.

2.1 Notation and assumptions.

Let Y be an n x 1 vector of observations which follows the linear

model
Y=ol + XB + ¢ (2.1)

where a is the intercept parameter, | denotes an n x 1l vector of ones,
8 is a px 1l vector of parameters, X is an n x p design matrix, and e
is an n x 1| vector of independent and identically distributed errors which

have the common density function f(x). We will assume that X has full

i




column rank p and, since the model includes an intercept parameter, that

the column averages of X are zero. We denote general linear hypotheses

H,): H8 = 0O versus HA: HB ¥ O, (2.2)

where H 1is a q x p matrix of full row rank.

Let Q denote the column space of X. We can express the model (2.1)

equivalently as

Y=p +ex, uef (2.3

where e* = al + e. Letting w denote the (p - q) -dimensional subspace of

Q constrained by HB = 0, the hypotheses (2,2) can then be expressed as

Ho: Yy EW versus HA: e Nuw

Let PQ denote the projection matrix onto §.

The asymptotic distribution theory discussed in this paper requires some
assumptions on the subspace Q and the underlying density f(x). We will
consider sequences of subspaces Qn’ indexed by the sample size n, which

have a common dimension p and which satisfy

lim max h.. =0 (A.D
0+ 1<i<n iin

where hiin is the 1ith diagonal element of the'projection matrix PQ . For
n

asymptotic inference concerning B we will further assume that the sequence

of design matrices Xn satisfies

lim -‘1‘- X' X = I, L is positive definite. (4.2)

We will often suppress the subscript n on Q and X.
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For the density function £(x) we will assume the following:

i

: J

(i) f is absolutely continuous; i
1

(ii) O /078 dax < (8.1) ;
(iii) v = [12Y%7%ax)7) < o,

2.2 R-analysis.

A e L

The part of model (2.1) involving B is often termed the deviations
from means model. Least squares inference for B is based on the squared
semi-norm

ull2 = 5o, - D%, e s, (2.4)

which can also be written as

ulf 2= o7'f S, = up? (2.5)
1<) .

For the Wilcoxon inference on B8, the squared differences in (2.5) are

replaced by the absolute differences; that is, the R-semi-norm is given by

.

Hullg = (2(a + 1)//T§)§<§lui - ul, e R". (2.6)

The factor in parentheses is a standardization constant. The R-semi-norm
can be expressed more familiarly as

Hullg = ¢12/Ca + I ] (RGu)) = (o + D/2)u,

where R(ui) is the rank of u, among ui, sees UL, see Hettmansperger and
McKean (1978).

The estimate of B obtained from this semi-norm, that is, a value of B8
which minimizes ||Y - XBI]R, is the R-estimate proposed by Jaeckel (1972)
for Wilcoxon scores. In terms of Model (2.3), McKean and Sclirader (1980)

defined Mg 4as a best R~predictor of Y when 1Y mininmizes

SRR 107 =~ -~ FAC 7 i .Ji




[y - u||R, u e Q. Jaeckel obtained the asymptotic distribution of these
R-estimates under conditions more restrictive than those above; however,
Sievers (1983) showed that under (A.1), (A.2), and (B.l) the distribution of
éR is approximately N(B, TZ(X'X)-I) where T is defined in (B.1).

The least squares test statistic of the hypotheses (2,2) is based on a
comparison of the squared distance, in terms of the norm (2.4), between Y

and each of the subspaces w and Q. Analogously McKean and Hettmansperger

(1976) proposed as an R-test statistic

w''R ' 'R
FR - (» - q)i/2 (2.8)

where B, and Mo are best R-predictors of Y from the subspaces w and

-

Q@ and T 1is an estimate of 1. Similar to least squares, the numerator of

The test is to reject HO in favor of HA for large values of FR.

and Hettmansperger showed that under Ho and regularity conditions,

4

r

L FR is a comparison of R-distances between Y and the subspaces w and .
| McKean
(p - q)FR nas an asymptotic chi-squared distribution with (p - q) degrees
of freedom, provided T is a consistent estimate of T. Using Sievers'

(1983) development, the conditions (A.1l), (A.2), and (B.1) suffice for the

regularity conditions.

A Wald type of test for HO’ based on the full model R-estimate, is to

reject Ho for large values of the statistic,
-~ -1 - K'
@) ' (x'x) " H) T (udy)
B = =3 (2.9)
(p-q)t

Unlike their least squares counterparts the R-statistics B and FR are
not algebraically equal; however they have the same asymptotic null distri-
bution and asymptotic relative efficiency, see Hettmansperger and McKean
(1983)., The statistic B Lis similar to Bickel's (1976) test based upon

pseudo-observations obtained from an M-estimate of 8,
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Although the asymptotic theory suggests chi~squared critical values,
from previous Monte Carlo studies we have found it best to compare the sta-
tistics FR and B with F~critical values having p-q and n - p

degrees of freedom. This is discussed further in Section 4,

3. Estimate of T,
i

In order to use the R-analysis, the scale parameter T, (B.l), needs
to be estimated. In the simple location problem under the additional assump-
tion of a symmetric distribution, Lehmann (1963) proposed a consistent esti-
mate of T Dbased on the length of a distribution free confidence interval
for the location parameter. For the R-analysis of linear models, McKean and
Hettmansperger (1976, 1978) proposed using Lehmann’'s estimate of T computed
from the residuals. Under the assumption of symmetrically distributed errors
they showed the estimate was cousisteant. For the asymptotic distribution
theory of the R-analysis, though, this was the only place where symmetry was
invoked, In this section we propose a new estimate of T and show that it
is consistent under the assumptions (A.1), (A.2), and (B.l). The R-analysis
of Section 2.2 can thus be employed for both symmetrically and nonsymmectri-

cally distributed errors.

We find it more convenient to work with the parameter y defined by
v~ (20t .t (3.1)

Note that the difference of a pair of error random variables,

ei* - ej* - e - 'j’ has as its density,
gle) = S E(x)f(x - ¢t)dx. (3.2)

This suggests estimatiag Y with an estimate of g(0).




Let Z denote the vector of R-residuals,

~

Z=Y - Mp (3.3)

where Mg = XBR is a best R-predictor of Y from . We are interested in
the differences of the residuals, Zi - Zj’ and since these are symmetric
about 0, we need only consider the set of lZi -zj| for i < j. The

corresponding empirical distribution function is

: ~ ‘1
i G () = <;) I ¢(|zj -z, 0 (3.4)
1<)

where ¢(u,v) =1 or 0 if u<v or u>v. Our estimate of y is a

measure of the slope of Gn at 0, namely

-~ ~

Y = G (¢ /Fa)/(2e //m) (3.5)
n Q a

where t, is the ath quantile of Gn(c). The corresponding estimate of <t

is
T = (1297, (3.6)

Some discussion on the choice of a can be found in Section &.

a

The consistency of T 1is noted in the following theorem which is

proved in more generality in Section 5.

Theorem 3.1. Consider a sequence of linear models which satisfies assump- §
tions (A.1l), (A.2), and (B.l). For O <a < l, 4 T,
If T is estimated by T of (3.6) then the R-analysis discussed in

Section 2.2 is asymptotically valid for both symmetric and non-symmetric

e T v S o

error distributions. It can thus be used for instance in the applications

-~

mentioned in Section 1. The small sample properties of T are discussed in

the next section.




A

The algorithm we employ to compute Y is an iterative procedure which

-~

exploits the relationship between Gn and the Wilcoxon two sample process

o)

defined below. This procedure avoids the storage and sorting of the (2

differences, requiring oanly vectors of length 2n.

In order to define the two sample process consider as one sample the
residuals Zl,...,Zn and as a second sample exactly the same set of
residuals. The Wilcoxon process is

n )
W t)= L RZ, -t)-nln+ 1)/2
n . i
i=1
where R(Zi - t) denotes the rank of Zi - t among

Z1 - t,...,Zn -t, Zl,...,Zn. For t > 0, it can be sho cnat

- n,-1
Gn(t) 1 - (2) wn(t).

5ly (¢) = a,
2 n a

which can be solved iteratively using a modified version of regular falsi

The quantile L, can be obtained by solving the equation 1 —(

similar to the algorithm presented by McKean and Ryan (1977).

In the simple location problem Schweder (1975) proposed an estimate of Yy
which is basically a window estimate and he recommended a uniform window sym-
metric about zero. Assuming Moo= 0 for all i so that no nuisance parame-

ters need be estimated, his estimate is

2.
iz,-q’(“i - Yil, h,/2)/n"h
= ((n - 1)/n)Gn(hn/2)/hn + (l/nhn)

a Gn(hn/Z)/hn

where hn is the width of a uniform window. The estimate (3.5) is seen to

-1/2). In

be similar to this type of estimate with a window width of Op(n
proving consisteacy and asymptotic normality, Schweder assumed the window

width satisfies sn hn + » ruling out the O(n-llz) cases, and recommended

)
%
E
b




~1/3

h = 0O(n ).
n

-

Our estimate Y differs from Schwcder's estimate by allowing for the
estimation of nuisance parameters in using residuals rather than 1iid vari-
ables. Also it uses a window width estimated from the data. In an actual

application of Schweder's estimate the choice of an appropriate s for

-1/3
sn

h 1s difficult to make and his Monte Carlo study indicates that

n

the bias of the estimate 1s sensitive to the cholce made.

4, Small Sample Properties

In this section we discuss a Monte Carlo study of the performance of =t

FR and B in several small sample cases that reflect problems arising in

practice. The results show that some modification is necessary to obtain
satisfactory results. After some small sample corrections are made, the new
R-method performs quite well., It is a definite improvement over the old
R-method for nonsymmetric distributions and is superior to least squares

methods in maintaining level and power for nonnormal distributions.

The performance of T as an estimate of T <can be studied by examining

bias and mean square error. Instead of this we chose to examine directly how

A

well T standardizes the Ltest statistics FR and B. The inclustion of B

in the studyv gives information on how well T performs for confidence inter-

vals since confidence regions for 8 based on BR..can be obtained byv

inverting the test statistic B for appropriate H matrices.

The scale estimate ; 1s based on residuals which tend to be less vari-
able than independent observations. This effect diminishes for large sample
sizes, but for smaller sample sizes the dependence among residuals may cause

to regularly underestimate T. An indicarion of this effect is shown in

Figure 4.1. This figure shows graphs of the empirical distribution functions

ke _—
L e ot Ay Rt R S
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functions of the differences Iei - ej| of random errors and of the
differences of R-residuals IZi - Zjl for one simulation of lognormal
variables in design A below. This figure is typical of many others we have
examined. Note that the differences of R-residuals are stochastically
smaller than the differences of the independent observations. As a result,
the estimate of slope ; is larger for residuals than for actual errors and
the reciprocal is then biased downward.

One of the more successful corrections we considered was the standard

least squares correction, namely,

-~

T* = ;(n/(n - p))l/z.

(4.1)

As noted in Figure 4.1, this has the effect of increasing the horizontal
coordinate used in the slope estimate and thus decreasing the slope.
Another small sample correction that improved the empirical results is
to use a critical value from the F distribution with p - q and n - p
degrees of freedom instead of a chi-square critical point. The R-analysis

then uses the same critical values as the least squares analysis.

4.2 Monte Carlo Study

The empirical study here considers the tests based on FR and B with
t* of (4.1) used in the denominator. Results ar} reported here for Tt1*
based on quantiles & = ,80 and .90 with the corresponding test statistics
denoted FR(G) and B(a). The rank statistic of Hettmansperger and McKean
(1976, 1978), which is appropriate for symmetric error distributions, is also
included and denoted by Fo. It uses the numerator of FR standardized by

Lehmann's estimate of T (see section 3)., The specific estimate we used is

given in formula (2.7) of Hettmansperger and McKean (1978) based on an 30%

e, SR AP




confidence level and with the same small sample correction as expressed in
(4.1) here. The least squares analysis, denoted by LS, 1is also included to
provide a reference point and . show the potential gain in using the
R-analysis instead of the classical analysis,

The R-analyses were computed by using the k-step R-estimates with
k = 2. McKean and Hettmansperger (1978) noted the close agreement between
the analyses based on the 2-step estimates and those based on the fully
iterated estimates, which we have confirmed in a small pilot study. The
analyses based on the k-step estimates have the same asymptotic properties
while taking much less time to compute. The M-estimates of Huber (1973)
were used as starting values. The estimates of 1t were computed by an
iterative routine as noted in Section 3. The actual algorithms used are des-
cribed in Hettmansperger and McKean (1983),

We examined the behavior of the tests over three designs. One was the
same unbalanced 2 x 2 design considered by McKean and Hettmansperger (1978)
which has cell sizes of DTNy, T 8 and Ny = 0y = 5. We considered
average row effects the same;

the three hypotheses: H average

01° Hp2o

column effects the same; and H no iteraction. For this design, which

03’
we label A, the sample size is 26, p =4, and p - q =1 for all three
hypotheses.,
The other two designs each involve two regression lines. The design
matrices are of the form,
- (s

For design B the 1 denotes a vector of 10 omnes and x 1is the vector
(-1,-.8,...,-.2,.2,...,1)", Design C was a larger version of B, with the
x vector consisting of the 20 values, (-1, -.9,...,.1, .1,...,10', For

each design we considered the three hypotheses: HOl’ same intercept; HOZ’
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same slope; and H same regression line. Thus the sample sizes for the

03’
designs are 20 and 40, p 1is 4 for both designs, and p - q 1is ]l for
the first two hypotheses and 2 for the third hypothesis.

Four error distributions were considered in this study. Two of the dis-
tributions were symmetric: the standard normal (N) with distribution fune-
tion ¢(x) and a contaminated normal (CN) with distribution function
F(x) = .85¢(x) + .15¢(x/7). The other two distributions were skewed: a
lognormal (L) with distribution function F(x) = ¢(log x) and a skewed
contaminated normal (SCN) with distribution function
F(x) = 820 (x) + .18%((x - 1.,9)/13.5). The last is a moderately skewed dis-
tribution proposed by Draper (1981).

The normal variates were obtained by the transformation on a pair of
uniforms as proposed by Marsaglia and Bray (1964) while the uniforms were
generated by the algorithm UNI developed by Gross (1979).

For each situation, a design and a distribution, we ran 1000 simula-
tions. Both empirical levels and powers were investigated. We chose alter-

natives to give, for the most part, a spectrum of the power curves.

4.3. Results.

We will summarize our results for the tests in terms of empirical levels
and powers for three alternatives. For a nominal i.05 level, the empirical
levels are recorded in Table 4.1 and the powers are in Tables 4.2 - 4.5, The
results for nominal levels .01 and .10 were similar, Since the results
are based on 1000 simulations, two standard errors for the levels is about
014, 1In Table 4.1 a plus indicates that the value is above .05 by two

standard errors while a minus indicates that it is below.




The effect of a on the estimate of T 1is apparent from Table 4.1.

The levels for o = .90 are generally much more conservative than those for
a = .80. Although not tabled, we found that this trend continued for a = .95,
The choice of o seems important. In this study the value of o = .80
produced the best results. Note that the Wald type test is slightly more
liberal, at a = .80, than the drop in dispersion test. The comparison of
interest is between D0 and FR(.S). Their empirical levels for the
symmetric distributions are quite close. This is true for the skewed con-
taminated normal; however, in the case of the lognormal the levels of D0 are
much smaller.

For the empirical powers we only tabled the results of the procedures
based on a = .80. The table index for the alternatives is the parameter

IH')-lﬂﬁ where B 1is the vector of alternatives. Hence A

A =27 gy (ax "
is the non-centrality parameter for the least squares F-test at the standard
normal.

For the normal distribution, least squares dominates, as it theoretical-
ly should, over all the R-procedures but not by that much. The R-proce-
dures essentially have the same power, among themselves. The reverse is true
for the contaminated normals where all the R-procedures are substantially
more powerful than least squares over all the designs. Among the R-proce-
dures, perhaps D0 has a slight edge. The same is true for the skewed
contaminated normals except that the R-procedures based on the new estimate
of T behave slightly better. For the lognormal distribution the new
R-methods are more powerful than D0 over all the designs. 1In this case the

procedure D0 tends to be conservative, especially in the large Design C;

however, even here it is more powerful than least squares.
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5. Consistency for the Scale Estimate

We will consider a more general estimate of T based upon a weighted

empirical distribution function given by

H () = la.e(lz, ~2.], 0 (5.1)
a i<j i) i 30
where 2 is the vector of R-residuals given by (3.3) and the weights aij
are non-negative, Zaij = 1, and satisfy
2~ 2 2
n ) ij :Bo (5.2)

for some constant BO. The unweighted case, aij = (;) 1, provides the
estimate of T found in Section 3. Other weights can be used for special

purposes. For instance, in analysis of variance models and stratified sam-

pling models where the data arise naturally in groups, the use of weights a5

20 if Zi, Z, are from different groups would leave the estimate dependent

only on the within-group variation of the data. Estimates with this feature
have been proposed by Draper (1981). As in Section 3, for 0 < a <l define

an estimate of Y by

Yoo = By (€ /(2 ¢ /R (5.3)

-

where ty is the ath quantile of Hn(t).
Consider a sequeance of models Y =y + e where u € Q , Q
n n n n n’ 'n

satisfies the assumptions (A.1) and (A.2), and the vector of errors e
satisfies (B.1), Since the estimator Yo is translation invariant,without
loss of generality we will assume that the true value of Hn is 0. These

assumptions will hold for the remainder of the paper.

In order to facilitate the following proofs consider the subset Mn of

LR

T
e W

s




Q, defined by

M o~ {uea: [{u]] < 8}, (5.4)

where 4 > 0 1is a given constant. By assumption (A.l) ir follows that,

lim sup max

- | =o0. (5.5) i
me b EM 1<i<j<n ta

Iujn
For & > 0 we construct a covering Mln’ ceey M'Kn of Mn as follows:

Let Cn be an n x p matrix whose columns form an orthonormal basis for Qn .
Let D = {8 e RP: ||8|] < A}, where & is given in (5.4). Since D is

compact we can find an integer K along with points 91, ’eK in D such

that Dcsgnk where D, = {8: |{o - ekH < 6} Defining M, =C (D) for

k=1, ..., K, it follows that MnC ngn For any such covering of Mn

let

U

ijkn
L . ,
i1jkn = mf{‘ujn in' ¥n € Mkn L

d = sup{_ujn LIPS &:Mkn} (5.6)

d
where k=1, ..., K and 1< i <j< n., We need the following inequality:

Lemma 5.1, For & >0 let M, , ..., MK be the associated covering of
—_—— in n

Mn. Then for k=1, ..., K

1y .U L |2 2
n igj(dijkn-dijkn) <265

Proof:

Let cin denote the ith row of the matrix Cn' Then

U

- - 'Qge i 1 -
dijkn sup {(cjn c.m) 9:0 ¢ Dk}' Since Dk is compact we have dijkn

- o U U P L - gL
(cjn cin) eijk for some eijk €D . Similarly dijkn - (cjn e, ) aijk
for some 6 ¢ D . By the Cauchy-Schwarz inequality we then obtain

13k Tk

L e ~
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U _ L 2 -
(I/n)igj(dijkn i) < /) flegy

2,,.0 L 2
i<]

C.
i

2E - 2,2
< 28 l.l(l/n)igj(cjzn ciln) 28p.

Define the process

R (e, n, Y)= JEHn(c/JrT; n, ¥) - 2y,
where Hn(t//;, L Yn) = .Z.aij ¢(|(an - njn)~ (Yin - nin)l’ t/ ).

i<]

Lemma 5.2. Under the above assumptions, for n, € Mn and t > 0,

P
Rn(t, N, Yn) >0 as n -+ =,

Proof:
R (£,n ,Y ) = Ja 1Zj a4 ¥ 5 -2ty//n)
where “13 = ¢(JYj"Yif-dijl . t/fg) and dij = njn = Ny, Using

EW,,) = G(dij+t//r7) - G(dij—t//n—)

13

= g(Eij)(Zt//rT)

where ‘Eij - dijl <t//n and Y = g(0), it follows that

U U

ER_(t,n,Y)) = 2t igj 2,5 (88 ) - &) .

By (5.2), (5.5), and the continuity assumed for g, E(Rn(t, L Yn)) -0
as n > o>,

Using assumption (5.2) and lwij' <1, a stgndard argument shows that
vat(Rn(t, R Yn)) + 0 as n + = With the mean'and variance tending to

zero the lemma follows.

This lemma shows that /a Hn(t//;, nn, Yn)/2t converges in
probability to ¥ but the result is not strong enough since an appropriate

t must be chosen to fit the data and the nuisance location parameter ﬂn

. ——— s T -

must be estimated. The following theorem shows that the convergence in the

{

LR

h+
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lemma is uniform and this will allow the construction of a suitable estimate

of «y.

Theorem 5.1. Let ty and A be positive numbers. Then

sup IR (¢, L Yn)l L0 as n = i
n_eM ,O<t<t,
n an’ ——0

¥ Proof of Theorem 5.1

This proof is somewhat long and it will be divided into pieces with some

lemmas. Begin by choosing any € >0, Choose § > 0 sufficiently small so

that 4/7p g(O)Bo §<€/6, .nere B, is specified in (5.2). For this &

. - . U
form the coverings Mkn’ k l1,...,K and the extreme differences dijkn and
d?jkn of (5.6). Choose &' > 0 so that 6g(0)8' < ¢/6., Partition the

interval T = [0, ¢t into subintervals Tl""’T of width less than §'.

0J M

For each m = 1,,..,M let
U L .
t. = sup{t: t e T} and t = inf{t: t € T }.
m m m m
Then for each m=1,...,M

u
m

|e) - b < 4. (5.7)
m

For each k=1,...,K and m=1,,..,M, define

1, if Y, -¥, e (. - 0m, dv. - B
] 1 1)kn m 1jkn m
S..(k,m) = or Y. - Y. ¢ (dL + tL//; 5du + tU//n)
ijths ;TN ijk "t M Y5k T e

0, otherwise

for 1 <i <j <n and Qk " /rTZaijSij(k,m).
’ 1<j

Lemma 5.3 For each k=1,...,K and m=1,...,M

sup |Rn(t, n, Y) - Rn(t', n', Y)| :-Qk ot e
T ’




Proof: Fix k and wm and write

R(t,n, ¥)-R(t', n', Y)=rn]}a (W
n n 1)

W) - 2v(e - ")
i<j i) 1}

where W.. = ¢(|Y, - Y. - d..|, t/70), W!. = &(JY, - Y. -d!.|, t'//A),
1] ] 1 1] 1] J L 1]

= - ' om ot - n! : :
ij njn Min and dij njn Mne Inspection of possible cases shows
that !wij - W;jl :_Sij(k,m) for all 1 <i <j<n, all n, n' e Mkn and

all ¢, t' e Tm' Then the lemma follows.

Since g 1is continuous at 0, there is a §&" >0 such that |[d| < &'

implies g{(d) < 2 g(0). Then from (5.5) there exists an integer N, such

that

" L U "
(=8"/2) < 4 ikn = Yjkn = (8"/2) (5.8)

for all k=1,...,K, all 1 <i <j<n and all n >N

Lemma 5.4, For all k=1,...,K and m=1,,..,M,

(a) there exists an integer N, such that

E(Qk,m) < (e/6) + 4 g(0)§' for all n >N and

(b) vat(Qk m) +0as n - =,




B Q) = 0 [ ayy E(s;,(k,m))

i<j
AL 13 {60 g = €2 - Gaaly, - ey
[c;(dijk +e0/V) - G(dli‘jknﬂi//r'f)]}
1§j a3 {8y () 1a)yy ~db vl - el /)
| ey Gom)ldyy, ~di o+ (el - byl
where dijk cg//' £g4(kom) < ijkn- :i/ﬁ? and dF, + t;//;-g

13kn
vij(km)<dijk+t//° forall 1<i<j<n.

Now there is an integer N, > N, such that ¢ /7" < §"/2 for all

4]
n > N,. This along with (5.8) implies

-§" < Eij(k,m) < 8" and -§&" < Viy (k,m) < &"

for all 1< i< j<n and all n > N,. Then by the choice of §" it

follows that

U L U L
B(Q ) < /a4 g(0) igj 35 ik T jen * (E g Tt ]
v L '
< 4 g(0) /a 1§j 2509 5kn ™ Yijal * 4 808

from (5.7) for all =n > N,. Applying the Cauchy-Schwarz inequality and Lemma

5.1 and 5.2 yields part (a).
The second part of this lemma follows from Lemma 5.1 and the fact that

ISiJ.(k,m)l <1 with a standard variance argument.

' Choose an arbitrary €' > 0. For each k=1, ..., K and

m=1l, ..., M choose a sequence q eM.k »n =1, 2 ..., and a number

tm € Tn.




F""""-"""""""""""""""""""""""""'l'-'----;;--—-—-—-r—-‘!

Lemma 5.5. There exists an integer N3 such that

!
PCR (e, n%,Y )| > €/3) < €'/2KNM l
" m n n -

for all k=1, ..., ¥, ail m=1, ..., M and all n > N3. :
Proof: Apply Lemma 5.2 for each of the finite number of pairs (k,m). a

Witr these preliminaries completed, the proof of the theorem will now be

completed. For each k=1, ..., K and m=1, ..., M write

P(  sup [Rn(t,nn.Yn) [>€)

ca‘rm, r1ueMkn

k
<PC sup R (€,n,Y ) - R (t ,n

tEI n
m, !‘EMkn

Y]+ IR (e 0S¥ )] 2 0)

[A

P(Q ,+2v8"+ [R N )| 2 e)

' k.
P(Qk,m-E(Qk,m)+E(Qk,m)+2Yé + Rn(tm’nn’Yn)‘l Z e)

P(Qk,m- E(Qk,m) + iRn(tm’ n:,Yn) l > 2¢/3)

(I

A

P(Qk,m— E(Q ) 2e/3)+ P(]Rn(tm,n::,Yn)] >€e/3)

| A

9/¢%) Var(q, ) + (¢'/2k4)

< e'/KM

where Lemma 5.3 was used in the third line; Lemma 5.4 (a) and the choice of
§' were used in the fifth line; Chebyshev's inequality and Lemma 5.5 were
used in the seventh line; and the last line follows from Lemma 5.4 (b) since

the first term in the seventh line above can be made less than ¢ '/2KHM for

A
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all k,m for n sufficiently large, say for n > Nal N3. Finally,

P( sup IRn(t,nn,Yn)lze)
Oitito,nneMn
M K
<1 I P( sup IRn(t.fln.Yn) [ >€)

m=1 k=1 teT ,n
m’ n

M K
< I I =
m=]1 k=1

for all n > N, and this completes the proof.

4

This leads to our final result for the parameter t. Define

~

T = (/12y )-.1 where vy is defined in (5.3),
m o no

Theorem 5.2. Under the assumptions (A.l), (A.2), and (B.l), Toa £ T,

for 0<a < 1.

Proof: Assuming condition (A.2) holds, first note that (A.2) is equivalent

to the condition,

lim max |x. |//M/A=0, for k=1, ..., p,
. ik
n¥w l<i n

where x. is the (i,k)th element of any basis;matrix X for Qn. It

ik
then follows from Sievers (1983) that |[pn|] is bounded in probability

where l-ln € Q“ is the best R-predictor of Yn' This can be used to select

a 4> 0 so that P(||11n|| > A) is arbitrarily small for sufficiently large

n. From Sievers (1982), to * ta as n -+ «» where t is a positive
a

constant. Let ty of Theorem 5,1 be a number larger than ta' Then by
Theorem 5.1, |Rn(tm, Mo Yn)l + 0 in probability and the conclusion

follows.




Theorem 3.! is the special case of Theorem 5.2 when aij = (M
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TABLE 4.1 EMPIRICAL 05 LEVELS {

A, UNBALANCED 2 x 2 DESIGN ¢

ERROR DISTRIBUTION

NORMAL CN SCN LOGNORMAL
HYPOTH HYPOTH HYPOTH HYPOTH
(1) (2) (3) (1) (2) (3) (1) (2) (3 (1) (2)y (3)
LS 044 035 059 026 035 04) 056 051 042 045 066° 039
D, 038 036 056 044 046 042 050 054 050 034~ 055 042
D(.8) 042 036 063 041 042 040 049 059 051 050 075% 054
D(.9) 039 035 060 032° 035 029 047 057 048 040 065 042
B(.8) 046 030 064 042 043 044 052 065" 061 057 0877 vel
B(.9) 044 032 058 026 032 028 046 054 052 038 065% 043
B. SMALL PARALLEL DESIGN
(1Y (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)
LS 057 044 053 024~ 038 027 039 040 031 044 047 038
D, 053 038 045 040 038 029 041 043 038 048 040 042
D(.8) 056 046 045 036 038 028" 040 047 041 060 045 051
D(.9) 051 040 043 028~ 024 019~ 039 036 034 046 034 033
B(.8) 056 048 059 033" 040 041 047 052 050 0677 050 073"
B(.9) 050 040 048 025 026 024~ 033~ 035 027 044 030 046
C. LARGE PARALLEL DESIGN
(1) (2) (3) (L (2 (3 (1Y (2) (3) (1) (2) (3) 1
LS 053 043 057 033" 0337 029~ 045 046 045 036 045 0306 i
D, 054 044 056 050 048 046 047 048 040 030" 039 027 1
D(.8) 051 047 056 048 046 0b4 048 050 042 050 064 049 !
D(.9) 053 045 053 039 046 035 042 046 040 042 046 040 f
B(.8) 057 049 063 047 047 045 044  04Y 046 055 065 062
B(.9) 052 049 059 032" 039 028 038 043 037 037 047 045
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Table 4.2 EMPIRICAL POWERS: Normal Distribution
A. UNBALANCED 2 x 2 DESIGN
B1 Hyy Ho3
A 0.0 1.3 3.0 6.9 0.0 1.3 3.0 6.9 0.0 1.7 3.4 10.
LS 044 346 642 950 035 335 645 951 059 421 695 985
D, 038 324 608 926 036 315 599 939 056 390 655 979
D(.8) 042 326 600 924 036 320 601 93§ 063 383 657 978
B(.8) 046 322 591 913 030 318 583 931 064 376 641 976
B. SMALL PARALLEL DESIGN
Hyy o2 Bo3
A 0.0 2.0 3.2 7.3 0.0 1.9 3.3 7.3 0.0 .9 1.6 3.4
LS 057 464 650 938 044 466 666 947 053 180 304 550
D, 053 426 615 923 038 418 614 925 045 157 241 471
D(.8) 056 424 622 922 046 412 616 922 045 155 252 483
B(.8) 056 425 602 912 048 402 608 922 059 159 252 497
C. LARGE PARALLEL DESIGN
H1 Hyo o3
A 0.0 2.5 5.0 7.2 0.0 2.8 6.2 10.1 0.0 5.5 8.8 14.0
LS 053 562 854 951 043 655 933 994 057 823 944 995
D, 054 533 835 933 044 621 919 989 656 790 933 993
p(.8) 051 531 835 937 047 623 918 989 056 783 934 99]
B(.8) 057 530 832 935 049 607 912 987 063 773 936 989




TABLE 4.3 EMPIRICAL POWERS: Contaminated Normal Distribution

A. 2 x 2 UNBALANCED DESIGN

: 01 02 03

: A 0.0 2.3 6.9 12.3 0.0 2.3 6.9 12.3 0.0 3.4 10.0 28

z LS 026 183 350 497 035 186 339 478 041 221 423 707
D, 044 392 699 863 046 382 677 865 042 422 804 976
D(.8) 041 387 682 858 0462 368 663 852 040 414 793 972
B(.8) 042 364 664 858 043 353 661 862 044 403 799 978

B. SMALL PARALLEL DESIGN
Bo1 Hoo Ho3
A 0.0 2.0 3.2 7.3 0.0 1.9 3.3 7.3 0.0 2.3 4.8 8.2
LS 026 152 222 391 038 156 228 393 027 114 219 327
D, 060 243 369 673 038 264 388 666 029 192 370 584
D(.8) 036 227 367 670 038 255 377 653 028 181 1353 580
B(.8) 033 220 352 663 040 262 362 640 041 181 1358 581
C. LARGE PARALLEL DESIGN
%01 Ho2 5 Ho3

A 0.0 2.5 5.0 7.2 0.0 2.8 6.2 10.1 0.0 5.5 8.8 14.0
LS 033 137 246 310 033 178 320 435 029 208 291 436
D, 050 308 551 734 048 396 687 875 046 503 705 865
D(.8) 048 298 552 730 046 387 686 871 0446 501 710 865
B(.3) 047 295 544 732 039 341 661 845 045 490 716 876

_— o
]
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TABLE 4.4 EMPIRICAL POWERS: Skewed Contaminated Normal Distribution
A, 2 x 2 UNBALANCED DESIGN
/ Ho1 Ho2 Ho3
i A 0.0 3.0 6.9 12, 0.0 3.0 6,9 12, 0.0 1.7 3.4 10.
LS 056 299 536 739 051 296 545 759 062 181 322 037
050 385 726 882 054 405 726 906 050 256 440 818
049 400 733 899 059 411 733 914 051 266 454 837
052 392 722 896 065 405 729 918 061 267 437 832
B. SMALL PARALLEL DESIGN
Ho1 92 o3
0.0 2,0 3.2 7.3 0.0 1.9 3.3 7.3 0.0 2,3 4.8 8.2
039 208 306 532 040 208 312 556 031 171 310 460
041 263 388 678 043 277 402 711 038 217 403 598
040 276 397 692 047 272 404 708 041 214 404 616
047 266 389 6389 052 259 401 693 050 215 408 609
C. LARGE PARALLEL DESIGN
Bo1 Ho2 , o3
0.0 2.5 5,0 7.2 0.0 2.8 6,2 10.1 0.0 5.5 8.8 14.0
045 227 411 535 046 274 481 671 045 338 491 68Y
047 363 619 762 048 396 705 885 040 540 720 898
048 376 622 768 050 400 715 883 042 558 731 902
044 367 621 767 049 396 709 885 046 562 733 900




TABLE 4.5 EMPIRICAL POWERS: LlLognormal Distribution

A. 2 x 2 UNBALANCED DESIGN

Ho) Ho2 o3

1.3 3.0 6.9 0.0 1.3 3.0 6.9 0.0 1.7 3.4 10.
167 335 543 066 196 329 583 039 234 381 695
260 516 807 055 274 507 826 042 365 602 926
371 025 867 075 371 638 882 054 480 716 957
353 637 882 087 352 633 894 061 482 713 964

B. SMALL PARALLEL DESIGN

01 02 03
2,0 3.2 7.3 0.0 1.9 3.3 7.3 0.0 .9 1.6 3.4
236 338 582 047 240 367 588 038 090 143 274
345 480 775 040 330 501 784 042 120 183 369
430 593 848 045 430 615 853 051 152 239 475
419 590 850 050 408 612 867 073 173 244 475

C. LARGE PARALLEL DESIGN

01 02 03
2.5 5.0 7.2 0.0 2.8 6.2 10.1 0.0 5.5 8.3 l4.0
265 441 559 045 280 485 655 036 374 521 0689
470 753 888 039 497 828 938 027 664 836 953
613 850 937 064 649 895 969 049 812 921 4976

612 870 949 065 658 906 980 062 832 938 991
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Figure 4.1. Gn(t) and Gn(t) are the empirical cumulative distribution
functions of the absolute differences of R-éesiduals and random errors,
respectively, from a simulation of lognormal variables with design A.

For the slopes, y 1s from (3.5) with o = .80, Yy 1is similar but based

* ~
on the random errors and ¥y corrects the y as in (4.1).
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