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Abstract. This paper discusses how local measurements of three-dimensional
positions and surface normals (recorded by a set of tactile sensors, or by three-
'irnensional range sensors), may be used to identify and locate objects, from among

a set of known objects. The objects are modeled as povhedra having up to six

degrees of freedom relative to the sensors. We show that inconsistent hypotheses
about pairings between sensed points and object surfaces car, be disardcd 4Ticiently
by using local constraints on: distances between faces, angles betwee:i lace normals,
and angles (relative to the s'irface normals) of vectors betwei., seinsed points. We
show by simulation and by mathematical bounds that the number of hypotheses
consistent with these constraints is small. We also show how to recover the position
arid orientation of the object from the sense .iata. The algorithm's pe-formance on
data obtained from a triangulation range sensor is illustrated.
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1. The Problem and the Approach

A central characteristic of advanced applications in robotics is the presence of
significant uncertainty about the identities and posit ions of obi, ts in the workspace
of the robot. It is this characteristic that makes sensi;ig of the extv. :al environnen'
an essential component of robot systems. The process of sensing can be loosely
divided into two stages: first, the measurements of properties of the objects in the
environment, and second, tie interpretation of' those ieasti rerielts. It! the present
paper, we will concentrate on the interpretation of' sensory dat a. II investigating
this problem, we make only a few, simple assumptions about aval able sensory
measurements, rather than considering specific details of a particular scissor. As a
consequence, the interpretation technique that is developed lcre slhouild be icable
to a wide range of sensing modalities. As well, the interpretation techn iqu,' nay
have implications for the design of three-dimensional sensors.

1.1. Problem Definition

The specific problem we consider in this paper is to identify an object from
among a set of known objects and to locate it relative to the sensar. The object
sensed is assumed to be a single, possibly non -convex, polyhedral object (for which
we have an accurate geometric model). The object may have up to six degrees
of freedom relative to the sensor (three translational and three rotational). The
sensor, which could be tactile or range, is assumed to be capable of providing
three-dimensional information about the position and local surface orientation of a
small set of points on the object. Each sensor point is processed to obtain:

1. Surface points - On the basis of sensor readings, the positions of some
points on the sensed object can be determined to lie within some small
volume relative to the sensor.

2. Surface normals - At the sensed points, the surface normal of the object's
surface can be recovered to within some cone of uncertainty.

Our goal is to use local information about sensed points to determine the set
of positions and orientations of an object that are consistent with the sensed data.
If there are no consistent positions and orientations, the object is excluded from
the set of possible objects.

In this paper we do not discuss how surface points and normals may be obtained
from actual sensor data, since this process is highly sensor-dependent (for references
to existing measurement methods -ee Section 1.3). Our aim is to show, instead,
how such data may be used in conjunction with object models to recognize and
localize objects. The method, in turn, suggests criteria for the design of sensors and
sensor-processing strategies.

Our only assumption about the input data is that fairly accurate positions
of surface points are obtainable from the sensor, but that significant errors exist
in determining norma) informatio. This assumption reflects the type of data
obtainable from tactile sensors. Range sensors based on triangulation can be used
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Lo obtai1 high ( lity IIaII rcntciits of rrf;i ls from ('l:tIHit' of depth dat a. The
availability of good normal data ll,,rcly 111creases the efilicf:c(' of the niethud.

1.2. Approach

A recent paper [(Gaston and Lozano-I)6.rez 83] iroduct-.I a new approach to
tactile recognit ion and localization for polyhedra with three degrees of positional
freedom (two translational and one rotational). The present paper generalizes that
approach to polyhedra with six degrees of positional free oim. The iniputs to the
recognition process are: a set of sensed points and niormilds, aid a set of geom.__,ic
object models for the known objects. The recognition process, as outlined In the
earlier paper, proceeds in two steps:

1. Generate Feasible Intcrpr( tations: A set of feasible interpretations of the
sense data is constructed. Interpretations consist of pairings of each sensed
poi:,t with some object surface of one of the known objects. Interpretations
inconsistent with local constraints (derived from -he model) on the sense
data are discarded.

2. Model Test '[lhe feasible interpretations are test-ed for consistency with

surface equations obtained from the object models. An interpretation is
legal if it is possible to solve for a rotation and translation that would
place each sense point on an object surface. The sensed point must lie

n, 2de the object face, not just on the surface.

The first step is the key to this process. The nuntbcr of possible interpretations
given s sensed points and n surfaces is n'. Therefore. it is not feasible to carry out
a model test on all possible interpretations. The goal of the recognition algorithm is
to exploit the local constraints on the sensed data so as to nin:mize the number of
interpretations that. need testing. This approach is an instance of a classic paradigm
of artificial intelligence: generate and test; see for example [lBuchanan, et al. 69].

Consider a simple example of the approach, illustrated in Figure 1. The model
is a right triangle, with edge sizes of 3, 4, and 5 respectively. From this model, we
can construct a table of ranges of distances between pairs of points on the edges.
The table is as follows:

Distance IRariges Between Edges

1 2 31_ L ~al i lo,_ r + L o+,__ -

0,31. _ 0,5L __ ....5t
2 _ 0,5 19,3

Now, suppose we know the positions of the three sensed points, PI through P3 , shown
in Figure 1. The measured distances between those points are dist(P, P2 ) = 3.5,
dist(P, F3 ) = .4, aist(P2 , P 3 ) -- 0.8. From this we see that any interpretation of
the sensed points that assigns Pt and P2 both to edge 1 is inconsistent with the
model. Similarly, assigning PI and P2 to edges 2 and 3 is not consistent. Many other
pairwise assignments of points to edges can be discarded simply by comparing the
measured distances to the ranges in the table. Note that the sensed positions are

2
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Figure 1. An example of the approach

*T2

2 3

subject to error, so that a range of actual distances is consistent with the measured
positions. It is these distance ranges that must be compared against the ranges
in the table. For this example, only 6 of the 27 possible assignments of the three
points to the three model edges are legal.

Of the six interpretations consistent with the distance ranges, the two shown
in Figure 1, are completely consistent once the line equations of the edges are taken
into account. Each of these interpretations leads to a solution for the position and
orientation of the triangle relative to the sensor. Furthermore, these positions and
orientations of the triangle place the measured points inside the finite edges, not
just on the infinite line.

This paper discusses both steps of the recognition process, focusing first
on the generate step and then considering the model testing stage. We show, by
mathematical analysis and by simulation, that the number of feasible interpretations
can be reduced to manageable numbers by the use of local geometric constraints.
In particular, we investigate the effectiveness of the different local constraints and
the impact of measurement errors on their effectiveness. We further show that the
few remaining feasible interpretations can efficiently be subjected to an explicit
model test, generally resulting in a single interpretation of the sense data (up to
symmetries). We also illustrate the performance of the algorithm on range data
obtained by triangulation.

3
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1.3. Three Dimensional Sensing

Sensors can be roughly divided into two catcgoriCS: 7,0r, . tart i;:d ( ,atact.

Non conttct sensing, especially visual sensing, has rcceivt( c:t n;v attc;tolloii in

the robotics and artificial intelligence literature. COitaclt se1rs1r,, such as t;i ile or
haptic sensing, plays an equally ira port ant role in robotics, frt 11as receivti much
less attention. In this paper, our ain is to develop a sensory interpretation iethod
that is applicable to data from both contact and nor coitict sensors.

While two-dinieisional Sensilng. for example silliouette or biiiiry visron!, P,;iv
be adequate for restricted situations such as prohiiens withi tiree decet4cs o' f;, dom
in positioning, the general localization and recognition probleni ,equires three-

dimensional sensing. 'lirougihout this paper, we will coric(%li': a; < he o ix-degree

of freedom recogniition and localization probleii and the use of ti:rct-diTime'sional
sensing. I estrictionis of the method to the sirilper cast, of' tirc, d( grecs of freedom
are straightforward.

1.3.1. Previous Work in Visual Range Sensing

T'he rneasurenieit Oagef visual sensing has received extensivc at ea o in t'he
literature. Of prarticular interest here are menthods for tbta irlig vi rec-dirmensional
position and surface normal information; see .la :vis 831 for a detailed survey.
Possible methods include edge-based stereo svsltems G grinson S1, Baker and
Binford Sl. Mayhew and Frisby, 811, whichl prol;dc ,!1;1( !;.!o;dnal positions of
sparse sets of points in the iiage. This sparse iat a cain; 1) -ed to reconstruct a
dense surface representation, from which surface rioniinrls cai bC C ,,TIII;t(ed HGrimson
82, 83; Terzopoulos 831. Other methods for obtaining three dimensional positions
are laser range- finding [e.g. Nitzan, Brain, and l)uda 77, L.ewis and Johnston 771
and structured light systerns [e.g. Shirai and ,.iwa 71. I opp i t:tone, et al. 75].
Many other visual processes can be used to obtai surfa, , lornal information
directly, e.g., photometric stereo [e.g. \Voodhain 78, 80, 81. lkeuchi and Horn, 79]
and texture gradients 1Bajcsy 73, Bajscy and Liebermann 76, Render 80, Stevens
801. In fact. there is no constraint that the sensory data for one problem must come
from one sensory modality. Data from visual sensors and tactile sensors may be
combined in one run of the algorithm.

The interpretation stage of visual recognition has received less attention,
especially when dealing with three-dimensional objects with six degrees of freedom.
Much of the previous work in the area of interpretation of thiree-dimensional data
has focused on the recognition of simpi, generic objects such as planar patches,
regular polyhedra, generalized cylinders, and spheres [e.g., Shirai and Suwa 71,
Popplestone, et al. 75. Nitzan, Brain, arid Duda 77, Oshiia ard Shirai 78,
l augeras, et al. 83, Agin and 1inford 73, Nevatia and R nford 771. Some authors
have exanined the poblem we deal with here of r'cogniziig specific objects from
three-di men sional data [e.g., Shneier 79, Sugifhara 79, Osh ima and Sihirai 83, Bolles,
floraud, and H annah 8:3, Irou 83, Ikeuchi, et al. 83j. The principal difference
between previous work on recognition and the approach des( ribed here is our
reliance on sparse data acquired at points. This makes our approach adaptable to
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contact sensing as well as visual sensing. Tie sparseness of the data does make the
problem of ,cy' J nmtt O, determining which data is drawn from which objects in
a scene, more difficult. Fortlher research on this topic is currently underway.

In the final stages of preparing this paper, we became aware of tle work of

Faugeras a: i lebert 1.831 which adopts an approach that is similar in many respects
to the one described here. Their work, however, focuses on deriving an accurate
model test. 'hicir method does not eruphi size the problem of crumeratirig all the
legal interpretatioris of the data. Instead, a measure of tle accuracy of the mnodel

test (aid a si riplte angle pruning heuristic) is used to drive a best-first search for
a .ood interpretatiori. hlis method does not ensure that the interpret ation found
is the only one consistent with the data, however. Their method arid ours are
cornplenient ary iii this respect. Their approach also does not assume sparse data,
but it is ini fact ,ipplicable to that problem.

1.31.2. Previous Work in T'actile Sensing

Contact sensors measure tle locus of contact and the forces generated when

in contact with an object. W\e make the distinction between tactile sensors, which
measure forces over small ;areas, such as a fingertip, ard force sensors, which
measure the resultant forces and torques on some larger structure, such as a
complete gripper. A micro-switch, for example, can serve as a simple tactile sensor
capable of detecting when the force over a small area, e.g. an elevator button,
exceeds some threshold. The most important type of tactile sensors are the matrix
tacti/c sersors, composed of an array of sensitive points. The simplest example
of a matrix tactile sensor is an array of micro-switches. Much more sophisticated
tactile sensors, with much higher spatial and force resolution, have been designed;
see [ttarmon 82] for a review arid [Hillis 82, Overton and \Villiams 81, Purbrick 81,
Raibert and Tanner 82, Schneiter 82] for some recent designs.

For descriptions of previous work in tactile sensing, we refer the reader to
two very thorough surveys by Harmon [80, 82]. A more detailed discussion of
previous work on tactile recognition can be found in [Gaston and Loz ano-Prez 83J.
In this section, we briefly survey the two major alternative approaches to tactile
recognition: statistical pattern recognition, and description -building and matching.

Much of the existing work on tactile recognition has been based on statistical
pattern recognition or classification. Some researchers have used pressure patterns
on matrix sensors primarily [l3riot 79, Okada and Tsuchiya 77]. Others have used
the joint angles of fingers grasping the object as their data [Briot, Renaud, and
Stojilkovic 78, Marik 81, Okada and Tsuchiya 77, Stojilkovic and Saletic 75]. A
related approach uses the pattern of activation of on-off contacts placed on the
finger links [Kinoshita, Aida, and Mori 75].

The range of possible contact patterns between multiple sensors and complex
objects is highly variable and seems to require detailed geometric analysis. Tactile
recognition methods based on statistical pattern recognition are limited to dealing
with simple objects because they do not exploit the rich geometric data available
from object models.[5



Several proposed rtccoii I o0i1 iittllodtl 1)111 t :I I> of1 illt Cbjoct

from I he sense data and miatchi this (fc~kript loll t) tL 11' () tO( ;Ipl-wx (i tmilates

the featulre-based (lescript ions Ill VISiflhi s\st tms for CX.I,'i c:! AIctw (ti]i holes,
edges, vertices, pits, andl burrs 'Hiiiortl 72, i!i (!( :' i( ' la.r 781.
Another approach is to build surtace (0( ocs tI Iil t pi re s il: ~ tlllIns
on mnatrix sensors oOeti n Vliu~~II .. Ilili~(f alli

array of niedle-like sensors Page, Pugh.'ll ;iU II '1, ' I -da 7-11. A
related approach builds aI representat ion o~f a~n o!c 's ion01 ( vaKit al
82, Kinoshita, Aida, Mlori 75].

D~esc ript ion based met hods are nilore' tetle:: I !'' ~ :~u>h : tiust
solve two formidable problems: building" aeUCU;;ite K .>:v:1 ai tl
data, anlI matching" the( description11s to the I;1odc!s. 111ij, (;'n'. h Itfai t 'Iat

existing sensors do not have the spatial or force ree: I Kto iijllfIlarl\'
conipletc object descriptions. Furthieiilore. i 12. r :irc i' wV~ f:Usor acii

the partial djescriptions oiiat~liiialc V'ott, Itactic M( !1<(:s to ol).itc ilo(1(lS. Ill our
opinion, p~art of the problem in tactile dalta I~TterIctalli.:, lw5c; il( Incledwency

to adapt tile techim (t s dI,elo peu I lc; tw.o-dt[I!cnlsI:,;! . . Io I.. Ic;Ilere den I se dat a IS

readi ly obt ainiiable, to tactile data. whichi is i ii ra lv sparse.

Onec lessoin fromi the simulations dcsc ilted lite> : 'Ii . i tII:itte of sut face
normal is ali ext rctnelIv powerful (0co1s1 ra ll t 1:1 '(M' i4 ]I Iin it t101n.'Ile
estlimate need not be very tighlt for pciI'rf iw o~ulc h:'t' I~ cl'.lire has
heOnl little pre2vious1 c mp1h asis on IINIsIMr:a '- :'':i se-nsors.
Accu racy inii easuring normals requi rcs sot.x .citi k ; <:cr tradeoffs
in sensor design, espec ialI v the senisor sn fln e- It: ;a i 4' Cl'ol ont 1hat de forms
very little under contact), the normal to the sen sor sn rt ie 2 i, te point of contact
directly gives ant estiate of the objct's surface itomnii. 'o. :i t senisor with high
spatial resolution canl be used to ttiastii-c rlo:tri~ils. Ill a si t:>ta , t he p at tern of
forces can be analyzed to determine the shape of I t, ojt' SOtac.>, a soft sensor
with good force measuremnit accuracy c-all :11s0 he 1 s'd . Fodl :i . it is probably

easir t buld ti T snsos wth oorforce resolutioi t han soft sea sors with good
force resolut ion 1- nvder atlid St. C'lair 781. 'Tbis aLrg1ues ' II. ta sti111 VILSI senisor 'e.g.
Ijaibert atid Taniier 82 may be accept able. Anot her f; ct or is tImht the mtcthod used
here, since it is based onl local informrilt io-ni does now -Cq lre:gc i e;1 sensor areas- it

can function better wi ia in all senisors.

'File approach u ieul Ii iiiis paper Is an lIst (lce of ii (WcricPtion - based
recognitioni mituehod. 'Ihei basic depart lire fromr Pl, . a v s :1 I7 relance on
sp1fl5.rC tlir(e( ih;tiietisiotiai p)oSitioll, ;111101 '].' . i ihis

contrasts wit h t he (IonIs('(e~ a i .,~l ii cm- dt ()I- surface based
(i SCr:ptloil hO tlods. '11L :.lit lmscd da(l~ we us:c IS 111 it ( .. ikillV oiiaiiiablc
fromt sittple tact ie - asors arid th le procos, o! niatl, i,, it !'o inodeis is relativ ely
straightforward. Therefore, the method (scri bed hecre cmild he a powerful addition
to approaches based oti mtore compi~lete dlescri ptions.

'Very ditleretij) *proachlis to tacdtile recogtiitIOT1 h,1Sed oi ii, pe of dioa ir, muttifd in iDixon,
Salazar, anti ShlgIl' 79, lvancevic 741.
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ligure 2. Interpretation Tree

iT,

P1 LLeve

P,. Lev e C

0i, Ci

2. Generating Feasible Interpretations

After sensing an object, we have the positions of up to s points, P,, known to
be on the surface of one of the ri known objects, O, having n3 faces. The range of
possible pairings of sensed points and model faces for one object can be cast in the
form of an interpretation tree (IT) [Gaston and Lozano-P6rez 83l. The root node
of the IT,, for object O, has n3 descendants, each representing an interpretation
in which P, is on a different face of 0,. There are a total of s levels in the tree,
level i indicating the possible pairings of P, with the faces of object 0, (see Figure
2). Note that there may be multiple points on a single face, so that the number of
branches remains constant at all levels.

A k-interpretation is any path from the root node to a node at level k in the
IT: it is a list of k pairings of points and faces. The set of IT's contains a very large
number of possible s--interpretations

m

In an object with symmetries, of course, the IT is highly redundant [Gaston and
Lozano-P~rez 83]. The m IT's, one for each known object, represent the search
space for the recognition problem discussed here.

2.1. Pruning the IT by Local Constraints

Only a very fcw interpretations in an IT are consistent with the input data.
We can exploit the following local constraints to prune inconsistent interpretations:

7
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1. Distance Constrainit I hle i>Itu ti AI aOt ir of IP.>Iisth a
possi ble dlI ,t alice, bet ween the C "N pr i 111 W1: 11n a aT e rpret at ion.

2. Anglec Constraint Thle range (ii po-ild( Itve a ured
Itor IitIs at each paitir of I' Ps lntit ::xciit~ - : -t ;It, hwtI I urface
liormnais of' the faces paired wi t i .;,i i:it "iato

3. D~irection Consi rai it Pic rangre o0! v awe t~ x~ c():1):1it or a vector
betweent senised polits (P ! ~- I') Ii iie (ii- wi ',i scir ,II noi iiil at
1), anid at P, must Iinterlecl th ii FalIt, 01 11of pnszv. bit ectors

between polits )iI the l'aces assigunct t ) I ni\ 1i pethe

These kcons ints tiipically serve to p;uo111 1:, 0! the !olil u11WI-t:C iS
interpretations of' ,lie (jat a. (hliercon :ii o 10- lle; area of
the triangle defined b%- three sens'cd p0111li'.i '0 '' o . ii the allge of
areas del ic d by th ftctaces pa Ired W it I t I I !T 'Pi :lil 1T) 0 t nseti no0 -. t " ith
f'aces nii 't no' he suich a's to r~equire thi the Ii:,, 'X-1 or ;,Ill) pli. 'oUoh

\onic tolrtioli oi th tO;% 0ject heto~erc sn !]1i ;( r 1-- V~~ ez 8:31.
W\e will focus ol: thelire cunst4 ra(n1 -1yc "le a~Yar ~ to
Iplemnent whaile he ig qu;ite effectie . Mloreot r"t * il ~ihe c wdnt

bet ween pairs of points.

Note that the distanice, angle, and directl~ C00 coo Ci-i s ) ca eUsed to prune
k-int erpretat ions, for k > 2, t hereby colllian uwr siVr of, the !7. Phli s is a
crucial Point, worth (Iwelling on for at 11o n it.

Recall that the overall pr-oblem we arc co[SU iutri . 1 o (it-! p) . ne tli hp 0 iof

and orientation of an object, using sparse >csoiv , t. iiIn pr":tCipilc, one could
consider all possible interpretations of the daita, andi for eachi one, detcrrninIe
whet her there is at ra 'isforrnation1 fromJr Jii odd ciTi Jie skr coordin ates
hat would accout~w for lie sensor \ datia. {lf-0'.tisis I,,conput ationaily

ext remely expenisive'c. InI order to coniplite stich iiu kws~ t~t, wve :ieed three points,
whose, corresponldinlg face norm71als are 1i-ii n v Hepene 11!t-!. as well1 as thle measured
niormals at those points. Clearly, we woulId in ri ic -ed k senisory points to
ensure this. it ;-e A- -> 3. Thus, if nz is the numrn r oF 'cts in the object, we would
Nieed to consider on the order of rik model tests, . acIi 0l wh~ich requires considerable
comoputat ional effort.

On the otlier hand, usingT the simple geometric constraints outlined above
oeiresoly a t srP.'gh fLorward table lookuiip. and, ats we shall see-, can dIrast ically

reduce the non ocr of int erpretations to which, ai nint 1 test. rmust he applied . Since
the const ra~ ints can be applied near the root of the tree, it is possible to prune
whole sth! ret s fromt the IT, Fit virtually no comIput ation al expense.

W\e conisider each of the constraints in more detail he low.

2.1.1. D~istanice Pruning

If an interpret ation calls for pairing two of the senlsed points with two object
facts, the d ist ance bet ween the sensed points must be witlinn the range of distances
between t0ie faces (see also 'Rolles and Cain 821) . \ote that the distances between



(III pairs of senised poits IlI jut bCttn v 'M-!!llt. . . lt r ' . rI t' dIA1>taC( V.

three senised points, and III gtcl('rai . I .1 1) (1tv 11. : ~ ' 1..~ I

of this, the distanice ('01151 illlt tXpi'Al' w'((W !- :::(ri' r! ( i:, 1.(!:(~

points are co nsidered.

Givenl two faces on a M, Ctedt"I".o~ ae'n na: t'

distances hietweeli points on -In' Vo. V's (1 ;:1 c:i1:.n dI" '

p erpen d; cliIar 6i:staI iiik - ot ci (il . : Ic(,' 0! o : l o:'A tV Al

face I 'hell the vetetx project>,1 ,d *,>ix ~ f oi i'g,',. I a'~:a' rct1 (Ars
exilt I iIII f(ist a1l'ces beCt\\t I p~c r- o f -e I' 'Ic't<. No eit t I I .> U;! I 115 (1 ~ P t~

r a I I-e of (IIs tanices ho, %%weet: po:n I s on oa Ct /'Cr FO I' o ~ (i:, 't aJ

face). >aophilstlcit d c ;edtoad,((

('allt ltt Iwis, !)wt -:I, c thc%'V pi- 'C) I lo'' -!''f

thlen' ulilIcC )'0 nol1 t :-It ('it. a ! :!r app otich

Thie dlistanice conist rani (Call he iii ph ieru ed In' 11a' nw ilC Tlrr' a r For

object /,wihJ, faces, %%e conistrilct aln f b\ f, lul la C '( 'e

rageo possible dist aloes bet w;een pairs of faces. Il i 'rt1 or ai pa 'r, of 'aces
(,. k), I k', the rnaxiinurn distance b( tween tiche~ ~i tA 12)(;O'tj

(Itabiv, nax(z, k). rninpj. k)l and the tIitimiitlil di'.ta'iice be'.%' -1 "l'e I.< (" ored in

tuiibc iocatio l (l table ' i(i , k)~ n~, k)J. If z k, we siinpi', , :ne)F( l:i:a:.: n

(histat-,ce in the (hla,,uliai entry dtable~ 22 since the IInA i;:.msta,:ce dtfriiults

to 0. Thiis represent ation make-- checking at di St aTICe COnIt railll stralIgh forlward,
since the set of all pairs of faces (i, k') on object 0, consistn wvIt hi sonle meIasured
distance d is given by

{J(7, k) dtable,,'iin(i', k), mu ax(z, k)] < d < diable, In ax( i, 'I, iii . k'

plus the pair (i. t) if d < ditahle3 [i, 1].

Given any k - 1 interpretation, represented by the set of faces (I1l, .. ik-1),

and a new kOh sensed point, the geniera' ion of the next level of the IT below this
interpret at ion can be easily computed by checking the appropriate portions of the
distance tables. In particular, if the measured distance between one of the previous
sensed points, il, and the new one is given by d,,, the set of possible faces that can
be assigned to sensed point Pk is given by

k-1

unioned with the set

P ~Iti0O<d,, < dtablie it,]}.

For very complex objects, much more time efficient ways of representing and
searching for faces that satisfy a distance constraint are possible. A full discussion
of' these methods is beyond the scope of this paper, however.

-I
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11c o" c Iat . t . .." .: . : ta

t he sutisor makvu, tA on '. .. '' 't; C. n

of a.............................................

pt)l111!.!2, al0) 1 11:1' .iscut on1 Tto. t aa 7 c ioqa

' it~llld rlv, Ini I (i of ..- Ia Jui 1 1~, ~ * ol a,, object

82'.)

2.1.2. AngIc Prriing

V.11 o6 0 (1 !ICS da a. :'~ alli

1110>' .chbl(l tu i 1 . bt i i c IV omr1 li, tn '. 1 o )J( t Faces.

1 ()~ '''i'l 1(i) 'I t ill To)L(P ?.,~ Ia a

oixu rot Al"'onai lV-Air ! his reu,!ril(: i11 dA-, 1(:-f (:()::I. c of urface

AIt a m-lst(1 pw:11t P w%. cal t!( no a>Irc ht I(). . ". ::g a he
ra.~of ang les

*,: 17re i 1 l oil c!, il 110.l Ocnl(011t. ld( d t .(~Ca. . ' ahoilt

, ils eat~Surellic!'t . We ar-c 'riven a senIsor noii J I w h:~ r :ria ~ h

has aeon1sigx to fact xiTil asocia. 101 pi' m .;xat :: i~orrlal -iNvcn

h-; L-, .Nc:xt. e rcord a seondi pa011 1 .\ it hn iw-molnora! which has

bucr 5 iSgnled t(, face k. vwith ass)c ited noI(oord it. i esurfac normal given

i)- For thcse a'siglnient S to be coii :S!et Vi t !:''t I 'i cila e tha~t tlhe angle
!W v:1 !1( modu! f'..cc'ii b(c ( ;I , Cilc he:'P. Wt'w'en the ranges

01 niorN iak J (ceriIi nd from ti-. m wasurd nlomrais~ a! i 11w cror bounds

It is cloar tliat an iipleminutation SIrodlar to thatii> ud for di,!oncc prunming will also
.,C'hc here. For olvect 0., with1 t'lo~ we cant set 1:1 p- byV lo'vcr (11agoinal

tableV at able. h mt ilif.able , ' kAi no,. I .. iii rcilruserItation

,xiak( checking a >.urface. norMal cons: roillt ait.:'vari ;!>a(eo thet et of all
pairs of faces, (z, k) i objctL 0, consistent \%it li ,omniiuoicr ma;iud angus of surface

normals is; given by

(,k) --1) --- 1)<atbe.max k). min(,, k)j3 + (2)- )±(c ~

10
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Figure 3. AnIgle RIanges

L A

Given any k- 1-in erpretatlon, and a nlew '- sensed polin l:e g,.1ra(;:1 of the

next level of the IT below this n'terpreta ! ' IO car Citi i,r cor':1:1 ,d O cI)hecking the

appropriate portions of the angle t1 . No:e h., the : e tuust he eor 'istent
with the angles between all previous faces.

In the two-dimensiolal (three dcgreet, o:' freedom) , he range o. pos-!ble
surface normals at a se:ised poi:it was vr),st::ed "o ,t, pair -,)where -
denoted the sensed normal, ;,und (I dnoted :he range ol I error about that sensed
point. In three dimensio-ns, the ( bvious geieralization ;s to use argle cones, so that
if ul denotes the unmt sensed surface normal, the range of possible values for the
actual surface normal will be denoted by the right circular cone

We could proceed ident:"ally to the two-dirnens'onal case by noting that the cone of
sensed normals constrains the set of possible thret-dimensional rotations between
the hand and model coordinate systems. Then, given a second sensed point P2 with
some sensed normal, the sr, of feasible faces would Loe restricted by the range of
possible rotations. This r:ethod is quite difficult to implemcnt, however. There is a
much simpler alternati\ e method.

Suppose that at the second sensed point, the set of possible surface normals in
hand coordinates is givn by

ff2I >2 -1 2 }.)

Then, in order for faces z and k, with associated surface notrals v, and V'k to be
consistent it must he the case that

Vi - fl fz e I I n-.InI-u 1  1, n, -l u2 > (2).

We can rephrase this in the following Manner. Let cosal - (I, cost 02 2,
0 12 0 1 41- k 02 and '0 1'2 111 (12 ' Ther, we Cl;tIM thiat the set
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Figure .I. lHange of Directims betNeeu Setii 1Poiwth

{ n : n 2 '1 1 .-U I n ., u 2 > 2 }
is contained in the set

{n, n n2  cos Min(r, ,:2 -- 02)' < n, n, < cos max(0. 1. -- 12)I}. (1)

A proof of this is found In Appevidix I. ":rure 1*1 .s :! is resa !' in two
dimensions.

An i plenientiaton of ai.gie pruning siii:llar to ti at used for distance pruning
is now also possible. For object 0,. with f, faces, we can set up an f) by f', lower
diagonal table atable, such that atable maxz. A. rin(? '. .k), where recall
that v, denotes the unit normal to face z in t1) model.

2.1.3. Direction Pruning

Consider a pair of sensed points P, and P2 and 1e ul2 be the unit direction
vector between them. Suppose that we know the measured surface nornial at point
1), to within some cone of error, for example, the measured value is wl, and the
range of possible values for the surface normal is

{"I V1 *W ' ? > }.

Th!I the set of posi:bIc ":ngles between the direction vector and the surface
nornai of the face is given by

In ;ira i1 terprel a't ,o sip;)ose Ih;t po:int f' has been ;Issigned to face 7, with
nornial 11, in IIIh model, aid we nlow% consider possible faces k to ass:gii to point P2.
lot tlb ran,"ge of possible unit ector's dlirec:ions) from face I to f;ice k be denoted
byhe eolie

{ 1t2

- -



.r.:n ,t k .ozano-Nrei M, dv. H ,II O ct ,,rI

for some pair t.,, aird # . l gure -1 ill strates tl ,i ('o!:e ii I w dir1clsioral
(I:nAIIph,..Appendix I1 shlos how tis co,,c 1:1ity bl, 1:w,:td f~ ,d('.. of, Ih,

object faces. III lie niiodel, the e,,t of polosilt ar t> be.w' .W.n hl(c J ' l s Il '

the suriface noriial is

{" 'i , > ,"t~ ,} (2)

Thus, asslie that point ', is o, fact with norm;d no, that we h;,ve rie:,sired

%N that v,e know (I, and that we have ,,,; ,.o 're's III d 1'2. \ A , Ivl ' - d ,'.ct iow

range from face is ,i%-n hi i t ' pair (t,. 1( , is a f(1, -: it I c .c , p~r lt I' t bhe

set il equation (2) intersects the cone

I N'! " ,0 2 1 " ' " N , >  ! ( . (3 )

If cos ': k r< ;:. and cos o.k - - .t ., tlie!l ve know frori t hc d'.i : " , pcl,]X

I :h;.t the s o, t :1u;*l: o (2) is colita iried ii tihe set

{ S . z I c( s(;, k <- n! - S , -- co s( ,j -

Siilarly, if cos ( I  i and cos ;12 -= vi uii, thiIi l e t1. 1 0 c . , (3) -

contained in the set
{ II2 coS(0 1 + -'12) V< 1' t < (O5(01 -- ' 12

Therefore. for the pairings of 1 witli face i and t with face k to iv ( coi. sisttc,.t with

the direction constraint, it rinist be the case that the inersecti: of tIh n1uierical

raii,(e s of lot products is not null, i.e.,

ICos(ar -- .'2,/ ,-,(ai -- /. n ,Oc(- ,,), os( + 0,k) 0

The direction constraint can also be inipleiiented in a form siTorila to that used
for distance ard an ite pruning. For object O,, with l. faces, we call set up an
by f table Ctable, sich that ctalel 1?. k! l: co s(7,k- - 6:k), cos(7k -4- oj). Again,
the ret of alt pairs of faces (i, k) on object 0, consistent with some measured ranges
of surface r:nr ro. s is given by

Note that lhe dircc! ,on constraint is not sy'mmetric, as are the distance and
artgie constralnts, so before pairing I2 to face k. we must repeat the test above
mu, erc Ii n ::i !he roles of i and k. Similarly, the test must be applied to each
par i g of se,,tt i powts s and faces in an interpretation.

The const race It s ri bed above places constraints on the angle between a surface
normal and umnit vecto,s from one face to arother. I addition to constraining the
angles of unit vectors, we may constrain the magnitude of the component along
the surface normal of the vector between the sensed points. The statement and
iIplerrientation Of ie constrarit is essentially unchanged, except that 1112 and tik

are no longer unit vectors but the actual vector between the sensed points. The
efTect ivencss oif tihe constraint is in general improved, however, since it now captures
some distance and some angular constraint. The difference between this extended
direction constraint and the simple direction constraint is illustrated in Figure 5.
Two parallel faces (faces I and 2 in the figure) displaced relative to each other

13
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Figure 5. lxtend'd Direction (-,Oils(. it

~ jJ

give rise to a coile of directions, but asingle vailue for a~l roWi Cornponent of
vectors cOnnt iig the faces. Note that, all t 're tne SlrriS' PI to face 1

and P2 to face 3 is consistent with all thle pre': visl v iiiki :1! d Constraints except

ff

for the extended di rect ion cotist raiut .'ihe !' gr C' io l~ n es 1: a;tt he extended

direct ion constraint does not su hoi me theC di-! ile i*1' '' .:i Lir nt oni only
constrains thle normal component of istance.

The re I s an al t ern ate fo rmr of th'Ie (d ire ct i c or: I: ra it :u I. lie In no bo unid
on the surface normal is available. It can briefly be dlescribecd as follows. Given two
faces hi an d i on an objc t. we c a CoF II itt11 t, range,- of ai ie r,, bet ,% e n poin1ts
on the faces, forming a conec of' possible direc t o L . >1: or ";Ices i and ], we
can compute the cone of possible directions. I lie ro n t o, of these two cones

defines~ a range of possible angles for the triplet o', a cs z. i,

Hfan interpret ation calls for pai ring three w t h : C i t s, iIi r fe obct

faces, the angle formed by this tariplet of sensed pm : 6v a enwithrit -he range

of possible angles between thle triplets of fa~es. Nct. ias formed by all
triplets of sensed points must be consiste , i.t foi tare c i'Se Points, there are

three angles, for k sensed poinLs, there art 0 an-les. iice. this constraint also

becoines more efectiVe aS Tiore sensed pointsaire . onsidered.

This form of the direction constraint (,t!:lbe iiscd %hi on V, vetices and edges

are touched, as it does not require n sn :f;e i Noe i fa this form of

,t constraint ca i also be eatended to 11m,,t'e to lie Vitors between
C coipue ts a o ell as their direct. i .il Z : ')I] stwo lows

pruning of thne IT foi k > 3. The previosi of the (p ,trafis allows
pruin g of the IT for k > 2. As well, this fserns of t:A :ni t wouid require an

o1 3 tible an ppes(d to In t one for the pices. fo i :': :....( i tlt size of n

to re anpected for typical objects. this is a aeli ten s -d

becoes ore ffetiveas ore ensd polli ,fi ,'ns~dr1d

Thisfor of he irecioncontan t: b is~ xtlt<.ieriesad de
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3. Model Testing

Once the interpretatioll tree has been prunied by the local corist., ats. l Ore
will be some set of po.sibld ilte rpret at liols of the selsed dat a, e wit,. o oi ' ll liig

of a set of triples (p,, n1 , fj} where p, is the vector reprc sc:!t ;, the' <cri- I poslthi,
n, is the vector representing the sensed normal, and ff, t e face ,ts:.olied to
this sensed data for that particular it erpretat ion. Ili !.,e model test >, ;,e of the
processing, we want to

1. determine the actual transformation fron model coordiinates to sensor
coordinates, correspondiig to the interpretation,

2. check that undur this transformnat ion, not only are the seed 5(1,oi ats
transformed to lie oi the appropriate planes, htl moreuove!, lut 01e
sensed points actually lie within tile bounds of the assigned faces.

\Ve will assu me that a vector in the model coordinate svysteM is lransforned

into a vector in the sensor coordinate system by the following t ra:lfor;:tation:

vs 5  RVm --Vo

where I? is a rotation matrix, and v0 is some translation vector. We necd to solve
for I? and v0 . \Ve note that a solution could be obtaiied using a hast-sqa ares
method, such as is used by [Faugeras and lebert 831. This type of solkition can be
computationally expensive, however, and in the following sections, we develop an
alternative method.

3.1. flotation Component

We consider first the rotation component of the transformation. Consider the
first triple of a particular interpretation, (p,, n , ft). The sensed normal is given by vi
and corresponding to face f, is a face normal mn. For R to be a legitimate rotation,
it should take the normal mi into n, (ignoring issues of error in the measurements
for now).

Now, any rotation can be represented by a direction about which the rotation
takes place, and an angle of rotation about that direction. Vhat is the set of possible
directions of rotation r consistent with n, and m,' Any rotation will preserve the
angle between the transformed vector and the direction of rotation. Hence, any
legitimate rotation direction must be equiangular with n, and m,. Thus, the set, of
potential directions is given by

{,j rij ° m, = ij n

or equivalently

That is, r2, is perpendicular to (m, - n,).

15
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Now, consider a second triple Ii tie iii eipri!t - ii 1  ) aind let III) be

the normal to face fj" lProvided ri z ±rn, and ii 1Z, i ,ot (aIntI-)parall to
ni - in1 , we can constrain r, to a second set

Since the rotation is the same, r,, must lie in both sets, i.e.. it must be perperndicular
to both vectors. Ileiice, r,2 is given by the unit vector lui the direction

(,,,, - ,) x (n -- Il)

to within an ambiguity of 180'.

'[his derivation can be recast in geometric terms In t( fol o.img :mancr. An

unit rotation vector r taking in, into n1, noist lie oil thI(. perepciadxidr bisector of the
line connecting n, to ni. Similarly, it must also lie on llic perpendicular bisector
of the li: . connecting n, to mr. Since the rotation is the so mc, it must lie in the
intersection of the two perpendicular bisector planes, as above, and hence is given
by the specified unit vector

(In, - n,) x ("i, -

If there were no error in the sensed normals, we wid he done. With error included
in the measurements, however, the computed rota tion direction r could be slightly
wrong. One wax to reduce the effect of this error Is to comnpn te all possible r,) as
z and j vary over the faces of the interpretaion -1 d the:i cItcr these computed
directiotins to determine a value for the direction of ;,otatioi r.

Once we have computed a direction of rotation r. we need !u determine the
angle 0 of rotation about it. It is straightforward to sinow tl-at (see, for example,
[Korn and Korn, 68] p. '173)

in, = cos On, + (I - cos O)(r- n,)r -4- sin O(r X n,).

Simple algebraic manipulation, using the fact that r in, r n,, yields

cosO= 1---_1..........
1 -(r - n,)(r m,)

sin 0 - (r x n,) m,(r -(r ,,)(r .n,,)
Hence, given r, we can solve for 0. Note that if sin 0 is zero. there is a singularity
in determining 0, which could be either 0 or -T. III this case, howvvcr, r lies in the
plane spanned by n, and n, and hence, only tie 0 - 7- solution is valid.

As before, in the presence of error, we Ina- xant to (luster the r vectors, and
then take the average of the computed values o! 0 (,cr this cluster.

Finally, given values for both r and 0, we can d'!CI :, the.I io: toi matrix
R. Let r.,, r., r denote the components r. Then

[1 0 01 s 2  rr y r r. r

R-cos00 1 +(I-Cos ) Yrz r 2  r, r, -r.
S0rz r r r L'

16
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Note that in colnput ing the rotation component of the tranisforiialloll, we have
ignored the anhigui ty inherent in the computation. That is, there are tw o solutions
to the problem, ( r, 0)and (--r, -- 0). We assume that a si riple convent ion concerning

the sign of the rotation is used to choose one of the two solutions.

3.2. Translation Component

Next, we need to solve for the trarislation component of the tr,'.asforrttion.
We know that %5 l?= -4- vo, where v,, is a vector In nodci coordinates, v, is the
correspond I ig vector in sensor coordinates, and 1? has beci in puied as above.
(iven a triple (p,, n,, f,) from the interpretation, let n bhe he nornial of face f,,
with offset d,, that is, the face is detined by the set of vectors

{v I v m, = d1}.

Then the point ini model coordinates corrcsponding to p, is

R "(pI - V0)

and the following equation holds

m,. ( ?'(p, - vo)) = di

or equivalently

(I?m, ) . (pi -- vo) = di.

This equation essentially constrains the component of the translation vector in the
direction of Rm,.

Suppose we consider three triplets from the interpretation, (p,, n,, f,), (pj, nj, fj),
and (Pks Ilk, A) such that the triple product m,. (in X ink) is non-zero, (i.e. the
three face normals are independent). Then, we can construct three independent
equations

(Rm,) •v (Rm,). p, -d,

(Rm,).vo (Rm,)'pj -d j

(Rmk). = (Rimk) Pk - dk.

Each of these equations constrains a different, independent component of the
translation vector v0 , and hence the three equations together determine the actual
vector. Straightforward algebraic manipulation then yields the following solution
for the translation component vo:

min, X ink)jvo =((Rm) . p1 - d,)((Rm,) X (Im,))

" ((Fim) . p1 - d,)((F?mk) x (Rn,))

" ((Rm) .Pk- dk)((Rm,) X (Rmi))

As in the case of rotation, if there is rio error in the measurements, then we are done.
The simplest means of attempting to reduce the effects of error oh the computation
is to average v0 over all possible trios of triplets from the interpretation. Note that

1?
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for. fill Ilerical Mt aIbiiltv, onle "I iy walt to 1 '"l ril , Il pla: 0 1; rip'~ S~ -sulc

that nII (Inj K I11k) is greater thaln >-olri t hreshioldi.

Finially, we have computed tile traiisforll: (It" N ,) f,: o.') 'oolk~t( s
to sensor Coo)rdiniates. To check a possible ililerpi :0t loll,. Fe ;il ti I ples

It, fj~ in thle lntcrpret at fort and corn pote

I '(p), - vu).

W\e theni chieck that tis poinit lies wit hii ( hie lu,: Of it II; hiiil re
error range). If it does not, then the inerre p :'~. 2'l "2d.

If' all such triplt s satisfy tis chieek, thOw trrea m ss

We have aissumiedi ahove that three !ia: F:1 1ave- !,eln
in-asured . \\'beni onlN one normiin is aiilHib, :., t, 'laIt2
canil be detecrmnied. \\hen on!l t wo iIid 'cI(; de:i -II, h c be otat loll
can) hb t,(! eni Iiued aI;s bc!ore, bu t oil!-\ ai di:t -' iw, U " i liimned,
T101 Ill' 101ial ml "Ihllie o1 thle I rii05.;2 l.t11" 12 u !at lolls cMi1
hi (i teill~i hiovx% r. h% IlIl'.'!'escctIl;2 j lic, 1k, 1:t; ... ;a I o n o f a

SeIisuC i n 111 1(i I: hci t ral ( Iia :0t 111 dik'o't 022 11 :1(. poiit by
the1C ltite'pre Fl :21 1)1. O f CO 11rSC, i'IFtherV sen I ji t I a I!! !,i'' het po'it ion
of' tiet edge \VOIAi lemCineII the actL11triva12

Afte(,I thle model test has been aippied ,o 61. J. l% ot .:ae':itation tree,
thIe muay. still ht, >e','ral mierpret atilon re na: a : . a-' 'an io liall v

finids that! tiemc Iliterproltions differ j:h'Iy w 2i- two facc,
all other taces 1erlug idecntIcal. This ii~ii% t........... a. >hI near-ly
Identical lintecrpret ations is a result of ' ('rir ) I-. onl .. '1>12 'bs, as
a finial stage. we cluster thle remiainiing inepe;'sn ias : cl orpl'ted
tralIisforII)l0T ios, thlat is, we (luster the [Ierr' .. il : '(01pii ted
orientlation of thle object ill space. Hlere, wL &,T i.'Ie \I ' ;ettrs

Indeed , ill general thereis only oniekcillunlita'd orb :ltit;)' fo::: 'a a.',he Correct
oneC). alth1(I-I uhOccasionally two or miore Cilust ers s: T'''i .orspn " gt

sy:lii1letrl c Interpretations of thle sensed data.

*l. Simulation Data

[I,, order tots he efflicacY of tile e~o-l)T rpret atiofl

tree, we ranl a lare miinbr of' simulations. Somsini:oh '022 with thire
dv e-rees of freedom (two translational and one !u I 2il Iy, ('1 'Ice srihedI itt
(fusi:on and~ Lozanlo-I'&rez K83l. We iiilude ;ldudt ola ;!ti:'.1 (1.1:i for obict
bltlI t h re' r, 1 t Io 1 i; freevdo I1!S, 111c),I d i 1g IeI d; rel (2o2 In st 1,:. V, 11So1 1 1 iov I d
(Lat a tror thle iiiore general case of thiree d11isieiisa 22( fi I : iilie' of
fireedomn.

Our goals are first to demonstrate that effeetiNT pvlIIIITC: Ic 1! :2'r prlt; ltoll

ret, is psst Ole, at low 'otitiu tational expetse , and se3'ol iio ( xp I' ' :I- t a 0)222v it 'v
Of the algorillhn to error Inl Incasurilig the surfaiCe T12221; cal, nil( po2';' '' of the
sentised poiin ts.
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Fiure 6. 21) Test Models

4.1. Three Positional Freedoms

W~e begin by considering objects with two degrees of rast n frcedom
and onie degree of rotational freedom, using samnple objects firs' coniderei im

[Gaston arid Lozano-Prez 83, illustrated in Figure 6. The addition ie direct 1on

constraint 'greatly reduces the extent of the set of possible intfrprcetatiorns. To
demonstrate this, a series of 250 runs of the algorithm was excuteu for each of the
objects. Each run determined the number of interpretations conlsistent wvith a set of
5 sensed points. The points were determined by first randon.1v rotating the- object
about its centroid anid then intersecting the object with five lines from its centroid
along five evenly spaced directions. The points of intersection farthest from the
centroid along each line were used as the sensed point. The (simulated) error in
measuring the sensed position was bounded by 0.1 (i.e. a randomnly oriented offset
vector of random magnitude bounded by 0.1 was added to the point on the object),
and the (simulated) error in measuring the angle of the surface normal was j(i.e. a
random vector was chosen whose dot product with the actual normal was bounded
by cos- 1 '). To place these error ranges in perspective, the diameters of the models
in Figure 6 were 9, 14 and 12 units for the wrench, gator and hand respectively.

The following table describes the results of this set of simulations, by
histogramnring the number of interpretations found. Thus, for 7 < 10, the number
in the ith column is the number of trial runs which resulted in i possible
interpretations. Beyond this point, the histogram is compressed ito units of tens.
For example, the column lahelled 20 lists the number of trial runs resuilting in k
interpretations, where 10 < k < 20. Imi order to examine the effectiveness of adding
the direction constraint to the algorithm described in [Gaston and lozano-1P6rez
831, the simrulations were run both with and wit bout this constra in!. For each object
in the table, the first histogram corresponds to the case of using the direction
constraint., and the second histogramn to the case of not using it. Note that, the

// "
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nutmrber of edges, for the wretlich (WV), gatoir ')d W) 12. 70 ilid 67
respect ivvlv.

1 2 3 1 5 G' 9 III N) :i 11( 11

WV 2.12 7

W 31 2.5 2 1 10 '1 20 2 3 2

C 22 6231 i8 '20 *23 10 t S 10( 20
( 1 12 11i 2A 10 1 T 13 .5 1 3 -1 7

II15 b61 36 2')2 1 20 22 11 11 9 12

U I 131 17 -11 i 17 1 2 1 6I, I: I 1 6 1,-

TIhe results arc srkni ii llumall1 o! ili;J 1t tlie

21) (li the (',it or using The0 direction conK tr p V 1(1W Po henl

collisidut iii that the tot xl rurniber of' pwoIl b ( :11 at or was

50" or 312, 500. 000. Secoiid, thUcc in ri I (':. Wits

oiiI- 2for theC %%-rL!lc'L,aid 'I for the gritoi I I .d ietoli

'ollsI riiiiit. \%l~t h 5;> I cous"t raillt, tle'ie '1I'lla !'oils rose to

.18, 12 and( 9 !,or !heW 1(1.~ch (I ator arid ia i espw C 19 e results of
the sirtuliitip tOPS dl detxt'd to a certinl ex Wn 01 : t Ll0'I a"s 1 pol it that
will he explored in sonlio detail Ill the next\ S(ct!Onl. V- 1 'C t tl 1Xrh Of an1) inch
senlsitivitv inl (hstnnt( over a 10 to 20 ito';; rati,, 'II Uinxt of cit. renit
tactile sensors. Hit IsttcP aceurac\' D" I.',il' Swithn

0.01 inchecs, andi the I'urbrick tactile Sensor ljois a [cii:, *t (>tpar otion of 0.06
inicles, anTd the( [his secnsor has an cleruesi t seuarailw ;oi N iches.

-1.2. Si Positionail Freedoms

WAhen considering tilt fill] thrv-dirnenzsi,!'. )o'. .>wth>x (icrees
or' free-doml wc have riln extenisivet slilnulat ;oiis onil n!o;, 1 tc in figulre 7.
it (ItitlctctF! of, tiese objects (that is tihe iioiF;t ;'st' 0 tw%, poinits on
'Ii ( oi)- ('ct F0P ti gh7 Iv , 7, 8 anlld S inic h ts fo~ hio ., > (J, I ImIle h and

ailld co: iplex hand respect Ively. Inz ru n n Irg siw i: ol' i 2' - .;;tton algorithmr
onl I; I' obec t s, we have UsI'd two di rt; '.c2> clintg inl part
ti.t' uii t-re rice betweenl rangeac itnd tact Iile ls'''o !'i Ii~it it's.

1t sholilI be nioted that ir) all thet foliowing, siiii.:iattitus. ti eIfiirieney of the
rotu pin trig rlit(l,Ctitsttli w~as riiproved b% sorting, the >,td poutits, Iii particeular,

7ath, th:i ; :sg i'w setlsor\' daltain ll 1-)- .. o:'("h'T, " H pun'>- v.k re ,orted onl the
u;'os of 1"c t-' 531.1 ;I',ion., with thei llixol' ili nit lilt' ioT12, olered-~ first. This

(!: >;~:icc tl'tdm. to placi l himost f 1wtt 0'0 ~~t i the bei.gning

lieth proces: , ;Li poill t.Val IWil be illtist r~ tel im sectionl 1'.

4.3. Grid Sensing

Ini tOw first sciisirig rmethod, the senisorY data, vI lwatiodt ( bY project ing a
re-gukar gr',d of ;itt'. s aong three ort hogonal diltec 101.. arol notirit, where contact

20
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Figure 7. 3D Test Models
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"~as mIade \\lti an ara M rinte Pll iof 01 la Nt~i A iir ,P wiw t iof

wVas obtinedC~ by\ randondyll ch'l I iuI", %:iltics for thIio l 1.t ', pitirlg

it rot ationi trauisforuuior i baised (o tis> And( 0 ' K de1.

for olii purPposes i is 1 A e , l nclll" Vti1wi :. . ' vas
added, 'ce t his %\0'll o 11 1 fcct tL he ):oc(>. If !w ,(,, iO ,,:o - of

the sensed( point1s ad t he lI>soriii '(w>ili , ifI r Xom n i ~i Yoise

w itr somie spciticI o1 ll: ,(s. Fo:, 1:( sinll;tt oi ',IS( Utt :,,i .ucr of

,Sv!1seu poiulis oi O ;wh trvial vAried l~cwc('11 12 a ot 21).

'Ilc rc~ ls ot e fr, -Lo,), 1,T 1 V
h'a l i rs l> o i ;ii's' o! ole sv::1 t. of . *.. t

priunin, For a vain ;y ' & w12. t..t. k' it] FaS,

it1( I I c I I III!I I I l 1 aX 1V tiltn Ill! lul~ o i t 2t: OTov r hi
se? of, tnt>:, a> s % 1,ila- :fl It aitd! 't 1; Pt ' I k..1 . n

of unterncatio:ls. lniIII i ;4:0ist es oi I i V ,.1 the
IT that surilve a;. ct 1.011 :niO . II v.;i> r (t t:' 1V tile
numberit~ of' ill:itp its XX(, , > t:ot :0eIc,-'2h1) o I > ' (I ing

interpretatilns 4(1c:20 lc i( ( : m di ,r tiiv ii c:,T th e

counpwv d tnrausfoi-taai olparanwkTt s %w e , the

multiple interpretatiLons surviving A iioihel ics: ;,tl
interpretation. to "!tihini the erpror rang'es of' W Awyliki .. i kl ' hIs

statisics of the nuudiwr of scparate trrwo w nt "o> .- t - '! In
pa-rdit~ar, transfonutatoris whiose diiee 101o (': :0 1:" c2 * I,' 13

we~re judged to be IhifTereult, yielingu a vey''t .Q0 ;: i:I 1 :.:it ed

tranisformnatiouns. This cluisteriung ignforesilLIil St iTi .1 ii!: citipcuint,

a point that is addressed Lawe in Tabe Pv .
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O)b Itct .\ orn C. I) , V!ITI ,I i !( . .la :. I';c .

ol~ I sn 1

.05 1 2 72 if)

.10 2 .10 20 ,,
-- - .. . . , 1{} .01 2} . 10 ,±.0

7.0 1 2 i IG
2 22

.10 1 1 1 X I 7C ;)

Simple Iland . 12 .01 .1 .1

.0 .5 .,
- -!Oi .01 *t .1 I o ; 2

.05 C 1, 10

0~ 17. .{)1 4 S 1( 1 0

Stapler 1,'12 .(1 2 5 52 72
05 2 52 20 772 '3

10 .01 2 1 .271f ;.I
.05 152 11 . 2,R5 .t

Comnplex. I land ___7 1'2- -. 01 2-- -2-1 120 S96 .601
___________ .0 2S 50 2"80 G-1

___/__,/10 .01 2 . 10 2.10 3-156 " 6.1

.05 12 44. 40 .1116 64i

In the table above, the normal! column ;ists ti radius of the cror corie about
the measured surface normal; the dit column lists the urror r:Uige of the distance
sensing; the man and max columns list the minuiur and maxirun number of
interpretations observed: the 50th column hIsts Ox median point of the set of
simulations; the 90th column lists the 90"' percentile of the set of silnulations; and
the faces column lists the number of faces in the model.

23
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.1)5A 1% 1N
I: 1( .01 Sin g!)

05 1 1 I

.05 I

* 0II I 6 0
7 8- , __ .01 I1 2 0

.0,5 1 i 2 .U.;)

.01 2 2 . .

.05 2 2

.01 2 2 3 2

.05 2 2 3 4 28
Stapler -'/12 .01 1 1 2 41

.05 1 1 4 3
-J1O_ __ .01 _ _ 1 1 1.3-1

.05 1 2. 5 31

Complex [land 7,12 .01 1 2 3 .1 64

.05 1 2 4 6 64

.... o_10 .01 2 4 Gil

.05 1 2 , 7 64

In the table above, the normal column lists the radius of the error cone about

the measured surface normal; the dist column lists the error range of the distance
sensing; the mri, and max columns list the minimum and maximum number of
interpretations observed; the 50th column lists the median point of the set of
simulations; the 90th column lists the 90 th percentile of the set of simulations; and
the faces column lists the number of faces in the model.
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Figure S. Simple Hand lfist ograin.

T - - -1 __

Thle fhr~t p~oint to Stress is that all of ilx,'linbc,-s i:-c low. given
that tile tot a ilmnber of possible interpretal t o I 0, 1 e, G i so a nj

w~h 0 aestsrogly1.71X1024. Thus, thei local .eonietric constr-aints are

feyefective in reducing the combinatorics of feasible interpretatios

AS Tmight be expected, the number of initerrtationls it, all three tables tends to
ris- with iriere asirig error in the measured parameters. The distribuitions also tend
o heYrowl cluK ered ne~ar the lowv end of the scale, wvith a vry shallow tail on the

hie ed of the distribution. Thus, 'while the rn"aXItIIIIrn iimr~C Of interpretat ions
eali be igh (e. t .576 for surface normal error corle ofl r- 8 and distance error of
(2. AW, the :reapoliit arid even the 90th percentile of the distribi: on are generally
Ilh sm alk l( am ple distributions for the n oiTer of, Inlterpret ations snurvivinrg tree

arestiW~ l''tr 8.One reason 'hiat the niixii,imn ;iuiw)r of feasible
wle rp re ations, cani b, ,griillc antly larger than hIe nied ian of the d st ribLi:ion is the
i0eC;tioiid oceurreneet of dependent sensor liforrna on. For exaniplo. if most of thle
sc'tt,(Id (2oiti thirpeo: to lie on, a single lace, filie aii~ioiiit of inidepcindenit informt]ori

bolot the~'w t' p( sit on is tmuch smnaller thin wheni thle samre riumber of sensed
poilots i o:dfentfac s. Whlile thle seoislin :dIrategy uIsed hii % ic i re'dutie thle



Or. rnoi o ' X , . i'eariP O

tl error cone abou t the se iied tlor I idi, Iin ' r iwti. aIIdi IIdioil I, ttr0;: del
of t he posit ion err-or, III IticlieS.

One reason that the riiaxitnui ntnI or ai~ Ie~tta i> a be
S;gtIiiical:It v larger thal, ix etnin~l of hc- 1 ,0,to:I ttut ii -,-oil i~rir
oif deperilecIt set.5o Ilin ((F;:I:Lt ((Ii. 1r ' '' o' .Qpint:

,iosi I oil is 'Ioiii sal e it vit '11c Oil 01

differetit I; icc. \\ail I e t sft, sit 5 tt t I(-t !1 1.(. p: t) ' 11:,

of this ocetiring. therec is st ill aI '1IIt/C'-0 Ci-''

phiece. reISut1 n in 11)it ca! 01111. Ctii ase 011 '':-1 '! o'' 1' tis

Thle probablolt . of suich reu idll i i ' ' ext i t !Ji '(I',

oili tlio Shiape of the( olhJece 11)1 exl ~ apler
!S 1rii11cl longecr -tha; that oif the i:lolor(a ~ ''~ that
a rucw r tismugz i aeg s Ilione :ilY ' U ::1d1. . r7nali IFor the
stapler than the- lrus~u.daecd .Ae na . '.a~tra seat jot.> 'of lable
11 Shows that 1T I tr s I[I I IIar co!adito I I a. 1< 1ith !!:1 feasi ble
in~terp:i'tat:oris of the stait~lir Is noahcl h;10: 1: o: 111V I I:iu .a!ug vt thouI]gh
thle st apler has fewer f;ices. Thiis Iparl v d; o,) r ootit S(nn i :1( il ;Us partlyv

due to svinmetric hit eipretat uots of the data.

' Te number of dist inct t ranisforuTllat on .'- :f niost al ways I it; these Simitulations.
It was also observed that the corn pu ted tra it soriniat on wsgeneral]%- very close to
the actual one. lor examTple, each row of l'able V Illustrates thle average error in the
computed transformationis over 100 ruins of the algorithmn. The dhre ct iofl column
lists the averape an gle bet weeni the correct and the (irnpu ted directioni of rotation,
the angic colunin lists the average angle bet ween the correct anid the compted
magnit ude of rot atitont about the rotation direction, anid the tranrslati on column
lists the average i warnit u di of thie difference bet ween t he correct atid tile computed
trarisilation corHoieruCt Of the transforniat ion. It Catl be seenI fronm tile table that
the avrage error IS retn'larkably low, genlerallv oil the order of 2 -3 degrees. even for
differc1 tl ohi-ects andU different attiouiits Of senlsor error. As irtight be expected, the
average error does tend to rise with increases in the sensor error. In no case dlid
the algor71it dliscardl thle correct interpretation. Note that the errors illustrated in
Table V were recorded1 from~ the dlifference bet wcei the correct transformation and
the comnputedi t ransformnation for the correct. interpretationi. There will be other,
erroneous interpretations, with much larger differences between thle computed and
correct transformation.
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Si~piI land I~ A)1

05 .12
-;8 101

IluigH 0.5 2() 1

5 .05 -

' .05. (

St Ipler12 0 i

S \ 1 i tt~e d a s l b i( T ' d l t s 0!t ' I t S do ) . , n i.;* i0:: o f K 0 ) e
sv'niltrche(a:i. : 1e to .c

u"s fx op u :, 1 cu h> i . 0 . .. :

I i j\ S foun I tIII it I o' t'A F:> :o' 111s~ .' 01i.:'.eo

xx ithi the seuistd d at a. I'mr oJCts Such'1 ;is Iujl( I e2 h )Jeut

itr s"' Il met ric Cfr e'X;Iiji~lt'. The ha1) i I. rjc on o f

;il OI. tl ' 1 0 It h:ipp 11 t to faiL ')T i'tu hicc 111cn
srrinel I-:( I!: 1!'.< ;'tlt loris oft tilt Ia! ito or .

litt7jtT ! it wlS t l1.t foi !005ot 01, t1C c:'.'' us, t snecially

v.11Kb the( sens-or erroi i., sinall. T'he fewxI'l An Ox tl('eror in

Ow :eciostireorlnts 'vieids Two tIearl. e lnti1l d:c ;I:" b, it f'x degrees of

rot it too I t raiitorPitiI irs that aCt.oiI III for the 0o 1 Wr il ASIeI11. :Tca'Suired
(jab: deCruaseS. th'se tiv11t.1ie iflt(7.tiFtit tims t(,!:' ,

Vie sin.uiiiatlot dat a !isted r it Ll RaL j.- w-*' , ' 1' 1 ;1 i'. Ierig of the
I.!r 1), ct i t i o: AS ) as c stI--o , i , oil the rot:0 ti o !Jt w- ht- I1 visformat ion,
11* is:!1, 'x"vo I ra Imft' [no '1whose directtioni of '.ot!O1imi trig> i'i iic.>5 than 1.50

**.t'' CORtIsdered w~ he par. of the Same chistei . I')J 1( 'I to lopie, while
vtr v t"ight mi i lt.,tit lo:u ( (wiporietit, WtetS.~th ' Ct ' lt:ttrito

CWto! T () ~~~eit' tin Irrisforiton ToJo ea :!iirio t ie ~ eio ime oil i'Der of the
! iiiwilitt wus \\t'it Itill , ISiro01 a cliistcrtri'" II 0I., . I it I I rotatiton

<etisi of vi tIE l..) aliid it tmitislatioti s(Iisltjt't ii" I11w O.W o ! 0 01, fic tnumber
Otf dti'Ct tr;1Tr'sF0o1ri't (ii> undcref this t'li.sttr.it sci (Alc uo1 bolutIn ki lble VI.

Xiiit that, x'.'hilc )tl' 1:oimri r of dist'inct trut~u ruluilitO 111;0 d('t S );u'rtase relative to
the "o'Ttti Igntries IT[ Tfable IV. the ISigt is ' no s1ilant.
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r:hl \l No. ul I 11-'o rn, .!\,o 1(1 1- 1r'1 1

()bject No1\ i 111all ),t ( lust .r .i1 ,()o! . .)t K

1_lousing .. -10 .05 .01 1 2 '1
.05 1 1 2

-S-iinple Iland ,./10 .05 . .01 2 . 6 lb
.05 2 2 1 12

Stapler W_ 10 .01 .01 I -7

.05 1 2 , 2

(ioliplex land __ r 10 .01 . .01 1 1 2 )
.05 1 6 10

.4. Random Sensing

All of the previous simulations have generated the seised1 data lhv iy, ) g,.ig
a regular grid of points along three orthogonal dircct)PIs, .,( iirxIly, ... :, II
between 12 and 20 contact points. Such a sc!)s1iTg si ratcegy hu :il L 'cn i>' it Iiith
visual sensing modalities. A second set of si in auou s has been : i u, - ..
strategy more consistent with tactile sensors. (oIdcr a sct of th:c( :i..itially
orthogonal, directed rays, which intersect at a point. S,,ppose this poii:t is taken
to be some arbitrary point. (xy,0), chosen on the x - y pY:;e (note that by the
definition of the object models, this plane will interect the obj ect). L~ah ray is
traced along is preferred direction, (with decreasing z component ), u, til either the
object or the support plane was contacted. This operation was repeated for several
different approaches, using randomly generated values of i and y, until between 7
and 9 different contact points were made on the object. Trables VII, VIII and IX
summarize the results of running sets of simulations, using sensory data generated
in this fashion.

Table VII - No. of Interpretations After Local Pruning
Object Normal I)ist Min 50th . 90th Max Faces

Simple Hand -r/ 0 .01 2 1 20 90 28
1 .05 2 8 __44300 28

____ __8 .01 2..2 8.. . 48__ 444 11 28
- .05 2 12 -84 320 28

Housing T rJ 10 .01 - 2 10 i 70 946 . 34
_____.05 2 32 124 1234 34_---74 - 77 -- - - - -  - -
________ 20 11 74 .284 34_

.05 2 62 406 4O53~
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Object Norrnai Dis t il.' *'W I v;,. s

Siolple Hand 7,10 .0 1 *.. .

7/S .01

I louising 7- 1) I 0

7/S .01 2

05 It_______

Norilpl il:a >l'(

.01 3

.5 i 3-1

As in the case of tat t arlhr csnltos e ', s the local

(oiist raiiits in rcducji,, li(th number of feasible 1Y i a. is1 IS 1itYv diimins Tt Ied.

kltretingly, the numnber of distinct translorriiat 01 as 1o Ws~ w higher
thain the earlier casv sespecially For the now, opl ":11.-1 ar from
the followiy situation. W\ith thle exception1 Jf o 'c (Iil (set Figure

W. thev housingT is esse ntially a symmetric object., v. e: o !N%( 'il('rerlt axes.

a\ i Cori equ Pnice, if the sampled data pei' (-o io w, i''- < w I~ng

pr.ojection. t here Could be several consistent ,~i1: 11 1,c 1 io! o f t I 1 da t.

inTIc case of suisorv sampling on a regular ,ro id an po! i 1*'; .at at least
onle polit wil lie on this projection, and K W: i' r''a \il! not arise.
hii thle Case' of fewer sample points, genera: (i 1) ranImOoi ap',proac tis I,) the object,
it is inuch More likely that thle fe~htraas forniatin>, %%!h r"'I'ct this sytnicit ry,
an-Td thus bc higher In numiber.

Ini cases ot imbiiguity Ii interpretition, for exi,, %lit" 'ra orientat iOtis
of the motor hiousing are Cotisistettt v.it1 hOtlit, s, T!, d i, (.I(, ", -I : sytII i~tetry
of the oboect., 11 %wild beiiscfitl to have efec i cw> Ccr ~ i* i between

.ex poss ble solutllis. .\str;!ight orward ito' .(w , j.:orv poits

get IIvilIted ;i t ra i dou an iIt i i o ilyI o ne i nt lr I. c. r p r, I I ,>111, of Course,
Cotilti be)( Nei-, litothc:erar, sinice it. could tk th a'.:.aoltits before
a Molutton I fol; 1. In the Case of t111( !or a ' 1. ( e wouild

,d10 Coiiuder Adilion alenoypti!5i :. I .M-ISl l opeet tg lip

of the lto.isiiig i, recorded, A tmore effe(Ct i.e( ~oi1Pw1 1,' 11s 1! ! hilefl'Cc in
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feasible ilt crpretat ons to find directions aloiig whwchl the points of cotict of tile
diflercit ilterpretal ioll. are widely separated. Such (ir1'ctions tOwn (o'l..,01,2 J a good

candidate,; for geiierat ing the next senscd poinl !(aston and o<ralio- '&rez 83;.
Extensions of the method to the six dcgi+e of freedom problem are c currit lv urder
investigation.

•1.5. Tree Pruning

Tables X and X1 contain a final set of statistics that denionstrates the
effectiveness of the local cont raints in reducing the n1n11r of feasibhl' in Iirprel at ions
in thi e IT. The regular grid approach is used tog0 er , ' thie se 22>:'.:: "or the

data in Table X. the points are sampled in raiidumt or(e s ,1S f T is geIner.'7c(

and pruned. For the (data ii 'Fable Xl, the sensed points are sr: ,d on hvh hasis of
pairwise separation. with the more distant points hei!qg ordered Iirst. This soliig
on distance tends to place the most effective constraints at tie tugi n ing of the
process. Since the point of the local constraints is to prune the IT as eficiently as
possible, applying the most effective constraints first should result in pruning out
entire subtrees at as early a stage in the tree generation process as possible. Using

the sorted sense data, the interpretation tree was generated and prUied. Tables X
and XI list statistics of the nornber of interpretations at each level of the tree, (i.e.
the number of k-inurpretations for different values of k), based on trials of 100
simulations each.

'Fable X - Feasible Interpretations -- Unsorted Points

Points Min - 50th 90th I Max

2 12 96 334 432
3 4 110 388 678
4 4 55 373 675

4 40 244 2 1000+
6 4 26 189 1000+
S2 24 108 686
8 2 20 82 636
9 2 20 76 520

10 2 20 72 336
11 2 16 62 280
12 2 16 64 200
13 4 20 64 304
14 2 18 72 304
15 2 20 80 304
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P oiluts Mill -)oil ih ax

3 2 18 1h
4 __ 2 12 .9

0 2 12 2 )
6 2

7 22

92 8 72

10 2 82

28

13 2 12 .1
1212 180

12 18M

at all levels oc thet t re Ieen as the o' tb o: u:.: w4SA1 1 i S dat a

miplis that one( of the- st rengthas of tle inproOlcil 1 i);.,:, pruit out whfole

stres of t1he IT at a very earlY stage, thieieby i a toe ),, totr. umber

of' tests to be apl~odL is si-mblcantv ly~t . B1v .e Thts

leads to veycificic it processing of* thle f~ij 7a

Sort I ig the poiis onl distan ce is ext re iOi'< 11c e ei rum the
results rktnorted In Table Mi of the saine set oif r'ios a> uce aJ 'i,,;e X, but where
het( pmint s were sorted1 prior to pruning. Tie eftect wi in O ~ f dt pro tong

program I\s also quiie drastic.

5. Perrorinance on Range Data

We hiave performekd limrited testing of the( tjgor) n Ks ,md above using
hiih q;1lltv rang-e data obtained from a iaset * sten;. developed

by Phili ppe I rou at luraborat ory. 1 wo ()Ip'e ofw tied are shown in
V gTiro 9. The data i:;. obtained! it high resolution, apme0.04 centimeter

t4-l sparing1 a1lor11 X and~ k).08 Centimeter along i u. ;na ' c of points were
obtam ed fr-omi the dense data by choosi mg poinrts \Nfierv ,t F squares fit to a
plano over a 5 X 5 pat cli produced very lov fir italim /cd reiuon errors- Pinnts were
choseni that mclulicd "It. east three inidependerit. iierruak. Note that the actual

till iltl A prFoItsion that. \V~s niot pr( scii in Ic ii rnel: nio data was taken
Ifromn thlat e iIn ,IeC (lata froln figujre (a) elevcn ,oinrts wort used: in the dlata
fromi hi . mer 9(b) rime points were usedl. '[hei ,etcc1iracy Io O)1tIdS we Crmployed were

0.02 111it positio a(1 ticuracy and] 't accuracy tin ru~alsul"1 r itg h normal.

1gui1rr 9 Shows Ole results obtained fromi ruonin::_ h! 2't u on thle data
describtil above. Flherc wevre only 9 and I1I ittrpri 1ttS, t'lI lVely, left 'Ii the
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Figure ~. Sample Range I)ata and Coiiipuf ed Interpretations
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tree after pruning with tihe local constraints. Fronti liese, three valid transfori Iitions
were found in one case and two in the other; they are shovii in tie figure. The
correct transformation was found each time. lhe other transformations correspond
to rotations that place tile sense ' points on parallel faces. Note, however, that
disainbiguations between the valid transforniations would be straightforward once
the transformations are known.

The quality of the data used in the experiments illustrated in Figure 9
corresponds to nearly tie best error conditions used in the simulations. Results
with larger error bounds, using data from sections where the data is less accurate,
showed results siniilar to those III the simulations, i.e., more legal interpretations
in the tree and inor,, \alid transformations but always including the correct one. It
tends to reinforce the validity of the conclusions fouii in the simulations.

6. The Combinatorics of Pruning the IT

In the prvlolls sections, we have outlined teic basic interpretation algorithim.
The crucial issle that dcterniilcs the viability of this aigorithiii is the effect iveness
of pruiig the interpretation tree. Our goal has been to demonstrate that oile can
use simple local con st rai tits to prune the interpret at ion tree, so that only a few
of tile relatively expenusive model tests need to be made. The siniulation results,
under a variety of conditions, and the results on range data provide support for
this claim.

It is also possible to provide a coibinatorial analysis of the pruning of
interpretation trees provided by local constraints. A detailed presentation of such
an analysis is contained iI a companioni paper [(rinison and I.ozano-Pg 6rez 83].
FHere, we demonstrate the scope of the conibinatorical analysis by presenting a
detailed discussion of the use of the distance constraint iII pruning interpretation
trees. Similar results hold for the other constraints.

We stress that the results given below are actually weak bounds on the number
of interpretations to be expected after pruning. In practice, numbers close to these
bounds are observed only when the sensors are arranged so as to obtain a minimum
of information about the object.

6.1. Coinhinatorics of Distance Pruning

We will consider the case in which all faces (or edges in tile two-dimensional

case) have tile same size, and derive bounds on the expected pruning of the IT.

Assume we have some arbitrary labelling of the faces front 1 to n (for example,
in the two-dimensional case, based on arc length from some starting point). For
each pair of faces, i and j, let d, denote the separation of the midpoints of the
faces. Let (,, be an tipper bound on the range of variation in distance, for different
sensed points on the two faces, i.e. let

1 rn lir sup{ :d, -c _< Ix- Y< d,, + ,Vx on face i, Vy on face j}
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where ix - yl is the distance betweell poitl x ti fate 1 and point y oi face j. Let
be def ined as the Inaxilli1lil over ;Ill 1.j of t pill, SOlle t tlli tt of Ilie 111:iV! llin

error of the .-ensed distance.

NOW ;tsa-2: e t hat we ha';' l'ee tiT'(, ;t-2 :o f tI Is% o ,t'!i-tO :- is. /': P, .:!d

P'. al let i , bC the mea-ui: :I 1l, , : thc;,...>1. ti.; I ! w:.lt
!1a.;i ecti 3irhit arifV tS.. (l(,lled 'o -l.t , tI ut o2 i .t.(i \ v ' ktl t) ,dt t 'rlai:1C

j.'ow llialiv faces j of the oliject ctill -o ,i. t ('(rol2 p)olItA
oig t iI t ,(, s';l ltlO i V ',!l ,le l:t' 2 2). , t >. '\'., ar . '" '0.

X;-,Uit to be ibl' to coiillmue this for :'.,, : . 'n h,: : , 112d 22 2)0222 ti
021 ti t' l itlllft1er of o55ii2ltllleltS of , - It - 2(. 2, l l'l 10I' ; 2 ' 'l '. 1 2

se:1sed sepilr loll ctvbet"ll the faces.

L t', O Wt d IS!l-l ,,lllOnl Of' {fakC :4 ' i ., > ,. ' ',,i , s 1'. f (:. W, ., , ' lt be
1,.: the' lv r(.,Imilol' orr ',ed> w . ;,,,: t . .:: .. : i ' .. ' ':C t "'d : .ru aen'

.r,'l~ t: o* ; t p. .' l!1 i w li ' e ,l utTd, 1:' 1 . ''

I .loll. ;' c 2 l< 1 4', ell )% ' '' ,t .. \- l.,t tif 
,

wvficre z is ti total Tllilber of face", ;:lltI .' ' ''i tl.,ll t E I t l'iCX.2,iPltpir it oll

Of *,'I.t j tel..7\ott' olbje ttt' itJ (t' t.' a ; I- lh. fi ;I il :. ' .z ': 1 ,'u " :f- ' e

n le : . TI fe (t,!,o"% Ii,4 ot!: 'Of til 't X k c W' i1 IT

lot ,s ror both '.o. di innsloi l alld :11( lei-,' Il'i.:af (thijCc S.

Proposition 1: AI) tipper b01d1 l the expected nuiiber of iodeS at the kth

le~ c of the interpretation tree, k > 2. is given by

2 n

d -) n"

where d is the diameter of the object, and ( is a bound on the distance sensitivity
of the model.

Proof: The proof proceeds by considering an iterative applick aion of the
expected maxinuiim branching factor at eth level of the tree. We assume that
bk I dellotes I hound oti the uiuiiiber of consistent nodes at the k - 1" level of the
interpretation tree, and consider the branching factor obtained when adding a k'4
sensed point. Asslilme that sensor point Pk I has been assigned to face i, and that
the measured separation of sensor point k- I and Pk is sk. This iriplies that the

midpoint separation of the corresponding faces is within ( of s,. Hence, an upper
bound on the number of possible faces consistent, with sk, given face i assigned to
point Pk-t is

Li dp,(sk + Z).

Since the number of nodes at the k -- l" level of the tree is bounded by bk -1, an
upper bound on the total number of nodes at the km level of the tree is

bk - max f dp,(sk + X).
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F"igure 10. Ilsltra ion for |Proor of lroposition 2

A

4 -

0,

o c'!. ' ,. -g. : .i<tu t:s m~! ,u~ (5 c:i;cs' C- c ie {9 : : :! . ::

see I.l;rc 10: Wt, : t tie maxitnum a d : . c" 1',, i

"t: d r- o c',' '0o- ". se 0, tFe d-cs a r,! e : tk t' ' 1'- - - .
: oI T;]I a naxium, of d,, - f.

\Vh:1e t s cai, be si' own -lgTebraically, there :s also a 1 C c C 0 n:e_,of

Co ist r, c A coo jiiae -,stein witI r 1:cn a I the . t . . a1 " o

ao I t [the e )(I 1 t'o)::,ector." ('w construct a C'17(ie o' Iao ,

imti, : - . t l' rc>,. ti:s cmcle grazes the first dtsk x, 1
order for an t ier poirT -1 the second disk to have a so > - e..........
abie to position a circle of the same radius -boui that ;1v ae.d ( t: re Wie

irst disk. -T1hs is no: possible, by the followin aru ,e r l'! em; 01 ; 5.
points can be formed by sweeping a circle of radius d, --, thrcigh a serlc of
posit Ions such that the center of the circle lies at the lITTIt of tc sec ,re d ds 1s
envelope only intersects the first disk at the above mentioned point. arnd henCe, the
minimum possible separation between the two edges is given by d, -

Similarly, the maximum separation can be shon tc b -z-- I y conrsructing
a circle of radius d,, -c about the point (d, , 0) and us Itn the saune armFolient.

If d,; < e, then the minimum distance is clearly bounded below by 0. The
construction for the bound on the maximum distance is identical to that a! ,'e.
Hence, we see that (, I< e.V'z. . I

Corollary: If all the edges of a two-dimensional object have the same length.
and the sensor error in measuring distances is much smaller than the length of an
edge. then the expected number of nodes at, the k '; level of the interpretation tree,
k > 2, that survive distance pruning is bounded above by

( 2p)k-1n

where p is the perimeter of the object. and d is its diameter.

Proof: Since the sensor error is inich less than the edge length, we see that ( is
essentially given by the iniximum over all z, of F From the pr v os proposition,

.37



- It , 11 1 kdIl I(1 I e if: I<,: I. I :d , f, ,,v :i::a :1" I

tri

( oroiIllar if* ; ii III 1"o of a thre tCI if ;imcilf ~ 11 di1 hi r

. ir( i tie saii c StiL i c " area. an d 11, C ' 1V 11 i' ii ~id Iu;ti CC iS I - Ch
NI " l vr ! ;1111 i fb I "I rIc:I-: of ;I fic c.' [I t~ ~ s 1) ;I e k

S r tI le 1 i i iilp ( lIIIl it ile v ;I. l I I i, i I ,. I oumo Ied
abioxe by

cire I k r, lit I r I j I v I. I Ij , .

ro of- ll' -
' :

: ' :. .- 7; " .- r: less than the

.1 .. OVer all 1,3
- :, 1(i:,r. 01 .7;.". . :7' uiarlcter C. If

T a he fiic( tlc C C- V(- 7rxvti A-- *.So t hat

-' f 1 " I, c

38.



6.. lit, l~tl'\ ;tiicv of, 11e ('orrr irlaturics

1~~ tl' i off."V .,'

t~i IiI rI (' I t ic c 1I -I It Ie tiAP I a ! ', and c.r Art !:l t''.

ilil l r-,p ( Ie :el '1 a' 1 lJ c 01 t p ft rot a! 1 (1 i:1 1(,CC

1 a ;.' I, 1ha .;); : p hi', 10 I t'' j( I \' ft

exinpt' iI ttl phre dere of 11 (ra ' tae I I ls ulI i ta'' tol

is lilear inl the ililter of stlilsed pilit<'L [if offr experic c r'. v'' t~ people

fl;d It strr ;I! .atsa of the hounlds should Frowv Wit il NYtI l c(Xu)c~t
lea,~~~~~~ to1e .e''. .iC.. as !1orek palints are( acq'(rl,,~ .: ttesi sold

tighr er. Retcall, litwevcr. thal the boliinds derived above doi not taike into awcount
tOe fact that there arc ( I) dit eta t its at !I](- t,Ih level of the tree: they
on!';. apply -i single toil~istralt at eat I lc ye! of the tree. Theore i njothrmotat

effect tha:i (part at!! ') accounts f'or the growth in the nuitaber of interpretations
withi k. Nante! v that ^,or k < () each n iter-pretat ion COrreSpond, to a coat muilols
range of positions anrd orienitat ions, For examnple, for k -1, each interpretation
corresponds to tihe whiole space of Positions anid orient ations. A' Inore points are
added, the -vol u te" in thle space of posit ions anid or ienitat ions tortsiste it with each
iitcerpret at ion decreases, hil- the ntumbter of these inter-pret at iotts miay inceas s(as

thecy do bet weeil k I and~~ 2)2,

7. Discussion

It is important to note that the algorithim described ini this paper has quite
low tornplitat toia I cost. 'Thie prumnrg aigorit ht is particu brly efficient. Tlhe range
talies store all thle model iiorrmation Heeded arid prinmg is done by simply

"WVe are indebted to John Canny for this observation.
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Appendix I

Here, we establish the claimn of section 2.1.2 that the set

In -l n2 I 111 - 1 >l -1 (1 n2 112~ C2

is contained in the set

0{ 132 cos [rnin(7r, 012 + 01 + 02)] n, - 2  com jinax(0, 012 -01 + 02)11

where
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Figure 11. Extrelial valuies of lot products between tmvo cones

COS E

Cos 61 6 1

COS 02 ==C2

COS 012 "1 *U2 7-.

While it is possible to prove this algebraically, it is simpler to see this by the
following geometric construction (see Figure 11). We wish to determine the extremal
values of the dot product between unit vectors in the two cones, or equivalently,
extremal values in the angle between any two such vectors. If the cones about ul
and u2 intersect, clearly the maximum value of the dot product is 1. If the cones
are antipodal, clearly the minimum value is -1.

We now consider cases in which the cones do not overlap. We claim that the
extremal values for the dot product occur when the two vectors lie in the plane
spanned by ul and u2, with the vectors lying at the limits of the cone within this
plane. That is, if we let

Pi 2

then the extrema occur at

n (I- 'ypJ)u 1 + p1 u2

n2 p2u 1 + (C2 - -IP2)u2

and

n ((I + -ypl)ul - Plu2

32 -P2U1 + (C2 + 'yp2 )u2

The first case can be shown to correspond to the minimal angle between vectors
in the two cones, by the following construction. Construct a cone centered about
nt with radius such that n2 lies on the boundary of the cone, that is the new
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cone grazes the 112 cone at 12. If there is a smaiher ,: )4 ;, s,, ie to

reposition this cone so that it is centered at soie (Aii poi! III the u(110 CI, and
yet still intersects the U2 cone. This is cleary Ilot TeSli., n t-flee i}. 1,.:iWUl

value of the dot product is given by he statcd cn cc o ' II1 I:.(: I.:. x;);II!,d!I,;, the
(lot product for this case, and making the apptropr;iitct ' ;&)iI'ie :i bttit itions

yields the required expression. A similar constructiwi hoid> for i!,(, iiiU ll ingle

(or minimum dot product).

Appendix I1

Here, we show how to compute the range of posibhe direction vectors et ween
face, and face in the obiect modl. Let us erect a coordinae s"stemii on face, at
the centroid of the face and whose z axis points along the orin;Ll of' the face. 'hen,
it is clear that the set of possible direction vectors is the set

{v] -- v E face & v, C face,}

where both v, and v are expressed relative to the frarme on face,. Assume, for
now, that both faces are convex. It can be shown I lozano Pere,8z 83 that this set is
equivalent to

ch({v, - I v E vcrt(face,) & v, C vert(facej})

where ch() is the convex hull of a set of points annl ?crQ .s ' he se, of ver:ic s of a
face. Because of convexity, the extremna of t.he conj)oie):lo of jhe diret on. vectors

along the normal of face, occur at. the vertices of this convex hull. Clearly, the
vertices of the convex hull of a set of points are drawn fromn the set of points itself.
Therefore, we need only find the extrerna of the finite set

{n. (v -v,) ! V v e 'ri(face)) X, v, C I'rt(face,)}

where n, is the normal to face,.

When the faces are non-convex, the procedure above v, :Il generate a conservative
bound.
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