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1. The Problem and the Approach

A central characteristic of advanced applications in roboties is the presence of
significant uncertainty about the identities and positions of oby 1sin the workspace
of the robot. It is this characteristic that makes sensing of the extc.nal environmen:
an essential component of robot systems. The process of sensing can be loosely
divided into two stages: first, the measurements of properties of the objects in the
environment, and second, the interpretation of those measurements. I the present
paper, we will concentrate on the interpretation of sensory data. In investigating
this problem, we make only a few, simple assumptions about available sensory
measurements, rather than considering specific details of a particular sensor. As a
consequence, the interpretation technique that is developed here should be wpiicable
to a wide range of sensing modalities. As well, the interpretation technique may
have implications for the design of three-dimensional sensors.

1.1. Problem Definition

The specific problem we consider in this paper is to identify an object from
among a sel of known objects and to locate it relative to the sensor. The object
sensed is assumed to be a single, possibly non -convex, polyhedral object (for which
we have an accurate geometric model). The object may have up to six degrees
of freedom relative to the sensor (three translational and three rotational). The
sensor, which could be tactile or range, is assumed to be capable of providing
three-dimensional information about the position and local surface orientation of a
small set of points on the object. Each sensor point is processed to obtain:

1. Surface points — On the basis of sensor readings, the positions of some
points on the senscd object can be determined to lie within some small
volume relative to the sensor.

2. Surface normals — At the sensed points, the surface normal of the object’s
surface can be recovered to within scme cone of uncertainty.

Our goal is to use local information about sensed points to determine the set
of positions and orientations of an object that are consistent with the sensed data.
If there are no consistent positions and orientations, the object is excluded from
the set of possible objects.

In this paper we do not discuss how surface points and normals may be obtained
from actual sensor data, since this process is highly sensor-dependent (for references
to existing measurement methods see Section 1.3). Our aim is to show, instead,
how such data may be uscd in conjunction with object models to recognize and
localize objects. The method, in turn, suggests criteria for the design of sensors and
sensor-processing strategies.

Our only assumption about the input data is that fairly accurate positions
of surface points are obtainable from the sensor, but that significant errors exist
in determining norma! informatio,, This assumption reflects the type of data
obtainable from tactile sensors. Range sensors based on triangulation can be used
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to obtain high quality measurcments of normals from vatehes of depth data. The
availability of good normal data merely inereases the cficieney of the method.

1.2. Approach

A recent paper [Gaston and Lozano-Pérez 83] introduced & new approach to
tactile recogmtion and localization for polyhedra with three degrees of positional
freedom (two translational and one rotational). The present paper generalizes that
approach to polyhedra with six degrees of positional freedom. The inputs to the
recognition process arc: a set of sensed points and normals, and a set of geom-iric
object models for the known objects. The recognition process, as outlined in the
earlier paper, proceeds in two steps:

1. Generate Feasible Interpretations: A set of feasible interpretations of the
sense data is constructed. Interpretations consist of pairings of each sensed
point with some object surface of one of the known objects. Interpretations
inconsistent with local constraints (derived from the model) on the sense
data are discarded.

o

. Model Test: The feasible iuterpretations are tested for consistency with
surface equations obtained from the object models. An interpretation is
legal if it is possible to solve for a rotation and translation that would
place each sense point on an object surface. The sensed point must lie
inside the object face, not just on the surface.

The first step is the key to this process. The mumnber of possible interpretations
given s sensed points and n surfaces is n°. Therefore. it is not feasible to carry out
a modc] test on all possible interpretations. The goal of the recognition algorithm is
to exploit the local constraints on the sensed data so as to minimize the number of
interpretations that need testing. This approach is an mstance of a classic paradigm
of artificial intelligence: generate and test; see for example {Buchanan, et al. 69).

Consider a simple example of the approach, illustrated in Figure 1. The model
is a right triangle, with edge sizes of 3, 4, and 5 respectively. From this model, we
can construct a table of ranges of distances between pairs of points on the edges.
The table is as follows:

Distance Ranges Between idges
1 i 2 3
L IR (¢ N E (U:) I S ()

2 ) s o4 o 03] |
3 4 1 03] . 5]

Now, suppose we know the positions of the three sensed points, /7 through F%4, shown
in Figure 1. The measured distances between those points are dist(Py, Pa) = 3.5,
dist( Py, Py) == 4.4, aist(Py, P3) = 0.8. From this we see that any interpretation of
the sensed points that assigns P; and P both to edge 1 is inconsistent with the
model. Similarly, assigning i and P to edges 2 aud 3 is not consistent. Many other
pairwise assignments of points to edges can be discarded simply by comparing the
measured distances to the ranges in the table. Note that the sensed positions are
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Figure 1. An example of the approach

subject to error, so that a range of actual distances is consistent with the measured
positions. It is these distance ranges that must be compared against the ranges
in the table. For this example, only 6 of the 27 possible assignments of the three
points to the three model edges are legal.

Of the six interpretations consistent with the distance ranges, the two shown
in Figure 1, are completely consistent once the line equations of the edges are taken
into account. Each of these interpretations leads to a solution for the position and
orientation of the triangle relative to the sensor. Furthermore, these positions and
orientations of the triangle place the measured points inside the finite edges, not
just on the infinite line.

This paper discusses both steps of the recognition process, focusing first
on the generate step and then considering the model testing stage. We show, by
mathematical analysis and by simulation, that the number of feasible interpretations
can be reduced to manageable numbers by the use of local geometric constraints.
In particular, we investigate the effectiveness of the different local constraints and
the impact of measurement crrors on their cffectiveness. We further show that the
few remaining feasible interpretations can efficiently be subjected to an explicit
model test, generally resulting in a single interpretation of the sense data (up to
symmetries). We also iliustrate the performance of the algorithm on range data
obtained by triangulation.

A e b M e
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1.3. Three Dimensional Sensing

Sensors can be roughly divided 1into two categories: nore contuct and contact.
Non contict sensing, especially visual sensing, has received exiensive altention in
the roboties and artificial intethigence literature. Contact sensing, such as tactile or
haptic sensing, plays an equally important role in roboties, but has received much
less attention. In this paper, our aim is to develop a sensory interpretation method
that is applicable to data from both contact and non contact sensors.

While two-dimensional sensing, for example silhouette or binary vision, inay
be adequate for restricted situations such as problems with three degrees of frecdom
in positioning, the general localization and recognition problem requires three-
dimensional sensing. Throughout this paper, we will concerntrate on the six-degree
of freedom recognition and localization probler and the use of three-dimensional
sensing. Resirictions of the method to the simpler case of three degrees of freedom
arc straightforward.

1.3.1. Previous Work in Visual Range Sensing

The measurement stage of visual sensing has received extensive attention in the
literature. Of particular interest here are methods for obtainmg three-dimensional
position and surface normal information; see [Jarvis R3] for a detailed survey.
Possible methods include edge-based stereo systems e.g. Grimson 81, Baker and
Binford 31, Mayhew and Frisby, 1], which provide threelunncusional positions of
sparse sets of points in the image. This sparse data can be vsed to reconstruct a
dense surface representation, from which surface normals can be estimated {Grimson
82, 83; Terzopoulos 83]. Other methods for obtaining three dimensional positions
are laser range- finding [e.g. Nitzan, Brain, and Duda 77, Lewis and Johnston 77]
and structured light systems [e.g. Shirai and Suwa 710 Popplestone, et al. 75].
Many other visual processes can be used to obtain surface normal information
directly, e.g., photometric stereo [e.g. Woodham 78, 80, 81. lkeuchi and Horn, 79]
and texture gradients [Bajesy 73, Bajscy and Liebermann 76, Kender 80, Stevens
80]. In fact, there is no constraint that the sensory data f{or one problem must come
from one sensory modality. Data from visual sensors and tactile sensors may be
combined in one run of the algorithm.

The interpretation stage of visual recognition has received less attention,
especially when dealing with three-dimensional objects with six degrees of freedom.
Much of the previous work in the area of interpretation of three-dimensional data
has focused on the recognition of simp.. gencric objects such as planar patches,
regular polyhedra. generalized cylinders, and spheres {e.g., Shirai and Suwa T1,
Popplestone, et al. 75, Nitzan, Brain, and Duda 77, Oshima and Shirai 78,
I'augeras, et al. 83, Agin and Binford 73, Nevatia and Binford 77]. Some authors
have examined the p.oblem we deal with here of recognizing specific objects from
three-dimensional data [e.g., Shneier 79, Sugihara 79, Oshima and Shirai 83, Bolles,
Horaud, and Iannah 83, Brou 83, lkeuchi, et al. 83]. The principal difference
between previous work on recognition and the approach described here is our
reliance on sparse data acquired at points. This makes our approach adaptable to
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contact sensing as well as visual sensing. The sparseness of the data does make the
problem of segmentation, determining which data is drawn from which objects in
a scene, more ditlicult, Further research on this topic i« currently underway.

In the final stages of preparing this paper, we became aware of the work of
Faugeras and Hebert [837 which adopts an approach that is similar in many respects
to the one described here. Their work, however, focuses on deriving an accurate
model test. Their method does not emphasize the problem of enumerating all the
legal interpretations of the data. Instead, a measure of the accuracy of the model
test (and a simple angle pruning heuristic) is used to drive a best-first scarch for
a mood interpretation. This method does not ensure that the interpretation found
is the only one consistent with the data, however. Their method and ours are
complementary in this respect. Their approach also does not assume sparse data,
but it is in fact applicable to that problem.

1.3.2. Previous Work in Tactile Sensing

Contact sensors measure the locus of contact and the forces generated when
in contact with an object. We make the distinction between tactile sensors, which
measure forces over small areas, such as a fingertip. and force sensors, which
measure the resultant forces and torques on some larger structure, such as a
complete gripper. A micro-switch, for example, can scrve as a simple tactile sensor
capable of detecting when the force over a small area, e.g. an elevator button,
exceeds some threshold. The most important type of tactile sensors are the matriz
tactile sersors, composed of an array of sensitive points. The simplest example
of a matrix tactile sensor is an array of micro-switches. Much more sophisticated
tactile sensors, with much higher spatial and force resolution, have been designed;
see [Harmon 82] for a review and [Hillis 82, Overton and Williams 81, Purbrick 81,
Raibert and Tanner 82, Schneiter 82] for some recent designs.

For descriptions of previous work in tactile sensing, we refer the reader to
two very thorough surveys by llarmon [80, 82]. A more detailed discussion of
previous work on tactile recognition can be found in [Gaston and Lozano-Pérez 83].
In this section, we briefly survey the two major alternative approaches to tactile
recognition: statistical pattern recognition, and description-building and matching.

Much of the existing work on tactile recognition has been based on statistical
pattern recognition or classification. Some rescarchers have used pressure patterns
on matrix sensors primarily [Briot 79, Okada and Tsuchiya 77]. Others have used
the joint angles of fingers grasping the object as their data [Briot, Renaud, and
Stojilkovic 78, Marik 81, Okada and Tsuchiya 77, Stojilkovic and Saletic 75]. A
related approach uses the pattern of activation of on-off contacts placed on the
finger links [Kinoshita, Aida, and Mori 75}.

The range of possible contact patterns between multiple sensors and complex
objects is highly variable and scems to require detailed geometric analysis. Tactile
recognition mecthods based on statistical pattern recognition are limited to dealing
with simple objects because they do not exploit the rich geometric data available
from object models.
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Several proposed recognition methods busid oper o desorption of the ebyecet
from the sense data and mateh this deseription to the moda. Onc approuch eimulates
the feature-based deseriptions in viston systems, for exampie, waen ficition of holes,
edges, vertices, pits, and burrs Binford 720 Hhilas 820 sivaer and st Chor 78],
Another approach is to build surface models, eithier from pressare distributions
on matrix sensors [Overton and Williams 81, or from the diplecements of an
array of needle-like sensors [Page, Pugh. and Hepinbothan 760 Takeda 747 A
related approach builds a representation of an objeet’s cross scetion 1Ozakl et al
82, Kinoshita, Aida, Mori 75].

'
.

Description based methods are more general thare statisoca’ nacthods but must
solve two formidable problews: bullding aceurate obhrect aeseniptions froam tactile
data, and matching the deseriptions to the modeis Oue migor & 8culty i~ that
existing sensors do not have the spatial or force resointion necded to build nearly
complete object deseriptions. Furthermore, there are fow rethods for matching
the partial descriptions obtmnable frons tactile sonsors 1o object models. In our
opinion, part of the problem in tacule data mrerpretation hes been the tendeney
to adapt the techniques developed for two-dimensionu vosion, where dense data is
readily obtamnable, to tactile data, which 1s naturally sparse.

1 .

One lesson from the stmulations descilbed fater i et some extinate of surface
normal 1s an extremely powerful constraint on ~ecovnition and jocalization. The
estimate need not be very tight for performance to sprove drastically. There has
been little previous emphasis on measuring sarfse noonods with tactle sensors,
Accuracy in measuring normals requires sotce attontion o cogneening tradeofls
in sensor design, especially the sensor stiffness. I &+l sersor [one that deforms
very little under contact), the normal to the sensor surface wt the point of contact
directly gives an estimate of the object’s surface normal. So. u <t sensor with high
spatial resolution can be used to measure nermals, T a soft scnsor, the pattern of
forces can be analyzed to determine the shape of the object surfuce. So, a soft sensor
with good force measurement accuracy can aiso be used. Today, it is probably
easier to build stiff sensors with poor force resolution than soft sensors with good
force resolution Snyder and St. Clair 78], This argues that a sufl VI.SI sensor [e.g.
Raibert and Tanner 82] may be acceptable. Another factor is that the method used
here, since 1t 1s based on local mmformation, does not reqgaire arge sensor areas; it
can function better with many small sensors.

The approach wns<ed 1n this paper is an instance of a description -based

recogmition method. The basie departure from 100 methiods 20 cae reliance on
sparse three dimensional positions and ~urivce 0 le ohtai o U pointst. This
contrasts with the dense a- - tata ~dea et D icarur o d or surface based

description nethodss The ot pased data we use s more seadily obtainable
from simple tactile consors and the process of matehing it to modeis 1s relatively
straightforward. Therefore, the method dexeribed here could be a powerful addition
to approaches based on more complete descriptions.

"Very different approaches to tactile recognition based on this tvpe of data are onthned in {Dixon,
Salazar, and Slagle 79, Ivancevic 741
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Figure 2. Interpretation Tree M

P1 Level

2 |n*l,r{-’nfu’l’wn
(1, €J§

2. Generating Feasible Interpretations

After sensing an object, we have the positions of up to s points, P,, known to
be on the surface of one of the m known objects, O;, having n, faces. The range of
possible pairings of sensed points and model faces for one object can be cast in the
form of an intcrpretation tree (IT) [Gaston and Lozano-Pérez 83]. The root node
of the IT,, for object Oy, has n, descendants, each representing an interpretation
in which P, is on a different face of O,. There are a total of s levels in the tree,
level ¢ indicating the possible pairings of P, with the faces of object O, (see Figure
2). Note that there may be multiple points on a single face, so that the number of
branches remains constant at all levels.

A k-interpretation is any path from the root node to a node at level & in the
IT: it is a list of k pairings of points and faces. The set of IT’s contains a very large
number of possible s-interpretations

5 (n,).
1=1

In an object with symmetries, of course, the IT is highly redundant [Gaston and
Lozano-Pérez 83]. The m IT’s, one for each known object, represent the search
space for the recognition problem discussed here.

2.1. Pruning the IT by Local Constraints 1
1 4

Only a very few interpretations in an IT are consistent with the input data. |
We can exploit the following local constraints to prune inconsistent interpretations: ‘

- -
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1. Distance Constraint The distance between cach i of £ st he a
possible distance between the faces piured with therni mman interpretation,

2. Angle Constraint The rarge of posable wngies vetween meiasured
normals at each par of s must melaae the gnoag anale between surface

normals of the faces paired with then e wn miterpretation.

3. Direction Constraim The range of viites for the component of a vector
between sensed ponts (£ + £7) in the dircenon o the sensed normal at
Iy and at £, must ntersect the range of vomponents of possible vectors

between points on the faces assigned to £ anae 17 oy the interpretation.

Theze constraints typically serve to prune riost of the non-syiunetric s
interpretations of the data, Other constraints are possibic, for exomnple, the area of
the triangle defined by three sensed points st oe contiindd within the ~ange of

areas defit.ed by the faces paired with them, and the naivine of scnsed po -ts with

faces must not be such as to require that the peti ol the senor {eam) pa. ough
some portion of the object before seusing tha foe Cason and Lozano ez 83)
We will focus on the three constrmnts <hove, pronan’y beciease thew are | le to
mmplement wihzle being quite effective. NMorveover, then eortare all the ¢ raints

between pairs of points.

Note that the distance, angle. and direction cousiriwnis can be used w prune

k-interpretations, for & > 2, thereby collapying whoie subtrees of the IT. Thisis a

crucial point, worth dwelling on for a monent.

Recall that thie overall problem we are consiacring o tu detesane the position
and orientation of an object, using sparse sensory data. In principle, one could
consider all possible interpretations of the data, and for each one, determine
whether there is a transformation from model coordinates w sensor coordinates
that would account for the sensory data. Unfortanaien . this s computationally
extremely expensive. In order to compute such « moder test, we aced three points,
whose corresponding face normals are lirrariy indepencent, as well as thie measured
normals at those points. Clearly, we would in gonera need & sensory points to
ensure this, where & > 3. Thus, if n is the number of faces in the object, we would

need to consider on the order of n* model tests, caclh of which requires considerable
computational effort.

On the other hand, using the simple geometric constraints outlined above
requires only a straightforward table lookup, and, as we shall see, can drastically
reduce the nimber of interpretations to which a model test must be applied. Since
the constraints can be applied near the root of the tree, it s possible to prune
whole subtrees from the IT, at virtually no computational expense.

We consider each of the constraints in more detail below.

2.1.1. Distance Pruning

If an mmterpretation calls for pairing two of the sensed pomts with two object
faces, the distance between the sensed points must be within the range of distances
between the faces (sce also {Bolles and Cain 82]). Note that the distances between
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all pairs of sensed points must be consistent, e there are thice distanees Loweer,
three sensed points, and in generyd (}) distisnoes hetween b sonsed poants, Becase
of this, the distance constramt typicadly becornes more efec e s moie sensed
points are considered.

Given two faces on a three-ditensionar ohicot, we can compute “he ranse of
distances between points on the faces, The monmm divviciee sy be detormined
as tie mimimuem of the shortest distance between 2l pans of eduer vnd the

bace g e bianie o T oot her

perpendicular distances between vertices of one
face (when the vertex projects mnside the Tace polveon,. o masinmarn reguires
examining distances between puwrs of verncees. Note that wo can also corupite the

range of distances between pomts on one fuce izero up o the dicoeier of the
face). Sophisticated awlzorithes v be used to reduce the comppleny of this
computations, but since they are 1o he perforne ¢ ol hine cnee for cuct nodel,

their efficiency s not eritical 1o the approach.

The distance constramt can be muplemented in the following muanner For
object G,, with f, faces, we construct an f, by f, table, whese entries determime the
range of possible distances between pairs of faces. [n particilar, for a pair of faces
{1.k), ¢ == k, the maximum distance between the faces s stored in table jocation
dtable,'max(z, &), min{z. k)" and the minimum distance between the fuces 15 stored in
table location diable, min(z, &) max(d, &) If ¢ == k. we simpiy store the inaximum
distanice 1 the diagenad entry dtable,jz, 7', since the minunar distence defaults
to 0. This representation makes checking a distance constraint straightforward,
since the set of all pairs of faces (i, k) on object O, consistent with some measured
distance d is given by

{(i, k) i dtable, min(z, k), max(z, k)] < d < dtable, mmax(:, k), min(z. k)]}

plus the pair (7,) if d < dtable;[i,1].

Given any % — 1 interpretation, represented by the set of faces (1y,..., 1k.-1),
and a new k‘* sensed point, the generaiion of the next level of the IT below this
interpretation can be ecasily computed by checking the appropriate portions of the
distance tables. In particular, if the measured distance between one of the previous
sensed points, 14, and the new one is given by d,,, the set of possible faces that can
be assigned to sensed point P is given by

k—1
N {i | dtable, {min(1, %), max(7,4)} < d,, < dtable]{max(i,z'(),min(i,zl)]}
{=1
unioned with the set

k—1

ﬂ {i[ [0 < d;, < dtablc]'[i[,i[]}.
=1

For very complex objects, much more time efficient ways of representing and
scarching for faces that satisfy a distance constraint are possible. A full discussion
of these methods is beyond the scope of this paper, however.
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E We note that it nay regen i o e s e Dt tactae scnsar that :
3 the sensor makes contuac! woh all e on 0 0 e T Snes thanounothe ntenior

of a face. The nerlod deserbod ahove wo 0 =000 wars o anged Lader these

circuenstances, Bat i the sensor 5ovapat s alan tecr st contac! s &b e vortex or
ede, then tighter constrinnts can be apbacd Pl oo s ned DL roiatructing
tables of distanee tinges between vertioes sl hetvern cages ald oppoing the
prunity alporithin based on those tables Wi appropnhate.

Stndarly, o the case of vivaal sensiag 0 the edpes Gnacertiees of an object
can be relbly devermnned from the serse i The Tecens Ol pIocess 1 gre ay

\

simplitied, (Note thie retationship to the recosnition methow od i

s )
vaes, elodd

82..)

2.1.2. Angle Pruning

Sereod pornts cre assoctated with et o of lena sarTeee i consistent

' ¥ ' . v ' o . 1ot
with the sepsory datas [ an interpretion ¢y Tor Dol a6l T selsed points
fand normals) with teo ob ect feees, the range of e s oo aecn e soneed normals
must include the sogie berween the normials of e cormospoiaing object Taces,
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where s the actioal measurement, and ¢ desnes the ronoe af possnde anzles about
this measuremernt. \We are given a sensor ,oint I with neasured normal wy, which
has been wssigned to face 1.0 with associated mocel conraimate sirface normal given
by ty. Next, we record a sccond point . with messured normal wp, which has
been assigned to face &, with associated mode! coordinate surfacc normal given
by Lo, For these assignments to be consistent, it must be the case that the angle
bhetween the moded Faces must be inelnded i the ronge of andles between the ranges
of normals determined from the measured normais and the error bounds

(wo— wi) = () <vg =1 < ler = w) (6 + ).

It 15 clear that an ymplementation similar to that used for distance pruning will also
sizffice here. For object O, with ¢, edues, we can set up en e, by o) lower diagonal
table atable, sooh that atable, ‘maxie Al A -0y vy This representation
viekes checking a surface normal constramt ~tragiiforward. sinee the et of all

pairs of faces (1, k) ¢ 1 object O, consistent with some mweasured ranges of surface
normals 15 given by

{(L k) | (w2 —wi) -~ (1 + €2) < atable;imax (e, k). min(z, k)] < {wo -~ wy) + (€ -+ (2)}.
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Figure 3. Angle Ranges
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Given any & — I-interpretation, and a new k% sensed point, the gencraion of the
- ’ by (=3

next level of the IT below this interpretation can castiy be cormputed by checking the

. . | . . . S,
appropriate portions of the angle *ables. Note that the &7 edge raust be consistent
with the angles between all previous faces.

In the two-dimensional (three degree of freedom) cane, the range of possible
surface normals at a sensed point was represented by the pair (L, ¢) where w;
denoted the sensed normal, and ¢ denoted the range of error about that sensed
point. In three dimensions, the obvious generalization is to use angle cones, so that
if u; denotes the umt sensed surface normal, the range of possible values for the
actual surface normal will be denoted by the right circular cone

{nyin;-u; > 6}

We could proceed identi~ally to the two-dimensional case by noting that the cone of
sensed normals constrains the set of possible threc-dimensional rotations between
the hand and model coordinate systems. Then, given a second sensed point Py with
some sensed normal, the sc. of feasible faces would ve restrictcd by the range of
possible rotations. This rmethod is quite difficult to impiement, however. There is a
much simpler alternative method.

Suppose that at the second sensed point, the set of possible surface normals in
hand coordinates is given by
{na {ng-uz > 62},
Then, 1n order for faces ¢ and k, with associated surface normals v, and vi to be
consistent it must be the case that

viovi E{nponongouy >, npoup > )

We can rephrase this in the following manner. Let cosay == ¢, cosay == 3,
ayy = a4 ag and cos vy o= ug - ue. Then, we cliom that the set
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Figure 4. Range of Directions between Seas -+ Poiuts
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is contained in the set
{ny - ny cosimin{m, 12 +~ @) < ny-np < cos max(0. 412 — ape)i}. (1)
A proof of this is found i Appendix [ Fipure 3 illasttares tnis resnlt m two
dimensions.

An implementation of anyle pruning siunlar to that used {or distance pruning
1s now also possible. For object O;, with [, faces, we can set up an f, by f,, lower
diagonal table atable, such that atable, max(z. A} min(2. &) = v, - vi, where recall
that v, denotes the unit normal to face ¢ in the model.

2.1.3. Direction Pruning

Consider a pair of sensed points /7 and P» and let uy; be the unit direction
vector between them. Suppose that we know the measured surface normal at point
P; to within some cone of error, for example, the measured value 15 wy, and the
range of possible values for the surface normal 1s

{vitviowy >}
Then the set of possible "angles” between the direction vector and the surface
normnal of the face 1s given by

{vi-upiviowy 2}

In ancinterpreration, suppose that point £y has been assigned to face 7, with
normal non the model, aad we now consider possible faces & to ass:gn to point I,
Let the range of possible unit vectors {directions) from face 1 to face &k be denoted

by the cane

{sxk \I Sk by ,\‘ (gx/\}
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for some pair t, and &, Figure 1 illustrates this conce in o two dimensional
example. Appendix 1T shows how this cone may be campnted from mode!s of the
object faces. In the model, the set of possible angles hoween legal ditections aud

the surface normal is

I P TS & {2)

Thus, assume that point 7 is on face 7, with normal n,, that we have measured
f.

wi, that we know ¢, and that we have abso moasured Py A face A whoze direction
range from face ¢ s given by the pair (G &), 15 a feasible fuce far pomt 1207 the

set in equation (2) intersects the cone

{vi-uplviowyp >} (3)
Ifcos v = & and cos o~ 0y Gy, then we know from the dertas o o Appendix
[ that the set of equution (2) s contatned in the set

{nz C Sk : "()5(71& T (315(.) R | PR I 1 “"S(‘ ik o 0:\-‘)}-

Similarly, if cosay = ¢ and coswyp = vy - upn, then the st of equution (3 1
contained in the set

{vi-up; fcoslag + wpa) < vyoupe < cos{ag - wyo)h.
Thercfore, for the pairings of ) with face 1 and P- with face & 1o Le consistent with
the direction constraint, it must be the case that the lntersection of the numerical
ranges of dot products is not null, e,

[cos(ay — wiz) coslay — wia) ) cos(rx — o), cos(rk -+ o)) # 0

The direction constraint can also be implenented in a form similar to that used
for distance and angle pruning. For object O, with f; faces, we can set up an I
by f. table ctable, snch that ctable, 7 k1 = [cos(y,c — 6:x). cos{mk 4 0,5)]. Again,
the set of all pairs of faces (¢, &) on object O, consistent with some measured ranges
of surface normals 1s g@iven by

{(:, ki cos{ay = wy2). cos{aq + wia), nclabl(‘][i, ki # @}.

Note that the dircction constraint is not symmetric, as are the distance and
angle constramnts, so before pairing I to face k. we must repeat the test above
wmterchanmny the roles of « and k. Similarly, the test must be applied to each
pairing of serised points and faces 1n an interpretation.

The constramnt deseribed above places constraints on the angle between a surface
normal and umt vectors from one face to another. In addition to constraining the
angles of umt vectors, we may constrain the magnitude of the component along
the surface normal of the vector between the sensed points. The statement and
implementation of the constramt is essentially unchanged, except that uj2 and tg
are no longer umit vectors but the actual vector between the sensed points. The
effectiveness of the constraint is in gencral improved, however, since it now captures
some distance and some angular constraint. The difference between this extended
direction constraint and the simple direction constraint is illustrated in Figure 5.
Two parallel faces {faces 1 and 2 in the figure) displaced relative to each other

13
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Figure 5. Extended Direction Const. . ut
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give rise to a cone of directions, but a single value for tihe normal component of
vectors connecting the faces. Note that an tterpretaiaton that assigns /7 to face 1
and P to face 3 1s consistent with all the previously meationed constraints except
for the extended direction constraint. The fure slse lustrates that the extended
direction constraint does not subsume the distanee coistint, sinee dirceton only
constrains the normal component of distance.

There is an alternate form of the direction constrag, useful when no bound
on the surface normal is available. It can briefly be deseribed as follows. Given two
faces h and 7 on an object. we can compute the rance of direci:ons between points
on the faces, forming a cone of possible directious. Siniariyv for Taces © and 7, we
can compute the cone of possible directions. The combination of these two cones
defines a range of possible angles for the triplet of faces 1.

If an interpretation calls for pairing three of the ser~ed points with three object
faces, the angle formed by this triplet of sensed porits jnust ve within the range
of possible angles between the triplets of fuces, Note tie the angies formed by all
triplets of sensed points must be consistert, Lo for three scused points, there are
three angles, for & sensed poiuts, there are %\’2\ angles. Hence, this constraint also
beromes more effective as more sensed points are considered.

This form of the direction constraint can be used when vy vertices and edges
are touched, as it does not require sensing surface normals. Note that this form of
the constraint can also be extended to use the magnitude of the veetors between
scased pomts as well as their direction. This forin of the doeet nn coustraunt allows
pruning of the IT for A > 3. The previous formulation of the constraint allows
prumug of the IT for & 2> 2. As well, this forim of the constriant would require an

3 2

n? table, as opposed o an n* oue for the previons fornulation. Given the size of n

to be expected for typical objects, this is a critical ditference.
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3. Model Testing

Ouce the interpretation tree has been pruned by the local constrants, there
will be some set of possible interpretations of the sensed data, cacl one consisting
of a set of triples (p,.ny, fi), where p, 18 the vector represeiting the sensed position,
n, is the vector representing the sensed normal, and f; is the face assgned to
this sensed data for that particular interpretation. In the model test stage of the
processing, we want to

1. determine the actual transformation from model coordinates to zensor
coordinates, corresponding to the interpretation,

to

. check that under this transformation, not only are the sensed noints
transformed to lie on the appropriate planes, bat moreover, tha the
sensed points actually lie within the bounds of the assigned faces.

We will assume that a vector in the model coordinate system ix transformed

into a vector in the sensor coordinate system by the following trausforimation:
vs = Rvpm 4+ vg

where I? Is a rotation matrix, and vg is some transiation vector. We need to solve
for R and vg. We note that a solution could be obtained using a least-squares
method, such as is used by [Faugeras and Hebert 83]. This type of solution can be
computationally expensive, however, and in the following scctions, we develop an
alternative method.

3.1. Rotation Component

We consider first, the rotation component of the transformation. Consider the
first triple of a particular interpretation, (p,, n,, f;). The sensed normal is given by v;
and corresponding to face f, is a face normal m;. For R to be a legitimate rotation,
it should take the normal m; into n, (ignoring issues of error in the measurements
for now).

Now, any rotation can be represented by a direction about which the rotation
takes place, and an angle of rotation about that direction. What is the sct of possible
directions of rotation r consistent with n, and m,” Any rotation will preserve the
angle between the transformed vector and the direction of rotation. Hence, any
legitimate rotation direction must be equiangular with n, and m,. Thus, the set of
potential directions is given by

{r,]‘ l l‘,']' cmy = I‘,'J' . u,‘}.

or equivalently
{rq- [y - (my —n;) = 0},

That is, r,, is perpendicular to (m, — n,).

15
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Now, consider a sccond triple i the mterpretatior oo L f, ) and let my be
the normal to face f;. Provided m; # 4-m, and n, - m, 15 not (ant-jparallel w

n, —m,, we can constrain r,; to a second set

{r,] [ ry - (m; —n,) == O}.

Since the rotation is the same, r,; must he in both sets. Le., it must be perpendicular
to both vectors. Hence, r,; is given by the unit vector ii: the direction

(m, — n,) X (m; —-u,)
to within an ambiguity of 180°.

This derivation can be recast in geometric terms in the following manner. Any
unit rotation vector r taking m, into n, must lic on the perpendicular bisector of the
line connecting n, to m,. Similarly, it must also lie on the perpendicular bisector
of the lii.c connecting n; to m,. Since the rotation is the saine, it must lie in the
intersection of the two perpendicular bisector planes, as above, and hence is given
by the specified unit vector

(m; — 0,) X (m; —n,).
If there were no error in the sensed normals, we wouald be done. With error included
in the measurements, however, the computed rotation direction r could be slightly
wrong. One way to reduce the effect of this error is to compute all possible r,; as
7 and j vary over the faces of the interpretation, and then clusrier these computed
directions to determine a value for the direction of rotation r.

Once we have computed a direction of rotation r. we need to determine the
angle # of rotation about it. It is straightforward to shiow that (see, for example,
[Korn and Korn, 68] p. 473)

m, = cosfn, + (1 — cos 0)(r - n,)r -+ sin O(r X n,).
Simple algebraic manipulation, using the fact that r-m, = r- n,, vields
1 —{n,-m
cosf =1— — -0 — !
1 —(r n)(r -m,)
(r X n,)-m,

inf = - -— S
S I—(r-n)(r-m,)

Hence, given r, we can solve for 8. Note that if sin @ is zero. there 1 a singularity
in determining 8, which could be cither 0 or 7. In this case, however, r lies in the
plane spanned by n, and m, and hence, only the ¢ = = solution is vahd.

As before, in the presence of error, we may want to cluster the r vectors, and
then take the average of the computed values of 6 over this cluster.

Finally, given values for both r and 4, we can deternnne the rotation matnx
. let rz, 7y, 7, denote the components r. Then

1 00 i rary 1T, 0 -1y
R=cosfl0 1 0]+ (1—cosb)ryr; ri rorel 4 smb 1, 0 Ty
0 0 1 Tefy Tary T | k_ T, T1 0
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Note that in computing the rotation component of the transformation, we have
ignored the ambiguity inherent in the computation. That is, there are two solutions
to the problem, (r. 8) and (-~r, --8). We assume that a simple convention concerning
the sign of the rotation 1s used to choose one of the two solutions.

3.2. Translation Component

Next, we need to solve for the translation component of the trensformation.
We know that v == Itv,, - vg, where v,,, is a vector in model coordinates, v 1s the
corresponding vector in sensor coordinates, and 2 has been computed as above.
Given a triple (p,, n,, f;) from the interpretation, let m, be the normal of face f,

with offset d,, that is, the face is detined by the set of vectors

{v|v-m, =4d,}.
Then the point in model coordinates corresponding to p, is
I?“(pz - VO)

and the following equation holds
m, - (R} (p, — vo)) = d;
or equivalently
(12m,) - (p; — vo) = di.

This equation essentially constrains the component of the translation vector in the
direction of Rm,.

Suppose we consider three triplets from the interpretation, (p,. n,, fi). (p;, 0y, f5),
and (pk. Dk, fx) such that the triple product m,: (m; X mg) is non-zero, (i.c. the
three face normals are independent). Then, we can construct three independent
equations

(Rm,)-vo = (Rm,) - p, — d,

(Rm]) Vo = (Rm]-) -p; — d;

(Rmy) - vo == (Rmg) - px — di.
Each of these equations constrains a different, independent component of the
translation vector vg, and hence the three equations together determine the actual

vector. Straightforward algebraic manipulation then yields the following solution
for the translation component vg:

vo =((m,) - p, — &,)((Rm,) X (12my))
+ ((Rm,) - p; — d, )((Ftmy) X (1tmy))
+ ((Rmy) - pe — d)((Rm,) X (Rmy))

As in the case of rotation, if there is no crror in the measurements, then we are done.
The simplest means of attempting to reduce the effects of error on the computation
is to average vg over all possible trios of triplets from the interpretation. Note that

m; - (m; X my)

17
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for numnencal stabihty, ene may want to restniet the ¢ puiasien to tripiets such
that m, - (m, omg) s greater than some threshold.

Finally, we have computed the transforn: (I2,v,) 10 v ode! coordinates
to sensor coordinates. To check a possible imterpreration. wo consider ;xH tlipics
(P 1y, fi) In the interpretation and compute

R Yp, vy
We then check that this point hes within the bounas of o ;" to within some
error range). If it does not, then the interpretation s mvab, v be poLodl
If all such triples satisfy this cheek, the interpretinion s sty x:a‘,z\i
We have assumed above that three mdependont Tuoe o oes 00 Tave been

measured. When only one normal s avinlable, o0, e o transiaton

can be determined. When only two independent nornads are oo hies the rotation

can be determined as before, but ouly a dircenion of vrensto o oo he determined,
not the actual magmtude of the transiation. At o0 1 o0 aeslations can
be deternnned, howeser, by interesceting the frio Gorennia ooy e position of &
sensed pownt ana the transiation direction. with the D00 as e to tae point by

the miterpretation. Of course, further sensing alone Ui dae v iseover the position
of the edge wonld determine the actual transintion.

After the model test has been applied to all feaves of ©Lo tterpretation tree

there mey st be several interpretanions remasiiny oo enn o Lonon. e usually
Buds that these interpretations differ vy in e o0 o0 e o oo v or hwo faces,
all other fuces beng identical. This fnabibiny o o 0 et Lo ween such nearly

identical interpretations is a result of the error boands on the sensing. Thus, as
a final stage, we cluster the remaining interpreticions 1 terins HF “helr compurted
<3 !
£y

transformations, that is, we cluster the interpre: o s of the computed

ortentation of the object in space. Here, we soner

Lonnd Ty Do s clusters,
Indeed, in gereral there is only one computed orcatation for the ebieer, (the correct
onc}. although aceasionally two or more clusters survive, s v corresponding o
sywimetric interpretations of the sensed data.

4. Simulation Data

[ order to test the efficacy of the algorithr i pruning *he interpretation
tree, we tan a large rumber of simulations. Some sinpations far hoeets with three
degrees of freedom (two translational and one rotational) bave boen deseribed in
Gaston and Lozano-Pérez 83]. We include additional simula’ on duts for objects
with three pasittonal freedoms, inehiding the direction eonstrant. We also provade
data for the more general case of three dunensional ohjec - ot s degrees of
freedom.

Our goals are first to demonstrate that effective pranme o the mterpretation
tree is possible, at low computational expense, and second fo cxpiore the sensitivily
of the algonithm to error in measuring the surface notieal anc tne positon of the
sensed points,

18
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~

Fizure 6. 2D Test Models

—~

4.1. Three Positional Freedoms

We begin by considering objects with two degrees of translational freedom
and one degree of rotational freedom, using sample objects first considered 1n
|Gaston and Lozano-Pérez 83], illustrated in Figure 6. The addition of the direction
constraint greatly reduces the extent of the set of possible interpretations. To
demonstrate this, a series of 250 ruus of the algorithm was exccuted for each of the
objects. Each run determined the number of interpretations consistent with a set of
5 sensed points. The points were determined by first randoniiy rotating the object
about its centroid and then intersecting the object with five lines from its centroid
along five evenly spaced directions. The points of intersection farthest from the
centroid along each line were used as the sensed point. The (simulated) error in
measuring the sensed position was bounded by 0.1 (i.e. a randomly oriented offset
vector of random magnitude bounded by 0.1 was added to the point on the object),
and the (simulated) error in measuring the angle of the surface normal was § (i.e. a
random vector was chosen whose dot product with the actual normal was bounded
by cos ! ). To place these error ranges in perspective, the diameters of the models
in Figure 6 were 9, 14 and 12 units for the wrench, gator and hand respectively.

The following table describes the results of this set of simulations, by
histogramming the number of interpretations found. Thus, for : < 10, the number
in the ** column is the number of trial runs which resulted in 7 possible
interpretations. Beyond this point, the histogram is compressed into units of tens.
For example, the column lahelled 20 lists the number of trial runs resulting in &
interpretations, where 10 < & < 20. In order to exarnine the effectiveness of adding
the direction constraint to the algorithm described in [Gaston and lozano-Pérez
83], the simulations were run both with and without this constraint. For each object
in the table, the first histogram corresponds to the case of using the direction
constraint, and the second histogram to the case of not using 1t. Note that the

——————————
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number of edges for the wrench (W), gator (G
respectively.

Table U Pwo dunensonal obeets Thstosran o~ borors 27800

12 34 1 5 6 7 S0 020 Lo T ot T st an 1000 100

Wil 2 7 [

Wl 3 s T T T b s ia i s e oo 23
Pl 62 3poawoc0 23 100 6 oRoofao -

N B T R R R R TV N S S Tl KT S S A S A A 1

{15 6156 29 21 20 22 1411 912
R

Tl 3 07 20 17 017 12 16 I8 1186 s

The results are striking in o number of ifforcs wavs, Fovt ote that the
(o]

maximum mimber of possible wnterpretations observen Do any of the objects was

20 {(in the case of using the direction coustrimnty, wich o oo ptonadiy low when
('onwdm;nv' that the total number of possibie mrepreiiine ~ o the oator was
507 or 312,500,000, Scecond, the rredian nupber of posoinoo erpreliions was

only 2 Tor the wreneh, and 4 for the gator and hana wen wsne e direction
coustraint. Without tuis constramt, the meawan nuiber o goerpretalions rose to
45,12 and 9 tor the wrench, gator and hand, respectively - OF course, tre results of
the simuliutions will depend o a certain extent o the crrov ranges, a point that
will be explored 1 some detail in the next sectron. Wo note that a tenth of an inch
sensttivity an distanee over a 10 to 20 meh ranee o~ wioian tne range of curent

tactile sensors. The posittomng accuracy of ey, corsoet oo aqators s within
0.01 inches, and the Purbrick tactile sensor s a mutii cietnet separation of 0.06

wmches, and the Hilhs sensor has an element separation of (HLJ inches.
1.2, Six Positional Freedoms

When considering the full three-dinrensiona probien of oo s with six deprees
of freedor. we have run extensive simulations on (e tmoces ¢strated in figure 7.
The drameters of these objects (that 1s the maxuiuin wcparaton of twe points on
e object) were roughly 4, 7, 8 and 8 mches for the hoasin,s, <apler, sanple hand
and complex hand respectively. In running sunvlations of *te - oation algorithm
on these objects, we have used two ditferent seiing stroicges, reflecting n part
the aifference between range and tuctiie sensing capabiinties.

It should be noted that in all the following simulations, tie efficieney of the
tree prumng mechanisti was improved by sorting the sersed points. In particular,
rather than using the sensory data in arbitraey order, the powtsowere sorted on the
basie of parmwese separation, with the more desant pomnts besy ordered first. This
cortiryn o distance tends to place the most offoetive covsitmnts o the beginning
of the process, a por-t that will be illustrated i Section 4.0,

4.3. Grid Sensing

I the first sensing method, the sensory data weie ponerated by projecting a
regular goid of points along three orthogonal directions. and noting where contact

20
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Figure 7. 3D Test Models
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was made with an arbianly ortented model of the obyecr 7 v gy oneniation
was obtained by randomly choosing vilues for tie three e wnples, cnnputing
a rotation transformation based on tns and spolving toe coraton o the oodel.

Note that this does not produce a umforn sanph S st of tatations, but

for our purposes 1t s a sutliciently randons sphas No s tnton ottt was
added, sinee this would not affect the process. Toe thoreed - onsioni positions of
the sensed pownts and the associared surface nornals wore ven corropted hy nolse
within some specitied bounds. For the simuluatons discussed beow, the namoer of

sensed points on cach tnal varied between 12 and 20

HE, and TV.

The resalts of the first st of sinlu ons o showvr 0 Foaoes 1

Table 11 sts stareies of he mamber of doerpro ooy 0 rod fohowny local
pranmng, for a varety of e aecurieies, el sonasaion s cee of T Trials,

and the nummum wo axinun number of terpretaiions e sceotded over this

set of trizts, as well os thie S0t and 90 poreentile of St s o rtanton of nomber
}

of interpretations. Table 1 liste statisties of the nuniter of ©0s ipresiony in the

IT that survive ap expient moded test 0 I was olserved o8 2 < e 0l A Lgle the
number of mterpres ons wos not reduceed to 1w minh oosneted e sorviving
interpretations geverally tended 1o difer only mocoe or two s Noteover, the
computed transforimation parameters were neatiyo oo st that the
multiple mterpretations surviving a model test aoranr cormeponded o 1 single
interpretation, to within the error ranges of the aloorihn, Troe Torl 14 lists

statistics of the number of separate transiormaenicn s ooy 0 e el In

particular, transformations whose direction of rotonor horoc oy e e 1.5°
were judged to be different, vielding a very ticht coosvonns 0 tne camiputed

transformations. This clustering ignores differences i Ui trapsiation component,
a point that 1s addressed later in Table VI.

22
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Table 11 Noo o Interprevations Alveor Tocal Pranmng
Objeet Norn! st N St GOk M Yiers
Housing N RN 1 4 3 B3 !
05 1 8 2% 72 i)
10 2 10 20 63~ "
- R0 01 2 1 16 240 0
- s 2 SRS it
A0 t G, G 1HIx o
- 7N 01 D X s 96 10
S 0y 2 29 L0 570 10
- e R _ .
10 10 T S RE NP T 0
Simple Hand o B 01 1 4 N 16 28
05 i N s 0 N
- N - 10 01 1 5 1 I ~
- 05 . 1 96
R ) z X 01 { % 16 1 2x
- 05 1 N 24 96 N
Stapler . N 2 U - B 1 72 54
- W05 2 a2 20% 0 TTR2 54
s () D R 62 276 54
- 03 3 152 1104 2856 34
| Complex Hand 712 01 2 2 (20 896 61
b5 8 125 360 28RO B4
om0 01 2 40 240 3156 61
05 12 144 456 4116 64

In the table above, the normal column hsts the radius of the ¢rror cone about
the measured surface normal; the dist column lists the error range of the distance
sensing; the mein and maz columns list the minimum and maximun number of
mterpretations observed; the 50th column lists the median point of the set of
simulations; the 90th column lists the 90! percentile of the sct of simulations; and
the faces column lists the number of faces in the model.




Grimsun & 1 ozano Péres T P
oo I Nv o breirer, " T

Ob et Notia. fa i -

Housiny Tl '] i ‘,
) 05 | b , qot

1O ; ' )

) - 10 01 | J - - .

) ) 05 ] | ~ . o "

10 5 : g v

TN Ut I : .

) IR 1 ) ' Y
' I . - . o

-

Simpie Hand Tl

- A 2 - R
N s 2%
TX Ul J . . oo
A5 J ~ N
Stapler 12 O B ~ ‘
05 | : N ) PR
- - - 10 01 | ; : 3
v .
Conex Hana -1l 1 ' . ~ pee £l
03 i [ _t =i 54
) B S0 0 ¥ ‘ Tos %
05 b i : RPREA tie1
U SN G
Trotr e vanle Lhave. the nonrmoal o NN . o i
che easnted orfnce normal the oo SNts DR TIor Tr LT e
e s oenp caliims b b s s e of
eThTe anns N S S S R D B AN T e
Sproniatinns TCeT e b e e o TLons and
.h(; {’,;,.,H‘ (.(‘} B P ‘\'lf,".

24




F—-——-———————-———

G:meon & Lozsno Péres Moer M Heoog .t
Pabie IN Noo of fransforms Arer Clusteriny 4
Objee: Nor, PEN AR IR o Gl NOFTN Poaces
Housing ‘ o150l 1 I ! K qy
03 1 1 L2 0
10 I ! 2 0
P00 0L | 1 1 . 10
051 1 ] 6 1
a0 | 2 b 0
7R 01 1 ! 1 2 10
N 05 T 1
N o0 1 2 b 0
Stiple Hand . RO FUBEEN V) 2 2 K 4 2
05 2 2 2 3 A
10 o1 2 0 . 4 2%
7 05 22 I 2%
. ms0L 223 , 2R
05 2 2 3 g 28
Stapler  =/12 0t I 1 2 4 31
e - R B 2 3
74 U RO DS SRS BN S &
05 1 2 3 5 34
_Complex Hand = 7/12 01 t 2 = 3 b b4
Y e L e D B
D U T 7 64

In the table above, the normal column lists the radius of the error cone about
the measured surface normal; the dist column lists the error range of the distance
sensing; the mun and maz columns list the minimum and maximum number of
interpretations observed; the 50th column lists the median point of the set of
simulations; the 90th column lists the 90" percentile of the set of simulations; and
the faces column lists the number of faces in the model.
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Figure 5. Simple Hand Histograms
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The first point to stressis that all of these numbers are remarkably low. given
that the totai number of possible interpretations of 15 sensed poinis on an object
with 10 faces is roughly 1.074 X 10%. Thus. the local geometric constraints are

very cffective in reducing the combinatorics of feasible interpretations.

As might be expected, the number of interpretations i all three tables tends to
rise with increasing error in the measured parameters. The distributions also tend
to be strongly clustered near the low end of the scale, with a very shallow tail on the
hich end of the distribution. Thus, while the maximum nwnmber of interpretations
can be high {e.g. 3576 for surface normal error cone of 7,8 and distance error of
10}, the median point and even the 90th percentile of the distribution are generally
mnch smallor. Sample distributions for the number of interpretatious surviving tree
pruning are showiom Pigure 8. One reason that the maxinann auwimnber of feasible
interpretations can be s,gnificantly larger than the median of the distribution is the
occasional eccurrence of dependent seusor informa‘ion. For example, if most of the
sensed pornis bappen to lie ona single iace, the amount of independent information
abaut the onpoet’s position s much smaller than when the sanie number of sensed
points e on different faces. While the sensing strategy used here will reduce the
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the error cone about the sensed normal, m redins and a bonnd on toe magnitade
of the position error, 1 inches,

One reason that the maximum namber of feasible interpretations can be

[, e
miost ol t

signtfieantly larger than the median of the devinbation s the oocnsonal coongrence
of dependent sensor imformation. For exar. L

CoNesed Lontts appen

to lie on a single taee, the amonnt of wdese dent odfornmaton ohol i hieet s

posttion s much smaller than when the sooe mnmber oF sensed ponsts e on
different faces. Winle the sensma strategy wsod here sl rediee che probidanty

of thix occuring, there 1s still & nonzero efcvoe of <rel redundant ser~ing rukine
o A o]

place. rexulting in an occastonal case of w Lo v ner of Toash ey = 0t lons.,

The probability of such redundant sevcr s alvo to g cormn exten dependent

oot he the aspect ratio o the stapler

on the shape of the object. For example, &

1 much longer than that of the motor honsr -0 Vs wonld tend 1o sugeest that
aoregular sensing strategy s more hkely o cod sedandan pformuation for the

stapler than the housing. Indeed. a compari~on o7 the appropriate sections of Table
IF shows that under stinlar condittons i o evenes s errer, the number of feasible
interpretations of the stapler i much hiehor 0oy 2he otor housimg, even though
the stapler has fewer faces, This s partly due co red indant sensing and also partly
due to symmetric interpretations of the data.

The number of distinet transformations :» almost always 1 in these simulations.
It was also observed that the computed transformation was generally very close to
the actual one. Ior example, each row of Tabie Vo illustrates the average error in the
computed transformations over 100 runs of the algorithm. The direction column
lists the average augle between the correct and the computed direction of rotation,
the angle column lists the average angle between the correct and the computed
magmtude of rotation about the rotation dircetion, and the translafion column
lists the average masnitude of the difference between the correct and the computed
translation component of the transformation. It can be seen from the table that
the average error 1s remarkably low, generally on the order of 2 -3 degrees, even for
differeat objects and different amounts of sensor error. As mght be expected, the
average crror does tend to rise with increases in the sensor error. In no case did
the algorithm discard the correct interpretation. Note that the crrors illustrated in
Table V were recorded from the difference between the correct transformation and
the computed transformation for the correct interpretation. There will be other,
erroneous interpretations, with much larger differences between the computed and
correct transformation.
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Lable A Nveriee Prrars o 0
- —
Objeet Normab st Ihre oo - ‘ O
Stmple Hand P PR V) 20 TR

o 05 ’ 3.0 ‘ o2

N L e i

- 05 St - ok

Housing T 05 2N . b
Cosa00 0l ERR ‘ o

05 st ool

10 s o0

B 05 R b9

Stapler IR CUNEN A NS . SRR

- 10 0l SR K BE
In the few cases towhich more Ui one sree Do o0 Cadstwo Tactors
cenerally are obcepved. dhe st s chat thoononse o0 0 0 T can result in
transformations Cifering by only o feow deyreen, oo oo s Tormations are
counted as being diztinet. The second, moie oo~ w s e pessibiiity of
svinmetric merpretations of the data, for exannnie C 0 e Lretation of the object
relative to the sensor. Consider fiest ihe ease o o perre obierr sk
as the simple dand, wheiel bas @orotaronsl oo T ) P EPHRES
abwavs found at Teast two distipet transfo miations Char vere conastent
with the sensed data. For objects such as the moror nen o ortions of the object
are svmmetric, for example. the base of the hoasn 00 o0 2 e projecting iip.
Hoall the sensed ponts huppen to fall only oo vt 0 0o 7 e ebeet, then
symmetric interpretations of the data are pee- g S e synetric
mterpretations accoutt for most of the cases of 0 et rat s ons, especially

when the senvor error 15 small. The few remaising, coes wrise wnen the error in
ihe measurements vields two nearly identical [ differian by only o few degrees of
rotation) transformations that account for the datia. As the orror in the measured
data decreases, these mituple interpretations tend to disapiear

The simulation data lhisted o Table IV ds derived from a clastering of the
raterpretations based steiztly on the rotation component of the transformation,
Pt is, two transformations whose directien of rotation arfivred by less than 1.5°
o techmique, while

were considered to be part of the same cluster, Thi< siuste
very tight i the totation component, ignores possible diYerenecs i the transiation
component of the transformation. To examine such ditferences, @ number of the
syunulations were run, using a clustering of the e o ons witt o rotaton
sensttivity of 157 and a translation sensitivity of erthics 0,00 o0 001 The number
of distivet {ransforniaations under this clustering scheme are mdicated in Fable V6
Note that while the rumber of distinet transformations dees ynerease relative to

the corresponding entries i Table TV, the enange 1s not sismificant,
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Table N1 Nooof Tran<forias After Clastening
Object Norad [t Cluster Sl SOth Yo Man
Housing ) T/ 05 01 1 2 4 6
05 1 N
_Sunple Hand . 710 .05 Ut 2 A b 16
05 2 2 Ly 12
~Stapler /10 or 0} ! i i1 0T
o ' 01 1
Complex Hand — 7/10__ .01 or b 15 2)
05 1 3 £ 16

4.4. Random Sensing

All of the previous simulations have generated the sensed data by projecting

a regular grid of points along three orthogonal directions, generally o-Liting in
between 12 and 20 contact points. Such a sensing strategy would be consis'oat with

visual sensing modalities. A second set of simulations has been ;un usin g o~ nang
strategy more consistent with tactile sensors. Constder a set of three utually
orthogonal, directed rays, which intersect at a point. Suppose this porit is taken
to be some arbitrary point (z,y,0), chosen on the 7 — y piane (note that by the
definition of the object models, this plane will interect the object). Luch ray is
traced along is preferred direction, (with decreasing z componcent), until cither the
object or the support plane was contacted. This operation was repeated for several
different approaches, using randomly generated values of 7 and y, until between 7
and 9 different contact points were made on the object. Tables VI, V1l and IX
summmarize the results of running sets of simulations, using sensory data generated
in this fashion.

Table VIl - No. of Interpretations After Local Pruning

Object Normal Dist. © Min @ 50th ¢ 90th Max  Faces
_Simpleltland ;  7/10 01 } 2 | 4. 20 90 28
] 05 2 8 | 44, 300 28 |

! /8 | .01 2 8 1 48 | 444 i 28
T05 0 2 12 1 84 | 320! 28

Housing | »/10 | 01 | 2 10 | 70 = 946 | 34
S DU S 20 32 | 124 . 1234 . 34
| L_om8 L ov 2 [ el T4 W4l 34
74 105 2 62 | 406 4053 34 |
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Fabie VT Noo ol Bicipro o or - Al N

Object Normid Ihst N S i A s
Simple Hand 7,10 O J 4 R £ 23
' 05 2 S i 2N

/8 0024 v

I I

Housing 710 01 i ¥ N Sl 3
k ' . 05 b N, i LG 31

) T.'/S ) 01 ) ! . X i 36 !

05 ! o e . bR

Pabie IX Noo oV Transtors Voo U 0 it Lo

Obireit Norra! [is: N RN AR Faces
Simpic fland sole 0 2 , - o 2%
0 2 2 TUR

B L T 1) R S L 28

C R - s
Housing v A : i 34
o ' 05 . - 13 31

05 i 5 n 1 34

As in the case of the earlier simulitions, oo iveinciess of the local
constraints in reducing the number of feasible niterpretat s s elenriy demonsirated,
Interestingly, the number of distinct transformations tends to be suinewhat hgher
than the earlier cases, especially for the moter housng his veurs i part from
the following situation. With the exception of one provcera: porizon, (see Pigure
6). the housing is essentially a symmetric object, with respert to two different axes.
As a consequence, if the sampled data points do oot Le on ths distinguishing
projection. there could be several consistent, v e mmterpretations of the data.
In the case of sensory sampling on a regular grid of pointso i s Bely that at least
one point will lie on this projection, and the svonctre anbagaty wiil not arise,
ln the case of fewer sample poiuts, generat-d by random approaches 1o the object,
it is much more likely that the feasible travsformations will reffect this symmetry,
and thus be higher in nuinber.

In cases of ambiguity in interpretation, for exan, when scoveral orientations

of the motor housing are consistent with the scised dati, due <o onarnel symmetry
of the obneet, it would be useful to have effective senns for Livtincishing between
tie possible solutions. A straightforward niet! od won 8 et g sencory points
generated at random antil only one interpresation o copae T

-, of course,
could be very melficient, sinee 1t could take the adedinn of ool points belore
a ~olution 12 found. In the case of the motor fousr tor exarnie. one would

1

need to eonsmder additional sensory pomts uniil o o sbe projecting hip

of the housmg s recorded, A more effective soltor v to use the difference in
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feasible interpretations to find directions along which the points of contact of the
different mterpretations are widely separated. Such directions then constitate good
candidates for generating the next sensed point [Gaston and Lozauo Pérez 831
Iixtensions of the method to the six degree of freedom problem wre currently under
imvestigation.

4.5. Tree Pruning

Tables X and XI contain a final set of statistics that demonstrates the
effectiveness of the local contraints in reducing the number of feasible interpretations
in the IT. The regular grid approach 1s used to genernte the sensore duta For the
data in Table X. the pomnts are sampled w random order ax the IT s generuted
and pruned. For the data in Table XI, the sensed points are sorted on the bhasis of
pairwise separation. with the more distant points being ordered first. This sorting
on distance tends to place the most effective constraints at the beginning of the
process. Since the point of the local constraints is to prune the IT as efliciently as
possible, applying the most effective constraints first should result in pruning out
entire subtrees at as earlv a stage in the tree generation process as possible. Using
the sorted sense data, the interpretation tree was generated and pruned. Tables X
and XI list statistics of the number of interpretations at each level of the tree, (i.c.
the number of k-interpretations for different values of k), based on trials of 100
simulations each.

Table X - Feasible Interpretations ~ Unsorted Points
Points Min 1+ 50th 90th | Max
2 12 96 | 334 | 432
3 4 110 388 678
4 4 55 3713 | 675
5 4 40 244 | 10004
6 4 26 189 | 10004
7 2 24 108 | 686 |
8 2 20 82 636
9 2 20 76 | 520
10 2 20 72 336
1 2 16 62 280
12 2 16 64 200
13 4 20 64 304
14 | 2 18 72 304
15 2 20 80 304
31
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Fable NI Foasibie Interpretations > d Pty
Points Min 50th 9611 Max

2 4 IR ino 4
AR T S R 2
4 2 1 9 68
B 5 2 . 50
‘ 6 2 s s
T 2 5 1 56
R i o
3] 2 8 T2
w2 I TR X0
o e ® w2
D 2 3 56 452
13 o T 312
] 14 2 P Lt g0
15 3 12 v 88|

It can be seen that the median number of Jeasibic nrer, retatinns 1s quite sinall
at all levels of the tree, even as the nuinber of contact vernty = ereasea. This dara
implies that one of the strengths of the appreach s 10 wbuty 1o prane out whole
subtrees of the IT at a verv eariy stage, thereby en<arine that the tota! number
of tests to be aprlicd is signtficantiy swalior v oo o Lo entgte cee. Thas
leads to very cillcicit processing of the feasibiv nerpr oo

bhe seen Srom the

Sorting the points on distance 1s extren.er cifoel v ux cun

“ results reported in Table X1 of the same set of runs as wnose w Table X, but where
the points were sorted prior to pruning. The effect o1 runnang nimes of the pruning

program is also quite drastic.
5. Performance on Range Data

We have perfermed limited testing of the algorithms desenibed above using
ich quality range data obtained from a faser naeed trier tlation system developed
by Philippe Brou at our laboratory. I'wo samples of the auta we used are shown in
Iigure 9. The data is obtained «t high resolution, approxiniately 6.04 centimeter |
crid spacing along r and 0.08 centimeter along y. A smail woeiber of points were
obtained from the dense data by choosing pomnts where a least squares fit to a
plane over a 3 N 5 patch produced very low nermalized residue errors. Points were
chosen that mchuicd at least three independent normals. Note that the actual
cbject maudes a provrusion that was not proesent i the moael no data was taken
from that region. In “he data {rom figure 9{a), cieven points were used: in the data
from fizure 9(b) nine points were used. The acciaracy bounds we emploved were

4

-+ 0.02 et position accuracy and - accuracy i measuring ‘he nermal,

Fioure 9 shows the results obtained from running the alvestihm on the data
deseribed above. There were only 9 and 11 interpretations, respectively, lefu in the
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tree after pruning with the local constramts. Froni these, three valid transformations
were found in one case and two in the other; they are shown in the figure. The
correct transformation was found cach time. The other transformations correspond
to rotations that place the senscd ponts on parallel faces. Note, however, that
disambiguations between the vahd transformations would be straightforward once
the transformations are known.

The quality of the data used in the experiments illustrated in Figure 9
corresponds to nearly the best error conditions used in the simulations. Results
with larger error bounds, using data from sections where the data is less accurate,
showed results sinnlar to those i the simulations, i.e.. more legal interpretations
in the tree and more valid transformations but always including the correct one. It
tends to reinforce the vahdity of the conclusions found in the simulations.

6. The Combinatorics of Pruning the IT

In the previous sections, we have outlined the basie interpretation algorithm,
The crucial ssue that determines the viability of this algorithm is the effectiveness
of pruiiny the wterpretation tree. Our goal has been to demonstrate that one can
use sitmple local constraints to prune the imterpretation tree, so that only a few
of the relatively expensive model tests need to be made. The simulation results,
under a variety of conditions, and the results on range data provide support for
this claim.

It is also possible to provide a combinatorial analysis of the pruning of
interpretation trees provided by local constraints. A detailed presentation of such
an analysis is contained i a companion paper [Grimson and lozano-Pérez 83).
Here, we demonstrate the scope of the combinatorical analysis by presenting a
detailed discussion of the use of the distance constraint in pruning interpretation
trees. Similar results hold for the other constraints.

We stress that the results given below are actually weak bounds on the number
of interpretations to be expected after pruning. In practice, numbers close to these
bounds are observed only when the sensors are arranged so as to obtain a minimmum
of information about the object.

6.1. Combinatorics of Distance Pruning

We will consider the case in which all faces (or edges in the two-dimensional
case) have the same size, and derive bounds on the expected pruning of the IT.

Assume we have some arbitrary labelling of the faces from 1 to n (for example,
in the two-dimensional case, based on arc length from some starting point). For
cach pair of faces, 7 and j, let d;; denote the separation of the midpoints of the
faces. Let ¢;; be an upper bound on the range of variation in distance, for different
sensed points on the two faces, i.e. let

€, = lim sup{(:d,, —e < [x —y| < d,; + ¢,Vx on face 7, Vy on face j}
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where !x ~ y} is the distance between point x on face 1 and point y on face . Let ¢
be defined as the maximum over all ) of ¢, phis some estimiate of the maximum
error of the sensed distance.

Now assume that we have recorded the position of two sensor ponts, [ and
Py and let sy be the measurc: distancee bhetween thenn Assure that the st pomt
has been arbitranly assgned 1o some foce 0or the object. We want to determine
by
b

wow many faces j oof the object can corsstentiy be wanned 1o the wecond point

[ . A N - -
CACes, Ao toneln,

given the separation spp and the krown dimbuson of di W

want to be able to continue this for A wonor poress doternining an uppe: bonad

on the number of asstgnments of faces to ~cosor pomts he are consiston with the
; .

sensed separation between the faces,

1

Vetance b

Let the distribution of Taces with respect o Pace @ o P Lo of « bhe
denoted by pds o T other words, pis s tecomt b naer o Tecs w e g oine

separation from face s given by he o disaned w0 A woonsegiencee,

/d
dpls) - m
u v

where rois the total number of faces, and ¢ the dianeter, or mexonun separation

of the objeet. Note that because dp, v adisribation, this v o Lebes,iue-nticites

mtegral, The followng bound on e nurnber of nodes at the &7 Javel o the 1T
holds Tor both two-dimensional and three-dimensonal objects,

Proposition 1: An upper bonnd on the expected number of nodes at the £
level of the interpretation tree. K > 2. is given by

(2(;1)1‘ !
- n
d .

where d is the diameter of the object, and ¢ is a bound on the distance seositivity
of the model.

Proof: The proof proceeds by considering an iterative application of the
expected maximum branching factor at each level of the tree. We assume that
be..1 denotes a bound on the nuwber of consistent nodes at the & — 1°¢ level of the
interpretation tree, and consider the hranching factor obtained when adding a &'
sensed point. Assume that sensor point [, has been assigned to face 7, and that
the measured separation of sensor point Py | and Pp is s, This implies that the
midpoint separation of the corresponding faces 1s within ¢ of s;. Hence, an upper
bound on the nurmber of possible faces consistent with si, given face 1 assigned to
point Pk .y is

-/;=~»c dp(sk + z).

Since the number of nodes at the k —- 1°* level of the tree is bounded by by 1, an
upper bound on the total number of nodes at the &% level of the tree is

€
by 1 max/ dp,(sx + ).
1 b -€
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“he poant ) ds arbitrary.

Fouadu. of the tterative expression yvields

-1

2en
by ( ) ,
g d "

torehy conciuding the prool by tnduction. g

Whitle this proposition gives us an voper b o0 e xpeced number of

cidess oorder to evaluate 3yt w.o need zone Hiote oic The foliewny two

propositions provide this for the two- and Uires o el sion Coases

Proposition 2: If all the cdges of a two-dimensional _bject have the same length
o then Ve o, <

Proof: Connect the midpoints of two wibitrary Taces, ¢ and 4. with a line of

i

length d,,. Consider {iret the case of d,, -~ e The st o b

posstble orrentations
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Figure 10. Mustration for Proaf of Proposition 2

of each o the edges ahorit s midnoint deseribes aoclrole of teloos Tonhor
erpont. \\’(- arenterestod o the exATemA snoseparation of Do e e
csee Fugire 1000 We elinm tnat the maximum and mmus separalon of poimes i
the ddises ocour Tor e case of the edges paraliel to the rdpat connecton cnons
4 nunanun of l:'{ e and a maximum of dy, — ¢

While this can be shown algebraically, there is also @ simple geonmetris yroof.

Construct 4 coordinate svstem with ongin al the """fl()"‘n of ed e anod et e

alony the nadpom: connector. Now construet a cirele of radins o0~ ¢ bt e
point (d,. = 5.0 Clearly, this circle grazes the first disk o the port o Now
order for any other point n the second disk to have a S“or'u.' distance. we ot he
abie to p(mtlon a cirele of the same radius nbout that pomt and =0 mtersect the

first disk. This s not possible, by the following argument The env fmpc of possibn
points can be formed by sweeping a circle of radius d,. —~+ throngh a series of
positions such that the center of the circle lies at the liumt of tre second disk This
envelope only intersects the first disk at the above mentioned point. and hence, the
minimum possible separation between the two edges 1s given by d;. — ¢

Stmularly, the maximum separation can be shown tc be &, ¢ by constructing
a circle of radius d,, — ¢ about the point (d;, + ;. 0) and using the same argument.

If d;; < e, then the minimum distance is clearly boundcd below by 0. The
construction for the bound on the maximum distance is identical to that al e

Hence, we see that €, < eV 8

Carollary: If all the edges of a two-dimensional object have the same length,
and the sensor error in measuring distances is much smaller than the length of an
edge. then the expected number of nodes at the k% level of the interpretation tree,
k > 2, that survive distance pruning is bounded above by

()
d
where p is the perimeter of the object, and d is its diameter.

Proof: Since the sensor error 1s much less than the edge length, we see that ¢ 1s
essentially given by the maximum over all 2,7 of ¢,,. From the provious proposition,
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o
Ax o the tno dunensonal case, onconves obhveor s D esc ey ne treated as
CONVeNX ones, whore the surfee crea of o ool itod objeer o rendo 8 by the
CefTective sirlace aren ol woncariyocunie e et ostnniar bond T ol

6.2, the Relevanee of the Combinatories

ke zev pomnt 1o be stressed here i thir the wse of ditancee prosing an be

shown o reduce the noorore ation pronton sieficars v bopreoenle e problem of
A OSCISOT DoThis Aenainst a tode of oo taces sk tesalt ot nossthle e e ons
that noast be tested. We have shown than for two-dinensom obhcet dixtance

bruminye reduces this 1o a number hncar mon, and for three dimenaons’ oheecys,

the nuwmber woredieed to W most one proportional to n

We aivo stress that s s wowenk upper bound, an poriicnlas becione the

.

avass s~ docs pot es o the Sl eansiriont of st e aras 0 TG e s Taven

COMSIETS Do SO D Il abtanied D oaierit e e ey e e st it
: - Vo [ L LR ; . th

aposed by tie sensed distance between the (A o 17 sensed pomt ard e k

y ‘ . : , , 4 .
one. Cleary, mven & sensed neints, tiere are (4,} Galieren b st

. N \ '
M \

and tokong Wl ol o mte doeonnt should provice w toloer bouna, NMoreover, the

coTostialnts,

honods derived refer to the pruming dae tooa single tvpe of eonsiraat. Chearly,
when b threr connimonts are used. we owould ewxnect the toimber of possible

e e tations to e further reduced,

[t was o surprise o the anthors that weak upper bounds on the nnber of
mterpretations would be less than expenennial in the somber of sensed points, k (for
example 1 the three deeree of freedom case. where e nimber of interprotations
Is hnear i the number of sensed pomts). Inour expericice, however, many people
fird 1t surprising that any of the bounds should grow with © Mot peonle expect
them to decrease with &0 Le. as more points dre acqrured, the constrant should be
tirhter. Recall, however, .lhm the bounds derived above do not take into account
" ievel of the tree; they
of the tree. There 1x 2nother important

the fact that there are (’,) distance constraints at the &f
only applyv a single constramt at cach leve!
effect that (partially) accounts for the growth in the number of interpretations
with k. Namely. that Jor & < 6 ecach interpretation corresponds to a continuous
range of positions and orientations, For example, for & -= 1, each interpretation
corresponds to the whole space of positions and ortentations. As more points are
added, the “volume™ in the space of positions and orientations consistent with ecach
interpretation decreases, bu' the number of these interpretations may increase (as

they do between k = 1 and b = 2)2,

7. Discussion

[t is important to note that the algorithm described in this paper has quite
low computational cost. The pruning algorithm is particularly cflicient. The range
tables store ail the model information needed and pruning is done by simply

‘We are indebted to John Canny for this observation.
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compuriiy e tanges of vades measared plis o ST ey W Lose
i the tables. Therefore, no anithn. N COLe G T o ndeng
nto tables). It onny the model test it regmies wes st ont conopatation and,
therefore, the aesire 1o mignnnze U nuinie: of aaes 0 s o0 o orimed,

To lhustrate thas point, we Bive vecorded et ro T aonurnter of
anulations. Wiide the tnues are clearly reperaoid o oo e Do Sactors, sach
as the type of machme, the specdic wdgor! Phe obreet sepscdl L d o e, the
order of mamtuae of the man Gimes Loy ot oty aeones ethicieney of
the method, For example, usig an mnplonentat oo Lasp wa Syriolcs
600 Tasp Machiime, simulations on the vretor oo ST R range of e
and positionad erron vanve of 000 taok Lloavar e ol L0 s Coooonerate and
pranc ihe nievhretathion Live Gl WL o0 T siionas to s the oded
cheer The time regquured 1o Lenerate Tl lton NE wpendeit on
the nunbo of Pl blo mierpretations BT INeTee 1
this moer. T e regiored to e TR ERU STy ot the
runber of taterpr G ow el - cch e cnee rost e L ons T cverase e
('X;)!‘Iliimi S el et a1 e b e l e tiie e
complets the e IR oL s : t TETIR IR N
athon bt s OCCa R0y D e e onsoan e haon
afaroe au ST oerpre ations were possible.

e o et eeonon A0 fata
be odronpe o oty N . G i,
dotnoan, whon Ut L bl w0 i o o Nyt ey
Is made tha Gl Ui eints Delohy, Lo 0hC ohoes T o o Toasihes U CTPIetaions
are foand, toon one cen teil that the hypothesic s wrong, SMuch more rescarch ig
needed aroths srea, however.

[fronghoat the pipel WeoLave Do od ol olionllon lo U e e ol
leTpTerations, Teative 1o onc snoden, ol cata oitemed Dror that obiecl o

o}

it

PUTCCOENTION DOTWeeD SCVUTAL ODTUCIS G o Le TG S

CLUTY O

'

O

mterpretations of one sot of data read v TaAnT O eDLert nodels

v

t

RN 1 e, . I e b
yassiote, Hf one stores with ol

can simply oe peiiorined sequentially oncach moden One sanpee

: Srodes the nssUewn s tanee

¢

of the faces, thenaf one of Tho mvasuren Gistahees 15 0reaie! i,an

civarly

be
e

tre model can be disearded o

Pootces T Las technigue ook separates
from simall ones, Tndorivnately) vers 0l cnoecd doter oo
large objects, A second ethod wonld be 1o use dirertion bisto, ran,
certn models. For example, if the angie hovween two sonscd norn

1 othis

ICERR}
LRRY

then a model of a cube would not be consisien:
he exeluded.

After wenerating and pruming the wtcipretation troe wid be itormg
"
At rhieg

SCTISLLL

test on cach of the k-own objects, we have a listing of the ;
orictitations of «!l objects consistent with th measured data

discrimination can be carried out by additional urenided

onber ol weda,

Plus jroces:
proves.ent g
}

4

o

OLWErT any
Spper bonnd,
anre 01»_; (e
nob Fuie out
N

to e ont
in's owas 30¢,

o and could quickly

e the madel
wositions and
voint, further
as before or

by considoming the avernatives and choosing a poed place to sense next. The
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recoytition problenn thyt remains s now awincnablic to o' ber techngues s wel! sinee
it has been reduced to the ol more tractable problem of oo e wons

@ cliass of objects i known positions and

Orientations,
Achnowledgements
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range data used 1noour experiients, we are vers crateln We e cone it ed s
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Appendix I

Here, we cstablish the claim of section 2.1.2 that the set

{lll‘nzlnl'ulz(l, “2‘“'22(2}

15 contained in the set
{ny - ny | cos[min(7, 612 + ¢; + é2)] < ny-ny < cos [max(0.6,, — @) + ¢2)]}

where
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Figure 11. Extremal values of dot products between two cones

-~
Cos”€,

€os @1 == €]
COS ¢y == €9
o5y = uy -up == 7.

While it is possible to prove this algebraically, it is simpler to sec this by the
following geometric construction (see Figure 11). We wish to determine the extremal
values of the dot product between unit vectors in the two cones, or equivalently,
extremal values in the angle between any two such vectors. If the cones about uy
and up intersect, clearly the maximum value of the dot product is 1. If the cones
are antipodal, clearly the minimum value is —1.

We now consider cases in which the cones do not overlap. We claim that the
extremal values for the dot product occur when the two vectors lie in the plane
spanned by u; and ug, with the vectors lying at the limits of the cone within this
plane. That is, if we let
2

l—f"

then the extrema occur at
n; = (e; — 7p1)us + pruz
Dy = pau; + (2 — Yo2)uz
and
0 = (€1 + y1)u1 — pruz
n; = —pauy + (€2 + ypz)uz

The first case can be shown to correspond to the minimal angle between vectors
in the two cones, by the following construction. Construct a cone centered about
n; with radius such that ns lies on the boundary of the cone, that is the new
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cone grazes the up cone at ng. If there is a smaller @ "0 1 st be posmible to
reposition this cone so that it is centered at some othic: point o the uy cone and
yet still intersects the up cone. This is clearly not possibic, and hence the monnmuim
value of the dot product is given by the stated chiowce of
dot product for this case, and making the appropriate tronome rie sebstitutions
vields the required expression. A simitar construction holds for the maximuin angie
{(or minimum dot product).

ny ane ne. Lxpaudin g the

by

Appendix II

Here, we show how to comnpute the range of possible direction vectors Letween
face, and face, in the object model. Let us erect a coordmate system on face, at
the centroid of the face and whose z axis points along the normal of the face. Then,
it is clear that the set of possible direction vectors is the set

{v,—viiv, € faceJ & v, € face,}

where both v; and v, are expressed relative to the frame on face,. Assume, for
now, that both faces are convex. It can be shown Lozano-Péres 83! that this set is
equivalent to

ch({v; —vi | vy € vert(face,) & v, € vert(face,)})
where ch() is the convex hull of a set of points and rere) s the set of vertices of a
face. Because of convexity, the extrema of the component of the direction vectors
along the normal of face, occur al the vertices of this convex hull. Clearly, the

vertices of the convex hull of a set of points are drawn from the sct of points itself.
Thercfore, we need only find the extrema of the fnite set

{n,- (v, —v.) | v, € vertl{face,) & v, € vert(face,)}
where n, is the normal to face,.

When the faces are non-convex, the procedure above w:ll generate a conservative

bound.

46







