
AU-Al3 /A 1 AISIM (AUTDMATED INTERACTIVE SIMULATION MODEL) USER'S
MANUAL(U) HUGHES AIRCRAFT CO FULLERTON CA GROUND
SYSTEMS GROUP W AUSTELL ET AL. 26 FEB 82 ESD-TR-83-218

UNCLASSIFSIED F19628-79 SC-053 F/G 9/2 NL

EIIIIEE.EmIEEE
Ellllllmlmlllu
EEIIEEEIIEEEEE
EEElllhllEEEEEE

F/

I =~, IIII 2
.6

14.0.2 111112 .
IJI5II.6

MICROCOPY RESOLUTION TEST CHART
S NATIONAL SUREAU O STANOAROS-1963-A

II
I - - ------

ESD-TR-83-218

SAISIM USER'S MANUAL

W. Austell
SM. Deshler

J. Hearne
S. Kneeburg
M. Mabry

SHughes Aircraft Company
Ground Systems Group
Box 3310
Fullerton, California 92634

Approved for public release; distribution unlimited

26 February 1982

P'repared for
UL. 1± 1983

iEiI'CTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

DEPUTY FOR ACQUISITION LOCISTICS
_AND TECHNICAL OPERATIONS

HANSCOM AFB, MASSACHUSETTS 01731

,__ 83 12 13 297

LEGAL NOTICE

When U. S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

Review and Approval

This technical report has been reviewed and is approved for publication.

WILLIAM J. ETEADRE ARTHUR G. DECELLES, CAPT, USAF

Program M ager, 'omputer Resouce Project Officer, Requirements
Management Technology (PE 64740F) Analysis

FOR THE COMMANDER

(WALTER W. TURGSS
Director, Engisr1erng and Test
Deputy for Acqu4sition Logistics
dnd Technical Operations

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Dete.Entred),

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
R PBEFORE COMPLETING FORM

1. REPORT NUMBER 2 GOVT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER

ESD-TR-83-218 -

4 TITPLE (ad Subtitle) S TYPE OF REPORT & PERIOD COVEREtJ

AISIM User's Manual CDRL No. 104 Final

6 PERFORMING 01G. REPORT NuM8ER

7, AUTHOR(s) S. CONTRACT OR GRANT NUMBER,-

W. Austell S. Kneeburg Fl9628-79-C-0153
M. Deshler M. Mabry F
J. Hearne

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT. TASI

AREA I WORK UNIT NL.BERS
Hughes Aircraft Company
Ground Systems Group
Box 3310 Fullerton, CA 92634

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Hq Electronic Systems Division (ALEE) 26 February 1982
Hanscom AFB 13. NUMBER OF PAGES

Masstchi-ptrR 01711 292
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this report)

Same Unclassified
D. DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

II. SUPPLEMENTARY NOTES

19. KEY WORDS (Conllnue on rererse side it necessary and Identify by block nurmher

AISIM Analysis Entities Architecture
User's Modeling Primitives Processes
Design Simulation Systems

20 ABSTRACT 'Continue on reveree side It necessary and Identify by block number)

This document is the User's Manual for the Hughes developed Automated
Interactive Simulation Model (AISIM). This manual provides the user
with a comprehensive guide for using this system to perform high level
simulation of operational and distributed data processing systems.

DO , AN1 473 EDI OOF INOVB'S OESOLETF Unclassified
SECURITY CLASSIFICATION OF" THIS PAGE (When Dote Entered)

" ~ - - w-- I I- -

CONTENTS

1. IDENTIFICATION.. 1I
1.1 PURPOSE...
1.2 SCOPE.. 1
1.3 ORGANIZATION... 1
1.4 DOCUMENTATION CONVENTIONS............................ 1
1.5 APPLICABLE DOCUMENTS-............................... 3

2. AISIM CONCEPTS.. 4
2.1 CHARACTERISTICS OF SYSTEMS MODELLED BY AISIM . 4
2.2 MODELING.. 5
2.3 DESIGNING MODELS-................................... 5
2.4 CONSTRUCTING AN AISIM MODEL.......................... 6

2.4.1 CHARTING A PAPER MODEL....................... 7
2.4.2 DEFINING THE AISIM MODEL.................. ... 7

2.5 AISIM MODELING ENTITIES-............. o............7

3. AISIM ENTITES AND OTHER MODELING CONSTRUCTS 10
3.1 SCENARIO................................... 12
3.2 LOAD. *................. o............. o....... 14
3.3 ITEM-........... o................... o...... 18
3.4 USER DEFINED QUEUES.................... 20
3.5 SYSTEM DEFINED QUEUES 23

3.5.1 QUEUES ASSOCIATED WITH RESOURCES............ 23
3.6 RESOURCE............... 25
3.7 ACTION........................ 27
3.8 PROCESS o...... 28
3.9 PRIMITIVES. o...... .o................ 32

3.9.1 ACTION eeoe 34

3.9.2 ALLOC...... ..o................... 35
3.9o3 ASSIGN........................ 36
3.9.4 BRANCH............... 38
3.9.5 CALL o........... o..........39
3.9.6 COMPARE o.................41
3.9.7 CREATE..,........... o...... o............. 43
3.9.8 DEALLOC............ o................44
3.9.9 DESTROY................................oosoo - s 45
3.9.10 ENTRY 46
3.9.11 EVAL... 47
3.9.12 FILE................................. 50
3.9.13 FIND. o........................ 52
3.9.14 LOCK.........oo.................ooo53
3.9.15 LOOP-...................................... 54
3.9o16 PROB 55
3.9.17 REMOVE.... 56
3.9o18 RESET..... *............ 58
3.9.19 RESUME..... 59
3.9.20 SEND........o..............................60
3.9.21 SUSPENDo....................... 6
3.9.22 TEST..................... 62
3.9.23 TRACE...................................~ooo,** 63
3.9.24 WAIT 0...... 0...............65

3.9.25 UNLOCK....................................... 66
3.10 LEGAL PATH TABLE - NODE - LINK...................... 67
3.11 TABLES :................................. 619

3.11.1 DISCRETE TABLES 69
3.11.2 CONTINUOUS TABLES............. 69
3.11.3 ALPHANUMERTALETABLES... o....... 69

3.12 ATTRIBUTES o........ 71
3.13 CONSTANTS AND GLOBAL VARIABLES..o......... 73
3.14 LOCAL VARIABLES oo..o......... 75
3.15 ALPHA LITERALS o......... .. 77
3.16 KEYWORD o...................... 7
3.17 MESSAGE ROUTING SUBMODEL................... 79

3.17.1 ITEM: MSG. 80
3.17.2 USING THE MESSAGE ROUTING SUBMOD EL.... 81

4. AISIM SYSTEM OVERVIEW AND SYSTEM INITIALIZATION 82
4.1 REACHING THE AISIM READY LEVEL......... o 82

5. AISIM READY LEVEL -LEVEL 3............o... 84
5.1 AISIM READY LEVEL COMMAND SUMMARY.o.......... . o 86

5.1.1 INITIATING AN ANALYSIS SESSION~o. . 89
5.1.2 BACKING UPA DATABASE........o ... o .o 91
5.1.3 CHANGING THE CURRENT PARAMETERSo.. 92
5.1.4 INITIATEDESIGN SESSIONo. .. 93
5.1.5 VIEWI NGOUT U T P T REPoo O RT..So.. 95
5.1.6 TERMINATION OF AISIM READY LEVELo. 96
5.1.7 REGISTERING ACOMPLAINTo......... 97
5.1.8 HARDCOPY OUTPUT OF THE PROCESS

F LOW-CHARTS................. ..o. ooo 98
5.1.9 OBTAINING HELP FROM THE SYSTEM 99
5.1.10 EXERCISING THE LIBRARY FACILITY.........o 100
5.1.11 LISTING THE CURRENT OPTIONS... o ... 101
5.1.12 PRINTING OUTPUT REPORTS................... 102
5.1.13 INITIATING A REPLOT SESSION.............. 103
5.1.14 RESTORING A DATABASE (AFTER A CATASTRO-

PHE HAS OCCURRED)................. o.... o 104

6. DESIGN USER INTERFACE (DUI)......ooo 105
6.1.1 COMMAND: ARCHo.... 108
6.*1.*2 COMMAND: COPY.......... . o 109
6.1.3 COMMAND: DELETE.-oosoo..................... ill1
6.1.4 COMMAND: EDIT 113
6.1.5 COMMAND: END. o...............114
6.1.6 COMMAND: HELP.o.....................115
6.1.7 COMMAND: LIST....... o. 116
6.1.8 COMMAND: SAVE.o...... o........ 117
6.1.9 TERMINATION OF A DUI SESSION .. o 118

6.2 PROCESS EDITOR INTERFACE (P E I) o....o.....119
6.2.1 USE OF THE PEI oo~~ooo 119
6o2.2 COMMAND: BO TTM.. .. O M.............. 122
6.2.3 COMMAND: CHANGE.o.....oo... ..~oo 123
6.2.4 COMMAND: DELETE.oo........ 124
6.2.5 COMMAND: DOWN...... 125

iv

6.2.6 COMMAND: END................................. 126
6.2.7 COMMAND: HELP................................ 127

6.2.8~~~~~~
~~ ~ COMAD rOD..................18

6.2.9 COMMAND: MEN................................. 129
6.2.10~~~~~~~~~~~ CO M N : P A E27.. 3

6.2.11 COMMAND: TOP................................. 131
6.*2.12 COMMAND: P................................... 132
6.2.13 TERMIANG AOPE SESSION.......................133

6.3.12 COMMNE:SFUP NGAD..........................136
6.2.3.32 TUSEIOFTIHE AEI...........................136
6. ARHTETR 3.IG 3DADERSYMBOLS.............................134
6.3.4 COMND:PT CHAUNGE............................142
6.3.2 CSEOMMND COECTE.............................136
6.3.6 CAND: DEFINE................................145
6.3.7 COMMAND: DHEE............................ 149
6.3.8 COMMAND: CEND............................... 150
6.3.9 COMMAND: LEIT............................... 145
6.3.10 COMMAND: MOE................................. 152
6.*3.11 COMMAND: PE................................. 153
6.3.12 COMMAND: RECI 154
6 .3 .13 COMMAND: SAVE 155

6.3.14 COMMAND: WINDO............................. 156
6.3.15 TERMINATIO OFN ADE.. SESSION.................158

7..1 USEOFTHMAALYSI USE INTERFACE.....................155
7.1 .COMMAND: W IN.................................. 171
7.2 .1 COMNDTEFPLAO...................................172

7.3 CSEOMMHEAN: SI EDIT......................................173
7.4 COMMAND: EN... 174
7.5 COMMAND: GEFT....................................... 175
7.6 COMMAND: GO... 176
7.7 COMMAND: ELP... 177
7.8 COMMAND: GNES.. 179
7.9 COMMAND: LIT... 180
7.7 1 COMMAND: HLPVL...................................... 181
7.8 1 COMMAND: PLOT.S 182

7.12 COMMAND: LSVT.......................................184o
7.13 COMMAND: LSTRAK 185
7.14 TERMINATIONLOF AN..AU..SESSION........................187

8 .12 REPO MND USRITAE....................................188
8.13 COMMAND: CLBEA..................................... 190
8.24 COMMIAD: N DELETESSON................................191

8. 3EO COMMA N REND................................... 192
8.4 COMMAND: GLET.......... 193

8.5 COMMAND: DLIST. 194
8.6 COMMAND: PLO.................................... 195

9. 4 HRCOMMND USER INTEFAC............................... 196

1. LIAROY USER INTERFACE 198

10.1 COMMAND: CHRNERCE..................................... 2008
10.2 COMMAND: CHECKOUT............. o.............. 201

102 OMAN: HEKOT.V0

10.2.1 COMMAND: DELETE............................. 203
10.2.2 COMMAND: END.-............................ 204
10.2.3 COMMAND: EXTRACT............................ 205
10.2.4 COMMAND: HELP............................... 206
10.2.5 COMMAND: LIST......................... .. . 207

10.3 COMMAND: MERGEIN........................... 208
10.3.1 COMMAND: END 211
10.3.2 COMMAND: HELP............................... 212
10. 3.3 COMMAND: IGNORE 213
10.3.4 COMMAND: INFO 214
10.3.5 COMMAND: RENAME............................. 215
10. 3.6 COMMAND: REPLACE.......................... 216

10.4 COMMAND: MERGEOUT................................... 217
10.4.1 COMMAND: HELP.......... 220
10.4.2 COMMAND: LIST............................... 221
20.4.3 COMMAND: SELECT 222

11. AISIM SIMULATION RESU LTS REPORTS 223
11.2 REPORT RESULTS AND HOW TO OBTAIN THEM.............. 224

11.2.1 CONSTANT REPORT 230
11.2.2 VARIABLE REPORT.......................... .. 231
11.2.3 ITEM REPORT.. 233
11.2.4 RESOURCE REPORT 234
11.2.5 ACTION REPORT...... 236
11.2.6 QUEUE REPORT................................ 238

11.3 COMMANDS RELEVANT TO VIEWING OUTPUT REPORTS ... 243
11.3.1 TOP, BOTTOM.. 243
11.3.2 UP, DOWN....... 243
11.3.3 FIND *....... 6.....6. 243
11.3.4 LIST.... o.... o............... 243

APPENDIX A - OPERATIONAL PROCEDURES AND IMPORTANT
INFORMATION...................................... 244

A.1 IMPORTANCE OF DATABASE BACKUP AND ALLOCATION . 244
A.2 ABNORMAL TERMINATION OF A DUI OR AUI SESSION . 244
A .3 AISIM PLOTS245

APPENDIX B- AISIM ERRORS......................... o...... 247

APPENDIX C- GLOSSARY....................................... 264

APPENDIX D - QUEUES ASSOCIATED WITH ENTITY NAMES,.......... 268

APPENDIX E - MESSAE ROUTINE SUBMODEL PROCESSES ... o....... 269
E .1 PROCESS: REQ-I/O......................... 269
E.*2 PROCESS: ESR-CALL 6....... ... 272
E.*3 PROCESS: ROUTER 273
E.*4 PROCESS: CONTROL................... 276
E .5 PROCESS: CHLIO........... o 279
E .6 PROCESS: IHANDLER......................... .o. . .. 281

vi

FIGURES

FIGURE PAGE

1 AISIM Modeling Constructs ii

2 Resource States 24

3 Flow Chart Representation of a Process 31
4 Sample Legal Path Table Entries 67
5 Workspace/Viewspace Contrast 135
6 Report Giving Definitions of Constants, Tables,

Items and Queues 226
7 Resource Report and Listing of Legal Path Table 227
8 Report Giving Definitions of Actions and Processs.. 228
9 Report Giving Load and Scenario Definitions o 229

10 Sample Resource Utilization Report 235
11 Sample Queue Utilization Report 240
12 Sample Process Utilization Report 240

Accession For

i

D

43

jl.p

vii

. I

1. INTRODUCTION

1.1 PURPOSE

The Automated Interactive Simulation Model (AISIM) System pro-
vides the user with the ability to do high level simulation of
complex operational and distributed data processing systems. The
purpose of this manual is to provide the AISIM user with a
comprehensive guide for the use of the system.

1.2 SCOPE

This manual describes the use of the AISIM software primarily
from the user's point of view. It ontains information necessary
to operate AISIM. This manual discusses the hardware and
software environments for AISIM as well as the function of the
AISIM software..It is intended that this manual will be used as a
reference for the AISIM user.

1.3 ORGANIZATION

This manual is organized to provide a straightforward reference
document for the AISIM user. Chapter 1 introduces this document,
detailing the organization of this document, the document conven-
tions and applicable documents. Chapter 2 is an overview of the
concepts used in modeling and simulation of systems using AISIM.
Chapter 3 contains a detailed description of entities used in
AISIM modeling. Chapter 4 describes the interface between the
AISIM software and the host computer's time sharing system.
Chapters 5 through 10 present information of the various system
user interface levels, including detailed descriptions of prompts
and commands. Chapter 11 discusses AISIM simulation results and
how to interpret them. Appendix A presents operational pro-
cedures and other information which is useful for the user to
know but not mandatory for using the system. Appendix B lists
error messages which the user may see with a description of their
meaning. Appendix C is a glossary of AISIM terms. Appendix D
contains a description of AISIM data structures which can be
manipulated by the user. Appendix E contains a detailed descrip-
tion of the Message Routing model for communication modplling.

1.4 DOCUMENTATION CONVENTIONS

The descriptions of AISIM commands given in this manual use the
following notations to define the syntax and format of the AISIM
commands:

1. Comma~ds slown in t-- formaL be'ow are equivalent:

DESIGN

D

Page 1

Typing either DESIGN or D--the latter being an abbreviation
for the former--followed by a carriage return will take
the user from the AISIM Ready Level to the AISIM Design
User Interface (DUI) sublevel.

2. Required parameters are enclosed in braces:

[language)

3. Optional parameters are enclosed in brackets:

(NOXLATE]

Default values exist for all optional parameters:

4. The brace and bracket symbols are used only to define the
format. They should never be typed in the actual command
statement.

braces { }

brackets

5. The symbols listed below should be typed in a command
statement exactly as shown in the command statement
definition.

apostrophe

comma

parentheses

period

6. Words in lower-case appearing in a commend definition
represent variables for which the user should substitute
specific information in the actual command.

EXAMPLE: If "database" appears in a command definition, the
user should substitute a specific name of a
database (for example, CONTACT) for the variable
when the command is entered on the terminal.

7. All upper-case words and letters in a command definition, such
as a command name or a parameter name (if the parameter is
used), must be typed as part of the command statement.

8. All command names and associated parameters must be separated
from each other by an appropriate delimiter. Acceptable
delimiters are a comma or a blank. A blank is entered on the
terminal by pressing the space bar at the bottom of the
terminal keyboard.

Page 2

.. , 21

EXAMPLE: BACKUP (PROJECT(database)] [USER(userid)]

If either of the optional parameters is used it
must be separated from the command name BACKUP
by a blank (). If both optional parameters are
used they are to be separated by a blank (), i.e.

BACKUP PROJECT(CONTACT) USER(TF01234)

When a comma is to be used as the delimiter it will be
specified as part of the command definition.

EXAMPLE: DEFPLOT {entity-typel,{entity-name}

In this example the command name DEFPLOT would be
separated from the required parameter ntity-type}
by a blank and the two required param rs would
be separated from each other by a com i.e.

DEFPLOT R,RESOURCE

9. The references in this document to specific woroa which
are AISIM entities, will appear with an initial capital.
This is to distinguish the reference to an AISIM specific
concept from a common interpretation of the word.

EXAMPLE: Process - occurences of this refer to the
AISIM entity

1.5 APPLICABLE DOCUMENTS

The following documents provide additional information on the
operation and use of AISIM:

IBM TSO User's Manual

Hewlett-Packard 2647A User's Manual

AISIM Training Manual

AISIM Training Examples

AISIM Product Specification

Page 3

2. AISIM CONCEPTS

The Automated Interactive Simulation System (AISIM) provides a
tool for the analysis of complex systems. The tool is designed
for the operations analyst or engineer as a workbench for inves-
tigating the impact of system alternatives. AISIM provides a
graphics language for the expression of systems, a database for
storing a system's design and a simulation capability for analyz-
ing the system. AISIM is applicable to design analysis of sys-
tems proposed hypothetically as well to the operations analysis
of existing systems.

AISIM is a computer program that allows for the simulation of
complex systems by a user without additional programming. The
program can be executed interactively by a user communicating
with a host computer through a terminal. By using the host com-
puter in an interactive mode, an AISIM user can use AISIM to
obtain timely data to support decisions on how a system is to
function.

2.1 CHARACTERISTICS OF SYSTEMS MODELED BY AISIM

AISIM supports the design and analysis of systems that have the
following characteristics.

1. Procedural operations -- Processes in the system can be
described by a sequence of steps that describe the
logic of every operation (e.g. operator actions,
operating system logic, applications logic, man-machine
interface,real time input processing)

2. Parallel Processing -- Any number of processes can
occur simultaneously.

3. Shared Resources -- Some processes require resources
that are contended for by other processes (e.g. two I/O
requests contending for a single channel). Queueing is
reflected in the degradation of the time required to
complete processes suffering resource contention (e.g.,
large queues behind bottlenecks in a network).

4. Operational loading -- The operation of the system is a
function both of its internal structure and of the
environmental pressures on it.

5. Process communication -- Processes transfer data and
materials to cther processes in the system (e.g., both
message routing and network control information commun-
ication can be easily represented).

6. Interconnected network -- Network architectures con-
sisting of interconnected nodes can be represented in

Page 4

I _ _ , I

. . . . - ' 'i - i | -.

AISIM. System constructs allow the user to define the
routing of messages through the described architecture.
AISIM also allows for the modelling of systems
abstracted from any particular arzhitecture.

These characteristics are generic to a large class of systems
including military, computer, and industrial systems.

2.2 MODELING

In scientific and engineering usage, a model is a simplified (or
idealized) representation of a system that is advanced as a
basis for calculations, predictions or further investigation.
AISIM modeling fits comfortably under this general characteriza-
tion, but AISIM i!3 especially designed for the modeling of sys-
tems which incorporate parallel processing (simultaneous

activity) and networks. AISIM is particularly suited to the
modelling of embedded computer systems for command, control and
communication applications.

There are many applications of simulation modelling in this prcb-
lem area. AISIM models are representative, discrete event simu-
lation models used for predictive operations analysis. What this
means is that entities in a real system are mapped onto AISIM
entities which have a very close functional relationship. AISIM
entities respond to simulated conditions much like the real enti-
ties do under actual conditions. This is in contrast to func-
tional modelling where the real system is described in terms of
equations in differential calculus. The emphasis in representa-
tive modelling is in describing the system.

Generally, determining and clearly describing the system is the
first major obstacle a modeller must confront. If a system
exists is in the design phase, then no data is available on how
it will perform or what the major bottlenecks will be. For exist-
ing systems these characteristics may known but the combination
of events that cause problems may not be understood. In both
cases , much can be learned from modelling the system.

A key concept to keep in mind is that models are a simplified
description of a system. This implies that elements of the real
system may not be represented in the model. The challenge in
modelling is to represent all the elements of critical interest
to the system dynamics in the model. This requires some thought
to the development of the model.

2.3 DESIGNING MODELS

A model should be carefully designed before being built. The key

activities addressed during the design phase are the following:

Page 5

Understand the Model and Collect Relevant Data -- To model
any system effectively, a modeler has to know a some-
thing about the system. Building an executqable simu-
lation model req.res that the system have a complete
description. A moc:eler must be aware of the functions
performed in a system which effect the dynamics of the
operation. A modeler must also know the characteristics
of all the elements that perform work, create data ,
control processing, interupt normal operations and pro-
duce output. This data can be obtained from design
specifications, hardware specifications, previous stu-
dies or empirical testing. It is important to collect
good data because that data becomes the foundation of
the model.

Determine Model Boundaries -- Systems modeled by AISIM gen-
erally consist of many subsystems. The problems caused
by the combination of subsystem activities are of
interest to the analyst. AISIM provides varying levels
of detail in modelling a subsystem. Sometimes the
activity can be viewed as a black box. The flow of
control through this box can be simply represented by a
delay. This type of phenomena is modelled by AISIM
with an Action. Other times, the characteristics of a
subsystem can be represented by a mathematical func-
tion. AISIM has such a functional capability with the
EVAL primitive and Table construct. If an activity is
more complicated, it can be described by logic. In
this case, AISIM allows the modeler to go to his own
level of detail by building a Process. Setting the
boundaries of an AISIM model is precisely what the
modeler does in deciding which of these constructs will
be used to model the elements of a system. A method of
paper modeling developed for software design is known
as "structured design". This method uses structure
charts, heirarchical charts showing calling sequences,
to describe functional processing. This method has been
used successfully with AISIM. An alternate method
would be to create flow charts of the various system
functions.

Determine Experimental Method -- A model allows an analyst
to run experiments on a system to predict how an opera-
tion will behave. Before any effort is expended in
building a model, the output of simulation runs must be
considered. Monitors can be designed to provide data
on the system's operation. Experiments can be designed
to validate the model.

2.4 CONSTRUCTING AN AISIM MODEL

Page 6

- --- -- r -

2.4.1 CHARTING A PAPER MODEL In building a model, a modeler
maps the elements of a system onto the constructs of the simula-
tion language. To do this, the modeler must be familiar with the
characteristics and relationships of both the simulation tool and
the real-world sy3tem The flow chart representations provide a
definition of the system activities and data flow. AISIM
represents the interaction of the system's activities over time.
The mapping is not always clear-cut and usually requires itera-
tion. The modeler charts out what processing takes place in a
system, where resources are allocated, howpProcesses oommunicate
and where activities initiate. This chart is referred to as a
paper model. It may be derived from an understanding of the
system's functions and a graphical representation of its network.
On the paper model, the modeler names the entities in the system
that will be modelled by AISIM entities - Processes, Resources,
Items, Queues, Tables, et cetera.

2.4.2 DEFINING THE AISIM MODEL An AISIM model is built by
defining the AISIM entities which represent the system entities.
• This is done interactively on the computer. AISIM solicits
relevant data for defining all design entities. From this point,
the modeler uses the automated tool to build his model.

2.5 AISIM MODELING ENTITIES

As mentioned earlier, a model is a description or abstraction of
a real or proposed system. To build a model with the intention of
simulating its operation, we must describe the model in terms
which can be interpreted, and operated upon, by the simulation

system. That is, a system can be modelled using a prose descrip-
tion; but unless it has some systematic relation to a computer
language it would be useless as a computer model because prose is
ambiguous. AISIM uses a special set of terms to describe system
structure and operation called AISIM entities. A modeller must
understand the meaning and use of these entities to build suc-
cessful models using AISIM. A detailed discussion of each of
these entities is provided in Section 3. The following brief
list names each AISIM entity. Definitions of entities important
to our discussion are included. Figure 1 also provides further
insights to the meaning, use, and relationships between entities
dnd other modeling constructs.

Constant - A Constant is a term whose value does not change
during a simulation exercise of a model. Constants are
used to represent parameters that do not vary with time

or in response to the workings of the system being

modeled.

Item - An Item is a transient data element and is used to
represent messages (or materials or even physical
objects) flowing through the system.

Page 7

......

Load - A Load is used to represent aspects of the world out-
side the system that trigger Processes within it; Loads
represent the normal burden, i.e. cluster of Process
triggerings, on a system.

Primitive - Primitives are logical constructs that represent
steps in a logical sequence of (see Process). There
are 25 different primitives each representing a dif-
ferent logical function. A sequence of primitives com-
pose a Process. All primitives are listed below.The
ACTION primitive has an Action entity associated with
it. The Action entity is defined below. AISIM pro-
vides a language for describing the dynamics of a sys-
tem with an expandable set of primitives (i.e. if the
user wishes to model at a high level, a smaller number
of these primitives are used; however, if more detail
is desired or if several models are to be integrated,
more primitives are available).

ACTION - (See below)
ALLOC
ASSIGN
BRANCH
CALL
COMPARE
CREATE
DEALLOC
DESTROY
ENTRY
EVAL
FILE
FIND
LOCK
LOOP
PROB
REMOVE
RESET
RESUME
SEND
SUSPEND
TEST
TRACE
UNLOCK
WAIT

Process - A Process is a description (using Primitives) of
the logic of the operations, decisions or activities of
the system being modeled.

Action - An Action, which is associated with the ACTION
Primitive, is used to represent any action, activity,
decision, etc. that consumes time. The Action entity
is the only one that updates the simulation clock.

Page 8

Queue - The Queue entity is used to model an ordered holding
area for one or more items. A Queue may be used to
model, fcr example, a job queue or a memory buffer. A
Queue may be defined with a maximum size parameter to
model, for example, such limits as the maximum number
of messages that a buffer can hold before it is over-
loaded. Queues bear a default size of irfinite.

Resource - The Resource entity is used to model the mechan-
isms (people, CPU, communication lines, etc.) necessary
to perform a Process. Resources generally have the
property of being shared among Processes. The sharing
of a Resource may affect the performance of a Process.
Performance of a Process can be degraded due to conten-
tion for Resources.

Scenario - The Scenario entity is used to model the various
environments in which a system must perform. A
Scenario specifies the number of periods of a simula-
tion run as well as their length (which is uniform). A
Scenario will determine which Processes and Loads are
to be initiated and when.

Table - A Table is a user-definable function with up to fif-
teen pairs of data points. Tables may be defined as
either continuous , discrete or alpha. A continuous
Table interpolates linearly between numeric points. A
discrete Table is a step function connecting numeri
points. Alpha Tables are use for structuring data over
non-numeric ranges and domains.

Variable - A Variable is a term whose value can change dur-
ing a simulation run, either through use in calcula-
tions or through reassignment by the user between
stages of a simulation. As with Constants, the value
of a Variable can be set either during the design of a
model (in the DUI) or just before a simulation excer-
cise (in the AUI). Variables can also be changed dur-
ing a breakpoint in the simulation.

Using these entities, the user must map the system to be modeled
inLo an AISIM model.

Page 9

______ ___ ___ 5,

3. AISIM ENTITIES AND OTHER MODELING CONSTRUCTS

In this section AISIM's entities and other modeling constructs
are described. For each entity, the form the user is presented
with when interacting with AISIM is given and its required
parameters and meaning are explained. Included is mention of
relations between the various AISIM entities, where such mention
is deemed helpful. Similar treatment is given to other modelling
constructs which are not AISIM entities but are representative of
modelling concepts.The difference in the description of these
constructs is that no AISIM forms are described. Figure 1
diagrams the main relationships between AISIM modeling con-
structs.

Page 10

Fig.ire 1. AISIM Modeling Constructs

ENVIRONMEINT

SCENARIO

TRIGGERS AL.IOC
ASSIGN

TRIGGERSBRANCH
TRIGGERSCALL

COMPARE
TAE ARCHITECTURE CREATE

EVAI.
FILE

TAKE PLACE IN ND LNK LOCK
LOOP

_________________ PROB
PROCSS PIMITVES REMOVE

RESET-. VRAE
CREAT! ALLCATERESUM.E -

SEN_
MANPULTESUSPEND A

TAC SE

UNLOCK

C. o CANBE t 0 PONWAIT

Page 11

SCENARIO

3.1 SCENARIO

The Scenario entity is used to represent the various environments
in which the system being modeled must perform. Together with
the Load entity it represents the external stimuli on a modeled
system.

Scenarios are divided into periods whose length and number are
chosen by the user. These periods provide break points at which
the user can stop a simulation to alter a variable or inspect the
results up to that point. There may be up to 14 periods in a
given Scenario.

For each Scenario the user defines a collection of Loads and/or
Processes, together with s(. edule time and triggering priorities
for each. Each scenario calls for the initiation of activity over
time by activating a Process or Load.

The form for Scenario is:

SCE4AAtC: PER= LENGTH:

DESCRIPTION:PERIODS: mmmm mmm
CALLS: TRI GE SCH TIRE PRIORITY TR IGG" SCH TIME PRIORITY

where:

NAME: Scenario name (I to 8 characters)

PERIOD LENGTH: Number of Timeunits in each simulated period.

DESCRIPTION: Any Scenario description (0 to 53 characters)

Page 12

PERIODS: Mnemonic names can be entered in these fields
consisting of up to 8 characters per name.
The number of fields containing characters
determines the number of periods in a simula-
tion, i.e., for each of the 14 fields in
which an entry is made a period is added to
the total simulation run. A Scenario can have
a maximum of 14 periods.

TRIGGER: 1 to 20 Process names or Load names; each
Load or Process named causes the initiation
of that Process or Load at the scheduled
time.

SCH TIME: The time--in terms of absolute time units
from the start of simulation (time = 0) at
which the the Load or Process specified is to
be initiated.

PRIORITY: The priority with which the a Process is to
be triggered. (Priority is inverse, priority
1 pre-empts priority 2.) If a Load is
scheduled from the Scenario, the priority
field is ignored.

Operation - For each AUI session, a Scenario is specified by
name. The Scenario specified will define simulation period length
(in Timeunits), Loads and Processes. The number of periods speci-
fied in the Scenario is the number by which period length is mul-
tiplied to derive the total simulation time.

Page 13

* 'I '- --

LOAD

3.2 LOAD

The Load entity is used with the Scenario to initiate Process
triggerings. These will include what may normally be thought of
as the environment of the modeled system. It models the Process
triggerings that that are due periodic or random, whether or not
such causes are outside of the system being modeled.

The Load entity enables batches of Process triggerings to be
defined at specific nodes in the architecture. The Load describes
which Processes will be initiated at which nodes. Loads trigger
simultaneously at all nodes. This entity can be described in the
following way; for each Process in the Load, initiate up to the
maximum number with an interval given by the schedule method and
mean between each triggering. Do this at all nodes simultane-
ously.

A Load definition defines a cluster of Process triggerings to
take place at a certain point in the Scenario (exactly which
point is given in the Scenario definition). This schedule speci-
fies up to five Processes in up to eight architectural Nodes,
together with a scheduling procedure the triggerings will follow.

The form for Load is:

0£E 4CDE2 N0DE] N0D[4

-E -M' -A -LAP 0

where:

NAME: Load name (1 to 8 characters)

NODES: If architecture used, one to eight Nodes in
which the Processes specified will take
place.

DESCRIPTION: Load description (0 to 53 characters)

Page 14

* '1 '

PROCESS: I to 5 names)f Processes which the Load
triggers according to schedule.

MAX #: Maximum number of times this Process is to be
initiated in each execution of the Load.

SCHMTD: Statistical finction to be used to determine
the distribution of Process initiations over
time. Schedule method can be any of those
described under SCHEDULE METHOD.

MEAN: Depending upo-i schedule method, MEAN is used
to determine :he interval between each ini-
tiation of a Process.(In general this is the
mean inter-arrival time.)

DELTA: Depending upon schedule method, DELTA is used
to determine the deviations about the mean
for for the i:iterval between initiations of a
Process.

PRIORITY: Priority with which the Process is to be exe-
cuted. (Priority is inverse, priority 1 pre-
empts priority 2). Priority is used to deter-
mine which Process will be allowed to allo-
cate a Resource when it is contended for by
two or more Processes.

SCHEDULE METHODS:

START - MEAN: inapplicable
DELTA: inapplicable

All Processes up to the maximum number are
initiated at the same clock time , the start
of the Load. This can be used to simulate
pre-loading.

INTERVAL - MEAN: time between initiations
DELTA: undefined

One Process i:3 initiated at the interval
defined by MEAN. The first starts at the
time given by MEAN with respect to the start-
ing time of the Load.

POISSON MEAN: mean number in a PERIOD
DELTA: undefined

Processes are scheduled randomly by a POISSON
Process. Inter-arrival times are distributed
exoonentially. The MEAN parameter defines

Page 15

,--, i 1I - ~- - -

the mean number for a PERIOD. PERIOD length
is defined in the SCENARIO.

EXPONENT - MEAN: mean inter-arrival time
DELTA: undefined

Processes are scheduled randomly with expon-
entially distributed inter-arrival times.

LOGNORMAL - MEAN: mean inter-arrival time

DELTA: standard deviation of arrival time

Processes are scheduled randomly with LOG
NORMAL inter-arrival times. The first Pro-
cess initiates at some time after the start
of the Load defined in the Scenario.

NORMAL - MEAN: mean inter-arrival time
DELTA: standard deviation of arrival time

Processes are scheduled randomly with NORMAL
inter-arrival times. The first Process ini-
tiates at some time after the start of the
Load defined in the Scenario.

UNIFORM - MEAN: mean inter-arrival time
DELTA: range about the MEAN

Processes are scheduled randomly with a rec-
tangular distribution. The first Process
initiates at some time after the start of the
Load defined in the Scenario.

ERLANG - MEAN: mean inter-arrival time
DELTA: order of the distribution function

Processes are scheduled randomly with ERLANG
aistribution. The order "k" is given by the
DELTA. The first Process initiates at some
time after the start of the Load defined in
the Scenario.

WEIBULL - MEAN: scale parameter.
DELTA: shape parameter

Processes are scheduled randomly with a
WEIBULL distribution of inter-arrival times.
The first Process initiates at some time
after the start of the Load defined in the
Scenario.

GAMMA - MEAN: mean inter-arrival time
DELTA: k

Page 16

---. I l

Processes are scheduled randomly with a GAMMA
distribution for inter-arrival times. The
first Process initiates at some time after
the start of the Load defined in the
Scenario.

Operation - a Load specifies a c]hister of Processes to be trig-
gered according to a scheduling method and a priority.

Relationships - Loads are part of Scenarios, and specify
Processes to be triggered, and nodes in which they are to be
triggered.

Page 17

ITEM

3.3 ITEM

The Item entity is used to model transient data elements that
"flow" through a system. The Item declaration permits the model-
ing of data items which, by the nature of their varying attribute
values, permit data-dependent decision making and timing.

Items can be originated, terminated and passed through the system
from one Process to another through the Primitives CREATE, DES-
TROY, and SEND. Items can also be placed on and removed from
Queues via the Primitives FILE and REMOVE.

The form for Item is:

:TEM NAME:

DESCRIPTION:

'44ME VALUE NAME VALUE

where:

ITEM NAME: 1 to 8 character name of Item

COMMENT: 0 to 53 character definition

NAME: 1 to 8 character name of attribute of Item.
An Item can have up to 15 user-defined attri-
butes.

VALUE: The value to be assigned to attribute
(integer, decimal, or chara~ter); If a name,
it must be a defined Process, Resource, Vari-
able, Constant, or Item name.

NOTE: All Items have implicitly defined attributes TAIL numbers
and PRIORITY with values equal to the number of the Item created
and the priority of the Process that created it, respectively.
The tail attribute can be used for Item matching (see SEND Primi-
tive).

t Operation - An Item is created for each occurrence of the follow-
i ng:

Page 18

a. a CREATE Primitive that is executed - used to model
transient data elements

b. a SEND Primitive that is executed in a Process which
does not have an Item of the specific name attached at
the time.

An Item is automatically terminated only when the DESTROY Primi-

tive is executed

Attribute values are assigned at the time of creation.

Relationship - Item attributes are used by Process Primitives and
attribute values can be modified by the ASSIGN and EVAL Process
Primitives.

Page 19

. II [I

USER DEFINED QUEUES

3.4 USER DEFINED QUEUES

A Queue is a global entity used to represent an ordered holding
area. User-defined Queues may hold either Items or Resources.

When a Queue is defined, a maximum size parameter is specified
(the default is "infinite"). This allows Queues to model finite
storage devices that have a limited capacity (e.g., a storage
bin, a computer job scheduler). Once the value is defined, it
may not be changed and thus this parameter must be either a
numeric value or a defined Constant. The maximum size parameter
interacts with Process Primitives FILE and REMOVE to model queue
blocking.

Queues are manipulated by Processes through the use of the FILE,
FIND, and REMOVE Primitives. An Item or Resource unit may be
placed on a Queue by using the FILE Primitive, specifying one of
four location parameters: FIRST, LAST, BEFORE and NEXT. The
former two parameters denote the end points of a Queue, the first
and last slots. The latter two are location parameters relative
to the Queue pointer.

A Queue may be "traversed" by using the FIND Primitive, which
will alter the Queue pointer (see below). It can then be used by
the FILE Primitive to place another Item or Resource in the
Queue. This is done by specifying the location of the new Item
or Resource relative to the Queue pointer, as either BEFORE or
NEXT, where NEXT is the current value of the Queue pointer. In
this way, a Queue could be ranked by one or more attributes of an
item (e.g., Item size or color).

An item may be taken off the Queue by using the REMOVE Primitive.
One may remove the first, last, or current Item (i.e. an Item
that was found) from the Queue. After an Item is removed from a
Queue, it may be sent, destroyed, or otherwise modified.

An :.em may not be modified, sent, or destroyed while it is on a
)ue-.ie. The same Item instance may not exist on more than one
Sueue. Multiple Processes may access the same Queue.

A Queue pointer is maintained for each Process which references a
Queue. This pointer contains the address of the Item that the
Process is addressing in a Queue. The contents of the Queue
pointer is determined by rules described below and in the sec-
tions on the Primitives FILE, FIND and REMOVE:

1. The pointer contains the address of the last entity found
with a FIND Primitive; otherwise,

Page 20

4 _ __ _ __ _

2. The pointer contains the address of the last entity filed
with a FILE Primitive; otherwise,

3. The pointer contains the address of the successor of the
last entity removed with a REMOVE Primitive with a NEXT
option.

The FILE Primitive places an Item or Resource on a Queue. This
is done in one of the following two ways:

It space exists on the Queue, that is, the number of Items on the
Queue is less than the maximum Queue size specified for the
Queue, the Item is inserted into the Queue at the correct loca-
tion specified by the option (FIRST, LAST, NEXT, BEFORE). If no
space ex'sts on the Queue, the Process which is executing the
FILE Primitive is suspended. This condition is known as Queue
blocked. In this state the Process waits until space becomes
avaiilable on the Queue. Waiting for space on a Queue is by a
iList come first served discipline. This feature allows AISIM to
model finite storage resources such as buffers and disks very
easily. The default size of all Queues is INFINITE.

The REMOVE and FIND Primitives access a Queue and change the
value of the Item referenced in the Primitive. This means that
when a FIND or REMOVE Primitive is executed, the value of the
Item could be set to 0. This occurs under the following cir-
cumstances:

1. A REMOVE Primitive attempts to remove an entity from an
empty Queue.

2. A FIND Primitive accesses an empty Queue.

3. The NEXT or BEFORE Item in a Queue does not exist.

The form for Queue is:

OUEuE: 5 1 ZE:

where:

i QIEJE:: 1 to 8 character name of Queue

SIZE: an integer value of 1 to 8 digits, or the
word INFINITE

UESCRIPTiON: 0 to 53 character description

Relaticn3hips - Queues are used to hold Items and Resources.

nage 21

, , - I

Queues are manipulated by the FILE, FIND, and REMOVE Primitives.

' IPage 22

SYSTEM DEFINED STATES

3.5 SYSTEM DEFINED QUEUES

3.5.1 QUEUES ASSOCIATED WITH RESOURCES Associated with each
Resource are four system de-fiqned "states" upon which statistics
are kept during simulation time. The structures 4hich maintain
the Resource states are are called Resource queues because the
logic which manipulates these structures in the AISTM simulator
follows queueing rules. The queues are (1) the Resource idle
queue, (2) the Resource busy queue, (3) the Resource inactive
queue (4) and the wait queue. The first three of these queues
hold Resources and the fourth--the wait queue-- holds Processes.
Entities are placed on these queues during simulation as follows:

Resources are on the idle queue while they are unallocatee
but available to Processes. Resources are placed on the
idle queue (1) at the initialization of the simulation, (2)

from the inactive queue (by the RESET Primitive) or '3) from
the busy queue (by the DEALLOC Primitive).

Resources are placed on the busy queue while they are allo-
cated by some Process through the ALLOC Primitive. They may
be removed from the busy queue only by being deallocated
with the DEALLOC Primitive.

The inactive queue holds Resource units that are not avail-
able to be allocated by Processes. Resources may be placed
on this queue (1) at the initialization of the simulation
and (2) from the idle queue by means of the RESET Primitive.

The fourth queue associated with a Resource, the wait queue,
holds Processes that are suspended for lack of an available

unit of the needed Resource. A Process is placed on this
queue when either (1) it attempts to allocate the Resource
(with the ALLOC Primitive) that is held by another Process
of equal or "higher" priority or (2) another Process of
"higher" priority allocates the Resource it holds. (Priority
is inverse, priority 1 pre-empts priority 2.)

The relation between these queues is illustrated in the
accompanying figure.

During a simulation run statistics are kept on the activity
of these queues. These results are presented in the simula-
tion report.

Page 23

i, *
-r~i

Figure 2. Resource States

RESET (i ALLOC
NACTIV L IDLE 'USY

RESET H F)O

RESErC- + O

RESET(- H +LOOX

Page 24

.4 __-____________

-' -- -u[I :

RESOURCE

3.6 RESOURCE

The Resource entity is used to model the mechanisms required to
perform a Process. "Mechanisms" in this context can be computer
processors, memory, communications channels, support personnell,
documents ,etc.

Queuing for a Resource occurs only within a Process and, in par-
ticular, only where an ALLOC Primitive is used. In other words,
if no ALLOC Primitive is used there will be no queuing . If no
Resource is used (allocated) within a Process, the Process can be
executed in parallel (simultaneously) by any number of concurrent
requests and the model will represent only time delays associated
with the ACTION Primitive.

When a Resource is used (allocated) by a Process, there can be
only as many concurrent executions of the Process as there are
Resource units available. For example, if the capacity of a
Resource is one (1), then any Processes which allocate that
Resource will be executed serially (one at a time). Execution
concurrency is controlled only between the allocation and deallo-
cation of the Resource (i.e., if the ALLOC Primitive is the
second Primitive in a Process, the first Primitive can be exe-
cuted concurrently by any number of requests, whereas the second,
ALLOC Primitive can be executed concurrently by only as many
requests as the Resource has units available).

If a Resource has no units idle when an ALLOC Primitive is
attempted, the request to execute the Process is merged onto a
system structure associated with the Resource. How the request is
merged depends on the priority given to the Process that is
requesting the Resource. The request is merged and sorted by
inverse priority (priority 1 pre-empts priority 2). Within
priority the sorting is done first-in-first-out. When dealloca-
tion of the Resource (by some other Process) has resulted Jn
enough units to satisfy the requests , and the request has moved
to the top of the waiting requests queue, then the request is
removed from the queue, the allocation is performed, and the Pro-
cess is executed. Note that a deallocation of several units may
c Jlt in several requests being removed from the Queue simul-
taneously.

The Resource entity provides the most interesting and useful
imulation results; eg., delays, bottlenecks, utilization per-

2cr:.yes, and traffic statistics. Therefore, the use of Resources
should be carefully designed from both the standpoint of model
credibility and the specification of required simulation output.

The form for Resource is:

71age 25

4 .- --. ~------- a

NAME VALUE

*E:: CE NAME:

'3TAL NUMBER OF UjITS:

:NITiAL NUMBER OF UNITS:

ATTR!BUTES PRESENT (YES OR NO) m
:ZST:

:ESCRIPT:O:

where:

RESOURCE: 1 to 8 character name of Resource

TOTAL NUMBER: Maximum number of units of Resource that can
be allocated (integer or named Constant).

INITIAL NUMBER: Number of units available for allocation at
the start of the simulation (integer or named
Constant).

ATTRIBUTE PRESENT: Indicates whether defined attributes are
associated with this Resource.

COST: A default attribute to document the cost of

the Resource.

DESCRIPTION: 0 to 53 character description

ATTRIBUTE: 1 to 8 character name of user defined attri-
bute

VALUE: Initial value to be assigned to an attribute;
can be single precision real or integer
number, named Variable, named Constant, named
Process, named Item, named Resource or named
Queue.

Operation - Resources are initialized at beginning of simulation
to the values given above. The interaction of Resources with
Processes is dependent on the Primitives that effect them.

Relationships - Resources are used by Processes with the ALLOC,
DEALLOC, RESET, LOCK, UNLOCK, TEST, FILE, FIND and REMOVE Primi-
tives.

Page 26

, z l ---- - -- II - - - - I I ! II ... | -- , _

ACTION

3.7 ACTION

The Action entity represents any activity, decision, et cetera,
that consumes time. This entity functions in conjunction with
the ACTION Primitive. The Action entity of a given name is the
summary point for statistics generated by the Action primitives
with the same name. For this reason, each Action named in an

ACTION Primitive is given a separate definition outside the
Processes in which they appear.

In the form for this definition, the ACTION field contains a
designation identical with one that appears in a Process. The
field CLASS is optional and is intended as a means to document
what kind of activity is taking place or who/what is performing
the action (viz., man/machine). DESCRIPTION is used for any
mnemonic.

The form for the Action entity is:

LLASS I

:ESC IPTIDN:

where:

ACTION: 1 to 8 character name of action

CLASS: user defined class

DESCRIPTION: 0 to 53 character description

Rela.tionships -- Actions are used by the ACTION Primitive.

Page 27

I 'I I

PROCESS

3.8 PROCESS

The Process entity is used to represent the sequential logic and
activities, operations ,functions, et cetera, of the modeled sys-
tem. Processes are composed of Primitives, each of which
represents a step in the function being modeled by the Process.
It is at the Primitive level that Resources are allocated and
deallocated, time is consumed, decisions take place, etc.

In the graphic representation of a Process, the Primitives are
flanked at the top and bottom by figures labeled START and END.
These figures represent the logical entry and exit points for the
Process.

Processes are initiated by (1) Scenarios and Loads (within
Scenarios) and (2) by other Processes through the CALL and SEND
Primitives. Once initiated, the execution of the Process depends
on the availability of the Resources that the Process references
through the ALLOC and DEALLOC Primitives. The initial form for
Process is:

;oOCESS NAME MODE

ATTRIBUTES ATTACHED (YES OR NO) /
:;CESS DESCRIPTION

START BLOCK TYPE

ESrEW *PARM' FOR PARAMETER PiS[NC

E "ITEM" FOR ITEM PASSING
r-NtER *STO FOR STANDARD PROCESS

where:

NAME: 1 to 8 character name of Process

NODE: architecture node in which this Process is to
execute (if it's execution is restricted to a
specific node, ALL in this field indicates
Process may execute in any node)

TYPE: how the Process is to be initiated (STD,
ITEM, PARM)

Page 28

. .. . - - - - -I-- -I

DESCRIPTION: 1 to 53 alphanumeric character description
used with the Process name in generating the
Process report

The three types of Processes (Item,PARM,STD) correspond to the
three methods by which they can be triggered: (1) Iter' passing,
(2) parameter passing and (3) standard.

An Item passing Process is one that is triggered by having Items
delivered to it from another Process through the SEND Primitive.
The graphic representation of an Item-passing Process will have a
parallelogram to the left of the Start figure which will be
labeled "Receive" and will contain the names of up to six Items
required by the Process in order to execute. The required Items
need not be delivered from a single Process; the sending
Processes may be as many as six, but the Process will not execute
until all of the Items indicated in the definition (and in the
Receive figure) are delivered.

To define an Item passing Process the user enters "Item" in the
form originally offered in the PEI. The user will then be
presented with this form,

ITEM PASSING START

ITEMS RECEIVED:

MUST ALL THE ITEM SERIAL NUMBERS MATCH (Y/N)

on which the needed Items are listed. The Items received by each
must be of distinct types.

The field concerning the matching of serial numbers asks whether
the TAIL numbers (which is a default attribute of every Item)
must be the same for all the Items in the Process. If the user
enters "Yes" in this field, the Process will nit execute until it
has received Items of the specified type to which the same TAIL
number attribute has been assigned.

At Uameter pafsing Process is one that takes values of local
variables from another Process as inputs and/or returns the
values of local variables to another Process as outputs. Such
P- cesses can be triqgered only by a CALL Primitive and it is the
m:illing Process which sets up the relation for the values given
and returned. (see CALL Primitive).

Page 20

-- - -. .-- _ _ _ _ _ _ _ -- |

Such a Process is created by entering "PARM" in the form origi-
nally offered to the user. The secondary form is,

PARAMETER PASSING START

GIVEN:M:;m
RETURN:

on which one writes the names of the local variables to be Given
and Returned to any Process that calls it through the CALL Primi-
tive. A parameter passing Process must have all the values in
the local variables in this form to execute. If the CALL Primi-
tive does not give or return all the necessary values, an execu-
tion error will occur indicating a disagreement.

A standard Process is one which neither requires Items nor is
given (or returns) values of local variables. It can be trig-
gered either by a CALL Primitive from another Process or through
Scenarios and Loads. Since no imputs are relevant to its execu-
tion, there is no secondary form for the definition of a standard
Process.

In the accompanying figure is a typical flow-chart representation
of a Process. This graphical representation of the logic of a
Process is presented to the user during the design of an AISIM
model.

Relationships - Processes are constructed from Primitives.
Resources are used by the Process through the ALLOC, DEALLOC,
RESET, LOCK, UNLOCK, and TEST Primitives. Processes are initiated
by Loads, Scenarios and other Processes through the CALL and SEND
Primitives.

Page 30

| -.I - - - _ _ __ _ _ _ _-

Figure 3. Flow Chart Representation of a Process

tRAMNMIyTTJN MESSAGE'C RECL!vER

82 PLLOC
A 'LLOCATE DtUFl BU

/MRDC MSG PITO v',TEM

ALPHA R#ANDOMq

ALPHA 'MULTIPLYI
ALPHA
;p9 A
T TWICE AVERAGE TIMES AL.PHA

0b: IS ASSI;MED '0

FR1 -MULflPLY!

CLH ALCU1~r TRANSMqIT TIRE

SE(D!HL -

'~0u~F,~2H 1P9ECOSUHMfl TR0A ITrT!N

:01-PHA
[. .11II9&D

MS; LENG~TH I ET RESAfLE FlITM

1017 LA

Page 31

PRIMITIVES

3.9 PRIMITIVES

Primitives are the constituent elements of Processes and are
used to characterize procedural steps by sequential logic.
AISIM offers a list of 25 Primitives . Although limitted in
number the Primitive have been shown to represent all logical
operations for computer system modelling. The Primitives can be

grouped into nine functional categories. These categories are:

Process Execution Control

CALL
SEND
SUSPEND
RESUME
WAIT

These Primitives control the initiation and sequencing of

Processes.

Branch Control

COMPARE
BRANCH
ENTRY
PROB
LOOP

These Primitives govern the internal branching in the logic of a
Process.

item Handling

CREATE
DESTROY

These :wo Primitives govern the introduction and elimination of a
system's transient data elements.

Time Consumption

ACTION

This Primitive represents the consumr~ion of time through some
activity, decision, et cetera.

Mathematical Operations

EVA L

Page 32

This Primitive governs calculations, invoKinO stAndard mathemati-

-al functions and operations or user-defined Table!.

Resource Allocation

ALLOC
DEALLOC
RESET
TEST
LOCK
UNLOCK

These Primitives govern the use of Rerces

Qdeue Manipulation

FILE
FIND
REMOVE

These Primitives govern storage and retrieval on Queues.

variable Assignment

ASSIGN

Tnis Primitive governs the assignment of values to variables
oth' numerical and non-numerical)

De -u' _n

TRACE

Tn ! Primitive -as the special function of creating a record
She sequence of Process Primitive executions which takes place

;irin sm'Jiatior. it is used for debugging and validating a

),wi q is i description of the meaning of each Primitive andi
,. ira et ,rs iecess,:ry to define it.

Page 33

J .
I. , ,*1

PRIMITIVES / ACTION

3.9.1 ACTION The ACTION Primitive indicates the performance of
an action that consumes time. The action Primitive is used to
model the time (in terms of mean, plus or minus delta) to perform
some real work event such as a man's activity or a machine's
activity. The variation in time is accomplished by inputting a
random number into a distribution function. The distribution
function can be changed by designating the desired function in
the METHOD field. The choices for the parameter are described in
greater detail in the section on the Load entity.

The form for ACTION is:

PARAETER FOR ACTION:

ACTION NANE: METHOD:

mEAN TIME: DELTA-TIRE:

COMMENT:

where:

ACTION NAME: A reference to a defined Action entity

METHOD: Distribution function type, which may be:
CONSTANT, EXPONENT, LOGNORML, NORMAL, UNI-
FORM, GAMMA, ERLANG or WEIBULL. (The random
number seed used for statistical functions
can be controlled by the user in the AUI.)

MEAN TIME: Must be used to specify average duration
timep of Action. This parameter varies in
meaning depending on the METHOD selected
In general, the Action duration times will
average to the value specified.

DELTA TIME: Depending upon METHOD, this is used to
determine Action duration rates. This
parameter varies in meaning depending on the
METHOD selected. In general, it is the devia-
tion parameter for the statistical function
and must be specified for all METHODS except
CONSTANT.

Page 34

4 _ _ _ _ _ _

l - - -- , I - a "4 1

PRIMITIVES / ALLOC

3.9.2 ALLOC The ALLOC Primitive indicates the allocation of
(request to use) one Resources which is needed by the Process.
ALLOC is used to model the need for a Resource in order to con-
tinue some operation. Whether a Resource requested by the ALLOC
Primltive is actually obtained by a Process depends on a number
cf conditions. If a Resource unit is in the idle state it is
available to be allocated to the requesting Process. If none is
ille then allocated resources are checked to see if a process can
be pre-empted by priority (priority is inverse - priority I pre-
empts priority 2) unless the Resource is protected with a LOCK
Qrimitive.

"he form for the ALLOC Primitive is:

PAPAMETERS FOR ALLOCATE:

ALLOCATE RESOURCE NAE: I
CCMMC!4T:

where,

RESOURCE NAME: A reference to a Resource

COMMENT: Anv user comment.

Page 35

4......- I I'I ICi

PRIMITIVES / ASSIGN

3.9.3 ASSIGN The ASSIGN Primitive is used to set the value of
tie following references (V2 and Q2 parameters):

1. a global Variable

2. a local variable (to the executing Process)

3. the attribute of an Item (which has arrived at the
Process)

4. the attribute of a Resource

5. $CNODE

6. the attribute of a Process

Values that can be accessed for the assignment (Vl and Ql
parameters) are:

I. signed, single precision, real or integer numbers

2. $CLOCK

3. global Variables or Constants

4. local variables

5. Resources with any of the qualifiers NWAITQ, NBUSYQ,
NINACTQ or NIDLEQ

6. Item attribute values

7. Queue attribute values

8. Resource attribute values

9. Process attribute values

10. an Item name

I. a Resource name

i2. a Process name

13. a Queue name

14. a Table name

i5. an Action name

Page 36

- | ! --..- '

16. $NODE

17. $NXTNODE

18. $LINK

19. $TASK

20. an alpha literal (first character is $)

The form for ASSIGN is:

PARAMETERS FOR ASSIGH

VI: 01: i

To

V2: 02:

COMMENT:

where the entries may be any meaningful permutation and combina-

tion of the entries listed above. Some typical ones are:

VI: Item VI: Item VI: Variable
Qi: attribute Qi: attribute Q1:
V2: Item V2: Variable V2: Item
Q2: attribute Q2: Q2: attribute

VI: Variable VI: Constant Vl: Constant
QI: Q1: Q1:
V2: Variable V2: Item V2: Variable
Q2: Q2: attribute Q2:

COMMENT: Any user comment.

Page 37

__ __ _ __ "_ _ i

PRIMITIVES / BRANCH

3.9.4 BRANCH The BRANCH Primitive indicates an unconditional

branch to a named entry point. It is used for Process execution
sequence control.

The form for BRANCH is:

PAR*fETERS FOR BRANCH:

BRANCHq TO LABEL:

COMMENT:

where:

LABEL: The entry point to which the Process execu-
tion is to go (which is represented by an

ENTRY Primitive).

COMMENT: Any user comment.

Page 38

PRIMITIVES / CALL

3.9.5 CALL The CALL Primitive indicates a call to another named
Process and is the method by which one Process requests another
Process to execute.

A CALL has one of three options (1) WAIT, (2) NOWAIT and (3)
BLOCK. If a Process is called with the option WAIT, the calling
Process will suspend execution until the called Process is com-
pleted. If a Process is called with the NOWAIT option, both
called and calling Processes will execute simultaneously and will
have no further communication. If a Process is called with the
Block option the two Processes will execute in parallel until a
WAIT is reached in the execution of the calling Process. When
the WAIT Primitive is reached the calling Process suspends execu-
tion until the called Process completes itself. The principal
purpose of the BLOCK option is to allow the calling of several
different Processes, all of which must be completed before the
calling Process will continue. If several Processes are called
with the BLOCK parameter, the calling Process will suspend at the
WAIT Primitive--whose presence somewhere below such a CALL Primi-
tive is obligatory-- until all of them have completed execution.

Two of the three kinds of Processes can be triggered via the CALL
Primitive, parameter passing Processes and standard Processes.
In triggering a parameter passing Process with a CALL Primitive,
values of local variables are given to the called Process and/or
values of local variables are returned to the calling Process.
Parameter passing Processes with return parameters can be called
only with the WAIT option. Standard Processes, which neither
give nor return information may be called with any of the three
options WAIT, NOWAIT and BLOCK.

The CALL also requires that a priority (zero being highest) be
established for the called Proces:; this priority is used by the
called Process when competing with other Processes for available

* Resources (through the ALLOC Primitive).

The form for the CALL Primitive is:

Page 39

4 _-__ __

'I

PARAMETERS FOR CALL

CALLED-PROCESS MARE:

WAIT/MOWAIT/IBLOCK' PRIORITY:

GIVEN:

RETURNS:

COMMENT:

where:

CALLED-PROCESS NAME: The Process to be triggered.

WAIT/NOWAIT/BLOCK: Explained above.

PRIORITY: The prioritiy associated with the triggering.

GIVEN: Up to six local variables, literals or key-
words whose values are to be communicated to
the called Process.

RETURN: Up to six local variables, literals or key-
words whose values are to be returned to the
calling Process.

COMMENT: User defined comment

Page 40

__ _ _ _ __ _ _ _

i~~~~~~ .. . ,m 4--

PRIMITIVES / COMPARE

3.9.6 COMPARE The COMPARE Primitive is used to model decisions
based on user-controlled Variables. The COMPARE performs the fol-
lowing operation:

IF P IS TRUE, THEN GO TO A

where:

"A" is an ENTRY label which is branched to if P is true.

"P" is a predicate which can be TRUE or FALSE. It consists of a
phrase,

X1 OP X2

X1,X2 can be (1) signed, single precision, real or
integer numbers,

(2) global Variables or Constants,
(3) local variables
(4) Resources with either NWAITQ,

NBUSYQ, NINACTQ or NIDLEQ attributes
(which cannot be modified by the
user)

(5) $CLOCK
(6) a value specified by an Item name and

attribute

(7) a value specified by a Resource name
and attribute

(8) a value specified by a Process name
and attribute

(9) an Item name

(10) a Resource name
(11) a Process name
(12) a Queue name
(13) a Table name
(14) an Action name
(15) $NODE

(16) $NXTNODE
(17) SLINK
(18) $TASK
(19) $CNODE
(20) an alpha literal (first character is $)
(21) a Queue with either NQUEUE or TQUEUE

as an attribute (which cannot be modified
by the user)

"OP" is one of the following operators: EQ, NE, GE, GT, LE, LT,
(i.e., "equal to," "not equal to," "greater than or equal to,"
"greater than," "less than or equal to," and "less than," respec-
tively).

Page 41

: |-

Operation - "Xl" is compared to "X2" using real, single precision
arithmetic. If the comparison results in the same relation as
"OP", then NP" is set TRUE and a branch is made to label "a";
otherwise, no branch is made (the next Process Primitive is exe-
cuted).

The form for COMPARE is:

PAPAMETERS FOR COIMPARE

!F OPERAND :I QUALIFIER 1:I

RELATIONS4

OPERAND 2: I QUALIFIER 2: I

BRANCH TO:

COMPENT:I

where the parameters are filled in as indicated above.

Page 42

.4 ""_ _I , I "-

PRIMITIVES / CREATE

3.9.7 CREATE The CRE TE Primitive is used to create Items (note
the SEND Primitive can also create Items as part of its func-
tion). Each Item created is attached to the Process. Two Items of
the same name cannot exist in a Process at the same time. Item
definitions are specified in the DUI.

The form for CREATE is:

0AR4JETERS FDR CREATE

1TEMS TO BE CREATED ARE:

C:MNT:

where:

ITEMS: references to distinct Item types, instances
of which are to be created

COMMENT: Any user ccmment.

Page 43

PRIMITIVES / DEALLOC

3.9.8 DEALLOC The DEALLOC Primitive indicates the release of

previously allocated Resources. It is used to represent the
release of a Resource upon completion of a job.

The form for DEALLOC is:

PARAMETERS FOR DEALLOCATE:

DEALLOCATE RESOURCE NAME:

COMMENT:

where:

RESOURCE NAME: A reference to the Resource to be released.

COMMENT: Any user comment.

P
Page 44

_____ _____
'" -.... '' - l i I I I 1

PRIMITIVES / DESTROY

3.9.9 DESTROY The DESTROY Primitive is used to eliminate Items
from the system. When an Item is destroyed, statistics on its
time in the system are tabulated for the end run report.

The form for DESTROY is:

PARWErERS FOR DESTROY

rlE TO BE DESTROYED ARE:

- -mn-mm
C 'MENT:

where:

ITEMS: References to distinct Item types, instances
of which are to be destroyed

COMMENT: Any user comment.

Page 45

PRIMITIVES / ENTRY

3.9.10 ENTRY The ENTRY Primitive is used to define entry points
from the branching Primitives, BRANCH, PROB, COMPARE, TEST and
LOOP.

The form for ENTRY is:

PARANETERS FOR ENTRY:

ENTRY LABEL:

COWNET:

where:

ENTRY LABEL: The name of the entry point used by the
branching Primitive(s) which transfer control
to it.

COMMENT: Any user comment.

Page 46

PRIMITIVES / EVAL

3.9.11 EVAL The EVAL Primitive is used to perform simple arith-
metic funions within a Process so that model logic and timing
can be a function of Variables rather than a constant. EVAL
operates in the following manner:

X = f(a,b)

where:

X is any Variable that is changed to the value f(a,b)

"a" and "b" are arguments that can be

1. signed, single precision, real, or integer number, or

2. named Variable or Constant, or

3. named local variable, or

4. $CLOCK (simulation clock value)

where f is one of 27 functions below. All calculations are car-
ried out in a single precision, real arithmetic.

FUNCTION NAME RESULT

1. ADD a+b
2. SUBTRACT a-b

3. MULTIPLY a*b
4. DIVIDE a/b
5. ABSOLUTE jal

6. INTEGER returns the integer part of a number
7. POWER a**b
8. COSINE cos(a) (a in radians)
9. SINE sin(a) (a in radians)

10. TANGENT sin(a)/cos(a) (a in radians)
11. SQRT sqrt(lal)
12. RANDOM random fraction (random number between

0 and 1.0)
13. ARCOSINE arcosine(a) (in radians)
14. ARCSINE arcsine(a) (in radians)
15. ARCTAN arctangent(a/b) (in radians)
16. BETA random sample of the beta

function with

a = power of x; b = power of l-x
17. BINOMIAL random sample of the binomial

function with
a = number of trials
b = probability of success

18. ERLANG random sample of erlang
function with
a = mean

j Page 47

b = k (integer order of function)
19. EXPONENT random sample of exponential

function with
a = mean

20. GAMMA random sample of gamma
function with
a = mean

b=k
21. LOGE natural logarithm of a
22. LOGNORMAL ranlom sample of log-normal

function with
a = mean
b = standard deviation

23. LOG10 common logarithm of a
24. NORMAL random sample of normal

function with
a = mean
b = standard deviation

25. POISSON random sample of poisson
function with

a = mean number
26. UNIFORM random sample of a uniform

function with
a = mean

b = delta
27. WEIBULL random sample of the weibull

function with
a = scale parameter

b = shape p,-rameter

In addition to these functions the user modeller may define his
own functions through the Table entity. A Table is accessed
with the EVAL Primitive. A reference to the Table is used as the
EVAL function name.

The form for EVAL is:

PARAPKTERS FOR EVALUATE

SET VAIIAULE: FUCTIOM:

OPERAHDI : OPERAHD2:

COMiENT:

where:

VARIABLE: The Variable whose value is to be set.

Page 48

41t
j 4 - -1

FUNCTION: The operation used to calculate the value of
the Variable.

OPERANDl: The first operand in the calculation of the
new Variable ("a" parameter). This may be
blank, depending on the function.

OPERAND2: The second operand in the calculation of the
new Variable ("b" parameter). This may be
blank, depending on the function.

COMMENT: Any user comment

Page 49

I ,I
L t .---- d 7 ...

PRIMITIVES / FILE

3.9.12 FILE The FILE Primitive is used to place an Item on a
user-defined Queue . It also is used to place a Resource on an
idle-queue or Resource idle queue.

The effect of filing an Item on a user-defined Queue is to keep
it in storage after the Process from which it is filed has
ceased execution.

The effect of filing a Resource unit on the Resource idle-Queue
is to make it accessible to any Process that requests it through
the ALLOC Primitive. The effe-t of filing a Resource on a user-
defined Queue is to make it accessible to another Process that
wishes to take from the user-defined Queue and return it to the
idle-Queue where it will be subject to allocation.

The form for FILE is:

PARAMETERS FOR FILE:

FILE ITEM NU(: OPTION - ON OWUEE

CMEMT:

where:

OPTION: The location in the Queue at which the entity
is to be filed relative to the queue pointer.
The following can be used

FIRST - The entity is placed first and the
queue pointer is set to it.

LAST - Tht entity placed last and the
queu pointer is set to it.

NEXT - ThE entity is placed after the
curr, nt entity in the Queue and the
queut pointer is set to it.

BEFORE - Thf entity is placed before the
currfnt entity in the Queue and the
queuf pointer is set to it.

NAME: The name of the Item or Resource unit to be
filed

QUEUE: The Queue on which the Item or Resource unit
is to be filed. If the Resource idle-Queue
is intended this field is entered with the
name of the Resource to be filed.

Page 50

.. i , , - - i ,, I I I - ,

COMMENT: Any user comment.

P

Page 51

.. il II | m ! . a | i | il i i _

PRIMITIVES / FIND

3.9.13 FIND The FIND Primitive is used to set the queue pointer
on a user-defined Queue, a cross-reference set or a Resource
idle-Queue, and to assign to a variable a "locator" pointer to a
current position in the Queue. The rules governing queue
pointers are covered above in the section on Queues.

The form for FIND is:

PARAMETERS FOR FIND:

.S OPTION: ITEM NAME: ON QUEUE:

COMMENT:

wne r e:

NAME: The local variable which will refer to the
Item, Resource or member of a cross-reference
set.

OPTION: The location of the Item, Resource or member
of the cross-reference set to be assigned to
the variable relative to the present queue
pointer.

QUEUE: The name of the Queue, Resource idle-Queue or
cross-reference set that is to be traversed.
If the Resource idle-Queue is intended, the
name of the Resource is entered. If the
cross-reference set is intended the entity
type whose cross-reference set is to be
traversed is entered.

COMMENT: Any user comment

The effect of locating an element with the find Primitive is (1)
to set the queue pointer to the beginning or end of the ordered
holding area (i.e., FIRST or LAST) or relative to the previous
location of the queue pointer (i.e., NEXT or BEFORE), and (2) to
assign the local variable to the element in the position then
indicated.

Page 52

_4 _ _ ----,..--- .---.-

PRIMITIVES / LOCK

3.9.14 LOCK The LOCK Primitive prevents a Process from being
suspended by losing Resources to a "higher" priority Process
(priority is inverse , priority 1 pre-empts priority 2). LOCK is
used to represent uninterruptable work. If LOCK is not used, Pro-
cess execution can be suspended bj a higher priority Process.
When a Process loses any one of tie Resources it has allocated it
stops execution and is placed on a system-defined Queue (the wait
queue) until the Resource is agaii available. The LOCK Primitive
overrides this suspension.

The form for LOCK is:

PARAMETERS FOR LOCK:

where:

COMMENT: Any user comment.

P
Page 53

PRIMITIVES / LOOP

3.9.15 LOOP The LOOP Primitive causes a branch to a named entry
point a specified number of times.

The form for LOOP is:

PARAMTEIS FOR LOOP:

LOOP TO LABEL:

LOOP TIMES

COMMENT:

where:

LABEL: The name of the ENTRY label (defined by an

ENTRY Primitive) to which execution is to
branch.

LOOP: Indicates the number of times the branching
is to be repeated.

COMMENT: Any user comment.

Page 54

! i ,'

I

PRIMITIVES / PROS

3.9.16 PROB The PROB Primitive is used to model stochastic
decision making. It indicates a probabilistic branch to a named
entry point. (Random number selection for the probabilistic
branch can be controlled by the use of the edit stream command in
the AUI. Ten different branch stfeams are available.)

The form for PROB is:

PARAMETERS FOI PROBABILISTIC BRANCH:

BRANCH TO LAKU m

PROBABILITY OF BRANCH:

CMqENT:

where:

LABEL: The ENTRY label to which the branching is to
take place.

PROBABILITY: The probability with which the branching is
take place, expressed in (integer) percen-
tages.

COMMENT: Any user comment.

P
i Page 55

PRIMITIVES / REMOVE

3.9.17 REMOVE The REMOVE Primitive is used to remove an Item or
Resource unit from a user-defined Queue or a Resource unit from
the Resource idle-Queue.

The effect of removing an Item or Resource unit is to make it
inaccessable to other Processes until it has been placed on
another Queue (through the FILE Primitive) or--in the case of
Items--delivered to another Processes through the SEND Primitive.

The form for REMOVE is:

PARAMETERS FOR REMOVE:

REMOVE OPTION: ITEM U E: FROM QUEUE:

COMENT:

where:

OPTION: The location in the Queue for the queue
pointer after the primitive is executed. The
option can be one of the following:

FIRST - The first entity is removed and the
queue pointer is set to the new first
element.

LAST - The last entity is removed and the
queue pointer is set to the new last
element.

NEXT - The current entity in the Queue is
removed and the queue pointer is set
to the succeeding element to it in
the Queue.

BEFORE - The current entity in the Queue is
removed and the queue pointer is set
to the preceeding element to it in
the Queue.

NAME: A local variable that will refer to the Item
or Resource unit removed.

QUEUE: The Queue from which the Item or Resource
unit is to be removed. If the Resource
idle-Queue is intended the name of the
Resource is entered.

Page 56

COMMENT: Any user comment.

Page 57

PRIMITIVES / RESET

3.9.18 RESET The RESET Primitive redefines the number of avail-
able units of a named Resource to plus or minus the indicated
value. It is used to represent the increase or decrease of the
available number of Resources.

The form for RESET is:

PARAMETERS FOR RESET:

RESOURCE NA :

RESET TO AVAILABLE UNITS

COMMIENT:

where:

RESOURCE: A reference to a Resource whose available

units are increasing or decreasing.

RESET TO: The number of units to be added to or sub-

tracted from those presently available.

COMMENT: Any user comment.

Page 58

i, '
- -C ____ _____ ---i i

PRIMITIVES / RESUME

3.9.19 RESUME The RESUME Primitive is used to control explicitly the
resumption of a Process which has been suspended throuQh the SUSPEND
Primitive. The RESUME causes the reallocation of Resources to the
Process.

The form for RESUME is: RESUME PROCESS REUERENCED BY

COMM ENT :

where the fields VI and Qi constitute a reference to the task that is
beqin resumed and the COMMENT field has any user comment.

Pe

PRIMITIVE / SEND

3.9.20 SEND The SEND Primitive is used to send up to six Items
to an Item passing Process. If an Item to be sent is not
currently attached to the sending Process, it is automatically
created. When the Items are sent, the receiving Process deter-
mines whether all the Items required by its definition have been
sent. If they have, the Process then initiates; if not, it will
wait until all ef the necessary Items have been sent before exe-
cuting.

The form for SEND is:

PA METERS FOR SEND

SEND ITINS TO

[TENS TO BE SENT ARE:

CcO'PENT:

whe re:

SEND: A reference to the Process to which Items are

to be sent.

ITEMS: References to up to six Item types, instances
of which are to be sent.

COMMENT: Any user comment.

* Page 60

Iowa

PRIMITIVES / SUSPEND

3.9.21 SUSPEND The SUSPEND Primitive is used to suspend the
Process in which it appears. A Process that suspend itself with
this Primitive may only be resumed by another Process which uses
the RESUME Primitive. Since the resume Primitive must be able to
refer to the task instant to be resumed, the suspending Process
instance must save a reference to itself for later access by a
RESUME Primitive. This reference will be the value of the $TASK
keyword. The SUSPEND Primitive causes the deallocation of the
Resource corresponding to the current Node ($CNODE).

The form for suspend is:

PARAMETERS FOR SUSPENDs

C13"KNT:

where:

COMMENT Any user comment.

P

Page 61

I '

PRIMITIVES / TEST

3.9.22 TEST The TEST Primitive indicates a branch to a named

ENTRY Pr~iitive if a Resource or Queue is not available. It is

used to model decision making based on the availability of needed
Resources or Queues.

The form for TEST is:

PARAMETERS FOR TEST:

RESOURCE MANE:

BRANCH TO LABEL IF NOT AVAILABLE

COIMENT:

where:

NAME: A reference to the Resource or Queue being
tested for availability.

BRANCH: The name of the ENTRY Primitive to which exe-
cution is to branch if the Queue or Resource
is not available.

COMMENT: Any user comment.

Page 62

t ____ _____

.-. r , - I i

PRIMITIVES / TRACE

3.9.23 TRACE The TRACE Primitive starts a debugging mechanism
that is usef-ul for analyzing the dynamics of an AISIM model. The
effect of the TRACE Primitive is to create a file that records
every execution of the following Primitives:

1. Start

2. CALL

3. ALLOC

4. DEALLOC

5. End

6. RESUME

7. RESET

8. SUSPEND

9. TRACE (on or off)

These Primitives are traced because they introduce major changes
in the state of the system into a simulation run.

When the TRACE Primitive is operating every instance of these

Primitives in every Process is recorded either for the remainder
of the simulation or until TRACE is turned off. The trace line
writes out the simulation clock time, the Node in which the Prim-

itive is executed, and the Process executing the Primitive. The
format for a trace line is the following:

T = clock time N = node name P = Process name Primitive parameter

The form for the TRACE Primitive is,

PAIARETERS FOR TRACE:

P1 W P2 P3
P4 PS P

C"ENT

but only the first field (Pl in the upper left) is used. To

Page 63
I

enable the TRACE one enters "ON" in that field; to disable it one
enters "OFF".

Page 64'I
II = '=n - C -.. -

II
II-u,- nm -. . -- - - i-

PRIqITIVES / WAIT

3.9.24 WAIT The WAIT Primitive used in conjunction with the
CALL PriiiT-- ve when the BLOCK option is used. The WAIT Primitive
indicates that this Process is to be suspended until all
Processes that began as a result of a CALL with the BLOCK
parameter have completed and returned control to that Process. It
is generally used to model phenomena such as assembly points,
executive schedulers, and other events in which progress cannot
continue until several parallel activities are completed.
Resources currently in possession of the calling Process are not
deallocated.

The form for WAIT is:

PARAMETERS FOR WAIT:

COMMENT:

where:

COMMENT Any user comment.

Pe
i Page 65

PRIMITIVES / UNLOCK

3.9.25 UNLOCK The UNLOCK Primitive cancels the effect of a pre-
viously executed LOCK Primitive. It is used to represent the con-
clusion of the uninterruptable phase of a Process.

The form for UNLOCK is:

PAARAETERS FOR UNLOCK:

CWT:

where:

COMMENT: Any user comment.

Page 66

-. - E -

3.30 LEGAL PATH TABLE - NODE - LINK

The Legal Path Table (LPT) entity is the means by which the user
can model physical communication paths between Resources. Typi-
cally, this is referred to as inter-node communication. When the
LPT is not used, the communication mechanisms are implicit in the
Process logic and do not usually have explicit Resources that
cause communication queueing and transfer delays.

Two other model elements need to be discussed as part of the LPT
entity; these are nodes and links. Nodes represent the points in
an architecture where processing occurs. Links are the communi-
cation paths between nodes. Each node and link is actually a
model Resource -- the name of the Resource being the name of the
node or link. Full duplex links (denoted by ".F" after the link
name) are two Resources. One will be named the name of the link
with ".A" appended to it and the other a ".B0.

The LPT consists of a four part list that specifies the FROM
node, a TO node, a NEXT node, and a link. An example of Legal
Path Table Entries is given in the accompanying figure.

I ROM TO NEXT VIA
.ODE NODE NODE LINK

- C C Ci

3 C C C2
C A A C1
C 3 C t2
C D C3
D C C C4
D E E C6

F r CS

D 0 (6E G G (a
F D D CS

F C C C7
E E a8C C F C7

C r C9

G I I CIO
N G C C9
I C G Cto

Figure 4. Sample Legal Path Table Entries

The headings indicate that to move from the FROM node to the TO
node one must first go to the NEXT node via the link.

The LPT is a passive entity in that it does not contribute
directly to the simulation statistics but, instead, is simply a
table of values used by a model to effect data flow through a
system. It is only changed through the Architecture Design Edi-
tor and therefore remains constant for any specific simulation
run. Processes reference the LPT through the ASSIGN Primitive
using $CNODE (current node), $NXTNODE (next node as specified in

Page 67

. ,, ,,, l1

LPT), and SLINK (the Link for the transfer) keywords.

Operation - Every Process in AISIM is assumed to be executing in
a specific node. Using the LPT through the keywords and the
ASSIGN Primitive, a Process can locate itself in the network and
reference other nodes. The referencing is done symbolically so
that a Process can do this when executing. This allows AISIM to
model different architectures without changing the model
Processes.

Relationships - Associated with each entry in the LPT is a
Resource. Each symbol in an architecture is represented in one
or more entries in the LPT. The LPT is referenced by the ASSIGN
and COMPARE Primitives using keywords.

i , i Page 6d

* '
- --

TABLES

3.11 TABLES

Tables are user definable functions with 1 to 15 entries. Each
entry consists of an X-VALUE and a Y-VALUE. The following may be
used for these parameter values: (1) both numeric, (2) one
numeric and the other alphanumeric or (3) both alphanumeric.

Tables are accessed by using the EVAL Primitive. The EVAL FUNC-
TION parameter is the name of the desired Table. Operand 1 is
the X-VALUE. Operand 2 is not used. The SET VARIABLE will be
set to the Y-VALUE which maps from the X-VALUE.

3.11.1 DISCRETE TABLES If the Table accessed is discrete (TYPE
is D), the Table entry's X-VALUE must be numeric, and the X-
VALUE entries must be in increasing order. The Y-VALUE extracted
from the Table is that vlaue that is associated with the X-VALUE
that is equal to or less than the X-VALUE given in OPERAND 1.
For example, if an X-VALUE of 3.5 is given in OPERAND 1 and the
nearest X-VALUES in the Table are 3 and 4, the Y-VALUE associated
with the X-VALUE of 3 will be extracted and placed in the given
SET VARIABLE name. If OPERAND 1 is less than the smallest X-
VALUE, the value returned is the Y-VALUE associated with the
largest X-VALUE.

3.11.2 CONTINUOUS TABLES If the Table accessed is continuous
(TYPE is C), all X-VALUE and Y-VALUE entries must be numeric. The
SET VARIABLE of EVAL is set by the following rules

a. the Y-VALUE associated with the X-VALUE that equals OPERAND
1, or

b. the interpolation of the Y-VALUE associated with the X-VALUE
which is less than OPERAND 1 and the X-VALUE greater-than
OPERAND 1, or

c. the Y-VALUE associated with the largest X-VALUE, if no
interpolation is possible.

3.11.3 ALPHANUMERIC TABLES If the Table is defined as
alphanumeric (TYPE is A), one or both X-VALUE and Y-VALUE for
each entry must be a name of a model entity. The SET VARIABLE is
set to the Y-VALUE corresponding to the X-VALUE.

If OPERAND 1 in the EVAL Primitive does not correspond to an X-
VALUE in the Table referenced, an execution error message will be
printed in the analyze report and the value of the SET VARIABLE
will remain unchanged.

The form for Table is:

Page 69

4"1a--

TYPE:3

I VALUE Y VALUE

NAME: 1 to 8 character name of table

TYPE: C - continuous, D - discrete or A -

alphanumeric.

X VALUE: x-axis value

Y VALUE: y-axis value

COMMENT: 0 to 53 charact:er description

Relationships - Tables are made up of Table Entries. Tables are
used by the EVAL Primitives. Entries consist of an X-VALUE and a
Y-VALUE. The values for these may be numeric, alpha literals, or
the names of model entities Constants, Variables, Items, Queues,
Processes, Resources, or Tables.

t Page 70

ATTRIBUTES

3.12 ATTRIBUTES

Certain AISIM constructs have associated attributes which can
take as values, (1) numerics, (2) alpha literals or (3) entity
names. Attributes of entities can be referenced by Processes.
Some attributes are user defined. Others are dynamic attributes
which are recognized and modified by the AIS TM simulator.

The values of attributes may be accessed by a Process with the
ASSIGN and COMPARE Primitives. The forms for both of these Prim-
itives uses two fields to indicate the value accessed. The first
field contains the name of the entity and the second the name of
an attribute associated with it.

Three AISIM entities, Processes, Resources and Items, may have
attributes specified by the user. These attributes allow the
modeler to define a unique set of characteristics for certain
entities. An example is a channel. Channels have a physical
attribute of maximum transfer rate. This characteristic is
assigned to the AISIM Resource by specifying an attribute of RATE
for the channel Resource.

Simulation experience has shown that some logic in a system is
dependent on the system's dynamics. That is, some activity is
dependent on queue lengths or the number of busy Resources.
Since this phenomenon is fairly common, AISIM has embedded
features to model this. The following attributes are built into
the AISIM simulator for each instance of an entity:

Entity Attribute Description

Resource NIDLEQ the number of units of the Resource
which are in an idle state

NBUSYQ the number of units of the Resource
which are in a busy state

NINACTQ the number of units of the Resource
which are in an inactive state

NWAITQ the number of Processes executing
which are waiting for a Resource unit
to be deallocated

Item TAIL the sequential creation number of the
Item

PRIORITY the priority of the Item

Page 714 _ _ __ _ _

4,i

--- C - -- - ---- I

Queue NQUEUE the number in the Queue

TINQUE the average time entities are
in the Queue

Relationships - Attributes may be accessed with tie ASSIGN and
COMPARE Primitives.

I
Page 72

-- - -- - I il -- - II I- - -

CONSTANTS AND VARIABLES

3.13 CONSTANTS AND GLOBAL VARIABIES

Constants and Variables are entit es used to define global
parameters of a model, that is, vilues which may be accessed by
all Processes. There is an implicit caution which must be used
when using these entities. Because AISIM simulates multi-

processing, global parameters can be accessed "concurrently" by
more than one Process. This can cause some anomalies because of
"race" conditions when two Processe modify a global Variable

simultaneously.

A Constant is given a numeric value before a model starts a simu-
lation. The value must be numeric and can not be changed by the
simulation. A Variable may be set to (1) an alphaliteral, (2)
the value of a keyword, or (3) to any other AISIM entity that may
be accessed by the EVAL and ASSIGN Primitives. A Variable's
value may vary throughout the simulation.

The initial values of both Constants and Variables are set in the
design portion of AISIM. The value of both entities may also be
set before the simulation is started in the analysis function.

While the value of a Constant may not be changed during the simu-
lation, the initial value of a Variable may be changed by the
user (between periods or at break points) or by the model itself
(by use of the ASSIGN and EVAL Primitives).

Constants and Variables may be used in place of a numeric value
anywhere a numeric value is required with the following excep-
tions:

1. The number of units of a Resource may only be a Constant or

a numeric value;

2. The initial value of a Contant must be a numeric value;

The forms for Variables and Constants are:

Page 73

' I

::NSTANT: i
VALUE:

DESCRIPTION:

OARIADLE:

VALUE:

DESCRIPTION:

NAME: 1 to 8 character name of Variable or Constant

VALUE: 8 digit floating point or any AISIM variable
reference.

DESCRIPTION: 0 to 53 character description

Relationships - Constants may be used with Variables, Resources,

Items, Loads, Scenarios and Process Primitives. Variables may be
used with Items, Loads, Scenarios, and Process Primitives.

Page 74

LOCAL VARIABLES

3.14 LOCAL VARIABLES

AISIM has two kinds of variables: local and global. Global Vari-
ables are those explicitly defined for the model and given ini-
tial values. Local variables are ones that appear in Process
Primitives but are not otherwise defined. Local variables enable
Processes to execute in parallel without interfering with each
other because each Process has an independent set.

At the beginning of the execution of a Process all local vari-
ables are initialized to zero. They will remain so unless other

values are explicitly assigned to them. Local variables may be
assigned values with the ASSIGN Primitive or through parameter
passing. Local variables may be assigned the following values:

Numeric - a floating point or integer number

Global Constant or Global Variable value

Another local variable

A Resource name

A Process name

An Item name

A Queue name

An alpha literal (first character $)

The value of a keyword evaluation

Although "local," the values of such variables can be communi-
cated from one Process to another through parameter passing
(i.e., through the CALL Primitive). Local variables can be used
to fill in any parameter slot in any Primitive that is not an
option, a label, a distribution or function, and including:

Item attribute

Resource attribute

Process attribute

CALL given parameter

CALL return parameter

Process given parameter

Page 75

I

- '--

Process return parameter

ALLOC Resource name

DEALLOC Resource name

CALL Process name

CALL Priority name

ASSIGN set variable (variable 2)

COMPARE variable

FILE Item name

FILE Queue name

FIND Queue name

FIND Item name

REMOVE Queue name

REMOVE Item name

RESUME task reference

Page 76

-- * - - ----- *---

3.15 ALPHA LITERALS

An alpha literal is a character string. It consists of a $ fol-
lowed by up to seven other characters, as in

$WA T
and

$JONES

that do not make up the name of a keyword (see below). Alpha
literals can be used to compare strings for identity or non-
identity with the COMPARE Primitive. They can be used as attri-
butes. This is useful for making AISIM models more readable.

3.16 KEYWORDS

The following keywords are defined in the AISIM simulator and may
be used in Process logic in any Primitive in which the evaluation
of the keyword results in a value which is correct in context.

Like alpha literals, these terms begin with the character '$".
However, keywords function differently from alpha literals. Key-
words evaluate to a value. In that sense they can be considered
intrinsic functions.

$CLOCK - The value of the current simulation clock during
the execution of a simulation run. This keyword
may be placed in any field of a Process Primitive
which may contain a numerical value.

$CNODE - The reference to the current node in which a Pro-
cess is executing. All Processes are considered
to be executing in a node in the architecture. The
node corresponds to a Resource. This keyword
evaluates to the Resource. This keyword allows a
modeler to control allocation and deallocation of
a Node from within the execution of a Process.
This keyword can be assigned a value. This ,in
effect, changes the node in which a Process is
logically executing. This is the only keyword
that may be assigned a value in the Process logic.

$TASK - The current instance of the Process in which this
keyword appears. A Process executing in a simula-
tion can set a variable to the task instance of
itself through the $TASK keyword. This allows one
Process to suspend itself and another Process to
resume it by allowing the user to store the
current value of $TASK where it can later be
accessed.

The following keywords directly access the legal path table and

architecture structure. Each keyword evaluates to the name of a

Page 77

'

II I I l I- -- iii II I I I II I - -- --

node or link Resource.

$NODE - $NODE takes one argument, a reference to a Pro-
cess. Given a Process, $NODE evaluates to the
name of the node in which the Process has been
defined to execute. This is the name of a
Resource. This keyword allows a Process in AISIM
to dete:mine a destination for messages which

request a specific Process to be executed. The
node specification for a Process is defined by a
user and is associated with the START symbol for
the Process.

$NXTNODE - $NXTNODE takes one argument, a reference to a
destination node. Given a destination node,
$NXTNODE assumes the current node ($CNODE) of the
executing Process is the source (FROM) node.

Accessing the legal path table, SNXTNODE returns
the name of the next node along the path to the
destination node. This is the name of a Resource.

This keyword allows the AISIM modeler to write
Processes that perform message forwarding through
a network.

SLINK - SLINK takes one argument, a reference to a desti-
nation node. Given a destination node, SLINK
assume the current node ($CNODE) of the Process is
the source (FROM) node. Accessing the legal path
table, SLINK evaluates to the name of the link to
the next node alorg the path to the destination
node. This is the name of a Resource.

Page 78

- --

MESSAGE ROUTING

3.17 MESSAGE ROUTING SUBMODEL

When one Process triggers another through a CALL Primitive the
called Process is initiated in the same node as the calling Pro-
cess. This is implicit in the AISIM simulator and is true even
if the called Process is associated with a different node.

In order to model the functional distribution of Processes
throughout a network a logical Process communication feature had
to be incorporated into AISIM. One requirement for this feature
is that the delays inherent in the network communications be
accurately represented in the model so that if a Process resident
in one node initiates a Process resident in another node, the
delays and queuing effecting this communication are taken into
account. Also, AISIM is required to enable the analysis of dif-
ferent architectures performing the same functions with a minimum
of change to the AISIM.

To satisfy these requirements a special sub-model has been dev-
ised to represent the routing of messages through an AISIM archi-
tecture to initiate remote Process triggering. Since different
protocols for network communication are conceivable the AISIM
message routing function has been implemented as an AISIM model
and included in the AISIM model library. This enables an AISIM
user to select and merge this model into his own. The advantage
of this approach is that the user can review the logic in this
sub-model, determine its appropriateness to his problem and
modify the message routing sub-model if necessary. This will not
often be the case because it has been shown that the message
routing sub-model applies to most all communications networks.

The message routing sub-model uses the architecture and Legal
Path Table of a model through the use of the system-defined key-
words and the Process Primitives..

The message-routing submodel consists of one Item representing
the message dispatched through the system architecture , six
Processes representing the activities required for the inter-node
communication and other supporting entities. Everything required
for this model is included in the AISIM system library and can be
merged into a user's model in a simple operation.(See LIBRARY
User Interface)

Although intra-node communication is modeled by means of a col-
lection of six Processes, the user need explicitly invoke (with a
CALL primitive) only one of them. To represent the intra-Node
triggering of a Process one calls the first Process in the sub-
model called "REQ-I/O". It is a parameter passing Process with
six values for the GIVEN list. No values in the RETURN list are
specified. The parameters given are:

I
Page 79

i"mu

(1) a name reference of the Process to be triggered;

(2) the priority associated with the Process;

(3) the option for "wait" or "nowait" (the option to have
the calling Process suspend until receiving a message
declaring that the called Process has executed, or to
proceed in parallel), this is specified with the
literals "$WAIT" and "$NOWAIT".

(4) the length of tne message which communicates the remote
triggering. (This corresponds to channel rates nor-
mally exjressed in bytes.)

(5) the Node in which the triggered Process is to execute.

(6) a name of the Item which is to be created and passed
through the system for intra-Node communication.

The entities contained in the Message Routing Submodel are
described in the following sections.

3.17.1 ITEM: MSG The Item MSG is the prototype for all communi-
cation messages which interact with the Message Routing Submodel.
If the user does not want specific point to point transit times,
all statistics for message routing will be accumulated for this
one entity. If specific point to point transit times are desired,
the AISIM user copies MSG to another Item name (through the
Design User Interface) and provides the unique name as parameter
six in the call to the REQ-I/O Process. All of the attributes of
the Item MSG are essential to the Message Routing Submodel. 'The
attributes are explained below.

DEFINITION OF ATTRIBUTES

Attribute Name Default Value Description

CNODE $CNODE The current node in which the
MSG resides in the network.

FNODE $CNODE The source node of the MSG
in the network for a communi-
cations path.

LENGTH .99999999 The length of the message MSG
in bytes.

PTASK ERROR The pointer to the instant of
the requesting Process.

RESPONSE $WAIT The option of the requesting
Process. $WAIT indicates the
requesting Process waits for

Page 80

, '

* - _ _-1 " °

a repsonse. $NOWAIT indicates
the requesting Process contin-
ues.

RTASK ERROR The requested Process name.

TASKPRI 99999999 The priority for the requested
Process.

TNODE $CNODE The destination node of the
requested Process.

TYPE $REQ The message type of MSG. SREQ
indicates a request. $RESP
indicates a response.

3.17.2 USING THE MESSAGE ROUTING SUBMODEL The Message Routing
Submodel is a very powerful feature of AISIM because it allows
the user the capability of modelling network configurations and
logical processing independently. That is, once the user has
built the models of the functions performed in a system, the
functions can be embedded in different architectures without
modifications. As mentioned previously in this chapter, in order
to use this feature it is necessary to understand the use of the
Library User Interface, the architecture and the Legal Path
Table. They all work together to provide the network modelling
capability in AISIM.

The Message Routing Submodel requires that the user model inter-
face with it properly to function correctly. The requirements
for this interface are that the Message Routing Submodel be
merged into the user model with the AISIM Library commands and
that the entities in the user's model have the attributes refer-
enced in the six Processes. This specifically applies to the
nodes and links in the user's architecture and the Items which
pass through the six Processes.

Items must have all the attributes decribed in the item MSG.
Channels modelled with links must have a BAUDRATE attribute.
Switching nodes in the architecture must have a CS-TIME (operat-
ing system overhead time for switching), a M.CS attribute (mean
time to switch) and a D.CS attribute (delta time to switch).

Page 81

4. AISIM SYSTEM OVERVIEW AND SYSTEM INITIALIZATION

The AISIM user interface consists of five levels of operation.
They are:

Level 1 - Not connected level
Level 2 - TSO Ready level
Level 3 - AISIM Ready level
Level 4 - Level 4A - Design User Interface (DUI) Sublevel

Level 4B - Analysis User Interface (AUI) Sublevel
Level 4C - Replot User Interface (RUI) Sublevel
Level 4D - Hardcopy User Interface (HUI) Sublevel
Level 4E - Library User Interface

Level 5 - Level 5Al - Process Edit Interface (PEI) Sublevel
Level 5A2 - Architecture Design Editor (ADE) Sublevel
Level 5El - Mergein (MI)
Level 5E2 - Mergeout (MO)
Level 5E3 - Checkin (CI)
Level 5E4 - Checkout (CO)

Note that levels 4 and 5 are composed of a number of sublevels.
The relationship of these different levels and sublevels is shown
in the accompanying figure. The current level or sublevel of
operation determines the system's response to a given command.
For example, the command EDIT LOAD has a different effect when
entered while at the DUI sublevel than at the AUI sublevel. Each
level or sublevel prompts the user for input with a specific sym-
bol or phrase. For example, the AISIM READY level prompts with
the phrase "AISIM READY" on the screen when it expects a command
to be entered from the keyboard. The DUI sublevel, on the other
hand, prompts with an "*". The prompt for each level and sublevel
is shown in the figure in its box. The commands used to go from
one level or sublevel to another are shown next to the arrows
indicating the direction of transfer.

4.1 REACHING THE AISIM READY LEVEL

The procedure for logging on is specific to a given computer sys-
tem and the user is referred to local references for gaining
access to the top level of the system on which AISIM is hosted.
(This section assumes an IBM compatible host. For other installa-
tions please refer to installation specific instructions). When
prompted with,

READY

the user has reached Level 2 of AISIM operation. To reach Level
3, the user enters the command,

Page 82

-~ ---

EX AISIM

When the disk pack containing the AISIM system has been loaded,
an audible 'beep' will be heard at the terminal.

Page 83

I i II I -

5. AISIM READY LEVEL - LEVEL 3

The following sections describe the operation and use of the
AISIM READY level. The system prompt at this level is the fol-
lowing:

AISIM READY

This level is the first level at which the user interacts with
AISIM. This level also represents an AISIM control or monitor
mode. No modeling is done at this level. Instead, the user must
descend to Level 4 by issuing one of the commands shown the
accompanying figure before any modeling, simulation, or other
major system function can be exercised. The other commands shown
in the figure are available at the AISIM READY level and perform
various system level functions as described in the figure and in
the command summary. When descending to level 4, the user will
receive new prompts at the Design User Interface (DUI) level
(level 4A), the Analysis User Interface (AUI) level (level 4B) or
the Replot User Interface (RUI) level (level 4C) These levels are
discussed in the appropriate sections. When the user descends to
the Hardcopy User Interface (HUI) level (level 4D) or the Library
User Interface (LUI) level (level 4E) the user will not receive
new prompts.

Pi Page 84

1.4 I .. . II ... '4

EI GN_ (D DEIGN OR
F-(-LE -s ES TAB L ISHED

Al INVOKED

'. AALYZ ~A)SIM COMMAND
AVAILABLE

HUI !NVOrID
HCOPY (HC) DB DOCUMEN-

TATON

BACKUP isIG

USED TO
- GRIPE REGISTER A

COMPLA IN r

CHANGES THE

-CCHAIGE C)CURRENT PRO.
FILE PARMS

FRVIEWING

SIMULAT ION
REPORTS

HG P HNFORMATION

INVOF ED

PRIT
PRIT P -~ SIMU LATION

IOUTP 0 '

IPSORID

Page 85

I

5.1 AISIM READY LEVEL COMMAND SUMMARY

At the AISIM Ready Level of operation a number of commands are
available to the user Eor directing the course of the session
(ANALYZE, CHANGE, DESIGN, END) for manipulating the database
(BACKUP, EDIT, RESTORE), for requesting information about AISIM
operation (HELP), for requesting model data (PRINT,HCOPY) and for
sending information to the support group (GRIPE). These commands
are summarized in the command summary below. They may be entered
only while in the AISIM Ready Level of operation (i.e., when the
user has received an AISIM READY prompt).

A summary of the meaning of the parameters at this level follows:

[PROJECT(project)]
[P(project)]

The parameter indicating that the desired database file
to be acted upon by the command is "project", where "pro-
ject" is a standard alphanumeric file label containing

1-8 characters beginning with an alpha character and con-
taining no special characters or imbedded blanks.

If omitted, the default value of "project" is assumed.
Upon entry to the AISIM READY level from the TSO READY
level the default value is blank and must be set by the

use of an ANALYZE, BACKUP, CHANGE. DESIGN or RESTORE com-
mand with the parameter PROJECT. If an AISIM control
command is used and no default value for "project" has
been set an error message will appear prompting the user
to set the "project" default value. Every use of
ANALYZE, BACKUP, CHANGE, DESIGN and RESTORE with the PRO-
JECT parameter changes the default value of "project" for
subsequent commands.

[USER(userid)]

An optional parameter indicating the TSO "userid" of the
owner of the reference PROJECT (project) if the owner is
someone other than the current user. Default for "userid"
is the current TSO logon "userid".

[VERSION(xx)]

[V(xx)]

An optional parameter indicating which version of AISIM
software is to be invoked by subsequent commands. The
default value of VERSION is the last VERSION parameter
specified. If never specified explicitly by a VERSION
parameter the default value is "PROD", the current produc-
tion version.

P
Page 86j.__ _ __ _ _ _

Every use of ANALYZE, BACKUP, CHANGE, DESIGN and RESTORE
with the VERSION parameter changes the default value of "xx"
for subsequent commands.

The value of xx is either "PROD" to select the current pro-
duction Version, or a 2 digit integer to select an alternate
version.

[COMMAND(command name)]

An optional parameter indicating the AISIM control command
for which the user needs help information. It omitted, the
user will receive summary help information on all commands.

[DEST(location)]

An optional parameter indicating where the listing of the
database elements is to be printed. "Location" is one of the
legal destinations as specified in the TSO User Manual. The
default value for "location" is the sys'em printer.

[LIBRARY(library)]

(L (library) I
A parameter used in the CHECKIN and CHECKOUT facilities,
where library is an 8 character library database name.

[BUFFER(buffer)]

[B(buffer)]

A parameter used with the CHECKIN, CHECKOUT, MERGEIN and
MERGEOUT , ilities. The parameter buffer denotes a tem-
porary h. -ing area for storing entity definitions.

(NOXLATE]

An optional parameter indication that for the current
ANALYZE session, no translation from the PROJECT (pro-
ject) is to be performed, and simulation input from a
previous translation is to be used. The "previous
translation" must have been performed. Translation is
the process whereby the design database specified by
the user is made ready for simulation.

Each of the AISIM READY commands is discussed on the
following pages.

I
Page 87

COMMAND SUMMARY

COMMANDS:

ANALYZE tPROJECT(project)] [USER(userid)] fVERSION(xx)] [NOX-
LATE]

BACKUP [PROJECT(project) 1 (USER(userid)]

CHANGE [PROJECT(project)] [USER(userid)] (VERSION(xx)]

C

DESIGN [PROJECT(project) [USER~userid)] [VERSION(xx)]l

D

EDIT [PROJECT(project)] £BUFFER(buffer)1 [TRACE)

E

END

GRIPE

HCOPY [PROJECT(project)] [USER(userid)] (VERSION(XX)]
[DEST(location) I [GDEST(locatlon) I

HELP [COMMAND(command name)]

LIBRARY

LUI

LIST

L

PRINT [PRINT(p~oject)] (DEST(location)]

P

REPLOT [PROJECT(project)] [USER(uset'id)l fVEPSION(XX)]

R

RESTORE [PROJECT(project)] CUSER(userid)]

Page 88

.... ...

Aln1l AbM UIMAL INJEAJ V IUN MU E M SR'S 4
MUNUAG U HUGH IS Al CRU 0 ULLE ON CU GROUND
SSETM1 GOUP WUAUSTEL ITAL 26 FEB82ESD-TR-83218

7 UCUS ; ED F9626 79-C0153 9/2 NLmmhmmhh

I

H4m 1' 2.8 12.5

1. 3.2 2.2I~
L.6

1.25 J1liQf .

MICROCOPY RESOLUTION TEST CHART

NATIONAL OUREAV OF STANOAMOS -1963- A

I

i

L

I-m.. .. I

ANALYZE

5.1.1 INITIATING AN ANALYSIS SESSION Simulation of the model
developed under the DUI level is accomplished through commands
available in the AUI level. The AUI is accessed from the AISIM
Ready level (level 3) by issuing the ANALYZE command as follows:

ANALYZE (PROJECT(project)] (USER(userid)] [VERSION(version)] [NOXLATE]

A [P(project)]

where:

[PROJECT(project)] is an optional parameter indicating that the
analyze session is to involve database "project", where "project"
should be 1-8 alpha or numeric characters, beginning with an
alpha character (NO SPECIAL CHARACTERS OR IMBEDDED BLANKS).

Default if omitted is the last "project" specified in a previous
DESIGN, ANALYZE, CHANGE, BACKUP, or RESTORE command. If this
parameter is included but the USER keyword is omitted the system
assumes the "project" belongs to the current user.

[USER(userid)] is an optional parameter indicating the TSO
"userid" of the owner of "project".

If the PROJECT keyword is included, and USER keyword is omitted,
the default for USER is the current logon "userid" PROFILE PREFIX
value. If both PROTECT and USER keywords are omitted, the
CURRENT PROJECT and USER remain unchanged.

(VERSION(version)] is an optional parameter indicating the
software version to be invoked by this and all subsequent com-
mands. Default if omitted is the last "version" specified in a
previous AISIM, DESIGN, ANALYZE, or CHANGE command , or if never
specified, the current PRODUCTION version, or a 2 digit integer

"XX" to select TEST version "XX".

[NOXLATE] is an optional parameter indicating that, FOR THIS

ANALYSIS SESSION ONLY, no translation from the "project" database
is to be performed, and simulation input from a previous transla-
tion is to be used. The "previous translation" must have been
performed.

The system will respond with the following output:

CURRENT PARAMETERS IN EFFECT:
VERSION: PRODUCTION
PROJECT: GERA
USER: TFOOOOO
XLATE/NOXLATE: XLATE
ENTER YES TO PROCEED, NO TO ABORT....

Page 89

.- 0 , .

Typing yes will cause the system to complete the transfer to the
AUI level. Typing no returns the user to the AISIM Ready level.

A 'beep' will be given at the terminal when the system is ready
to accept commands at the AUI level.

I

Page 90

... . ..
....

BACKUP

5.1.2 BACKING UP A DATABASE

To provide a backup of a project database, especially useful when
performing saving the model design at a specific time, enter the
following command:

BACKUP (PROJECT(project)] (USER(userid)]
where:

Parameters are described in paragraph 5.2.

P
Page 91

CHANGE

5.1.3 CHANGING THE CURRENT PARAMETERS

The "CURRENT PARAMETERSN (PROJECT, USER, and VERSION) can be
changed by using the appropriate keywords in a DESIGN or ANALYZE
command, or via the following command:

CHANGE [PROJECT(project)] [USER(userid)] [VERSION(version)]
C

where:

Parameters are described in paragraph 5.2.

P

rj Page 92

JU
- - - - 4

DESIGN

5.1.4 INITIATE A DESIGN SESSION

DESIGN [PROJECT(project)] [USER(userid)] (VERSION(XX)]

D [P(project)] (V(XX)]

where:

[PROJECT(project)] is an optional parameter indicating that the
desired project file to be acted upon by the command is "Pro-
ject", where "Project" is a standard alphanumeric file label con-
taining 1-8 characters beginning with an alpha character and con-
taining no special characters or imbedded blanks.

(USER(userid)] is an optional parameter indicating the TSO
Wuserid* of the owner of the reference PROJECT (project) if other
than the current user. Default for "userid' is the current TSO
logon "userid".

[VERSION(XX)] is an optional parameter indicating which version
of AISIM software is to be invoked by subsequent commands. The
default value of VERSION is the last VERSION parameter specified.
If never specified explicitly by a VERSION parameter the default
value is "PROD", the current production version.

Every use of ANALYZE, BACKUP, CHANGE, DESIGN and RESTORE with the
VERSION parameter changes the default value of "XX" for subse-
quent commands.

The value of XX is either "PROD" to select the current production
Version, or a 2 digit integer to select an alternate version.

FUNCTION: Initiate a system design session

DESCRIPTION: This command transfers the user from the AISIM
Ready level to the DESIGN User Interface (DUI) Level.

The following information and prompt are displayed for this
command:

AISIM READY

d p(test)

CURRENT PARAMETERS IN EFFECT:

VERSION VERSION 1

PROJECT: Project name from project specified
in the command or default. In this
case it is test.

Page 93

a I!

USER: User id from command or default

Enter YES to proceed, NO to abort....

Typing YES causes the completion of the level transfer;
NO returns the user to the AISIM Ready Level.

COPYING DATABASE
..... COPY COMPLETE

Level transfer is then completed.

Use of the parameters PROJECT or VERSION changes
the respective default values for subsequent commands. Upon
completion of the level transfer the user is prompted with
a * which signifies the DUI Ready state.

Page 94

EDIT

5.1.5 VIEWING OUTPUT REPORTS To access the model simulation
report interactively on the terminal (via the TSO EDITOR), enter
the following command:

EDIT [PROJECT(project)] (BUFFER(buffer)]

E
or

EDIT [PROJECT(project)] [TRACE]

E

where:

Parameters are described in paragraph 5.2.

Result:

The TSO EDITOR is entered with the database file to be edited set
according to the PROJECT. All TSO EDITOR commands can be used on
this file. The file is either the PROJECT report file (this is
the default), or the PROJECT trace file, or the PROJECT buffer
file.

I

-I Page 95

END

5.1.6 TERMINATION OF AISIM READY LEVEL After system interaction
at Level 3 and lower levels, te user may return to Level 2 by
typing the command:

END

The system will return to the TSO Ready Level and the screen will
display,

READY

P

Page 96

GRIPE

5.1.7 REGISTERING A COMPLAINT

To record a complaint, comment, etc. in the AISIM system log,
enter the following command:

GRIPE

The system will prompt the user for all required input.

Pg9

I!

HCOPY

5.1.8 HARDCOPY OUTPUT OF THE PROCESS FLOW-CHARTS To obtain
hardcopy graphics of all or some of the Process flow-charts for
an AISIM Model enter the following command:

HCOPY (PROJECT(project)] (USER(userid)] (VERSION(XX)]
(DEST(location)] [GDEST(location)]

where:

Parameters are described in paragraph 5.2.

Result:

Depending on responses to system queries, database information is
printed or plots are generated from one or more of all Processes.

Examples of Use:

User types: hcopy

System responds: ** 'PROJECT' IS UNDEFINED **

ENTER PROJECT: gera

CURRENT PARAMETERS IN EFFECT:
VERSION: PRODUCTION
PROJECT: GERA
USER: TF01508
ENTER YES TO PROCEED, NO TO ABORT

Note that the entry "gera" in response to "ENTER PROJECT" was
entered by the user.

i
Page 98

q

5.1.9 OBTAINING HELP FROM THE SYSTEM

To obtain help from the system, type the following command:

HELP (COMMAND(command)]

where:

Parameters are described in paragraph 5.2.

Page 99

LIBRARY

5.1.10 EXERCISING THE LIBRARY FACILITY

The Library User Interface is entered by issuing the command,

LIBRARY

This enables access to the MERGEIN, MERGEOUT, CHECKIN and
CHECKOUT sublevels.

i Page 100

II ~ ~ - I_ __..- ,,... , I ---- -- l

LIST

5.1.11 LISTING THE CURRENT OPTIONS

To list the CURRENT OPTIONS in effect, type the following com-
mand:

LIST

L

The system will display the CURRENT OPTIONS in effect, including
VERSION, PROJECT and USER.

Page 101

--- - _ _ _ _ _ _

PRINT

5.1.12 PRINTING OUTP'JT REPORTS

To request printing of the model output report, type the follow-

ing command:

PRINT (PROJECT(project)]

P P(project)

where:

Parameters are described in paragraph 5.2.

Result:

The output report (Project.REPORT.DATA) of a project is printed.
This is a report of the standard results of a simulation run.

Example of Use:

User types: print p(gera)

System Responds: GERA.REPORT.DATA PRINTED (UNLESS OTHERWISE

NOTED)

Page 102

-i '4

REPLOT

5.1.13 INITIATING A REPLOT SESSION

The Replot Function allows the user to display plots which were
saved during previous Analyze Function runs. The command to
invoke the Replot Function is as follows:

REPLOT [PROJECT(project)) [USER(userid)) [VERSION(XX)]

P(project) U(userid) V(XX)

where:

[PROJECT(project)] is an optional parameter indicating that the
Replot session is to use the database "project" where "project"
is a one to eight character name of a data base used in a previ-
ous analyze session.

(USER(userid)] is an optional parameter indicating the TSO
"userid" of the owner of "project" if other than the current
user. Default for "userid" is the current TSO logon "userid".

[VERSION(XX)] is an optional parameter indicating which version
of AISIM software is to be invoked by subsequent commands. The
default value of VERSION is the last VERSION parameter specified.
If never specified explicitly by a VERSION parameter, the default
value is "PROD", the current production version.

The system will respond with the following display:

CURRENT PARAMETERS IN EFFECT:
VERSION: PRODUCTION
PROJECT: data base
USER: TFOOOOO
ENTER YES TO PROCEED, NO TO ABORT...

A "yes" response will cause the Replot Function to be invoked and
a "$" prompt to be displayed.

A "no" response will cause the user to be returned to the AISIM
READY level.

Page 103

-- -- l -- v -- _ _

RESTORE

5.1.14 RESTORING A DATABASE (AFTER A CATASTROPHE HAS OCCURRED)

To restore a previously backed-up database (only necessary if a
catastrophe has occurred which altered the PROJECT database ,or

it is desirable to restart a model from a known configuration),
enter the following command:

RESTORE (PROJECT(project)] [USER(userid)]

where:

Parameters are described in paragraph 5.2.

This command is used in conjunction with the BACKUP command. If
the user was editing the original database and he had issued a
BACKUP command against this database, then a copy of the original
database exists. The RESTORE command causes the damaged original
database to be replaced with the backup copy.

Page 104

&A

6. DESIGN USER INTERFACE (DUI)

The DUI and its lower levels are used to define the system model
by creating, modifying, or deleting AISIM model entities. This
is accomplished through the use of commands available to the user
and by use of the "fnrms mode" which is a function of the HP-
2647A terminal. The accompanying figure shows the commands
available at the DUI Level and the results of using these com-
mands.

The Process entities which represent operations in the modeled
system are created and edited at a sublevel of the DUI Level
called the Process Editor Interface (PEI). A system architecture
and its related Legal Path Tables, nodes, and links are defined
and edited in the Architecture Design Editor (ADE) level. The
Clock and Timeunit entities are defined indirectly through the
Scenario entity and are otherwise invisible to the user. The
Constant, Item, Load, Process ,Queue, Resource, Scenario, Table
and Variable entities are all created and edited at the DUI
level.

When creating and editing entities in the DUI level, the system

prompts the user for further information by use of the "forms
mode", which is a function of the HP-2647A terminal. Each form
specifies the required and optional attributes of its respective
entity-type. The areas on which information is to be entered
appear in reverse video" (dark characters on a light back-
ground), and indicate the attributes that are to be supplied by
the user.

Each time the user presses the keyboard TAB key, the character
cursor is positioned to the start of another designated area. The
user enters parameters requested by the form by keying in the
desired alphanumeric information. If the user changes his mind
about the parameters previously keyed in, he may alter them by
merely writing over the old information. When the user is satis-
flied with the contents of the form, he inputs it to the computer
by pressing the ENTER key (as opposed to the RETURN key).

The AISIM DUI commands, used to input, modify, and delete enti-
ties from the model, are illustrated in the accompanying figure
and described on the pages that follow it.

Page 105

0 :'

ENT ITv

AVZ COPIAN

ItI
AV -Pl

IN0B NO

AVAI

I Paqe 106

DUI COMMAND SUMMARY

COMMANDS:

ARCH

A

COPY (entity-type},(existing-name,friew-name)

C

DELETE (entity-type) , entity-name)

DEL

EDIT {entity-type),{entity-nameJ,[old/newI

E

END

HELP

LIST (entity-type)

L

SAVE

Page 107

DUI / ARCH

6.1.1 COMMAND: ARCH

The ARCH command is used to invoke the Architecture Design Editor

(ADE).

This command is valid only in the DUI Ready Level.

COMMAND SYNTAX:

ARCH

A

FUNCTION RESULT:

The ADE is invoked so that the architecture is built under the
project designated by the DESIGN command. A # prompt is provided
for the user to input ADE commands.

(i Page 108

DUI / COPY

6.1.2 COMMAND: COPY

The COPY command is used to create a copy of an existing entity.

COMMAND SYNTAX:

COPY (entity-typel,(existing-name},{new name)

C

where:

[entity-type) is a required parameter indicating any valid entity
type.

(existing-name) is a required parameter identifying the existing
entity whose parameters are to be duplicated.

(new-name) is a required parameter which specifies the name of
the new entity whose parameters are duplicates of the "existing
entity".

DESCRIPTION: ENTITY-TYPE may be any of the following:

Entity-type Acceptable Abbreviation

Action A

Constant C

Item I

Load L

Process P

Queue Q

Resource R

Scenario S

Table T

Variable V

If entity type, existing-name or new-name is missing or invalid,
the user is prompted.

Page 109

A carriage return entered in response to any prompt aborts the
command and returns the user to the DUI Ready state - * prompt.

4 tPage 110

DUI / DELETE

6.1.3 COMMAND: DELETE

The DELETE command is used to eliminate a named entity of a given
type from the user database. The only restriction on the use of
this command is that Resources associated with architectural
nodes or links cannot be deleted outside of the Architecture sub-
level.

This command is valid only at the DUI Ready Level.

COMMAND SYNTAX:

DELETE [entity-type},fentity-name)

(entity-type),*

(entity-type),{entity-name},...,{entity-name)

DEL

where:

{entity-type) is a required parameter indicating any valid entity
type.

(entity-name) is a required parameter indicating the name of the
entity to be deleted. It is permissible to give a list of
entity-names--of the same type-- each member of which is
separated by a comma.

* is a parameter used indicate all of the entities of the speci-

fied type are to be deleted.

If entity-type or entity-name is missing or invalid, the user is
prompted for a valid parameter.

A carriage return in response to the prompt aborts the command,
and the user is returned to the DUI Ready state - * prompt.

FUNCTION RESULT:

If the named entity is not a Resource associated with a architec-
tural node or link, the entity will be deleted from the user's
uworkingu database. If the entity is a Resource associated with

a node or link, the user will be given the message:

entity 0 IS ASSOCIATED WITH THE ARCH. AND CAN ONLY BE DELETED
IN ADE

where entity is the name of the entity to have been deleted.

Page 111

I4 - I--

When there is more than one such Resource listed in the command
to delete the user will be given the above message for each one.

Page 112A '

-i - - - - -- --- ,~-- - -

DUI / EDIT

6.1.4 COMMAND: EDIT

The EDIT command is used either to create an entity, or to change
an existing entity. If the entity requested is Process the Pro-
cess Editor Interface (PEI) is invoked.

This command is valid only zt the DUI Ready Level.

COMMAND SYNTAX:

EDIT (entity-type),fentity-name},[old/new]

E

where:

[entity-type} is a required parameter indicating any valid entity

type, as described in secticns 3.2 and 5.

(entity-namel is a required parameter indicating the name of the

entity to be edited.

[old/new] is an optional parameter indicating that the named
entity is to be created (NEW), or that the named entity exists

(OLD) and is to be changed. If the [OLD/NEW] parameter is entered
incorrectly, the user is prcmpted for a valid entry. The default
for this optional parameter is old.

FUNCTION RESULT:

If the entity-type specified is Process, the PEI level is
automatically invoked. The user is then presented with a form to
describe the Process. The user must fill out the form, and then
use the "ENTER" key to input the Process into the "working" data-
base. The user is left in tie PEI level in order to complete the
Process definition.

If any other valid entity type is specified, the user is
presented with a form to defcribe that entity. The user must fill
out the form, and then use the "ENTER" key to input the completed
entity into the *working" database. The user is then returned to
the DUI Ready state - * prompt.

Page 113

*1 U

DUI / END

6.1.5 COMMAND: END

The END command is used to terminate a DUI session.

The command for the above purpose is valid only in the DUI Ready
Level.

COMMAND SYNTAX:

END

FUNCTION RESULT:

The DESIGN session is ended. The "working" database is closed. If
a SAVE command has not been given since the last EDIT command the
user is asked if the working database is to be saved. The query
is:

SAVE (Y/N)

If the user answers "Y", the working database is saved into the
"real" database and the session is ended. Control is passed to
the AISIM Ready level (level 3). If the user answers "N", the
session is ended and the working database is not saved. Control
is passed to the AISIM Ready level (level 3). Depressing the
RETURN key in response to the SAVE query aborts the END command,
and returns the user to the DUI Ready State - * prompt.

Page 114

JI

DUI / HELP

6.1.6 COMMAND: HELP

The HELP command lists the commands currently available to the

user during a DUI session.

This command may be used any time during a DUI session.

COMMAND SYNTAX:

HELP

FUNCTION RESULT:

The acceptable commands (i.e., the ones valid at the current
level) are listed following the last line appearing on the termi-
nal.

HELP displays the following commands:

LIST L DELETE DEL EDIT E SAVE

ARCH A COPY C

Page 115

4 '

DUI / LIST

6.1.7 COMMAND: LIST

The LIST command displays all entities of a specified type.

Included with each entity is its name and a description.

This command is valid only at the DUI Ready state - * prompt.

COMMAND SYNTAX:

LIST {entity-type}

L

where:

{entity-type} is a required parameter indicating any valid entity
type.

If {entity-type} is missing or invalid, the user is prompted for

a valid entity type.

A carriage return entered in response to the prompt aborts the

command, and the user is returned to the DUI Ready state - *

prompt.

FUNCTION RESULT:

The user is presented with a list of all existing entities of the
requested type.

Page 116

1i __ , 1

DUI / SAVE

6.1.8 COMMAND: SAVE

The SAVE command copies the contents of the working database into

the users's permanent database.

This command is valid only at the DUI Ready state - * prompt.

COMMAND SYNTAX:

SAVE

FUNCTION RESULT:

The real database is replaced with the contents of the work data-

base, and the user is returned to the DUI Ready state - * prompt.

The command is useful when the user is defining a large system.

With the SAVE command the user saves the model design up to the

point at which the command is given. This protects that portion

of the design from computer failures.

i
Page 117

PI

6.1.9 TERMINATION OF A DUI SESSION As mentioned earlier, a DUI

session is terminated by issuingthe END command. Syntax and
results are described in the preceeding section. The DUI session
is ended. The "working" data base is closed. If a SAVE command
has not been given since the last EDIT command, the user is asked
if the working data base is to be saved. The query is:

SAVE (Y/N)

If the user answers "Y", the working database is saved into the
"real" database and the session is ended. If the user answers
"N", the session is ended and the working database is not saved.
Depressing the RETURN key in response to the SAVE query aborts
the END command, and returns the user to the DUI Ready state.
When the SAVE query is answered, control is returned to the AISIM
Ready Level and the AISIM READY prompt is displayed.

Page 118

.4,

.. ...1 -

6.2 PROCESS EDITOR INTERFACE (PEI)

The PEI, coupled with the capabilities of the HP2647A terminal,
allows the user to describe graphically the logical flow of an
operation which he wishes to model. The PEI is used to build
wProcesses" which model man-machine interaction as well as data
Processing functions (software logic). A Process is composed of
wPrimitives" which are symbols that represent the individual
steps in an operation. Using the PEI commands which are described
below the user arranges the Primitives in an order that describes
the Process. The Processes represent operations or activities in
the modeled system and are interpreted by the simulator. Simula-
tion of the Processes over time is controlled by Loads and
Scenarios. Depending on the Primitives composing the Processes,
Resources may be allocated and deallocated. Given limited

Resources and the use of common Resources by Processes, conten-
tion for Resources is modeled. The simulator evaluates all these
factors of timing, events and Resource contention which are con-
tained in the Processes, Loads and Scenarios, and dynamically
controls the simulation.

6.2.1 USE OF THE PEI The system transfers control to the PEI

when the user issues the following command:

EDIT (Process),(entity-name),(old/new]

E [P),Ientity-name},[old/newl

where:

[Process] is a required parameter.

(entity-name] is required parameter indicating the name of the{ Process to be edited.

(old/new] is an optional parameter indicating that the named
entity is to be created (new] or that the named entity exists
(old] and is to be changed. If the [old/new] parameter is entered
incorrectly, the user is prompted for a valid entry. The default
for this optional parameter is old.

To enter the PEI, the user must issue the EDIT PROCESS command
while at the DUI level.

When the PEI is entered the screen is blanked. A set of refer-
ence lines are drawn on the screen. If a Process has already
been created , the graphic for the Process is displayed. If the
Process is new, the screen is again blanked and a form is
displayed which requests information about the Process. The user
must complete the form and then use the "ENTER" key on the

HP2647A to input the task into the database. The form is cleared
from the screen and the START and END Primitives of the new/

4 Page 119

MENO

Process are displayed on the right side of the screen. At this

point, a pound sign (#) prompt will be displayed indicating that
the user may issue any of the PEI commands. The PEI commands,
which are described on the following pages, are used to select,
position, and describe the Primitives to create a Process.

Page 120

I -- - - ..

PEI COMMAND SUMMARY

COMMANDS:

BOTTOM

B

Change (position)

C

DELETE {position},(number of consecutive positionsi

DEL

DOWN (number of positions]

D

END

HELP

HOLD (position)

H

MENU

M

PLACE (primitive-type},[position]

TOP

T

UP [number of positions]

U

NOTE: The positioning commands (Bottom, Down, Top, Up) are neces-
sary because only six Primitives of a Process can be displayed on
the screen at a time and a Process could contain many more primi-
tives.

I-
i Page 121

- , -0 . -4

PEI / BOTTOM

6.2.2 COMMAND: BOTTOM

The Bottom command is used to display the last six positions of

the current Process structure.

This command is valid only iin the PEI level.

COMMAND SYNTAX:

BOTTOM

B

FUNCTION RESULT:

The last six positions of the Process structure being edited are

drawn from the END symbol up. The END symbol is always the last
position of a Process structure.

Page 122

PEI / CHANGE

6.2.3 COMMAND: CHANGE

The CHANGE command is used to modify the user defined attributes
of a Primitive at a specific position within the current Process
structure.

This command is valid only in the PEI level

COMMAND SYNTAX:

CHANGE {position)

C

where:

(position) is a required parameter indicating the position of the
Primitive, within the Process structure, whose attributes are to
be changed.

The Primitive which is to be changed must be on-screen.

FUNCTION RESULT:

When the CHANGE command is invoked, the user is presented with a
form corresponding to the Primitive at the indicated position.
The user may change any or none of the attributes of the Primi-
tive, and then must use the "ENTER" key to input the contents of
the form. The Process structure is then redisplayed with the
changes made.

NOTE: Even if no changes are madu to a form, the user must
depress the ENTER key to continue.

Page 123

-. _ ____ ____ ___ -,

PEI / DELETE

6.2.4 COMMAND: DELETE

The DELETE command allows the user to delete a single Primitive,

or a range of Primitives, from the current Process structure.

This command is valid only in the PEI Level.

COMMAND SYNTAX:

DELETE {position},ffor number of consecutive positions]

DEL

where:

{position) is a required parameter indicating the position of the
Primitive to be deleted.

(for number of consecutive positions] is an optional parameter
indicating the range of positions to be deleted, starting with
the Primitive indicated by the [position] parameter. If this
parameter is omitted the default condition is to delete the Prim-
itive at the position indicated by the required parameter.

FUNCTION RESULT:

The Primitives indicated by the position parameter and the
optional parameter are deleted from the Process structure. The
remaining Primitives in the structure are scrolled up. Neither
the START nor the END symbol may be deleted, and the remaining
symbols may only be deleted if they are on-screen.

Page 124

.41 _ _____ ____

PEI / DOWN

6.2.5 COMMAND: DOWN

The DOWN command allows the user to scroll the current Process

structure down an indicated number of positions.

This command is valid only in the PEI Level.

COMMAND SYNTAX:

DOWN (number of positions]

D

where:

[number of positions] is an optional parameter indicating the
number of positions that the structure is to be "scrolled". If
this parameter is not used, the default condition is to scroll
the Process structure down six positions, which is analogous to
displaying the next page.

FUNCTION RESULT:

The Process structure is scrolled down the number of positions
indicated by the optional parameter, if given. Otherwise the
structure is scrolled down six positions or to the bottom of the
structure if less than six positions follow the last position
currently displayed.

PPage 125

.. . ., . 4 -.

PEI / END

6.2.6 COMMAND: END

The END command is used to terminate and exit the PEI session.

COMMAND SYNTAX:

END

FUNCTION RESULT:

The PEI session is ended, the graphics display is erased, and the
user is returned to the DUI Level.

Page 126

S' I "

PEI / HELP

6.2.7 COMMAND: HELP

The HELP subcommand displayL a list of the valid PEI commands.

FUNCTION RESULT:

The list of valid commands (see PEI Command summary) is displayed
at the end of in-use alphanumeric memory.

Page 127

_ _ _ _ _ __

PEI / HOLD

6.2.8 COMMAND: HOLD

The HOLD command allows the user to insert any valid Primitive,
which is already a part of the current Process structure, into

the menu item "HOLD" so that it may be replicated.

This command is valid only in the PEI Level.

COMMAND SYNTAX:

HOLD {position}

H

where:

[position] is a required parameter indicating the position of the
Primitive which is to be placed in hold foL the purpose of repli-
cation.

FUNCTION RESULT:

The Primitive indicated by the parameter is placed in hold. This
item may then be replicated by using the PLACE command and using
HOLD as the menu-item to be placed. The menu, if displayed, will
contain a description of the Primitive currently in hold. When a
primitive is stored in Hold, it remains there, accessable to the
user throughout the DUI session, and thus primitives may be moved
from one Process to another,

Page 128

4

PEI / MENU

6.2.9 COMMAND: MENU

MENU is used to display the valid Primitives of a Process.

COMMAND SYNTAX:

MENU

M

FUNCTION RESULT:

The menu is drawn to the left of the Process flowchart. After
the MENU command has been given, the menu will automatically
appear whenever a Process is edited. Once issued, the menu com-

mand is irreversible and will appear for the remainder of the
Design session.

Page 129

PEI / PLACE

6.2.10 COMMAND: PLACE

The PLACE command is used to put a Primitive at a position in a
Process. The Primitive may be placed in any position within the
Process structure except prior to the START symbol or after the
END symbol. The default placement is immediately prior to the END
symbol.

COMMAND SYNTAX:

PLACE [symbol},[position]

P where:

(symbol) is a required parameter, indicating any valid Primitive

menu item.

(position] is an optional parameter indicating any valid position
within a Process structure, (i.e. after the START symbol and
before the END symbol). The position of a Primitive in a Process
is indicated by the numbered column to the left of the flow-chart
representation of a Process.

FUNCTION RESULT:

The user is presented with a form that corresponds to the Primi-
tive to be placed.

When the form has been completed, the Process is redrawn, if

necessary. The Primitive is placed at the position indicated by
the position parameter, if given, and all following Primitives
are moved down one position. If the position parameter is omit-
ted, the Primitive is placed immediately prior to the END Primi-
tive. If the Primitive was placed off-screen, the Process is not
redrawn, and the user does not see the placement of the Primi-
tive.

Page 130

j ____ _____
'I

- ..- | - - "

PEI / TOP

6.2.11 COMMAND: TOP

The TOP command is used to display the first six positions of the
current Process structure.

This command is valid only in the PEI level.

COMMAND SYNTAX:

TOP

T

FUNCTION RESULT:

The first six positions of the Process structure being edited (or
the entire Process if the structure corsists of no more than six
primitives) are drawn from the START symbol down. The START sym-
bol is always the first position of a Process structure.

I

r

Page 131

A6

PEI / UP

6.2.12 COMMAND: UP

The UP command allows the user to scroll the current Process

structure up an indicated number of positions.

This command is valid only in the PEI level.

COMMAND SYNTAX:

UP (number of positions]

U

whe r e:

[number of positions] is an optional parameter indicating the
number of positions that the structure is to be "scrolled". If
this parameter is not used, the default condition is to scroll
the Process structure up six positions, which is analogous to
displaying the previous page.

FUNCTION RESULT:

The Process structure is scrolled up the number of positions
indicated by the optional parameter, if given. Otherwise the
structure is scrolled up six positions or to the top of the
structure if less than six positions precede the first position
currently displayed.

Page 132

-.-.-

6.2.13 TERMINATING A PEI SESSION Only one Process can be
created or edited durin-g a PEI session. To create or edit other
Processes or change to another level the user must terminate the
current PEI session and return to the DUI level. This is accom-
plished by giving the END command described earlier. The current
working database is left open and control is transferred to the
DUI level. The DUI ready and prompt is displayed.

I

Page 133

-- -.- w - - .

6.3 ARCHITECTURE DESIGN EDITOR (ADE)

The ADE is used to define the layout and interconnection of the
physical aspect of a data processing network. It is not necessary
to develop an architecture model if the user wishes to model
operations without regard to where these operations take place.
However, if items are routed through a system or if Processes at
one location trigger Processes in another then an architecture
model is necessary.

The ADE, with the capabilities of the 2647A terminal, allows the
user to create graphically a picture of the system architecture
by positioning symbols and connections. It also allows the user
to define the legal paths of communication between the connec-
tions (and along the connections).

Even if a user has defined a Legal Path Table while creating an
architecture, the system offers the option of automatically
building a Legal Path Table. The user is queried to resolve any
ambiguities. The Legal Path Table is used during the simulation
to control the routing of items that are being passed through the
system.

it is important to note that each node and link represented in
the architecture is intended to represent some system Resource
such as a CPU, disk drive, tape drive, or channel. The system
automatically creates model Resources for these system Resources.
The parameters of such Resources can be altered both in ADE--
though the DEFINE command--and in the DUI -- with the EDIT com-
mand.

Page 134

..- _ ., .. .I

xI

tw

0

o

w

4"

W

0

4.z

Pag 13-

~;d:E0

JIk 10

6.3.1 CONCEPTS FOR USING ADE This section is intended to fami-
liarize the user-wth te capabilities of the ADE so that he may
better understand the description of its use in sections further
below.

The view space is divided by vertical and horizontal grids.
Grid lines running vertically mark off the position and are num-
bered starting with one at the left side. Grids running horizon-
tally mark off the Y position and are identified with numbers,
starting with 1 at the bottom. Another aid to building the
architecture is variable symbol size. The user can specify the
size of symbols as he positions them in the view space. The user
is provided with commands to change his view screen position, to
position nodes which represent system Resources, to delete nodes,
and to change symbol names and sizes. A command is provided
which allows the usbr to specify connections between nodes.
These connections (or links) are defined as system Resources.
Any two nodes may be connected by more than one link. (Excep-
tion: When using Method A, B, or C algorithms to define the
Legal Path Table, two node types "TTY" and "LOD" are considered
"leaf-nodes" and should have only one connection to one other
node. See section 6.3.15.) The architecture developed using the
ADE becomes the basis for generating the Legal Path Table which
is used to route Items through a system.

The view screen on the HP-2647A terminal is approximately five
inches high by eight and one-half inches wide. This workspace is
too small for some systems. The ADE, therefore, gives the user a
workspace which is thirteen and two-tenths inches high by 20
inches wide and allows the user to move the viewspace anywhere in
this workspace to construct the architecture. The contrast
between viewspace and workspace is illustrated in the accompany-
ing figure.

6.3.2 USE OF THE ADE The ADE can only be accessed from the DUI
level. The ADE level is entered by issuing the following com-
mand:

ARCH

A

where:

Only one architecture is allowed per design database. This
prevents the user from specifying an architecture structure that
does not relate to the Processes and Resources that have been
defined. Experiments using common Processes, Resources, etc.
with different architectures can be run by following the pro-
cedure listed below:

1) While in the TSO Ready Level, COPY the project.DBF data file

j Page 136

to newproject.DBF data file where: project and newproject are
names of PROJECT databases for AI!;IM models.

2) Enter AISIM and use the ADE to edit the architecture contained

in newproject.DBF.

3) Simulations can now be run using the newproject database.

If there is no architecture definod in the design database, the
system will provide a blank grid on the screen and a pound sign
() prompt for the user to enter ,:ommands. If an architecture has
already been defined, then the old architecture will be displayed
and the user will be provided a pound sign (#) prompt for enter-
ing commands. The following pages give a summary of commands
available in the ADE and their uso. These commands are legal in
only the ADE level.

t

I

ADE COMMAND SUMMARY

COMMANDS:

CHANGE NAME {nodell,(name2]

CHANGE TYPE [nodel),ttypel

CHANGE SIZE {nodel},[sizej

C HG

CONNECT {nodell,{node2},{link)

CON

DEFINE {symbol-type) ,(Resource-name)

PATH (nodel),[node2),{Linkl),...,fLinkn}I DEF
DELETE {namel},(name2],...,[name3]

DEL

END

LIST PATH

L PT

L

MOVE {nodel} , x-position} , y-position}

M

PLACE {node-type),{riodel,{x-position},{y-position},tsizeI

P

RECON [link)

R

Page 138

SAVE

WINDOW Idirectionl, Lnumber-of-gridsl

W

Page 139

ADE SYMBOLS

6.3.3 ADE SYMBOLS Symbols used to construct an architecture are
generic-in nature. The shape associated with symbols is
representative of a computer system's hardware elements although
no implicit attributes of computer hardware elements are given to
the symbols. Attributes defined for a symbol which make it
represent an actual physical device must be defined by the user.
Attributes are attached to symbols by the DEFINE command.

Symbols in an architecture correspond directly with Resources
This relationship applies to nodes and links. All symbols which
are directly connected correspond to an entry in the Legal Path
Table.

One other implied relationship applies to the symbols in an
architecture. The symbols TTY and LOD are considered to be "ter-
minal" symbols by the Legal Path Table . Therefore , these two
symbols have a constraint that they be only connected with one
link to one of the other symbol types. Also, TTY and LOD symbols
can not be directly connected. (These constraints are enforced by
the LPT generation not the ADE.)

The complete symbol set for AISIM architecture is shown in the
accompanying figure.

j Page 140

, '
t - .-

_ _ _ p A-RC 1I DK

SQ ECPLG
I DSK

Page 141

ADE / CHANGE

6.3.4 COMMAND: CHANGE
The CHANGE command allows the user to modify the name, type, or

size of an ADE symbol which represents an architecture mode.

COMMAND SYNTAX:

CHANGE NAME, {namel1,{name2l

CHANGE TYPE, [namel},ftype}

CHANGE SIZE, {namell,{size)

CHG

where:

(namell is a required parameter indicating the name of the symbol
which is to be changed where: namel should be 1-8 alpha numeric
characters. For the commands CHANGE TYPE and CHANGE SIZE, name
must designate a Node.

{name2} is a required parameter specifying a new name for the
current symbol of namel where: name2 should be 1-8 alpha numeric
characters.

{type} is a parameter specifying that the symbol of namel is to
be chariged from its current type to "type" which is one of the
legal symbol types.

jsize} is an optional parameter specifying that the symbol of
namel is to be changed from its current size to "size" where:
size can be the number of letters of the name (up to 20). If no
s-ze is specified the default size for the symbol is a width
equal to the number of characters in its name.

FUNCTION RESULT:

The indicated changes are made to the symbol "namel". When the
user changes a symbol type or size there is no impact on the
other parameters. When the name is changed, the default size is
the width of the name.

Page 142

I

- _ _ _ - -

ADE / CONNECT

6.3.5 COMMAND: CONNECT

The CONNECT command is used to show connections between architec-

ture nodes by placing links between them.

COMMAND SYNTAX:

CONNECT {nodel},{node2},{link}.[F]

CON

where: {nodel} is a required parameter indicating the first sym-
bol of a from-to pair of symbols to be connected and where: nodel
is 1 to 8 alpha or numeric characters.

{node2} is a required parameter indicating the seconJ symbol of a
from-to pair of symbols which are to be connected and where:
node2 is 1 to 8 alpha or numeric characters.

{link) is a required parameter indicating the link of the connec-
tion which is to be made and where: link is 1 to 8 alpha numeric
characters.

[.F] is an optional parameter appended directly to link indicat-
ing that the communication link between nodes,nodel and node2,is
full-duplex. The effect of this is to create two links, a
"link.A" and a "link.B". Links defined without this parameter
bear a half-duplex default.

FUNCTION RESULT:

If nodel is not in the viewspace when the command is issued, the
user will be prompted with the message,

THE FROM NODE MUST BE ON THE SCREEN TO ESTABLISH CONNECT: COMMAND
ABORTED:

If nodel is on the viewspace, a cursor (+) is displayed at nodel.
At this point, the user has two alternatives:

1) he may cause the system to connect the two symbols with a
straight line through their centers by depressing the carriage

return again (cr) or,

2) he may cause the system to produce a shaped line segment from
symbol 1 to symbol 2 by:

a) moving the cursor using the HP2647A graphics controls,
to a position where he wishes to bend the line,

Page 143

I -- I- I4 . -

b) typing a period (.),

c) repeating a) and b) until a maximum of six corners have
been created.

d) completing the line segment from the last corner to symbol
2 by entering a carriage return (cr).

Alternative 2 allows the user to place symbols randomly and later
show connections that would be obscured or confusing if generated
by Alternative 1. Connections can be straightened or have corners
added to them with the RECON command.

In addition, two entries are entered in the Legal Path Table.
The first is an entry for the path from nodel to node2 via link,
and the second entry specifies a path from node2 to nodel via
link. If link is defined as full-duplex, then the path from
nodel to noe-2 uses "link.A", while the path from node2 to nodel
uses "link.B". (See section on "Define" command). Nodel is then
established as the link's from node and node2 is established as
the link's to node. All su-equent pathsusing this full-duplex
link will use "link.A" if they go in the direction of the from
node to the to node and will will use "link.B" if they go in the
opposite diretion.

Page 144

Al_

ADE / DEFINE

6.3.6 COMMAND: DEFINE

The define serves two functions. :t is used to define attributes
to be associated with symbols (th s allows the user to make the
logical assignment of physical device characteristics to the
Resource). DEFINE is also used to indicate the legal path between
nodes in the architecture.

COMMAND SYNTAX:

DEFINE {symbol-type},(Resource-name)

DEFINE PATH {nodel},{node2},{linkl},...,{linkn}

DEF P

where:

{symbol-type} is the symbol type (sqr,dia,lod,tty,etc.) for which
the user wishes to define attributes.

(Resource-name) is an optional parameter that specifies the name
of an existing Resource from which the symbol-type attributes are
to be copied.

[nodel} is the name of the node from which the Legal Path is to
run.

{node2) is the name of the Node to which the path is to run.

flinkl} to (con-n) are the names of the links along which the
legal path between the two nodes nodel and node2 is to run.

FUNCTION RESULT:

If the DEFINE command is issued with the format

DEFINE {symbol-type)

a form will be displayed that shows the parameters currently
assigned to this symbol type. The user may modify these
parameters as desired. If the ATTRIBUTES PRESENT field contains
"yes" then a form will be displayed allowing the user to define
attributes and their values. After symbol attributes have been
defined, the Resource automatically created in association with
the symbol will be given the attributes that were defined for
that symbol type.

If the syntax of the command is:

Page 145

441 '

DEFINE {symbol-typel,(Resource-name)

the system will present the user with a form to be filled with
the top level attributes of the named Resource. The user can
check the data and/or modify it. When entered, the data last
displayed in the form will be used to create the top level attri-
butes of the symbol type. If the ATTRIBUTES PRESENT field is
"yes" the attributes of the named Resource will be displayed.

This data can be checked and/or modified. When the form is
entered the data list displayed will be used to create the secon-
dary attributes of the symbol type.

If the syntax of the command is,

DEFINE PATH mnodel), node2},{linkli,...,{linkn}

DEF P

Entries in the Legal Path Table will be made (which can be
inspected with the LIST command).

There are several rules constraining the creating of a legal path
in ADE.

First, a point-to-point path is a path between two nodes

that are separated from one another by a single Link,
i.e., there is no other node between them. Thus, in the
architecture shown , the path between nodel and node2 is a
point-to-point path.

Secondly, a sub-path of a given path is any one of the
segments of the path that go to the same node as the path
but from any one of the nodes-the original path passes
through. For example, in the architecture shown , a
defined legal path from nodel to node4 will have the fol-
lowing sub-paths: (1) from node2 through node3 to node4
and (2) the point-to-point path from node3 to node4. The
path from nodel to node3 through node2 is not a sub-path
of the original path because it does not go to the same
node as the original.

With these two definitions, we can state five quite general
rules governing the definition and deletion of legal paths. They
are:

Page 146

1) A Legal Path between two nodes is a collection of Legal Path
Table entries of the form:

FROM TO NEXT LINK

which indicates that the path from node FROM to node TO goes to
node NEXT via link LINK.

2) There may be only one Legal Path between any two nodes.

3) There must be a path between any two nodes that are directly
connected.

4) Use of the two links implied by a full-duplex name for a con-
nection follows these rules:

a) When a connection Con.F is established (actually Con.A

and Con.B) with the command,

CONNECT NODE1,NODE2,CON.F

Nodel is established as the from node for that connection
and Node2 is established as the to node.

b) Any path which uses the connection CON.F in the direc-
tion from its from node to its to node will use CON.A.

c) Any path which uses the link CON.F in the direction
from its to node to its from node will use CON.B d) Estab-
lishing tN-e connection between two nodes implicitly
defines a point-to-point path between them.

Page 147

. -i-... .- a - --

These five rules have a number of restriction of which the user
should be aware:

1) Defining a path from one node to another implies defining
paths from all nodes along the path to the last node in the path.

2) Changing a path (redefining, deleting) changes any other

paths that use it as a sub-path.

3) A point-to-point path cannot be deleted.

4) When a path between two directly connected Nodes is deleted a
point-to-point path is automatically restored.

5) Deleting a node or link from an architecture removes any
paths which use the deleted entity.

6) Changing the name of a node or link changes the name of the
entities in the Legal Path Table as well.

7) Cyclic paths are not allowed.

Page 148

i - - - - --

ADE / DELETE

6.3.7 COMMAND: DELETE

The DELETE command allows the user to delete nodes or links in
the architecture or parts (or all) of the previously defined
Legal Path Table (LPT).

COMMAND SYNTAX:

DELETE {namel},...,{name-n}

PATH {nodel},{node2}

DEL

where:

{namel} is a required parameter that specifies the node or link
to be deleted.

{name-n) is a an optional parameter which specifies an additional
node or link to be deleted.

(nodel) and [node2} are required parameters indicating the nodes

between which the legal path is to be deleted.

FUNCTION RESULT:

When a symbol is being deleted, the symbol and all connections to

it are erased from the screen and removed from the database. If a
connection is being deleted, the connection is erased from the
screen and is removed from the database.

When a path between nodel and node2 is deleted from the Legal

Path Table, however, any sub-paths which are in this path are
unaffected.

(NOTE: if the command DEL * is issued, the entire architecture
will be deleted].

tg1
Page 149

I I --II i i

ADE / END

6.3.8 COMMAND: END

The END command is used to terminate the ADE session.

COMMAND SYN-AX:

END

FUNCTION RESULT:

The END command term nates the edit mode of the ADE session and
automatically triggers the generation of a Legal Path Table
(LPT). The user wil be questioned as to the method of genera-
tion for the LPT and for information necessary to clear up ambi-
guities in its generition before control is returned to the DUI
level.

Page .50

I

ADE / LIST

6.3.9 COMMAND: LIST

The LIST command enables the user to list the legal paths that

have been defined in the architecture.

COMMAND SYNTAX:

where:

{nodel} is the name of the node at which the path to be listed
begins.

[node2) is the name of the node at which the path is to end.

FUNCTIONAL RESULT:

If the command syntax is LIST PATH, a format like that below is
displayed:

FROM: node3 TO: node2

PATH:
linkl,link2,...,linkn

If the command syntax is LIST LPT, the entire Legal Path Table is
displayed.

Page 151

4J

ADE / MOVE

6.3.10 COMMAND: MOVE

The MOVE command allows the user to change the location of a Node
in the architecture.

COMMAND SYNTAX:

MOVE {node},{x-position},{y-position}

M

where:

[node} is the name of the node to be moved.

{x-position} is the x-coordinate of the new position, i.e., the
postion to which the node is to be moved.

{y-position} is the y-coordinate of the new position, i.e., the
position to which it is to be moved.

FUNCTION RESULT:

The node and all links to or from it will first dissapear from
the screen. The node will then be redrawn at the new position
and the previously defined connections with other nodes will
reappear.

r

Page 152

_ _ _ _.- -

ADE / PLACE

6.3.11 COMMAND: PLACE

The PLACE command allows the user to position a legal ADE symbol

in the view space at specified coordinates.

COMMAND SYNTAX:

PLACE {typeJ,{node},(x position},{y positionl,[size]

P

where:

(type) is a required parameter which specifies one of the legal
ADE symbol types

[node) is a required parameter that indicates the name that is to
be displayed and associated with this placement of a symbol and
where: name is 1 to 8 alpha or numeric characters.

{x position) is a required parameter that specifies the horizon-
tal position of the symbol relative to vertical grid number posi-
tion 0. The "x position* must be within the limits of the view
screen.

{y position) is a required parameter that specifies the vertical
position of the symbol relative to horizontal grid position 0.
The "y position" must be within the limits of the view screen.

(sizel is an optional parameter specifying the size of the symbol
to be placed. The default size is the number of characters in
name. Legal sizes are any natural number.

FUNCTION RESULT:

A symbol of specified type appears on the view screen at the x, y
positions indicated in the command. The symbol name appears
within the symbol and the symbol size is regulated by the size
parameter.

Page 153

'

I

ADE / RECON

6.3.12 COMMAND: RECON

The RECON command allows the user to alter the shape of a given
link, giving it corners, decreasing the number of corners it has,
or adding to the number of corners it has.

COMMAND SYNTAX:

RECON [link)

RE

where:

[link) is the name of the link to be redrawn.

FUNCTION RESULT:

The link will disappear, but the cursor (+) will be displayed at
the node defined as the from node (see CONNECT command). As with
the CONNECT command, the user has two alternatives:

1) cause the system to connect the two symbols with a straight
line through their centers by hitting another carriage return
(cr) or,

2) cause the system to produce a shaped line segment from symbol
I to symbol 2 by:

(a) moving the cursor using the HP2647A graphics controls,

to a position where he wishes to bend the line,

(b) typing a period (.) and a carriage return (cr)

(c) repeating (a) and (b) until a maximum of six corners

have been created.

(d) completing the line segment from the last corner to symbol
2 by entering a carriage return (cr).

Page 154

a I

ADE / SAVE

6.3.13 COMMAND: SAVE The SAVE command copies the contents of
the working database into the user's permanent database.

COMMAND SYNTAX:

SAVE

FUNCTION RESULT:

The permanent database is replaced with the contents of the work-
ing database, and the user is returned to the ADE Ready state - #
prompt. This command is useful when the user is defining a large
system because it allows the user to protect the work done up to

the point of issuing the SAVE command.

Page 155

at

ADE / WINDOW

6.3.14 COMMAND: WINDOW
The WINDOW command allows the user to move the view screen to any

position within the legal view space.

COMMAND SYNTAX:

WINDOW {directionl},[n],[direction2],In]

W

where:

{directionlj is a required parameter that specifies the direction
to move the view screen. Legal directions are:

U
D
L
R

where: U = up
D = down
L = left

R = right

(direction 2) is an optional parameter that specifies the direction
to move the view screen. Legal directions are:

U
D
L
R

where:
U = Up
D = down
L = left
R = right

[n] is an optional parameter that specifies how many grid posi-
tions the view screen is to be moved from its present position.
If "n" is not given, a default of half the screen width or
heighth is assumed.

FUNCTION RESULT:

After the command has been issued the screen is cleared, new
coordinates are calculated, and the screen is redrawn as seen
from the new position. View screen coordinates do not change;

J Page 156

I
4 I I

only view space coordinates. If the value of "n" is too large
causing the view screen to go beyond the limits of the view
space, the value of "n" will be truncated to prevent the system
from exceeding the view space bounds.

When the ADE is first entered, the view screen is positioned at
the upper left corner of the view space.

I
i Page 157

6.3.15 TERMINATION OF AN ADE SESSION The ADE session is ter-
minated by issuing the command,

END

This completes the edit portion of the ADE session and begins a
sequence of events that leads to a return to the DUI Level.
Before control is returned to the DUI Level, however, the system
gives the user the option of creating a new Legal Path Table.
The Legal Path Table (LPT) created by the system is based upon
the architecture that was created. The LPT consists of a two
dimensional array. Entries in the array represent a means of
getting from one node to another.

Entries contain two pieces of information:

1) the next node in the path from Node 1 to Node 2
2) the link used to get to the next node.

There are three basic methods of generating a Legal Path Table at
the end of an ADE session. Therefore in response to the END com-
mand, the system questions the user:

BY WHICH METHOD DO YOU WISH TO CENERATE THE LPT (A,B, OR C)?

IF YOU HAVE AN ESTABLISHED LPT OR IF YOU WISH TO SKIP THIS STEP, TYPE 'END"

IF YOU DESIRE MORE INFORMATION ON METHODS A, B, OR C, TYPE -INFO-.

After the pound sign () prompt, the u:;er may enter either "A",
"B", "C", HELP, or "INFOO. If the user enters END and a carriage
return after this or any subsequent # prompts without responding
to the previous prompt question, any currently defined LPT,
including none, will remain in effect, and control will return to
the DUI level.

If any of the three options are chosen, previously defined LPT's
will be deleted from the database. Depending on whether A,B or C

Page 158

t
- .

I

is entered, the system response varies. One response is the
same. Since these algorithms may take several minutes, the user
is provided with a message that lets him know the system is pro-
gressing with the LPT. The prompt initially reads "Generating
LPT ". After so many routes have been found, the message will
change to "Generating LPT 2" and so on. The following paragraphs
discuss the individual processing performed in response to
methods A, B, and C.

METHOD A - Method A directly connects adjacent nodes in the
architecture but no other paths are generated. This method is
used when message routing paths is not of interest in the model.
This method requires the least processing time to generate the
LPT. After the user selects method A, the system will begin gen-
eration of the LPT. In general, AISIM will not solicit any
further information if this method is used.

Method A detects two types of error. If the generator detects an
unconnected node, the system will output the following error mes-
sage:

UNREACHABLE NODE..."node name"

and control is transferred to the DUI level. If multiple links
connect nodes, the system will prompt the user for resolution of
ambiguous paths. The system will prompt with:

GOING FROM "Node namel" TO "Node name2" CAN GO

1. Through "next Node name" BY CHANNEL "channel name"
2. Through "next Node name" BY CHANNEL "channel name"
ENTER THE NUMBER OF THE ROUTE YOU WANT TO USE

All "Through" options will be listed. The choice of path is
selected by entering the number of the path after the pound sign
(#) prompt. If there are ambiguous paths for other node pairs,
the user will be prompted for resolution. If the user should
ABORT the LPT generation the following prompt will be displayed:

UNABLE TO SAVE LPT

Control is then passed to the DUI level. If all ambiguities are
clarified, the system will complete the generation of the LPT,
and issue the following message:

SAVE OF LPT COMPLETE

The user is then at the DUI level.

METHOD B - Method B should te used when there is extensive rout-
ing through the architecture. Using Method B, AISIM will algo-
rithmically find all possible legal paths through the system.

Page 159'a

This can involve a lot of processing in fully connected architec-
tures because a path from every node to every other node must be
defined. (If there are 20 nodes then there will be 380 paths, 20
times 19.)

The AISIM responses for method B are similar to those described
in method A. Because AISIM will fully connect al' nodes in the
architecture there are bound to be many ambiguous paths. The user
will be prompted to resolve all ambiguous paths.

METHOD C - Method C should be used when there is extensive rout-
ing through the architecture, also. Using Method C, AISIM wil
algorithmically find all possible legal paths through the system
but will assume that the path for directly connected nodes in the
architecture is the direct link. This can substantially decrease
the number of paths the user must resolve.

The AISIM responses for method C are similar to those described
in method A.

The HELP request causes the system to show the available com-

mands.

The INFO request prints the following:

METHOD A defines as legal paths only connections directly between
adjacent Nodes. Longer paths must be handled explicitly in the
user Processes.

METHOD B generates all possible paths between each Node pair. You
must identify default legal paths for each Node pair.

METHOD C generates all possible paths between each Node except
for directly connected Nodes. In the case of adjacent Nodes, the
direct connection is assumed as the legal path.

Type END and give a carriage return to exit the LPT generation.

Page 160

i ,4

In the accompanying figure, an AISIM architectrue is shown. This
architecture conne(s nine nodes together with 10 links. Using
method A , the user is required to resolve 2 ambiguities. Using
method B! the user is required to resolve 20 ambiguities. Using
method C, the user is required to resolve 12 ambiguities. The
Legal Path Tables using each of these methods is shown.

HOME LEFT 0. UP
*44 ,. ! .

351

30e -- - ! \ s7C9 --

2Sz

.4 /

2 ~~~. .2

, ' __

e e 5 0 6 aS

Page 161

method As

LPT GENERATED
FROM TO NEXT VIA

NODE NODE NODE LINK

A C C Cl

B C C C?
C A A Cl
C B B C2
C D D C3
D c C C4

D E E C6
D F F CS

E D D C6
E G G CE
F D D CS
F G G C7

G E E Ce
G F F C7

c H H C9
C I I Cio
HG c C9
I C G CiO

* Page 162

i -

method B:

LFT GENLRATFD
i N)M tI N.XT VIA
Nul)r NODF N JI)E I [NK

A B £ Cl
A C C L: 1
A D C Cl
A E r c: 1
A F C Cl
A C C Cl
A H C t: I
A I C ci
l A C C2

B C C C
-

B D C C2

p F C C2

9 C C C

A H C C2

I C C2
C A A C1
C B B C
C D D C3
C E D C3
C F D C3
C C D C3
C H D C3

C I D C3
D A C C4
D B C C4
D C C C4
D E E C&

D F F CS
D c E C6
0 H E C6
o I E C6
E A D C6
E B D C6
E C 0 C6
F 0 0 C6
F F c C9
E G G Ca
E H c Ca
E I G Ca
F A D CS
F 3 D CS
F C D CS
F D D C(;
F E C C7

F G C C7
F H C C?
F G C C7
C A E LS
G B E Ca
C C E Ce
c D E CA
C E E Ca
C F F C?

H H C9
L I I CiO
H A C C9

B G C9
C C C9

H G C C9
E G C9

H F G C9
H G C C9
H I G C9
i A G CIO
I B G C1O

c G CIO
C G Ce10

I E C CiO
I F G CIO

! G G Cie
I H G CIO

Page 163

_~-

method C:

A N k 1r A Ci

, u ofl[) 1U, L :

A C C
A D C LIAE c C-I

A G C

A I C
4 A

C C
4 ID C .
14 1 C

' F C -
14 C
14 C (72

1 7 C t
C A I Li
C i B
C D D 3)

C I B
C F O C3
C G D (I
C H 7 0
C D (
D A C C4
D C r4

D C F4
D EE Ch

D F F cl;
D G f (6
D H E C,
0 E (6

IA 0 Cob D (-b

E D C6E D D"e
E FG r
E£ G co
E HG ce
L G {"R
F A D cS

F- C I CS
F D C 1
F f" G C7
F G Gc
F c C7
F G (C7
G A E cB
G 1 E C a
G C E C8
G D E CA
G E F C8
G F F (7
G m C9
G I CIO
4 A G C9

I9 G C9
S C G C9

Di c C9
H r G C9
H F G C y
m G G C9
H I G C9
1 A G CIO

9 G CIO
!C G CIOl G CiO
IE G CIO

F G C. 1
G G CIO

Page 164

I . II Ii. CI

F AI

7. USE OF THE ANALYSIS USER INTERFACE

After completion of model design using the DUI, the model can be
exercised using the AUI. At this point all entities associated
with the model have been defined. Several pieces of information
must be supplied, however, before the simulation can be run. It
is still necessary to specify the external world stimuli; (the
Scenario) under which the model is to perform. Two other
categories of information must also be provided to the simulator:
the user must describe the output Variables to be displayed as a
result of the simulation and the user must describe how they are
to be displayed.

The user must select which of possibly several available
Scenarios (which were defined in the DUI) is to be used for the
current simulation run. The user can modify Loads and Scenarios
only by changing the values of Constants that serve as parameters
in them, at the beginning of a simulation. The user may specify
one of ten random number seeds for calculating random numbers.
Random numbers are used to generate the stochastic times for Load
triggering inter-arrival times and Action durations. Also, proba-

bilistic branching is controlled by random samplinc,. By changing
the random number seeds, the user can test the effect of dif-
ferent random number streams on simulation statistics. The user
may also define a stopping point for the simulation in terms of
conditions on the values of certain entities that change during
the run. These entities are automatically examined at certain
intervals during the run. If the conditions are satisfied, the
simulation is temporarily suspended to allow the user to interact
with the model. Current statistics and values of system entities
can be displayed at the terminal. The user can also set new con-
ditions and change the values of Variables.

During simulation, statistics are kept on Variable values, Item
throughput, Resource utilization, Queue time, Queue lengths,
Action timing, Process execution, Process timing, and Process
logic execution. A set of output reports organizes these statis-
tics for printing off line or viewing on-line while in the AISIM
Ready level after completion of the simulation run. Plots of
selected model parameters, however, may be drawn on the screen of
the HP-2647A when simulation is halted at a breakpoint, end of
period, or end of simulation.

The commands that control the simulation and the interactive and
graphic capabilities are described on the following pages.

When analysis mode is entered the user is asked the following
question, if there is more than one Scenario in the project data-
base:

WHICH SCENARIO DO YOU WISH TO TRANSLATE?

The user must respond with a valid Scenario name, one that has

Page 165"t-

been defined previously in DUI level. A return in response to

this question will cause AISIM to list available Scenarios.

If the Scenario name given is invalid the system will respond:

INVALID SCENARIO NAME - REENTER

The user should then enter the correct Scenario name.

When translation of the model and Scenario has completed, the
simulator reads the translated database and checks for errors. If
the simulator detects one or more errors, the message

ERRORS DETECTED IN MODEL TRANSLATION

is displayed, the AUI level is exited and the user is returned to
the AISIM Ready level.

At this point the user should enter the command REPORT. This,
automatically invokes the TSO editor on the Project report data
set. The user should use the Find command of the TSO Editor to
list all occurances of "####". This will result in a list of all
errors detected during initialization. Each error documents a
problem detected in the model..

If no errors are detected, the following message is displayed:

NO ERRORS DETECTED IN MODEL TRANSLATION
YOU MAY NOW ENTER COMMANDS

The system provides a # prompt and is ready to accept any of the
valid AUI commands. These commands are described later in this
section.

During each of the three phases of analysis - 1) pre-simulation
(before the first GO command is issued) 2) mid-simulation (after
the first GO command is issued but before simulation termination)

*and 3)post-simulation (after simulation termination) the user can
invoke different commands.

PRE-SIMULATION COMMANDS

GO G END LIST L LISTVAL LV

EDIT E SETBREAK SET CANBREAK CAN DEFPLOT DEF

INFRES GET

MID-SIMULATION COMMANDS:

GO G END LIST L LISTVAL LV

EDIT E SETBREAK SET CANBREAK CAN PLOT

Page 166

. -- - I i__ _ _ _ _I - -- - .' ".

SAVE S

POST-SIMULATION COMMANDS:

END LIST L LISTVAL LV PLOT SAVE

S

The simulation is started with the GO command.

The SETBREAK and CANBREAK commands are used to establish and can-
cel stopping conditions (or breakpoints) for the simulation. EDIT
is used to make temporary changes to Constant, Variable,and ran-
dom number seed (the keyword is STREAM) values. A limited
number of Resources in the model sometimes causes a bottleneck
which is evidenced by a waiting line or queue. The effects of
this queueing may be eliminated by changing the available
Resources to an unlimited quantity. The INFRES command is used
to do this on a temporary basis. LIST and LISTVAL are used to
display model entities, their attributes, and their values.
LISTVAL also allows the user to examine the current random number
Seed. The END command returns AISIM to the AISIM Ready level.

The DEFPLOT and PLOT commands are used to specify what informa-
tion is to be graphed at the terminal and to request the graph to
be displayed at the terminal, respectively. The DEFPLOT command
can only be used prior to the start of simulation since the simu-
lator must know what statistics to sample. The user must define
the graphs to be plotted before issuing the first GO command.

Simulation may be performed in periods that correspond to the
Loads defined in the translated Scenario, and is suspended at the
end of the number of periods specified. The number of periods to
be simulated is specified as an optional period of the GO com-
mand. The user is prompted at the end of the period with the
message:

END OF PERIOD

YOU MAY NOW ENTER COMMANDS

and with an audible 'beep' at the terminal.

The user can now make changes in the values of Variables, set
breakpoints, define and display plots, or cancel breakpoints. By
suspending the simulation at the end of a period, the system
allows the user to dynamically interface with the model.

A similar result occurs at a user specified breakpoint, except
that the message reads:

BREAK POINT REACHED:
(description of the condition of the breakpoint)
YOU MAY NOW ENTER COMMANDS

Page 167

je

An audible 'beep' is also sounded at this point.

The AUI level commands are described in detail on the following
pages.

Page 168

1
4

ANAYZ (A) AE

* --

,7E~A

DE IP L UET E 1

VALJEA
x IS) TTJARSSF

UATO RuhAt

1 oMN

_________ An
114FES SI ASS" -

* ~INFTN'ES

"S! II

Page OF69l

1l L)VAU FA

AUl COMMAND SUMMARY

COMMANDS:

CANBREAK

CAN

DEFPLOT (entity-type) , entity-name)

DEF

EDIT (entity-type), (entity-name},inew-valueI

E

END

GET (settypel , setname)

GO

G

H-ELP

INFRES

LIST fentity-type/def)

L

LISTVAL {entity-typel ,[entity-name)

LV

PLOT

SAVE {settypel ,{setnamel ,{descr)

SETBREAK fentity-type},jentity-name),{rel-operl,fvalueI

SET

Page 170

AUI / CANBREAK

7.1 COMMAND: CANBREAK

The CANBREAK command allows the user to cancel a previously

defined breakpoint. See SETBREAK.

COMMAND SYNTAX:

CANBREAK

CAN

FUNCTION RESULTS:

A previously defined breakpoint is canceled.

This command is valid prior to a simulation period only.

P
1

Pae 7

AUI / DEFPLOT

7.2 COMMAND: DEFPLOT

The DEFPLOT command allows the user to define a plot of the
activity of a specific entity over a period of simulation.

COMMAND SYNTAX:

DEFPLOT {entity-type},fentity-name}

DEF

where:

{entity-type} is a required parameter indicating a valid ANALYSIS
system entity-type (i.e., Variables, Queues, Resources,
Processes, Items).

{entity-name} is a required parameter indicating the name of the
entity whose value is to be plotted.

FUNCTION RESULT:

This command causes an attribute form to be displayed, from which
the user must select one attribute. The list of attributes
depends on the entity-type selected.

When the attribute form has been entered, a statistics form is
displayed, from which the user must select one statistic. The
list of statistics displayed depends on the entity-type and
attribute selected.

If only one choice for either an attribute or a statistic exists,
the form is not displayed.

A maximum of ten plots may be defined during any ANALYSIS ses-
sion.

Page 172

allII .. | ||_ .

FI

AUI / EDIT

7.3 COMMAND: EDIT

The edit command in the ANALYSIS mode allows the user to change
the value of either a Constant, 3 variable, or specification of
the random number seed.

COMMAND SYNTAX:

EDIT {entity-type},{entlty-name},{new-value}

E

where:

{entity-typel is a required parameter indicating which type of

entity is to be changed (either CONSTANT, VARIABLE, or STREAM).

{entity-name} is a required parameter indicating the name of the
Constant or Variable which is ti be changed. When changing the
random number seed this field i.- STREAM.

{new-valuel is a required parameter indicating the new value of a
Constant or variable or the number of another STREAM. The new
value may be expressed in one to twelve digits, and includes the
value zero. The legal values of "New Value" when specifying a
random number seed are 1 through 10.

NOTE: Constants may be changed only before the start of the first
simulation period. Variables and Seeds may be changed before the
start of any simulation period or at a breakpoint.

FUNCTION RESULT:

The value of the Constant or Variable or Seed is changed to the
new value, and remains at that value until changed by another
EDIT command. This command only affects the current translation
of the database; therefore, at the end of an ANALYSIS session the
Constant or Variable or Seed is restored to its original value.

If the value of the SEED is not changed, default values are:

branch: 2, for calculating the probability of branching

Load : 1, for statistical scheduling methods sampling

Action: 3, for action distrobution

Page 173

j

AUI / END

7.4 COMMAND: END

The END command is used to terminate an ANALYSIS session.

COMMAND SYNTAX:

END

FUNCTION RESULT:

This command causes all displays to be cleared and asks the user
"Do you want to save any plots or plot definitions? (Y/N). If
the answer is yes, the user remains in the AUI level. If no, the
user is returned to the AISIM READY level.

Page 174

,-II n ..I i , •

AUI / GET

7.5 COMMAND: GET

The GET command allows the user to retrieve previously saved plot
definitions.

COMMAND SYNTAX:

GET DEF {setname)

where:

{setname} is the name of the set containing the plot definitions.
The GET command may be issued only before the first simulation
period.

FUNCTION RESULT:

The set of plot definitions is retreived and made the current set
to be used by the ANALYZE function.

Page 175

, .

AUI / GO

7.6 COMMAND: GO

The GO command allows the user to start or resume a simulation
run.

COMMAND SYNTAX:

GO (n]

G

where:

n is an optional parameter that specifies how many periods the
simulation is to run. If not given, the default result is that
the entire simulation defined by the selected Scenario is exe-
cuted. If an n greater than the number of periods specified in
the Scenario is entered, the simulation executes all periods
specified in the Scenario and no more.

FUNCTION RESULT:

This command, which is valid before any simulation period or at a

breakpoint, begins or resumes the simulation of the translated
Scenario.

If used to resume the simulation, resumption occurs at the break-
point or at the beginning of the next simulation period.

Page 176

__ - _--._ _ _ _ _ _ _ _

.. . . , IIII I I

AUI / HELP

7.7 COMMAND: HELP

The HELP command lists, on the user's terminal, the commands that
are valid during each of the three different stages of an
ANALYSIS session (prior, during, or after simulation).

COMMAND SYNTAX:

HELP

FUNCTION RESULT:

The HELP command may be invoked prior to, during, or after a
simulation run. When invoked, only those commands that are valid
at that point in the ANALYSIS session are displayed following the
last line appearing on the screen.

This command is valid at any time during an ANALYSIS session.

Page 177

4 -_ _ _ _ - - - - | --

During each of the three phases of analysis, the user receives a
different output from the HELP COMMAND.

HELP INVOKED PRIOR TO SIM:

GO G END LIST L LISTVAL LV

EDIT E SETBREAK SET CANBREAK CAN DEFPLOT DEF

INFRES GET

HELP INVOKED DURING SIM:

GO G END LIST L LISTVAL LV

EDIT E SETBREAK SET CANBREAK CAN PLOT SAVE

S

HELP INVOKED AFTER SIM:

END LIST L LISTVAL LV PLOT SAVE

S

Page 178

AUI / INFRES

7.8 COMMAND: INFRES

The INFRES command causes the simulation to assume the existence
of infinite available Resources.

COMMAND SYNTAX:

INFRES

FUNCTION RESULT:

This command, which is only valid before the start of the first

simulation pe-iod, allows the assumption that infinite Resources
available to :he Scenario being simulated.

j Page 179

..- 1 -- ,. . .

I

AUI / LIST

7.9 COMMAND: LIST

The LIST command displays all entities of a specified type.
Included with each entity is its name, its description, and any
defined parameters.

COMMAND SYNTAX:

LIST {entity-type)

L

where:

{entity-type) is a required parameter indicating any of the
specific model entities listed below.

ENTITY ABBREVIATION

CONSTANT C
RESOURCE R
PROCESS P
VARIABLE V

QUEUE Q
PLOT none

ITEM I
DEF none
TITLE none

This command is valid at any time during an ANALYSIS session.

FUNCTION RESULT:

The user is presented with a list of all existing entities of the
requested type. If the argument is not an entity-name,
(as DEF)
a list of all the currently defined plots is given.

Page 180

AUI / LISTVAL

7.10 COMMAND: LISTVAL

The LISTVAL command allows the user to display all statistics
associated with the named entity for all attributes associated
with the entity.

COMMAND SYNTAX:

LISTVAL {entity-type},[entity-namel

LV

where:

[entity-type) is a required parameter indicating a valid ANALYSIS
system entity-type. STREAM is valid entity-type field.

[entity-name) is a required parameter indicating the name of the
entity whose value is to be listed. When requesting the random
number STREAM for Loads, branches or Actions, this field would
specify Load, BRANCH or Action.

FUNCTION RESULT:

The name of the entity requested is printed out with a listing of
all statistics for attributes associated with that entity and
their values.

The prompt "**** (CR/NO) TO (CONTINUE/TERMINATE) ****" is
displayed. If the user wishes to end the listval listing, "NO"
is entered and the AUI READY prompt is displayed. If instead the
carriage return is depressed, the next page of the listing is
displayed, if there is one, with the prompt displayed again. If
there is no further data to be displayed, the user is returned to
the AUI READY level.

Page 181

AUI / PLOT

7.11 COMMAND: PLOT

The PLOT command allows the user to produce a graph c f an

entity's activity for which a plot has been previously defined.

COMMAND SYNTAX:

PLOT

FUNCTION RESULT:

This command, which is valid at the end of a simulatfon period or
at a breakpoint, causes the display of a form contairing the pre-
viously defined plot titles. From this form the user may select
any, all, or none of the listed titles.

When the selected titles have been entered, the user is presented
with the plot grid. The selected plots are produced znd the user
is prompted for more ANALYSIS mode commands.

Each of the plots is produced in a unique line pattern.

An example of the form that is displayed to allow the user to
select a plot is shown .

This is the only means for viewing simulation results while in
the AUI level.

Page 182

4t i .

E; - A~ t4 E I E , Y- 7

~~~h ITEM~LK -
M

* t Page 183

Page 183



/

AUT / SAVE

7.12 COMMAND: SAVE

SAVE is used to save current plot definitions or plot data and

transfer them to the analysis data base.

COMMAND SYNTAX:

SAVE tsettype},tsetnamel,jdescr}

where:

{settypel is

1. DEF to save plot definitions, or

2. PLOT to save plot data.

{setnamel is a 1 to 8 character name to bt 4iven to the set of
definitions of data.

{descr} is a 1 to 53 character description oc the set. The SAVE
command is valid at any analysis user interfato point.

FUNCTION RESULT:

Plot definitions or plot data 3re saved into the analysis data-
base. If tsetname} already exists, the query "REUSE {setname}?"
will appear. A "yes" response will replace the old set with the
new set. A "no" response will abort the SAVE command.

I
Page 184



7 AD-Al b ASIM AUOMATED ITRAIE 
SMUEA OONCMODE 

USER'S
MANUAL ILUGHES AIRR FT 0 FUL EN N CA GROUND
SYSTEMS GROUP W AUSTL ET AL 26 FEB82 ES-TR83218

UNCLASS;I;ED F9628-79 C- 5 53 0/ 9/2 NLEhEMoE~E
EEMhhnhohEEE

EMhMhhhEEMhMhE
EhMMhMhMhMhEMhE
MEMhhhhEEEMhEE
MhMhEEEEEMhEEE
EhhhhEEEEEEEEE



liii I 41 11 12 25

_____111112.0

11 1 .5 111 . 11111_ __

MICROCOPY RESOLUTION TEST CHART
NAT.ONAS. BUR#EAU OF STANOA*OS -,965 A

Imor
MG



!I

AUI / SETBREAK

7.13 COMMAND: SETBREAK

The SETBREAK command allows the user to set a single breakpoint
in the simulation run that is executed when a defined relation-
ship has been satisfied.

COMMAND SYNTAX:

SETBREAK [entity-type},fentity-name},(rel-oper},{value)

SET

where:

[entity-type) is a required parameter indicating which type of
entity is to be tested (VARIABLE, RESOURCE, or TASK).

{entity-name) is a required parameter indicating the name of the
entity to be tested.

{rel-oper) is a required parameter indicating the relational
operator (EQ, NE, LE, GT, GE, LT) of the test.

{value) is a required parameter used to set the value for which
the named entity is to be tested . This value may be expressed in
one to twelve digits, and includes the value zero.

FUNCTION RESULT:

A Breakpoint is usually used in verification of a model or to
examine Variable values. Typically, a simulation run executes
start to finish and does not allow the user to examine the simu-
lation state at specific times during simulation.The Breakpoint
allows the user to halt the simulation and examine its state
based upon the value of some system element.

This command causes an attribute form to be displayed, from which
the user must select one attribute. The list of attributes
depends on the entity-type selected.

When the attribute form has been entered, a statistics form is
displayed, from which the user must select ene statistic. The
list of statistics displayed depends on the entity-type and
attribute selected.

If only one choice for either an attribute or a statistic, the
form is not displayed.

This command is valid at the beginning of a simulation period or

Page 185

i -- --- ~ ~ -- --.- .- ~ - --- --- . -



at a breakpoint.

The user should ensure that only one breakpoint is in effect at
any time. Otherwise the condition that caused the break may be
uncertain. When a breakpoint is reached, it is automatically
cleared.

I Page 186

li l. -, -I -_-_-_ _ _



7.14 TERMINATION OF AN AUI SESSION

An AU1 session is terminated by typing the command:

END

In response to this command control is transferred to the AISIM
Ready level and the system responds with:

AISIM READY

Page 187



8. REPLOT USER INTERFACE

The REPLOT function allows the user to(1) plot data from previous
analysis runs, and (2) to delete old plot data and plot defini-
tion sets from the data base.

Data to be plotted is placed into a temporary plotset. Data from
different analysis runs may be plotted on the same graph, pro-
vided that the precision units are the same for all plots
requested.

Page 188

,, .



REPLOT COMMAND SUMMARY

COMMANDS:

CLEAR

DELETE (set type), (setname)

DEL

END

GET plot,(plotsetl

LIST [entity-type)

L

PLOT

Page 189



I

REPLOT / CLEAR

8.1 COMMAND: CLEAR

CLEAR is used to clear out the current plotset and to clear the

screen.

COMMAND SYNTAX:

CLEAR

FUNCTIGN RESULT:

The current plotset is cleared, and the screen is cleared.
reset.

Page 190



REPLOT / DELETE

8.2 COMMAND: DELETE

DELETE is used to delete a set of plot definitions or plot data

from the analysis data base.

COMMAND SYNTAX:

DELETE {settype},(setname}

DEL

where:

(settype} is

1. DEF to delete plot definitions, or

2. PLOT to delete plot data.

{setname} is the name of the set to be deleted.

FUNCTION RESULTS:

The specified set of plot data or plot definitions are deleted
from the analysis data base.

Page 191



REPLOT / END

8.3 COMMAND: END

END is used to exit the PLOT function.

COMMAND SYNTAX:

END

FUNCTION RESULT: The user is returned to the AISIM READY level.

Page 192



REPLOT / GET

8.4 COMMAND: GET

GET is used to retrieve a set of plot data from the analysis data
base and to make it part of the current set of plots to be gen-
erated by the PLOT function.

COMMAND SYNTAX:

GET plot, (plotset}

where:

(plotset} is the name of the set containing the plot data.

FUNCTION RESULT: The set of available plots is displayed. The
user is then prompted for the number(s) of the plot(s) to be
graphed.

Page 193

* If



REPLOT / LIST

8.5 COMMAND: LIST

LIST is used to list all entities of tie specified type.

COMMAND SYNTAX:

LIST (entity-typel

where:

{entity-typel is a required parameter indicating a valid entity-
type. It can be one of the following:

DEF to list plot definition sets

PLOT to list plot data sets

TITLE to list current plot titles

FUNCTION RESULTS: Names of all entities of the requested type are
displayed.

Page 194

- _______--__



REPLOT / PLOT

8.6 COMMAND: PLOT

PLOT is used to produce a graph of the activity of an entity.

COMMAND SYNTAX:

PLOT

FUNCTION RESULT:

The set of available plots is displayed. The user is then
prompted for the number(s) of the plot(s) to be graphed.

When the selected titles have been entered, the appropriate graph
is produced. Each of the plots is produced in a unique li pat-
tern. If only one plot is defined, the graph will be proe ad
with no prompting.

Page 195

, - -



9. HARDCOPY USER INTERFACE

The Hardcopy User Interface (HUI) is used to plot one, several,
or all Processes in the specified project. In order for the
Hardcopy Function to be exercised, the following conditions must
be in effect:

1. An HP2631G Graphics Printer must be connected to the HP2647A
Graphics Terminal with the HP-IB communications bus.

2. The HP-IB bus address of the printer must be set to one (1).

3. The printer must be turned on and set to ON LINE mode.

4. For proper formatting, the length of the paper in the
printer must be either 8 1/2 inches or 11 inches long.

The HUI is entered by typing HCOPY PROJECT(project) at the AISIM
Ready level. The first information that the HUI requests is:

PLOT ALL THE PROCESSES IN DATABASE? (YES OR NO)

The user responds with "NO" to specify selected Processes for
plotting. A "YES" response will cause the system to automati-
cally plot all of the Processes contained in the project data
base.

The system then requests information about the printing medium:

ENTER THE LENGTH OF THE PAPER IN THE HP2631G PRINTER (A/B):
A) 8 1/2 INCHES
B) 11 INCHES.
LENGTH=

Depending on the paper in the graphics printer, the user responds
by entering "A" or "B". This information is used by the HUI to
center the Process graphics on the page and to insure correct
form feeding. Entering any other option besides "A" or "B"
causes the HUI to default to 8 1/2 inches for paper length.

The user is then instructed to:

POSITION THE PAPER PERFORATION ALONG THE T.O.F. INDICATOR
LINE ON THE PRINTER AND DEPRESS THE CARIAGE RETURN.

By doing this, the user sets up the proper alignment of the paper
in the printer and initiates execution o7 the hardcopy plotting
software.

When the carriage return has been entered, the HUI begins the
plotting procedure by initializing the HP2631G printer with the
correct form information. This initialization is usually charac-
terized by a rapid movement of the print head.

Page 196

I ~I.

, , n , m I ! I I I, -



If the user has requested automatic plotting of all of the
Processes, they are plotted in alphabetic order.

If the user asked to select Processes, the following prompt is

given:

PROCESS NAMES TO PLOT: (CR TO EXIT)

The user then supplies the name of the Process he wishes plotted
followed by a carriage return. The Process is plotted and the
HUI responds with:

<Process name> PLOTTED

The system will then give the selection prompt again for another
Process to be plotted. The user continues entering Process names
one at a time, followed by a carriage return, or exits the HUI by
entering a carriage return only.

The way in which the HUI plots a Process in either of the two
modes described above is as follows:

1. The first six Primitives in the Process are painted on the
screen of the HP2647A terminal.

2. The name of the Process being plotted is printed in the
upper left corner of the page in the printer.

3. If the first page of the Process is being plotted, the Pro-
cess descliption is written across the top of the page.

4. The Process grpahics are transferred from the terminal
screen to the page in the printer and a form feed is gen-
erated.

5. If there are no more Primitives in the Process, the plotting
is terminated for the Process; otherwise, the terminal
screen is erased, and next six primitives are painted on the
screen, and steps 2 through 5 are repeated.

When the AUI has finished plotting all of the requested
Processes, the message "ALL DONE" is printed and the user is
returned to the AISIM Ready level.

Page 197

-. - .. s.,,-, ----  II

.... .. - I - ,, .. ..



10. LIBRARY USER INTERFACE

The Library User Interface (LI'T) enables the user (1) to store
AISIM models in libraries of model components for reuse and (2)
to retrieve,models and include them in a newly created project
database .

Two libraries are available. One is a user library in which a
user can place components of models for private use. Another is
an AISIM system library which contains models available for pub-
lic use. There are restrictions on the placement of items in the
system library because it is desirable to insure that the public
models are not lost or tampered with. For this reason, general
users can not modify the AISIM system library. This is done by
AISIM administrator.

The library user interface allows the user to do the following:

1. Moving entities from a model project database into a storage
area called here a "buffer".

2. Moving entities from a buffer into the database of another
model project.

3. Moving entities from a buffer into a library of model enti-
ties.

4. Moving entities from a library to a buffer.

To reach the sub-levels in which these operations are accessable,
one must issue one of the four commands MERGEIN, MERGEOUT, CHEC-
KIN, and CHECKOUT. The facilities made accessable by these com-
mands are described in greater detail below.

The LUI sub-level is accessable from the AISIM READY level by
issuing the command,

LIBRARY

The system will then repond with the prompt

LIBRARY READY

and the user may invoke any of the four LUI sublevels listed in

the LUI Command Summary.

Page 198

...4. !' 4



LUI COMMAND SUMMARY

CHECKIN

CI

CHECKOUT*

CO

MERGE IN

MI

MERGEOUT

MO

I Page 199



LIBRARY / CHECKIN

10.1 COMMMAND: CHECKIN

To move the contents of the buffer to a library for permanent
storage one issues the CHECKIN command. The user is prompted for
the name of the model to be checked in, as well as an optional
reference number and description.

To enter the CHECKIN sublevel, issue the command,

CHECKIN {BUFFER(buffer)},{LIBRARY(library)}

CI {B(buffer)},{LIB(library)}

where:

{B(buffer)} is a required parameter indicating the buffer from
which model entities are to be taken.

{LIB(library)} is a required parameter indicating the library
into which the model entites are to be entered.

FUNCTION RESULT:

The system queries the user for a required model name and an
optional document reference number and description. After get-
ting this information, the entities in the buffer are put into
the Library specified under the given model name.

Page 200

-J-- - - _ _ _ _ _ _ _



LIBRARY / CHECKOUT

10.2 COMMAND: CHECKOUT

To copy a model project stored in a library to a buffer one

enters the CHECKOUT command. At this point the user can obtain a
list of the models contained in the library or a list o' the
given entity types contained in a named model through the LIST
command. Models are copied individually through the EXTRACT com-
mand which specifies the model to be copied. As in the case of
MERGEOUT a HELP command is available.

To enter the CHECKOUT sublevel, issue the command,

CHECKOUT (BUFFER(buffer)),{LIBRARY(library)}

CO {B(buffer) J,{LIB(library) }

where:

{B(buffer)} is a required parameter indicating the buffer into

which model entities are to be placed.

{LIB(library)} is a required parameter indicating the library

from which the model entites are to be taken.

FUNCTION RESULT:

AISIM queries the user for the name of the model to be extracted

from the library. The model is written out to the buffer. From
the buffer it can be included in another model with the MERGEIN
command.

PPage 201

- _ _ _ -



CHECKOUT COMMAND SUMMARY

DELETE

D

END

E

EXTRACT

HELP

LIST {model-name)

Page 202



CHECKOUT / DELETE

10.2.1 COMMAND: DELETE

The DELETE command instructs the system to delete a specified

model from a library.

COMMAND SYNTAX:

DELETE (model-namel

where:

{model-name} is the name of the model to be deleted from the
library.

FUNCTION RESULT:

The specified model is deleted from the library.

Page 203

A -



CHECKOUT / END

10.2.2 COMMAND: END

The END command causes the system to exit the CHECKOUT sublevel

and return the user to the Library User Interface.

COMMAND SYNTAX:

END

E

FUNCTION RESULT:

The system returns to the LUI Ready level.

Page 204

* *-.. ..



CHECKOUT / EXTRACT

10.2.3 COMMAND: EXTRACT

The EXTRACT command instructs the system to copy a model in a

library into a buffer.

COMMAND SYNTAX:

EXTRACT Imodel-name)

where:

(model-name) is the name of the model to be placed in the buffer.

FUNCTION RESULT:

The model specified is copied from the current library into the
current buffer.

P 2Pae205

i il I I... nI .. . . - --- [-- -'



CHECKOUT / HELP

10.2.4 COMMAND: HELP

The HELP command enables the user to obtain a menu of the other
command options available in the CHECKOUT sublevel.

COMMAND SYNTAX:

HELP

FUNCTION RESULT:

A menu of available command options is printed on the screen.

Page 206

I~, .



CHECKOUT / LIST

10.2.5 COMMAND: LIST

The LIST command enables the user to obtain a list of the models
contained in a system or user library.

COMMAND SYNTAX:

LIST {model-namel

L

where:

* is a literal parameter, indicating all models in the library.

{model-name} is the name of a model in the library

FUNCTION RESULT:

If the parameter * is used, the system will display a list of the
names of all the models in the library. If the paramter {model-
name] is used the system will display a list of the names of the
entities in the indicated model.

I

I Page 207

* *



LIBRARY / MERGEIN

10.3 COMMAND: MERGEIN

To move the contents of a buffer to a project database where it
will be accessable to other AISIM sub-levels, one enters the MER-
GEIN command, specifying the the name of the buffer and the name
of the project into whose database the buffer contents are to be
copied. If no entity in the buffer is the same as an entity
already present in the database, the user will be prompted with

0 CONFLICTS HAVE BEEN DETECTED IN MERGEIN INITIALIZATION

in which case the copying of the buffer contents will be com-
pleted and the user will be returned to the AISIM READY level. If
one or more names of entites conflict with ones already in the
project database, the user will be prompted with,

n CONFLICTS HAVE BEEN DETECTED IN MERGEIN INITIALIZATION

where "n" is the number of conflicts. The system will then
present the name of an entity which stands in conflict.

The user now has three command options to resolve the naming con-
flict. First, he may command that the entity in the database be
deleted in favor of the one of the same name in the buffer. This
is done by entering REPLACE. Secondly, he may command that the
entity in the buffer which aroused the naming conflict be disre-
garded in the transferal from the buffer to the database. This
is done by issuing the command IGNORE. Thirdly, one may resolve
the naming conflict by giving the entity in the buffer a new
name. This is done by means of the command RENAME whose one
parameter is the new name the user wishes to give the entity. If
the user should select as a new name one that is also being used,
the system will respond with a prompt for a different name.

This cycle of naming conflict resolution will be repeated until
all of the naming conflicts have been resolved. The system will
then tell the user that MERGEIN initialization has been com-
pleted, do the MERGEIN and automatically return the user to the
AISIM READY level.

To obtain access to the MERGEIN sublevel, issue the command, COM-
MAND SYNTAX:

MERGEIN {PROJECT(project)}, BUFFER(buffer)}

MI {P(project)} {BUF(buffer)}

where:

{P(project)} is a required parameter indicating the name of the
project into which the entities are to be merged.

Page 208

,. , - .. ... - S , .. .. ..



{BUF(buffer)} is a required parameter indicating the name of the
buffer in which the entities are to be stored.

FUNCTION RESULT:

1) The buffer is checked for internal naming conflicts. If any
are found, operation terminates.

2) The system checks for naming conflicts between the buffer and
the project database. If any are foLnd, the user is asked to
resolve them with the sub-commands.

REPLACE
IGNORE
RENAME {new name}
END (i.e., give up)

3) After the resolution of conflicts, buffer entities are

merged, ignored or renamed into the database.

4) The user is returned to the AISIM READY level.

NOTE: Resources associated with an architecture are not subject
to the REPLACE command.

P 2Page 209



MERGEIN COMMAND SUMMARY

END

E

HELP

IGNORE

IG

INFO

RENAME

RN

REPLACE

RP

Page 210



MERGEIN / END

10.3.1 COMMAND: END

The END command, issued at the MERGEIN sublevel cause the system
to exit the MERGEIN sublevel and returns the user to the Library
User Interface.

COMMAND SYNTAX:

END

E

FUNCTION RESULT:

The system returns to the LUI Ready level.

Page 211

4 '
r -



MERGEIN / HELP

10.3.2 COMMAND: HELP

The HELP command enables the user to obtain a menu of the other
command options available in the MERGEIN sublevel.

COMMAND SYNTAX:

HELP

FUNCTION RESULT:

A menu of available command options is printed on the screen.

jPage 212

I



MERGEIN / IGNORE

10.3.3 COMMAND: IGNORE

The IGNORE command enables the user to resolve any naming con-
flicts encountered at the MERGEIN sutlevel in favor of the enti-
ties that already exist in the target database.

COMMAND SYNTAX:

IGNORE

IG

FUNCTION RESULT:

The entity indicated by the prompt is not copied into the project
database. The system then prompts the user with the next naming

conflict , if any, and proceeds with MERGEIN operation.

IP Page 213



/

MERGEIN / INFO

10.3.4 COMMAND: INFO

The INFO command furnishes the user with information on the
options available to resolve naming conflicts encountered in the
MERGEIN sublevel.

COMMAND SYNTAX:

INFO

IN

FUNCTION RESULT:

The screen displays the following information:

IGNORE: THIS OPTION CAUSES THE NAMED ENTITY IN THE BUFFER TO BE
EXCLUDED FROM THE MERGEIN OPERITION

RENAME: THIS OPTION CHANGES ALl OCCURANCES OF THE ENTITY NAME IN
THE BUFFER TO THE NAME SPECIFILD BY THE USER

REPLACE: THIS OPTION DELETES TUIE NAMED ENTITY FROM THE USER DATA
BASE, ALLOWING THE ENTITY IN ThiE BUFFER TO BE MERGED IN

END: THIS OPTION TERMINATES THE MERGEIN PRE-PROCESSING WITHOUT
RESOLVING ANY MORE NAMING CONFLICTS AND RETURNS TO THE LUI READY
LEVEL

Page 214



MERGEIN / RENAME

10.3.5 COMMAND: RENAME

The RENAME command allows the user to resolve a naming conflict
encountered during the MERGEIN operation by giving entities in
the buffer a unique name.

COMMAND SYNTAX:

RENAME (namel}

RN

where:

{namel} is the new name the entity is to be given.

FUNCTION RESULT:

The system checks to see whether the new name given to the entity
creates any naming conflicts. If it does the system will prompt
the user to that effect, and await a new name. If the new name
does not create any conflicts, the entity is copied into the pro-
ject database under its new name. If there are naming conflicts
with further entities the system then prompts the user for their
resolution. If there are no remaining naming conflicts, the MER-
GEIN operation begins.

iP t Page 215

I,_ ,- ,...-



MERGEIN / REPLACE

10.3.6 COMMAND: REPLACE

The REPLACE command enables the user to resolve a naming conflict
encountered in the MERGEIN sublevel in favor of entities that
exist in the buffer.

COMMAND SYNTAX:

REPLACE

RP

FUNCTION RESULT:

The entity indicated in the prompt is written into the database
and the old entity of the same name is deleted. The systems then
proceeds to consideration of the next naming conflict if any
exist. Otherwise, the MERGEIN operation begins.

Page 216

.- e- - - -- -



LIBRARY / MERGEOUT

10.4 COMMAND: MERGEOUT

When the user wishes to place entities in a project database into
a buffer, he does so via the MERGEOUT command, specifying the
name of the project and the name of the buffer into which it is
to be copied. Entities in the project are copied one at a time by
name through the SELECT commmand. If the user needs a list of
the entities of a given type, he may obtain one through the LIST
command. Also available here is the HELP command which provides
a menu of the other commands presently available. The END com-
mand will return the user to the AISIM READY level.

To obtain access to the MERGEOUT sublevel, issue the command,

MERGEOUT {PROJECT(project)},{BUFFER(buffer)I

MI {P(project)} {BUF(buffer)}

where:

!P(project)} is a required parameter indicating the name of the
project into which the Entities are to be copied.

{BUF(buffer)} is a required parameter indicating the name of the

buffer in which the Entities to be transferred are stored.

FUNCTION RESULT:

The user is given a "*" prompt, from which he can issue one of
the following commands.

1) LIST {entity-typel, to list entities in project database.

2) SELECT {entity-type},{entity-name}, an entity to be merged out
of the project database.

3) END, which will terminate the selection of entities to be
copied.

Page 217

- ---.



MERGEOUT COMMAND SUMMARY

END

E

HELP

LIST

L

SELECT [entity-typel ,fentity-name)

S

4 Page 218



MERGEOUT / END

The END command terminates the session at the MERGEOUT sub-
level and causes entities in the current project database
which have been flagged by the SELECT command to be copied
into the current buffer.

COMMAND SYNTAX:

END

FUNCTION RESULT:

The user will be promted with the question:

DO YOU WANT TO LIST YOUR SELECTIONS ON THE SCREEN?

A "NO" answer will cause the mergeout procedure to take
place. When all of the flagged entities have been copied
onto the database, the system will return to the LUI Ready
level.

A "YES" answer will produce a list of the entities flagged
in the SELECT command. The user will then be prompted as to
whether he wishes to proceed with the mergeout operation. A
"YES" answer to this second question will cause the flagged
entities to be copied into the current buffer. A "NO"

answer will return the system immediately to the LUI Ready
level.

i



MERGEOUT / HELP

10.4.1 COMMAND: HELP

The HELP command enables the user to obtain a menu of the other
command options available in the MERGEOUT sublevel.

COMMAND SYNTAX:

HELP

FUNCTION RESULT:

A menu of available command options is printed on the screen.

Page 220



MERGEOUT / LIST

10.4.2 COMMAND: LIST

The LIST command enables the user to obtain a list of the names
of the entities of a given type that are contained in the current
model.

COMMAND SYNTAX:

LIST {entity-type}

L

where:

(entity-type) is the type of entity.

FUNCTION RESULT:

The screen will display a list of the names of the entities of
the specified type in the current model.

Page 221



MERGEOUT / SELECT

10.4.3 COMMAND: SELECT

The SELECT command allows the user to specify which entities are

to be merged out of a project database to a buffer.

COMMAND SYNTAX:

SELECT [entity-type},[entity-name}

where:

{entity-type} is the type of entity to be merged out,

[entity-name) is the name of the entity to be merged out.

FUNCTION RESULT:

The specified entity is flagged for the mergeout operation. The
operation will take place only when the END command is issued.

Page 222

..i . . .. _ _ _ _ _ __I_ _I



11. AISIM SIMULATION RESULTS; REPORTS

When a simulation is run, a number of Processes are initiated at

various times throughout the simulation period. As their execu-
tion proceeds they contend for available resources such as
machines and operators. The simulation stops at the end of a
predefined period and produces output statistics.

In general, any high-level performance factor measurable on a
real system in terms of time, percentages, or counts of events
can be measured during the model run. Experiments that are virtu-
ally impossible to run on a real system can be constructed .,nd
easily measured in the model. Specifically, measures that may be
obtained are:

- Resource utilization statistics
- Total number of Processes completed
- Average elapsed time for Process completion

- System and job delays associated with actions
- Statistics on queue sizes and timing
- Variable changes during simulation

- System and job delays associated with resources
- Execution count of Process steps

Two forms of output are available to the user as a result of the
simulation. Interactive output, displayed on the screen of the
HP-2647A graphics terminal, is available at any user-defined
breakpoint, at the end of simulation periods, or at the end of
the simulation.

The second form of output is a batch listing, obtained off-line,
which lists the simulation measures mentioned above.

The following sections describe the simulation outputs and how to

obtain them.

11.1 INTERACTIVE RESULTS AND HOW TO OBTAIN THEM

Interactive results can be viewed on the HP-2647A graphics termi-
nal while i the AUI level. A review of the AUI level shows that
several commands are available for viewing data after simulation
periods, after breakpoints, and after simulation termination.
The DEFPLOT command is used before simulation is started to
select the graphs that the user wishes to view after simulation
(see the DEFPLOT command description for attributes and statis-
tics of entities that can be graphed). The LISTVAL command can
be used at the points mentioned above '- view simulation data
concerning model entities 'see the Ll, sAL command description
for attributes and statistics of enti.,es that can be viewed).
The PLOT command is also used at the poin .s mentioned above to
view graphically the statistics which wvrE kept due to the DEF-
PLOT plot definitions. See the PLOT commane definition for exam-
ples of the forms and graphs that are displayed to the user as a

Page 223

"4 I I II II



result of this command.

11.2 REPORT RESULTS AND HOW TO OBTAIN THEM

The commands to view and print batch results are available in the
AISIM Ready Level. As the simulation executes, simulation
results are automatically stored in a database file named:

PROJECT.REPORT.DATA

where:

PROJECT indicates that the model output report to be accessed was
generated by an analyze session on the design database named PRO-
JECT.

Two commands are available to manipulate this data file. The
first we will discuss is PRINT. This command is used to print a
listing of the simulation reports at the local hardcopy facility.
The EDIT command allows the user to view the PROJECT.REPOR' DATA
file through the use of the TSO text editor. After the EDIT com-
mand is given the system responds with EDIT indicating that the
TSO text editor is ready to receive further commands. See the
TSO Users Manual for TSO text editor capabilities.

Following is a description of the data contained in the
PROJECT.REPORT.DATA FILE.

The PROJECT.REPORT.DATA file contains a number of reports that
describe the model that was simulated and the results of the
simulation. On the following pages each of these reports is
described and examples of results are given.

Page 224

- -



INITIALIZATION REPORT: This report displays the contents of the
model inputs as used during this simulation. Elements of this
report are:

1) global Constant definition
2) Table definition

3) global Variable definition
4) Item definition
5) Queue definition
6) Resource definition
7) architecture definition
8) Action definition
9) Process definition

10) Load definition
11) Scenario definition

Page 225

4I



Figure 6. Report giving definitions of Constants, Tables,
Items and Queues

S GE N E AL F U N C T 1 O N fl 0 OEL
$ AISIM VERS1OII 1 $
$ HUGHES AIRCRAFT COMPANY 6
* 03/OX/81 $

GLOAL COP4STANT DEFINITIOI .....

CONSTANT INITIAL
rNE MCH IC VALUE COIMENT
9z32-== ZX :=:==38 22z2 =:: •EZ:SZZZ2Szaz :Z: sX 82UXaa8au8 SuuBgSa8ua
BUFFER 10000 NU-BER OF BYTES IN A BUFFER FOR PLOT INPUT
CHK-TM .002 WRITE CHECK TIME FOR CAHIDtEL
O-INITSK .0000004 4 MICRO SECOND DEVIATION
OZSKFRI 1 DISK PRIORITY
fl-INITSK .00000Z 20 MICOPSECONS INIT SEEK TIME
N.TERM 1024 -I'8ER OF CHARACTERS PER DISPLAY
REAO 0 REAO FLAG
TRAN-TH 800000 CNARACTERS PER SECOND OVER OAS LINZK
WRITE 1 ,XITE FLAG

TABLE DEFINITION....

GLOBAL VARIABLE DEFINITION .....

VARIABLE INITIAL
MWEMOIC VALUE COhiEW.
83gau323 s::=::;8l uzalsszaluttSlUtmnluuuuuuuult sausutuullglma81uuauuum

C-RAD-Th .00020 TIME TO FORMAT AND PROCESS RADAR DATA

ITEM DEFINITION ......

ITEM DESCRIPTION
z zSza::s zz : 3.zg:U • UU8UUUSEUlUSUUUSU3U
REQUEST DISK ACCESS REQUEST

BYTES 0
R/W 0

UNIT 0

QUEUE OEFINITICN .....

QUEUE MAX7JM
MIr1EMONIC SIZE CO?'ENT

10-0 INFINITE GUEUE OF REQUEST FOR DISK

Page 226

,J



Figure 7. Resource report and listing of Legal Path Table

;A&GE 2

7ESCURCE DEFINITION ..

!OUWCI InITIAL
:.L1OPJIC 4 UNITS QUEUE ITEM~tF

A QSCURCE FOR SERIAL PORT
I I
CHAS/SEC q6O

*RESOURCE FOR SERIAL PORT
I
CI4Rs/SEC 960

CNN RESOURCE FOR Ho0t
I I

C'. RESOU1OCE FOR SERIAL PORT
I I
CMEs/SEC %a0

OSKI XESOURCI FOR DISK UIT

fl-LATE .0023
9W-SEEK .0083

ARCHITECTUJRE LEGAL PATH DEFINITION

FRW~ TO NEXT VIA
0EVICE DEVICE OEVICE CHANNEL-

801 801 SOS 0401.B
801 806 505 CNO1.5
801 811 SOS CNO1.S
301 816 SOS 0401.8
Sol 821 SOS CH01.6,
Sol 826 SOS CNOL.6
So1 ell SOS C1401.S
801 CMQ SOS cHOI.S
801 Hol SOS CHO1.S
801 9402 SOS CHOI.5
801 501 SOS C9401.8
80ol S02 SOS CH01.5
801 SOS SOS CH01.8
eci !o04 SOS cwoi.5
801 !35 SOS 0401.5
S01 $08 SOS CHI-8.
1301 Sol SOS 0401.5
a06 801I S07 0406.5
906 811 507 CNOS.5
8B08 81b So? 04066
e06 821 507 C90OS5
305 Bb6 SO? 0406.3
806 831 SO? C9406.5
806 CH07SO CHO6.5
808 "401 S07 C.406.0
S08 '402 SO? C:406. a
eft Sol 507 CHOSS8
906 303 307 0406.8
!06 S0'. '07 ms1
306 SOS 507 CbIOS.8
805 S06 S37 C406.6
506 SO? S07 CHO6.8

Page 227



Figure 8. Report giving definitions of Actions and Processes

ACTION DEFINITION .....

ACTICH ACTION

MIErONIC CLASS COMMENT
3 -!22 1= 2 ....:z::s X&z:: SX222 233

CHC3O.OH MACHII:E CHO F;CCESSI;3 OF GRAPHICS REQUEST
CHCHO.OH MACHIP:E CNQ F;CCESSINS OF HAROCOPY REQUEST
CS.OH MACNItE F73CESSItJG TO PERFORMI A CONTEXT SWITCH
O'r..MYACT MACMINE ACTIC4I TO ENABLE CYCLIC PGII S CYCLES
HO.O MACKItKE 4Q FPCCESSINS OF MESSAGE
OVERHEAD MACHINE TIME PEQUIRED TO SEPND MESSAGE ACROSS A CHANNEL
ROUTE.Oh MACHINE PROCESSING REQUIRED TO ROUTE A MES3AGE

PROCESS DEFINITION.....

PROCESS
M EMOtUIC DESCRIPTION
....... . • 2 :-= =I

&-ORIGIN THIS IS A B-NOD1 STUB PROCESS

ENTRY OPCOOE PARM PARM PARM COMMENT
3.:225=: ::Z::Z: ::21 223 22333233 33333333 33322323333333333333333E

START ALL
GIVEN MSG
RETUN MSG
END

ITEM REFERENCES OF THIS PROCESS
T2a2uu:::::zzzzczsas8saa

MSG

PROCESS
MNEMONIC DESCRIPTION
2::::::: $X.::::. Z s:::s:I.:I:333:sllaI:23l.II:23:I5.I3Ia:333II3II

BECHO THIS PROCESS ECHOES MESSAGE BACK TO ORIGINATOR

ENTRY OPCO0E PARM PARt PARK COMMENT

START ALL
GIVEN MSG
RETLU'QN MSG
ASSIGN MSG FNO GET ORIGNATING HOO

TO. NODE
CALL REQ-I/O WAIT a
GIVEN B-0P TGIN B-PRI SN*OAIT

B-LHTN TO.NOOE
END

LOCAL VARIABLES OF THIS PROCESS

TO. NOD E 1

ITEM REFERENCES OF THIS PROCESS

M3G

Pg52

Page 228

.. .. I-I -.I-I---



Figure 9. Report giving Load and Scenario definitions

LOAD DEFINITION ..

LOAD
mtEMONIC DESCRIPTION
z::z=:zz 22:2322 :2s23,:2:.222:222a:uu:3uu

LOAONULL HULL LOAD TO ALLOW SEVEN PERZOOS OF FULL LOAD
LOAD 1.CDES
zma3:32 2 as::.: a232:222 222232um

PROCESS NUMBER SCHEDULE METHOD METHOD SCHEDULE
MJT! ONIC SCHE3ULE t.ETHOO PARM I PARVI Z PRIORITY
22S322 x233:3222 332228 2233333 23222232 X222X132

LOAD

LOAOSOI AIR BASE LOAD TO 501
LOAD NCZES

PROCESS IBER SCHEDULE METOD METHOD SCHEDULE
FMPlEM3IC SCHEDULE M ETHOD PARM I PAUm 2 PRIORITY
33323122 23X2232 X2232=3@ 33323222 322:23%2 322222US

OATA8SOI 125 INTERVAL 0 1440000 0
DATAeCHQ 125 INTERVAL 0 14.'0000 0
OATAeNQt 125 INTERVAL 0 1440000o 0
HCOPYS01 125 INTERVAL 0 1440000 0

SCENARIO DEFINITION....

!CENAR!O
1-1E~FlZ1C DESCRIPTION

SCEtIARZO MITRE STUDY CA31* A SIM UNIZT 15 10 MICROSECONDS

IZSS57142
LOAD LOAD 10AD LOAD LOAD LOAD LOA0
MNEMOCNIC Mn.:E!ON1C PONEMONIC MNEMONIC MNEMpjONIC ttlEMONIC MNEMONIC

32223213 2 33333xz=z2 a2333222 23331232 323:1323 2223:::z x23:3333

L0±DNILL LOAOt#ULL LOAGNJLL LOAONULL LOADNULL LOAONULL LOADNULL
LOA0 L0AD LOAD LOAD LOAD LOAD LCAO
MIEr'ON!C MNE~tHIC MNEMIONIC MNiEMONIC MNEMONIC "lEt-CNlC MNEMONIC

-------------------------------3 = 23123=3 33zzz33 33233232 32333z2 223a22
LOADNIULL LOACNULL LOAO#IULL LOAONULL LOAONULL LOADNULL LOAONULL

PVOC!5S TIM~E TO SCMEIULE PROCESS TIME TO SCHEDULE
P"sEM*'!IC SCHEDULE PRIORITY m~'Em~tizC SCHEDULE PRIORITY

LOAOS01 0 0

:$is 0 ERP02S WERE DETECTED DURING MODEL INITIALIZATION

Page 229



11.2.1 CONSTANT REPORT This report shows the value of the Con-
stants at simulation termination. An example of this report is
shown below where the labeled columns have the following signifi-
cance.

CONSTANT: the name of the constant

CURRENT VALUE: the value (in real numbers) at the time of
the end of the simulation.

SIMULATION TIME a 1799996.60000 UNITS

CONSTANT REPORT

CURRENT
COPSTANT VALUE...
s:::aauu uuuaasuuuu
ZERO 6.

Page 230
14

Pag-23

- - C _ _ _ _ _ _ _ . --



11.2.2 VARIABLE REPORT

Variable reports are divided into the numeric and the non-
numeric. A sample of the report for numerical variables is shown

where the columns have the following significance.

VARIABLE: the name of the Variable

TOTAL SAMPLES: the number of times the Variable has been set
to a value over the simulation period, including its ini-
tialization at the start of the simulation.

CURRENT: the value of the Variable at the start of the simu-
latior.

MEAN: the mean of all values that the Variable was set to

over the simulation (i.e., the sum of the values divided by
TOTAL SAMPLES).

STD DEV: the standard deviation of the variation in the
values over the simulation.

MINIMUM: the minimum value that the Variable took on during

the simulation.

MAXIMUM: the maximum value that the Variable took on during
the simulation.

The report for Variables taking non-numeric values is illus-
trated , where the labeled columns have the following signi-
ficance.

VARIABLE: the name of the Variable.

CURRENT TYPE: the type of entity or construct that the Vari-
able is set to at the end of the simulation.

CURRENT VALUE: the name of the entity or construct to which

thL variable is set at the end of the simulation.

Page 231



SZSJLAT!0Jd TIM~E a17q99996.00000 UNITS

VARIABLE REPCRT

TOTAL .................. ------ VALUE A L.......... E.. ---------.

VARIABLE 5'MPLES. CURRENT... MEAN ...... STO DEV... MINIMUM... MAXIU'...
.. U:22322 ::2J222 323~a:: II3 32I3232l:2 2I22232lI2 2233222222 2I222I333

B-L.NT 1 750.00000 750.00000 0. 7S0.00000 750.00000

5-FR! 1 11.00000 11.00000 0. 11.0C0oo 11.00000
eSLimT 1 750.00000 7S0.00000 0. 750.00000 750.00000

Ec?4OPRZ 1 11.00000 11.00000 0. 11.00000 11.00000
CkCG3'.'0 1 3.00000 3.00000 0. 3.00000 3.00000
CHCOVHO 1 1.00000 1.00000 0. 1.00000 1.00000
CHCLdTH 1 750.00000 750.00000 0. 7SO.00000 750.0cooo
CHIP91 1 11.00000 11.00000 0. 11.00000 11.00000
GRLNTH I 1.0000f 04 1.0000E 04 0. 1.0000E 04 1.0000! 04
CLNTH 1 200.30000 200.00000 0. 200.00000 200.00000
NCPRI 1 11.00000 11.00000 0. 11.00000 11.00000
4CRutITH 1 6300.00000 6300.00000 0. 6300.00000 6300.00000
H':GGLtIlT 1 Z0.Coo00O 200.00000 0. 200.00000 200.00000
NH0,RI 1 11.00000 11.00000 0. 11.00000 11.00000
P.NGLTH 1 200.00000 200.00000 0. 200.00000 200.00000
NQNGPI 1 11.00000 11.01000 0. 11.00000 11.00000
HQLtWTH 1 750.00000 7SO.COOOO 0. 750.00000 750.00000
HCOVIHO 1 6.00000 8.ocoo 0. 8.00000 8.00000

I0;a 11.G0000 11.00000 0. 11.00000 11.00000
ROUTEPRI 1 0. 0. 0. 0. 0.
.0.Cs 1 .00100 .00000 0. .00000 .00000
M.CS 1 .00000 .00000 0. .00000 .00000

',M.RCUTZ 1 0.00000 8.00000 0. S.00COO 5.00000
voArI 1 1.00000 1.00000 0. 1.00000 1.00000

NON-41MERIC VARIABLES...

CLRRENT CURRENW
VARIABLE TYPE VALUE
........ = zz zz z XZ = z

VAR RESOURCE CPU

Page 232

4 4 ,

, I i-I -



11.2.3 ITEM REPORT

This report is illustrated ,where th, labeled columns have the
following significance.

ITEM NAME: the name of the Item type.

NUMBER CREATED: the number of instances of this Item that
have been created with the CREATE or SEND Primitives over
the simulation.

NUMBER DESTR'D: the number of irstances of this Item that
have been destroyed with the DESTROY Primitive over the

simulation.

MINIMUM: the minimum time any irstance of the Item was in
the system.

MAXIMUM: the maximum time any irstance of the Item was in
the system.

AVERAGE: the average time any irstance of the Item was in
the system.

STD DEV: the standard deviation of the variation in the
times the Item spent in the system.

The statistics MINIMUM, MAXIMUM, AVERAGE, STD DEV are based on
the individual Item instances' time in the system. This statis-
tic is calculated whenever an Item instance is destroyed (with
the DESTROY Primitive) and is equal to the time of destruction
minus the time of creation (with the CREATE or SEND Primitive).
Therefore, Items in the system that have not been destroyed at
simulation end will not be reflected in these statistics.

SIULATION TIME U 17"999 .00000 UNITS

ITEH REPORT

ITEM IOL , 3 IJI1Efl TZI ZN SYSTEM
HA" CPEATEO 0[STR'D 11INIML/Mi... ftAXDMUM... AVERAS.'.. ST DIV...
88,2mm': ZuZIS 8388 8BU 8USUUU2U SUU3UU2UUU UUUUUSUSUU UUUU83ESUEcN2.e. " ....... . . .....

CN3.AZ 0 0. .. . . 0.
C43bt.X 0 0 O. 0. 0. 0.
C316 0 0 0. 0. a. 0.

,4ZZ 0 0 0. 0. 0. 0.
P36 88 848 6000.ooo00 3.@ia0[ Os 1.413SE OS 1.33231 OS
5011 0 0 0. 0. 0. 0.
S02! 0 0 0. 0. 0. 0.
S03 0 0 0. 0. 0. 0 .
sail 0 0 0. 0. 0. 0.
S041 0 0 0. 0. 0. 0.
306! 0 0 0. 0. 0. 0.

$071 0 0 0. 0. 0. 0.

Page 233

" " ' . . .. ,I I



11.2.4 RESOURCE REPORT

This report gives statistics on each Resource's presence in the

idle queue, busy queue, and inactive queue as well as on the

number of Processes put into a wait queue for the Resource. Four

kinds of statistics are kept on each queue or state: (1) entities

put into the queue (INTO), (2) entities taken out of of a queue

(OUT OF), (3) the number in the queue (#) and (4) the time enti-
ties spent in the queue (TIME).

An example of the Resource Report on these queues is provided

For each row of each queue the numbers have the following signi-

ficance.

The TOTAL NUMBER of the INTO and OUT OF rows indicate the number

of entities that were , repectively, placed in or taken out of
the queue.

The CURRENT # is the number of entities in the queue 3t the time

the simulation run was completed.

The MEAN # is the average of the number of entities in the queue

over the simulation.

The STD DEV # is the standard deviation of the variation in the

number of entities in the queue over the simulation.

The MINIMUM # is the minimum number of entities in the queue at

one time over the simulation.

The MAXIMUM # is the maximum number of entities in the queue at

one time over the simulation.

The MEAN TIME is the average time any entity was in the queue.

The STD DEV TIME is the standard deviation of the variation in

the time that any entity was in the queue at any given time.

The MINIMUM TIME is the minimum time any entity was in the queue.

The MAXIMUM TIME is the maximum time any entity was in the queue.

The field labeled "CURRENTLY ALLOCATED TO PROCESSES:" provides a

list of the Processes whose task instances had allocated the

Resource at simulation end.

The field labeled "PROCESSES CURRENTLY IN WAIT:" provides a list

of the Process task instances which were suspended while waiting

for the Resource at the end of the simulation.

Page 234

I _,_,__,_,,



Figure 10. SAMPLE RESOURCE JTILIZATION REPORT

TOTAL
RESOURCE UmEep C.Ewr... MEAN.. 0EV... M.N..J.., N AXMxI ...
". =z s : 2 =S==0.z 0. X = 2 x

CPU'

INTO IDLE.

OUT OF IALE 0
I T0E o. 0..0 . -. -.-

IDLE TIME 0. 0. 0. . 0.

INTO MIY 0
OUT OF By 0

9UAI " 0. 0. . 0. . . e...
mIy TIME 0. 0. 0. 0.

INTO NACT. 0ATE
OUT OF ENACT. 0. ... .

9 INACTIVE . . . . .f. .0. . . . . +

INACTIVE TIME . . . . . .O. . . o. . . e

INTrO WAIT . . .i -- -
OUT OF WAIT 0

I" WAITING 0.. r . .. - -r

WAIT TIE 0. . 0. . .. ------.. ..

CURRENTLY ALLOCATED " . . .

TO PROCESSES: "me

PROCESSES CURRENTLY
WAITING: "4

Page 235

I ______

1.

-~ -~ -w-



11.2.5 ACTION REPORT

The Action Report provides the user with statistics on the time
consumed by each Action. Statistics are gathered on two aspects
of such time consumption, called "useful time" and "delay time".

"Useful time" is equal to the amount of time the aAtion was being
executed, whereas "delay time" is the time between the initiation
and completion of an Action during which the execution of the
Action (i.e., the Process in which it appears) is suspended.
Both useful time and delay time are calculated only upon the com-
pletion of the Action.

An example Action Report is shown. The name immediately below
the ACTION heading is the user-defined name of the Action. For
the row labeled USEFUL TIME the statistics have the following
significance:

TOTAL SAMPLES: the numer of times the useful time was calcu-
lated (i.e., the number of times the Action was completed).

MEAN: the average useful time of this Action over the simu-
lation (i.e., the total time taken by the Action divided by
TOTAL SAMPLES).

STD DEV: the standard deviation of the variance in the use-
ful times over the simulation.

MINIMUM: the minimum time taken in the execution of the
Action over the simulation.

MAXIMUM: the maximum time taken in the execution of the
Action over the simulation.

% TIME OF TOTAL: the percent of the total simulation time
for which this Action was executing. Since AISIM allows for
the parallel execution of the same Action, this figure can
be greater than 100.

The figures in the row labeled DELAY TIME have the following sig-
nificance.

TOTAL SAMPLES: the numer of times the delay time was calcu-
lated (i.e., the number of times the Action was completed).
This will always be equal to the TOTAL SAMPLES of USEFUL
TIME.

MEAN: the average time the Action was delayed during execu-
tion over the simulation (i.e., the total time taken up in
delay divided by TOTAL SAMPLES).

STD DEV: the standard deviation of the variance in the delay
times over the simulation.

Page 236



MINIMUM: the minimum time taken in the delay of an Action
over the simulation.

MAXIMUM: the maximum time taken in the delay of an Action
over the simulation.

Note that % OF TOTAL is not calculated for the delay time.

PAGE 7

s tmuLArzom TIME a 70.00000 $.4T3

ACTION REPORT

TOTAL I TIME
ACTION SAMPLES MEAN ..... ST OEV... MINIMrU.. MAXIMUM... Op TOTAL.
ZX3Z&9Zs==ZZ ::2 u33 2223:z2aZa mZSXZS::s ZSzzSau Z3:53S3333 Z:Z:ZZsXZ

ACT
USEFUL TIME 6 10.000 0. 10.000 10.000 .657

OELAY TIME 6 1.647 3.77 0. 10.000

Page 237

. ........ ____I I___ ______ _____



11.2.6 QUEUE REPORT

The Queue Report provides statistics on the utilization of user-
defined Queues. An example is provided . The report contains
information both on the number of entities stored on the Queue as
well as information on the impact the utilization of the o,,eje
had on Process executi;i and suspension. The rows laoeled FILED
ON, REMOVED FROM, # IN QUEUE and TIME IN QUEUE key statistics on
the manipulation of the Queue itself. The rows labeled TASKS
BLOCKED, TASKS RESUMED, # BEING BLOCKED, TIME BLOCKED refer to
statistics on Process tasks that have been suspended because they
attempted to file an entity on a Queue that was full (i.e., whose
maximc,- number had been exceeded.)

The statistics in each category have the following significance.

The TOTAL NUMBER/FILED ON is the number of entities that
have been filed on the Queue over the whole simulation.

Tne TOTAL NUMBER/REMOVED FROM is the number of entities that
have been removed from the Queue over the simulation.

The CURRENT/# IN QUEUE is the number of entities on the
Queue at the time of simulation end.

The MEAN/# IN QUEUE is the average number of entities on the
Queue at any time over the simiulation.

The STD DEV/# IN QUEUE is the standard deviation of the
variation in the number of entities on the Queue at any time
over the simulation.

The MINIMUM/# IN QUEUE is the minimum number of entities on
the Queue at any time during the simulation (this statistic
is always zero since the Queue will be empty at the start of
the simulation).

The MAXIMUM/# IN QUEUE is the maximum number of entities
residing on the Queue at any time during the simulation.

The MEAN/TIME IN QUEUE is the average time enities spent on
the Queue througout the simulation.

The STD DEV/TIME IN QUEUE is the standard deviation of the
variation in times entities spent on the Queue throughout
the simulation.

The MINIMUM/TIME IN QUEUE is the least amount of time any
entity spent on the Queue during the simulation.

The MAXIMUM/TIME IN QUEUE is the greatest amount of time any
entity spent on the Queue during the simulation.

1
Page 238

" "' " I | j



The statistics on the blocking of tasks due to the filling of
Queues have the following significance.

The TOTAL NUMBER/TASKS BLOCK is the number of Process tasks
that were suspended over the simulation due to Queue block-
ing.

The TOTAL NUMBER/TASKS RESUMED is the number of Process
tasks resumed after having been blocked due to the filling
of a Queue.

The CURRENT/# BEING BLOCKED is the number of Process tasks
blocked at the time of simulation end.

The MEAN/# BEING BLOCKED is the average number of Process
tasks blocked over the simulation.

The STD DEV/# BEING BLOCKED is the standard deviation in the
variation in the number of tasks blocked over the simula-
tion.

The MINIMUM/# BEING BLOCKED is the fewest number of Process
tasks blocked at any time during the simulation.

The MAXIMUM/# BEING BLOCKED is the greatest number of Pro-
cess tasks blocked at any time during the simulation.

The MEAN/TIME BLOCKED is the average time any Process task
was blocked during the simulation.

The STD DEV/TIME BLOCKED is the standard deviation of the
variation in the times Process tasks were blocked during the
simulation.

The MINIMUM/TIMF BLOCKED is the least amount of time a Pro-
cess task was blocked during the simulation.

The MAXIMUM/TIME BLOCKED is the greatest amount of time a
Process task was blocked during the simulation.

PPage 239

,,_,_I_ __II_ _ _ -- - -



Figure 11. SAMPLE QUE-UE UTILIZATION REPORT

TOTAL
qUEUE NU..MBER CURRENT... MEAN ...... ST0 0EV... MINIrMJM... MAXIMUM...

MSGQ3
FILED OH 0

REMOVED FROM a

SIN QUEUE 0. 0. 0. 0. 0.

TIME IN QUEUE 0. 0. 0. 0.

TASKS BLOCKEO 0
TASKS RESUMED 0

9 BEING BLOCKED 0. 0. 0. 0. 0.

TIME BLOCKED 0. 0. 0. 0.

Figure 12. SAMPLE PROCESS UTILIZATION REPORT

TOTAL
PROCESS SA&PLES. SU ....... ItA) ...... $TO 0EV... MINZUIM... MAXIIU...

TASKS
TOTAL 2 30.000 15.000 5.000 10.000 0.000

P OCESS WAIT 0 0. 0. 0. 0. 0.

RESOURCE WAIT 5 10.000 2.000 4.000 0. 10.000

TOTAL I I AUTO I CALL a OF 9 NOT 6 TIMES
SCHEDULE SCHEDULE SCHEDULE COMPLETE COMPLETE SUSPEND.
82982~g 2=9 :: zxz a~s aazz sxauuaa ozasama auua.:au

2 2 0 2 0 2

PROCESS DESCRIPTIOH

TASKS 00000460

CO"ft4T ENTt OPCOOE PARM PARM PARM COIMENT
48a: .ag::szs ........ 2:= aosu s 99882888 xw, m i ux:,s, msuix umuaa aIuuaau.1

START 00000480
Z ALLOC RES2 - 0000490

2 ALLOC PES2 00000500
3 ACT C0ESTAHT 10 0000Slo
3 [P00asg 2

I Page 240 I --



PROCESS REPORT: This report gives information on all aspects
of Process exexutions. As mentioned before, Processes con-
tend for Resources and many times must wait for another Pro-
cess to complete before the current Process completes. Times
spent in these states as well as other imoortant data are
recorded automatically for the user.

The Process Report provides the following statistics:

1) total samples - the number of times the Process
began execution, the number of times the current
Process waited

2) the sum total of time spent in ill executions of
this Process, sum of waits on Processes and also
resources.

3) the mean time required for execution of the Pro-
cess, for waiting on Processes, for waiting on
resources.

4) the standard deviation of the variation of time
the Process required for execution, for waiting on
Processes, for waiting on resources.

5) the minimum time required for Process execution,
minimum time spent waiting for other Processes,
minimum time spent waiting for resources.

6) the maximum time required for Process execution,
maximum time spent waiting for other Processes,
maximum time spent waiting for resources.

7) total number of times this report was scheduled to
execute.

8) the number of times this Process was scheduled to
execute due to a Process request in a load or a
Process interrupt in a scenario.

9) the number of times this Process was scheduled to
execute due to a call from another Process.

10) the total number of times this Process completed
execution.

11) the total number of times this Process did not
complete execution.

12) total number of times the execution of this Pro-
cess was suspended during execution (should equal
fields !3 & 14).

j Page 241

.... i i I - l I



13) total number of times the execution of this Pro-
cess was suspended during execution due to a Pro-
cess of higher priority "stealing" a required
resource.

14) total number of times the execution of this Pro-
cess was suspended during execution due to the
level of required resources being reset below the

required level through the use of a RESET primi-
tive.

15) names of items used in this Process.

16) number of each item created by this Process.

17) number of each item passea to this Process.

18) number of each item passed out of this Process.

19) number of each item destroyed by this Process.

20) total number of items used in this Process.

21) mean time each item was held by this Process.

22) minimum time each item was held by this Process.

23) maximum time each item was held by this Process.

24) standard deviation of the variation of time each
item was held by this Process.

25) verbal description of the Process.

26) how many times each primitive in the Process was

executed.

27) any entry primitives and their names.

28) names of other primitives in this Process.

29) any parameters or items associated with each prim-

itive in the Process.

30) any comment associated with each primitive in the
Process.

An example of a Process Report is shown.

Page 242

4 - -



11.3 COMMANDS RELEVANT TO VIEWING OUTPUT REPORTS

To view outpu' reports of simulation runs of a model from the
AISIM READY level, one issues the command,

EDIT

or

E

Since the output report is a long list of information which is
too long to fit on a terminal screen, to view it all, one must
use some text editing commands. Below is a brief review of the
commands that are most useful for this purpose. (This discussion
refers to the IBM TSO text editor).

11.3.1 TOP, BOTTOM

To orient the screen to either the top or bottom of the report
one should enter one of these two commands.

11.3.2 UP, DOWN To move the report either up or down on the

screen n lines issue the command,

UP N

or

DOWN N

and the line n lines down from the current one will be printed.
A default of f is assumed if n is not explicitly typed

11.3.3 FIND To find a certain sequence of characters, sequence,
enter the command,

FIND /sequence/

and the screen will print the nearest line down in the text con-

taining the characters sequence.

11.3.4 LIST To print n consecutive lines down from the one to
which one is currently oriented, issues the command,

LIST * n

and the next n lines will be displayed on the screen.

Page 243

-- -- • , i ,, I



APPENDIX A

A. OPERATIONAL PROCEDURES AND IMPORTANT INFORMATION

A.1 IMPORTANCE OF DATABASE BACKUP AND ALLOCATION

Processes and the other model entities are stored on disk as they
are input to AISIM. Changes and additions made to this informa-
tion are reflected in the current version of the database on
disk. It is possible for this database to be damaged so that it
is unusable if the computer system fails or if the input session
is abnormally terminated while a change or addition is being
made. In addition, errors made in inputting may make the stored
information nonsensical if they are severe enough. For these rea-
sons, there are two ways provided to "backup" the database with
the COPY/NOCOPY option and with the BACKUP command.

The user may enter the DUI level in COPY mode. In this case, a
copy of the actual database is made by AISIM before allowing the
user to make any changes or additions. All subsequent changes and
additions are applied to the working copy rather than to the per-
manent database. To render changes permanent, issue the DUI
level "SAVE" command The changes are then applied to the "real"
database. In this way, if the user realizes a severe error has
been made in the additions or changes applied to the working
copy, the session may be abnormally terminated without a save,
thus "loosing" the erroneous changes.

The other means of providing backup for the database involves
NOCOPY mode and the BACKUP command. If the user enters input mode
in NOCOPY mode no working copy of the database is made and all
changes or additions are made directly to the actual database. In
this case, it is wise to periodically create a backup copy of the
database with the AISIM Ready Level command "BACKUP". Should a
database be damaged, it may be recreated from the last BACKUP
copy by using the "RESTORE" command.

It may happen that while making additions (or even changes) to a
database the database exceeds its original allocation of space on
disk memory and requires more room. If this happens help should
be sought from the SED Design Analysis Section to reallocate the
database, giving it more room.

A.2 ABNORMAL TERMINATION OF A DUI OR AUI SESSION

To terminate a DUI or AUI session normally the user must enter
the command END. If the user becomes entwined in a situation
which disallows normal system operation, the following procedures
should be followed:

It should be noted that while in a DUI session, only the data
entered prior to the last SAVE command will remain intact after

Page 244

.. I I ...i



this procedure is executed. If the system appears to malfunction,
caution should be used in issuing a SAVE command. If the database
is the source of the malfunction and a SAVE command is issued,
the user might destroy the entire database. It is better to lose
one session's data (by not saving) than to destroy an entire
database.

This procedure assumes that the user is using a Hewlett Packard
HP-2647A terminal.

l)Strike the TERMINAL RESET key until the message 'TERMINAL READY'
appears in the upper left hand corner of the screen; two strikes
in a one-second period are required.

2) Strike the BREAK/INTERRUPT key once.

3) Enter the command STOP (this brings the user to the TSO command
mode and results in a READY prompt).

If no response to these procedures is seen, the user should disconnect
the modem, and try to log in and reinitiate the system.

If the system responds by displaying 'READY' or '/', the user should
reinitiate the system.

A.3 AISIM PLOTS

The following section is intended to describe in detail how the
simulation plot results produced by the AISIM Analyze function
are generated. This discussion addresses the implementation of
the plot function in AISIM with respect to the physical charac-
teristics of the HP2647A display and the driving software. For a
user of AISIM, it is generally not necessary to be aware of
implementation specific details. This section has been included
because the plot output from AISIM simulation runs is the most
visible form of output produced. This data may appear to con-
tradict other results produced by the AISIM Analyze function
(output listing statistics). This explanation is intended to
describe how this function works so that the AISIM user can
explain apparent anomalies.

AISIM produces plotted data for many stat'stics. The plots
represent "instantaneous" output from the simulation because in
all cases, a defined statistic is plotted against time (the y-
axis is the statistic value, the x-axis is the simulation clock).
Time is normally considered to be continuous; therefore, it is
"reasonable" to assume that AISIM plots are continuous. In real-
ity, this is not the case. AISIM plots are produced by sampling
statistics at discrete intervals during the simulation. Each
sample defines a point on the plot. A couple of relationships
need to be known to understand how this sampling technique pro-
duces plots.

Page 245

...'....



The first relationship a user must be aware of is the reso-
lution of the display screen. The HP2647A graphics terminal has
a raster scan display. A raster is the smallest addressable unit
which can be illuminated on the screen. Within the AISIM plot
axis there are about 700 rasters along the x-axis. What this
implies is that up to 700 points can be plotted along the x-axis
without exceeding the hardware limitations of the display. When
an AISIM user specified a plot be displayed which has more than
700 points, the AISIM software reduces the data sent to the ter-
minal so that it can be displayed. This data reduction has the
effect of "ignoring" some points. When points are ignored, the
obvious result is ti .t the plots lose accuracy. This can account
for discrepancies between the plotted data and the simulation
summary results, specifically with respect to the minimum and
maximum statistics. The simulation report may indicate that a
Resource queue had a maximum length of 100 when a plot of the
current number in wait for a Resource over time indicates only a
maximum value of 80.

Another problem which can occur with respect to plotting is
that the plot sampling can miss activity occurring in the simula-
tion because the sample interval is too long. The following
default relationship is embedded in the AISIM software. One hun-
dred data points are sampled for each period in the Scenario
Tef'nltn ao- simulation run.

What this implies is that is a Scenario is defined to have
only one period, only one hundred plot samples will be collected.
The sample interval is calculated as the period length/100.0.
Suppose the period length is defined to be 3000 units (where
units are seconds, this is 1 hour). Plot samples are collected
every 36 units (or 36 seconds). If activity occurs in the model
over time intervals less that 36 units, this data will not be
captured for plotting. This could occur if a user wanted to see
a plot of disk utilization of a computer system over a one-hour
time frame. Since disk operations occur in seconds or less, a
plot of the current number busy of the Resource disk would miss
most of the data points if samples were taken every 36 seconds.

It is possible to adjust the plot sampling interval in the
Scenario definition. The number of samples collected for each
plot is computed as the number of periods in the Scenario multi-
plied by 100 points.

To reiterate, AISIM plots produce graphs of statistics col-
lected during a simulation run, and display the results over
time. The data for these plots is collected by sampling discrete
intervals. It is not generated by state changes detected by the
simulator. Therefore, the "instantaneous" plots of "CURRENT"
data over time can disagree with accumulated statistics in the
simulation listing.

Page 246

" " .. -. . . . -I | I -- -



APPENDIX B

B. AISIM ERRORS

If there are errors detected during the initialization, an error
message will be written below the invalid entry. Following is a
list of the initialization error messages and their causes.

#### ERROR - VALUE MUST BE NUMERIC

A non-numeric value was found as the value of a Con-
stant. The defined value of a Constant must be
numeric.

#### ERROR - TABLE ENTRIES MUST BE NUMERIC

A non-numeric value was found as an entry in a D or C
type Table. All D or C type Table entries must be
numeric.

#### ERROR - ALPHA TABLE X ENTRY IS ILLEGAL TYPE

In an alpha Table, an x entry was a Keyword or other
invalid entry. The only valid entries are references
to Actions, Items, Processes, Queues, Resources, or
Tables.

#### ERROR - ALPHA TABLE Y ENTRY IS ILLEGAL TYPE

In an alpha Table, a y entry was a Keyword or other
invalid entry. The only valid entries are references
to Actions, Items, Processes, Queues, Resources, or
Tables.

#### ERROR - VARIABLE INITIALIZED TO ILLEGAL TYPE

A Keyword or other illegal type was found as the value
of a Variable. Variables must be initialized to
Actions, Processesf Queues, Resources, Tables, Alpha
Literals, or numerics.

#### ERROR - ATTRIBUTE DEFINED MORE THAN ONCE

An Item, Process, or Resource attribute was defined
more than once. The duplicate attribute definition
should be removed.

*### ERROR - * NOT DEFINED AS A GLOBAL CONSTANT

j A non-numeric value in the size field of a QUEUE was

Page 247I - - , - ---- ----



not defined as a global Constant. A non-numeric value
for the size must either be the word "INFINITE" or be a
previously defined global Constant.

A non-numeric value in the total or initial units field
of a Resource was not defined as a global Constant.
The total and initial units of a Resource must each be
either a numeric value or be a previously defined glo-
bal Constant.

In the definition of a Scenario, a non-numeric value in
the schedule field was not defined as a global Con-
stant. The schedule must be a numeric value or a
defined Constant.

In the definition of a Scenario, a non-numeric value in
the priority field was not defined as a global Con-
stant. The priority must be a numeric value or a
defined Constant.

#### ERROR - INITIAL # OF RESOURCE UNITS IS GREATER THAN TOTAL #
OF UNITS

In a Resource definition, the initial number of units
defined was greater than the total number to units of
that Resource which were to be made available.

#### ERROR - FROM NODE IS NOT DEFINED AS A RESOURCE

In an entry in the Legal Path Table, the node specified
in the FROM DEVICE column was not the name of a defined
Resource.

#### ERROR - TO NODE IS NOT DEFINED AS A RESOURCE

In an entry in the Legal Path Table, the node specified
in the TO DEVICE column was not the name of a defined
Resource.

#### ERROR - NEXT NODE IS NOT DEFINED AS A RESOURCE

In an entry in the Legal Path Table, the node specified
in the NEXT DEVICE column was not the name of a defined
Resource.

#### ERROR - LINK IS NOT DEFINED AS A RESOURCE

In an entry in the Legal Path Table, the link specified
in the VIA LINK column was not the name of a defined
Resource.

#### ERROR - LABEL MUST START IN COLUMN 1 OR OPCODE MUST START
IN COLUMN 10

Page 248

-. ----- --.. - --- -



In a Process definition, a value was encountered which
did not start in column I or in column 10. If the
value is 3 label, it must start in column 1, or if it
is an opcode, it must start in column 10.

#### ERROR - OPCODE MUST START IN COLUMN 10

In a process definition, a non-label value was encoun-
tered which did not start in column 10. All opcodes
must start in column 10.

#### ERROR - ******** NODE NAME IS NOT RECOGNIZED AS A RESOURCE

An invalid value was encountered in the node field of a
Process definition. This field must be blank, contain
the word "ALL", or contain a value which resolves to
the name of a defined Resource.

#### ERROR - ******** NAME IN GIVENS LIST IS IN ERROR IN
THIS CONTEXT

### GLOBAL NAMES, NUMBERS AND CLOCK CAN NOT BE
GIVEN

The value of a given parameter for the START figure of
a Process was either a numeric value or the CLOCK.
Numeric values and the CLOCK cannot be used as given
parameters in a Process.

#### ERROR - * ITEM IN RECEIVES LIST IS IN ERROR

This is a general message indicating an error in a
START figure of type "ITEM" of a Process. This message
is generally followed by one of the two following mes-
sages which more specifically describe the error.

#1*1 ERROR - ITEM APPEARS TWICE IN RECEIVES LIST

In the definition of a START figure of type "Item," an
Item was listed more than once. An Item should only
occur once in the receives list of the START figure.

UtI ERROR - REFERENCE IN RECEIVES LIST IS NOT DEFINED
AS AN ITEM

In the definition of a START figure of type "ITEM," a
value which was listed in the receives list was not
defined as a Item. A Process with an ITEM START can
only receive Items.

4##4 ERROR - * NUMERIC REFERENCE IN CALL PROCESS FIELD

In the definition of a CALL Primitive in a Process, the

Page 249

.qv~z.,j >



process name field contained a numeric value or a key-
word. This field must contain the name of a defined
Process to be initiated.

#### ERROR - RETURN PARAMETERS NOT ALLOWED FOR CALL NOWAIT
OR BLOCK

In the definition of a CALL Primitive in a Process,
return parameters were defined, but the CALL option was
defined as NOWAIT or BLOCK. Only Processes called with
a WAIT option can return parameters.

#### ERROR - ******** NUMERIC OR GLOBAL MAY NOT BE USED AS RETURN

In the definition of a CALL Primitive in a Process, a
numeric value, keyword, or the CLOCK was defined as a
return parameter. Numeric values, keywords and the
CLOCK cannot be used as return parameters.

#### ERROR - BRANCH CONTINUATION DOES NOT FOLLOW A
BRANCH STATEMENT

In the definition of a BRANCH Primitive of a Process,
the label to branch to was not given. A branch Primi-
tive must include a label to branch to.

#### ERROR - KEYWORD CANNOT BE USED IN PROB

In the definition of a probabilistic BRANCH Primitive
of a process, CLOCK or a keyword was used as the proba-
bility of BRANCH. These cannot be used as the BRANCH
probability. Valid values for the BRANCH probability
are numeric values and local and global Variables and
Constants.

#### ERROR - * CHECK REFERENCE MUST BE RESOURCE OR QUEUE

In the definition of a TEST primitive in a Process, the
value to be tested was defined as a numeric, a global
Variable, or a global Constant. The value to be tested
must be a reference to either a Resource or Queue.

#### ERROR - * NUMERIC REFERENCE INVALID IN RESOURCE FIELD

In the definition of a RESET primitive in a Process,
the value to be reset was a reference to a numeric
value. The value to be reset must be a reference to
defined Resource whose allocation is to be changed.

In the definition of an ALLOC primitive in a process,
the value in the name field was a reference to a
numeric value. The value in the name field must be the
name of a reference to a defined Resource which is to

Page 250

4_ I



be allocated.

In the definition of a DEALLOC primitive in a Process,
the value in the name field was a reference to a
numeric value. The value in the name field must be the
name of a reference to a defined Resource which is to
be deallocated.

#### ERROR - BRANCH LABEL ******** NOT DEFINED IN OFD

In the definition of a Process, a BRANCH primitive
referenced a label for which there was no corresponding
ENTRY label defined. An ENTRY primitive must be used
to define the label to be BRANCHed to.

##$# ERROR - LOOP LABEL ******** NOT DEFINED IN PROCESS

In the definition of a Process, a LOOP primitive refer-
enced a label for which there was no corresponding
ENTRY label defined. An ENTRY primitive must be used
to define the label to be BRANCHed to.

#### ERROR - CHECK LABEL ******** NOT DEFINED IN PROCESS

In the definition of a Process, a TEST primitive refer-
enced a label for which there was no corresponding
ENTRY label defined. An ENTRY primitive must be used
to define the label to be BRANCHed to.

#### ERROR - COMPARE LABEL ******** NOT DEFINED IN PROCESS

In the definition of a Process, a COMPARE primitive
referenced a label for which there was no corresponding
ENTRY l3bel defined. An ENTRY primitive must be used
to defiie the label to be BRANCHed to.

#### ERROR - * ALREADY DEFINED AS AN ENTRY NAME IN THIS
PROCESS

In a Process definition, an ENTRY primitive was defined
twice with the same label. A label can occur only once
in a Process.

#### ERROR - '**' KEYWORD CAN NOT BE ASSIGNED NEW VALUE

In the Jefinition of an ASSIGN primitive in a Process,
an attempt was made to assign a new value to a Keyword
other than SCNODE. Only the $CNODE keyword can be
assigned a new value.

#### ERROR - NUMERIC QUANTITY CAN NOT BE ASSIGNED A VALUE

In an ASSIGN primitive of a Process, an attempt was

Page 251

| , I



made to assign a new value to a numeric value. The
only entities which can be assigned a new value are
attributes, Variables, and local variables.

#### ERROR - ******** GLOBAL CONSTANT CANNOT BE ASSIGNED A NEW
VALUE

In the definition of an ASSIGN primitive in a Process,
an attempt was made to assign a new value to a global
Constant. The only entities which can be assigned a
new value are attributes, Variables, and local vari-
ables.

#### ERROR - - NOT RECOGNIZED AS A LOGICAL RELATION

In the definition of a COMPARE primitive in a Process,
the relation field was invalid. Valid relations are
EQ, NE, GE, GT, LE, and LT.

#### ERROR - ' IS NOT RECOGNIZED AS AN ARITHMETIC OPERA-
TION OR A LOCAL VARIABLE

In the definition of an EVAL primitive in a Process,
the function specified was invalid. The function field
can also contain the name of a local variable which is
a reference to a defined Table.

ERROR - ' A GLOBAL CONSTANT NUMERIC OR KEYWORD CAN
NOT BE ASSIGNED TO

In the definition of an EVAL primitive in a Process, a
global Constant, numeric or a keyword was specified in
the set variable field. The only entities which can be
assigned a new value by an EVAL are global Variables
and local variables.

#### ERROR - ******** REFERENCE INVALID IN ITEM FIELD

In the definition of a SEND primitive in a Process, the
list of Items to be sent to a Process contained an
invalid value. Only Items can be sent to a Process.

In the definition of a CREATE primitive in a Process,
the list of Items to be created included an invalid
value. Only Items can be created by a CREATE primi-
tive.

In the definition of a DESTROY primitive in a Process,
the list of Items to be destroyed included an invalid
value. Only Items can be destroyed by a DESTROY primi-
tive.

In the definition of a FILE primitive in a Process, the

P
Page 252

d



Item field contained an invalid value. The item field
must contain the name of a reference to a defined Item
or a defined Resource.

In the definition of a FIND primitive in a Process, the
Item field contained an invalid value. The item field
must contain the name of a local Variable to be set.

In the definition of a REMOVE primitive in a Process,
the Item field contaired an invalid value. The item
field must contain the name of a variable to be set.

**** ERROR - ******** INVALID QUEUE OPTION

In the definition of a FILE primitive in a Process, the
option field contained an invalid option. The valid
options are FIRST, LAST, NEXT, and BEFORE.

In the definition of a FIND primitive in a Process, the
option field contained an invalid option. The valid
options are FIRST, LAST, NEXT, and BEFORE.

In the definition of a REMOVE primitive in a Process,
the option field contained an invalid option. The
valid options are FIRST, LAST, and NEXT.

#### ERROR - ******** REFERENCE INVALID IN QUEUE FIELD

In the definition of a FILE primitive in a Process, the
queue field contained an invalid value. The queue
field must contain the name of a reference to a defined
Queue.

In the definition of a FIND primitive in a Process, the
queue field contained an invalid value. The queue
field must contain the name of a reference to a defined
Queue, the name of a reference to a defined Res v;rce,
or the name of a valid cross-reference set: Action,
Constant, Item, Process, Queue, Resource, Table, or
Variable.

In the definition of a REMOVE primitive in a Process,
the queue field contained an invalid value. The queue
field must contain the name of a reference to a defined
Queue or Resource.

#### ERROR - ******** - RESUME REFERENCE MUST NOT BE NUMERIC OR
GLOBAL

In the definition of the RESUME primitive, a numeric
value or a Constant or Variable was encountered in the
Process figld. This reference must ; a local vari-
able.

J |Page 253



#### - ERROR - TRACE MODE MUST BE EITHER 'ON' OR 'OFF'

In the definition of a TRACE primitive, the first field
contained a value other than "ON" or "OFF". These are
the only valid values.

#### ERROR - '**' DISTRIBUTION ONLY REQUIRES 1 PARAMETER

In the definition of an ACTION primitive in a Process,

the specified distribution required only one parameter,
but two were supplied. The extra parameter should be
deleted or the distribution should be changed.

#### ERROR - LOAD NODE IS NOT RECOGNIZED AS A RESOURCE

In the definition of a Load entity, a value was encoun-
tered in a node field which was not a reference to a
defined Resource. Nodes must be Resources.

#### ERROR - '* *' IS NOT DEFINED AS A PROCESS

In the definition of a Load, the name specified in the
process field was not defined as a Process. The name
specified in this field must be a defined Process.

#### ERROR - ******** IS NOT A LOAD DISTRIBUTION FUNCTION

In the definition of a LOAD, the name specified in the
schedule field was not a valid Load distribution.

#### ERROR - * IS NOT DEFINED AS A CONSTANT OR VARIABLE

In the definition of a Load, a non-numeric value in the
rate field was not defined as a global Constant or
variable. If the rate field contains a non-numeric
value, it must be a defined global Constant or Vari-
able.

In the definition of a Load, a ion-numeric value in the
mean field was not defined as a global Constant or
Variable. If the mean field contains a non-numcric
value, it must be a defined global Constant or Vari-
able.

In the definition of a Load, a non-numeric ialue in the
delta field was not defined as a global Constant or
Variable. If the delta field contains a non-numeric
value, it must be a defined global Constant or Vari-
able.

In the definition of a Load, a non-numeric value in the

priority field was not defined as a global Constant or
Variable. If the priority field contains a non-numeric

Page 254



value, it must be a defined global Constant or Vari-

able.

#### ERROR - NO SCENARIO DEFINED

No Scenario was defined. There must be a Scenario
defined in order to run a simulation on a model.

#### ERROR - PERIOD NOT DEFINED

In the definition of a Scenario, the period was not
defined. The period length for a Scenario can be a
numeric value or a defined Constant.

#### ERROR - TRIGGER ******** NOT DEFINED AS A LOAD OR PROCESS

In the definition of a Scenario entity, a value in the
trigger field was not a Load or Process. Scenario
triggers must be either Loads or Processes.

#### WARNING - * NOT LEGAL. USING D INSTEAD.

An illegal Table type was specified; The Table is
being assumed to be discrete. The valid table types
are continuous (c), discrete (d), and alpha (a).

#### WARNING - ATTRIBUTE INITIAL VALUE IS NOT DEFINED

In the definition of an Item, Process, or Resource an
attribute was not assigned an initial value or was
assigned an invalid value. Attributes must be initial-
ized.

#### WARNING - ******** IS AN ILLEGAL OPTION. USING NOWAIT
INSTEAD.

In the definition of a CALL primitive of a Process, the
option field contained an invalid option; a NOWAIT
option is being assumed. The valid options are BLOCK,
WAIT, and NOWAIT.

#### WARNING - '* *' IS NOT RECOGNIZED IN THIS CONTEXT

In the definition of an ASSIGN primitive of a Process,
an attempt was made to assign a numeric value or a Con-
stant or Variable, but there was also a value in the
qualifier field. The qualifier is being ignored.

In the definition of an ASSIGN primitive in a Process,
an attempt was made to assign a value to the $CNODE
keyword, or an attempt was made to assign a value to a
Variable, but there was also a value in the qualifier
field. The qualifier is being ignored.

Page 255

, .



#### WARNING - ' - NO QUALIFICATION RECOGNIZED
FOR IDENTIFICATION

In the definition of a COMPARE primitive in a Process,
a unrecognizable qualifier for a numeric, a global
Variable, or a global Constant wan encountered. Qual-
ifiers are allowed only for Items, Processes,
Resources, and certain keywords.

#### WARNING - ******** IS NOT RECOGNIZED IN THIS CONTEXT FOR
FUNCTION

In the definition of an EVAL primitive in a Process,
operands were specified with a random function or a
second operand was specified for a function which only
required one operand.

#### WARNING - * IS NOT AN ACTION DISTRIBUTION -

USING CONSTANT

In the definition of an ACTION primitive in a Process,
the value in the method field was not a valid Action
distribution; the distribution is being assumed to be

CONSTANT. The valid distributions are exponent, con-
stant, lognorml, normal, uniform, weibull, gamma, and
erlang.

If an execution error occurs during the simulation, execution
will halt and an error message will be printed in the statistical
summary. In some cases there may be a Simscript 11.5 traceback.
This traceback is a hexadecimal formatted report which is to be
disregarded by the user. Following the error messages, the sta-
tistical summary lists the state of the Process which was execut-
ing when the error occurred. The value of all local variables
and attached attributes for the Process are listed. All other
output reports are also generated.

Following are all of the execution errors which are produced and
an explanation of the conditions which cause each error.

#### EXECUTION ERROR DETECTED IN PROCESS *

An error occurred in the specified Process which caused

an abnormal termination of the simulation.

#### EXECUTION ERROR - BRANCH PROBABILITY FOR CURRENT STATEMENT
IS NOT A NUMBER

The BRANCH probability in a BRANCH primitive in a Pro-
cess does not evaluate to a number.

#### EXECUTION ERROR - LOOP NUMBER FOR CURRENT STATEMENT IS NOT
A NUMBER

Page 256

, .. . -- i , , . . .. . .. . .... ..-



The value of the LOOP counter in a Process is not a
number.

#### EXECUTION ERROR - TEST STATEMENT ENTITY IS NOT A RESOURCE
OR QUEUE

The value to be tested by a TEST primitive in a Process
is not a Resource or a Queue. The TEST primitive can
only test a Resource or a Queue.

#### EXECUTION ERROR - VALUE OF RESET IN CURRENT STATEMENT IS NOT
A NUMBER

The value for the number of units to be reset by a
RESET primitive is not a number. The value for the
number of units to be reset must evaluate to a number.

#### EXECUTION ERROR - ATTEMPT TO RESET # OF RESOURCE UNITS
OUTSIDE OF LEGAL LIMITS

An attempt was made to reset a number of Resource units
which would make the number of units inactive or active
greater than the total number of units which were
defined for this Resource.

#### EXECUTION ERROR - A REFERENCE IN THE CURRENT PROCESS EVALU-
ATES TO AN ILLEGAL TYPE FOR THE CURRENT STATEMENT

The resource field in a RE;ET primitive did not resolve
to a Resource. This field must resolve to a defined
Resource entity.

The resource field in an ALLOC primitive did not
resolve to a Resource. This field must resolve to a
defined Resource entity.

The resource field in a DEALLOC primitive did not
resolve to a Resource. This field must resolve to a
defined Resource entity.

1*1* EXEC'JTION ERROR - AN ACTION REFERENCE DOES NOT EVALUATE TO
A NUMBER

The scheduling time or the scheduling delta time for an
action does not evaluate to a number.

#### EXECUTION ERROR PRIMITIVE REFERENCE DOES NOT EVALUATE TO
AN ACTION

An undefined opcode for a primitive was encountered.
The opcode was assumed to be the name of a reference to
an action, but it did not resolve to a defined action
name.

Page 257

4 _______



#### EXECUTION ERROR - PROCESS IN CURRENT CALL STATEMENT IS NOT
DEFINED AS A PROCESS

An attempt was made by a CALL primitive to initiate a
Process which was not defined. The Process name in a
CALL primitive must be a reference to an entity defined
as a Process.

#### EXECUTION ERROR - PRIORITY IN CALL DOES NOT EVALUATE TO
A NUMBER

The priority in a CALL primitive did not evaluate to a
number. The priority for calling a Process must evalu-
ate to a number.

#### EXECUTION ERROR - DISAGREEMENT IN NUMBER OF GIVEN
PARAMETERS BETWEEN CURRENT CALL STMT AND CALLED PROCESS

The number of given parameters in a CALL primitive
differs from the number of given parameters in the
definition of the Process to be called. These
parameters must correspond.

#### EXECUTION ERROR - DISAGREEMENT IN NUMBER OF RETURN
PARAMETERS BETWEEN CURRENT CALL STMT AND CALLED PROCESS

The number of return parameters in a CALL primitive
differs from the number of return parameters in the
definition of the Process to be called. These
parameters must correspond.

#### EXECUTION ERROR - ORDER RELATIONS ARE NOT DEFINED FOR COM-
PARE TYPES

For the non-numeric types being compared, an invilid
relation was specified. The only valid relations for
these types is equal or not equal.

#### EXECUTION ERROR - EVAL VARIABLE DOES NOT EVALUATE TO
A NUMBER

One of the variables in an EVAL primitive for a func-
tion other than a Table does not evaluate to a number.

#### EXECUTION ERROR - EVAL FUNCTION IS NOT RECOGNIZED AS
AN ARITHMETIC OPERATOR OR A TABLE REFERENCE

The reference for the function in an EVAL primitive is
not a legal arithmetic function or a reference to a
defined Table.

#### EXECUTION ERROR - EVAL VARIABLE FOR DISCREET OR CONTINUOUS
TABLE DOES NOT EVALUATE TO A NUMBER

Page 258

--- .-w--- 4-



In an EVAL primitive which is being used to look up a
value in a Table, the value used to index into the
Table, the x value, does not evaluate to a number.

#### EXECUTION ERROR - ILLEGAL ASSIGN: CURRENT NODE MUST BE SET
TO A RESOURCE

An EVAL primitive attempted to set the current node to
a reference which was not a defined Resource. The
current node must be a Resource.

#### EXECUTION ERROR - ASSIGN ATTEMPTS TO MODIFY A QUALIFIED TYPE
FOR WHICH NO ATTRIBUTE IS DEFINED

An attempt was made to assign a new value to an attri-
bute of an entity for which no attributes can be
defined. Only Processes, Resources, and created Items
have attributes which can be modified.

#### EXECUTION ERROR - ******* ATTRIBUTE NOT DEFINED FOR ITEM

An attempt was made to assign a new value to a non-
existent attribute of an Item.

#### EXECUTION ERROR - ******* ATTRIBUTE NOT DEFINED

An attempt was made to assign a new value to a non-
existent attribute of a Process or a Resource.

### EXECUTION ERROR - ASSIGN ATTEMPTS TO MODIFY A TYPE WHICH
CANNOT BE MODIFIED

An attempt was made to assign a new value to an entity
which cannot be modified; i.r. a global Constant, a
number, or a keyword other than $CNODE.

#### EXECUTION ERROR - ATTEMPT TO CREATE AN ENTITY WHICH IS NOT
AN ITEM

An attempt was made to create an entity which is not an
Item. Only references to Items may be in the create
list of the CREATE primitive.

#### EXECUTION ERROR - ATTEMPT TO DESTROY AN ITEM WHICH IS
CURRENTLY FILED ON A QUEUE"

An attenpt was made to destory an Item which had been
filed oi a Queue and not removed before execution of
the DESrROY Primitive.

*#$# EXECUTION ERROR - CURRENT PROCESS ATTEMPTS TO DESTROY AN
ITEM WH"CH IS NOT DEFINED OR DOES NOT EXIST

Page 259

- - C---



An attempt was made to destroy an Item which was not
defined or created, or which has already been des-
troyed.

#### EXECUTION ERROR - PROCESS FIELD IN SEND STATEMENT IS NOT
DEFINED AS A PROCESS

The reference in the process field of a SEND primitive
was not resolved as a Process. Items can only be sent
to a defined Process.

#### EXECUTION ERROR - CURRENT PROCESS ATTEMPTING TO SEND A
ENTITY WHICH IS NOT DEFINED AS AN ITEM

An attempt was made by a SEND primitive to send an
entity other than an Item to a Process. Only refer-
ences to Items may be specified in the SEND primitive
to be sent to Processes.

#### EXECUTION ERROR - ITEM ******** ATTEMPT TO BE RECEIVED
BY PROCESS ******** IS NOT IN PROCESS NEED LIST

An attempt was made to cause a Process to receive an
Item which was not on the list of Items which the Pro-
cess should receive.

#### EXECUTION ERROR - CURRENT PROCESS ATTEMPTS TO FILE AN ENTITY
WHICH CANNOT BE FILED

An attempt was made by a FILE primitive to file an
entity which cannot be filed. Only Items and Resource
units can be filed.

#### EXECUTION ERROR - CURRENT PROCESS ATTEMPTS TO FILE AN ITEM
OR RESOURCE UNIT ON AN UNDEFINED QUEUE OR IDLE QUEUE

An attempt was made to FILE an Item or Resource unit on
a Queue which was not defined or on a Resource IDLE
QUEUE which did not exist. The queue reference in the
FILE primitive must resolve to a defined Queue or a
defined Resource (to indicate its IDLE QUEUE).

#### EXECUTION ERROR - CURRENT PROCESS ATTEMPTS TO FILE AN ITEM
OR A RESOURCE UNIT IN A QUEUE OF THE WRONG TYPE

An attempt was made to FILE an Item on a Queue which
had been determined to be a Resource unit queue, or to
file a Resource unit on a Queue which had been deter-
mined to be an Item Queue. A Queue is determined by
the first entity which is placed on that Queue and from
then on, only more of the same entity can be filed in
that Queue. When the Queue is emptied, its type may be
redetermined by the next file onto it.

1 Page 260



#### EXECUTION ERROR - CURRENT PROCESS ATTEMPTS TO FILE AN ITEM
ON A RESOURCE IDLE QUEUE

An attempt was made to file an Item on the IDLE QUEUE
of a Resource. Only Resource units can be filed on

Resource IDLE QUEUES.

#### EXECUTION ERROR - CURRENT PROCESS ATTEMPTS TO FILE A
RESOURCE UNIT IN THE IDLE QUEUE OF A DIFFERENT RESOURCE

An attempt was made to file a Resource unit on the IDLE
QUEUE of a Resource other than the IDLE QUEUE from
which the unit was removed. Resource units cannot be
filed on IDLE QUEUES of other Resources.

#### EXECUTION ERROR - CURRENT PROCESS ATTEMPTS TO FILE AN ITEM
OR RESOURCE UNIT WHICH IS ALREADY ON A QUEUE

An attempt was made to refile an Item or Resource unit.
An Item or Resource unit can be filed on only one Queue
at any given time.

#### EXECUTION ERROR - CURRENT PROCESS ATTEMPTS TO FILE A
RESOURCE UNIT WHICH IS ALREADY ON A RESOURCE IDLE QUEUE
OR A USER DEFINED QUEUE

An attempt was made to refile a Resource unit which had
already been filed on its IDLE QUEUE or a defined
Queue. A Resource unit can be filed in only one place
at any given time.

#### EXECUTION ERROR - CURRENT PROCESS ATTEMPTS TO FILE A
RESOURCE UNIT CURRENTLY IN AN IDLE QUEUE

An attempt was made to file a Resource unit which had
already been filed on an IDLE QUEUE. A Resource unit
can be filed in only one place at any given time.

#### EXECUTION ERROR - CURRENT PROCESS ATTEMPTS TO FILE AN
ENTITY BEFORE OR AFTER AN UNDEFINED ENTITY

An attempt was made to file an entity before or after
an entity which did not exist on the Queue.

#### EXECUTION ERROR - CURRENT PROCESS ATTEMPTING TO REMOVE AN
ENTITY FROM AN UNDEFINED QUEUE

An attempt was made to remove an entity from an unde-
fined Queue or an IDLE QUEUE of a Resource which had
not been defined.

### EXECUTION ERROR - CURRENT PROCESS ATTEMPTING TO REMOVE
'NEXT' ENTITY WHICH DOES NOT EXIST

Page 261



An attempt was made to remove a non-existent current
Item or Resource unit from a Queue or a Resource IDLE
QUEUE.

#### EXECUTION ERROR - A REFERENCE FOR A QUEUE IN A FIND PRIMI-
TIVE IS NOT DEFINED AS A QUEUE, RESOURCE DEF, OR XREF
SET

An invalid reference was specified in a file primitive
as the queue name. Only Queues, Resources, or cross-
reference sets are valid for the Queue name field.

#### EXECUTION ERROR - * ATTRIBUTE OF A RESOURCE IS
NOT DEFINED

An attempt was made to reference a non-existent attri-
bute of a Resource. Valid attributes are NIDLEQ,
NBUSYQ, NWAITQ, NINACTQ, as well as user-modifiable
attributes.

#### EXECUTION ERROR - ******* ATTRIBjTE OF A RESOURCE UNIT
NOT DEFINED

An attempt was made to reference a non-existent attri-
bute of a Resource unit. Valid attributes are NIDLEQ,
NBUSYQ, NWAITQ, NINACTQ, as well as user-modifiable
attributes.

#### EXECUTION ERROR - ******** ATTRIBUTE OF A PROCESS IS
NOT DEFINED

An attempt was made to reference a non-existent attri-
bute of a Process.

#### EXECUTION c'RROR - ******* ATTRIBUTE OF A TASK IS NOT DEFINED

An attempt was made to reference a non-existent attri-

bute of a Task.

#### EXECUTION ERROR - * ATTRIBUTE OF A QUEUE NOT DEFINED

An attempt was made to reference an invalid attribute
of a Queue. The valid attributes are NQUEUE and
TQUEUE.

It#$ FXECJTION ERROR - ****** ATTRIBUTE IS NOT DEFINED FOR
CURRENT ITEM REFERENCE ******* IN EXECUTING LOGIC

An attempt was made to reference a non-existent attri-
bute of an Item.

0000 EXECUTION ERROR - ******* ATTRIBUTE SPECIFIED FOR A TYPE FOR
4HICH NO ATTRIBUTES CAN BE DEFINED

Page 262

4i
I !I



An attempt was made to reference an attribute of a type
which does not have attributes. Entities which have
attributes are Resources, Processes, and Items.

1*1# EXECUTION ERROR - KEYWORD REFERENCE IS BLANK

When the simulator tried to resolve i Keyword, the
reference field for the parameter wa3 found to be
blank.

#1*5 EXECUTION ERROR - PROCESS NODE HAS NOT BEEN DEFINED

An attempt was made to reference the process node of a
Process, but the node was not defined.

S### EXECUTION ERROR - REFERENCE FOR $ NODE IS NOT A PROCESS

When the simulator tried to resolve the Keyword $NODE,

the reference was not a Process.

#### EXECUTION ERROR - ROUTE SET ERROR - NO PATH IN NETWORK

Page 263

_____ _____ ____



APPENDIX C

C. GLOSSARY

ACTION - A discrete event that consumes time during a simulation
run.

AMDAHL/470 -A large scale IBM370-like omputer system, on which
the AISIM System is hosted.

ANALYSIS USER INTERFACE (AUI) - The interface between the user
and the General Function Model.

ANALYSIS USER INTERFACE (AUI) READY STATE - Any time after the
Analysis User Interface has been invoke d, except during a simula-
tion period. This state is indicated bi the "*" prompt.

ARCHITECTURE DESIGN EDITOR (ADE) - A siblevel of the DUI which
provides the user with the graphics conmands to construct a sys-
tem architecture.

ARCHITECTURE DESIGN EDITOR (ADE) MENU - A representation of the
valid symbols available to the user during an ADE session for
building an architecture. See ADE MENU.

ARCHITECTURE DESIGN EDITOR (ADE) READY STATE - The state of the
system while in the ADE that allows the user to entLr commands.
This state is indicated by the "#" prompt.

ATTRIBUTE - The specific characteristics of a defined entity.

ATTRIBUTE FORM - A list of available attributes from which the
user must select one attribute to be used for testing or data
sampling.

BLOCK - Used in conjunction with the CALL symbol (see section
4.5.1) to indicate that the calling task is to call the specified
task and wait until all associated tasks are complete before con-
tinuing.

BREAKPOINT - A user-specified condition, when reached, simulation
is suspended.

CONSTANT - A value that is not subject to change once a simula-
tion run has been started.

CRT - CATHODE RAY TUBE - Often used as a shorthand notation for a
crt-based computer terminal.

DATABASE - The accumulation of da.a in a specified form related
to a specific function or operation.

P
Page 264

I-~-



DATAPHONE - A registered trademark of the BELL SYSTEM for a type
of data transmission device (modem).

DEFAULT CONDITION - The condition that exists if no parameters
are explicitly stated.

DESIGN USER INTERFACE (DUI) - The interface that allows the user
to create or modify a design database.

DESIGN USER INTERFACE (DUI) READY STATE - Any time after invoca-
tion of the DESIGN USER INTERFACE, except when utilizing the PEI
or ADE sublevels of the DUI. This state is indicated by the "*"
prompt.

DPN - Data Processing Network

ENTER KEY - A specific key on the HP-2647A terminal that is used
to enter data when the terminal is in "forms mode".

ENTITY - A predefined set of contructs that have user defined
attributes (see section 5 for valid AISIM entities). They are the
"building blocks" with which the user creates his model.

ENTITY-NAME - The user-defined name of a valid entity.

ENTITY-TYPE - A type as opposed to a specific, user-defined
instance of an Entity.

FORMS MODE - A specific function of the HP-2647A terminal, that
provides areas which may be filled in by the user, and protected
fields which define the areas to be filled in. The data is input
to the computer via the Enter Key.

INFINITE RESOURCES - A feature which allows the simulator to
simulate a Process as if there were no limit to the number of
resources available to it.

LOAD - The amount of activity to be applied to the simulation of
a process.

L-NODE - A leaf node in an architecture which typically
represents an external load on the system.

NOWAIT - Used in conjunction with the CALL Primitive to indicate
that a Process is to be called by a parent Pfocess and the parent
Process is to continue processing in parallel.

OFF-SCREEN - The portion of a graphics picture not visible to the
user.

ON-SCREEN - The portion of a graphics picture visible to the
user.

Page 265

' n I I



PRIMITIVE - The model entity used to model individual steps in an
operation or function. A Process is constructed from a sequence
of Primitives.

PROCESS - A graphical representation of a sequence of events,
activities and decisions that models a real-world operation or
function.

PROCESS EDITOR INTERFACE (PEI) - A sublevel of the DUT that pro-
vides the user with the graphics commands to construct Processes.

PROCESS EDITOR INTERFACE (PEI) MENU - A representation of the
valid Primitives available to the user during a PEI session.
PROCESS EDITOR INTERFACE (PEI) READY STATE - The state of the
system while in the PEI that allows the user to enter commands.
This state is indicated by the "#" prompt.

QUERY - A request for information.

PERMANENT DATABASE (SOMETIMES REFERRED TO AS THE DESIGN DATABASE)
- The master user-named database, in which the data for a modeled
system resides. (opposed to the working database which tem-
porarily holds design data while editing that data).

RELATIONAL OPERATOR - A set of mnemonics that represent a rela-
tion such as equal, not equal, less than, greater than.

RESOURCE - Representations of the real-world objects that are
required by a Process to do its work.

REVERSE VIDEO - A feature of a CRT terminal in which dark
characters appear on a light background, rather than a dark
characters on a light background.

SCROLL - The process of moving data displayed on a CRT either up
or down.

STATISTICS FORM - A form presented to the user from which one
type of statistical value must be selected for use in data sam-
pling.

SYNTAX - A set of rules that determines the structure and
arrangement of words and characters.

TRANSLATOR (XLATOR) - The AISIM database translator that
translates the design database into a form suitable for input to
the simulator.

VARIABLE - A term whose value is subject to change.

WAIT - Used with the CALL Primitive to indicate that the calling
Process is to suspend until the called Process is complete.

Page 266

J4



M

WORKING DATABASE - A copy of the user's real database, into which
all work is done on a temporary basis.

asis6

F
i

rae 6

-.-p- - -- -. -



APPENDIX D

D. QUEUES ASSOCIATED WITH ENTITY NAMES

In addition to the queues associated with Resource contention,
there are eight system defined queues called "cross-reference

sets". These queues correspond to the sets of names of the fol-
lowing AISISM entities:

1. Resource names

2. Queue names

3. Process names

4. Item names

5. Action names

6. Table names

7. Constant names

8. Variable names

What this means is that an AISIM modeller can write lo;ical
Processes which cycle for each entity defined in one of the above

sets.

The FIND primitive accesses the set of names of an entity type by
specifying the name ,e.g. RESOURCE, ITEM, PROCESS, as the QUEUE

field reference in the primitive.

Page 268



APPENDIX E

E. MESSAGE ROUTING SUBMODEL PROCESSES

E.1 PROCESS: REQ-I/O

This Process is the top level Process of the Message Routing Sub-
model. This Process is called when a user wishes to make use of

this submodel. This Process causes a Process request message to
be generated. When this Process is called, it is given PROCESS,
which is the name of a Process to be initiated in the destination
node of the message, PRIORITY, which is the oriority with which
PROCESS is to be initiated, RESP.OPT, which is SWAIT or $NOWAIT
and indicates whether the parent will wait until the initiated
Process completes, MSG.LNTH, which is the length in bytes of the
message, TO.NODE, which is the destination node for the message
and the node in which PROCESS is to be initi3ted. This Process
does not return any parameters.

A detailled description of the parameters of this Process is
given below.

PROCESS NAME: REQ-I/O - Generate a process request message on
initiate I/O.

LOCATION: executes in all nodes.

GIVEN: PROCESS (DATA TYPE: PROCESS) - This Parameter is the name
of the Process to be initiated in the destination node.

PRIORITY (DATA TYPE: REAL) - This parameter is the prior-
ity which the initiated Process is t. have when it is
started.

RESP.OPT (DATA TYPE: ALPHA) - This pirameter is the
option for the communication. The only legal values in
this parameter are: SWAIT - the parent Process will wait
unti the requested Process finishes before it resumes,
SNOWAIT - the parent Process does not wait on the
requested Process.

MSG.LNTH (DATA TYPE: REAL) - This parameter is the length
in bytes )f the communication message routed through the
network, requesting the Process to be invoked.

TO.NODE (DATA TYPE: RESOURCE or ALPHA) - This parameter
is the destination node of the message which is the node
in which to initiate the requested Process. If the ALPHA
variable SYES is provided for this parameter, the node of
the requested Process is computed by the SNODE keyword.

Page 269

j
, 4



RETURN: NONE

CALLS: ESR-CALL

Following is the graphical representation of Process REQ-I/O.

H(NEPTE A~ PROCE:: REQUE:T 14::04E AND INITIATE 0

Pnour.s Ppor STARTAL
PEJ OP - LNTH

ej PEATE

___________ :REATE M~E'. ;ATA ',DPT

.QlNED TO
HDE INIDICAOTE CUORENT NODE

i.x:~c TO
N: ND INDICATE CURRENT NODE FROM

PPOCE::

IN- N( Ro INDICATE REQUE-TED PRO"E:

1: A-KNED TO
*N".; TA'jPRl INDICOTE QEL4THVE PRIORIT

PESP.OPT
: .":l&ED TO

* IWE RESPOS N0AIT OR 6 WAIT ON4 CALL

IA::l4ND 10
*N LENTH INDICATE LEN(TM IN DYTE"

Page 270



- IF TRQ( TO.NODE
E a

END #NO WHERE DOES PQOCE' RUEIDE

IF S&ul TONODE
!et EQ

ITHODE IY[. DEFAULT TO NODE 'ELECT

ITO.NODE 
' 

-

S: SIG
N
ED TI1

,E THODE IELSE- MODE IS IvEH

I END

' ETNODE DETERMINE NODE FROM PROC.

$HODE PROCESS

'I41'. ASSIGNED ro1iS6 TNODE

NOCE SORE Of PIOCESS IN DEF

END :END MS FOR ERVICE

QIVEN CALL RETURN

11 ER-CALL

* (END

This Process begins by creating the message and initializing
various attributes of it. The attributes CNODE and FNODE are the
current node In which this Process is executing. The attribute

Page 271



RTASK is set to the Process which will be executed in the desti-
nation node of the message. The attribute TASKPRI is set to the
priority with which the requested Process will execute. The
attribute RESPONSE is set to SWAIT or SNOWAIT; i.e. whether the
parent is to wait for the requested Process to finish Processing.
The attribute length is set to the length in bytes of the mes-
sage. Next the value of the destination node is checked. The
value of $NO will no occur as the destinaton. If the value of
the destination node is SYES, then the TNODE attribute--i.e. the
destination of the message--is set to be the node in which the
requested Process executes. Otherwise, the name of the destina-
tion node is supplied, and attribute TNODE is set to this value.
This Process then calls Process ESR-CALL with a WAIT option and
passes it the created message.

E.2 PROCESS: ESR-CALL

This Process is called by REQ-I/O and either suspends the
requesting Process if a response message is requested (WAIT
option) or allows it to continue processing if no response is
requested (NOWAIT option). When this Process is called, it is
passed the Item MSG. This Process does not return any
parameters.

PROCESS NAME: ESR-CALL - Executive Service Request (CALL)

LOCATION: executes in all nodes

GIVEN: MSG (DATA TYPE: ITEM) - This parameter is the communica-
tion message created in REQ-I/O which contains the data
for the Message Routing Submodel.

RETURN: N/A

CALLS: ROUTER

Following is the graphical representation of Process ESR-CALL.

-Page 272'0.
. . . . ... . . . . I l I I -- . .. . .. . .... .... .. . .. .



.FEP TI K -V:TEM: E<ECUTIVE ERIVICE VEQUET CPLL

il EN START RE T
E-R-CALL NO

0-',1 I A 1 'INED TO
!"!C STASK- INSTANCE TO RE:UR[

M@ :E PE[PONS(

:1 11 ASSIGNED TO

OPTION- WIT OF SNOYAIT

j QIEN "LL RTURN~

I F TRU R(P.OPT

EN i O ," T /E

EQ ,

[N SNWIT SNOHOLD PIRENT SUSPEND

'USPENI\ PROCES: CALLED "'

END CO"TINUE Of RELUME POINT

(END

This Process begins by setting the message attribute PTASK to the
currently executing instance of this Process. This value is
maintained in case this Process is suspended and is to be resumed
by another Process. Then the response option of the requesting
Process for the requested option is retrieved. Then the Process
calls the Process ROUTER to begin routing the message to its des-
tination and waits for ROUTER to complete. Finally a test is
made to see of the previously retrieved request option is $WAIT
or $NOWAIT. If it is SNOWAIT, ESR-CALL completes. If it is
SWAIT, ESR-CALL is suspended, having the effect that the request-
ing Process waits until the message reaches its destination, the
requested Process executes, and a response is routed back before
the requesting Process finishes Processing.

E.3 PROCESS: ROUTER

This Process determines whether the message is at its destination
node. When this Process is called, it is passed the message.
This Process does not return any parameters.

Page 273

___ ___ ___

-I ~ - -



PROCESS NAME: ROUTER - Operating System: Interrupt Handling and

Rout ing

LOCATION: executes in all nodes

GIVEN: MSG (DATA TYPE: ITEM) - This parameter is the communica-

tion message created in REQ-I/O which contains the data

for the logical process communication protocol.

RETURN: NONE

CALLS: CHLIO, CONTROL

Following is the graphical representation of Process ROUTER.

OP(RATIK :YTEM : !NTERUPT *4NDLIN; AND ROUTI4

%v[ ETuRNIC START A TLL

ROUTER / NO

CNODE'

;C INDICATE CURENT NODE CPu

- F TRU [ 1% CHODE

CONTROL N; TIS DSE AT DESTINATION

'CP NETINKTIR '.O

04 l IS SI.Wb TO
LM.°VD ]NONITOR OVERHEAD FOR PLOT

ROTE. Om
CONSTANT

" 0yIV(DELAY FOR ROOTIN&

,0 --IC LL , RETURN

CH I
aOWQIT 2

AA

Page 274



89E

,-' I F TRUE I G TP

;PCINTR. IREtP IF RESPONSE-UP PRIORITY

i P ~ Ta~KPRI

lie I I' A2:I;ND TO
1PRIORITY SET MESSAGE PRIORITY

HPCONTRL PRIORITY-@ IfDF IE

GIVEN CALL RETURN

CONTROL.
I~OQIT [PRIoRIzT

13 END,

14~ END

The first step of this Process is to assign to a variable the
name of the node which is the message's current position. The
message's current position is then compared with its destination

Page 275

.... .. . r ,,, . .. II I I , '1I



node. If at this point the node is at its destination, the des-
tination node is the same node which generated the message.
There is no routing overhead delay because the message did not
need to be routed anywhere (i.e. M.CS is zero). The Process then
tests to see if the message is a request message or a response
message. If it is a request message, the routine CONTROL is
called with a NOWAIT option and a priority equal to the requested
priority, and the requested Process is initiated in the destina-
tion node. If the message is a response message, the routine
CONTROL is called with a NOWAIT option and a priority of zero,
and the requesting Process is resumed, implying that the message
has reached its destination, the requested Process has been ini-
tiated, and the message has been routed back to the node from
which it was generated.

if the node is not at its destination, the overhead cost for
transfer of the message from its current node to its next node
must be calculated. Since this model is assuming that the over-
head is a constant value because the messages are all the same
length, the mean context switching time (M.CS) is used; the mes-
sage length (MSG.LNTH) and the route rate per length (RT.OVHD)
are not used. The Action ROUTE.OH is used to simulate this delay
time. The routine CHLIO is then called NOWAIT to forward the
message to its next node, and the Process terminates.

E.A PROCESS: CONTROL

This Process performs two different functions depending on when
it is called. This Process is passed the message. If the mes-
sage is a response message, then at this point the requesting
Process has waited for the message to reach its destination, the
requested Process to be initiated, and the message to be routed
back. At this point the message has gone full circle and
returned to the requesting Process's node. CONTROL then resumes
the requesting Process. If the message is a request message, then
the message is at its destination and the requested Process is
initiated in that node. If the requesting Process is waiting for
a response, then the attributes of the message are changed so
that the original source node is now the destination node, and
the message type is changed to a response type. Then the routine
CHLIO is called to route the message back to the requesting
Process's node. If the requesting Process is not waiting for a
response, the message is destroyed.

PROCESS NAME: CONTROL - Operaing System: Context Switching

LOCATION: executes in all nodes

GIVEN: MSG (DATA TYPE: ITEM) - This parameter is the communica-
tion message created in REQ-I/O which contains the data
for the logical process communication.

Page 276

....... ... ....... ~ ~ .. . .I.,._ __



RETURN: NONE

CALLS: CHLIO

Following is the graphical representation of the Process CONTROL.

)PERQTIN6 ;1,TEM CINTE(r 'ITCNC

;E" STIART Q

(: NODE
Q:,I NED TO

CURRENT NODE 1: CPU

I 3J ALLOC \
:!NML CURRENT CPU BUSTYC

CP O~UVH

i84 A3. .ji TO

L OyN - EAN CONTEXT "WITCH TIME

C^1.0;4

*5 [: GNSTRMT

DELAT CONTEXT SWITCH TIME

IF 1 TRUE'M A E G T fPE

* EQU[-T IREQ IF RE:PONSE- RESUME PARENT

IN, PTOK

-1 S INE 0 To
ITASK TASK TO RESUME 1: IN mNC

PE.UNE; TASK

99 QUEUE UP TMS FOR NODE

END RESZACE LIFE BES TROX

I REQUEST ELSE- CALL. REQUESTER PROC

IS ASSIMHED TO
1PROCESS EXECUTE THE CALLED PROCESS

GVNCAL L RETURN

Page 277



DE !OY howa T N:? T :E.4" M1 B4C&

SK. -P

s!1 ol-ICK O TO
i~0 

0
14u0 -.WITCH FROM "ND TO RUDE(

,; CRUDE

ic;0 fi.03 CUIRRENT MOK 1 FROMR OSE

I e4"Ll 1 (u

DL~e~rTERMINATE M(ZO( .4T DE.

DE TROY

NO PEP0I4E-TERRINATE MS&________

22'DEALLOC',

INDICOTE ___',WITCHDOME

Page 278



The first step is to allocate the node where the message is
currently located. This is the node where the requested Process
will be initiated or the node in which the requesting Process
executes (which is currently suspended). The action CS.OH simu-
lates the delay time involved in the context switching. The
value for this tine is an attribute of the node. Next the Pro-
cess determiner ' the message is a request or response message.
If it is a res, -ise message, this Process resumes the suspended
instance of the requesting Process, destroys the message, deallo-
cates the current node, and terminates. If the message is a
request message, the name of the requested Process is retrieved
from the PTASK attribute of the message and the Process is ini-
tiated. CONTROL waits until the requested Process completes.
Next CONTROL checks the message attribute RESPONSE to see if the
requesting Process is waiting for a response. If a response is
not desired, the message is destroyed and CONTROL terminates. If
a response is requested, the message type is changed to response,
the destination node is changed to the from node and the from

node is changed to the current node. Then the Process ROUTER is
called to route the message back to its origin. ROUTER is called
with a WAIT option. CONTOL then terminates.

E.5 PROCESS: CHLIO

Process CHLIO determines the current node and the destination
node for the message which is passed to it. It then accesses the
Legal Path Table to determine the next node along the route and

'nage 279

- ii-I



the channel to get there. The channel is allocated to simulate
its use, and the routine IHANDLER is called to interrupt the next
node.

PROCESS NAME: CHLIO -full and half duplex channel logic

LOCATION: executes in all nodes

GIVEN: MSG (DATA TYPE: ITEM) - This parameteris the communic3-
tion message created in REQ-I/O which contains the data
for the logical process communication.

RETURN: NONE

CALLS: IHANDLER

Following is the graphical representation of the Process CHLID.

I'LL -ND NALF DUPLE.' CHANNEL LOGIC
GIEN E[URN;'E START III TUN L

N'G CMuDE 1
@2' :: 02INED TO

N ET INTERNA4 NODE CURRENT

M' TNODE
1 S ND TO

T0.NODI GET DESTINATION NODE MSG,

INytNOD( TO.N00E I
IS A' INO TO

NxT.NODE I I ET NEXT NODE TO DET N

NICN NNEL TO. NODE
1 sI: SSINED TO I
CHANNEL GET HANNEL TO NET NODE

1'4IN CHANNEL rOe X r e CFP.4EL

L'..NN(L RATF

j .vPELD #HAT iO RATE IN N"EL "

Page 280

A



Bl li li BAlmaE i~lR~V S1BLSI1N MODEL) USER'S ul
MANUALU HUGHES AIBRRFT Co FULLERTON CA GROUND
SYSTEMS GROUP W AS EL L FT AUL 26 FE B 82 ESD-TR-83- 218UNCLASS FED 8F1628 8 U S15 FIG 9/2 NIL



1

11111 1.00

LL

MICROCOPY RESOLUTION TEST CHART

NAt'Oftft ou"Au or StANDADS - 63 -

1111

....... . . .. ... .. . .... 1,,,,1 - i , III I I- . . ...



'VIENGIN t PKSZA6 LENGT N ! 1 sL r

VP.OVWI NtItm.1

VLCNmG? CALCULATE TRiSFER IRE(

Iit CON'TANT
vR..ovw, | DELAY M TO rTRNSFER TIRE

I ,LSIGNED TO

S C )RK MESSAGE K IKS IN NEXT

1 t ASSIGNED TO
1CHOK :XT INTIRML NOK NEWiGTED

13DEALLOC'

REE UP CHANNEL AFTER xCr CHANVEL

GIVEN CALL RETURN
14NSG 1LR

is tEND

The first step of this Process is to assign the current node of
the message to $CNODE and to get the destination node for the
message. Then the next node and link are determined based on
$CNODE and the destination node. Then the link is allocated.
The transfer time for the message to cross the channel is always
a constant rate (the EVAL calculation using the channel rate and
the message length is ignored). The Action XFER.OH simulates the
time used to traverse the channel. Then the current node attri-
bute of the message is changed to the next node to update the
message's position, and the current node ($CNODE) is set to the

4 next node. The link is then deallocated and the routine IHANDLER
is called to interrupt the next node Processor.

E.6 PROCESS: IHANDLER

This Process Is similar to the Process ROUTER. IHANDLER is
passed the message. The Process then interrupts a processor node

- Iby allocating the node. If the message is not at its destination
node, then IHANDLER computes the next node in the route to the
destination node and calls the routine CHLIO to perform the rout-
ing. If the message is at its destination node, then IHANDLER
calls CONTROL to initiate the requested Process in the destina-
tion node.

PROCESS NAME: IHANDLER - Operating System: Interrupt Handling and
Routing

Page 281

w



LOCATION: executes in all nodes

GIVEN: MSG (DATA TYPE: ITEM) - This parameter is the communica-
tion message created in REQ-I/O which contains the data
for the logical process communication protocol.

RETURN: NONE

CALLS: CHLIO, CONTROL

Following is the graphical representation of Process IHANDLER.

OPERATING SYSTEM : INTrRUPT HWDLIIG AND ROUTING

G GIVEN ST RT /  RETURN AL

INANDLER NO

NSG CHODE

• ",~~~~I A, IGE TO SI; TD ;TqT

02 1CP 1 ASIGNE TO INDICATE CURRENT NODE CPU

ITRUE, / S CEQ

CONTROL NASG ITNODE IS nSC AT KEST14ATION

CP NE NT

94 is ASSIGNED 10
MEVHD JIONITOR OVERHEAD FOR PLOT

ORTAIN C [-NLE INTERUP r C

N.OVNDDELAY FRa ROUTING

DEAL ILOC
RELEASE CPU TO OTHERS CP

GIVE
N  

C L L RETURN

I
Page 282

• - - - .w N N W * * -'



EYND

IQ EQ

m6 T4SKPRI

U SET MESSAGE PRIORITY

13 Q
NPCONYNL PRIORITY-@ tr imKIED

CIvEm CALL RETURN

1411 CONTROL

I A I T IOR ITY

ENS

VII

This Process first determines whether the message is at its des-

,I,, I'A

tiatonnoe.If iiR, Ilt[,LER ca Pll rouine ONTROL t

Pag 283



initiate the requested Process. If a response message is to be
sent, then CONTROL is called with a zero priority; otherwise, it
is called with the priority of the requested Process. Either
way, CONTROL is called with a NOWAIT option. If the message is
not at its destination, the current node is allocated. The
Action ROUTE.OH is used to simulate the delay time for Processing
the routing. Then the node is deallocated and routine CHLIO is
called NOWAIT to perform the routing. IHANDLER then completes.

Page 284

- I i i ns I ~ *,. .. I1I


