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ABSTRACT

Tests of hypotheses for the parameters in a general linear model

are considered based on weighted rank statistics. Results are presented

for tests based on a rank estimate, tests based on drop in dispersion

and aligned rank tests. Weights can be used to focus the analysis on

simple effects and provide an additional degree of robustness to rank

tests. Several analysis of variance applications are discussed.

Key Words and Phrases: analysis of variance, dispersion function, robust

tests, aligned ranks, rank estimates, weights
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1. INTRODUCTION

Statistical procedures based on ranks are widely used f or simple

linear model problems. For the general linear model there has also been

considerable development in the area of rank methods. The results show

that they are nearly as efficient as the classical, least-squares methods

when normal distributions hold and more efficient for many other distribu-

tions. The least-squares methods can be inefficient for non-normal dis-

tributions (for both large and small sample sizes) and are sensitive to

outliers and high leverage points, while the rank methods are more robust.

This paper will consider weighted rank statistics for linear model

problems. Weights are usually introduced in statistical methods to

increase efficiency but that is not the case here. Instead, the interest

is in using weights so as to not lose efficiency while gaining in other

respects, in particular, in gaining a further degree of robustness. This

is discussed further in section 6.

The emphasis will be on analysis of variance problems and in this

case weights of zero or one are of special concern. They have the effect

of restricting the ranking to various subsets of the data instead of

ranking the entire set. A familiar example is the within block ranking

used for Friedman's test. It should be noted that the large sample

results considered here would apply in block designs with within block

comparisons as the number of observations per block grows large with a

fixed number of blocks and they would not apply in the reverse case of

fixed block size with the number of blocks growing large.
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In one-way and higher order analysis of variance problems there are

many rank tests in popular use that are based on restricted ranking,

restricted comparison methods. For example, in block designs the ranking

may be done separately in each block with no comparison between observa-

tions in different blocks. In testing the effects of several treatments

against a control, the treatment groups may be compared only to the

control group and not to each other. In testing the equality of several

groups against an ordered alternative Tryon and Hettmansperger (1973)

discussed the value of using only comparisons between adjacent groups.

The methodology of this paper includes the types of restricted comparisons

above as special cases.

Results on the asymptotic distributions of estimates and test

statistics that have appeared separately in the literature can be obtained

in a unified framework from Remarks 2.1 and 2.3. This common view of

many diverse problems can be valuable in promoting understanding of their

common structure and in suggesting new solutions to other problems. The

general results may provide the details necessary po modify a standard

procedure to better fit a particular application. A computer program

based on the general approach would be able to handle a wide range of

problems.

Consider the linear model

(1.1) Y a 6 0!+ XB + e

where Y - ('I..I is an n xlI random vector, 1 is an n xl1

vector with each element equal to one, X -(xii) is an n xp design

matrix, 8 =(a19... ,s) is a p x 1 vector of parameters and

-16-
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e - (el,...,e)' is an n x 1 vector of random errors. Assume that X

is centered so that its column sums are zero. Assume that the errors are

independent with a common distribution having density function f . The

residuals are denoted by Z = (ZI,...,Zn)' where

Z = Z(b) = Y - Xb

A weighted rank estimate of B is reviewed in section 2 along with

some theoretical results that will be needed in the rest of the paper.

Longer proofs are delayed until the Appendix. Sections 3, 4 and 5 discuss

tests of hypotheses based on the estimate 6 , on the drop in dieoersion

and on aligned ranks, respectively. Some advantages in the use of

weights are considered in section 6 and applications to a variety of

analysis of variance problems are discussed in section 7.

I

* .4 , ..... *
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2. PRELIMINARIES

Consider the dispersion function of the residuals

(2.1) D = D(b) = Ii<jwij Zi - ZjI,

where the w.. > 0 , 1 < i < j < n are a given set of weights. The

weights should reflect the importance of the comparisons. They may

depend on the design matrix X. Some of the weights can be zero to

drop some pairwise comparisons from consideration. The special case of

equal weights, w = 1 , gives rise to Gini's mean difference.ii

Hettmansperger and McKean (1978a) have shown that in this case the

dispersion function is equivalent to Jaeckel's dispersion function with

Wilcoxon scores.

The dispersion function D can be expressed in another form. Let

(RI,... ,R) denote the ranks of the residuals; that is, R. is the rank

of Zi in the set {ZI,.... Zn} , 1 < i < n . Let sgn(v) = +1 , 0, -1

as v is > 0 , = 0 , < 0. Extend the definition of the weights w..
13

to all subscripts i , j = 1 , . . , n by using w ji w1 and wi = 0

Then, using jvj = v sgn(v) , some manipulation shows

(2.2) D BiZIBi i
i=l

with Bi Bi(b) jwjsgn(Z , i = , . . . , n. The coefficients

Bi are random with Bi depending on the rank of Zi and also on the

subscripts of the residuals that are less than Zi  In the special case

w ij I, Bi - 2R i - (n +1).
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The estimate 8 of the parameter 8 will be a point in the

parameter space minimizing the dispersion function (see Sievers (1983)).

The partial derivatives of D are (approximately) equal to zero at the

minimum. Using (2.2), these derivatives are

n
(2.3) D/3b = -i BiXik

k i= 1l i

for k = 1 , . . . , p , except at a finite number of points. Letting

ai (k) = w ij (xjk -xik) , another form of the derivatives is

(2.4) aD/3bk = -2 i aij(k)4(Zi,Z ) + I a..(k)i<j i<j 1

1
where O(u,v) = 0 , I,1 as u > v, u = v, u < v. A matrix form is

(2.5) aD/ab = -X'B,

where B = (Bi) is n x 1.

For the results to follow it is convenient to use a multiple of the

derivative. Define a random vector U(b) = (U1 (b),...U p(b))' by

* (2.6) U(b) = (1/2)n-3/ 2X'B.

* Note that Uk W = n-3/2[ .ijai.j(k)W(Zi,Z.) - 1i<jaij(k)/21

Some constants will also be needed. For k = 1 , . . . , p, let

n
ai.(k) = ' aij(k) for i 1,... ,n- 1,

j=i+l

J -1
a. (k) = il aij(k) for j =2,...,n,

a (k) =0, a.l(k) = 0, a.(k) = i aij(k) and

i ) i.
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For asymptotic purposes, a sequence of these constants is needed, indexed

on n = 1, 2 , . . . , but this dependence on n for these and other

quantities will sometimes be suppressed in the notation.

Let W be an n x n symmetric matrix invclving the weights of the~n

dispersion function. Specifically, define the (i,j) th element of W
thn

to be -w if i < j and -w,. if i > j. The ith  diagonal
ij jiI

element of W n is w. = 3.iwij . Thus W n has the negatives of the

dispersion function weights for its off-diagonal elements and positive

diagonal elements determined so that the row and column sums are zero.

Also write

A =WX,~n ~n ~

V =X'W W X.-n - -n-n-

C - X'W X.

ASSUMPTION (A1): For each k = 1 , . . . , p

nA2 2
AiW(k)/max Ai (k) -oDo as n -o .

ASSUMPTION (A2 ): For each k = ,... , p

n
a a~.(k)/7 A2 (k) 0 as n

i<j i il i k

ASSUMPTION (A): For each k = 1. p

a2(k)/(n) is bounded as n - .

i <j
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ASSUMPTION (A42: For each k = 1,... p

max IXikI/vn 0 as n - o.
1< i<n

ASSUMPTION (AS5):

(l/n)X' X-* E as n- ,

where Z is a p x p , positive definite matrix.

ASSUMPTION (A)

n V - V as n - co

where V is a p x p , positive definite matrix.

ASSUMPTION (A )

n-2 C - C as n --n

where C is a p x p , nonsingular matrix.

* I

Let G(y) =P(e - e 2 y )  denote the cdf of the difference of

independent random variables, each with density f

ASSUMPTION (As: The cdf G has a density g = G' and g(y) is

continuous at y 0 with g(O) > 0.

ASSUMPTION (A9) Assume the error density f is absolutely continuous

and f(f'/f)2f dx <

, I.. ... , -- -
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The following remarks are from Theorems 4.1, 5.1 and 6.1 of Sievers

(1983) with some change in notation.

REMARK 2.1. Let (A1) - (A9 ) hold. Let A be a fixed p x 1 vector.

Then as n- ',

U(O) L N(YCA, (l/12)V)

where = (If2) .

In the notation , the B specifies the parameter vector in

model (1.1)

Let c > 0 be given and define a set V = {A: -C<Ak <c k=l,...,p}.

Let 1 1 be the Euclidean norm.

REMARK 2.2 . Let (A1) - (A9) hold. Then as n - ,

sup lIU(A/r) - U(O) +y cA1I 0.o
6 "" 0

REMARK 2.3 Let (A - (A9 ) hold. Then as n - ,

L 2 -1 -1
n.(B - B) I. N(O, (1/12Y )C V C)

A test of the hypothesis concerning the full parameter vector,

H0 : a - , can be based on a quadratic form in U(0) or in 6 by

using the large sample results in the preceding remarks. The former

has the advantage of not requiring an estimate of •

_ .~ - w- - - . .
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3. TESTING A REDUCED MODEL

In this section the problem of testing a reduced model is discussed.

With the full rank assumption on the design matrix, the problem will be

expressed in terms of testing to drop some of the terms from the model.

A test based on the rank estimate will be discussed here.

Consider the partitioning X - (XI,'2) and 3 ( , )' where

-i is n x p 1 , A2 is n x p2 , i is p 1 x 1 , 62 is p2 -x 1 and

Pl + P2 
= p The model (1.1) can then be written as

(3.1) y 01 + X1@I + X2@2 + e.

The reduced model hypothesis to he considered is 1 0 2 =

Some further notation will be needed. Let

C 11 912 v =

- £21 22 J 2 1 Y2 2

where C 1 and V 1 are pI x P, and let-1 -1

G =(-C C , I ), C, C-
-- 21-11' p2  ' 22.1 -22 - 21I-12

A natural test of the hypothesis H0  can be based on a quadratic

form in the estimate of s2  The estimate minimizing (2.1) can be

partitioned = (8' B')' and Remark 2.3 implies that

v 2- 22) - LN(O, (1/12y 2 )*)

where Z, is the lower right P2 x P2  submatrix of C- VC It can

. . .. -- - _II_ _- ,
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be shown that

-i= IGVG,'C

-* 22-q- -22.1

The following remark is immediate.

REMARK 3.1 . Let (A1) - (A9) hold. Then as n -

S1 = 12nm 2 2(p2'61 )

where the noncentrality parameter is 61 = 12y 2 A C22 .1(GVG')-
1C 2 2. 1A 2

2
and j is a consistent estimate of y = ff

Note that the distributions of S2 and Si do not depend on the

nuissance parameter i 1 The distribution of S is asymptotically

central chi-square when H0  holds (A 2 = 0) and noncentral chi-square

under local alternatives 32= A2 / /n" The test of approximate level a

is to reject H if S > X 2
0 1 0

In case that

(3.2) GVG' = 22.1

there is further simplification in S and 6 (also see Remark 4.2).

1
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4. DROP IN DISPERi-JLON TEST

McKean and Hettmansperger (1976, 1978b) proposed a test of H0

based on the drop in a rank dispersion function between the full model

and the reduced model. This data fitting criterion is appealing and

is directly analogous to the least-squares test statistic. In this

section the drop in dispersion statistic is considered for the weighted

dispersion function (2.1).

Under H0 , the reduced model of (3.1) contains the parameter B "

Let BIR denote the reduced model estimate of B obtained by

minimizing the dispersion function D(bl,2) of (2.1) with respect to

the p1 variables in bi As before, 6 minimizes the dispersion

function for the full model. The drop in dispersion test statistic is

given by

S2 = (1
2 y/n)[D(BIR,0) - D(E)

where y is a consistent estimate of y

The following remark concerns the asymptotic distribution of S2

for testing purposes. The proof will be delayed to the Appendix.

REMARK 4.1. Let (A1 ) - (A9 ) hold. Then for B = (0,A 2 /) , as

n - co

- 12U(O)'G'C2 1 GU(O) 0.s2  22 _o.

Using Remark 2.1 when a = (0,A 2 /n) for the distribution of U(O)

it follows that S2 will be asymptotically chi-square if GVG' C C2 2 "i"

- .2 22I i I1



-12-

Note that the distribution of S is free of since
L 2

$2(1,) = $2f(0) by a translation property of and 0lR

The following remark summarizes.

REMARK 4.2. Let (A1) - (A9) hold. If GVG' = C22-, , then as

n,

21(, 7n) X 2'2

where 62 = 12y 2 AC 2 2 .1A 2

The distribution of S2  is asymptotically central chi-square

when H 0  holds (A2 = 0) and noncentral chi-square under local

alternatives B 2  L 2 /n. The test of approximate level a is to

reject H if S > 2

0 2 a,p2

I

I
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5. AN ALIGNED RANK TEST

Rank tests based on aligned ranks have been discussed by many

authors for linear model problems, see Lehmann (1963), Adichie (1978),

Sen and Puri (1977). The basic principle in aligning the observations

is to estimate the nuissance parameters and to test the remaining

parameters with a suitable statistic as if there were no nuissance

parameters present. The resulting test typically has good large sample

properties. Small sample results are difficult to obtain in general.

In the present context the aligned rank method requires a reduced

model estimate of 8i and a statistic to measure the relationship of

the reduced model residuals to X2 Let 8lR be the reduced model

estimate of 81 of the previous section. Let

S= U(lR'O) - (1/2)n- X'B,

where B = (Bi) using (2.2), (2.6) and Bi = [isgn(Z , where

Z = Y - 11R = (Zi) is the vector of reduced model residuals. Also

form the partition

S[ " (1/2)n3

where U is Pn x and U2 is P2 x.

The aligned rank test statistic will be a quadratic form .in U 2"

The following remark gives the necessary details. The proof is delayed

to the Appendix.

*1I
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REMARK 5.1. Let (A1) - (A9) hold. Then as n

~2jL N(yC 2 1 , (1112)GVG').

With this result it is easy to see that the appropriate quadratic

form is

-i
s 2U2(GVG') U-2

The following remark is immediate from Remark 5.1.

REMARK 5.2 . Let (A1) - (A9 ) hold. Then as n -

$ 31, 1,92/n) L- X 2(p2,63 )

L 22

where the noncentrality parameter 63 = 12 2AC 2 2 .1 C21(GVG')-1C22 •1 A2

This is the same noncentrality parameter as in Remark 3.1 and if (3.2)

holds it equals the noncentrality parameter of Remark 4.2

The distribution of S3  is asymptotically central chi-square

under H0 (A2 =0) and noncentral chi-square under local alternatives

A2/Vn. The test of approximate level a is to reject H if

SS > X2

3 Xcp
2

I
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6. CHOICE OF WEIGHTS

In the unweighted case, w E 1 , the asymptotic covariance
ij

matrix of the estimate is a constant multiple of

(6.1) C-VC- -

As noted in Sievers (1983), this is a case of highest efficiency and

the use of weights cannot improve on this. The finite sample size

version of (6.1) is

(6.2) (X'WX)-
1X'WWX(X'WX)-

1 = (X'X)-1

and when this condition holds there will be no loss of efficiency in

using weights. A weight matrix will satisfy (6.2) if and only if there

is a nonsingular matrix H such that

(6.3) WX = XH.

A goal in selecting weights would then be to satisfy (6.2) or (6.3).

In the remainder of this section and in the next section some situations

will be discussed where it is possible to select weights to retain

efficiency and gain in other aspects.

The introduction indicated several one-way and higher order

analysis of variance problems where restricted rankings are used. Such

restricted comparison methods can be handled in the present context by

using weights wij = I if the ith and jth observations are to be

compared and zero otherwise. Examples in the next section indicate

there need not be a loss of efficiency. Quade (1979b) and Silva and
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Quade (1980) explored the use of weights proportional to a measure of

within block variability for complete block designs.

In analysis of variance problems arising in practice a frequently

occurring difficulty is that the assumptions for the basic additive

model are in doubt. In such situations the use of restricted comparisons

can be helpful. The additive model formally allows only shifts in

location between groups but in practical applications there is often a

drift from this that increases as the groups are further apart.

Neighboring groups in a design can be reasonably close in variation and

shape of distribution due to similar experimental influences but this

may deteriorate for groups that are more distant. The treatment may be

affecting more than just the location of a distribution. Transformations

can be tried to diminish this type of effect but they are not always

successful and they introduce problems in interpreting the results. In

these situations the comparisons between distant groups can be inappro-

priate. By comparing only neighboring groups the effects of group

differences not formally specified in the model can be diminished. The

focus is directly on the simple effects.

4 The specification of neighboring groups may be uncertain in a given

problem but for simplicity it should be enough to compare observations

only when they are in immediately adjacent groups in the design. This

approach is discussed more in the examples of the next section. Modifi-

cat ions could be made to compare groups that differ by more than one

level. The idea here is directly analogous to the comparisons of

"relevant pairs" as proposed by Quade (1979a) f or a multiple regressionj problem. He also suggested restricted comparisons for factorial designs.
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7. EXAMPLES

Consider an analysis of variance model where data is available in

p + 1 groups, labeled G0 , G, .. , G , and the number of observa-

tions in the groups are denoted no , nI , . . . , n , respectively. Letp

n = n0 + n1 + . . . + n p. Suppose parameters are defined so that

Y= 0 + a + el if the ith observation is in group G. This is

a convenient representation, similar to th; means model except that G
0

is used as a reference group. The work of this paper is basically

invariant with respect to reparametrizations and results from this simple

model will carry over to other choices for defining parameters. Thus one-

way and higher order factorial designs, block designs, etc. can be dis-

cussed in this framework.

With 3' p (Li .... ,p) , the n x p design matrix is

0 0 ... 0

(7.1) X =
,9o l2...0

-2 . -

0 0...
- -p

where 1 is an n x 1 vector of "ones", 1 < j < p, and 0

represents a vector of "zeros" of appropriate length. This design matrix

X should be centered to match the previous use of this symbol.

Let the weights depend only on group membership with b b the
jk kj

weight for comparing an observation in G with an observation in Gk.

- - ---- -

-.. '
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The resulting weight matrix is

Colo -bo" 01  "-bopop

(7.2) W - -boJl0  cll I  .. -blpJl p

-bpp -bplpl.. cI

pO pO pi-pi pP

where I is an n x n identity matrix, 0 < j < p , 3k is an

x nz matrix of "ones" and cj = U= 0 bjknk 0 < J < P

k#j

Then

-boln110 -b02n20 • Op n pnpl0

C111  -b12n 21

WX= -b21n12 c212

-b pnlip  -b p2n 21p • c 1

and

6

--. - a!- " -. - -. _.
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c1n1  -b 12n1n2 • b -b nn p

(7.3) X'WX = 21n2n1 c2 n 2 " 2pn 2 np

-b plnp n •.. cp P

A matrix H satisfying (6.3) is

c1 + b0 1n1  (b0 2 - b1 2)n2  (bOp -blp)n p

(7.4) H (b01 -b 2 1)n1  c2 + b0 2n2  (b0p-b 2p)np

(b0 1 - bpl)n1  (b0 2 bp2)n 2  c p+ bp np

and it remains to check if this matrix is nonsingular to verify no loss

in efficiency. By premultiplying (6.3) by X' it is equivalent, and

sometimes easier, to verify that X'WX is nonsingular.

In this context the vector U(b) of (2.6) can be expressed more

directly in terms of the comparisons between groups. Direct multiplica-

thtion shows that the k- element of U(b) is

(7.5) Uk(b) (1/2)n - 3 /2  b jT~ JffiO jk jk'

j#k

where Tjk - 2(#Gj <Gk) - nink and (#Gj < Gk) is a Mann-Whitney

statistic comparing groups G and Gk

Several Treatments Versus a Control Suppose G0  is a control group.

With group weights b0j 1 1 for j - 1 , • . • , p and zero otherwise,

t ,
* ,e ,
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the treatment groups are compared to the control group but not to each

other. The matrix H of (7.4) is nonsingular and there is no loss of

efficiency. Remarks 2.1 and 2.3 along with (7.1)-(7.4) yield familiar

results for this problem. Unequal sample sizes are readily handled. If

covariates are present in the problem the design matrix can be modified

accordingly and the tests of sections 4 or 5 can be used.

One-Way Analysis of Variance Suppose GO , .... Gp represent p + 1

groups to be compared. In the unweighted case, b = 1 , the
jk-

quadratic form in U(O) based on Remark 2.1 yields the familiar

Kruskal-Wallis test. As indicated in section 6, in some circumstances

the use of restricted comparisons may be beneficial.

Suppose there is a natural order in the treatment groups; for

instance the groups may correspond to increasing dose level, to

increasing age of subjects or to geographic locations along a path.

The discussion in section 6 suggests that the use of adjacent comparisons

can be beneficial in such cases. Let bjk = 1 if j = k - 1 for

k - 1 , . . . , p and zero otherwise. Then observations are compared only

to observations in an immediately adjacent group. An examination of

(7.3) shows it is nonsingular, so H is nonsingular and there is no

loss of efficiency. Thus the use of adjacent comparisons can be a useful

alternative to the unweighted case, especially in the presence of model

defficiencies.

Consider yet another pattern of weights for this problem. Let the

weight of a comparison between groups G and Gk be given by

bjk - bkj - I/njnk. The effect is to give less weight to observations

I
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in groups with larger sample sizes. With these weights, (7.3) simplifies

considerably and it is easy to show H is nonsingular. Thus there is no

loss of efficiency. Sievers (1983) discussed an influence matrix to

thmeasure the influence of the i- observation on the estimate of a j

This n x p matrix for the estimate 8 minimizing (2.1) is WX(X'WX) -

The weights here yield the same influence matrix as the unweighted case.

This follows by direct computation.

Ordered Alternatives In the notation of the previous one-way layout the

ordered alternative specifies 0 -i l< .• < B p with some strict

inequality. Making all comparisons requires that G. and Gk be

compared for all j < k . Test statistics based on ranks lj<k Tjk and

1j<k Tjk/njnk have been proposed for this problem, see Jonckheere (1954).

These statistics are linear combinations of U(O) as given in (7.5)

using suitable coefficients and weights bjk . Tryon and Hettmansperger

(1973) showed value in using only adjacent comparisons with a statistic

p 1 a. Tj-, . This can be obtained from (7.5) with weights bjk = 1

if j = k - 1 and zero otherwise.

By choosing appropriate weights bjk, these linear combination

statistics can have a wide variety of coefficients. There is some

value in this general view. Many familiar results on means, variances

and asymptotic normality follow as special cases of Remark 2.1. Unbalanced

cases cause no special trouble.

By using the aligned rank method of section 5 the presence of

nuissance parameters or covariates can be handled in a straightforward,

unified manner. The method can be adapted to provide a suitable test

statistic for variations in the standard model. For instance, if the
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groups are observed in incomplete blocks the use of suitable 0-1 weights

can restrict comparisons to the within block comparisons to cancel out

block effects and then a suitable linear combination of the resulting

T jkcould be chosen to test the ordered alternative. As another example

suppose the alternative hypothesis only specifies a partial ordering on

the B8. instead of a complete ordering. For iuch a case the use of

0-1 weights can restrict comparisons to those matching the alternative

hypothesis.

Two-Factor Analysis of Variance A 2 x 2 layout will be discussed for

simplicity but extensions to larger tables and higher dimensions will be

apparent. The notation of the beginning of this section will be retained,

but with a change of parameters, to avoid introducing double subscripts.

Label the cells and the model parameters as follows:

G 0 G i+cB1 + +y

Thus a 1 is a row effect, a 1 a column effect and y1an interaction

effect. The parameters here are related to the parameters 8 of the

beginning of this section by a nonsingular linear transformation and as

a consequence results obtained in one case apply to the other.

Using the earlier notation for sample sizes, the n x 3 design

matrix is

0 0 0
X 0 1 -

1 12 0 0I1 313 13
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and it should be centered yet to conform to earlier notation.

The main weighting scheme to be considered here is the scheme that

uses only within row/within column comparisons, abbreviated WR/WC. In

this scheme groups are compared (nonzero weights) if they are in the

same row or same column while diagonal comparisons are omitted with

zero weights (b0 3 = b1 2  0) . In this way comparisons are made between

observations that differ only in the level of one factor. This follows

the general rationale of section 6.

If nonzero weights are "one", the WR/WC weight matrix is

(n2 +n 3)10  -J01 -J02

-ji0 (n 1+n 4))1 0 -13
(7.6) W = (n +n )I- 20 - (n~ 4)-2 - 23

0 -31 -32 (n2+n3)13

A straightforward calculation shows that (6.3) holds and there is no

loss of efficiency with these weights.

The earlier work applied here shows that the weights b = 1/n nk

retain full efficiency. This is also the case if these weights are used

for the nonzero weights in the WR/WC scheme.

Consider the model above with no interaction (yI= ) . If all

comparisons are used in testing H0 : a, = 0 the column effect 6l is

a nuisance parameter and the methods of section 4 or 5 would be needed.

However, if the WR/WC weight scheme (7.6) is used the nuisance parameter

cancels out and the test statistic can avoid estimating it. This is a

desirable feature and it clearly extends to larger sized layouts. There

is no loss of efficiency if the sample sizes are equal. However, with

- • i --- -------- _ _ _ _-_ " m_
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unbalanced cases there can be a loss. Perhaps (7.6) can be further

modified to resolve this problem.

When the two-way layout is larger in size than 2 x 2 there is

another possible weighting scheme consistent with the remarks of section 6.

In the WR/WC scheme, instead of comparing a group to all other groups in

the same row or column, compare each group to only its immediate neighbors

in the same row and column. This adjacent WR/WC plan should prove to be

useful and warrants further study.

In the model with no interaction consider testing the hypothesis of

no column effect, H 0 : ,= 0 , with the aligned rank procedure of

section 5. To align the rows, the estimate of a suggested in section 5

is a rank estimate. The literature is quite varied on this point and

other Yn- consistent estimates have been suggested, for example,

differences of row means or medians. Suppose the estimate of a 1 is

denoted by a and the cells are aligned by subtracting a from all

observations in the second row. The aligned rank statistic U 2depends

on a and to examine this relationship the derivative dU 2Ida 1will be

* calculated. It will be shown that this derivative is zero for certain

* choices of weights. Thus the use of appropriate weights can reduce the

effect of alignment on the test statistic.

First note that U 2is the second element of X'B and except for

a constant is given by

(7.7) U 2 =-b0 1 T0 1 + b 21 T2 1 + b 0 3 T03 + b2 3 T2 3

where T jk -2n nk (fF idF k- (1/2)) and F.i is the empirical cdf of the

(aligned) observations in group G. t j = 0 ,1 ,2 ,3
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To avoid complications without losing the main point, consider the

F. as continuous cdfs with densities. Without loss of generalityJ

assume the true value of a is zero. Under H0 , 61 = 0. Then write

F0 (x) = F(x) , F1 (x) - F(x) , F2(x) = F(x+a 1 ) and F3(x) = F(x+a 1 ) .

Substituting these into (7.7), differentiating and evaluating at a, 0

yields

* 2dU2/dala= = 2nnbl2-n~nb0)2

dU /d fa,= =2(n~n 2 b12 -n0 n3 b03 )ff

This derivative is zero when b = b = 0 , that is, in the case of

WR/WC comparisons. It is also zero when bjk = I/njnk. In these two

cases, at least, the rate of change of U2 with respect to the aligning

quantity a1  is zero.

Block Designs The weighting schemes can be used with block designs. Some

care must be taken, however, since the asymptotic results here apply when

the within-cell sample sizes grow large and not, for example, in a case

of a fixed block size with the number of blocks growing large. Assumptions

(A1) - (A3) may not hold. The asymptotic results here can also apply when

a given design is replicated and the number of replications grows large.

Consider a case where a basic design with m observations per cell,

m large, is replicated with replications corresponding to blocks. By

using zero weights the between block comparisons can be eliminated and

block effects would cancel out. Tests of hypotheses about the parameters

in the basic design (or about a subset of them) can be constructed from

the general results here. Covariates can be handled in the same framework.

jUnbalanced sample sizes cause no special problem.

. -
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8. APPENDIX

Proof of Remark 4.1. Some additional notation is needed. Let

D (A) = (l/n)D(A/vn). Then A n minimizes D (A) . Similarly,

A *

LR = InlR minimizes D (A,0). Define a quadratic function

Q(A) = yA'CA - 2A'U(O) + D (0) . Then A =  C Uc(O) minimizes

Q(A) and A R -1c U (0) minimizes Q(A1,O) , where U (0) is

the first p1  elements of U(O).

It is sufficient to use y in place of y in S . Then

S2 = (12y)[D (A1R,9) - D (A)]

= (12y){[D (A IR') - Q(LR'2)] + [Q(AlRO) - Q(~lR' )

+ [Q(AIR,O) - Q(A] + A - Q(A)]

+ [Q(A) - D (A)]}.

Now Theorem 6.1 and Lemma 6.4 of Sievers (1983) can be used to show that

if = 0 , the terms above, except the middle one, converge in

probability to zero. This can be extended to the case a = (0,A2/v) by

contiguity. But the middle term above is 12[U(O)'C- u(0) _ (0)' -l - =

12U(O)'G'C -  GU(O) and the result follows.
. - 22.1-- -

Proof of Remark 5.1 . By a translation property of the reduced model
estimate aIR is is enough to prove the result when i = 0 since

the distribution of U2  is unaffected by the value of al

From Remark 2.3 it follows that A = has a limiting normal
!0

distribution and is 0 (1) . This, with Remark 2.2, implies
P

- ,
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uOR, - u(0) + yc 0 12

Using a contiguity argument,

U -U(O) + .-* 0
- o2 [cJ1.l (°,t 2 / r)

This result continues to hold if the fixed matrix G is multiplied on

the left and this drops out the term containing A Thus

GU - GU(O)I -* 0. . . J I(0, 2 / vin) ~

But by Remark 2.1,

GU(0) I J A /A- L "N(yC 22.1A2, (/12)GVG')

and so GU has this same limiting distribution. The proof is finished by

noting that GU = 2 - C21CI UI" U2 since U 1 0, being the derivative

(essentially) of the reduced model dispersion function evaluated at the

reduced model estimate.

I.
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