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ABSTRACT

—SA three-dimensional finite element procedure is developed
for the analysis of three-dimensional transonic flows and applied
to the analysis of wing-body combinations. A finite element grid
generation scheme for three-dimensional bodies with coﬁplex
geometries is presented. The design of efficient, body~fitted
computational grids with isoparametric mappings, as well as the
application of higher-order finite elements in analyzing transonic
potential flows are investigated.

Two different computational grids were designed and
studied with a numerical scheme based on the density upwinding in
the supersonic regions. A pseudo-unsteady type formulation is
employed in determining a steady-state solution. It is concluded
that the grid generation scheme is quite flexible and efficient
for generating solution adaptive grids and providing local refine-
ments in the sensitive flow regions. Also, it is shown that the
employed numerical scheme with higher-order elements at flow regions

of high gradients produced results which compare favorable with

experimental data.r<:;\\
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I. INTRODUCTION

1,1 STATEMENT OF THE PROGRAM

Analysis of flows around an aircraft at transonic speeds is of major im-
portance in terms of its performance and maneuverability. At transonic speeds,
local supersonic flow regions are usually terminated by weak, embedded shock
waves. The subsonic-supersonic flows are extremely sensitive to the shape of
the aircraft geometry. The mathematical difficulties related to the solution
of this problem are associated primarily with the mixed, hyperbolic and elliptic
type of equations for subsonic and supersonic flow fields and the presence of
discontinuities called shock waves. A computaticnal method, for analyzing tran-
sonic flows, should be capable of predicting the location and strength of these
shock waves which are again very sensitive to the changes in the geometry of the
boundaries.

A major concern, in the computation of transonic flows, is the design of a
computational grid. A good computational grid is a basic requirement for an
accurate flow analysis over a three-dimensional configuratfon. A surface-fitted
grid permitting easy and exact introduction of boundary conditions on curved
boundaries becomes necessary. While, in three-dimensional applications the
number of points on the computational grid grows rapidiy, description of complex
geometries like wing-body combinations and description of boundary surface fitted
grids become a difficult task and increase the labor involved.

During recent years, substantial progress has been made in the development
of numerical methods for the solution of inviscid transonic flows. Some of the
early studies to predict the inviscid flow fields around airfoils [1], wings [2]
and simple wing-body combinations [3] started within the framework of small dis~
turbance theory. The equations in this case were somewhat simpler and boundary
conditions can easily be imposed on a mean surface. For complex geometries, this
becomes too much of a simplification. Treatment of boundary conditions where
boundary surface does not coincide with grid points is generally either compli-
cated and time consuming or inaccurate. The need for the solution of full poten-
tial equation, rather than its small disturbance approximation, emphasized the
requirements in applying the boundary conditions accurately in later finite dif-

ference calculations.
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Jameson [4] solved transonic full-potential flow equation by rotating the
difference scheme to conform with the local stream direction so that proper
directional property is obtained. Following Jameson's work, many applications
of both finite difrerence and finite volume methods were presented for the solu-
tion of full-potential equation. For analyzing flow around three-dimentional,
complex configurations, these techniques required extension of mesh generation
techniques. In order to represent curved boundaries, a regular finite difference
grid, either an interpolation formula employed at grid points nearest the bound-
ary surfaces to treat mesh-boundary intersections or a coordinate transformation
was performed in order to reduce the boundaries to coordinate surfaces,

A major problem encountered in computational fluid dynamics is the gener-
ation and control of grids on which numerical solutions are to be obtained. The
accuracy and convergence rate of a particular solution scheme generally depend
on the degree of refinement and alignment of the grids with solution variables.
Application of exact boundary conditions for the generated grid requires addition-
at attention as the flow field geometries become more complex.

In finite difference applications, a general method for constructing grids
is the mapping of the physical flow domain onto a rectangular domain. The map-
ping transformation is represented as the solution to an elliptic boundary value
problem for the rectangle [17]. In the case of complex three-dimensional geome-
tries, the application of transformations become complicated and even limited.

An alternate approach is to use a block-structured grids. In this approach, the
computational domain is divided into multiple rectangular blocks that can be de-
fined to produce surface fitted computational grids. In this case, the necessity
of collapsing some block edges requires additional computations for representing
complex geometries [18].

Many studies have also been conducted for the purpose of obtaining better
orthogonality, introducing variable grid spacing and satisfying better alignment
with the>boundaries [19-21]. 1In addition, solution adaptive grids in which grid
points are rearranged to improve accuracy have been introduced by several re-
searchers [22,23].

As compared to the finite difference approach, finite element method handles
the problem in the physical plane and uses only a local mapping during integrations
in the computation. On the other hand, the description of the physical geometry

and preparation of finite element grid still has to be defined in an efficient

DRI AT v et e ST e, et T - e e . . . .
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,\‘_,x o
}? jﬁ manner. Finite element grid generation schemes which are commonly used for the
'fi solution of complex structural mechanics problems include many features to auto-
t‘ 'l mate the data preparation. Yet, being g...oral purpose programs, they require
ﬁ?: ) still considerable labor for solving three-dimensional aerodynamics problems.
;3 ~£ In the present study, the main objective was to illustrate the application
Ny of finite element technique to generate a computational grid for analyzing the
-y !5 transonic flow afound a complex three-dimensional configuration. In this report,
;s ~% firgst a solution technique for analyzing three-dimensional transonic flows using
NN the finite element method is summarized; then, a finite element mesh generation
45 ;3 scheme suitable for modeling wing-body configurations is presented. This procedure
- involves a two-level generation of finite element grids. First, the physical do-
. main is represented with small number of isoparamefric elements which are called
blocks. These large blocks are fitted to the complex geometries. Then, each of
- 7 the blocks are remeshed into finer elements automatically. This process requires
j: g a minimum amount of data to define the finite element grid. Finally, by using
;i ,:j these finite element grids, transonic full-potential equation is solved for a
%Q = sample problem. For this test case, the generation of an "optimum" grid is dis-
P cussed. An iterative approach is proposed where an initial grid is modified for
o I' improving accuracy. It is shown that by using the developed grid generation sch-
fj N eme, one can do this efficiently and control the grid spacing at critical flow re-
i: tﬁ glons without disturbing the rest. Also, it is shown through the computational
‘:f h experiments performed in the present study, that the design of an optimum grid re-
- !! quires an understanding of the flow field which can be obtained through this iter-
\g & ative procedure.
N
NS
AR 1.2 TRANSONIC FLOW PROBLEM
- - 1.2.1 Governing Equations
'EE . The governing equation for steady, inviscid and irrotational flow can be ex-
;; . pressed in terms of velocity potential ¢ and density p considering conservation
W of mass and irrotationality of the fluid. Conservation of mass can be written
tl = as follows:
V- (oY) = 0 (1.2.1)
Ei - where the velocity vector is,
f; M Ve=oul+v]+wk . (1.2.2)
o
o
® g
e e e e N s [ e R R R R e e
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; By using the condition of irrotationality, the velocity vector can be written
75 as,

B! V=9 (1.2.3)
{ where the scalar function ¢ is the velocity potential. Equation (1.2.1), then
‘i becomes,

:1 (p¢’x)’x + (D¢ay))y + (D¢,z),z =0 (1.2.4)
¢
‘% _ For three-dimensional flows, the solution of equation (1.2.4) should

3 satisfy the following Neuman type flux boundary condition:

T p¢,n = f (1.2.5)
f where f is the mass flux on the boundary surface whose outward normal is n. On
33 the solid boundaries, f is assigned to be zero. On the other hand, since Neuman
: boundary conditions are involved, the potential will be dependent to an arbitrary
:: constant, to remedy this, the value of ¢ at any point within the solution domain
N is to be prescribed [26].
3

1.2.2 Variational Formulation

e The weak statement of the problem (1.2.4) is to determine the function ¢

< ;

) such that differential equation and boundary counditions are satisfied in the
;ﬁ sense of weighted averages:

67 = [[(08, )5, + (06, ), + (09,), ] U dV =0 (1.2.6)

Ay

where U is the weight function and the integration is over the whole domain. No

derivatives of weight function appears in (1.2.6). On the other hand, the second

derivatives of ¢ have to be calculated. An alternative symmetric weak formulation

o can be obtained by applying integration~by-parts and choosing U same as ¢.

3 IS[(O¢,X)¢ + (p¢9y)¢ + (p¢)z)¢] dA

b = ol D00 + (08, )00+ (08, )0, ] dV = 0 (1.2.7)
B

f: The surface integral over S provides the natural boundary conditions for

~i

specified flux values. In the case of rigid walls, the normal mass flux (n¢,xi)

A vanishes and natural boundary condition automatically provides zero normal flux
", conditions [14]. In the above formulation, if one can eliminate the variable
fj density in terms of velocity potential, the problem can be written in terms of a
b single unknown, ¢.

-

.}f
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For isentropic flows, the relationship between density and local flow
speed can be written in terms of velocity potential ¢, as follows:
e rx-r .2 2 + 2 2 1/(y-1) (1.2.8)
P = 35 (Agay = (05, + 45, + ¢, )]

where 9pax is the maximum attainable velocity

1.2.3 Application of the Artificial Viscosity
The inspection of the weak solution in Equation (1.2.7) shows that the

isentropic equations permit a possible discontinuity [27]. Since the potential
equation is fully isentropic, it describes a reversible situation allowing ex-

pansion shocks as well as compression shocks. In the case of expansion shocks,
entropy has to decrease, which is a violation of thermodynamics laws. In order
to get correct weak solutions containing only physical shocks, an entropy con-

dition has to be introduced in the modeling of the flow.

Murman and Cole [1] first demonstrated that shock waves can be obtained in
the relaxation schemes if upwind differencing formulas are used in the super-
sonic regions. This is a correct differencing scheme in the sense that domain
of dependence in the flow field is satisfied. In subsonic flow regions, the
flow properties at a point are effected by the flow conditions all around the
point. However, in supersonic zones, the flow properties depend only on the flow
properties of the domain of dependence. The disturbances march away from an
initial data plane and downstream influences cannot propogate upstream,

It can be shown that the error introduced by the application of backward
differencing results is a second-order dissipation term which is analogous to
the viscous terms in the Navier-Stokes equation. Thus, in order to solve tran-
sonic flow problems, when the flow is supersonic, the solution scheme must be
modified to account for the hyperbolic nature of the governing equations. This
can be done either by including explicity some artificial viscous terms at the
supersonic locations or using difference schemes which introduce the second-order
viscous term like truncation errors.

In this study, artificial viscosity like terms is introduced by using a
medified density in the supersonic region. This density modification is given
as [28]

(1.2.9)
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where s is the streamline direction, As is the element size in the direction of
8 and a is the coefficient of artificial viscosity. e stands for the element
under consideration.

In the above formulation, since artificial viscosity is introduced by taking
the element size into account, it satisfies uniform distribution of viscosity con-
tent. In the case of non-uniform grids, one has to consider the changing dimen-
sions of the grid in the flow direction.

Gradient of density in equation (1.2.9) is obtained by backward differencing,

(o -0)
n e u
pe oe - ueAse s (1.2.10)
eu
where,
Aseu = %(Ase + Asu) (1.2.11)

and u stands for the nearby upstream element.

The choice of artificial viscosity is one of the important factors in deter-
mining the efficiency of the solution procedure. A previous study conducted on
the choice of artificial viscosity distribution, which is based on a simple one-

dimensional model [13], gives the following condition for uniform convergence:

a > 1 (1.2.12)

1
e M2
e

In the above expression, the effect of the position of the element in the super-
sonic pocket, the distribution of the error in the initial solution and size of
the elements in the grid are not included in the evaluation of the artificial

viscosity.
In this study, artificial viscosity coefficient is taken as;

1
a, = il - —5] (1.2.13)
e

where, u is the artificial viscosity content and it 1s constant during the

iterations. Then, the equation (1.2.9) can be written as

N (- (1.2.14)
Pe = %°u a- ae)”e ’ e
where
AS
* e 1
@, = uzg——[l - 2] (1.2.15)
eu Me
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s 2.1 FINITE ELEMENTS

& Finite element formulation of the problem (2.1.7) is obtained by dividing
k. ) the solution domain into smaller elements similar to the ones shown in figure
_';. (2.1). The potential function is then approximated within an element as a

linear combination of its values at grid points based on the locally defined
shape functions Ni(x,y,z) assigned to each grid point:

e

P
s

Py
SN

‘ L7

"-;;
o

‘vé' )

A 2

3 ;..

- . Fig. 2.1 Three-dimensional finite elements

> "-'

N o (x,y,2) = N, (x,y,2)¢ (i=1,.....m) (2.1.1)
P ',,. e 1 1

‘:f‘; g The number of approximation functions (shape functions) for each element
- is8 equal to the number of nodal points. In the above equation ¢i is the ¢ value
L -

” o at node i, N, is the shape function of node i and ¢e gives the distribution of ¢
TN

s} ! inside the element e.
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It follows from (2.1.1) that
r
' 1 if i=j=k=1
Np(xpay o) = ¢ (2.1.2)
N otherwise
where X, is the x coordinate of the ith node of the element and so on.
For an n noded element, the following column vectors can be defined:
T .
Qe = [¢1,¢2, e e e e e . ¢nj (2.1.3)
T
N = [NI’N2’ e e e e e e Nn] (2.1.4)

Here, ge is the element nodal vector of ¢i values corresponding to the

nodal points and N is the element shape function vector of Ni’ shape functions

for every ncdal point. The superscript T denotes the transpose of these vectors.

The equation (2.1.1) can be written in the following form using the above

rotation as follows:

¢, (x,y,2) = §?¢e (2.1.5)

Substitution of equation (2.1.5) into (1.2.7) results in,

K¢=F (2.1.6)
where
& = I o o+ N N4 N, BT v (2.1.7)
F = zfsf NdS fe = element flux vector. (2.1.8)
e
¢=19, (2.1.9)
e

The coefficient matrix K is obtained as a result of contribution of element
coefficient matrices for every node. Contributions of the surrounding elements
are considered during the assembly of element matrices.

The specified flux boundary condition which is directly included in the
variational formulation becomes the right-hand-side of the equation (2.1.6).
Equation (2.1.8) is the surface integral expression written for every element
over the element boundaries. Since the elements satisfy the continuity of mass,
contributions of flux terms at the inter-element boundaries for the entire system
cancel each other. At the interface, the same flux leaves the surface of one ele-

ment and enters the other one, the resultant flux being equal to zero. In the

" v g ~
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Ry case of elements with a surface on the specified flux boundaries, equation (2.1.8)

provides the application of natural boundary conditions.

2.1.1 Linear and Higher-Order Element Formulations

As it can be seen in the equation (2.1.7), the global x,y,z coordinates are

“Ps

used for the calculation of local approximations over each element. In actual

computations, all these calculations are generally performed for a parent element

*

in terms of local coordinates £, n, 7 and are transformed to the global coordinates

-~

for each element in the grid.
f‘ In order to evaluate the coefficient matrix (2.3.7) and load vector (2.3.8),
Py

two transformations are necessary. The first one is the expression of global de-

rivatives in terms of the local derivati- 's. The second one is the expression

of element volume and element surface over which the integrations have to be per-

3 formed. Then, the integration is performed in terms of local coordinates with
ii proper integration units.

This formulation allows an efficient formulation as well as the utilization
&: of higher-order isoparametric elements. An isoparametric serendipity element can
. be defined as having linear, quadratic and cubic node configurations along its
. edges in an arbitrary manner as shown in Fig. 2.2.
VY

s

LA

Fig. 2.2 1Isoparametric serendipity element

.
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% Shapé functions and their derivatives can be expressed in terms of multi- 1
plications of three, one-dimensional basic functions and their derivatives in |
- the local coordinate system. In this coordinate system (£, n, r), each element
;; in global coordinates shown in Fig. 2.2 with the local origin at the element
3. centrold. The values of the local coordinates vary between the limits of + 1
!

and - 1.

("'0.333;1 y1)

o

4

o

(0,1,1)

Pd

(1,1,1)

"l‘,{"

At A
P T

x

P

F2

E Fig. 2.3 Master serendipity element

.. In the parent element, for the linear case, nodes are at the corners, for ﬂ
E parabolic elements, additional nodes are located at the mid-point of each edge,

2 while for cubic elements, four nodes are located equally spaced on each edge.

- In the case of a surface, any of the element in figure 2.2 is transformed

3 into a perfect square by using two-dimensional shape functior formulation. The

: same discussion in the above paragraph is valid for this case as well.

: The above transformations can now be carried out by the use of shape func-

- tions. The coordinate transformation for an n noded element, from local to glo-

'ﬁ bal, by using shape functions Ni’ is given as follows:

‘
°? X = Ni(g,n,;)xi =1 . . . . . n)

o y = N (&,n,0)y, (=1 . . . . . n) (2.1.10)

. z = N (£,n,0)z, (=1 . . . . . n)

%
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where Xy Yy» 24 are the global coordinates of the corresponding 1th node.
(Ni’ i = 1,n) are the shape functions calculated at the point defined by local

coordinates £, n, .

A2

#(1.-0.3333)

s .
(0”1)

d
(1,-1)

Fig. 2.4 Two-dimensional serendipity elements

Deriviatives of shape function in terms of global coordinates, are obtain-

ed by partial differenciation as follows:

X, + N,, vy, +N,, =z, - (2.1.11)

Nig = Ny %o ¥ NGy Vo v N, 25,

which can be repeated for n and . In matrix form, this can be written as,

FN ] x z, | [N
1$£ ig y:a !E ‘i’x
t
Ni’n = x,n y,n z,n Ni’y i=l....n
LNi’C tf’c Yop 25, gNi,z,
7 h
Ni,x
=13l Ny (2.1.12)

. .
o
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.
Xop Ko Xop
dV = dx(dyxdz) = det Yog Yop Vor dedndz (2.1.14)
rd Zop Bop By
P’ L -
i
. The integration of the element in equation (2.3.7) can then be performed
i as follows:
N K =/ o N, NT+N NT 4N, N, ] dxdydz
> Q, x —'y'y -
"
‘l
M 1 .1 T T T
= d 2.1.15
i P e B N+ N, N+ N, N, TS [dednas ( )
N
~ where the derivative shape functions are defined in terms of local element
) coordinates by equation (2.1.13).
i
B g e e e 2 T e i T R e
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Derivatives of shape functions in terms of local coordinates, i.e. left-
hand-side of the equation (2.1.12) can be evaluated at the given point. Fur-
thermore, the explicit expression giving x, y, z in terms of ¢, n, ¢ in equation
(2.1.10) can be differentiated to obtain the matrix J, which stands for Jacobian
matrix of transformation. In order to find the global derivatives of shape func-

tions, the above system should be written in the following form:

Ni,xw [-Ni’ .1

N = [J‘ll ‘N (2.1.13)
i’y o i’n .

Ni’z Ni’C

— - -

The necessary condition for the above system to be invertible is that the deter-
minant of the Jacobian is not zero. Furthermore, it should be greater than zero,
so that a unique and proper transformation is satisfied as defined in equation
(2.1.13).

2.1.2 Integration Over the Volume of an Element

The volume integration seen in the equation (2.3.7) can now be evaluated over

the parent element by introducing the determinant of the Jacobian and choosing the

appropriate integration limits. A geometric interpretation of Jacobian indicates
that the image of the volume dV' = dfdndz has a volume dV in x,y,z where
dv = |J|d£dndc becomes
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The ébove integration is carried out numerically. A convenient way of

doing this is to use Gaussian quadrature which are defined for regular geometric
' shapes such as the master elements used in finite element analysis. Gaussian
B quadrature is specified by a number of integration points each with an associated
o weight. The integration points and their weights are given in the appendix A
- for various order of integration. If the integrant is a polynomial, the integral

can be calculated exactly by choosing the proper order.

Al

-i Integration of the above system can then be obtained as:

. = S .1.

2 K, = [(o, e|J|)Piwi] (2.1.16)

a
where:

#

s =N, NT+N NN N (2.1.17)

e nx_9x _’y_’y —’r’z [

8 Pi is the integration point with three local coordinates and (i=1l,..m),m is
the number of integration points.

fj Since the integrand is not a simple polynomial, selection of integration

o

points is based on the following rules. Ideally as the element size goes to

zero, the integrand reduces down to a constant value, det J, which at least,

should be integrated exactly. The order of det J for linear, parabolic and cubic

is 1, 5 and 8 respectively. Numerical experiments have shown that for the po-

[
'y

U

tential equation, 2 point integration for linear elements and 3 point integration

for cubic elements give sufficient accuracy.

=Y

2,1.3 Integration over the Surface of an Element

5? The integration over the surface of the element in equation (2.1.8) is

carried out in the same way as the volume integral. The surface defined in
ﬁ? the global coordinate system can be transformed to the local system of a square
- by means of two-dimensional shape functions.
é; x = N (g,mx,
j§ y = N (E,my, (2.1.18)
v

z = N (E,n)z,

[~ M\

Since the integration is evaluated over the master surface, the determinant
of the Jacobian matrix, which in this case gives the ratio of surfaces, has to be

calculated. This is done in an average sense considering the following trans-

RAS

formations:
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! dxdy
: X
o Fig. 2.5 Integration of the surface area of an element

:f As gshown in the above figure; as the surface area goes to zero, it can be

expressed in the following form:

- dS = secydxdy ,
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:i where y is the angle between z axis and the normal direction of the surface,
9z, 2 39z, 2
. sec y = (50)° + (Dy) + 1 (2.1.20)
- and from the definition
. dxdy = |J_ |d&dn
3 y = 13,
- dxdz = |J_[dedn (2.1.21)
dydz = ‘Jyz]dgdn
< The equation (2.1,21) leads to,
= -‘E-T——T'sz' 95=T’—TIJ . (2.1.22)
d - J 4 dx J «Jd.
3 Yy xy
= Combining the equations (2.1.20) and (2.1.22), one can write,
. )y,
) ds = (19 12+ 13 |2+ |5 127 dedn
Xz yz Xy

.' or
- ds = |J_|d&dn (2.1.23)

where;

2 1

. 3 | =[|3 .|2 + 3 |7+ 19 |2]”2 (2.1.24)
:{' s Xz yz Xy
.. The integration of the expression in equation (2.1.8) over the boundary
:3 surface becomes;
- 2
o [sf Nds = [ [ £ N|J_|ddn

Application of Gauss-integration rules result in;
b fgf Nds = [(f NI_D), wi] (2.1.25)

i
N where
T T . . .

L ‘N =N (£,n) = Ei’ (i=1,n), n is the number of grid points on the
i

surface.
#
[ 4]
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In the present study, two point quédrature rule was used for linear and

parabolic surfaces. In the case of cubic surfaces, three points were employed.

2.2 SOLUTION OF THE SYSTEM OF EQUATIONS

The system of algebraic equations, obtained in equation (2.1.6) in terms of
nodal velocity potentials, is nonlinear and its solution requires an iterative
process. One way to approach this problem is by treating it as a limit of a
pseudo-unsteady problem, where the solution is obtained by time integration.
It is stated in [29] that, although it does not correspond to the
physical transient behaviour of the fluid, the steady-state solution can be
reached by integrating such a pseudo-unsteady problem in time. In their studies,
Ecer and et.al. have used such a pseudo-unsteady formulation and demonstrated its
efficiency [13], [16], [28]. The same formulation will be used in this study.

It is assumed that the potential function and density are functions of

time;

¢(x)}')z,t) and

¢

]

p = p(x,y,2z,t) (2.2.1)

and a steady-state is determined as the time step goes to infinity as follows;

&, ¢(x,y,z,t) = ¢S(x,y,z)
troo
(2.2.2)
&_, p(x,y,2,t) = o(x,y,2)
{0
With these assumptions, equation (2.3.6) can be written as:
E(Xay’z’t)¢(x,y;zyt) = E(X,y,z) (2.2.3)

In order to describe the problem as a pseudo-unsteady process, an artificial

damping term is included in the equation such that it vanishes at the steady-state.

At yo 4o, * Ko =F (2.2.4)

0 =
o .
where At is the time step, w is the relaxation factor and K~ is a constant

coefficient matrix. It should be noted that as,

tw%(b’t:o

steady solutions of equations (2.1.6) and (2.2.4) are the same.
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Cs
B 3 o .
':;;.':: o At the time step n, equation (2.2.4) can be written as,
SV e
L At .o n n.n n
S — K¢, +K¢ =F (2.2.5)
( w t - -

N -

- ' The time derivative of the potential function in the above equation is evaluated

by using forward differencing in time.

E n+1 n
. o 6,7 t ¢ (2.2.6)
3 .:‘\- 't At e
S ‘
:":-j On the other hand, in order to bhe able to control the convergence and
. stability of the problem, a rclaxation factor is introduced. The solution
‘_) - th . n+l . . .
YRR obtained at n iteration step, § , is relaxed for the next iteration step
Y -
'.:'\- - by use of a relaxation parameter w in the following way;
1:._-/
U R o+l n+l n ,
By i 3 = w(@ )+ (-0 (2.2.7)
+
_,.: where §n+l is the solution of finite element equations at (n-*-l)th step and in 1
ﬁz :": is the relaxed solution which will be used for the next iteration.
.'*.':2 .- Substitution of (2.3.7) into the equation (2.2.6) results in;
: ﬂ n nt+l n, .
- = - L 2.2.8
o LINe @ 2D At ( )
-‘-" :‘-
.":'.: o and the equation (2.2.5) reduces to,
. K™ = B+ & - KM (2.2.9)
w'_.' ._J
:::-f The above pseudo-unsteady system of equations can be written as a system of
';'::: f::: algebraic equations in the following form:
.:\. \.'
: *
- K™ - F (2.2.10)
CRCO where
Y o o
VIR K =) I_(e(x,y,z) (2.2.11)
-2 o e
[
SRR st - 5,(¢e(x,y,z))“+1 (2.2.12)
_- - e
o F'o= S{F (x,y,2) + [[K(x,y,2) - K" (x,5,2,8)]¢" (x,y,2,0)]} (2.2.13)
. .’ pa . —e LIV RS e [ DA RS e I ) e ’
e
SR -
~’ b

.
N SRR LT . . . R ~
Ry AT B O S Ve T e T P TR, S ) SR S N e
PRSI B SN VP SE IR S oI SR W . PRIV IR AT W T TR T T N A A T




Ry
a a4 & 0 a

(2

&l

Pl
.
‘._l

.
o a e
1

«
o,

i
L9 l.l'

PAEACAS
“\

R e

s

18

The advantage of the numerical integration scheme based on the utilization

of a constant-coefficient matrix 50 is obvious. A full decomposition of the

coefficient matrix 50 is needed only for the first time step, while the sub-
sequent iterations can be performed with forward and backward substitutions.
If a variable coefficient matrix was chosen as En, it would need to be re-
assembled and decomposed at every iteration step, which makes the scheme com-

putationaly inefficient. The importance of the selection of K? as a function

f 0
o P
K% = §f, 07s_(x,y,2)d0 (2.2.13)
e e

gives comparable rates of convergence with a variable coefficient scheme.

In the previous applications of the finite element method, it was also ob-
served that the accuracy of the solution and the rate of convergence was strongly
dependent on the amount of the artificial viscosity content and the relaxation
parameter. Another study [14] showed the effects of the relaxation parameter on
the rate of convergence. Since an explicit time integration scheme in the super-
sonic regions must satisfy Courant condition, relaxation parameter w must be

chosen inversity proportional to the amount of added artificial viscosity:

1

o M2
e e

(2.2.14)

w <

Although no under-relaxation is required in the subsonic regions, it was ob-
served that use of different relaxation factors can cause numerical problems
around the boundaries of the sonic pocket. An equal under-relaxation was used
in the present study in both regions at the expense of decreasing the overall
convergence rate of the numerical scheme.

The numerical treatment of the problem follows, in general, the same approach
tried by Ecer and et.al. in their studies [13,14],[16]. Since the required arti-
ficial viscosity depends on the distribution of the error in the initial solution,
a high value of artificial viscosity is introduced at the befinning in order to
have a uniform convergence. The initial guess is taken as the incompressible
flow solution. After having a converged result for this case, artificial viscos-
ity content is reduced. Taking the previous result being the initial guess, iter-
ations are then continued until the converged results with a minimum amount of
artificial viscosity is obtained. A detailed investigation of artificial vis-
cosity effects was conducted as a part of the present project and presented in

reference [15].
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_‘, 2 FINITE ELEMENT GRIDS

- ™
N 3.1 INTRODUCTION
5@ i The finite element grid generation scheme, presented in this study, utilizes
;j ;ﬁ a multiple-block structure. A smooth and surface-fitted grid is produced for
= each of the blocks. The blocks are then assembled with these subgrid systems to
?' jﬁ form the computational grid for the complete configuration. The main objectives
;é "> in the development of such a grid generation scheme were the following:
éj K1 1. The user has complete control in addressing a critical flow region.
v " For example, leading edge of a wing is located around a pa:ticular block.

* f: The user can design a mesh in this region by only considering the dis-
oo tribution of the elements in this single block.
’? 2. The block structure is defined in a simple manner, yet can handle

) . any complex geometry.

{ - 3. Re-meshing of each block can be done separately. The changes in
_& f; each block is transferred to its neighboring blocks automatically.
.ﬂ . The details of the developed proceedings are summarized in the following

g g sections.
kg “ Each block system is defined as a large finite element. These elements can
‘ < be linear, quadratic or cubic elements depending on the complexity of the bound-
;' ,#f ary surfaces to be represented. They only have to approximately represent the
) . boundary surface at this point. These are the same type of elements used in
”z :5 finite element calculations as shown in Fig. 2.2, and in reference [33]. The
j§ ) boundary surfaces of these blocks are either part of the domain boundaries or
:: :: inter-block boundaries. Generation of elements inside a block is based oun the

. = pre-specified element densities along three principal directions and gradients
fl - along 12 edges.

g A Calculation of corresponding nodal point coordinates are carried out in a

'“ lecal block coordinate system, which is a perfect cube with corner nodes at 1,

Q' o
w

-1 locations in the (£,n,z) local coordinate system. By using shape functions,

:; . the computed values are then transformed to the global coordinate system. Nodes
A

K '2 generated on the boundary surfaces are then relocated at the user defined bound-
SO

"\ ary surfaces to match exactly to the boundary surface.

Py

SR

DS
a 8 _a
alats

ot M e e e T e e L et e o oo - et :
e | .._L_\h‘.-_‘\.. h\‘"‘l._.Li‘.A.- ".‘-&"‘:' O.' y ,‘.‘ -.' - . - 3 R - N ) T . a T o “. ..."0.'.~." -“ -t L - “‘4

N . REACIN S e R S
i, VAP SO VP AP PP S U DR SO AP S R SR . S

v/ L




r.".;‘-:‘-"r. Tav et

tatalr A Sl e s

LA YA N A R e i AL S S i AR Tt AR TSI S B Tt SOt E AT D et St S Sn fiaon Javs Siaue fro e~ o~ J

20

Generation of the element connectivity information, on the other hand, also,
becomes an easy task by using the edge description of the elements efficiently.
Connectivity data is calculated each time and only the connectivity of higher-
order elements if present is stored permanently. Although the global connec-
tivity of elements are obtained under the assumption that all blocks are connect-
ed to che others, speclal situations like the veoids in the solution domains
of radial type grids can be handled bv using slit and coupled surface capabil-
ities.

3.2 GRID GENERATION SCHEME
3.2.1 Definition of Blocks

The first step is the definition of natural coordinate system identified
as I, J, K to describe the block structure. Block and element topologies,
including their connectivity, numbering and gradient definitions are based
on this natural coordinate system.

Figures 3.1 and 3.2, give an example of block definition in a physical
problem and its representation in the natural coordinate systen. Each block is
identified by eight block corner nodes, plus one or two additional nodes for
quadratic or cubic approximations, respectively, along each curved edge of the
block. Selection of these nodes depends on the smoothness of the surface which
will be represented by four edges. For highly curved or irregular surfaces,
eithér a cubic edge representation should be used or the block numbers on the
surface should be increased to provide relatively smooth block surfaces. No
intermediate edge nodes are required for flat planes and most of the time for
the inter-block surfaces.

One important point in defining the higher-order block structure is the
determination of the proper locations of the intermediate edge nodes. In the
isoparametric transformation, quadratic or cubic serendipity shape functions
are used to approximate curved boundaries. In accordance with the definition
of shape functions, the additional nodes for each edge should be located at
one-half or one-third length of the actual curved edge for parabolic and cubic
edges respectively. 1If the proper points are not selected, the shape of the
curve may not be close to the actual shape of the boundary while the points
chosen to define the curve lie on the boundary. Even though the boundary nodes
can be relocated to the actual surface, too much deviation between the two
curves might result in distorted elements. Also, the distribution of the nodes

generated inside the block is effected in such cases.
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Fig. 3.1 A block structure definition in the

physical domain
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Fig. 3.2 The representation of the block structure in the

natural coordinate system
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In the mesh generation scheme, the three-dimensional domain to be
modeled is divided into blocks by specifying the boundary surfaces, element
densities and gradients together with any existing coupled surfaces and
volds. The blocks are then numbered in I, J, K natural coordinate directions,
starting with one and giving the increments along the I direction first and
J and K sequentially. Such a numbering scheme provides the use of following
formula which gives the global block number in terms of block natural coor-

dinates IB, JB and KB and vice versa.
NBLOCK = IB + (JB-1)TNBI + (KB-1)TNBIJ (3.2.1)

where NBLOCK is the block number to be evaluated. TNBI and TNBJ are the
total number of blocks in I and J directions respectively and TNBLJ is the
total number of blocks in IJ plane (TNBI*TNBJ).

A block may be defined by a total number of nodes varying between 8
and 32 where 32 represents a case with all cubic edges. Although the global
block node numbers can be assigned in any convenient way starting with 1,
their connectivity must be associated with the local block node numbering
used in the definition of shape functions. Local element node numbering which
corresponds to the definition of the shape functions is shown in Fig. 3.3 with
respect to local element coordinate system I°, J°, K”, obtained by translating
the natural coordinate system to the local node 1 of the element. The same
figure also shows local surface numbering which is used to specify slit, coupling

and boundary surfaces which will be mentioned later in this chapter.

3.2.2 Generation of Elements and Nodal Coordinates

The distribution of elements inside each block is defined by two para-
meters, One of them is the element density which determines the number of
elements in three principal directions and the other one is the element gradients
which are specified for each edge of the block. These gradients are defined
as the ratio of the first element length to that of the last element in the

direction of natural coordinates.
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Fig. 3.3 Local node and surface numbers for a block
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Each block 1s represented by a parent element which is a cube having the
edge lengths of two units. A local coordinate system (£(,n,z) is considered

at the center point of the parent element as shown in Fig. 3.4.
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Fie. 3.4 Parent element

by

The main advantage of a mesh generation of mapping is utilized at this
point. First, parent element coordinates for the corner nodes of each element
in the block are generated by using element density D and gradient G. Division
of elements started with the division of edges by assuming a geometric pro-

gression along the edge as shown in Fig. 3.5.
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Fig. 3.5 Definition of Geometric progression

Geometric progression is defined by the following series;

S=a+ ar + ar2 = ... ar" (3.2.2)

where a is a constant which specifies the length of the first interval, r is
another constant which gives the rate of progression, and n can be interpreted
as number of nodal points along an edge which is equal to element density plus
one,

Definition of gradient gives the following relationship,

G = ———— . (3.2.3)

For the geometric series, the partial sum of the terms is given as;

g = a-rth)

n l-r
Then, one can calculate the gradient as

a(l-r“)—a(l—r“_1

(1-r)a

G = )

After some maripulatinns, one can write
r = exp{1nG/n-1]

= exp[1nG/b] . (3.2.4)
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If the length of the edge is taken as 1, knowing r, a can be evaluated as

follows:

S = agl—rn)

n 1-r
l-r l-r
a (1-:“) = 1-r(E+1) . (3.2.5)

In the parent element, an edge in natural coordinate directions is represented
by the one-dimensional parent line having a length of two from -1 to 1. If

the divisions on a unit length is transformed into the edge; one can, then write,

E=-1+ ZSn n=1 . . . .. . (3.2.6)

Element and nodal point coordinate generation inside each of the blocks is ob-
tained by using the divisions along the edges and interpolating linearly among
them.

In the case of higher-order elements, the generation of intermediate edge
node coordinates are based on the element corner node coordinates. This can be
accomplished simply by evaluating the one-~third or one-half locations, for cubic
and parabolic edges respectively, along the edge. This simple interpolation
which assumes a straight line edge between the corner nodes is applied in the
global coordinates after the isoparametric transformation of corner node coor-
dinates is done.

(£,n,7) coordinates of corner nodes generated in the parent block are then
transformed by using the serendipity shape functions with fhe nodal coordinates

defining the block. This is the same transformation used in finite element cal-

culations in Eq. (2.1.10).

3.2.3 Generation of Node Numbers and Element Connectivity

In a finite element analysis, the preparation of element data, particularly
element connectivity and its storage in the computer is an important task,
especially, for analysing complete three-dimensional problems. In the present
study node numbers are generated automatically and the connectivities of the
nodes for each element determined, without storing them permanently.

In order to be able to determine the element number in terms of natural
element coordinates and the node numbers in terms of element number, a sequentiaal
numbering of elements and nodes in I, J, and K natural coordinates are employed.

The element numbering is the same as that of blocks. The element number one is
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assigned to the one located at the origin of I, J, and K natural coordinate
system and numbering continues with the increment of one along the elements,
in I direction. After the last element in I direction is numbered, element %
numbering in J direction and finally K direction is increwentally performed.

This numbering system implies that the elements in the natural 1J plane ?
represents the wavefront.

The same formula as (3.2.1) applies for th: determination of the element

eadd

number in terms of natural coordinates IEL, JEL, KEL
NEL = IEL + (JEL -1)TNELI + (KEL -1)TNELIJ (3.2.7)

where NEL is the element number, TNELI, total number of elements in D direction,
TNELIJ is the total number of elements in IJ plane. q

Numbering of the element corner nodes is also based on the same approach. .

Node numbers are generated for the whole grid in I, J, K natural coordinate

directions. The first node is the one at the origin and then the numbers with

increment one are assigned to the nodes along the positive direction of natural

coordinate axis I, sequentially. After the last node, assignment of node numbers
moves to the second, third etc. rows along the positive J direction until the

nodes on the first 1J plane are numbered. Afterwards the same process is applied

to the second and third 1J planes along the positive K direction. An example of
this scheme is given in Fig. 3.6. 1In this case total 4 blocks 2 in K direction

are connected simply and their element density in J direction is 2.

The above numbering scheme leads to the use of following formulas for the .
evaluation of the corner nodes of an element located at 1EL, JEL and KEL natural qr
coordinates; -

N1 = IEL (JEL-1)TNODI + (KEL-1)TNODIJ (3.2.8) j
N2 = N1+l

r s .
F oo 9w 3

N3 = N2+TNODI
N4 = NI+TNODI
N5 = N1+TNOD1J 3
N6 = N2+TNODLJ
N7 = N3+TNOD1J 5
N8 = N4+TNODIJ

where N1 through N8 are the global element corner node numbers associated with

Lz -

the local node numbers 1 to 8 of the element shown in Fig. 3.3
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TNODI, TNODJ are the total number of nodes in I and J natural coordinate
directions of the nodel respectively. TNODIJ is multiplication of these two ‘

numbers which gives the number of nodes in the IJ natural plane.

«
-
0

The proper use of equations (3.2.7) and (3.2.8) provides the element corner
connectivity in terms of global element number, N%SL. It should be noted that
equation (3.2.7) can be solved to determine IFL, JEL, and KEL values automatically
if NEL is given.

For the case of higher-order c¢lements, the element cornectivity is again
generated automatically by the program but this time stored in an array for
each of the higher-order elements. Global element numbers are specified for
each of the higher-order elements as input data. Then, the program starts pro-
cessing this data by generating the intermediate edge node numbers for all
specified quadratic and cubic elements. The maximum node number computed bv
assuming all elements to be linear is incremented and the element connectivity
array is generated in accordance with the same configuration of nodes as in
the definition of shape functions for the parent element Fig. 3.3.

Such an element specified as higher-order is connected to, at most, 6
other elements by face and 12 others by edge as shown in Fig. 3.7 and Fig. 3.8
respectively.

Since an edge which 1s common for 4 elements is to have the same con-
nectivity for all these elements, when a higher-order element is specified, the
connectivity arrays of the connected elements must be updated acccrdingly.

This is also done automatically. First edge and then face connected element
numbers are evaluated by exploiting the global element numbering scheme. Then,
for these elements, their conncctivity arravs are updated, considering the

relative pesitions of the edges in each element. If an element which is already

updated because of neighboring higher-order elements, it is processed later as

a higher-order element. The new numbers are generated only for the edges which

Y

are not already updated to be of higher-order. ]

It should be noted that intermediate node numbers are not transparent to

the user. They are controlled bv the sequence of higher-order element specifi-
cation list given in input data. Element number is sufficient in order to ob-
tain the full element connectivitv. Therefore, user has to be concerned with the

element numbers and the order of th¢ elements onlv.
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3.3 SLIT AND COUPLED SURFACES

As it is stated earlier in this chapter in the generation of global
element connectivities, it is assumed that the blocks are connected to each
other and node numbers are considered to be the same for the nodes on the
common faces of the blocks. The Fig. 3.9 illustrates the slit and couples
surface conditons for modeling an aircraft wing in two-dimensions. The same
concept can be extended to three-dimensions easily.

As it is seen in Fig. 3.9, the e¢lements on the block surfaces which lie
on the wing surface should not have the same surface connectivity as the elements
on the opposite side of the wing. In this case, a wing can be placed between
the blocks by simply disconnecting the neighboring blocks and assigning inde-
pendent node numbers on the adjacent surfaces. In this manner, a slit can be
placed between any neighboring blocks. These slits can also be used to impose
Kutta-condition by allowing a potential jump between the neighboring surfaces.
In this case the nodes on both sides of the sliit occupy the same point in space.
To distinguish two surfaces on each side of a slit, they are defined as master
and slave surfaces. A master slit surface is defined by means of a block and
natural surface number. Different corner node numbers are then assigned to the
nodes on the slave surface. These additional nodes on the slave surfaces are
numbered by incrementing the current highest node number. In the program, the
four edges of the slit surfaces of corresponding blocks are also checked to
determine if they have common edges. 1In this case, no additional generation is
done. As it is seen in Fig. 3.9a, the edges in I direction, represented by nodal
points 1, 13, are in common, thus, the elements sharing this edge has the same
connectivity on this edge. It is also obvious that element numbers are not
altered by existence of the slit surfaces.

If an element on one of the slit surfaces is defined to be of higher-order,
after generation of regular new element nodes, existence of the slit is taken
into consideration during the updating process. The edges on the slip surface,
which are not common with the other surface, does not update the corresponding
edges of face or edge connected elements.

The coupling of the surfaces is almost the reverse of the slit process. In

this case, two different block surfaces which are not connected to each other in

=

the nature of block definition, are connected and the same connectivity of the

edges assigned. The Fig. 3.9 also shows the application of coupling. The gen-

2
@ i3

ecvation of C type grids, as shown in this figure, or 0 type grids require a

o
A s

radial type of nodal layout. As in the case of slit surface definition, coupled
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Fig. 3.9a Slit and coupled surfaces in the physical domain
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Fig. 3.9b Slit and coupled surfaces in the natural
coordinate system
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LK 5 surfaces are defined by the global block number and the natural surface number

and also by specifying one of the blocks as a master and the other as a slave.
!E During the evaluation of the linear connectivity of elements by using

equations (3.2.8), every element is first checked, to determine whether it is
- in a block which has a slave coupled surface. If this is the case, then, it is
further checked to find if it has a surface lying on the slave surface. When
g! these conditions are met, instead of employing the equations (3.2.8) throughout
‘ the element, four nodes on the slave surface are assigned with the corresponding
master element corner nodes.

When it comes to higher-order elements, coupling is the last process.

After the higher-order comnectivity and coordinate generation and updating by

assuming regular counnectivity of blocks, the node numbers are modified for coﬁp-

v

ling. The intermediate element edge nodes on the slave surface are assigned to

the corresponding master edge nodes regardless of having any node number gener-
ated or updated before. Assignment sweeps all the e -ments on the slave surface
and checks if the corresponding master element is of higher-order.

Although the concept behind the handling of slit and coupled surfaces is

quite simple, it takes considerable computational effort.

3.4 BOUNDARY SURFACES
" 3.4.1 1Introduction

The basic idea of the three-dimensional grid generation, as stated earlier,

!! is the use of intercomnected blocks which cover the overall physical domain. 1In
this case; domain boundary surfaces specify the boundary surfaces of these blocks
- facing the domain boundaries. They can be defined as input by the coordinates of
the corner points of the area to be described and one or two points along each
s: curved edges of a surface. As it is also stated before, one of the difficulties
~ encountered in this type of input is the selection of proper points to define
~ these curved edges. If the points are not properly chosen, the shape of the sur-
i: face produced may not be a good approximation to the actual shape of the boundary.
. The points chosen to define the surface will lie on the boundary surface. However,
igl the element nodes on the same boundary surface of the block which are generated
F;: ) by using shape functions corresponding to the points defining the boundary, may
a g provide a poor representation of the actual boundary.
PH; . The smoothness of the boundary surfaces may be lost without the knowledge
‘:f -j of the user. 1In general, the accuracy in the solution of physical problems,
QE{ - especially problems whose solutions are determined by elliptic partial differ-
e
‘gi E;
e e T e e e S e e e
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ential equations to a great extend, depend on the application of boundary con-
citions, which requires a description of actual physical boundaries. In numerical
analysis, this is accomplished by having all the grid points representing physical
boundaries to be on the actual physical surface.

In this study, the approach to this particular problem in the relocation of
the boundary surface grid points generated by isoparametric transformation, to
the actual physical surface which is to be defined separately. As it is explained
in Fig. 3.10, the relocation process is basically determination of an intersection
point on the boundary surface defined with a line which is normal to the isopara-

metric surface at the nodal point to be relocated.

Fig. 3.10 Isoparametric surface definition for a block
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In this figure, @ is the surface generated by isoparametric transformation

based on the block input nodes denoted by B. The element corner nodes gen-

erated
actual
to the
actual

mation

inside the block, denoted by A”, could be considerable off from the
surface, Q. If a line, L which passes through the point A” and normal
surface Q° at this point is determined and its intersection with the
surface, A is evaluvated, the point A can be taken as the best approxi-

satisfying the actual boundary condition and the element gradient speci-

fied in the block.

The same relocation process is carried out for intermediate nodes of

higher-order elements. In this case the element surface itself represents the

isoparametric surface and intermediate nodes generated by linear interpolation

are relocated on the physical surface as shown in Fig. 3.11.

\fz/

Fig. 3.11 1Isoparametric surface definition for an element
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3.4.2 Definition of Boundary Surfaces

The bOuudary surface definition related to the relocation process is an
option in the grid generation program and is handled as a separate unit. Except
for some built-in surface definitions, aany particular surface should be defined
in a local coordinate system in a way that y-coordinate of a point on the surface
is a function of x-z coordinates. Then, a function sub-program can easily be
associated with the main program.

In addition to the function, the program also assumes specific data which
is required for definition of a surface and transformation between global and
local coordinate system. For each type of surface, certain parameters are speci-
fied. For example a cylinder is defined by its radius and its length. The local
coordinate system is defined relative to the global coordinate system, in a gen-
eral manner, by means of three points. As shown in Fig. 3.12, the point A is the
origin of the local system, the point B is an arbitrary point on the positive
local. Z axis and the point C is another arbitrary point on local XZ plane. The

local unit vectors can then be obtained with respect to the global system as

follows:
k, = AB/|AB|
i, = AB x AC/|AB x AC| (3.4.1)
i, = e xe
1 Ty oy
The unit vectors are then expressed in the following way, 11, mo» Ny being
direction cosines:
li = 111_+ m11'+ nlk
;= i+ myj +nyk C e e e e (3.4.2)

e 1 i +m 3
hi 13i m.j + “35

The transformation of coordinates from global to local or vice versa is
initiated by a translation of origins to the same point. 1In the case of trans-

formation from global to local, vector Py shown in Fig. 3.13 can be written as

=P - A=xi+yj+zk (3.4.3)

alm & . 2 oaiatatalaata e e e PO U

™ "1




Fig. 3.12 Definition of local coordinate system for
a boundary surface

Fig. 3.13 Coordinate and vector transformation between
local and global coordinate systems
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. It should be noted that PT
T — |

is still expressed in terms of global unit i

vectors and transformation is not complete until the translated global axis is
rotated to obtain the local system. This can be obtained by a projection in

the cartesian coordinate system where;

if gT = xli + yli + zlk s

Then; X =yl +ymg + zn, (3.4.4a)
v = xl2 + ym, + zn,
z) = xl3 + ym, + zn,

or in matrix form,

[ 5] ) 1

i"l] 1™ x

.

,yls = l2 m2 n, y (3.4.4b)
lz¥J :13 m3 n3 z

In the case of vector transformation, the translation step can be skipped, since
the magnitude is normalized later.

The back transformation is obtained from the above relationship, this
time by solving for x,y,z. Orthagonality of the transformation suggests that

the inverse of the transformation matrix is merely its transpose.

L] r ] ("
Ey = 1m1 m, m, gyli (3.4.5)
z n, n, n a2
[ J L1273 L

1t should be noted also, that,

= +
P-P +A

In the present study, the difinition of surfaces can be collected under two
different types:
1. Geometric surfaces

2. Composite surfaces
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Geometric surfaces are the omes which have a functional relationship valid all
over the surface, like cylinders, spheres, ellipsoids of different diameters or
some functional surfaces like a wing with a NACA 0012 profile. In addition to
the local axis definition, the functions are specified in terms of x,y,z coor-
dinates and some additional parameters.

On the other hand, composite surfaces are generally approximations of more
complex surfaces. These are defined by interpolating polynimials between known
surface points or surface sections. In this study, a composite surface defin-
ition for a wing surface which is defined at root and tip sections by discrete
data points is presented. The basic approach to the problem is to fit a curve

to the discrete data at sections and to interpolate linearly in between as shown

in Fig. 3.14.
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Fig. 3.14 Definition of a wing by using discrete data
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In choosing the proper interpolating functions, the following basic re-
quirements are to be considered:

a) the interpolating function itself and at least its first

derivative has to be continuous at data points with no
oscillatary tendencies; so that a smooth surface could
be obtained,

b) the function has to be single valued which also brings up

the necessity that upper and lower surfaces of the wing
should be handled separatelv.

Since, considerable large data points are present, the Lagrangian inter-
polating polynomial of degree n passing through those (n+l) points is most likely
to have undesirable oscillations. A composite curve, hv fitting successive low-
degree polynomials to successive groups of data points sevms to avoid this pro-
blem but discontinuities of slopes at the functions become unacceptable.

The further possibility is to employ Hermitian interpolation functions,

which interpolates on each interval [xi, by using higher-order polynomials

%41
while satisfying the continuity of the derivatives. A real valued function, f(x),
which is defined by functional values and its derivatives at discrete points

X sXgsesesX in an interval [a,b], such that a = LITRIE POREE S b, is inter-

polated by the piecewise-cubic polynomial function Pi(x) as follows:

Py(x) = Cpsy

2
+ Cz’i(x—xi) + CB’i(x_xi)
3 .
+C,,. (x-x.) R (i=1,..... n) . (3.4.6)
471 i

The coefficients of this polynomial are given, according to the Newtonian

form of the interpolating polvnomials [31] as follows:

Cpog = fp = FO

Covy = £ = f'(xi)

Cj,1 = f[x{,xi.xi+]] - f[xi.xi.xi*],xi+]llxi (3.4.7)
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In terms of simple differencing, one can write,

c - flxgoxyg) - e
[ 3°9 Bx, 67177
s f..,+f, - 2f[x,,x, ]
+
: Cpry = A Ll (3.4.8)
(ax,)
i
[ ]
where:
. by = %41 T
e ] - fOxyyp) - fOx)
- « 9 - -
17iH (g = %p)

és But, in practice, it is often difficult to find the needed numbers of f’(xi).
3 This condition suggests that a reasonable approximation to f (x) is necessary
ﬁ} in the computation.
Piecewise cubic Bessel interpolation was chosen for this purpose to model
I' airfoil problems. This function showed good agreement between the discretized
) data and interpolated results for tested wing profiles. In this case, the
derivatives are approximated as shown below:
) Axi-lf[xi’xi+l] + Axif[xi—l’xi]
= £7(x)) = e rigyye (3.4.9)
o i-1 i
It should be noted that the above formulation requires the derivative values
at the end points a and b also to be given as input data.
S 3.5 Relocation of the Boundary Nodes

Relocation of the boundary nodes is basically the result of the following
two operations:
a) determination of the vector which is normal to
the surface at the nodal point,
b) evaluation of the intersection point between normal

vector and defined physical surface.
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The unit normal vector for a =urface is ohtained as a result of cross-
multiplication of two vectors, which are tangent to the surface at the nodal
point coordinates. These tangent veotors denote the gradients of the position
vector of the nodal point along two proper local coordinate directions. As it
is seen in the Fig. 3.15, evaluition ot local coordinate directions is based on
the definition of the tocal svete= and the numbering the local surfaces acceord-

ingly.

Fig. 3.15 Det iaition of A noereal o veeor
in an olement
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3.5.1 Evaluation of Surface Normal

In the above figures, the position vector to any point P on the surface

of an element or block is given by:

R(x,y,2z) = in + Ryl + Rzk (3.5.1)

For the specific point in the figure, the tangent vectors are obtained by
taking directional derivatives of the position vector R along (n,c,f) directions.
The program assumes the local number of the boundary surface to be given, so

that local direction pairs along which the derivatives are calculated can be

determined.
i
R OR_ 3R 3R, '
& T ety ditark
3R
e, = 3, = etc. (3.5.2)
the normal then is
e. xe
N = (3.5.3)
=1 7 =2

In order to evaluate the derivatives, the position vector components have
to be expressed in terms of local coordinates which can be achieved by again
using the serendipity type shape functions. The transformation between local
and global point coordinates by using element nodal point coordinates is given

as follows:

= ZNi(E ML
n
R = IN.(E ,n , 3.5.4
y § 1 (&5 Ny op)Yy ( )

Z = %Ni(g ’l’lp,C )Z

where n is the total number of nodal points in the element;

Ni = Nodal shape functions evaluated at the local

coordinates £ , n , £ of the point P.
p p p

LAPWEDN Ny — P SN T N Y e a alata_a N .J
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As a result, surface tangent vectors are expressed in terms of shape

function derivatives and global nodal point coordinates as follows:

n N N, N,
€ = §=1 G+ Gripl+ Grzpkl
e, = etc. (3.5.5)

3.5.2 Determination of the Point on the Physical Boundary Surface

The last step in the relocation process is the evaluation of the inter-
section point of the normal to the iscparanetric surface and the defined bound-

ary surface. The following Fig. 3.16 shows the process for a twvpical case.

Fig. 3.16 The rclocation process
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. Points P are the generated nodal points inside the block which do not
lie necessarily on the physical surface, ET is the normal vector transformed
!! into locally defined boundary surface coordinate system and y is the boundary
surface defined with a functional relationship. Since boundary surfaces are
:: defined locally, associated with a transformation matrix, the point P and the
h vector N can be transformed into PT and NT in local coordinates quite early.
-
o PTR is the relocated point in the local coordinate system.
. Evaluation of the intersection point is an iterative process and can be
:ﬁ viewed as a three-dimensional application of the method of successive approxi-
. mations except the convergence is carried out along the normal vector.
fj Geometric representation of the process in two-dimensions as shown in

Fig. 3.17, vhere,

<

y:f|x,z)

% Fig. 3.17 The method of successive approximations
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i N = 1i + @i + n5
The iterative procedure i: summarized in equation (3.5.6)
En =x i+ vy i+ zk (n=1,1)
Step 1 Vo = y(xn,zn)
Step 2 An = (yn+1 - yo)/m (3.5.6) l
R

Go back to step 1.

The above iterative procedure continues until desired convergence which is
the percent change in ) is obtained. Unless the angle between the normal vector

and surface tangents becomes too small, the convergence is guaranteed that Pn

will get closer and closer to the solution PTR'

Fig. 3.18 1Ill-conditioned successive approximations
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Som. times a point on the surface can not be determined by this scheme,
this ill-conditioned situation shown above, in Fig. 3.18, can be improved by

introducing a relaxation factor w on An ,
Av = m(yn+1 - yo)/m . (3.5.7)

If the new point Pn+1 is out of range of surface, the relaxation factor which is

initially one, is divided by two. This division is repeated until Yoep €20 be

L}
defined on the surface, eventually, a point P1 can be computed for which this

ill~conditioned situation does not occur.

The relocation process applied to the NACAOO12 airfoil profile is shown in
Fig. 3.19 and 3.20a,b. The first figure shows the cubic control points on the
curved edge 1ilong the streamwise direction of the airfoil. THe generated surface
by isoparametric transformation is shown in Fig. 3.20a. It is obvious that the
smaller curvature at the leading edge compared to the rest of the surface is lost
due to lack of information around this region. After the relaxation is applied
all over the surfaée, the improvement of the leading edge points are clearly ob-

served in Fig. 3.20b.

B

Fig. 3.19 Definition of the cubic block edge for
NACAQOO12 afirfoil profile
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surface nodal points over NACAOO12 airfoil

Fig. 3.20a Grid distribution using isoparametric mapping
over NACAQ012 airfoil

Fig. 3.20b Modified grid distribution after relocation of
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IV. DESIGN OF A FINITE ELEMENT GRID
4,1 DESCRIPTION OF THE TEST PROBLEM
To study the applicability of the developed numerical scheme, the
transonic flow around a wing-bo« -ombination was analyzed. This particular

wing was designed at Lockheed-Georria wind-tunnel by Hinson and Burges [32].
With an aspect ratio of 3.8, it was originally designed for transonic cruise
and tested in the presence of a body in a high Reynolds number wind-tunnel.
The geometry of the wing is defined at the root and tip sections by discrete
data points. Table 4.1 gives the general wing characteristics. The measure-
ments are non-dimensionalized by the cord length at the root as shown in
Table 4.2. The wing coordinates at other spanwise stations are then evaluated
by linear interpolation between the root and the tip sections.

The fuselage used in the test is a simple shape of an elliptical fore-
body and afterbody with a constant section in the wing region. 1In the present
study, the fuselage was taken as an infinite cylinder with a constant
cross-section.

The overall geometric characteristics of the wing model is summarized in

Fig. 4.1.

4.2 GENERATION OF THE COMPUTATIONAL GRID

In the present study, the computational domain is represented by a
finite element grid generated by the scheme described in the previous chapter.
The physical space consists of an infinite fuselage having a circular
cross~-section of constant radius and the wing attached to the fuselage. The
computational space is truncated at finite distances from the wing surface.
It is assumed that the flow is symmetric about the vertical plane containing
the fuselage center line, so that symmetry conditions can be applied and the
flow has to be analyzed only in the half space.

For results presented here, the far-field boundaries are placed
approximately three chord-lengths from the wing surface in the streamwise

and surface normal directions; in the spanwise direction, far-field is
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e Table 4.1 Wing characteristics

AR 3.8

A 0.4

e,
P

AC/L.' deg. : 30.0

"y

6., deg. 2.50

-

1

o

et' deg' "14.00

A

(t/c) ., % 6.0

oy :‘l y
P

(t/C)to 96 6.0

A'- ..

$/2, cm?® (in2) 530.0 (82.1)

Ol )
iy N

b/2, cm (in.) 31.8 (12.5)

202

a

Crr cm (in.) 23.88 (9.40)
Cer em (in.) 9.55 (3.76)
By MAC, cm (in.) 17.71 (6.974)

Yuac, cm (in.) 13.60 (5.355)
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Table 4.2 Wing geometry

ROOT SECTION TIP SECTION
X/¢ Zy/C /¢ Zy/C z /c
.0NGCO0 «00000 +00000 .0G000 .00000
00241 00617 ~.00528 .00507 -.00606
.009561 .01181 -.00895 .00972 -.010606
.02153 . 01649 -.01198 .01401 -.01408
.03806 .01991 -.01511 .01770 -.01691
. 05904 .02268 -.01839 .02110 -.01951
08427 . 02517 v =.02111 .02421 -.02161
11349 02737 -.02333 .02700 -.02325
148405 . 02925 -.02503 .02949 -.02439
.18280 .03075 -.02618 .03168 -.02492
22221 .03191 -.02691 .03360 -.02u498
2630 . 03277 -.02705 . 03522 -.024u6
«30866 .03330 -.02669 . 03654 -.02340
.35u86 « 03540 -.02582 .03762 -.02180
JBO2L5 . 03325 -.02458 .03847 -=.01967
«45099 .03258 --.02287 .03905 -.01689
50000 - 03155 =.02070 .03933 -.01361
54901 .03013 ~.01768 +03922 -.00950
.50755 02842 =+01376 .03882 -.00396
04514 .02639 -.00985 .03799 .00Cu2
69130 02417 ~+00615 . 03669 . 00474
. 73570 .02178 -.00316 .03491 .00814
.77779 -01925 =+00109 .03258 .01020
«81720 .01660 +00003 .02962 .01087
. 85355 .01388 00043 .02608 .01026
.88651 01116 .00043 .02211 .00867
.91573 .06865 ,00032 .01793 .00651
. QL0096 - . 00644 .00012 .01379 .00417
96104 . 00459 -.00021 .00991 .00196
.97847 .00308 -.00055 .00674 .000%6
+ 92039 .00196 -.00082 L00LuS -.00138
.99759 .00130 -.00102 .00305 -.00227
1.00000 .00109 -.00109 .00259 -.00257
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located one span-length from the wing-tip [14,9]. The grid is chosen to be .
of C-type which wraps around the wing leading edge and becomes rectangular ‘
grid past the wing trailing edge. The elements generated in this way are
proved to be the most suitable for modelling the sharp gradients of flow

variables and matching the flow conditions.

1

4.2.1 General Considerations and Block Definitions

In the numerical solution of a particular fluid mechanics problem, the L
accuracy of the solution and the computation time strongly depend on the
computational grid employed in the analysis. Therefore, the flexibility
and the limitations of a grid generation scheme is important in obtaining a
accurate and efficient solutions. }

In general, sub-regions of flow domain where high gradients of flow j

parameters are expected, the grid has to be finer than other regions to main-

tain the same level of accuracy. It is also desirable to maintain other i
properties like the orthcgonality of the grid and streamlining to the flow
direction to reduce artificial viscosity effects.

In the present transonic flow analysis around wing-body combinations, the
wing has a sharp leading edge. Around this region high gradients of velocity
were measured. In addition, the physical boundary around the leading edge ‘

shows a rapid change in the curvature which requires considerable concentration

of grid points, in order to represent the exact boundaries without losing the
details of the leading edge.
Considering the above physical characteristics of the flow problem and
the limitations of the developed grid generaiion scheme such as:
a) physical surfaces can only be introduced as block surfaces,
not inside the blocks,
b) a surface of a block can represent at most a third-degree 3
polynomial surface with a smooth curvature change, 1
c) only a single gradient value can be defined along an edge of
a block,
the computational grid shown in Fig. 4.2a,b,c was designed. The wing and
vortex sheet is placed in between two layers of blocks in surface-normal
direction by exploiting the slit option of the scheme. 1In the streamline
direction, three layers of blocks are employed by having the first blocks ‘

coupled to each other in the flow direction. With this combination, a
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C~type radial grid can be obtained and high gradients of elements around the
leading edge can be introduced. In the spanwise direction, physical constraints
require 4 block layers to be used. The block layer after the wing performs
the transition between spanwise far-field and the wing tip. Fig. 4.3 shows
the proposed block structure in the upper side of the wing and body surface,
which is composed of 24 blocks in the whole domain. The block definitions
in the global and natural coordinate system are shown in Fig. 4.4 and 4.5
respectively.

The entire block structure which is the combined form of block layers
described above is presented in Fig. 4.6. It should be noted that although
all the block definition points are connected to each other by linear lines,
as it will be seen later, the generation of elements inside the blocks is based

on the higher~order interpolation functions along the edges of each block.

4.2.2 The Grid Distribution

The element distribution inside the blocks is determined by the number
of elements along three principal directions and the gradients defined along
the block edges. Although these specifications are separately performed for
each block, grid generation scheme assumes continuation of the same number of
elements inside the blocks which are connected to each other along the princi-
pal directions. Also, it is required that the gradient definition for the
gsame edge shared by up to four blocks should be the same. Fig. 4.7a,b,c,d
show an arbitrary element distribution inside blocks.

In the present analysis, since the accuracy of the solution on the wing
surface is of major importance, the first layer elements on the surfaces is
kept close to the surface. It should be remembered that for eight noded
bi-linear elements, centroidal values of these elements represent the flow
on the surface. The element distribution around the leading edge is designed
to be fine along the streamwise direction while over the wing a smooth change
towards a coarser grid is aimed for better accuracy and efficiency. The
farther the elements are from wing-body surfaces, the longer they become, since
the flow variables do not vary rapidly at the far-field.

Figures 4.8 to 4.10 show the grid distribution along streamwise and
spanwise directions at typical sections. The grid which is also emploved

for the flow analysis has 28 elements in strecamwise direction; 18 of them
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Fig. 4.2a Description of blocks, I-K section
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Fig. 4.2b Description of blocks, 1-J section
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Fig. 4.4 The separate block layers
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Fig. 4.6 The total block structure
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i Fig. 4.7b An arbltrary element distribution in the
block at the transition region
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located on the wing. There are 15 elements in spanwise direction; 4 of them
on the body and 6 of them on the wing. In the third direction, normal to the
Il wing upper and lower surfaces, 16 elements are utilized with the wing located
at the middle. The total number of elements adds up to 6720. As it can be seen
- in Fig. 4.10, in each block, element gradients along streamwise direction are
assumed to be uniform; i.e. each element inside the block has the same length
in the streamwise direction. In the direction normal to the wing surface,
- gradients are specified in such a manner that the ratio of the element size
on the surface that of the one at the far-field is 1/25. The peculiar shape
of the radiality at the upstream boundary shown in Fig. 4.10 is the result of
the shifted higher-order block edge nodes from correct 1/3 locations as dis-
cussed in section (3.2.1). This shift was made to reduce the distortion of
the elements around the leading edge. The Fig. 4.11 shows the first layer of
: elements over the upper surface of the wing and body. Here, the collapsed
tﬁ block edge and the triangular wedge type elements over the body can also be
seen clearly. Figure 4.12 and 4.13 are examples of element distribution
inside blocks, in particular, blocks around leading edge bottom surface. The
. final grid distribution over the wing-body combination, including only the
l' surface nodes of the elements, is shown in Fig. 4.14.
a As it was mentioned before, in order to resolve rapid changes in the flow
variables, higher-order elements have been employed at the critical flow
regions. For this particular gtrid, two cubic element layers were placed over
[ ] each of the wing upper and lower surfaces. Each layer had 15 cubic elements
along the streamwise direction and 6 in the spanwise direction. The total
number of cubic elements in the grid was 360,
- It should be noted that quite a small amount of input data was required
in order to supply such an element distribution. This is very important in
the design of finite element girds from flexibility and efficiency points

- of view.

F = 4.3 GRID STUDIES AND RESULTS

4.3.1 Case I. Basic Grid

The computational grid, designed in the pre ous section, was employed

Lo

to anaiyze the transonic flow around the particular wing-body combination as

an initial test case.
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Fig. 4.13 The element distribution at the leading
edge block over the body only
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Fig. 4.14 The grid distribution over the whole
wing-body combination
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The flow characteristics for this problem are:

Free stream Mach number, Mm = 0.9
Inlet flow angle, B in 3.0°

= O
Outlet flow angle, Bout 3.0

The initial solution was taken to be free-stream flow everywhere in the
domain and a relatively high value of artificial viscosity was introduced. It
was observed that, during the initiai iterations, for the elements along
which the Kutta-condition is applied, high velocity values were calculated.
This was due to the sudden introduction c¢f circulation. In order to eliminate
these unattainable velocity values, for the elements above the vortex sheet,
density values were assigned to be equal to the ones below the sheet, replacing
the calculated densities. After the solution started to converge, exact
density calculations were introduced to these elements with a linearly in-
creasing percentage. After a reasonable convergence was obtained following
the above scheme, the artificial voscosity was reiuced. The iterations were
continued until a convergent solution with a minimum amount of artificial
viscosity was obtained.

The result of the flow analysis is expressed in terms of the pressure
coefficient Cp' (Eq. 4.3.1) which is defined by non-dimensionalizing the

pressure with respect to properties of the free stream.

P-P

C = _____:,_ (4.3.1)
P 2
%Pooqoo

For a perfect gas, pressure coefficient can be expressed in terms of

free stream Mach number, M_, and the flow speed ratio; q/q_ [25] as follows:

1 2 1 ¥/ (r-1)
cp = — {1+ 2w -] -1} (4.3.2)
vt M

Local flow speed q can be obtained in terms of velocity potential;

2 2 2 2
= o4 ¢, + 4, 4.3.3
q (¢ y $ y ¢ z) ( )

Then. the equation 4.3.2 leads the following final definition of pressure

coefficient in terms of variable ¢:

2 2 v/ (y-1)

2
c = 2 ({1 + Y_'qu(] - fﬁx,ffﬁ,if,_z ] -1} (4.3.4)
2

p 2 2
a q
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:i: The pressure coefficient distributions obtained at the end of iterations
:.3 for Case 1 are shown in Fig. 4.15a,b for the root and the tip sections
{-c of the wing and compared with experimental results [32]. The values shown
i;ﬁ in these figures are calculated at the centroids of the first row elements
i”: on the surface at these sections. The experimental results are the ones
:Ji obtained on the surface and for the same flow conditions but for the
‘i isolated wing case.
'i; When the results obtained from the first grid is compared with the
-;} experimental data. it is obvious that the solution around the leading edge
_;‘ is considerable smeared out. Furthermore, the Kutta~condition applied at
:u the trailing edge does not seem to satisfy the equality of velocities at the
:2: upper and bottom edges of the trailing edge. Of course, it sheald be
o remembered that the centroidal values of the trailing edge ¢lements have to be
. somewhat different. 1In order to improve the solution at these regions, it
e is practical to reduce element size so that a finer grid will be obtained and
.ii the centroids of the elements become closer to the surface. Beside these
“:i regions, it is observed that the solution is quite smooth over the flow domain
f:’ except for the leading edge and the w-hock region. This suggests that one can
< employ a coarser grid over the wing past the leading edge and past the wing
;f: towards the far-field.
4.3.2 Case T1. Modified Grid
o Based on the above considerations, a sccond grid was designed in order
{k' to be able to show the effect of the distribution of the grid points and
i: element densities, the total number of elements was kept the same. The new
b grid distribution along the spanwise direction while Fig. 4.16 shows the
o changes made along the streamwise direction. The block edges responsible for
%f the leading edge were shortened and c¢lement numbers were increased as the
j; orthogonality of the leading edge elements were preserved. The new block
Ei structure satisfying the above requirements is shown in Fig. 4.17. As it can
ﬁ[ be seen from this figure, upstream boundary is specified by two block edges
é:; rather than one, resulting in a better c¢lement distribution at the upstream.
::: The curved radial edges of the blocks in surface-normal direction are to
lb improve the orthogonality of the elements generated around the leading edye.
né The rest of the structure is quite similar to the previous one. Inside the
g
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blocks, the element gradients were, on the other hand, modified to provide a
finer element distribution towards the leading edge. At the far-field, the
element number was reduced. However, by using different gradients smaller
Kutta elements were placed around the trailing edge. The higher-order element
specification was kept the same, while their sizes were modified.

Figure 4.18 shows the grid distribution over the wing-body and side
boundary. Fig. 19a,b shows the location of higher-order elements for both
grids. The second modified grid was employed for the solution of the same
flow problem. The pressure distributions obtained from the solution are
presented in Fig. 4.20a-b at several sections along the wing span.

Both test cases were ran on an IBM 4341 system. Approximate CPU time for
a single iteration was around 20 minutes. Considerable amount of this time is
spent in the file manipulations of the constant coefficient matrix. Due to the
limited number of tape drives, this procedure required back-spacing of a tape
which is rather inefficient.

The firesc case converged after 260 iterations and the results were obtained
with the artificilal viscosity content of u= 2. The employed convergence
criteria was the maximum normalized change in the calculated Mach numbers of
the elements in the whole domain which was in the order of 10’4 for the last

iteration.

In the second case convergent solution with artificial viscosity content
ofuy = 1.5, was obtained at the 325th iteration.

It should be kept in mind that the experimental results belong to the
wing-alone case in which the pressure coefficient at the leading edge has a

tendency to be higher than that of the wing-body combination case.

4.3.3 Comparison of Results

The inspection of results obtained for two different grids with the same
number of elements, reveals some important aspects of the design of computational
grids. They show that the grid distribution which provides a better alignment
with the changing flow variables also produces a better agreement vith
experimental results. The element densities specified at the regions of
high flow gradients, to a great extent, may become responsible for the accurate
golution in the whole domain in transonic flows.

Results in fig. 4.20 show that the second grid agrees better with
experiments as far as leading edge singularity and Kutta-condition are

concerned. Figures 4.19a,b show the element distribution around the wing
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Grid distribution over the wing-body and
side boundary

Fig. 4.18
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Fig. 4.19b The modified grid distribution around wing-root
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Fig. 4.20c Pressure distribution at 60% of the
wing span away from the root.
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® EXP.
A MODIFIED GRID

Fig. 4.204 Pressure distribution at the tip section
of the modified grid (95X of the wing span)

P Xy e 4T e e A s a8 e et Ak o At A et b e e % T L
(T T N 0 L R A A I S 0TS0, G TSy S % .‘_\'.,:'.i-.._\kx;s.‘d



50

VoSt 4 s aaa ey

12 ""ihh&;'.‘."m _4 ot

B i v o I

K

3R AN AR Peg b A o iy Ty ") Ay 7P Ll eliatalin oy L i UV T “ u '_".'.'-.-'-‘-' ''''''''' AR

88

for each of the grids and the location of higher-order elements. As it can
be seen from figure 4.19a, density of elements around the leading edge and
the reduction in the distortion of these elements seem to be responsible
for the improved solution at the leading edge singularity.

The improved solution at the trailing edge is attributed to the modi-
fications done at this region resulting in smaller elements. Looking at the
almost identical lower surface pressure distributions except at the leading
edge, it is concluded that the lower surface remains subsonic and is not
sensitive to inaccuracies at the leading edge.

Although the modified grid gives better and improved results at the root
section of the wing, it was noticed that the shock at the tip section moved
further downstream. This was due to the increase in the element size at this
region as a result of biasing the same number of elements towards the leading
edge. These results show the necessity of providing sufficient grid refine-
ment for all flow regions around the wing. On the other hand, the in-
efficiency of using equally-spaced grid points is also apparent. The ratio
of spacing between the nodes around the leading edge to the nodes in larger
elements .is about 1/80. .

The épblication of the finite element method for generating a block-
structured computational grid provides the necessary flexibility for designing
the type of grids discussed above. For solving a practical three-dimensional
problem,'one can start with a basic grid and obtain some preliminary results.
This grid can then be refined for better accuracy. The comparison of results
from the basic and modified grids will indicate the accuracy of the obtained
solution even without the aid of experimental results. In the developed
finite element scheme, one can concentrate on a particular block of the
basic grid and modify it with a minimum effort without chancing the remaining
portions of the computational grid.

Although the present application demonstrates a user oriented adaptive
grid generation, a mathematically described automative grid generation

scheme can easily be implemented to the present grid generation scheme.
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4.4 CONCLUDING REMARKS
The main objective of the study was to evaluate the concept of an "optimum
grid" for analyzing three-dimensional transonic flows. For this purpose, we
studied the importance of computational grids in terms of both the accuracy
and efficiency of a computational procedure. For the sample problem we have
chosen, it was necessary to use over 105 grid points to analyze an isolated
wing with existing finite difference wing codes. On the other hand, if a
certain flow region 18 not modeled accurately, the errors can corrupt the
entire solution in transonic flows. The use of "artificial viscosity"
requires extreme care in the analysis of transonic flows and is closely
related to the computational grid. Based on these requirements, we concluded
that a computational grid generation scheme needs to be very flexible in
dealing with such problems. The following considerations summarize our
aevelopment in this area:
a) The grid generation scheme presented in this paper is based on

a block structure and on automatic mesh generation for each block.

This Allows the flexibility in designing different types of grids

for different flow regions. One has to consider the design of

the grid for a single block at a time. The grid points between

the blocks are matched automatically. It is also flexible in a

sense that if the grid for a certain flow region has to be refined,

again only that particular block is modified at that time.

b) The design of efficient and accurate grid requires an understanding
of the flow field to be analyzed. Only then, one can design a grid
cloge to an "optimum grid.” One has to design an adaptive process
for this purpose. In the case, where no prior knowledge of the
flow field exists, one can start with a basic grid, obtain
some numerical results and then adapt the grid to suit the flow
field. Leading edge, trailing edge, shock, etc., are all critical
areas where one has to experiment for designing an optimum grid.

In the present procedure, one can choose a particular critical
flow region, and convert a group of elements from linear to cubic
in that particular region.  1In the present study, this was
1llustrated for the leading edge problem. Consequently, the

number of grid points in that particular area is increased
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considerably. Similarly, one can increase the number of elements
in each block or change the distribution of grid spacing in one
< _ block. All these operations require minimal input. With these
capabilities, one can work with grids where the number of grid

points does not reach 106 for three~-dimensional flow problems.

P Sy e

c¢) Finite element method brings considerable freedom in modeling
complex geometries. Relocation of boundary nodes on a surface

improves the accuracy of boundary conditions. As mentioned

AT .

above, the use of different order finite elements in the same grid

oy

enables better modeling of curved surfaces.

d) One can develop a separate mesh generation procedure for each of the

biocks. One then can have, for example, a leading edge block

[ % SN S

or a shock block for which a optimum mesh generation procedure

is developed previously.

e) In the present procedure, the blocks are still assembled together

LadebonnSenl

at the end as a single computational grid and analyzed as a single

L b b S

block of grid points. This requires matching of grid points at
block interfaces, which is automatically performed with the

present scheme. Further development of this present concept
would be to remove this restriction where each block can be
meshed independently. This will provide further flexibility
in designing optimum grids for each of the local flow regioms,

e g gD

without globally increasing the number of node points.
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g‘ APPENDIX-A
i o GAUSSIAN INTEGRATION
_ Gaussian integration scheme can be employed to determine exact
vl :
x4 integration of polynomials over regular shapes e.g. rectangular blocks,
e
WY etc. This scheme has become an important part of the finite element
;$’ technique and is commonly used. The integration is performed by using
a formula which is expressed in terms of summation of values of the
?ﬁ integrand at certain 'Gauss' points, Pi’ multiplied by corresponding
b weights, W, .

As it is pointed out in section 2.3.3, the degree of accuracy in
iﬁf _ the int.:gration formula is very important in terms of the accuracy of
;J the results and the computer time spent on the numerical integration.
i?j In the present study, although, maximum three points integration for-

mula is employed, the following table A.l supplies the integration
{j : points up to ten points and the corresponding weights.
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Table A.1 Integration points and weights for the
Gauss-Legendre quadrature formula
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