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ABSTRACT

A three-dimensional finite element procedure is developed
for the analysis of three-dimensional transonic flows and applied

to the analysis of wing-body combinations. A finite element grid

generation scheme for three-dimensional bodies with complex

geometries is presented. The design of efficient, body-fitted

computational grids with isoparametric mappings, as well as the

application of higher-order finite elements in analyzing transonic

potential flows are investigated.

Two different computational grids were designed and

studied with a numerical scheme based on the density upwinding in

the supersonic regions. A pseudo-unsteady type formulation is

employed in determining a steady-state solution. It is concluded

Q? that the grid generation scheme is quite flexible and efficient

for generating solution adaptive grids and providing local refine-

ments in the sensitive flow regions. Also, it is shown that the

employed numerical scheme with higher-order elements at flow regions

of high gradients produced results which compare favorable with

experimental data.
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I. INTRODUCTION

1.1 STATEMENT OF THE PROGRAM

,- Analysis of flows around an aircraft at transonic speeds is of major im-

portance in terms of its performance and maneuverability. At transonic speeds,

local supersonic flow regions are usually terminated by weak, embedded shock

waves. The subsonic-supersonic flows are extremely sensitive to the shape of

- the aircraft geometry. The mathematical difficulties related to the solution
of this problem are associated primarily with the mixed, hyperbolic and elliptic

- type of equations for subsonic and supersonic flow fields and the presence of

discontinuities called shock waves. A computational method, for analyzing tran-

sonic flows, should be capable of predicting the location and strength of these

shock waves which are again very sensitive to the changes in the geometry of the

boundaries.

A major concern, in the computation of transonic flows, is the design of a

computational grid. A good computational grid is a basic requirement for an

accurate flow analysis over a three-dimensional configurat'on. A surface-fitted

grid permitting easy and exact introduction of boundary conditions on curved

boundaries becomes necessary. While, in three-dimensional applications the

number of points on the computational grid grows rapidiy, description of complex

geometries like wing-body combinations and description of boundary surface fitted

grids become a difficult task and increase the labor involved.

During recent years, substantial progress has been made in the development

of numerical methods for the solution of inviscid transonic flows. Some of the

early studies to predict the inviscid flow fields around airfoils [1], wings [2]

and simple wing-body combinations [3] started within the framework of small dis-

turbance theory. The equations in this case were somewhat simpler and boundary

.4 conditions can easily be imposed on a mean surface. For complex geometries, this
becomes too much of a simplification. Treatment of boundary conditions where

boundary surface does not coincide with grid points is generally either compli-

cated and time consuming or inaccurate. The need for the solution of full poten-

tial equation, rather than its small disturbance approximation, emphasized the

.I requirements in applying the boundary conditions accurately in later finite dif-

ference calculations.

, d " , . -o . . . - % . .
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Jameson [4] solved transonic full-potential flow equation by rotating the

difference scheme to conform with the local stream direction so that proper

directional property is obtained. Following Jameson's work, many applications

of both finite difference and finite volume methods were presented for the solu-

tion of full-potential equation. For analyzing flow around three-dimentional,

*.,* complex configurations, these techniques required extension of mesh generation

techniques. In order to represent curved boundaries, a regular finite difference

grid, either an interpolation formula employed at grid points nearest the bound-

ary surfaces to treat mesh-boundary intersections or a coordinate transformation

was performed in order to reduce the boundaries to coordinate surfaces.

A major problem encountered in computational fluid dynamics is the gener-

ation and control of grids on which numerical solutions are to be obtained. The

accuracy and convergence rate of a particular solution scheme generally depend

on the degree of refinement and alignment of the grids with solution variables.

Application of exact boundary conditions for the generated grid requires addition-

at attention as the flow field geometries become more complex.

In finite difference applications, a general method for constructing grids

is the mapping of the physical flow domain onto a rectangular domain. The map-

ping transformation is represented as the solution to an elliptic boundary value

problem for the rectangle [17]. In the case of complex three-dimensional geome-

tries, the application of transformations become complicated and even limited.

An alternate approach is to use a block-structured grids. In this approach, the

computational domain is divided into multiple rectangular blocks that can be de-

fined to produce surface fitted computational grids. In this case, the necessity
of collapsing some block edges requires additional computations for representing

complex geometries [18].

Many studies have also been conducted for the purpose of obtaining better

orthogonality, introducing variable grid spacing and satisfying better alignment

with the boundaries [19-21]. In addition, solution adaptive grids in which grid

points are rearranged to improve accuracy have been introduced by several re-

searchers [22,23].

As compared to the finite difference approach, finite element method handles

the problem in the physical plane and uses only a local mapping during integrations

in the computation. On the other hand, the description of the physical geometry

and preparation of finite element grid still has to be defined in an efficient

%J

.4
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manner. Finite element grid generation schemes which are commonly used for the

solution of complex structural mechanics problems include many features to auto-

mate the data preparation. Yet, being g_.iral purpose programs, they require

still considerable labor for solving three-dimensional aerodynamics problems.

..; ""' In the present study, the main objective was to illustrate the application

of finite element technique to generate a computational grid for analyzing the

p transonic flow around a complex three-dimensional configuration. In this report,

first a solution technique for analyzing three-dimensional transonic flows using

the finite element method is summarized; then, a finite element mesh generation

e.-.' scheme suitable for modeling wing-body configurations is presented. This procedure

involves a two-level generation of finite element grids. First, the physical do-

main is represented with small number of isoparametric elements which are called

blocks. These large blocks are fitted to the complex geometries. Then, each of

the blocks are remeshed into finer elements automatically. This process requires

a minimum amount of data to define the finite element grid. Finally, by using

these finite element grids, transonic full-potential equation is solved for a

sample problem. For this test case, the generation of an "optimum" grid is dis-

cussed. An iterative approach is proposed where an initial grid is modified for

improving accuracy. It is shown that by using the developed grid generation sch-

eme, one can do this efficiently and control the grid spacing at critical flow re-

gions without disturbing the rest. Also, it is shown through the computational

experiments performed in the present study,that the design of an optimum grid re-

.quires an understanding of the flow field which can be obtained through this iter-

ative procedure.

1.2 TRANSONIC FLOW PROBLEM

- 1.?.1 Governing Equations

The governing equation for steady, inviscid and irrotational flow can be ex-

pressed in terms of velocity potential * and density p considering conservation
of mass and irrotationality of the fluid. Conservation of mass can be written

as follows:

V.(PV) - 0(12)

where the velocity vector is,

V -ui + v + wk (1.2.2)

4'
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By using the condition of irrotationality, the velocity vector can be written

as,

V = v7 (1.2.3)

where the scalar function 4 is the velocity potential. Equation (1.2.1), then

becomes,

(Po'x) x + (Py ),y + (po),z), = 0 (1.2.4)

For three-dimensional flows, the solution of equation (1.2.4) should

satisfy the following Neuman type flux boundary condition:

pOn = f (1.2.5)

where f is the mass flux on the boundary surface whose outward normal is n. On

the solid boundaries, f is assigned to be zero. On the other hand, since Neuman

boundary conditions are involved, the potential will be dependent to an arbitrary

constant, to remedy this, the value of o at any point within the solution domain

is to be prescribed [26].

1.2.2 Variational Formulation

q; The weak statement of the problem (1.2.4) is to determine the function 4

such that differential equation and boundary conditions are satisfied in the

sense of weighted averages:

f[(P,x)),x + (Po, y),y + (0oz), z ] U dV = 0 (1.2.6)

where U is the weight function and the integration is over the whole domain. No

derivatives of weight function appears in (1.2.6). On the other hand, the second

derivatives of 4 have to be calculated. An alternative symmetric weak formulation

can be obtained by applying integration-by-parts and choosing U same as 4.

.S[(0,x)o + (Po',)o + (W, )f)] dA

S- h [(0 ,x)o' x  + (o, y )oy + (P , z) 1z ]  dV = 0 (1.2.7)

The surface integral over S provides the natural boundary conditions for

specified flux values. In the case of rigid walls, the normal mass flux (no)

vanishes and natural boundary condition automatically provides zero normal flux

conditions [14]. In the above formulation, if one can eliminate the variable

density in terms of velocity potential, the problem can be written in terms of a

single unknown, 4.
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For isentropic flows, the relationship between density and local flow

. speed can be written in terms of velocity potential , as follows:

_ 2 _ 2 2) +(1.2.8)
2j (q2  09 + O + 2 ))]l/(Y1
y max x +

.7 where qmx is the maximum attainable velocity

1.2.3 Application of the Artificial Viscosity

The inspection of the weak solution in Equation (1.2.7) shows that the

isentropic equations permit a possible discontinuity [271. Since the potential

equation is fully isentropic, it describes a reversible situation allowing ex-

pansion shocks as well as compression shocks. In the case of expansion shocks,

' .entropy has to decrease, which is a violation of thermodynamics laws. In order

to get correct weak solutions containing only physical shocks, an entropy con-

ditiou has to be introduced in the modeling of the flow.

Murman and Cole (11 first demonstrated that shock waves can be obtained in

the relaxation schemes if upwind differencing formulas are used in the super-

sonic regions. This is a correct differencing scheme in the sense that domain

of dependence in the flow field is satisfied. In subsonic flow regions, the

flow properties at a point are effected by the flow conditions all around the

point. However, in supersonic zones, the flow properties depend only on the flow

properties of the domain of dependence. The disturbances march away from an

initial data plane and downstream influences cannot propogate upstream.

It can be shown that the error introduced by the application of backward

differencing results is a second-order dissipation term which is analogous to

the viscous terms in the Navier-Stokes equation. Thus, in order to solve tran-

sonic flow problems, when the flow is supersonic, the solution scheme must be

-modified to account for the hyperbolic nature of the governing equations. This

-! can be done either by including explicity some artificial viscous terms at the

supersonic locations or using difference schemes which introduce the second-order

viscous term like truncation errors.

In this study, artificial viscosity like terms is introduced by using a

modified density in the supersonic region. This density modification is givenIas[28]
Pe 

0e -e Ae Pe,s



6

where s is the streamline direction, As is the element size in the direction of

s and a is the coefficient of artificial viscosity. e stands for the element

under consideration.

In the above formulation, since artificial viscosity is introduced by taking

the element size into account, it satisfies uniform distribution of viscosity con-

tent. In the case of non-uniform grids, one has to consider the changing dimen-

sions of the grid in the flow direction.

Gradient of density in equation (1.2.9) is obtained by backward differencing,

n (_ -__ )
0'e", p - a es e (1.2.10)e e e e s

eu

where,

As 1(ASe +A~u) (1.2.11)

and u stands for the nearby upstream element.

The choice of artificial viscosity is one of the important factors in deter-

mining the efficiency of the solution procedure. A previous study conducted on

the choice of artificial viscosity distribution, which is based on a simple one-

dimensional model [13], gives the following condition for uniform convergence:

1
a e >--- - (1.2.12)

M
e

In the above expression, the effect of the position of the element in the super-

sonic pocket, the distribution of the error in the initial solution and size of

the elements in the grid are not included in the evaluation of the artificial

viscosity.

In this study, artificial viscosity coefficient is taken as;

-a = V[ 1 1 (1.2.13)
e M

e

where, u is the artificial viscosity content and it is constant during the

iterations. Then, the equation (1.2.9) can be written as

P = ae + (1 - a e e (1.2.14)
e eue e e

where

' AS
e Se 1- (1.2. 15)

e
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II FINITE ELEMENT FORMULATION
3.

2.1 FINITE ELEMENTS

Finite element formulation of the problem (2.1.7) is obtained by dividing

the solution domain into smaller elements similar to the ones shown in figure

". -::;(2.1). The potential function is then approximated within an element as a

linear combination of its values at grid points based on the locally defined

shape functions NI(x,y,z) assigned to each grid point:

Fig. 2.1 Three-dimensional finite elements

(X,yz) = N (xyz)i  (t=1 ...... m)

"[' The number of approximation functions (shape functions) for each element

is equal to the number of nodal points. In the above equation tis the value

,. at node I, N, is the shape function of node i and egives the distribution of
FInside the element e.
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It follows from (2.1.1) that

*1 if i=J-k-I

NI(xiYjZk) (2.1.2)
) otherwise

where xi is the x coordinate of the Ith node of the element and so on.

For an n noded element, the following column vectors can be defined:

T = 2 .. . n1 (2.1.3)

T
N [N,N 2,....... Nn] (2.1.4)

Here, 4 is the element nodal vector of values corresponding to the

nodal points and N is the element shape function vector of Ni, shape functions

for every nodal point. The superscript T denotes the transpose of these vectors.

The equation (2.1.1) can be written in the following form using the above

rotation as follows:

Oe (xy,z) =N T e  (2.1.5)

Substitution of equation (2.1.5) into (1.2.7) results in,

K F (2.1.6)

where

K - Ifp e (N, N,T + N, N, T + N, N, T ) dV (2.1.7)
e e

F - f NdS fe - element flux vector. (2.1.8)
e

14 (2.1.9)

e

The coefficient matrix K is obtained as a result of contribution of element

coefficient matrices for every node. Contributions of the surrounding elements

are considered during the assembly of element matrices.

The specified flux boundary condition which is directly included in the

variational formulation becomes the right-hand-side of the equation (2.1.6).

Equation (2.1.8) is the surface integral expression written for every element

over the element boundaries. Since the elements satisfy the continuity of mass,

contributions of flux terms at the Inter-element boundaries for the entire system

cancel each other. At the interface, the same flux leaves the surface of one ele-

sent and enters the other one, the resultant flux being equal to zero. In the
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case of elements with a surface on the specified flux boundaries, equation (2.1.8)

provides the application of natural boundary conditions.

I2.1.1 Linear and Higher-Order Element Formulations

As it can be seen in the equation (2.1.7), the global x,y,z coordinates are

used for the calculation of local approximations over each element. In actual

computations, all these calculations are generally performed for a parent element

in terms of local coordinates &, n, and are transformed to the global coordinates

for each element in the grid.

jk %In order to evaluate the coefficient matrix (2.3.7) and load vector (2.3.8),

two transformations are necessary. The first one is the expression of global de-

rivatives in terms of the local derivati-s. The second one is the expression

of element volume and element surface over which the integrations have to be per-

formed. Then, the integration is performed in terms of local coordinates with

proper integration units.

This formulation allows an efficient formulation as well as the utilization

* of higher-order isoparametric elements. An isoparametric serendipity element can

be defined as having linear, quadratic and cubic node configurations along its

edges in an arbitrary manner as shown in Fig. 2.2.

'el

sn,

Fig. 2.2 Isoparametric serendipity element

r , - . - - - .. .. ... .,1.
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Shape functions and their derivatives can be expressed in terms of multi-

plications of three, one-dimensional basic functions and their derivatives in

the local coordinate system. In this coordinate system (&, n, C), each element

", in global coordinates shown in Fig. 2.2 with the local origin at the element
mI.

centroid. The values of the local coordinates vary between the limits of + 1

and -.

i
i /-(-0.3 33,1 ,1

,"

Fig. 2.3 Master serendipity element

In the parent element, for the linear case, nodes are at the corners, for

4 parabolic elements, additional nodes are located at the mid-point of each edge,

while for cubic elements, four nodes are located equally spaced on each edge.

In the case of a surface, any of the element in figure 2.2 is transformed

into a perfect square by using two-dimensional shape function formulation. The

same discussion in the above paragraph is valid for this case as well.

The above transformations can now be carried out by the use of shape func-

tions. The coordinate transformation for an n noded element, from local to glo-

bal, by using shape functions N, is given as follows:

* x - N ( ,r,9)xi  (il..... n)

y Ni(Ern)yi (il..... n) (2.1.10)

z Ni(E,n,)zi (Pd..... n)

".* *;... *'- *°*° *.*. - ,-,,* %,-,, j, -*. --. ~ .% -*" , "-." * . * . - . . * * *, . . -." .- • . ,. , .



where xi , yip z are the global coordinates of the corresponding ith node.

(Ni, i - 1,n) are the shape functions calculated at the point defined by local

coordinates E, n, .

(1, - 0.3333)

(0,-1) (1,-i)

-4'

Fig. 2.4 Two-dimensional serendipity elements

" ,. Deriviatives of shape function in terms of global coordinates, are obtain-

ed by partial differenciation as follows:

.. N1 ,= Ni x, + Ni, y, + N, z (2.1.11)
E.y Vz

" which can be repeated for n and C. In matrix form, this can be written as,

N - IN,
"o o i x , , Ni, x

Ni, x, y, q Ni y . .

rN"'" 1,x.

= N ,y (2.1.12)

LNi' z

._4

% % . % "%,% % % " % ", ", , " " ' ," . , : '.' '."% 4 , . . • . . -** .- * .*.* - ... .-.
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Derivatives of shape functions in terms of local coordinates, i.e. left-

hand-side of the equation (2.1.12) can be evaluated at the given point. Fur-

thermore, the explicit expression giving x, y, z in terms of C, n, C in equation
(2.1.10) can be differentiated to obtain the matrix J, which stands for Jacobian

matrix of transformation. In order to find the global derivatives of shape func-

tions, the above system should be written in the following form:

Ni xl "Ni,

Niy N Ji' (2.1.13)

Nilz NVC

The necessary condition for the above system to be invertible is that the deter-

minant of the Jacobian is not zero. Furthermore, it should be greater than zero,

so that a unique and proper transformation is satisfied as defined in equation

(2.1.13).

2.1.2 Integration Over the Volume of an Element

The volume integration seen in the equation (2.3.7) can now be evaluated over

the parent element by introducing the determinant of the Jacobian and choosing the

appropriate integration limits. A geometric interpretation of Jacobian indicates

.4 that the image of the volume dV' = d~dndC has a volume dV in x,y,z where

dV IJlddndc becomes

4 X, T 1 X,

dV = dx(dyxdz) det y, y, yc dFdnd (2.1.14)

z, Z , C

The integration of the element in equation (2.3.7) can then be performed

as follows:

K p [ Le, N, T + N, N,
T +N, N, z] dxdydz

Q e x-x - y- y -%:e e

f ,N T+N, N,' + N, N,TIl jddndc (2.1.15)
-lfllfll- )rx Y- y - Z-z

where the derivative shape functions are defined in terms of local element

coordinates by equation (2.1.13).

A La-. .- 4- -
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The above integration is carried out numerically. A convenient way of

doing this is to use Gaussian quadrature which are defined for regular geometric

shapes such as the master elements used in finite element analysis. Gaussian

quadrature is specified by a number of integration points each with an associated

weight. The integration points and their weights are given in the appendix A

for various order of integration. If the integrant is a polynomial, the integral

can be calculated exactly by choosing the proper order.

Integration of the above system can then be obtained as:

K ffi (eSeIJl)p Wi] (2.1.16).e ee

where:

+,, N, N,T + N, N, T1 (2.1.17)-e --xy-y Y - z

P is the Integration point with three local coordinates and (i=l,..m),m is

the number of integration points.

Since the integrand is not a simple polynomial, selection of integration

points is based on the following rules. Ideally as the element size goes to

zero, the integrand reduces down to a constant value, det J, which at least,

should be integrated exactly. The order of det J for linear, parabolic and cubic

is 1, 5 and 8 respectively. Numerical experiments have shown that for the po-

tential equation, 2 point integration for linear elements and 3 point integration

for cubic elements give sufficient accuracy.

2.1.3 Integration over the Surface of an Element

The integration over the surface of the element in equation (2.1.8) is

carried out in the same way as the volume integral. The surface defined in

the global coordinate system can be transformed to the local system of a square

by means of two-dimensional shape functions.

x N Ni(E,rx I

, y Ni(E,n)yi (2.1.18)

z Ni( ,n)zi

Since the integration is evaluated over the master surface, the determinant

of the Jacoblan matrix, which in this case gives the ratio of surfaces, has to be

calculated. This is done in an average sense considering the following trans-

formations:

,<- ''..;:,, ,:' 'i''.- .- '.'..-.. -.'. -- .-- .....-.. - ..-..-.. ..- ..,
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N.. x x Ni, " Yy, N~ N ,T1 n ,j LX I jz ' iz
= [:J ::: !:: [L2 J-:Y] ?1:zL2:

X" Nil y , XZ N ~j z , ' J (2.1.19)

nS

! z
dS

. -d x d y

x

Fig. 2.5 Integration of the surface area of an element

As shown in the above figure; as the surface area goes to zero, it can be

expressed in the following form:

dS.= secydxdy

-,

• . " ' "'I " ' "- "-* " *:' - - - -" -. , .o. - -. '. -. ... .i -. . . L.* '
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where ' is the angle between z axis and the normal direction of the surface,

;z 2 3z 2+
sec y- (T) + (y-) + (2.1.20)

and from the definition

dxdy = Jajd dn
xy

dxdz = 1Jxzdddn (2.1.21)

dydz = lJ yd~drj

The equation (2.1.21) leads to,

dz Jxz1  dz zT/ = --fj , = -Y7(2.1.22)

dy1FTdx j
xy xy

Combining the equations (2.1.20) and (2.1.22), one can write,

ds = [IJ 2 + Jz 2 + Jx y2 I  dd)

or

ds = IJ ldnd (2.1.23)

where;

Ijsl = lJxzl 2 + IjZ 12 + ji 2yl2 (2.1.24)

The integration of the expression in equation (2.1.8) over the boundary

surface becomes;

", f ds = flfl sd 0dq

Application of Gauss-integration rules result in;

L.f;fe -Nds = [ (fCNjJs )p.Wf] (2.1.25)

I

where

-NT  N T( ,n) - Ni, (i=I,n), n is the number of grid points on the

surface.
°.

•......... ~
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In the present study, two point quadrature rule was used for linear and

parabolic surfaces. In the case of cubic surfaces, three points were employed.

2.2 SOLUTION OF THE SYSTEM OF EQUATIONS

The system of algebraic equations, obtained in equation (2.1.6) in terms of

nodal velocity potentials, is nonlinear and its solution requires an iterative

process. One way to approach this problem is by treating it as a limit of a

pseudo-unsteady problem, where the solution is obtained by time integration.

It is stated in [29] that, although it does not correspond to the

physical transient behaviour of the fluid, the steady-state solution can be

reached by integrating such a pseudo-unsteady problem in time. In their studies,

Ecer and et.al. have used such a pseudo-unsteady formulation and demonstrated its

efficiency [13], [16], [28]. The same formulation will be used in this study.

It is assumed that the potential function and density are functions of

time;

=(x,y,z,t) and

p = P(x,y,z,t) (2.2.1)

and a steady-state is determined as the time step goes to infinity as follows;

4(x,y,z,t) = 4s(x,y,z)

(2.2.2)

P(x,y,z,t) = P(x,y,z)

With these assumptions, equation (2.3.6) can be written as:

K(x,y,z,t)4(x,y,zt) = F(xy,z) (2.2.3)

In order to describe the problem as a pseudo-unsteady process, an artificial

damping term is included in the equation such that it vanishes at the steady-state.

tK0  t + K F (2.2.4)

where At is the time step, w is the relaxation factor and K is a constant
coefficient matrix. It should be noted that as,

steady solutions of equations (2.1.6) and (2.2.4) are the same.

" I
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At the time step n, equation (2.2.4) can be written as,

-t Ko _n +Kn n (2.2.5)

The time derivative of the potential function in the above equation is evaluated

by using forward differencing in time.

n +l n

*t At (2.2.6)t A t

On the other hand, in order to be able to control the convergence and

stability of the problem, a relaxation factor is introduced. The solution
"obtained at nth Itrto tp n+l

o i a iteration step, is relaxed for the next iteration step

by use of a relaxation parameter w in the following way;

n-l n l n
n+1 = WCl n) + (,_w) n (2.2.7)

n+l th n+1
where is the solution of finite element equations at (n+l) step and .)

is the relaxed solution which will be used for the next iteration.

Substitution of (2.3.7) into the equation (2.2.6) results in;

S n+l- (2.2.8)

.2. and the equation (2.2.5) reduces to,

K o n+1 Fn + (K0 -Kn)I n  (2.2.9)

The above pseudo-unsteady system of equations can be written as a system of

algebraic equations in the following form:
o +l
KonI F (2.2.10)

where

,-,'- K. (x,y,z) (2.2.11)
e

n+l (Xyz)) n+l (2.2.12)

e

F * {F(x,y,z) + [[K(x,y,z) - nx(x,y,z,t)]j} (2.2.13)

e - -e --e ee

"', . ... -.
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The advantage of the numerical integration scheme based on the utilization

of a constant-coefficient matrix KO is obvious. A full decomposition of the

coefficient matrix K is needed only for the first time step, while the sub-

sequent iterations can be performed with forward and backward substitutions.

If a variable coefficient matrix was chosen as Kn, it would need to be re-

assembled and decomposed at every iteration step, which makes the scheme com-

putationaly inefficient. The importance of the selection of K' as a function

of p

K" = e (x,y,z)dQ (2.2.13)

e e

gives comparable rates of convergence with a variable coefficient scheme.

- In the previous applications of the finite element method, it was also ob-

served that the accuracy of the solution and the rate of convergence was strongly

dependent on the amount of the artificial viscosity content and the relaxation

parameter. Another study [14] showed the effects of the relaxation parameter on

the rate of convergence. Since an explicit time integration scheme in the super-

sonic regions must satisfy Courant condition, relaxation parameter w must be

chosen inversity proportional to the amount of added artificial viscosity:

< (2.2.14)
--'a M2

ee

Although no under-relaxation is required in the subsonic regions, it was ob-

served that use of different relaxation factors can cause numerical problems

around the boundaries of the sonic pocket. An equal under-relaxation was used

in the present study in both regions at the expense of decreasing the overall

convergence rate of the numerical scheme.

The numerical treatment of the problem follows, in general, the same approach

tried by Ecer and et.al. in their studies [13,14],[16]. Since the required arti-

* ficial viscosity depends on the distribution of the error in the initial solution,

a high value of artificial viscosity is introduced at the befinning in order to

have a uniform convergence. The initial guess is taken as the incompressible

flow solution. After having a converged result for this case, artificial viscos-

-*. ity content is reduced. Taking the previous result being the initial guess, iter-

ations are then continued until the converged results with a minimum amount of

artificial viscosity is obtained. A detailed investigation of artificial vis-

cosity effects was conducted as a part of the present project and presented in

reference [15].
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III. GENERATION OF THREE-DIMENSIONAL

FINITE ELEMENT GRIDS

*. 3.1 INTRODUCTION

The finite element grid generation scheme, presented in this study, utilizes

a multiple-block structure. A smooth and surface-fitted grid is produced for

each of the blocks. The blocks are then assembled with these subgrid systems to

form the computational grid for the complete configuration. The main objectives

I.i in the development of such a grid generation scheme were the following:

1. The user has complete control in addressing a critical flow region.

For example, leading edge of a wing is located around a particular block.

The user can design a mesh in this region by only considering the dis-

tribution of the elements in this single block.

2. The block structure is defined in a simple manner, yet can handle

any complex geometry.

3. Re-meshing of each block can be done separately. The changes in

each block is transferred to its neighboring blocks automatically.

*--. The details of the developed proceedings are summarized in the following

sections.

Each block system is defined as a large finite element. These elements can

be linear, quadratic or cubic elements depending on the complexity of the bound-

.. ary surfaces to be represented. They only have to approximately represent the

boundary surface at this point. These are the same type of elements used in

:d " finite element calculations as shown in Fig. 2.2, and in reference [33]. The

boundary surfaces of these blocks are either part of the domain boundaries or

.' " inter-block boundaries. Generation of elements inside a block is based oik the

pre-specified element densities along three principal directions and gradients

along 12 edges.

Calculation of corresponding nodal point coordinates are carried out in a

local block coordinate system, which is a perfect cube with corner nodes at 1,

-1 locations in the (EnC) local coordinate system. By using shape functions,

the computed values are then transformed to the global coordinate system. Nodes

generated on the boundary surfaces are then relocated at the user defined bound-

ary surfaces to match exactly to the boundary surface.

-. .
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Generation of the element connectivity information, on the other hand, also,

becomes an easy task by using the edge description of the elements efficiently.

Connectivity data is calculated each time and only the connectivity of higher-

order elements if present is stored permanently. Although the global connec-

tivity of elements are obtained under the assumption that all blocks are connect-

ed to the others, special situations like the voids in the solution domains

of radial type grids can be handled hv using slit and coupled surface capabil-

ities.

3.2 GRID GENERATION SCHEME

3.2.1 Definition of Blocks

The first step is the definition of natural coordinate system identified

as I, J, K to describe the block structure. Block and element topologies,

including their connectivity, numbering and gradient definitions are based

on this natural coordinate system.

Figures 3.1 and 3.2, give an example of block definition in a physical

problem and its representation in the natural coordinate systen. Each block is

Identified by eight block corner nodes, plus one or two additional nodes for

quadratic or cubic approximations, respectively, along each curved edge of the

block. Selection of these nodes depends on the smoothness of the surface which

will be represented by four edges. For highly curved or irregular surfaces,

either a cubic edge representation should be used or the block numbers on the

surface should be increased to provide relatively smooth block surfaces. No

intermediate edge nodes are required for flat planes and most of the time for

the inter-block surfaces.

" One important point in defining the higher-order block structure is the

determination of the proper locations of the intermediate edge nodes. In the

isoparametric transformation, quadratic or cubic serendipity shape functions

are used to approximate curved boundaries. In accordance with the definition

of shape functions, the additional nodes for each edge should be located at

one-half or one-third length of the actual curved edge for parabolic and cubic

edges respectively. If the proper points are not selected, the shape of the

curve may not be close to the actual shape of the boundary while the points

chosen to define the curve lie on the boundary. Even though the boundary nodes

can be relocated to the actual surface, too much deviation between the two

curves might result in distorted elements. Also, the distribution of the nodes

generated inside the block is effected in such cases.

._ .: , .- -.- - 2% • -
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-4.

4,/ 5,2 693

15 8 6,5,4

12 13 3,2,1 -

Fig. 3.1 A block structure definition in the
physical domain

.......................
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K

a, Fig. 3.2 The representation of the block structure in the
natural coordinate system
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In the mesh generation scheme, the three-dimensional domain to be

modeled is divided into blocks by specifying the boundary surfaces, element

densities and gradients together with any existing coupled surfaces and

voids. The blocks are then numbered in I, J, K natural coordinate directions,

starting with one and giving the increments along the I direction first and

J and K sequentially. Such a numbering scheme provides the use of following

q formula which gives the global block number in terms of block natural coor-

dinates IB, JB and KB and vice versa.

NBLOCK = IB + (JB-I)TNBI + (KB-I)TNBIJ (3.2.1)

where NBLOCK is the block number to be evaluated. TNBI and TNBJ are the

total number of blocks in I and J directions respectively and TNBIJ is the

total number of blocks in IJ plane (TNBI*TNBJ).

A block may be defined by a total number of nodes varying between 8

g and 32 where 32 represents a case with all cubic edges. Although the global

block node numbers can be assigned in any convenient way starting with 1,

their connectivity must be associated with the local block node numbering

used in the definition of shape functions. Local element node numbering which

corresponds to the definition of the shape functions is shown in Fig. 3.3 with

respect to local element coordinate system I', J', K', obtained by translating

the natural coordinate system to the local node 1 of the element. The same

figure also shows local surface numbering which is used to specify slit, coupling

and boundary surfaces which will be mentioned later in this chapter.

3.2.2 Generation of Elements and Nodal Coordinates

The distribution of elements inside each block is defined by two para-

meters. One of them is the element density which determines the number of

elements in three principal directions and the other one is the element gradients

which are specified for each edge of the block. These gradients are defined

as the ratio of the first element length to that of the last element in the

direction of natural coordinates.

4.
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Fig. 3.3 Local node and surface numbers for a block
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Each block is represented by a parent element which is a cube having the

edge lengths of two units. A local coordinate system , is considered

Uat the center point of the parent element as shown in Fig. 3.4.

((.331,A

.m

I-

Fig. 3.4 Parent element

The main advantage of a mesh generation of mapping is utilized at this

-* point. First, parent element coordinates for the corner nodes of each element

-. in the block are generated by using element density D and gradient G. Division

of elements started with the division of edges by assuming a geometric pro-

,d gression along the edge as shown in Fig. 3.5.

-J.

".

* .
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2 N -1 -I N

..

SN
"..,

Fig. 3.5 Definition of Geometric progression

Geometric progression is defined by the following series;

S = a + ar + ar 2 =... ar (3.2.2)

where a is a constant which specifies the length of the first interval, r is

another constant which gives the rate of progression, and n can be interpreted

as number of nodal points along an edge which is equal to element density plus

one.

Definition of gradient gives the following relationship,

. G = n n-l (3.2.3)

a

For the geometric series, the partial sum of the terms is given as;

s ., a(l-rn)
n l-r

Then, one can calculate the gradient as

= a(l-r n)-a(l-r n)G = (l-r)a

* After some manipulations, one can write

r = exp[lnC/n-lI

- exp[lnG/b] (3.2.4)

, ': & .r%
€ '

7._,.] - , .*.,, ,.,.*-.*--.. .* ..- . . ..--.-. - -. . . . ....



.1 27

-.. If the length of the edge is taken as 1, knowing r, a can be evaluated as

follows:

S'7 a l-rn)
"'n 1-r

b. ... l-r l-r
n), a (E+l) (3.2.5)

(lurp) l-r

In the parent element, an edge in natural coordinate directions is represented

by the one-dimensional parent line having a length of two from -1 to 1. If

the divisions on a unit length is transformed into the edge; one can, then write,

- 1 + 2S n=] ..... (3.2.6)

Element and nodal point coordinate generation inside each of the blocks is ob-

tained by using the divisions along the edges and interpolating linearly among

them.

In the case of higher-order elements, the generation of intermediate edge

node coordinates are based on the element corner node coordinates. This can be

accomplished simply by evaluating the one-third or one-half locations, for cubic

and parabolic edges respectively, along the edge. This simple interpolation

which assumes a straight line edge between the corner nodes is applied in the

4 'global coordinates after the isoparametric transformation of corner node coor-

dinates is done.

'.4* (,, coordinates of corner nodes generated in the parent block are then

~'transformed by using the serendipity shape functions with the nodal coordinates

defining the block. This is the same transformation used in finite element cal-

- culations in Eq. (2.1.10).

3.2.3 Generation of Node Numbers and Element Connectivity

:2 In a finite element analysis, the preparation of element data, particularly

".. element connectivity and its storage in the computer is an important task,

especially, for analysing complete three-dimensional problems. In the present

study node numbers are generated automatically and the connectivities of the

nodes for each element determined, without storing them permanently.

In order to be able to determine the element number in terms of natural

element coordinates and the node numbers in terms of element number, a sequentiaal

numbering of elements and nodes in I, J, and K natural coordinates are employed.

The element numbering is the same as that of blocks. The element number one is

I
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assigned to the one located at the origin of I, J, and K natural coordinate

system and numbering continues with the increment of one along the elements,

in I direction. After the last element in I direction is numbered, element

numbering in J direction and finally K direction is incre.ientally performed.

This numbering system implies that the elements in the natural IJ plane

represents the wavefront.

The same formula as (3.2.1) applies for th2 determination of the element

number in terms of natural coordinates IEL, JEL, KEL

NEL = IEL + (JEL -I)TNELI + (KEL -I)TNELIJ (3.2.7)

where NEL is the element number, TNELI, total number of elements in D direction,

TNELIJ is the total number of elements in IJ plane.

Numbering of the element corner nodes is also based on the same approach.

Node numbers are generated for the whole grid in I, J, K natural coordinate

directions. The first node is the one at the origin and then the numbers with

increment one are assigned to the nodes along the positive direction of natural

coordinate axis I, sequentially. After the last node, assignment of node numbers

moves to the second, third etc. rows along the positive J direction until the

nodes on the first IJ plane are numbered. Afterwards the same process is applied

to the second and third IJ planes along the positive K direction. An example of

this scheme is given in Fig. 3.6. In this case total 4 blocks 2 in K direction

are connected simply and their element density in J direction is 2.

The above numbering scheme leads to the use of following formulas for the

evaluation of the corner nodes of an element located at IEL, JEL and KEL natural

coordinates;

NI = IEL (JEL-I)TNODI + (KEL-l)TNODIJ (3.2.8)

N2 = NI+l

N3 = N2+TNODI

N4 = NI+TNODI

N5 = Nl+TNODIJ

N6 = N2+TNODIJ

N7 = N3+TNODIJ

N8 = N4+TNODIJ

where NI through N8 are the global element corner node numbers associated with

the local node numbers 1 to 8 of the element shown in Fig. 3.3

-' -' '-. *. " ' . . - .. - - " - - .- •.-- -. .
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TNODI, TNODJ are the total number of nodes in I and J natural coordinate

directions of the nodel respectively. TNODIJ is multiplication of these two

numbers which gives the number of nodes in the IJ natural plane.

The proper use of equations (3.2.7) and (3.2.8) provides the element corner

A connectivity in terms of global element number, NEI. It should he noted that

equation (3.2.7) can be solved to determine IEL, JEL, and KE1. values automatically

if NEL is given.

For the case of higher-order elements, the element coniectivity is again

generated automatically by the program but this time stored in an array for

each of the higher-order elements. Global element numbers are specified for

each of the higher-order elements as input data. Then, the program starts pro-

cessing this data by generating the intermediate edge node numbers for all

specified quadratic and cubic elements. The maximum node number computed bv

assuming all elements to be linear is incremented and the element connectivity

array is generated in accordance with the same configuration of nodes a in

the definition of shape functions for the parent element Fig. 3.3.

Such an element specified as higher-order is connected to, at most, 6

other elements by face and 12 others by edge as shown in Fig. 3.7 and Fig. 3.8

respectively.

Since an edge which is common for 4 elements is to have the same con-

nectivity for all these elements, when a higher-order element is specified, the

connectivity arrays of the connected elements must be updated accordingly.

This is also done automatically. First edge and then face connected element

numbers are evaluated by exploiting the global element numbering scheme. Then,

for these elements, their conncctivity arrays are updated, considering the

relative pesitions of the edges in each element. If an element which is already

updated because of neighboring higher-order elements, it is processed later as

a higher-order element. The new numbers are generated only for the edges which

are not already updated to be of higher-order.

It should be noted that intermediate node numbers are not transparent to

the user. They are controlled bv the sequence of higher-order element specifi-

cation list given in input data. Element number is sufficient in order to ob-

tain the full element connectivity. Therefore, user has to be concerned with the

element numbers and the order of the elements onlv.



31

Fig. 3.7 Face connected elements

Ll
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Fig. 3.8 Edge connected elements
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3.3 SLIT AND COUPLED SURFACES

As it is stated earlier in this chapter In the generation of global

element connectivities, it is assumed that the blocks are connected to each

" other and node numbers are considered to be the same for the nodes on the

coimmon faces of the blocks. The Fig. 3.9 illustrates the slit and couples

surface conditons for modeling an aircraft wing in two-dimensions. Th sae

concept can be extended to three-dimnsions easily.

As it is seen in Fig. 3.9, the elements on the block surfaces which lie

on the wing surface should not have the same surface connectivity as the elements

- - on the opposite side of the wing. In this case, a wing can be placed between

the blocks by simply disconnecting the neighboring blocks and assigning inde-

• .pendent node numbers on the adjacent surfaces. In this manner, a slit can be

."placed between any neighboring blocks. These slits can also be used to impose

Kutta-condition bv allowing a potential jump between the neighboring surfaces.

In this case the nodes on both sides of the slit occupy the same point in space.

To distinguish two surfaces on each side of a slit, they are defined as master

and slave surfaces. A master slit surface is defined by means of a block and

natural surface number. Different corner node numbers are then assigned to the

nodes on the slave surface. These additional nodes on the slave surfaces are

numbered by incrementing the current highest node number. In the program, the

four edges of the slit surfaces of corresponding blocks are also checked to

determine if they have common edges. In this case, no additional generation is

.Idone. As it is seen in Fig. 3.9a, the edges in I direction, represented by nodal

points 1, 13, are in common, thus, the elements sharing this edge has the same

connectivity on this edge. It is also obvious that element numbers are not

,. altered by existence of the slit surfaces.

If an element on one of the slit surfaces is defined to be of higher-order,

after generation of regular new element nodes, existence of the slit is taken

into consideration during the updating process. The edges on the slip surface,

which are not common with the other surface, does not update the corresponding

edges of face or edge connected elements.

The coupling of the surfaces is alm, st the reverse of the slit process. In

this case, two different block surfaces which are not connected to each other in

the nature of block definition, are connected and the same connectivity of the

edges assigned. The Fig. 3.9 also shows the application of coupling. The gen-

e.eration of C type grids, as shown in this figure, or 0 type grids require a

radial type of nodal layout. As in the case of slit surface definition, coupled

k1.............. . . .
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6 9 12 15 18

13 16

2 194. 7 /0

5 8 II /4 /7 20

Fig. 3.9a Slit and coupled surfaces in the physical domain

I

2 __3 6 9 12 15 18

_, 4 7 I0 _ 1/9
' 4- 7 /01

Couplet
Surfaces 21/

.. 5 / I/ # I7 20

Slit Surfaces

Fig. 3.9b Slit and coupled surfaces in the natural
coordinate system
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surfaces are defined by the global block number and the natural surface number

and also by specifying one of the blocks as a master and the other as a slave.

During the evaluation of the linear connectivity of elements by using

." equations (3.2.8), every element is first checked, to determine whether it is

in a block which has a slave coupled surface. If this is the case, then, it is

further checked to find if it has a surface lying on the slave surface. When

these conditions are met, instead of employing the equations (3.2.8) throughout

" • - the element, four nodes on the slave surface are assigned with the corresponding

master element corner nodes.

When it comes to higher-order elements, coupling is the last process.

iAfter the higher-order connectivity and coordinate generation and updating by

assuming regular connectivity of blocks, the node numbers are modified for coup-

ling. The intermediate element edge nodes on the slave surface are assigned to

?the corresponding master edge nodes regardless of having any node number gener-

ated or updated before. Assignment sweeps all the ei-ments on the slave surface

'. and checks if the corresponding master element is of higher-order.

Although the concept behind the handling of slit and coupled surfaces is

* quite simple, it takes considerable computational effort.

3.4 BOUNDARY SURFACES

*3.4.1 Introduction

! The basic idea of the three-dimensional grid generation, as stated earlier,

* .is the use of interconnected blocks which cover the overall physical domain. In

this case; domain boundary surfaces specify the boundary surfaces of these blocks

. ifacing the domain boundaries. They can be defined as input by the coordinates of

the corner points of the area to be described and one or two points along each

curved edges of a surface. As it is also stated before, one of the difficulties

* encountered in this type of input is the selection of proper points to define

these curved edges. If the points are not properly chosen, the shape of the sur-
face produced may not be a good approximation to the actual shape of the boundary.

r .The points chosen to define the surface will lie on the boundary surface. However,

''" " .the element nodes on the same boundary surface of the block which are generated

by using shape functions corresponding to the points defining the boundary, may

provide a poor representation of the actual boundary.

The smoothness of the boundary surfaces may be lost without the knowledge

o .of the user. In general, the accuracy in the solution of physical problems,

especially problems whose solutions are determined by elliptic partial differ-
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ential equations to a great extend, depend on the application of boundary con-

citions, which requires a description of actual physical boundaries. In numerical

analysis, this is accomplished by having all the grid points representing physical

*" boundaries to be on the actual physical surface.

In this study, the approach to this particular problem in the relocation of

the boundary surface grid points generated by isoparametric transformation, to

the actual physical surface which is to be defined separately. As it is explained

in Fig. 3.10, the relocation process is basically determination of an intersection

point on the boundary surface defined with a line which is normal to the isopara-

metric surface at the nodal point to be relocated.

A,
/A

%L

s.

*! Fig. 3.10 Isoparametric surface definition for a block

,41
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'

:v *4 In this figure, Q' is the surface generated by isoparametric transformation

based on the block input nodes denoted by B. The element corner nodes gen-

erated inside the block, denoted by A', could be considerable off from the

actual surface, Q. If a line, L which passes through the point A' and normal

-. to the surface Q' at this point is determined and its intersection with the

•4. actual surface, A is evaluated, the point A can be taken as the best approxi-

- mation satisfying the actual boundary condition and the element gradient speci-

fled in the block.

The same relocation process is carried out for intermediate nodes of

higher-order elements. In this case the element surface itself represents the

isoparametric surface and intermediate nodes generated by linear interpolation

are relocated on the physical surface as shown in Fig. 3.11.

!.4

U.°

-E

Fig. 3.11 Isoparametric surface definition for an element

4.4.. . . . . . . . . .. . . .. "- I- -. - - -
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3.4.2 Definition of Boundary Surfaces

The bounidary surface definition related to the relocation process is an

option in the grid generation program and is handled as a separate unit. Except

for some built-in surface definitions, any particular surface should be defined

in a local coordinate system in a way that y-coordinate of a point on the surface

is a function of x-z coordinates. Then, a function sub-program can easily be

associated with the main program.

In addition to the function, the program also assumes specific data which

is required for definition of a surface and transformation between global and

local coordinate system. For each type of surface, certain parameters are speci-

fied. For example a cylinder is defined by Its radius and its length. The local

coordinate system is defined relative to the global coordinate system, in a gen-

eral manner, by means of three points. As shown in Fig. 3.12, the point A is the

origin of the local system, the point B is an arbitrary point on the positive

local. Z axis and the point C is another arbitrary point on local XZ plane. The

local unit vectors can then be obtained with respect to the global system as

follows:

k, AB/IABI

'l= AB x AC/jAB x AC ...... (3.4.1)

,= e x e
-l- -y -y

The unit vectors are then expressed in the following way, li, m i, n being

direction cosines:

1"- = 111 + mlj- 4 nl
k

j.i 1 2_ + m4j + n2 k ...... (3.4.2)
k - . j2 "

;"k -. 3i + m 3j- + n k

The transformnation of coordinates from global to local or vice versa is

initiated by a translation of origins to the same point. In the case of trans-

formation from global to local, vector PT shown in Fig. 3.13 can be written as
-- T

P = P -A =xi + yj + zk (3.4.3)

-T"..

, .o... .
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z Fig. 3.12 Definition of local coordinate system for

a boundary surface

L~ Z L

xL

Fig. 3.13 Coordinate and vector transformation betweenz local and global coordinate systems
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It should be noted that P is still expressed in terms of global unit

vectors and transformation is not complete until the translated global axis is

rotated to obtain the local system. This can be obtained by a projection in

the cartesian coordinate system where;
if P--T = Xl1 + Y,! + zlk

Then; x1  yl1 + ym1 + zn1  (3.4.4a)

y xl 2 + ym 2 + zfl 2

zI  xl3 + ym3 + zn3

or in matrix form,

I m] i n x

y m n (3.4.4b)
-i 2 22

1zj3 M 3 n 3  z'

In the case of vector transformation, the translation step can be skipped, since

the magnitude is normalized later.

The back transformation is obtained from the above relationship, this

time by solving for x,y,z. Orthagonality of the transformation suggests that

the inverse of the transformation matrix is merely its transpose.

x I 1 1X
:1 23

= iml m2 m Yl (3.4.5)I. n2 n3
Lzi n lJ

It should be noted also, that,

P =P, + A

In the present study, the difinittion of surfaces can he collected under two

*"". different types:

1. Geometric surfaces

2. Composite surfaces

,-
44-

%
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Geometric surfaces are the ones which have a functional relationship valid all

over the surface, like cylinders,spheres, ellipsoids of different diameters or

5 some functional surfaces like a wing with a NACA 0012 profile. In addition to

the local axis definition, the functions are specified in terms of x,y,z coor-

dinates and some additional parameters.

On the other hand, composite surfaces are generally approximations of more

* complex surfaces. These are defined by interpolating polynbmials between known

- ,surface points or surface sections. In this study, a composite surface defin-

- ition for a wing surface which is defined at root and tip sections by discrete

data points is presented. The basic approach to the problem is to fit a curve

to the discrete data at sections and to interpolate linearly in between as shown
-in Fig. 3.14

'b

w.

-.

-'p

ii Fig. 3.14 Definition of a wing by usingdicee at

* ~~~~~~ ~ ~ dsrt data~ *-.. .*-..
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In choosing the proper interpolating functions, the following basic re-

quirements are to be considered:

a) the interpolating function itself and at least its first

derivative has to be continuous at data points with no

oscillatary tendencies; so that a smooth surface could

be obtained,

b) the function has to be single valued which also brings up

the necessity that upper and lower surfaces of the wing

should be handled separately.

Since, considerable large data points are present, the Lagrangian inter-

polating polynomial of degree n passing through those (n+l) points is most likely

to have undesirable oscillations. A composite corve, b% fit in , successive low-

degree polynomials to successive groups of data points seems to avoid this pro-

blem but discontinuities of slopes at the functions become unacceptable.

The further possibility is to employ Hermitian interpolation functions,

* which interpolates on each interval [i X_+l] by using higher-order poly.nomials

while satisfying the continuity of the derivatives. A real valued function, f(x),

which is defined by functional values and its derivatives at discrete points

XlX 2 .... x n, in an interval [a,bi, such that a = x I < x2..< Xn = b, is inter-

polated by the piecewise-cubic polynomial function P.(x) as follows:

Pi(x) = C1 , t + C 2 ,1(x-x i) + C 3,i(x-x.) 2

+ C4 , (x-x ) 3 , (i=l......n) (3.4.6)

The coefficients of this polynomial are given, according to the Newtonian

form of the interpolating polynomials 131] as follows:

C =f f(x.)

C.1 = f = f(x.)
Vi I

C4, = f[xixi,xi ,xi41

:,-: ~~ ~ - ?:..:.:.+: .. .+1 .,% I:. . ... ., - ...
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In terms of simple differencing, one can write,

f[_ _x -f. C AX3,'1x Vi 4 ix

fil + f1 - 2f[xi'x

* C 4 ,- -( A - 2 - .. .. .( 3 .4 .8 )

(Ax
1)

where:

* Ax. =x1  x"" .j,1 i+l Xi

* f(xi) - f(x.)
ix+1

'i+l] = (xi+1 - x.)l

But, in practice, it is often difficult to find the needed numbers of f'(x.).
I

This condition suggests that a reasonable approximation to f'(x) is necessary

in the computation.

Piecewise cubic Bessel interpolation was chosen for this purpose to model

U airfoil problems. This function showed good agreement between the discretized

data and interpolated results for tested wing profiles. In this case, the

derivatives are approximated as shown below:

,- * Axil f i ixi+1 + Axif[xi 1 ,Xi(]i Ax. + Ax.

It should be noted that the above formulation requires the derivative values

at the end points a and b also to be given as input data.

3.5 Relocation of the Boundary Nodes

Relocation of the boundary nodes is basically the result of the following

two operations:

a) determination of the vector which is normal to

the surface at the nodal point,

b) evaluation of the intersection point between normal

vector and defined physical surface.

",.*.. .. .- . . . . -... - .-.
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Ine unit normal vector for a 2urf;ire is obtained as a result of c'mss-

multiplication of two vectors, wli. iCire t, 'Mgent to the surfate at t he nodil

point coordinates. These tangent vf, ,r denote the gradients of the posi tion-ardnaes Thordisa, dieo i As

vector of the nodal point alone twx'o proper local coordinte directions. As it

" - is seen in the Fig. 3. 15, evll it in of local coordinate direct ions is ha nd ,n

the definition of the local sv t :i. 1 the numbering the local surfaces accord-

ingly.

YN

F i. 3. 1 De P i i t i, c i l
i TI 11 1 1 ( 1

• -- -
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3.5.1 Evaluation of Surface Normal

In the above figures, the position vector to any point P on the surface

* of an element or block is given by:

R(xy,z) = R i + R + R k (3.5.1)." X-- Z--

For the specific point in the figure, the tangent vectors are obtained by

taking directional derivatives of the position vector R along (nCC) directions.

The program assumes the local number of the boundary surface to be given, so

that local direction pairs along which the derivatives are calculated can be

determined.

DR DR DR DR
e - ---- ij+9 -k

e = etc. (3.5.2)

U, an

the normal then is:

£jl x e 2N A. (3.5.3)
* - Fe7x 2 1

In order to evaluate the derivatives, the position vector components have

to be expressed in terms of local coordinates which can be achieved by again

using the serendipity type shape functions. The transformation between local

and global point coordinates by using element nodal point coordinates is given

as follows:

n
R = ( TN 9C )x

* * n
R = N(p,np,)y i  (3.5.4)
y 1

n
R z IN i (& p p p )z

where n is the total number of nodal points in the element;

N = Nodal shape functions evaluated at the local

coordinates p, np, p of the point P.

p p
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As a result, surface tangent vectors are expressed in terms of shape

function derivatives and global nodal point coordinates as follows:

n N )N 3N.!. -£1 = { ,Uyxi)i + ( 7-'4i +(: - )k}
1= . 1i 1

e. = etc. (3.5.5)

3.5.2 Determination of the Point on the Physical BoundarA Surface

The last step in the relocation process is the evaluation of the inter-

section point of the normal to the isoparanetric surface and the defined bound-

ary surface. The following Fig. 3.16 shows the process for a typical case.

yPTR
N T"- P T

L y :f (X .81

Fig. 3. 16 The relocaItion process
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Points P are the generated nodal points inside the block which do not

lie necessarily on the physical surface, N is the normal vector transformed
_-:T

*into locally defined boundary surface coordinate system and y is the boundary

surface defined with a functional relationship. Since boundary surfaces are

defined locally, associated with a transformation matrix, the point P and the

vector N can be transformed into PT and NT in local coordinates quite early.

97i P is the relocated point in the local coordinate system.
TR

Evaluation of the intersection point is an iterative process and can be

;h; viewed as a three-dimensional application of the method of successive approxi-

mations except the convergence is carried out along the normal vector.

Geometric representation of the process in two-dimensions as shown in

Fig. 3.17, where,

* N

Y: f X.2j

z 0

Fig. 3.17 The method of successive approximations

i '

. .... ... .. ... P
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N= 1 +m +n k_ m k

The iterative procedure i,, summarized in equation (3.5.6)

P = x i + y1 + z k (n=l,i)
-n it- i-- 1t-

Step 1 Yn+I = Y(Xn'Zn)

Step 2 Xn = (Yn+1 - yo)/m (3.5.6)

Step 3 P--n 0 +X N = + +z k-n+ - rr-- Yn+l n+l -  Zn+lk

Go back to step 1.

%The above iterative procedure continues until desired ,,nvergence which is
'S'S the percent change in X is obtained. Unless the angle between the normal vector

and surface tangents becomes too small, the convergence is guaranteed that Pn

will get closer and closer to the solution PTR"

-.4

'P 0 P

Y:Y

41.

I ~z

. Fig. 3.18 1l-conditioned successive approximations

45
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-" Som. times a point on the surface can not be determined by this scheme,

this ill-conditioned situation shown above, in Fig. 3.18, can be improved by

5 introducing a relaxation factor w on X

, w(yn 1 - Y)/m (3.5.7)

If the new point P n+ is out of range of surface, the relaxation factor which is

initially one, is divided by two. This division is repeated until yn+l can be

defined on the surface, eventually, a point P can be computed for which this
ill-conditioned situation does not occur.

The relocation process applied to the NACA0012 airfoil profile is shown in
Fig. 3.19 and 3.20a,b. The first figure shows the cubic control points on the
curved edge along the streamwise direction of the airfoil. THe generated surface

* by isoparametric transformation is shown in Fig. 3.20a. It is obvious that the

smaller curvature at the leading edge compared to the rest of the surface is lost

due to lack of information around this region. After the relaxation is applied

all over the surface, the improvement of the leading edge points are clearly ob-

served in Fig. 3.20b.

.. : .,:S I

Fig. 3.19 Definition of the cubic block edge for
NACA0012 airfoil profile

41



Fig. 3.20a Grid distribution using isoparametric mapping
* over NACA0012 airfoil

Fig. 3.20b Modified grid distribution after relocation of
J. surface nodal points over NACA0012 airfoil
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p
IV. DESIGN OF A FINITE ELEMENT GRID

4.1 DESCRIPTION OF THE TEST PROBLEM

To study the applicability of the developed numerical scheme, the

transonic flow around a wing-bo( ombination was analyzed. This particular

wing was designed at Lockheed-Georg-ia wind-tunnel by Hinson and Burges [321.

With an aspect ratio of 3.8, it was originally designed for transonic cruise

and tested in the presence of a body in a high Reynolds number wind-tunnel.

The geometry of the wing is defined at the root and tip sections by discrete

-" data points. Table 4.1 gives the general wing characteristics. The measure-

ments are non-dimensionalized by the cord length at the root as shown in

gTable 4.2. The wing coordinates at other spanwise stations are then evaluated

by linear interpolation between the root and the tip sections.

The fuselage used in the test is a simple shape of an elliptical fore-

body and afterbody with a constant section in the wing region. In the present

study, the fuselage was taken as an infinite cylinder with a constant

cross-section.

The overall geometric characteristics of the wing model is summarized in

Fig. 4.1.

4.2 GENERATION OF THE COMPUTATIONAL GRID

In the present study, the computational domain is represented by a

finite element grid generated by the scheme described in the previous chapter.

The physical space consists of an infinite fuselage having a circular

cross-section of constant radius and the wing attached to the fuselage. The

computational space is truncated at finite distances from the wing surface.

It is assumed that the flow is symmetric about the vertical plane containing

the fuselage center line, so that symmetry conditions can be applied and the

flow has to be analyzed only in the half space.

For results presented here, the far-field boundaries are placed

approximately three chord-lengths from the wing surface in the streamwise

and surface normal directions; in the spanwise direction, far-field is
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Table 4.1 Wing characteristics

AR 3.8

Jo.4

A/k deg. 3.

Oro deg. 2.50

Ot, deg. -4.00

(tiC) t 6.0

* % S/, c 2 (n. 530.0 (82.1)

b/2, cm (in.) 31.8 (12.5)

Cr, cm (in.) 23.88 (9.40)

.4.Ct, cm (in.) 9.55 (3.76)

MAC, cm (in.) 17. 71 (6. 974)

"'MAC' cm (in.) 13.60 (5. 355)
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, -4 Table 4.2 Wing geometry

p ROOT SECTION TIP SECTION

X/C ZU/C ZL/C Zu/C ZL/C

.00000 .00000 .00000 OOOO0 .00000.00241 .00617 -.00528 .00507 -.00606.00061 .01181 -.00895 .00972 -.01066.02153 .01649 -.01198 01401 014081 .. .01401 -.01 0

.03806 .01991 -.01511 .01770 -.01691.05904 .02268 -.01839 .02110 -.01951.08427 .02517 -.02111 .02421 -.02161.11349 .02737 -.02333 .02700 -.02325
.14645 .02925 -.02503 .02949 -.02439.18280 .03075 -. 02618 .03168 -. 02492.22221 .03191 -.02691 .03360 -.02498.26430 .03277 -. 02705 .03522 -. 02446
.3o66 .03330 -.026o9 .03654 -.0234.35486 .03346 -.02582 03762 -.02180
.40245 .03325 -.02458 .0387 -.01967
.4509Q .03258 -.02287 .03905 -.01689
.50000 .03155 -.02070 .039533 -.01361
.54901 .03013 -.01768 0
59755 .02842 -.01376 .03922 -.00396
64514 .02639 -.00985 .03799 .00042.69134 .02417 -.00615 .03669 .00474.73570 .02178 -.00316 .03491 .00814

.77779 .01925 -.00109 .03258 .01020
S.81720 .01660 .00003 .03296 .01087" ".02962 .01087
.85355 .01388 .00043 .02608 .01026.88651 .01116 .00043 .02211 .0086791573 .00865 .00032 .01793 .00651.94096 .00644 .00012 .01379 .00417.96194 .00459 -.00021 .00991 .00196.97847 .00308 -.00055 .00674 .000 6.99039 .00196 -.00082 .00445 -.00138.99759 .00130 -.00102 .00305 -.00227

1.00000 .00109 -.00109 .00259 -.00257

..............

.....................



located one span-length from the wing-tip [14,9]. The grid is chosen to be

of C-type which wraps around the wing leading edge and becomes rectangular

grid past the wing trailing edge. The elements generated in this way are

proved to be the most suitable for modelling the sharp gradients of flow

variables and matching the flow conditions.

4.2.1 General Considerations and Block Definitions

In the numerical solution of a particular fluid mechanics problem, the

* accuracy of the solution and the computation time strongly depend on the

*" computational grid employed in the analysis. Therefore, the flexibility

and the limitations of a grid generation scheme is important in obtaining

accurate and efficient solutions.

In general, sub-regions of flow domain where high gradients of flow

parameters are expected, the grid has to be finer than other regions to main-

tain the same level of accuracy. It is also desirable to maintain other

"" properties like the orthcgonality of the grid and streamlining to the flow

direction to reduce artificial viscosity effects.

In the present transonic flow analysis around wing-body combinations, the

wing has a sharp leading edge. Around this region high gradients of velocity

* were measured. In addition, the physical boundary around the leading edge

shows a rapid change in the curvature which requires considerable concentration

of grid points, in order to represent the exact boundaries without losing the

details of the leading edge.

Considering the above physical characteristics of the flow problem and

the limitations of the developed grid generaLion scheme such as:

a) physical surfaces can only be introduced as block surfaces,

not inside the blocks,

b) a surface of a block can represent at most a third-degree

polynomial surface with a smooth curvature change,

c) only a single gradient value can be defined along an edge of

a block,

the computational grid shown in Fig. 4.2a,b,c was designed. The wing and

vortex sheet is placed in between two layers of blocks in surface-normal

direction by exploiting the slit option of the scheme. In the streamline

direction, three layers of blocks are employed by having the first blocks

coupled to each other in the flow direction. With this combination, a

.. ...' . .-.......... ~ .~. . . * .
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S"C-type radial grid can be obtained and high gradients of elements around the

leading edge can be introduced. In the spanwise direction, physical constraints

require 4 block layers to be used. The block layer after the wing performs

the transition between spanwise far-field and the wing tip. Fig. 4.3 shows

"'., -. the proposed block structure in the upper side of the wing and body surface,

"', which is composed of 24 blocks in the whole domain. The block definitions

i in the global and natural coordinate system are shown in Fig. 4.4 and 4.5

respectively.

The entire block structure which is the combined form of block layers

- described above is presented in Fig. 4.6. It should be noted that although

all the block definition points are connected to each other by linear lines,

' "as it will be seen later, the generation of elements inside the blocks is based
on the higher-order interpolation functions along the edges of each block.

4.2.2 The Grid Distribution

The element distribution inside the blocks is determined by the number
, .- of elements along three principal directions and the gradients defined along

the block edges. Although these specifications are separately performed for

each block, grid generation scheme assumes continuation of the same number of

elements inside the blocks which are connected to each other along the princi-

pal directions. Also, it is required that the gradient definition for the

same edge shared by up to four blocks should be the same. Fig. 4.7a,b,c,d

show an arbitrary element distribution inside blocks.
In the present analysis, since the accuracy of the solution on the wing

surface is of major importance, the first layer elements on the surfaces is

kept close to the surface. It should be remembered that for eight noded

bi-linear elements, centroidal values of these elements represent the flow

on the surface. The element distribution around the leading edge is designed

. to be fine along the streamwise direction while over the wing a smooth change

towards a coarser grid is aimed for better accuracy and efficiency. The

farther the elements are from wing-body surfaces, the longer they become, since

•. the flow variables do not vary rapidly at the far-field.

Figures 4.8 to 4.10 show the grid distribution along streamwise and

spanwise directions at typical sections. The grid which is also employed

for the flow analysis has 28 elements in streamwise direction; 18 of them

"p "
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Fig. 4.7a An arbitrary element distribution in the
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Fig. 4.7c An arbitrary elem~ent distribution 
in the

block over the wing
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Fig. 4.7d An arbitrary element distribution in the
block over the body
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located on the wing. There are 15 elements in spanwise direction; 4 of them

on the body and 6 of them on the wing. In the third direction, normal to the

wing upper and lower surfaces, 16 elements are utilized with the wing located

at the middle. The total number of elements adds up to 6720. As it can be seen

- in Fig. 4.10, in each block, element gradients along streamwise direction are

, assumed to be uniform; i.e. each element inside the block has the same length

in the streamwise direction. In the direction normal to the wing surface,

gradients are specified in such a manner that the ratio of the element size

on the surface that of the one at the far-field is 1/25. The peculiar shape

. .of the radiality at the upstream boundary shown in Fig. 4.10 is the result of

the shifted higher-order block edge nodes from correct 1/3 locations as dis-

cussed in section (3.2.1). This shift was made to reduce the distortion of

the elements around the leading edge. The Fig. 4.11 shows the first layer of

elements over the upper surface of the wing and body. Here, the collapsed

block edge and the triangular wedge type elements over the body can also be

seen clearly. Figure 4.12 and 4.13 are examples of element distribution

inside blocks, in particular, blocks around leading edge bottom surface. The

final grid distribution over the wing-body combination, including only the

surface nodes of the elements, is shown in Fig. 4.14.

As it was mentioned before, in order to resolve rapid changes in the flow
-' variables, higher-order elements have been employed at the critical flow

regions. For this particular grid, two cubic element layers were placed over

peach of the wing upper and lower surfaces. Each layer had 15 cubic elements

along the streamwise direction and 6 in the spanwise direction. The total

number of cubic elements in the grid was 360.

S. It should be noted that quite a small amount of input data was required

in order to supply such an element distribution. This is very important in

the design of finite element girds from flexibility and efficiency points

of view.

4.3 GRID STUDIES AND RESULTS

4.3.1 Case I. Basic Grid

The computational grid, designed in the pre ous section, was employed

to analyze the transonic flow around the particular wing-body combination as
.. an initial test case.
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Fig. 4.13 The element distribution a3t the leading
edge block over the body ily
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" ", The flow characteristics for this problem are:

Free stream Mach number, M_ = 0.9

Inlet flow angle, a in = 3.00

-" Outlet flow angle, 6ou 3.00
*1 out

The initial solution was taken to be free-stream flow everywhere in the

domain and a relatively high value of artificial viscosity was introduced. It

was observed that, during the initial iterations, for the elements along

which the Kutta-condition is applied, high velocity values were calculated.

This was due to the sudden introduction of circulation. In order to eliminate

these unattainable velocity values, for the elements above the vortex sheet,

density values were assigned to be equal to the ones below the sheet, replacing

the calculated densities. After the solution started to converge, exact

density calculations were introduced to these elements with a linearly in-

creasing percentage. After a reasonable convergence was obtained following

the above scheme, the artificial voscosity was rE4,,ced. The iterations were

continued until a convergent solution with a minimum amount of artificial

*j viscosity was obtained.

The result of the flow analysis is expressed in terms of the pressure

-coefficient C . (Eq. 4.3.1) which is defined by non-dimensionalizing the
p

- pressure with respect to properties of the free stream.

p - p

, PI =-- (4 .3.1)?., p hq2

SFor a perfect gas, pressure coefficient can be expressed in terms of
free stream Mach number, Moo, and the flow speed ratio; q/q. [25] as follows:

~2
Cp -2 {[l + Y-1 M - ]Y - (4.3.2)

Local flow speed q can be obtained in terms of velocity potential;

2 2 + ,2) (4. 3.3)
y y z

Then, the equation 4.3.2 leads the following final definition of pressure

coefficient in terms of variable :

2 2 2 y/(y-l)
C - {[ + i (1 I.. + V + Z) -1} (4.3.4)

P M 2 2 2

L-1
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The pressure coefficient distributions obtained at the end of iterations

for Case 1 are shown in Fig. 4.15a,b for the root and the tip sections

of the wing and compared with experimental results [32J. The values shown

in these figures are calculated at the centroids of the first row elements

*. on the surface at these sections. The experimental results are the ones

*obtained on the surface and for the same flow conditions but for the

isolated wing case.

When the results obtained from the first grid is compared with the

experimental data. it is obvious that the solution around the leading edge

is considerable smeared out. Furthermore, the Kutta-condition applied at

the trailing edge does not seem to satisfy the equality of velocities at the

upper and bottom edges of the trailin', edge. Of cours,, it _.'ld be

remembered that the centroidal values of the trailing edge t lemcflt5 have to be

somewhat different. In order to improve the solution at these regions, it

is practical to reduce element size so that a finer grid will be obtained and

the centroids of the elements become, 1,)ser to the surface. Beside these

regions, it is observed that the soluition is quite smooth over the flow domain

except for the leading edge and the -, ck region. This suggests that one can

employ a coarser grid over the wing past the leading edge and past the wing

towards the far-field.

4.3.2 Case TI. Modified G;rid

Based on the above considerations, a second grid was designed in order

to be able to show the effect of the distribution of the grid points and

element densities, the total number of elements was kept the same. The new

grid distribution along the spanwise direction while Fig. 4.16 shows the

changes made along the streamwise direction. The block edges responsible for

the leading edge were shortened and element numbers were increased as the

orthogonalitv of the leading edge elements were preserved. The new block

structure satisfying the above requirements is shown in Fig. 4.17. As it can

be seen from this figure, upstream boundary is specified bv two block edges

rather than one, resulting in a better clement distribution at the upstream.

The curved radial edges of the hlocks in surface-normal direction are to

-" improve the orthogonality of tile elements generated around the leading edg:e.

The rest of the structure is quite similar to the previous one. Inside the

. .-. . ..•
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Fig. 4.17 The bloc-k structure for the modified grid



SU 81

blocks, the element gradients were, on the other hand, modified to provide a

finer element distribution towards the leading edge. At the far-field, the

element number was reduced. However, by using different gradients smaller

Kutta elements were placed around the trailing edge. The higher-order element

specification was kept the same, while their sizes were modified.

Figure 4.18 shows the grid distribution over the wing-body and side

boundary. Fig. 19a,b shows the location of higher-order elements for both

grids. The second modified grid was employed for the solution of the same

flow problem. The pressure distributions obtained from the solution are

" -presented in Fig. 4.20a-b at several sections along the wing span.

Both test cases were ran on an IBM 4341 system. Approximate CPU time for

, .a single iteration was around 20 minutes. Considerable amount of this time is

spent in the file manipulations of the constant coefficient matrix. Due to the

limited number of tape drives, this procedure required back-spacing of a tape

which is rather inefficient.

The firsL case converged after 260 iterations and the results were obtained

with the artificial viscosity content of o = 2. The employed convergence

criteria was the maximum normalized change in the calculated Mach numbers of

the elements in the whole domain which was in the order of 10- 4 for the last

iteration.

In the second case convergent solution with artificial viscosity content

ofo = 1.5, was obtained at the 325th iteration.

It should be kept in mind that the experimental results belong to the

wing-alone case in which the pressure coefficient at the leading edge has a

tendency to be higher than that of the wing-body combination case.

4.3.3 Comparison of Results

The inspection of results obtained for two different grids with the same

number of elements, reveals some important aspects of the design of computational

grids. They show that the grid distribution which provides a better alignment

with the changing flow variables also produces a better agreement ,'-th

experimental results. The element densities specified at the regions of

high flow gradients, to a great extent, may become responsible for the accurate

solution in the whole domain in transonic flows.

uResults in fig. 4.20 show that the second grid agrees better with

experiments as far as leading edge singularity and Kutta-condition are

concerned. Figures 4.19a,b show the element distribution around the wing
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Fig. 4 .19a The first grid distribution around wing-root
se±ction and higher-order elements

Fig. 4.19b The modified grid distribution around wing-root
section and higher-order elements

Lj



84

SEXP.1 A MODIFIED GRID

I-,A

N Fig. 4.20a Pressure distribution at the root section

of the modified grid (22k7 of the wing span)
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for each of the grids and the location of higher-order elements. As it can

be seen from figure 4.19a, density of elements around the leading edge and

the reduction in the distortion of these elements seem to be responsible

for the improved solution at the leading edge singularity.

The improved solution at the trailing edge is attributed to the modi-

fications done at this region resulting in smaller elements. Looking at the

almost identical lower surface pressure distributions except at the leading

edge, it is concluded that the lower surface remains subsonic and is not

sensitive to inaccuracies at the leading edge.

Although the modified grid gives better and improved results at the root

section of the wing, it was noticed that the shock at the tip section moved

further downstream. This was due to the increase in the element size at this

region as a result of biasing the same number of elements towards the leading

edge. These results show the necessity of providing sufficient grid refine-

ment for all flow regions around the wing. On the other hand, the in-

efficiency of using equally-spaced grid points is also apparent. The ratio

of spacing between the nodes around the leading edge to the nodes in larger

elements is about 1/80.

The application of the finite element method for generating a block-

structured computational grid provides the necessary flexibility for designing

the type of grids discussed above. For solving a practical three-dimensional

problem, one can start with a basic grid and obtain some preliminary results.

This grid can then be refined for better accuracy. The comparison of results

from the basic and modified grids vill indicate the accuracy of the obtained
solution even without the aid of experimental results. In the developed

finite element scheme, one can concentrate on a particular block of the

basic grid and modify it with a minimum effort without chancing the remaining

portions of the computational grid.

Although the present application demonstrates a user oriented adaptive

grid generation, a mathematically described automative grid generation

scheme can easily be implemented to the present grid generation scheme.

.. . . .
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4.4 CONCLUDING REMARKS

The main objective of the study was to evaluate the concept of an "optimum

grid" for analyzing three-dimensional transonic flows. For this purpose, we

studied the importance of computational grids in terms of both the accuracy

and efficiency of a computational procedure. For the sample problem we have

chosen, it was necessary to use over 105 grid points to analyze an isolated

wing with existing finite difference wing codes. On the other hand, if a

certain flow region is not modeled accurately, the errors can corrupt the

entire solution in transonic flows. The use of "artificial viscosity"

requires extreme care in the analysis of transonic flows and is closely

related to the computational grid. Based on these requirements, we concluded

that a computational grid generation scheme needs to be very flexible in

dealing with such problems. The following considerations summarize our

development in this area:

a) The grid generation scheme presented in this paper is based on

a block structure and on automatic mesh generation for each block.

This allows the flexibility in designing different types of grids

for different flow regions. One has to consider the design of

3the grid for a single block at a time. The grid points between

the blocks are matched automatically. It is also flexible in a

sense that if the grid for a certain flow region has to be refined,

again only that particular block is modified at that time.

b) The design of efficient and accurate grid requires an understanding

of the flow field to be analyzed. Only then, one can design a grid

close to an "optimum grid." One has to design an adaptive process

for this purpose. In the case, where no prior knowledge of the

flow field exists, one can start with a basic grid, obtain

some numerical results and then adapt the grid to suit the flow

field. Leading edge, trailing edge, shock, etc., are all critical

areas where one has to experiment for designing an optimum grid.

In the present procedure, one can choose a particular critical

flow region, and convert a group of elements from linear to cubic

in that particular region. In the present study, this was

illustrated for the leading edge problem. Consequently, the

number of grid points in that particular area is increased

I1%
[ ".  . -.- - - .--- .-,- .. - - ----,- ,
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considerably. Similarly, one can increase the number of elements

in each block or change the distribution of grid spacing in one

block. All these operations require minimal input. With these

capabilities, one can work with grids where the number of grid

points does not reach 106 for three-dimensional flow problems.

c) Finite element method brings considerable freedom in modeling

complex geometries. Relocation of boundary nodes on a surface

improves the accuracy of boundary conditions. As mentioned

above, the use of different order finite elements in the same grid

enables better modeling of curved surfaces.

d) One can develop a separate mesh generation procedure for each of the

blocks. One then can have, for example, a leading edge block

or a shock block for which a optimum mesh generation procedure

is developed previously.

e) In the present procedure, the blocks are still assembled together

at the end as a single computational grid and analyzed as a single

block of grid points. This requires matching of grid points at

block interfaces, which is automatically performed with the

present scheme. Further development of this present concept

would be to remove this restriction where each block can be

meshed independently. This will provide further flexibility

in designing optimum grids for each of the local flow regions,

without globally increasing the number of node points.

- . - V - .-- - .% - 3,'- .,' *---"V.
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APPENDIX-A

GAUSSIAN INTEGRATION

Gaussian integration scheme can be employed to determine exact

integration of polynomials over regular shapes e.g. rectangular blocks,

etc. This scheme has become an important part of the finite element

technique and is commonly used. The integration is performed by using

a formula which is expressed in terms of summation of values of the

integrand at certain 'Gauss' points, Pi. multiplied by corresponding

weights, W i.

As it is pointed out in section 2.3.3, the degree of accuracy in

the integration formula is very important in terms of the accuracy of

the results and the computer time spent on the numerical integration.

In the present study, although, maximum three points integration for-

mula is employed, the following table A.1 supplies the integration

points up to ten points and the corresponding weights.

j_ w - V -. . , . . . - ...
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Table A.1 Integration points and weights for theI Causs-Legendre quadrature formula
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