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. 6.6b,c  Rudder and canard responses (®c=90°, t=0; 8C=5°, t=1.8)
6.7a,b Aileron and rudder rates (¢c=90°, t=0; 8c=5°, t=1.8)
‘6.7c Canard rate (¢c=90°, t=0; Bc=5°, t=1.8)
6.8a Roll response, 3x3 (¢c=90°, t=0; t=1.8, sinusoidw = 12.5 rps,
‘ amplitude 15°)
6.8b,c Sideslip and lateral acceleration, 3x3 ($c=90°, t=0;
E t=1.8, sinusoidw= 12.5 rps, amplitude 15°)
5 6.9a,b Aileron ané rudder responses, 3x3 (¢c=90°, t=0; t=1.8,
sinuseidw = 12.5 rps, amplitude 15°)
t 6.9¢c Canard response 3x3 (¢c=90°, t=0; t=1.8, sinusoid w = 12.5 rps,
E amplitude 15°)
6.10a,b Aileron and rudder rates, 3x3 (¢c=90°, t=0; t=1.8, sinusoid
w = 12.5 rps, amplitude 15°)
6.10c¢ Canard rate, 3x3 (¢c=90°, t=0; t=1.8, sinusoid w = 12.5 rps,
amplitude 15°)
6.1lla Roll response 3x3 (¢c=90°, t=0, t=1.8, sinusoid w = 12.5 rps,
amplitude 15°)
6.11b,c Sideslip and lateral acceleration responses (¢c=90°. t=0;
t=1.8, sinusoid w = 4 rps, amplitude 15°)
; 6.12a,b Aileron and rudder responses 3x3 ($c=90°, t=0, t=1.8,
: sinusoid w = 4 rps, amplitude 15°)
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6.12c

6.13a

6.13b,c

6.14a-1i

(a)
(b)
(c)
(d)
(e)
(£f)
(9)
(h)
(1)

6.15a-1

(a)
(b)
(c)
(d)
(e)
(£)
(g)
(h)
(1)

Canard response 3x3 (¢c=90°, t=0, t=1.8, sinusoid
4 = 3 rps, amplitude 15°)

Aileron rate 3x3(s =90°, t=0, t=1.8, sinusoid w = 4 rvs,

Rudder and canard rates 3x3 (¢c=90°, t=0, t=1.8, sinusoid
» =4 rps, amplitude 15°)

Responses due to sideslip command Sc: 2.3° step at t=0,

sinusoid at t=1.0, amplitude 1.5°, frequency 12.3 rps.

roll
sideslip
acceleration
ailerons
rudder
canards
aileron rate
rudder rate
canard rate

Responses due to sideslip command BC; 2.5° step at t=0,
sinusoid at t=1.0, amplitude 1.5°, frequency 4 rps.

roll
sideslip
acceleration
ailerons
rudder
canards
aileron rate
rudder rate
canard rate
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Y
5Q A SYNTHESIS TECHNIQUE FOR UNCERTAIN MUITIPLE INPIT-0OUTPUT
<
° FEEDBACK SYSTEMS
3
N
3
- 1.1 Introduction.

The flight control problem is basically a multiple input-output

}L (mio) feedback problem with an acertain plant. In this report, the
;; lateral and longitudinal systems are treated separatelv. The lateral
~ system is taken as three by three with rudder, ailerons and canard as

the plant control input variables. The output variables vary with the

. il
2. .

v

[ R TP

mode, for example sideslip (3) , roll (¢) and side force (Ay) in one

D)
O Y
A a

case. The longitudinal system has elevator and flap as the plant inputs

s

;: and the outputs are usually normal acceleration (An) and pitch (2)

E: In this work the linearized plant equations are used, so different

.:; flight conditions give different coefficients in the linear equations,

»f: thereby giving a set of plants P = {P} . -The fact that P {is only

%z known to be a member of a set P (but it is not known which member),

’iz constitutes uncertainty. Of course much of this uncertainty could be

\A ) removed by "scheduling", but in any realistic control system, there

;% always remains some uncertainty. Nevertheless one is interested in a

'ii feedback design which does not use scheduling, even if only as an

ﬁ: option. Also, it is desirable to know the trade-off between the

ii extent of scheduling and the resulting economy achieved in other system

i: factors. Hence, it is important to have a synthesis technique for
uncertain mio systems, which is flexible enough to include scheduling

:2 of any desired extent.

8 8 & & @
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The difficulty inherent in developing a synthesis theory for
uncertain mio systems, can be appreciated by considering the 3 x 3
output-feedback structure in Fig. 1.1, with 3 x 3 matrices:

P = [pijj of plant; G = [gij] , F= [fij] of compensation iunctions.
We even let G = [gi] be diagonal and consider only the transfer

function Tll relating output (1) to input (1):

Typ =@y f15 81 * Pyp £39 85 + P13 £3; 8901+ py5 8)) (1 + pys8,)
- Py3 Pyp 8 83) - (pyy £y 8) +pyy £y 8 + Ppy £y 89)
+ [Py 81 + P 33 89) - Py Prg 8y 83] +

(P31 81181 * Pypfp18y + Py3f3183)[Py4P 58,85 - Py385(14P)58,) ]

(L +py; 8)[(1+py8)) (1 + py383) = Pyspyy8y84]

= P18y [P18y (1 + Py383) = PyPy38y83] + P38, [P15Pa3883 = P38y (1thyey)]

(1.1a)

There are nine such Tij functions, each one as complicated as this.
Note that the variables normally refer to Laplace transforms or transfer
functions. Functions of time will be explicitly expressed, e.g. f(t)

Suppose that there is significant uncertainty in the functions

2

p1j , for example pij (Aijs + Bij)/(Eijs + Jijs + Fij) , with
intervals of uncertainty, for (ij) =(ll) say A11 € [1,2] ,
Bll € [2,4] , Ell € [1,2.57 , Jll € (-1,3] , F11 € (-2,1] , or
each may be a function of other parameters with large uncertain

intervals (as in the flight control problem). The problem seems

hopeless, unless one is thoroughly familiar with the system, with i

. . - - PR - - Tty . e
. . . . - . . . . . . . Wt - .t~ - N . ’ » . i
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!considerable cut and try experience so that he has a good initial
!starting point.
A synthesis technique has been developed [1-4] which considerably
‘reduces the complexity of the above problem. Since it bhas been presented

b
iin detail in the references, it is only summarized in the next

sections.
!1.2 Summary of MIO syunthesis technique
zj Fig. 1.2 applies for a 3 x 3 system and consists of nine single-
SS |loop structures. Note that in the first row the elements inside the
Ei A |loops are Gl(s) , Qll(S) the same for each of the three structures.
:g But the disturbances dli(s) are different. Also, the prefilters Fii
Eé are different. This situation is repeated for each of the three rows.
- The Fuv are the elements of the F matrix in Fig. 1.1, while the
‘i Gi are the diagonal elements of the G matrix, which for the moment
:g is taken as a diagonal matrix (see Sec. l.4). The qu in Fig. 1.
¥ are the inverses of the elements of the P-l matrix, Pl a [I/qu]
3 where P 1is the plant matrix. Because of the plant parameter
-
: uncertainty, there is a set P = {P} of plant matrices, which
generates a set of Q matrices. Since y = P§ in Fig. 1.1,
: 6 = P7ly 80 & = y1/Qy* vy RyptylQyy o 8y 9/ * Tl + Y3/0;
E: etc. The following is a physical interpretation of (for example) Q12 :
- Adjust the inputs 61 , 62 , 63 so that Yy = vy " 0 . Then the

iresulting ratio of transforms y2/61(s) is equal to le s y2/62 = Q22 .
iy3/63 = Q32 . In practice, one simply inverts P in order to obtain

,the qu .

The elements buv in Fig. 1.2 are real positive functions of

CIP I G P P PG I Y T WA ey Tl WAL G W j
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o frequency w , obtained as follows. The 3 » 3 system in Fig. l.1 has

nine closed-loop transfer functions

yu(s)
luv(S) = r (s)
v

In many problems, for u # v one wants Tuv to be small, ideally zero,
which is certainly possible at one combination of plant parameter values.

But if there is uncertainty, this cannot in general be achieved for all

P € P, so one sets a lower bound which can be a function of w

T Guw)] b W , u#v (1.2)
uv uv

to be achieved for all P € P ., Such a system is called '"basically
noninteracting” BNIC. 1In this report the designs are all desired to be
BNIC. Usually one wants some sensible response for the diagonal elements
Tuu(s) in Fig. 1.1, so in minimum-phase systems [3], specifications on

|Tuu(jm)| suffice of the form
a W s ITuu(Jw)l sb (@ . (1.3)

See Chapter 2 for examples of buv » A of (1.2, 1.3). Thus, the
disturbances duv in Fig. 1.2 are derived from the Qui of the plant

and the specifications bim on the «losed-loop response functions.

The problem in Fig. 1.2, is to choose the Gi s Fij SO as to

gatisfy the specifications on the T of Fig. 1.1; for example

ij

G so that satisfies the specification (1.3)

11 ° 71 11
with u =1 . Choose F

choose F

G so that satisfies (1.2) with

12° °1 Y12

u=1l,v=2, etc. The output Y12 in Fig. 1.2, is the sum of

two components: one due to the unit input, the second due to d12 .

b As it is required (Zq. 1.2) that Iylz(jw)l < (w) for all w , it

®12

Je . - e o T e et e e e T .
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is clearly best to let

Flz , which we can control, be zero. Similarly
let Fuv = 0 forall u # v . Since G1 is the same for all 3 structures
in the first row of Fig. 1.2, it must be '"good enough" (have large enough

'¢ the "feedback needs' of the

zain over large enough frequency range) to !
worst of the three at each w wvalue. If it is possible to find Fij .
Gi which solve these nine single-loop problems, then it is guaranteed that
these same Fij , Gi when used as elements of the F , G matrices in
Fig. 1.1, are satisfactory for the original mio problem [1]. Thus, the
33 mio problem has been converted into three loop problems (choice

of Gi) and nine prefilter problems (choice of F,.).

ij

1.2.1 Derivation of Table 1l.1.

Table 1.1 lists the demands on the three loop transmission functions
Li = Pii Gi so as to solve the nine single-loop problems of Fig. 1.2,
for the BNIC case. They were obtained as follows. 1In Fig. 1.2 each
diagonal Y uu element has two components, one due to the unit input,

the second due to dUu(s). Let their respective outputs be

yuu(S) = ruu(s) + rduu(S)

~

(1.4a-d)
T (s) = =21 T = EEESEE L =G6Q
uu 1+Lu : duu 1+Lu ' Tu uuu .
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From (1.3) it is necessary that
Y €la @ b (@] . (1.5)

3ut v j o= T j + j i and since their relativ nases
_uu(Ju), | uu(Jw) duu(Ju). s s e e phase

are not known, the harsher condition is used:

It 30+ Tt ol € fa b ] (1.6)

Suppose lfuu(jw)l € fa! (@),b! ()] | (1.7)

which must be chosen such that,

(1.8a-c¢)

[b -a + 2T ] =b - a
uu uu duu “max uu uu

For example, suppose lyuu(j2)| € [.9.1.1] 1is required. This
allowance of 1.1-.9 = ,2 wvariation in |Tuu(j2)[ can be split up in an

infini j j2) . . g = .
infinitude of ways between Tuu(JZ) and Tduu(J )] €8 Tiuu 0s ,
L} 1 L}
b = 1.05, a = .95 satisfying (1.8c). But T = .07, b =1.03,
uu uu duu uu
t

a." .97 would also be satisfactory, etc. What is the optimum choice?

To satisfy (1.7), a minimum value of IL(jw)I is needed, and a minimum

, < its allowed value.
duu

Hence, the optimum division is when these two minimum required |L|

value of IL(jw)I is needed to achieve lr

values are the same.

In table 1.1, the (1.7) obligation on Lu is denoted as an Auu type,

of the form

- s = (1.9)
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while the Tduu is denoted as a Buu type, of form (see Fig. 1.2)
duuQuu < Tdu
’—_1+L u
u
But - duu = -; biu/iQuii , giving
i#u
T
1 ) dil 5 etc. (1.10)
1+ L] |¥11 |"11]
Y Pafg,l *Paly,
12 13

In the BNIC design, only this type of inequality exists for all off-

diagonal elements and is denoted as a Duv type, with buv replacing

“duu °

1.2.2 OQOptimization and trade-off

There are interactions betweeen the entries of Table 1.1, via the

b . For example, suppose b21 is decreased from its original value of

uv
say lO'-3 to § < ].0-3 , which certainly doesn't violate the

-3

requirement |T21| £ 10 This helps because |1 + Lll now

Bi1 v

may be less than before. It helps D31 for the same reason, but clearly

makes it harder on D21 . But suppose D23 imposes a tougher

obligation on L2 than does D21 (this is denoted by D23 7,D21 :

D21 ~ D23 means that each imposes the same requirement on Lz)

Then it doesn't matter if b is decreased to some extent, thereby

21

increasing the D21 obligation on L2 . Note that this interaction is

always between the elements of the same column in Table l.1. Thus bll ’

bZ] s b31 appear only in the first column; blZ s b22 s b32 onlv in

the second colum etc. Similarly, decrease of b helps (

31 )

A11-8y1
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- ., . . - ~ . - .
LB W ) PN ST G G WAL WP W PRNCIPEPL LIS VN VY IR V0 PRI T VUL DR U D DU SR ur gy

T Y T T T T T T T TR TRV TR TR R TS TR TN T T TR E TR TSR N T AT T e




- . ISR A B A it s el Ond SnEe S St B .. - A S A >~ T v .
T -, ISt i - e . o B

D but makes it harder on D

21 31

In the above, it was possible to help L at no expense to the

1
other L's. Equilibrium is defined as when this is no longer possible.

The following has been proven [2]:

Theorem: A necessary and sufficient condition for equilibrium is

when all the Lu are dominated by the members of the same column.

For exauple, D12 dominates L (A22, 322) dominates L2 R

l 9’
S D32 dominates L3 . This does not preclude one or more of D12 ~ Dl3 s
> (3,5, B,,) ~ D, etc.
. Trade-off

After equilibrium has been reached, it is still possible and may
be desirable to trade-off, i.e. sacrifice one or more Lu for others.
For example, if the sensor of Yy is noisier than the others, or
Q22 has higher-order modes in a rather low w range, it is important to

reduce ILz(jw)I rapidly vs. w . This can be done by reducing b23 (or b33)

.
- if 023 7 (A22, 822) . D21 at the expense of Dl3’ (A33, 333) ,
- chereby imposing greater demands on Ll (if D13 dominates Ll)
- and/or on L3 , if (A33, 333) dominates L3 . Of course, if so,
eventually one or more of (A22, 822) s D21 ~ 023 say the former.
- Then b22 can be decreased but only until it approaches a5 in value,
t: whereas any buv (u # v) can be reduced by any amount.

Equilibrium and trade-off give the designer valuable flexibility,
which he can exploit, according to the circumstances of his specific

system.
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1.3 Necessary conditions for use of of MIO synthesis techaique

Certain conditions must be satisfied in order that the above
synthesis technique may be used. These conditions are not difficult
to derive, by simply examining the operations involved in executing
the design techniques. Normally the plant matrix P is available, so
its inverse P~

must exist, in order to evaluate the qu from

P-l = [l/qu] This means that det P must not be indentically

zero for any P € P, This is the much-touted "controllability" condition.

If det P 2 0 it means that the plant outputs y, are not independent ly
realizable, for that specific P .

The other conditions are due to the need that the single-loop
problems of Fig., 1.2 be solvable, for only then can the Fu s Gu be
found. The uncertainty in the Quu must be compatible with the
specifications on the Tuu(jw) If Quu(s) is minimum-phase, then
very general Quu uncertainty and Tuu performance tolerances can be
handled (see [1] for details). But if Quu(s) is nonminimum-phase
(has zeros in the right half complex plane), then the Tuu tolerances
must be compatible with the limitations on the realizeable bandwidth
of Lu(jw) [4], due to the right half-plane zeros of Quu(s)

Right half-plane poles of Quu can be handled [2].

1.3.1 A high-frequency condition

There is an important high-frequency condition on the qu which
must be satisfied. It will be derived for the 2 x 2 case, and only
stated for the 3 x 3 case. At high frequencies, the a of Fig.
1.2, Table 1.1 and Eq. (1.3) are so small that they can be taken as

zero. All the Auu of Table 1.1 then disappear and the Buu have the

AT AT T et et et e et e a A ek m A A d oM aeta o €a 8 e e e e cada 4 44 e .mtAlA a s alaalaiaala mla mtala’ j
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same form as the D, with b replacing the = . In the 2 x 2
uv uu duu
i case the inequalities of Table 1.1 then are:
. -1 P Q2 512 %2
g ey eg s g * b, o,
; a1 YN 2
‘ . (L.lla.b)
-1, %1 % ®2 %y
L LI 5 ol v b, 1Y,
11 22 12 22
-1
> = : I
In (1.1la), one might as well let b, /b, =b ,/b,, since |1+ L,

must satisfy both inequalities. This can't hurt and may help, because

suppose blz/b22 > bll/b21 .  Reducing blZ/bZZ doesn't hurt (a) but
may help (b), if b22/b12 < b21/bll . For the same reason set
b21/b11 = b22/b12 in (b). These two results are identical:
bllb22 = ble21 , and give
L L+l e gzzgz;,) : (1.12)
11722

Now we know that sooner or later in w , any practical |l + Lul <1,
unless Lu is restricted to larg LI < /2 which is impossible in any
practical system. (This impractical condition is blithely assumed in the
"optimal quadratic regulator,", so popular in Modern Control Theory).

If we play safe and want to allow 1+ Lul <1 for all w larger than

some w then (1.12) requires that there exist a W such that

|P11P22] _ |°12Q21
Ip)oPy 1%,

>1 for all P€ P and all w > ©m (1.13)

The analogous condition in the 3 x 3 case is more complicated in its

derivation [l1], so is only stated here:

L e e St et LTt Lt e gt Y
s et avate  atata Tadad s danasn el !




W T e T T T T e e e Ly TLY T TR YT TR Y T T AT T AT T TRV LETYLE RN LY AT

- 12 -
| P 1PoaPasl > [Py PosPapl + [P Py Pagl + (PP, P, |
+ P gPyaPy |+ [P 4P Pl (1.14a.b)
PUV = l/QUV

The above are not necessary conditions because in (1.12) we could

stagger the w regions in which Il + Lu| , |1+ Lvl are less than

TV
’ )

L' e, ot e
. [

unity, i.e. have Lu in the second or third quadrants when I.V is in the

first or fourth and vice versa. But it simplifies matters if the

V‘v‘v..v; L]

Py PPy

(i it a

i o Py .
. L . . . oo
o PE coae s v e

condition is satisfied. By renumbering the terminals at the plant input

(but not at the output) the new P11 is old Pyp o (plZ)new = (pll)old

etc. And if this renumbering is done at the plant output,

(pll)new = (p21)old etc. In both case (1.13) becomes

.- (2% | W 1 (1.15)
o V0% hew N\ U2%; Jo1g

0f course renumbering of either the input or the output terminals of the

plant changes the expressions (1.14,1.15). This may be tried if in a

specific numbering, the inequality is not satisfied VP € P . It is worth
noting that Rosenbrock [5] has a condition for his synthesis technique,
which is harder to satisfy than (1.13) or (1.15), even though his synthesis
technique does not cope with plant parameter uncertainty. His condition is
that the diagonal element |puu| be large than the sum of all the other

elements in the same row (or of the same column), and this must be so

for all . € [0,%)

e - e

B . . . ‘i
. ' . . .
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Finally, suppose that in the 2 x 2 case neither (1.13) nor (1.15)

is satisfied for all «w > some Wp precluding the use of this synthesis
technique in precisely its present form. This is the situation in some
of the moces of our aircraft flight control problem, o matter what the

. numbering of the plant terminals, i.e. (l.14) is not satisfied. Never-

theless, all is far from lost. In the 2 x 2 case one uses this

s S T VR

synthesis technique for designing one of the Lu , Fu (say u=1). So

the design of Lu R Fu is that of single-loop system design. Then one
uses the exact system equations to design 62 . FZ . This second part is
not difficult because it too becomes a single-loop type of problem, when

G, , F is known:

1 1
PraPrfy Ly
1 - 2072 ;o fuo Y
22 L tu 21
20 L20 +u
(1.16a-d)
A
—_—
p ( o Ll)
11 711722
M3 » 8= P13PyrP12PY
10 (1 + Ll)
L20 = G2Q220 is a nominal loop transmission at some Po € P chosen
as the nominal plant. If L20 is large enough then from (1.16a)
TZZ = F2 In (1.16b), large enough L20 also guarantees |T21| can
be made as small as desired over any finite w range. Since F1 and
Ll are known, it is simple enough to choose L20 to satisfy the tolerances
i on T21 , T22 . In this way, the restriction (1.13) can avoided, and .in

a similar manner restriction (1.14) for the 3 x 3 system (see Sec. 2.4).

The above situation in the YF16CCV system motivated us to research this
problem and develop an improvement of the mio synthesis theory. This is

presented in Appendix 1. It is a good example of fundamental research

motivated by practical problems.
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1.4 A shortcoming: use of nondiagonal G

A good criterion of any feedback design technique jis that the

amount of feedback should be related to the amount of parameter uncertaintv and
te narrowness of the tolerances. [n particulir, i there is no uncert ine
there is no need for any feedback at all, and the design technique should
emerge with this result. As presented so far, the above design technique

fails this test because of the existence of the Bii . Dij elements in
Table 1.1. This can be corrected by inserting a precompensator H in
front of the plant, whose function is to diagonalize the new modified

plant PH , as much as possible. If there is no uncertainty it can be

done precisely and then Qij =» for all i# j , and in Table 1.1

> DARARATA  SEIS

the B, , D, all give 1+ Lul "l ¢ ® with no resulting obligation

]
™.
’:
)
-

on the L .
u
When there is parameter uncertainty, the elements of H can be

chosen to minimize the Bii , D factors in the design problem. Let

ij
the new modified Q elements be denoted by wij , the old (due to P alone)

by Qij . For the 2 x 2 case

| = -1 = -l = ’
[l/wij] (PH) H [1/Qij] !
[ v/ Q1) 11 ( %2 )
U S By o, \'tha, )
p 11 21 12 22
\
e 12@ + QZI) V22 (1 . Qz_2> . (1.17a-d)
-? LQZI 20y, oY) 19,
v -1
N e P IAZ BTN S P STATY
v
F In the low and medium w range where |Lu , is >1 significantly
J b
N [1+4L | ~ |L i, so D for example becomes closely |G| 2 22
v u u’ 12 1 b, W
\ 1212
X
b
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A
Hence it is desirable to choose X to minimize max ' L + 1 ’
1 Q Q
p 11 22
This is also the best that can be done for (All,Bll) in this w range.
In the higher < range where ’Lll ~ 1 or less (1.11a,b) appnlv so then
one seeks tv minimze
1 Xl
q, T Q,,
max |wl /w.,| = max 11 21 , (1.18)
p 1712 1 Al
—_— —
' Q2 Q2 ‘
if the right side in (l.1lla) really is the constraint on L, . Often

1

the right side is so large that instead one arbitrarily sets a gain
margin type of constraint like |l + Lll-l < Gm db in the higher w

range.

1.5 Summary

We have presented the highlights of a multiple input-output (mio)
synthesis technique for uncertain feedback system. Its main attractive
feature is its reduction of the highly complex uncertain mio system into
a number of single loop uncertain systems. Under very general conditions,
the solutions of the latter are guaranteed to be satisfactory for the
original mio problem.

The technique was applied very successfully to four linear time
invariant mio problems with highly uncertain plants [1-3 ] . The most
complex was 3 x 3 with a mixture of BNIC and more complex performance
tolerances. Also, it was extended to a class of nonlinear uncertain mio
plants, including a 2 x 2 highly nonlinear, uncertain and interacting
example [4]). However, all of these were fabricated academic examples.
The balance of this report applies this technique for the first time,

to a real life practical design problem.
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Fig. 1.2 Nine single-loop structures equivalent to Fig. 1.l.
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CHAPTER 2

DESIGN FOR DIRECT SIDE FORCE MODE

The synthesis technique of Chapter 1 is applied to the design of
the "Direct Side Force (Ay) " mode of a fighter CCV aircraft. Direct
side force (Ay) is commanded and the objective is to achieve specified
Ay step response tolerances, while maintaing specified small sideslip
(8) and roll (¢9) . The control surfaces are Sr (rudder), Ga (ailerons),
Gc (rnard). The definition and units of the symbols are all listed in

the List of Symbols at the beginning of the report.

2.1 Plant equations

The plant equations are

5- [P’Y9B]' ) 6 = [6 ’6 y6 ] (2.la-g)

x - [B’¢vAy]' ’ p = ‘i’ ’ r= 'l’ = yaw rate

p-
2VC i
c c 18
2p Lr b
2vC
- 4Sb_¢ 8 .
A T Cnp Cnr 5 (2.2)
: 2
c o ¢ -t e
yp yr qSb b
R
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0 0 1/mV

(’ 0 0 1 ] 0 0 0
L/s 0 0 D = 0 0 0

C =

) = 245 (¢ c L=y . (2.62)

( T 2vm yp yr’ b yB

€31°%32°¢33

Note that the third row of D is precisely the product of V

and the third row of B .

From (2.la) x=(sI - a7l s,

v = [csI-0 B+p)s Ep s . (2.6b)

Our technique requires evaluation of p~l - [l/Qij] . Let

0o 0 o0
R:3m =10 o o (2.6¢)
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from (2.3, 2.5b), so

/a1 = Pl = (rctst-a) "t + o8l = B R 4+ c(sT - ay7Yy7E
-1 S T | -1 (.
= B "{[R(sI-A)+C](sI-a) "} = B (sI-A)[R(sl=aA)+C]
It is readily found that
[ 0 0 N
Cs+R(s’1-as) = 1 0 0 ‘ (2.8a)
2
t:(as+Y¢)V Vs Vs J
and its inverse is
r. 0 1 0
-1 (as+Y¢)/s 1/sV (2.8b)
1/s 0 0

p’l = [1/Qij] is obtained by premultiplying (2.8b) by B-l(sI-A) . This

was programmed on the digital computer.

2.2 Flight Conditions

Ten flight conditions were considered in pairs of two. Conditions
(1,6) are quite similar to each other, so are (2,7), ... (5,10) in

having the same mach, velocity etc, differing only in the C values,

idc

due to the odd cases having v.c. = 15, the even cases v.c. = 25 . The
parameter values for these conditions are listed in Table 2.2. The
Q;t transfer functions for the 10 cases are listed in Table 2.3 in the

form Q;i = kn(s+p,) . The value of k is listed first, followed by the
1

pi . At the end in brackets is the zero frequency value of Q;v . For

P . Ce DR RS . .. N o - . .
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example in Case 1, QI% = ,0723(s+.907+j 8.2) (s+.907-j 8.2) ,
whose value at s =0, 1is 4,92 . Q;; = -,0909(s+6.13)(s-6.10) whose
value at s = Q0 1is 3.40 , etc.

I -

The ten [light condicions give gt each rfrequency ten different values
- of jw) . The sets { jw) } denoted as "templates" T ol
' Q,, (39 Q3w s p Puul?)
.l are needed in the synthesis technique. A number of these are shown in
Figs. 2.1-3, in Nichols chart coordinates. A missing flight condition
number in these figures, means that its Qii(jw) value is very close to

that for another flight condition. The star refers to Case 10.

. - .t . - Aadad
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Table 2.2

Fighter CCV, Trimmed Aevro Date, 01/18/79

R
Area. 8§ = 230,000 fr” ¢ Mac, ¢ = 10,9 f:. i <Spin, h o= 9.0 f¢.
. pr = 12.606 , Ixy = 12.824 , Lood factor = 1.0,
CG location 35.300 % Mac, at W.L. 93,200 . Ixx = 8100 , I = 47000,
vy
5
T =53300 , I = 354 slug ft~ .
YA Xz
Flight 1 2 3 4 5
Conditions 6 7 8 9 10
Mach .6 .8 .9 .6 .9
Altitude (ft) 0 20000 0 30000 30000
Impact P, Q, 582.98 510.38 1462.84 173.48 435.30
Dynamic P,q 533.22 435.97 1199.75 158.67 357.01
(lb/ftz)
PP 1.00 . 460 1.00 298 .298
Q /P .276 524 691 276 -691
¢ s 895.41
Vel (ft/sec) 669. 84 828.32 1004.76 596.94
TRIMMED LATERAL DIRECTION DATA
a(degrees) 1.890 2.145 .901 6.129 2.470
103cn8(1/deg) 2.291 2.759 2.169 3.463 2.947
103c26(1/deg) -1.836 -1.999 -1.721 -2.705 -2.005
2
10 Cys(l/deg) -2.030 -2.201 -2.100 -2.203 ~2.220
2
10 Cnp(l/rad) -1.949 -2.658 .9888 -2.709 -2.780
lO(C\p(l/rad) -2.908 -3.148 -3.180 -2.790 -3.203
4
1oc, (1/ rad) 1.054 1.329 .5486 1.495 1.227
. 10(c__(1/deg) -3.834 -3.665 -3.562 -3.863 -3.837
b
S
b
b
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Con't Table 2.2

lOCQr(l/deg) 1.752 2,109 1.608 2,324 2.136
10Cvr(1/deg) 6.910 A.394h 6.434 7.21R 7.351
103Cn;r(L/deg) -1.217 -l.1n06 - .b98Y -1.-35 -l. 13
/
104C16r(1/deg) 3.720 3.090 2.057 3.229 3.306
lOBCydr(l/deg) 2.347 2.147 1.240 2.873 2.080
lO3Cn a(l/deg) -1.008 -1.082 -1.067 -.9541 -1.107
103C16a -1.012 -1.060 - .9443 -1.089 -1.082
lO3C : 2,343 2.567 2.508 2.352 2.671
yda
lO3 C . 1.310 1.314 1.306 1.190 1.310
nic
1.610 1.008 1.027 .8761 .9977
J/
lo*cl&c 2.091 2.253 3.058 1.290 2.816
2.104 2.199 3.075 1.293 2.727
lO3Cy6c 2.066 2.027 2.207 1.396 1.965
1.800 1.770 1.912 1.248 1.720
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Table 2.1

Transfer functions of :mw for 10 flight conditions
Case | (See Sec. 2.72)
273, L9907 §8.2(4.9:.
-0723; 907" i8.2(4.92) .019%;  3.06,-.105(—6.26E-03) ~.108E-03; =-.00936(.01)
.00778; -1.14439.°5(.712) -.024; 3.50,-.01(8.48E-04) -.116E-04; -592(6.87E-03)
-.0909; 6.13,-6.10(3.40) 005065 1.20,.0193(.12E-03) .136E-03; 109(.015)
mm_m c .9
.07913; LB2RVT7.7(4.76) .0192; 3.10, -.106(-6.31E-03) -.118E-03; -75.6 (R.92E-1)
\ .00602; -L.47§11.2(.768) -.0239; 3.51, -.010(8.56E-04) -.90E-05; -797(7.17E-03)
O - 111 6.13,-6.10(4.15) .0062; 1.20, 1.93(.206E-03) .166E-03; 109(.018)
'
Case 2
.0973; .632+37.8(5.96) .0265; 2.15,-.0835(-4.76E-03) -.117E-03; -114(.0133)
.00509;-2.36j11(.0644) -.02813; 2.52,-.0131(9.34E-04) -.615E-05; -1280(7.87E-03)
-.109; 5.81,-5.85(3.7) .00773; -.0207(1.6E-04) .132E-03; 140(.018)
[ ]
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Con't Table 2.3

.107; .576"i7.3(5.74) .0259; 2.18,-.0843(-4.76E-03) -.129E-03; -91.8(.0118)
.00327; -3.67'i14.2(.703) -.0282; 2.52,-.0131(9.31E-04) -.395E-05; -2080(8.22E-03)
-.134; 5.81.-5.85(4.55) .00946; 1.00,-.0207(-1.96E-04) .162E-03; 140(.023)
Case J
.0637; 1.16+j11.3(8.22) .0181; 5.38,-.0485(-4.72E-03) -.634E-04; -103(.00653)
.00168;-3.0"i’5.8(1.13) -.0108;  5.65,-.00531(3.24E-04) -.167-05; -2130(3.. E-03)
_ -.0377; 9.80,-9.85(3.64) .00205; 3.60,-.00869(~.641E-04) .375E-04; 173(.0065)
S e e ¢ - e et . - A e S
}
Case 8
.0694; 1.06'i10.4(7.58) .0178;  5.41,-.049¢(-4.72E-03) -.691E-04;-80.4(.00556)
.000328;-15.3" i60.2(1.26) -.0107;  5.66,-.0053(3.21E-04) ~.326E-06;-11600(3.78£-03)
-.0454; 9.8,-9.85(4.38) .00247; 3.60,-.00869(.64E-04) .452E-04; 173(.0078)

Ll W
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v
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Case 4
.178; 404y . 7(5.81)

.00783;:-9.51,3.4°(-.257)

-.379; 3.32,-1.33(4.19)
Case 9 (neminal)
.203; L3915, 2(5.51)
.00384; -15.8,1.49(-.212)
~.475; 3.32,-3.33(5.25)

Case 5

N L1725 L479%37.0(8.47)
.0352;.183+j8.4(2.48)

-.0661; 9.79,-10.9(7.05)

Case 10
.180; .432+36.4(7.41)
.0355; .176*j8.3(2.44)

-.077; 9.79,-10.9(8.22)

Con't Table 2.3

L0422 UB77,-.209(-7.738-03) -.298E-03; -126(.0375)
~-.0822; 1.10,-.0283(2.56E-03) -.131E-04; -1420(.0186)
L0517;  .427,-.00874(-1.93E-04) .635E-03; 97.5(.0619)
L0387 .910,-.220(-7.75E-03) -.341E-03; -97.6(.0333)
~.0816; .1,10,-.0283(2.54E-03) ~.644E-05; -2990(.0193)
.0648; .427,-.00874(-.242E-03) .796E-03; 97.5(.078)
.044; 1.68,-.0797(-5.89E-03) -.19.E-03; -113(.0217)
-.0243; 2.05,.0093(~.46E-03) -.393E-04; -376(.0148)
.0283; 1.39,-.0648(-~2.55E-03) .738E-04; 425(.0314)
.0405; 1.71,-.0808(-5.6E-03) -.201E-03; -87.9(.0177)
-.0244;  2.05,.00902(~-.451E-03) -.397E-04; -369(.0146)
.0330: 1.39,-.0648(-2.97E-03) .860E-04; 425(.0366)
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2.3 Design procedure

It was found that condition (l.14) was not satisfied for all P € P ,
no matter what plant terminal numbering wias tried. The modifivation
described in Sec. 1.3, was therefore used: The technique is used in its
original form to derive L1 and L2 . Then the exact equation is used to
derive L3 . First, the bounds on |T33(jw)[ are needed. Examination of
the simulation data supplied by the contractor (A.y mode response - Fig. 2.4),
suggests modelling T33(s) as a second-order function with a pair of poles
at approximately -5. This gives a first cut at |T33(ju)] . Then, curves
of larger and smaller values are tried in order to widen the acceptable set.

In this way the bounds shown in Fig. 2.5 were obtained. It is required

(recall 1.3)), that

aj (W) s |T33(jw)| $hy ) . (2.9)

This approach may be criticized as rather crude for translating time~domain
into w-domain tolerances, but we found it highly reliable in many design
examples for example [8,9], and it is easy to execute. Reasons for working
in the frequency domain rather than in state-space, have been given in
{10,11].

In this mode r

27 F

= 0 , so the only command input is r, of

3 3

Fig. 1.1, and in Table 1.1 only D13 , D23 s (A33 , 833) are applicable.
Consider 013 written as
b 'Qlll + b U
23 le 33 Q13
1+ 2 : (2.10)
®13

Recall that b13(w) is the maximum allowable value of IT13(jw)| s b23(w)

that of |T w)| . If a command of 1lg for Ay is to result in a

23
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maximum of one degree steady-state value of B8 , then

3' bl3(0) = 1/(57.3)(32.2) =(.5)10.3 . We can prescribe this value for
‘ all w . Comparing this value to b33 in Fig. 2.5, clearly b31>> b23 \
k at least from . =0 to .+ ~ 20 . But if it will help in the design,
. b33 can be decreased right down to 2,4 - This will make it harder on
the design of L3 , because the tolerances on fT33(jw)| are then
narrower, but it is later found that the demands on Ll ’ L2 are much
harder than those on L3 .
Returning to (2.10) since b33 >> b23 in the low frequency rang?,
Y91 . .
b33 6;; | will dominate in the numerator unless lQll/lel >> ‘Qll/QLB"

|
We therefore sketch in Fig. 2.6a,b these two ratics from the data available
in Table 2.3. Cases 1l-5 suffice, because Cases 6-~10 are pairwise very

similar to Cases 1-5. Clearly, dominates at least up to

by31Qp;7Q) 5] |

w =10 , so in this  range, we need

b Q
L+ ryl= (1460, 2 33 ali } (2.11)
13 1 Q3

which is ~ 66db + (=50 db) = 1l6db for w € [0,6] . It helps to approximate

|1+ qulll by IGIQIII , because (2.11) then becomes

lcl(jm)la by,/by (2.12)

337013195

and the bounds on Gl are easily determined in this range. The value

(1500)-1 was chosen for b corresponding to 1.5° max B for

13
Ay of 1g . The maximum value of |Q13|-1 = 0375 for Case 4, giving

55 for iGli Case 9 was chosen as the nominal plant case Qlo ,

min °

with the nominal loop transmission L It is convenient to

10 = % Q30 -

have the bounds on L rather than on G because in the higher w

10 1
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In any case, the procedure

range one can no longer take |1 + L1| = L, -
for finding the bounds on L10 in the low w range is fairly clear

from the above.

As . 1increases, bgq decreases (see Fig. 2.5) and so does ;le/H]}
i b Q | ST
2
(see Fig. 2.6b). The first term 23 1L in (2.10) is never large, so
by Q|
the demand on 1+ Lll in (2.10) steadily decreases. Eventually |1 + Llf
may be quite small which would permit L, -+ -1 . But it is sensible to

1

impose reasonable stability margins on the L loop by itself. Physically,

1
this would correspond to the case Yy = =0, ¥y = Ay = 0 and the only

feedback is from B because then in 8 =P ~ y (see Eq. (2.5)), 51 = yl/Qll .

So in the higher w range bounds were found on LlO such that
l|-l £ 2db . The resulting bounds on LlO are shown in the Nichols

shart in Fig. 2.7. The next step is to find a LlO(S) , such that Llo(jw)

1 +L

satisfies the bounds of Fig. 2.7. This was done simply by cut and try.
The Bode plots of Llo(jw) are shown in Fig. 2.8, and Llo(jw) is also
shown in Fig. 2.7.

The resulting lGl(jw)l = |L is sketched in Fig. 2.13, and

10710
it is seen it must be greater than one, over an extremely large w range.
The reason for this is evident from Fig. 2.7. The intrinsic demands

on due to the specifications, become negligible at w = 25. However,

1Ll
ILlo(jm)| cannot decrease very rapidly vs w , because its phase lag is
not allowed to be more than ~ 130° . And this constraint holds until
|L10(jw)] has decreased to about -24 db . This is due to the large spread
in the high frequency values of Q11 (see Fig. 2.1). The present design

is clearly overly comservative. At w = 8 ,\Llol is about 3 db larger
than necessary. From 15 to =24 db 1levels there is a change of 39 db, at

an average slope cf - igg x 12 = -8.7 db/octave, requiring 39/8.7 = 4.5

octaves, giving (8) 2434 180 for the frequency at which |L10| ~ =24 db .
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The decrease of ILIOI can be more rapid thereafter, but again we have
been rather comnservative.

There is a trade-off between the complexity of the compensation
functien (rthe number of its ponles and zeros), and rthe bindwidth of G

1
It is clearly possible to decreas Gl more rapidly in the mid-frequency
range. Also more far-off poles can be inserted in the higher w range.

All this requires more careful shaping of Llo(jw) » with more poles and
zeros. This will be done in later designs.

It is also noted that a significant reasona for the large bandwidth
of G1 » is the large gain margin (about 25 db) needed for LlO , because

of the large spread in the high-frequency value of (see Fig. 2.1).

11
This spread can be reduced by high-frequency scheduling, which is done in
Sec. 2.8. The analytic expressions for the LOi(S) s Gi(s) etc are given
in Appendix 1 of this chapter.

We next tumn to the design of L,.(s). From Table 1.1, the only

L W LT

20
requirement here (since only Ay is being commanded) is 023 of Table 1.1,
b | Q22 | +b | Q22
1319y, M Q3
1+ L, 2 . (2.13)
P23

The bounds on Lzo(jw) are obtained in the same manner as those on L10
with the result shown in Fig. 2.9. This figure has precisely the same
features as Fig. 2.7 and for precisely the same reasons - especially the
even larger gain margin needed, due to the larger spread in the high-
frequency gain factor of Q22 (see Fig. 2.2). The Lzo(jm) chosen 1is

shown in Fig. 2.10, and is also rather conservative. It should be noted

that as Q220 has a right half-plane pole at .0283 (see Table 1.2,

Case 9), it is imperative that LZO has this same pole; otherwise there

’
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is attempted right half-plane pole cancellation, which would give a

dipole in the right balf-plane, and the system would then be unstable.

2.4 Design of third (Av) Loup

It is recalled that condition (l.14) could not be satisfied in this
problem, so the design of the third loop is performed by using the exact
equation. In FIg. 1.1,

T=(+L)" s , L=pP¢ . (2.14)

We are interested in the actual expression for

Tyy = (2.15)
(1+L1)(1+L2)(l+L3)-[Y12(1+L3)+Yl3(l+L2)+Y23(l+Ll)]+F
\
B T B Fh e 22l
12 Q50 1301503 7 723 QpqQy,
; (2.16a=d)
1 1
?=QQQ( + \
11722 733 \Q15Qy3Q3;  2;%5%3)
o

The above was obtained by expanding the matrices in (2.14). For purpose

of design of Ly, it is desirable to rewirte (2.15) in the following form:

T.,, = fég_fggfz L.. =G, Q
33 L ’ 30 3 330 (2.17a,b)
30 4
n
Q330 [Yl3(l+L2) + Y23(1+L1)-F] \

(w) = g {'1 - (2.18)
33 (4L ) (1) = 1,

0f course, ¢ 1is a function of w and of the plant parameters. There is a

different ¢ value for each of the ten flight conditioms.

The procedure is to find the templates Tpu(w) , of yY(jw) i.e.

To (W) = {p(jo)} . Some templates are showm in Tig. 2.11. It is recuired
y _

.......
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that
a55(@) £ [T ()] 5 byy(w) (2.19) |
of Fig. 2.5. The funcrion of 'WO is to guarantee that over the range }
VF \
. |
| L. ./¥ b :
A log 30L £ log 33 (2.20)
30 433
e

The Nichols chart is the perfect design tool for this purpose because
it contains loci of constant |L/(1+L)| . Here L30/W takes the place

of L . As there is no uncertainty in , the template (set {L30/W})

30
of L30/W is simply the template of 1/¥ shifted by the value of

LBO(ju) . One positions the template of 1/¥ on the Nichols chart until

(2.20) is barely satisfied, giving a bound on L The design procedure

30 °

is in fact precisely the same as in single-loop design, described in detail

in (3].

T

The bounds on L30 thus obtained are shown in Fig. 2.11, together

with the L30(jm) chosen. A Bode plot of L is shown in Fig. 2.12.

30

There is here too the same phenomenon as in the design of L L

¢ * 720
(Figs. 2.7, 2.9). 1In the higher w range, an additional constraint of the

t D s a

form |1+ L3|—1 < some specified value becomes more demanding on L3
than (2.19). Also, the large spread in the value of the high-frequency gain
factor of 033 (see Fig. 2.3), forces |L30(jm)| to be decreased

slowly until |L30| ~ =30 db . However, since |Q330(ju)| is considerably
larger thatn [Q,, [ and [Q,,| , the demand on Gy = |Lyg/Qq5q| s

considerably less than on G1 s G2 , as seen in the Bode plots of the

e

(asymptotic) G, 5 6, G3(jw) in Figs. 2.13, and 2.14.




-

—
t

.
.

- 32 -

Proper choice of L30 only guarantees that the change in |T3j(jm)]
is within the amount allowed by (2.20). The role of F3(jw) in Fig. 1.1,
is to position |T33(jw)| within the tolerances of (2,19). For example
is . ) = =23.5 . b.. ( = =X.,3, and 1if (L. /- ~(L. /)i
i 333(lt) 3.3 db 033(1)) , and if (I30 IVER! (ljo )

in practice ranges from ~10 db to + 2 db at w = 10 , then it is
necessary that, -13.5 g |F3(j10)| < -10.5 db . Bounds in |F3(ju)| are
obtained in this manner and then, by cut and try, F3(s) was selected
which satisfied these bounds (see Appendix 1 for F3(s)).

Note that T33(jw) = F3(jw) over the significant frequency range,
because the bandwidth of L3(jw) is so much larger than that of T33(jw)

This happens in systems in which large parameter uncertainty demands large

loop bandwidths.

2.5 Simulation results, Design 1

The system was simulated on the digital computer for 1lg step

command of Ay . The responses are shown in Figs. 2.15a-c in degrees

for &, ¢ and g's for Ay . The Ay responses for the five cases were

very similar, so result in almost a single curve in Fig. 2.15c. The
other five cases (6, 7,...,10) are pairwise very similar to these first

five and are not shown. The control surface deflections Gr , éa , dc

in degrees are shown in Fig. 2.l6a-c. The control surface rates are

shown in Figs. 2.17a-c. The actual control surface limits are respect-

ively 230o , *207 , 25 for ér . Ga GC , S0 Case 3 1is well

below saturation, while Case 1 barely causes canard saturation (25.70).

(o} 0 o

The other canard values are 33 , 120 , 54 for Cases 2, 4, 5

respectively, so that to avoid this amplitude limiting, Ay commanded

must be reduced to .76 , .21, .46 g's respectively. In all cases
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the canard is the limiting surface.

. . .

The rate limits are 120, 56, 100 deg/sec for 8. » sa . 6c

K RO
« e

"‘ “coh

N P

whereas Fig. 2.17 shows rhat in Case 4, the canard rate is 13 somewhasr

.-

zreater limiting factor thao the canard amplicude, limiting AV to

.17 g for this Case 4. This can be improved by slowing up T33 . If

the step response of Ay is slowed up by * (the time scale in Figs. 2.15
multiplied by A , then the &'s will be reduced by this factor very closely,
because as noted in Scc. 2.4, T33(jw) = F3(jw) over the significant

range of T33(jw) . This slowing up by a factor A 1is achieved by
multiplying each of the F33 poles by X . The reason is that F33

with its much smaller bandwidth than the Li , dominates the system

response to commands (see Sec. 2.10).

2.6. Responses under amplitude and rate limiting

The control surfaces amplitude and rate limits were incorporated into

the system model, in both cases as simple algebraic nonlinearities. If
the rate saturates first, the amplitude can continue to increase until
it becomes saturated, and vice versa. The commanded Ay input was in
each case made so high as to force the system to saturate. The resulting

responses are shown in Figs. 2.18a-c, and the responses in

8y 84
Figs. 2.19a-c. In all cases the canard rate was the first to saturate and
the canard amplitude eventually also saturated. Figs. 2.20a-c show the

Bs ¢ » Ay responses under these very hard saturated conditions. In
all cases, the responses are very nice, with little overshoot. Note that

in all cases except 3, 3.1 g's were commanded and 9.3 g for Case 3, so

as to deliberately drive the system into very hard saturation.

[ N I S




2.7 Design two

Several more designs were made, primarily in order to decrease the

bandwidths of C] + G, . In design 2 some sacrifice was made in rhe fipal

values of ¢ uand  : when Av is commanded. This 1s evivenr from the
smaller values of Gl(O) R GZ(O) in this design as compared to Design 1.
Also, an additional two far-off poles were assigned to Gl(s) , Gz(s) in
order that they may reach zero db magnitude at a considerably smaller
frequency than in the first design - compare Designs 1, 2 in Figs. 2.13-4.
Otherwise, the design procedure is identical to that of Design 1, and is

therefore not described. Because of the faster reduction of !Llol . 1L701

a greater burden was imposed on L3 , SO G3 in Fig. 2.13 has a larger

bandwidth for Design 2, than in Design 1. But this is acceptable, because

the demand on G3 is so much less than on Gl s G2 . The Bode plots of

L are shown in Fig. 2.2la-c. The computer simulation results

Lig> L20 » L3g

are shown in Fig. 2.22 It is seen that the B, ¢ responses are

as expected somewhat poorer than those in Figs. 2.15-2.17 for Design 1.

2.8 A design with scheduling

One of the reasons for the large Gl , G2 bandwidths of Design 1,
noted in Sec. 2.3, was the large gain margins needed (Figs. 2.7, 2.9) for

L10 , LZO . This was due to the large uncertainty in the high-frequency

gain factors of Qll , Q22 (Figs. 2.1, 2.2). A significant decrease in

the G G, Dbandwidths should be possible, if there can be a significant

1’ 2

decrease in this high-frequency uncertainty. We therefore examine Egs.
-1

2.1-8 for ;i: qu . The results are (letting v = Yy )
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Thus all the qu are inversely proportional to q as

Hence, the part of the uncertainty due to the q variations

eliminated, if q can be accurately measured rapidly enough.

that q can be measured with * 20% error, i.e. the measured

in fact be between .8 and 1.2 .imes the correct value. The

CosaCysc ~ Cysalrsc’

7 (2.26a-d)

s+cn
could be

We assume
value may

zero w values
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B

of the qu are independent of q , so the measured q are to be used

cnly in the higher w range. Accordingly, we insert in front of the

g

plant a diagonal scheduled compensator, each of whose elements i<

o
»

2
e
L 1 1

= - = > .05
- IS =15 s 300 (2.22)
A m s
e
I~
I

where 9 is the measured value of q . One should reallv experiment

with the value of Ts . But our primary purpose here is to demonstrate

how well-known techniques, such as scheduling, can be incorporated into

T T Vit
P |i R
A et

our design procedure.

i;

This incoporation of scheduling into our design technique is very

simple. Let the new plant be Pn = PJ (s) , so the new

-1 f1/Q 1]
-1 _ _P _ uv
Pn - [l/qun] T J(s) - J(s)

with J(s) a function of q and therefore of each flight condition. The
procedure is now exactly the same as before, but qun (functions of the
flight condition) replace qu . But now there are thirty cases because
for each flight condition 4 in (2.25) may be .8 q, q or 1.2 q.

Some of the templates of Quun are shown in Figs. 2.23-2.25, for

Qlln s Q22n Comparing with the templates of Quu (old) in Figs. 2.1-3,

it is seen that there is little difference at low  values, but with
significant changes of the templates at higher ( values. The new

template at large w (100) 1is actually larger in size that the

Qlln

unscheduled Q11 (100) . However, the nominal (Case 9) Qlln is near

the top of its template, rather than the bottom as it was for the

unscheduled case. So the resulting bound on LlO at high o 1is not

so far down, we don't need as large as gain margin and ch(jIOO)‘ for
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the scheduled design is much smaller than for Design 1 or 2. In finding

these templates of Quun , three different values were assigned to qm
of (2.25) for each flight condition., These were q, = .89 , q and 1.2 q.
he bounds on the Nichols chart analogous to rhose in cthe rircsre

design (Figs. 2.7, 2.9, 2.1ll) are shown in Figs. 2.26a-c, which also
include Luo(jm) . Bode plots of the LUO are shown in figs. 2.27a-c
Digital simulation results are shown in Figs. 2.28a-¢c. For each flight

condition three runs are shown, one for the case qm = .8 , the second

if 4 happended to be q , and the third for a, = 1.2 q.

Figs. 2.13, 2.14 show that a scheduled design can be more economical
in Gu bandwidths required. We have probably overestimated the measure-
ment error i.e. the allowance € [0.8q, 1.2q] 1is probably much more than
the actual error. Also experimentation in the value of LN used in (2.25)
will lead to better results, as would a more sophisticated J(s) function
of (2.25). In any case, our main point was to demonstrate how easily
scheduling may be incorporated into this new design technique. Also how
the design technique reveals the frequency ranges in which scheduling is

worth implementing.

2.9 Nondiagonal G

The three designs presented so far, all have the shortcoming discussed
in Sec. l.4. The are the products of a design technique which requires
loop transmissions, even when there is no uncertainty. The remedy was

r_ given in Sec. l.4. One precedes the plant with a nondiagonal matrix,

say H = [hij] which diagonalizes the new effective plant PH as much

as possible. The design technique is then applied to the new plant PH,
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In our problem only AV is commanded so there is need onlv for

hl.3 h,, - The others of diagonal elemenrs can be made zero, In

» -

Zetteral, the elements of  d 0 may bhe funcrions of rrequency. B0l as our
primary purpose 1s to demonstrate the new technique, we shall concentrate
on w = 0 , and indicate the procedure which can be followed for w in
general.

Recall from Sec. 1.3, (Eqs. 2.10, 2.13) that the bounds on L .

10
L20 are determined by the requirements that
- SO R S ]
[ 1+ L, ] 2
1
‘i P13
L > : (2.27a,b)
) ) "y l e | Q2 |
131 Qyy 33 | Q4 |
3 |1+L2|2
b23 J

Recall also that it was shown in Sec. 1.3 that the second terms in the
above involving Ql3 s Q23 easily dominated the right sides of {(2.27a,b)

up to about 10 " 15 rps. Hence, it is desirable to make the new Q

13 °
Q23 very large. Let the new P be Pn = PH , so the new
= -l-l— -l = = = =
[1/qun] =H 7P =H [/qu] . Let hll h22 h23 1, h13 a,
h23 = B , the others zero and then i
|
= (P, - aPa) Tt Q= (P, - 8Pt !
3n 13 - of33) o Q3 23 33
(2.28a-c)
Puv = l/qu
If the b13 R b33 values were the same for all flight conditions, then

a reasonable objective, at any w , is to choose a , B to minimize

max l p - aP

13 33{ over various flight conditions. However, in

{

- . . . - . R - - - . R LT C . P B . - s - . - - - . e . . N .
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practice the maximum Av commanded is generally different. Hence, if
sav a constant maximum 2 angle is tolerable independentliy of AV
commandst, then by should he inverselw oroporricnal oo+ A command,d
i
Tols wias assumed here, so dn estimate was aeeded or the maximum A
v
commanded for each flight condition. The estimate was made approximatelyv

on the basis of the Ay needed to achieve amplitude saturation in

earlier designs with lg the maximum value:

Cases 1,6 - 1g ; Cases 2,7 - .6g ; 3,8 - 1g ;
(2.29)
£,9 - .25g ; 5,10 - .5g
Accordingly, we seek to min[max | wl(P13 - aP33)|] , where
Wl = b33/b13 , whose values are now: 2000 , 1200 , 2000 , 500 , 1000
respectively for the cases (1,6), (2,7),...,(5,10). The result is
a =,571 , giving 5.64 for the min. max. value, which is 15 db needed
for Gl at w =0 , instead of 55 (= 34.8 db) neeeded previously.
Similarly, the optimum B8 is found to be .347 , with only 12 db needed
for 62 at w =0 . In principle, this process can be continued as
a function of frequency, but was not done here because there is not
much change in the above parameters up to w = 10 . So a matrix of
constants is used here for H .
Hereafter, the design procedure is precisely the same. New templates
Q must be found, and the values of the new Q calculated for use
uun uvn

in (2.27a,b). The new Q are:
uun

=1 -1
Qia = (Bpp = aP3) 0 O = (Pyy = Py) 7,y

(2.30a=c)

Q3 = Q3+ Py, = 1/Q,

“n

P A - ‘e a—a a ma_ Al amala 3
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Some of these new Qlln R Q22n templates are shown in Figs. 2.29a,b.
] They are somewhat larger than those of the diagonal G design, in
Figs. 2.1, 2.2. But the much greater reduction of off-diauonal
: e¢lements in (2.28a,b) leads to the nondiagonal design being significantly
- more economical than the diagonal. However, this point should not be
i overlooked. The choice of H should consider the effect on the uncertain-
E; ty rangers of the new Quun . A more sophisticated optimization technique
is needed for this purpose. The new bounds on Llo s L20 are shown in

Figs. 2.30a, b and Bode polts in Figs. 2.31 a, b. The new G1 s G2

values are shown in Figs. 2.13 , 2.14 where it is seen that they are

significantly more economical than those in previous designs.
Simulation results are shown in Figs. 2.32a-c: 8, ¢ , A in

Fig. 2.32a; 6_, 6, , 6  1in Fig. 2.32b and Esr, 6§, » S,
in Fig. 2.32¢. In these simulation results, we deliberately commanded
sufficient Ay so as to obtain the maximum avaliable 25o canard value,
except for Cases 3, 8. The commanded Ay values are given in brackets
in the Ay responses in Fig. 2.32a. Exceedingly small B, ¢ values
are achieved in this design, part of the reason being the smaller Ay

being commanded for 6 of the 10 cases. There is no rate limiting in

all of these cases. The Ay commanded are (in g's):

Case 1, 1g ; 2, .8g ; 3, 1lg; 4, .23g ; 5, .58 ; 6, .73g ;

7, .6g ; 8, 1 ; 9, .17g ; 10, .35g . (2.31)
From Fig. 2.13, 2.14, it is seen that this is the most economical

design so far. 1t could, of course, be made even more ecorumical by

incorporating ''scheduling'as well.

.
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2.10 Trade-off between speed of response and rate limiting

It was noted in Sec. 2. that one could achieve smaller peak control

surface rates, by slowing up the Av response. This is illustrated here

for Design 1 of Sec. 2.3-2.5, simply by changing the prefilter F3 . In
Design 1,
F3 = F3a = ?;I%?%EIEET (2.32a)
This was changed to
F,=F 36 (2.32b)

37 f3p T (s+3) (s+12)

The G matrix is not changed, so B , ¢ should be only secondary affected
and Ay slowed up. The gsimulation results for Cases 1-5 are shown

in Fig. 2.33 and should be compared with those in Fig. 2.15. The control

surface deflections 51 , Gi are shown in Fig. 2.34, and should

be compared to those in Figs. 2.16, 2.17. It is seen that it is

[ 4
primarily the IG which are significantly reduced. Hence, this

ilmax

method may be used to trade-off between the speed of Ay response

[ ]
and ‘6

ilmax
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APPENDIX 2.1

{y

COMPENSATION FUNCTIONS FOR VARIOUS DESIGNS
-

Design 1 (Sects.2.3-5)

)
o L. (260) 10° (s+7) (s+60)
S 10~ 72 2 2
(s + .706s + 27.3)(s + 25) (s + 400s + (400)°]

v 4

i G. = (52)10 (s+7) (s+60)

i 1 (s + 25)[s% + 400s + (400)%]
—

PN 5

= L. (5) 10° (s+10) (s+180)

- 20 (s - .0283)(s + 1.1)(s + 60) (s + 280s + (350)°]

] . = -(4.08)10%(s + 180) (s+10)

s 2 (s +60)[s? + 280s + (350)%]

P L. 28, 100(s2+12s+100) (s+200)

i 30 (6% + 4s + 6.25)(s + 25) (s + 60) (s + 600)

o G - _(22.5)(s+100) (s*+125+100) (s+200)

i 3 (s® + 48 + 6.25)(s + 25)(s + 60) (s + 600)

- - 100

o (s + 5)(s + 20)

N

J':':h

1
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_ 30
LT [ (s, (s)V TV
s s s \~ |~
34.9 (1+.1s) /1 + =
. . \ 85
TN T [ s\
s\ | s _,[_s_
\*25) | 1*355 *\350) |
8 (1+.01s) /1 + —E-)
: \ 150
N Y, \
s_ S
P o= 100
3 (s + 5)(s + 20)
Scheduling design
¢ 5, 2
(4.14)10° (s“+12s+100) (s+75)
P Lig =
. 2 2 2 2,2
(s°+.7068+27.3) (s +455+625) [s“+136s+(170) “)

0.84 x 105(52+125+100)(s+.75)(l+s/so )

Gl-

(sz+455+625) [sz+136s+l 70) 2] 2

- (1.029) 10" s+5) (s+30) (s+60)
20 (5_.0283) (s2+488+1600) [s2+170s+(170) 2] ~(s+1.1)

-(4.195)109(1+.25)(s+30)(s+60)(l+s/so)

2

(s°+488+1600) [8°+170s+(170)
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(4.8)10% (s+25)
L

30 (s+3) (s+10) (s+400)
= 38.3(s+25) (5+100)
3 (s+3) (s+10) (s+400)
P - 100
(s+53) (s+20)2
L, = 1

i = 64Q4;(eld) T 7756

Nondiagonal design

(93.6)106(s+2.3)(s+l4)

L =
(5+6) (s240.2965+5.4) [s°+83s+(83) 212

10

(44.6)10% (s+2.3) (3+14)

G1 =

(s+6) [s2+83s+(83) 212

(50) 108 (s+4) (s+40)

20 (5-.0264) (s+.957) (s+10) [s2+200s+(200) %12

5.2 x 105 (s+4) (s+40)
(s+10) [s2+200s + (200)2]°

1.2
G F
3 1 +1.67s
- 100
- Fy

(s+5) (s+20)
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CHAPTER 3
VERTICAL TRANSLATION MODE (az)

Ciruncer 3 is Jevoted to a longicudinal mode in which ver-:
velocity (Vz) and pitch angle (°) are the output variables of
interest. The plant inputs (5i control surfaces) are the elevator

and flaps (Fig. 3.1).

3.1 Plant equations

The plant equations are gotten from [12, pp. 292-8], modifi Lor

inclusion of flaps. The parameters are defined in

y= [u, w 8]' , 6= (3,» af]' (3.1a,b]
Ay = BS§ , z = [a, 6] = My (3.2a,b)
s-Xu Xw g cos
A= -Z s=-2 ~-Vs (2.3)
u W
0 -M s(s-M
w q) J
o . L
Mg X B ~<ps ~Cpe
s f 2 m o
pSV -C =C
B=1|X A S—— L3 Lf
I 2 = —= (3.4)
MG Mf CCMG cCMf
I T
L §,. 0 T,
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11

12

21

P22

LA MR uagh s e vest ene aand S

0 s 12.652—sV
M= (3.5)
0 0 1 /
Since P 1is defined by z =P3s , we have z = My = Ma~lB s , so 4
P=ma"tg = [p, ] (3.6
= 1] .6) 4
~
X, = -pSVCD/m , X, = DSV(CL—CDa)/Zm
X = -osvic_/2m X, = - Svic_./2m
DS £ Df ’
2
M, = pSc°C /f4I , M, = pSVeC_ /21 s
w MG y M M y
2, = -oSVC /m z, = -pSV(C, +4C)/m
) ) ~ (3.7)
Zg = -0SV cL6/2m » Zg = -pSV ch/Zm ,
M = DSVcZC /41 M = DSVZCC /21
q Mgy 8 M8y
2
Zw = -oScCL&/Am , Mg SV chf/ZIy
zq = - SVcCLq/4m J
oSV2 4 3 2
a —=——— [p,,(1) s + p.,(2)s™ + p,.(3)s” +p. ,(4)s] (3.8a)
2 det a4 11 11 11 11
oSV2 4 3 2 4
" Zdet & [P1a(Ds + pp,(Ds™ +p ,(3)s” + p,(4)s] (3.8b)
r
sv? 2
"2 det a [ PnDs” + Py (2)s + 9y, (3)] (3.8¢c)
osv? 2
* 7 det & [P2a(1)s” + py,(2)s + p)) (3)] (3.8d)
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921(1)

(2)

Py (3

L e

b21 + 12,

-b

01100

+b31(12

b1 1351232701 23,K, Vb, (a

b2 +12.6b

12 2217

(a M +12.6a

+b32(12.

b12321332v b22 32X V+b32(a a,,-VX Z +a )/

b31

21 2327

by18,y,855thy 33K+ by (X 22 53y,) )

Aad o aoa s

112217 21

M +l° 6a k‘ M +iling \ T,
q >
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6b5) D

(X +M )=~12. 6b21332-12.6b31(xu+2w)

21" 32 432 32 (3.9%a-d)

'Gxuzw+vzw_12'6312821)

2121378, 2, 31220

V)
~

32

(X +M )-12.6b,,a -12.6b32(Xu+Zw)

22 22732

)+b22(XuMq+12.6a

21232

32Xu+a32V}F r (3.10a-d)

6XuZw+VZ -12. 6a12321)

212137 %u%w 212821

(3.11a-c)
31(X +Z )
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-b (x +Z, ) r (3.12a-c¢)

228327 32

= By g@5)835+b,5035, X *0 (X 273104 J

v+xu(zw+uq)-a ]

21212

4
det A=3 -5 (Z +Mq+X )+s [z M +a32

(3.13)

-s[X (2 M +Vagy)-a, a) M 1+a, a9 4

Q. = psv? QQ
11 2 det A

[P,y (1 s74p,, (2 s+p, ()]

. -osv’ RQ

2 det A

12 4 3 2
[plz(l)s +p12(2)s +p12(3)s +p12(4)s]

(3.14a~-d)
?'

. -osV QQ
QW1 * 7 det &

[p,) (1)s%p,, (2) 54D, (3]

QQ
Q - pSV2
22 2 det A

[Py, (s 4p () s™4p (DsP+p  (4)s]




Q(1)

Q(2)

Q(3)

Q(4)

Q(5)

Q(6)

Q

...........
.............

= P11 (Dppy(L)=py, (1)py, (1)

= p11(3)p22(l)+pll(2)p22(2)+pll(l)p22(3)-p12(3)p21(lr

Py (DPya (D4 (D)pya(2)=py 1 (D)py (D =p, ((L)p,y) (2)

-p12(2)p21(2)-p12(l)p21(3)

= p11(4)p22(1)+p11(3)p22(2)+p11(2)p22(3)-p12(4)p21(1)

-p12(3)p21(2)—P12(2)p21(3)

= 911(4)922(2)+pll(3)p22(3)'—p12(4) p21(2)-p12(3)p21(3)

Q(1)s%+q(2) 8%+ (3)s*+q(4) s>+ (5)s%+Q(6) s

-
. e

? (3.15a-g)
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3.2 Flight conditions

As in Chapter 2, there are five different combinations of mach
and altitule. The aerodynamic coefrficients CLi ’ CMi N CDi of the
Tables below are functions of the elevator and flap angles, and were
supplied for five different values of elevator angle and for two of
flap angle. Since these surfaces work generally in opposite directionms,
only such combinations were used, giving a total of five cases for

each of the five flight conditions - a total of 25 different sets of

plant parameter values. Some of the data common to both the lateral

and longitudinal modes, has already been listed in Tablle 2.2, so is

not repeated in Table 3.1.
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3.3 Transfer functions for 25 flight conditions

The fransfer functions for the 25 flight conditions of Sec. 3.2,are

in Appendix 3.1. Those of the elements pij of P = [pij] , as well

1

as thusde OC the inverse o ~ = [l,ﬂijl are presented. oain’
e, .
refers to the high-frequency gain factor. Thus pij - kij/s Hooas
" 11
s +® . and "gain refers to kij for pij or Qij , as the
case may be.
3.4 Problem statement and response specifications
t
The original problem statement was "Vertical velocity v, = f A de
0

is commanded. This is to be achieved with very small effect on the
pitch (8) angle -would like 0.1° max., but .5° may have to be
accepted. The elevator and flap are needed for this purpose. For

test results and responses see "uz mode response” (Fig. 3.2b here) --
try for sFeady state achieved in < 4 seconds, hopefully in 2 seconds.
Re maximum values, see how much can be done. About 25ft/sec. rate of
climb was about the maximum achieved in test results, but more would

be desirable".

Suppose we allow .165° for 0 due to 25 ft/sec. Thea b of

21
Chapter 1 (the equivalent of Table 1.1 for n = 2, and of Eq. 1.2) is

.165

-4
21573 <35 " (1.15)10  (-78.7db) . (3.16a)

b

To find (a ), suppose we use a critically damped second-order

11’b11

model, and ask for 902 response in 2.8 seconds. From the response curves

at & =1 e.g. [13,p. 200], this corresponds to Wy 2.8 =4, so w, = 1.4,

We shall use w, = 1.4 , i.e. the Tll(s) model is




2
T (s) = ——Led) . (3.16b)
s +2(1.4)s+(1.4)
and shall use ITll(jw)l = bll(W) » because preliminarv examination

b1 33
will be very large, so A Tll(jw) due to varying flight conditions will

indicates that as in Chapter 2, (j~)+ (bere, ot (j=): cthere)

be small over the important w range. Accordingly, bll(w) = {Tll(jw)|

is sketched in Fig. 3.2a.

3.5 Bounds and design of Lzo(jw)

The equivalent (for n = 2) of 021 of Table 1.1 is used, written
as
b |, |
D ' 633 K L, = 6,0y, - (3.17a)
21 21
In the low w range, |L2| >> 1 so write 1+ L2| = |L2| = |G2Q22| s

so (3.17a) can be written

4
b (.86)10 b
o 2 | 5w U (3.17b)
21721 |Q,, |
Clearly, at any given w , min |Q21| is needed, so we prepare asymptotic

plots of |Q21(jm)| . This was done only in cases la to 5a, shown in Fig. 3.3.
We also want to check when the approximation 1+ G2Q22| = |G2Q22| is no
longer valid, so similarly prepare asymptotic plots of |Q22| , shown in

Fig. 3.4. Case 4a was chosen as the nominal case. With these sketches, it

was relatively easy to prepare Table 3.2 based only on Cases la-5a.
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For w 2 10 , we use the constraint |l + Loo! < 5db , and

use the templates of Q22 to obtain the bounds on Lzo(ju) , which are

shown in the Nichols Chart in Fig. 3.5. Some templates of Q72 needed

Ior this puroose, are shown in Fig. 3.on. MNoie oo
half-plane pole, which must be present in qu sy SO Arg L?O = -180°
at w =0 . By cut and try a Lzo(jw) which satisfies the bounds

of Fig. 3.5, was found. Its Bode plot is shown in Fig. 3.7, and it is
also shown in Fig. 3.5. The resulting |G2(jM)| is sketched in Fig. 3.8.
The dashed lines show the greater reduction of [GZ(jw)[ vs w that
may be achieved (should this be important) by adding a zero at -400 and

a pair of complex poles with & = .3 and wo = 800 .

3.6 Design of G, , F

1 1

The exact equation for Tll(s) is used to determine Llo(s) . 1t is

F,L.(1+L,) Q.,Q
171 2 11722
T..(s) = , Y= ———— L, =G, Q . (3.18a-c)
11 (1+L1)(1+L2)-y Q;,9; i i Vii
This can be manipulated into
F L* L
*
T8 =S, L e —— : (3.19a,b)
1+I.1 1 - —Y
1+L2

Since (3.19a) is exactly the expression for a single loop system with

plant
Q
* 11
Q,, » ———=—— . (3.20)
11 1 - X
1+L2

single-loop synthesis theory [3] may be used to find the bounds on

* %*
Lo ® 61930 >
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x Q

110 Y
1 - 9

110

L
)

l+LqO

Q110 Yoo

Q12010

~

*
To do such a design, the templates of Q11 are needed, and are

*
available because L20 is known. Some of these templates of Qll are

*

shown in Fig. 3.9. The small circle marks the nominal Qllo . In order

*
to get an idea of how large G in L. =G must be, in order to

1 17 6,

*
llO(Jw) in Fig. 3.10, and

see that it is very large over the bandwidth of Tll(jw) . A Nyquist

handle the Tll(jw) problem, we sketch Q

*

sketch of Q110 makes it obvious that it has a net right half-plane

pole} excess of right half-plane poles over right half-plane zeros = 1 ,
*

so Qllo(s) was factored on the computer and found to have a pole at

3.94 (due to Q220)

*
There is no need to find bounds on L10 ,» because it is so easy to

* *
have |L1/(1+L1)| almost invariant over the significant w range of
Tll(jw) . Rather Gl(jm) is simply chosen to achieve reasonable

stability margins for Tll over the various flight conditions. The

*
correspondingly Llo(jw) chosen is sketched in Fig. 3.11. The locus
*

*
1" GlQll(Jw) , 1s shown in Fig. 3.12, with the

of the templates of L
*

triangles marking LlO .
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'fﬂ Finally Fl(s) is chosen to achieve Tll(jw) of Fig. 3.3.

r' The compensation functions for the above design, are:
h O e ]
- 5,(s) = - ‘
= - (L+ 5501+ 555 ) (L + 5255
-2 230(1 + 2 (L + S)(1 + =2)
- G,(s) = 4.3 y 80 5 ~ (3.22a-c)
. (1+%)(1+%)[1+%+(fﬁ>]
i
= Pl = = 1 e
L+ 57+ (g) J
3.7 Simulation results
Computer simulations of the design are shown in Fig. 3.13 for commanded
Vz of 25 ft/sec. and it is seen that the specifications of Sec. 3.4 are remark-
g ably well satisfied. Also, for this Vz command of 25 ft/sec., the saturation
i value of df(20°) is exceeded moderately only for Case 3 (mach .9; alt. 0 ft).
] The rate saturation value gf(56°/sec) is exceeded onlv for Case 4 (mach .6;
;; alt. 30,000 ft.)
:; Fig. 3.14 shows the faster responses achieved by using the faster prefilter
v

F1 = 1.,4/(s + 1.4). 1In both cases, the results are highly satisfactory.
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APPENDIX 3.1

Transfer Functions tor 25 Flight Conditions

- ‘ - e, av

"Gain" refers to high-frequency gain factor.

Cisz " 10 (2,R)  MzaNS A+l
T 4 = - 710,
- -
(= . o e -1 - ) ( ,,‘3( ol el T - )
(=" .017_=%4vy =0T ) ( e O ] L aw )
P_L-S JF PLL
(=J:6)4i 421, CHC ) ( )-1426_*94. ;oc _ )
(=C51332=0Ll =02 7005=01) {=0e158c=Cl,y, UeT55%E-C1)
Gl PL2 = -194,
77655 IF P12
(=(s «932+Cl, Q:0 } { Jo292E+(C1, oG )
(=2:23-=C1, (50 } { ¢oC y JacC )
A S £ RLe
(=Jsb)ec®vlly Couy ) ( v.‘.‘_’.{g*glv -)O»:__ . )
(=25153==Cls=Cs 132%=01)  (=Jel32Z-C1y Jel133=-C1)
3318 P o= -1%06S
(TR 2SS 7= P
(=J)s127+4Cl, C:0 ) (=16 72CHZ-Cly Jol )
PILZS JF P21 ]
(~Jo @4t +C1l,y, CH»C ) ( Qe i4c¢E*Cly JeoC }
{-05155c=C1ly~-Cs 755E=01) (=Uel53e€=Cly Ce755E-Cl)
GALlY P22 = -1+%0C
2.38S CF P22
(=J>2%«c+3ly 350 ) {(~Jec72E-Cly Q4C )
PILES 1JF PZ2
(=0,404z+U1ly U510 . } { Oel42E+Qly JoC }
(=J3,155~~Cly=Ce 75%E=31) {(=Uel59E=Cly Ce7H55E=C1)
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Ql1(9) = Cs
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GAIN Q12 = -1lcel
Q12(¢C) = =20e5
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-0s211E~01, 0.0
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(=0.211E-01l, CeC

POLES OF Q21
{-0.157E+CLl, Co0

GAIN Q22 = 8.
Q22(¢0) = 3. 70

Z ROES OF Q22
=0s211E2-01y CeC

PCLES OF Q22

(‘003296*011 0.0
‘0.2775 011 Ce @

( Jed
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{ Je352E+(C1,
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CASE NC. 18

GAIN P11l = - 384,
IERCES OF Pil

(‘Co :‘:ZQE*C.Lv C.C )
(=Qe2632=-Cly CeC )
9ZLES CF Pll
(=Qe2deE+Cly ChC )
{=0e155E=Cly=Ce 755E-C1}
GAIN P12 = -184,
ZERCES QF P12 '
(-0e.480E+Cly 0WO )
(~0e253E-01y QeO )
PCLES QF P12
{=0e4Q4E+Q1ly Qo )
(=06 155E=Cl +=Ce 755E-01)
GAIN P21 = ~20e7
LERGES OF P21
{(-0e1572+Cl, Cs O )
PCLES QF P21

(=06 4Q4E+Cl, CeaO )
(=0el155€=C1ly=Ce 755E~Q1)
GAIN P22 = =190
ZERCES OF P22
(=0e244E+Q0l, C,0 )
POLES QF P22
{-0e404E+Ql, Ce O )
(=06 155E-Ql y=0e 755E=01)
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{A,B) MEANS

TR WU G G G .

A+ JR

[&] &)

[#] @]

O
°
[ole]

QeC )
0e¢ 755E=-C1)

0.0

0.0 )
0e755E=C1)

QeC

QeC )
0.755€~-C1)
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G&IN Ql: = Oel&lE+0Q4
11 = Ce

IZRCES 2JF
(=04226C~
J

PCLES
(=0,244c+0 .0 ) (-060272E=Cls OsC )

GAIN Q12 = =16.7
Ql2(Q) = -2746

ZERCES OF Q12
(=Gs226E=Cly Cu0 )

PCLES OF Q12
('OO‘GCE’CID 000
(=06253E=C1ly GCeO
GAIN Q21 = -148,
Q21(0) = Ce

ZERCES JF Q21
(=0s226c=Cly Co0 ) (0.0 y 0.0 )

POLES _QF Q21
(=0,157E+Cly Qe O

GAIN Q22 = 8.00
Q22(0) = 2,70

ZERDES OF Q22
{=00226E=-Cl, CoO )

PCLeES  JF Q22
(-Q0825E+Cl, CeO
"002685'01’ Ce O

3

i3%¢c.0 ) 0ed y 0eC )
F Qil
+01

- -

{ 0352E+Cl,y 0.0 )

—

-

('0-2985'01' CeC )

{ 0,686E+Gl,y Q0.0 )
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~ CASE NGo 1C (A,8) MEANS A+JB

IN PLY = -442,
- I13RCES JF P11l
- {-Jedcwc+lly Ca 0 ) ( Je&3825+Cle CeaC )
R {-Ce2SZE=-CLly Tl ) { Je0 v CeC )
pPCLzs A4JF Pl
(=Qeavac+Cl, g ( Jel42E+Cls JeC )
{-0e¢155E=Cly=0e 755E=01l) (=04155E~Cl,y Oe?S5E=-Cl)
.GAIN P12 = -207.
ZERCES GF P12
(-Qe404E+0l, Qo0 ) | 0e334E+Cl,y CWC )
("00272E-011 C.O ) [} ? .O )
PCLES QF P12
(=Q0e 404E+Ql, C ( 0s0142E+01,y Q.0 )
(=0e¢155E=Cly=0¢ 755E-01) (=04155E~Cly Je 755€E-~-Cl)
GAIN P21 = =2345
ZERCES JF P21
(-Q0.158c+Cl, 0.0 ) (=0,287E-Cly 0.Q )
PCLES OF P21
{-Qe404E+CL 0 { Qel42E+Cly QeC )
{-Q0s155E~ Glp-0.755E 01) (=0e155E~Cly 04 755E~C1)
GAIN P22 = -1.85
ZERCES OF P22
(-0e2615+Q1,y Qa0 ) (=0,290E-Q1l, 0.0 )
PCLES OF P22
(-0e204E+0Q1, Q { O0e14ZE+Cly Qo0C )
(=06 155E~=Cly=0e 755E=01}) (~0e155E~Cly Qe755E-Cl)
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ZERGES OF Q21
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Fig. 3.1 System structure for longitudinal pltch-pointing mode (al)
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Chapter 4
DESIGN OF .75 0L TRANSLATION (- )) MODE
-.l Problem stiatenent
In this mede th. plant inputs are listed as SC ’ fr , 4

(canard, rudder, aileron), and its outputs are: side velocity
v = IAV dt , yaw ¢ = fr dt , roll ¢ (Fig. 4.1). The objective is to

achieve a commanded side velocity v with small yaw @+ and small

roll = angles. For a command of V. T 60 ft/sec, we shall aim for
¢ 1% for .1 , and £ 2° for il . Hence
1
E — - . = = - V/
b21 (G0)57.3 70 db ; b31 2b21 64 db . (4.1a,b)

As for bll , Wwe take in the meantime the model

2 -1
><1+%> ] (4.2)

Tll(s) = { (l + %3

.

whose Bode plot is sketched in Fig. 4.2. We do not consider the lower

bound a

ll(w) for lTll(jm)| at this point, because in the previous

designs the corresponding loop transmission was so large that the Tii
(T33 in Chapter 2, T;; in Chapter 3) was almost invariant over its

important w range.

4.2 Plant equations

While the plant system here is essentially the same as in Chapter 2,
there the variables of interest were sideslip 3 , roll ¢ , side
force Ay whereas here they are side velocity, yaw and roll, so we get

different plant equation. In (2.1), yaw was not present while side slip

. - l. I"’- - - B
RICREN . . . . . « o . . - . *
Pr T TUS AT T G T ¥ T B D T U R PR e PR PSP I TP PR W W QS A S W F .y

W




was in the output vector

But the procedure for finding the new

y .
plant matrix is the same as in Chapter 2, so is not repeated here.

(3.3

of

The elements

are given in Table 4.1 below, in which the entries are of the

Q

[1/Qij] for the ten cases liated in

2

<

Chapter

form

except for

3 2
= -+ /
Qi3 S[Dijs + Cijs + A J.s Bij] (4b)

L a8 ‘< f W - -3 a A ‘
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r;v‘.
Eﬂ 4.3 Design of L3
-
{1:1 The inequalit+ to be satisfied is
| Qg4 | , Q5 )
> b l — ) +b —_=
L] Qyy 21 | Qg5 |
[1 + L3| 2 =B . (4.5)
b 3
31

s Q Q

- For w € {0.1,5] , b eI O - B. > 60 db , so
; 11 | Q,, | 21 | Q, | 3

! 32 32

: we need

LT b Q

ey

Sl 1 +1,0 gil 23560 a0 . (4.6)

3 31

Since |L3| = |Q33G3| > 1, |1+ L3| = |L3| (4.6) becomes

c b

2 6,0 » —2L : (4.7
K 31| 3l|min

The resulting bounds on |G3(jw)‘ are shown in Fig. 4.3, and on

_;jf L30 = Q330G3 in Fig. 4.4,
Efi For w > 8 1in (4.5), B3¢§0 db, so the only requirement is stability
0 of (1+L,) and a reasonable margin |L3/(1+L3)| Su 3 uw=354db was

chosen. The results are shown in Fig. 4.4. Some templates of Q33 are
N shown in Fig. 4.5. At low w values, a right half-plane r le of Qs34
near the origin and a zero at s = 0 (recall (4b)) dominate, so we use

G3 ~ -8(s+0.1)/s for w < 5 , which handles both w < .1 and the

- requirement |G| > 5 for w € [0.1,5] . The final Lyg = Gy Q35
" chosen, is shown in Fig. 4.4, with
4
\':*.
A Ts,
L
AN
~
SR

'I'

Dy Eaihn s v - - Py Padlie Pl




—0.8(l+lOs)<l + ;E—->
G3(s) = S . (4.8)
s (1 *55 <1 * oo
4.4 Design of L2
The inequality to be satisfied (see Chapter 1), is:
o | B2 | eny | %2 |
11| Qy [ Q31
1 + L2| 2 = B, (4.9)
by
Q Q
For w € [.1,5] , 11 63% ’ >>b31 622 [ , and 32 > 70 db , so
21 23
as in Eqs. [4.6,7] , we need
b
|G2[a — 2 30 db . (4.10)
b,119 |
Q Q
For w small , b3l 622 >> 11 633
23 21

because of the zero of Q23 at the origin, so G

2
at the origin and its low frequency form is
g, ~ 210+ 1) K > 30 db (4.11)
2 s
see Fig. 4.6. For w > 15, B2 ~ 0 so the only demands are of
stability and suitable margin for ]Lz/(l + LZ)I . The template of
sz determine the resulting bounds on LZO’ see Figs. 4.7, 4.8,
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LT —

L (j~) 1is sketched in Fig. 4.8, and

-3.1(10s+1) (. 1s+1)

r3 Voo
—— + 1t -
YS! i

N
\ -

GL(s) o=

(-1

5

4.5 Design of Gl

As in Chapter 2, the exact equation is used for the design of

the final loop involving Gl . The exact expression for Tll is
manipulated into the form
N
F L* Q
_ 1L * o * 1L
T === » L =e,6 o 9t
1+L
1
o Y12(1+L3)+Yl3(l+L2)-r
(l+L2)(l+L3)-Y23
u (4.13a~£)
Q.. Q..
Yij = X 1] .
QlJ jS
1 1 1
I'=q,,Q,,Q [ +
7227331 Q%3%; 99%%3 )

The design of F G is therefore precisely a single-loop design,

17 71
*
for which Ref. [3] is highly appropriate. Templates of Q11 are obtained

(Fig. 4.9). These are used, as described in (3}, to obtain bounds on

* * *
Lig » such that A|L1/(1+Ll)| does not exceed the allowed range. The

bounds shown in Fig. 10 were used here. The upper bound does not correspond

T results. If it

to that used in Fig. 4.2. This may affect the T21 v Ty

Bat e, . . . el oo st e s, - e L - PP S P BIP WP T WP P, PPN W . Y Y S -‘L.i
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does do so too much adversely, we can redesign Fl . In any case, the
resulting bounds on LIO are shown in Fig. 11, as well as LIO with
o, _ 0.0L(>s+] .
G080 = S+ D ekt

which involves very little bandwitdth for Gl(jw) . (It might be a good

idea to make G1 larger.) Two choices of Fl were tried

0.3 . . __0.5
la (s+.3) ’ 1b (s+.5) ' (4.15a,b)

4.6  Simulation of Design

The two designs (Fla, Flb) were simulated on the digital computer.
The results are shown in Figs. 4.12, 4.13 respectively and are seen to be
very good. The commanded v was adjusted so that in most cases, one of
the control surfaces (it was GC the canard) saturated. The yaw and
roll values obtain. : are very small.

Obviously, tne v responses with F are faster than those for

1b
Fla . However, the canard then saturates for some cases (those with

some overshoot) at smaller commanded v values. One could perhaps
eliminate the overshoot for these cases, by careful examination of

these cases, and this would be worth doing in a design meant for actual
implementation. If the overshoot in some of these & responses could be
eliminated, the limiting factor in speeding up the response of v would

'y
be the saturation values of the Si rather that those of some of the 5i

In any case, the results achieved nicely satisfy the specifications of

Sec. 4.1.
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4.7 Use of Digital Compensation

Digital compensation is becoming increasinglv attractive, due to the

tremendous progress in m.:roprocessing. The sampling causes the compensation

L

function to be nonminimum nhase | . but the extra ~hase lic decrenses os oh
sampling frecuencey s increased. [ sophisticaszed digical cesion, e oL
have several parallel digital compensations with different sampling rates. The
networks with smaller bandwidth in their transfer functions could be assigned
larger sampling periods. 'fhe optimum arrangement of such parallel compensation
is worthy of study. In the present case, we simply replaced the compensation
functions in Design 1, by equivalent digital networks. Tustin's method [ ]

was used in which s is replaced in the transfer function by

(4.16)

Different sampling periods T were tried and it was found that T = .02 seconds

gave the satisfactory results shown in Fig. 4.14.
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Fig. 4.2 Bode plot of bll(w)
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Chapter 5

DESIGN BASED ON NONLINEAR MULTIPLE
INPUT-OUTPUT PLANT MODEL

5.1 Nonlinear MIO Design Technigue

In the preceeding chapters a linear MIO (multiple input-output) model
was used for the plant. Such a model is only an approximation of the more
accurate nonlinear model (Eqs. 5.1-5.5 below). Our design technique is able
to cope precisely with a large class of highly uncertain nonlinear MIO plants.
It is emphasized that the design technique is exact. The rigorous develop-
ment of the technique with two detailed numerical examples, is given in [ 4 1.
For the sake of completeness, a qualit&tive description of the technique is
here included.

Let y; = wx, be the nonlinear relation between a n-vector X, of plant
inputs and a n-vector Yi of plant outputs. Due to uncertainty w ¢ W, a set.
Let there be n such (xi,yi) vector-pairs, forming two nxn matrices
X -(xl,...xn), Y = (yl,...,yn) with the x, -vector the ith column of X, etc,
and Yj = wxj; j=1,...,n. It is assumed that the n xj are an independent
set, as are the n Yj' Let the matrix P of transfer functions be defined by
§ = Pi, where ; is the matrix of Laplace transforms of the elements uf Y,
etc. The P matrix is denoted as the LTIE (linear time invariant equivalent)
of the mio nonlinear plant W, with respect to the n-vector Y set of outputs.
A different X,Y set gives in general a different P, when w is nonlinear.
Repeat the process over a set Y of n-vectors, to obtain a set of LTIE
plants. Repeat over the elements of W = {w}, to obtain an overall set
P = {P} of LTIE plants. This set P is the LTIE of the set W, with respect

of the set of n-vectors ¥ = {Y} (or the set X = {X}).
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5.1.1 The barrel analogy

The following analcgy may be helpful in comprehending the LTIE idea.
Imagine a barrel V = {y: of all the desired n-output vectors the nconlinear
plant is supposed to deliver over its lif.. Also there 1s a barrel
W = {w} of all possible nxn nonlinear plants, due to the parameter uncertainty.
We create by the above technique, a barrel P = {P} of nxn linear time
invariant plants, which has therefore the following property. Suppose one
picks any wi from the W barrel and any yj vector from the Y barrel. Then

there is a n-vector xij of inputs, such that vy, = w_.x Then in the

3 i1y’

P barrel, there is guaranteed to be a Pij' such that Y, = P Thus, the

R, SR
] 1] 13

P barrel is equivalent to the W barrel, with respect to the Y barrel.

The vital point is that the designer can forget about W. If he

makes a proper linear time invariant design for the P barrel, then this
same design is gquaranteed to work for the W barrel. By a proper design for

the P barrel, it is meant that the actual plant output is a member of the
desired output set Y, no matter which P in P is used as the plant. Thus,
the nxn nonlinear uncertainty design problem has been converted to a nxn mio
linear time invariant uncertainty problem. It is important to include in

Y a good sampling of all the desired nonlinear plant output vectors,

because the linear design is guaranteed to work only for the P set which

is generated in the above manner by the W, Y sets, i.e. P is a function

of ¥ as well as of W.

5.2 The Nonlinear Plant

Because of the nonlinear coupling between them, the 2x2 vertical

translation (a ) mode of Chapter 3 and the 3x3 lateral translation (82)

F" mode of Ch. 4 were combined into a single 5x5 nonlinear plant: i
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Control inputs: Elevons Ge, flaps Gf. canards 6c’ rudder Gr' ailerons Sa

Plant outputs: Vertical velocity v, gitch angle 39, lateral velocity vy,
yaw angle 7., roll angle 3.

Command 1anuts and oerformarce tel-ranc-s:  Tawre are Iommanc-d simulcan.-cusiy

vertical velocity of 25 ft./sec. and lateral velocity of 60 ft./sec., with
tolerances on these outpus as in Chs. 3,4. The other tolerances are:
pitch angle © < 0.165, yaw ¢ < 1.0, roll ¢ < 2, all in degrees.

Nonlinear Eguation of Motion

Ix - I Txz My
b= arty - fryopaty
X X X X
I, L Xz 2 Xz 2 EX
q = —— . — - —— + - -
q T Prr+r I - p +3 (5.1a-c)
Yy Y Yy 4
Ix - I I M
t=2XLgps+ Xp - Xgr+2
I I I I
z z z z
Fx
.=c - . + ——
Q= ver - wg+ =
F
¥ = wp - ur+ ;X (5.2a-c)

Z
W = u-q - rep + ;—
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M = 2 PV Sblc, + Cosr°r “¢sa’a esc’e 2v (Ceer Tt Cﬂp p)]
" - - N .
.v:y =3 o\ DC[CmS 3 Lméfkf + Cm v \Cmq gl (3.3a-c)
M =2ovshlc 6 +cC .8 +c. 8 +c +B2 c rec )]
2z 2 nda a nér r néc ¢ n PAY nr np
F_ = - mg sinf + 1 ovzs[c § +¢C §_+C ] (5.4a-1)
P 2 x8e e x8f £ X :
F=chosasin¢+—l-pVZS[C §_+Cc . 8§ +Cc _ 8§ +¢C +b—(C r+ C p)l
y 2 yér r yda a yéc ¢ Y 2V Tyr ypP

1 c

= ] + = V2 —_—

Fz mg cos cosé > P S[Czsecse + czéfc + cz + v (Czqq)]
Fz t F t
A ==, V=JAdt; A =X, vy JAdt
n m z n m y y
(o] o]
§;=p+qtanesin¢+rtanecos¢, ¢=f&,dt
6 = qcos ¢ - r sin ¢ ' 8 =j6 dt+90 (5.5a-f)
: r

. cos ¢ sin ¢ - .
p=r (cos 8)’ *taq (cos 9) ’ v J v de
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V = Total velocity

= i A =
ao Trim AOA ( 0 ao)

= , = V si
uo V cos ao wo sin ao

(5.6a-e)
u = J a dt + Uy, v = I v dt, w = [ wdt + w
a = tan_l bl : B = sin.l Zz
u v

Strictly the aerodynamic coefficients Cij are functions of @ and 8.
However, here they are so restricted in magnitude by the specifications that.
they are effectively constants. The nonlinearitiés are due to the
multiplication, etc, of state variables in the above equations (5.1-5.5).

5.3 The Nonlinear Plant Input-Output Sets

Formally, the LTIE P set is obtained by picking any y vector,
solving for x = w-ly and repeating over Y and W. This is one way, which
was used in [ 4 ]. Another way is to simulate the nonlinear plant and try
to drive it in such a way as to produce the kind of y vectors required by
the specifications. This is normally very difficult, but in this problem
we already have the linear designs of Chs. 3,4. So the same f,g elements
were used as compensations around the 5x5 nonlinear plant, the entire system
simulated on the digital computer and subjected to the inputs listed in
the specifications. It was hoped that the nonlinear 5x5 plant outputs
would not differ very greatly from those achieved separately in the linear
2x2 and 3x3 designs. If they did so differ, one could experiment with other
command inputs and hopefully find some which would result in the desired

output vectors. It was an experiment worth trying.
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The results achieved were very interesting, because they were
closely similar to those achieved in the two separate linear designs. This
is seen by comparing the two. Figs. 5.1 a,b (nonlinear results) should be

comgpared with 3, Se curves respectively, in Fig. 3.13 (p. L&%),

£
Figs. 5.2a,b with the 6, v, curves of Fig. 3.13. Each of these gives the
results for the five cases listed in Ch. 3. It is seen that case by case
the curves are very similar. Figs. 5.3a-c present the nonlinear results

for v,y,¢ (cases 1-5), to be compared with the linear results in Fig. 4.12,

p. 183 for the same variables; Figs. 5.4a-c (nonlinear, cases 6-10) with

-

the linear results of Fig. 4.12, p, 184; Figs. 5.5a-b for Gc, ér' Ga

(nonlinear, cases 1-5) with Fig. 4.12 (p. 185) linear results:; Figs.

5.6a-c (nonlinear, cases 2-10) with Fig. 4.12 (p. 186) linear results.

It is seen that case by case, the results are very similar for both the
control inputs and the plant outputs. This proves that the LTIE of the 5x5
nonlinear plant (combined lateral and longitudinal) for the above cases, and
for this class of plant outputs is essentially that used in the two
separate, decoupled linear problems of Chapters 3,4. Hence straightforward
application of our technique to the resulting 5x5 LTIE problem would
undoubtedly result in the same f,g compensation functions obtained in the

two gseparate 2x2, 3x3 designs. In fact our nonlinear simulation with these

compensations has already been done. There is no need for any more work.

- Figs. 5.1-5.6 are indeed the simulation results.

ii The above results suggest that at least in mio flight control

; problems, it is worth doing first a design based on linearized models, before

embarking on one based on the more accurate nonlinear model. The compensa-

tions resulting from the linear design may then be tried for the nonlinear
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plant. Comparison of the results with the linear system, indicates how
serious are the nonlinearities. In the above example, the results would
undoubtedly be significantly different if the 1,3 ranges were much larger,
suci that the cij are then in th2 strongly nonlinear rang-s of tnese

variables.
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CHAPTER ©

FUSELAGE YAW POINTING MODE (81)

In this mode =he control surfaces and the plant cutiuts are tie same
as in Chapter 2 (Direct Side Force Mode), so the same plant equations apply,
except for the numbering (see 6.2).

6.1 Specifications

Part I 2x2 System

Ninety degrees roll (¢) is commanded and the sideslip (B) is to be main-
tained as small as possible with +2° as extremes. Time to roll 90° is to be as
small as possible (0.75 sec if possible) with little or no overshoot. After
steady state has been achieved, a sinusoidal roll is commanded as in fig. 6.1l-a
tentatively up to 13.5° amplitude and period bounds .5 to 2.5 sec (.8 7 to
4 m rps). The roll output is to be within the tolerances given in fig. 6.1-b
where ¢c is the commanded roll, i.e. error < 15°. The two control inputs are
the ailerons and the rudder:; the canard input is not used.

Part II 3x3 System

Repeat part I with sideslip step command added after steady state has
been achieved, as in fig. 6.1-c. The resulting side-force is to be less than
0.2 g and the canard is now used. The sideslip output is to be within the
tolerances given in fig. 6.1d.

6.1.1 Compatibility of Specifications with
Inherent Capabilities

The control input numbering is (1) da-ailerons, (2) Gr-rudder,
(3) Gc-canards. The outputs are (1) ¢-roll angle, (2) B-sideslips,

(3) Ay-sideforce.
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2
Part 1: For the roll step response, the transfer model T [(S/Jn) +

11
1.6 (s/vn) + 1] was used with damping factor > = .8 to achieve small
cwarsncnt: = S in order to ashtove f1-al valu~ crosaicog at oo VTR,
and An = 8 was tentatively tried as an ugger tound oo Tll(}g). Consider the
resulting Ga due to sinusoidal commanded roll (oss). From § = P-IY,
Y= (08,80, P (P, 1, 8, =P, 3+ P 8 +P A, and it is found that

at w = 12.5.13.5° commanded sinusoid amplitude, and the assigned tolerances
of 6.1, Ga = pll¢' with |¢(j 12.5)|= (l3.5°)|Tll(j 12.5) . This calculation
gives a range of 27° minimum (case 4) to 190° maximum (case 2) for Sa' both
exceeding the ailerxons limit wvalue. A similar calculation of Sa gives a
range of 364 deg/sec (Case 4) to 2500°/sec (Case 2), both far exceeding the
ailerons rate limit.

The inverse calculation can be made: at 13.5° amplitude command, given
'6a|max = 20°, 'salmax = 56°/sec, and w_ = 8 for the second order T, (s)
model, it is found that rate saturation would occur at w = 3 (Case 3) and
position saturation at w = 9. For case 4, rate limit as low as w = 2, position
at w = 3. The conclusion is that wn = 8 is beyond the system capability for
13.5° sinusoidal input. In the meantime we use mn = 5,8 as the bounds on
Tll(jm), but only for step input. Since the sinusoidal roll command input
generally is from another source, it is possible to use a separate prefilter
for the sinusoidal signals.

6.1.2 Specifications on T, .

1]

Those on Tll were given above. For le, roll due to sideslip step

command < 2° dominates, giving |T < 2/5 = 0.4. For T, (K response due to

12' 22

8 command), the following transfer function models were found suitable.

T eg PP T T e T, e s R R Re Y
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s 2 s S -1

Upper bound b, : {(5—~1) (1) ‘80*1’}

. s 2 s S =1

Lower bound a,,: {(3T§+l) (Ia+l) (§5+l)}

TZl = 3/¢c < 2790 = N.022 dominates giving bzl' T32 = Ay/f: = (0.13)
(32) (57.3)/5 gives b32 = 55 ft/sec/deg, while T31 = Ay/@c = (.05)(32)(57.3)/13.5
gives b31 = 6.8 ft/sec/deg.
6.2 Design

The detailed design steps are the same as in the other modes, and there
is therefore no need to repeat them here. They are somewhat more complicated
because (a) the same compensations are wanted for both the 2x2 sysitem and the 3x3
system, and (b) both step and sinusoidal inputs must be considered. Due to
the former, the most severe bounds on Gl and G2 (emanating from the 2x2 and
3x3 problems) must be used. As for the second, i; has already been noted that
the sinusoidal respénse tolerances were not compatible with the system satura-
tion levels and the step response tolerances, so the approach was to design
the loops (Gi' i=1-3) to satisfy the step response tolerances, and then find
separxate prefilters for the sinusoidal commands such that saturation resulted
only for an extreme flight condition. The precise design details are not given,
because the design technique is the same as has already been greatly detailed
in previous chapters, especially Chapter 2. However, the templates, bounds
etc and the compensation transfer functions are presented.
6.2.1 Design graphs

The frequency domain bounds on lTll(jm)I, |T22(jw)| are shown in Figs.

6.2a,b. Templates of Q11 (2x2) are shown in Fig. 6.3a, Q (3%x3) in Fig. 6.3b,

11
Q22 (3x3) in Fig. 6.3c, Q33 (3x3) in Fig. 6.3d. Nichols chart bounds on

and sketches of Lio(jw) are shown in Fig. 6.4 a-c for i = 1 to 3 (case 9 is

nominal).
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6.2.2 Compensation functions

The compensation functions are:

-0.5 (.8s+1)/(100,0.A/)

~p-veE »
A

e 44

Ry
L, Yt
Q

—

1}

9, = 14 (.25s+1)/(120,0.5)

0.14 (150,1200,250})/(30) (1200,0.5) (500)

Q
w
[t}

£ (step) = 1/(6,0.8) (1200,0.5) (500)
f. (sinusoidal) = (4.34)(4.34)/(4.34,.707)(4.34,.707)(12.5)
f_ (step) = 1.4/(5)(5) (13) (80)

£, (sinusoid) = £; (sinusoid)

. . 2 )
(A,B) indicates a complex pair [(s/wn) + (2§s/mn) + 1] with A = w B =C;
(E) indicates a factor [(s/E)+1]. The first number is the value of the
transfer functicn at s = 0

6.2.3 Simulation Results

In Figs. 6.5~7, the system is 2x2 for the roll command ¢c of 90° at
t=0. At t=1.8 sec. there is a sideslip Bc of 5°, and the system is 3x3.
The roll responses are shown in Fig. 6.5a, sideslip in 6.5b, sideforce in

6.5c. The results are very good, except that in 6.5a, the response time is

i\j not the desired 0.75 sec. But this is because the system is physically

b':‘: "i

"y incapable of such fast response. This is seen in Fig. 6.6a, 6.7a where the
b N

-

_!. ailerons limit in rate in most cases and in amplitude in two extreme cases.

The rates are shown in Figs. 6.7a-c.

In Figs. 6.8-6.10, the system is 3x3. A step roll command is given at

t=0 and a sinusoidal roll command with amplitude of 15° and frequency 12.5 rps
is given at t=1.8 sec. The three responses are shown in Figs. 6.8a-c. The
control surface time histories are shown in Figs. 6.9a-c and their rates in
6.10a—c. From Fig. 6.8a, 6.9a it is seen that the best possible response is

being achieved, because of the ailerons amplitude and rate limiting.
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Ei Figs. 6.11-6.13 are similar to Figs. 6.8-10, i.e. the system is 3x3,

there is a step roll command of 90° at t=0 and a sinusoidal command at t=1.8,
e of 15° amplitude. But now the frequency is the lower bound one of 4 rps,
with much better rcll sinuscidal response as seen in Fig. ».lla (note that
saturations of 5a,5a occur in the extreme cases - Figs. 6 122, € 13a) The

actuator responses are shown in Figs. 6.12a-c, their ratss i1 Figs. 6.13a-c.

Figs. 6.14-6.16 are the responses in the 3x3 system Ges1gn due to a
2.5° sideslip command Bc at t=0, followed by a sideslip sinusoidal
command at t=1 of 1.5° (see Fig. 6.lc) amplitude, frequency 15 rps;
6.14a-c: ¢, 8, Ay; 6.14d~f: ailerons, rudder, canard; 6.14g-1 : rates of
these control surfaces. In the mext group, Figs. 6.15a-1i, the command
is again sideslip, step of 2.5° at t=0, sinusoid at t=1 of 1.5° amplitude,

but now the frequency is 4 rps.

In all of the above the interactive specifications are excellently
satisfied. The responses to commands which do not satisfy the desired tolerances
are due to the physical inability to do so, i.e. the response specifications

are not reasonable in view of the ailerons amplitude and rate limits.
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Figure 6.1c,d Specifications 3x3 system.
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Fiqures 6.3a,b Plant templates (a) Qll(2x2), (b) Qll(3x3).
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Figure 6.3d Q33(3x3) templates.
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Figures 6.5a,b Roll and sideslip responses (¢c = 90° at t=0,

2x2, BC=5° at t=1.8, 3x3).
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Fig. 6.5¢c Lateral acceleration
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Figure 6.6b,c Rudder and canard responses (¢c=90°, t=0; SC=S°, t=1.8).
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Figure 6.7a,b Aileron and rudder rates (¢c=90°, t=0; 8.=5°, t=1.8).
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Figure 6.8b,c Sideslip and lateral acceleration, 3x3 (¢C=9O°, t=0;

t=1.8,. sinusoid w = 12.5 rps, amplitude 15°).
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Chapter 7

DISCUSSION AND CONCLUSIONS

The outstanding feature of the design procedure presented ih Chapter 1,
is its conversion of the multipie input-output (MIO) design problem with
uncertainty, into a number of single input-output (SI0O) single loop design
problems with uncertainty and disturbances. For a large problem class, it
is guaranteed that the designs which satisfy the SIO problems, are also
satisfactory for the original MIO problems. To use this method, it is very
helpful to assign apriori performance tolerances on the system, to be achieved
despite the parameter uncertainty. These can be tentative tolerances, changed
in the course of the design because of the transparency of the design technique,
which clearly reveals the trade-off between the severity of the tolerances and
the price paid in loop gain and bandwidth.

Heretofore this design procedure was successfully applied to academically
contrived prcuviems [1~3,6]. They all had very large parameter uncertainty,
and the most complex involved a 3x3 plant (2] with a range of plant instability,
and some nonminimum-phase elements. In its closed-loop performance specifica-
tions, some off-dizgonal channels were specified to be "basically noninteracting",
while some others were to have significant interaction.

The aircraft problems treated in this report are the first practical real-
life ones to be handled (at least by the authors) by this new technique, which
revealed its flexibility in several ways. A high-frequency condition (Sec. 1.3.1)
existed for this techanique, which while not absolutely necessary, was still
extremely useful to simplify the design. This high-frequency condition was not
satisfied in Chapter 2. A method was found for overcoming this obstacle and

which, in fact, significantly improved the technique. This method was explained
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in Sec. 1.3.1 and thereafter used successfully in the design of each mode
(Chapters 2-4). It is a good example of the importance of application to

real problems, by the academic researcher. (See Appendix)

Also, "scheduling”" is a well-known, long-standing very useful technique

in flight control for economizing on the feedback loop bandwidths. Therefore,
the authors considered it important to see how it could be incorporated in a
simple manner, within the design technique. This was treated in Sec. 2.8 and
it was seen that the technique goes well with scheduling, because it reveals
the frequency ranges in which scheduling is most useful, and those in which
it is of lesser usefulness.

An area which deserves more theoretical treatment and practical experience
involves the use of nondiagonal compensation. This was considered and applied
to some extent in Sec. 2.9, but insufficiently. This topic definitely requires
more research.

There is considerable interest now in digital realization of compensation
networks. A digital compensator always contributes effectively a right half-
plape Zero in its ‘*ransfer function, with its accompanying phase lag, which
is not good in feedback design. <The larger the sampling rate, the smaller this
phase lag. The technique lends itself very easilv c¢o finding the smallest
sampling rates commensurate with specific perfcrmance degradations, thus per-

mitting the designer to make intelligent trade~offs. The minimum sampling rate

needed for the feedback properties of the system (parameter uncertainty, dis-
turbance attenuation), need not be the same sampling rate needed for its filter

properties, i.e. the command inputs may not need to be sampled anywhere as

-
V-
V-
Ve
-
'

often as the feedback sensors. And some of the sensors may nnt need to be

PP

gampled as often as some others. The feedback technique reveals this informa-

tion very readily.
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o
S
ﬁ{: Finally, it is worth emphasizing that the authors for the most part
(, have hardly any experience in flight control design, They are specialists
N
f:f in feedback theory. Yet the synthesis technique permitted them to zero in
;:% relatively quickly and in a systematic manner, onto the vital design conflicts
~.
f“ , and trade-offs. This is the purpose of a scientific theory - to enable a
non-specialist in the specific application to get to the heart of the
{ﬂ: matter, without the need for a long apprenticeship. But it is important
A for the theorists to relatively early apply their theory to realistic
;4'} problems. In this case we were confronted with a situation which wreaked
A
. .
ftf some havoc with our theory (see p. 13, and Appendix), which forced us to a
-, significant advance in the theory.
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1 IMPROVED DESIGN TECHNIQUE FOR UNCERTAIN
'}'\ MULTIPLE INPUT-OUTPUT FEEDBACK SYSTEMS
:- : ; Isaac Horowitz*
063
.- ABSTRACT
- ' .
,':ff This paper presents a synthesis technique for linear time invariant
3
‘? ¢ nxn multiple input-output (mio) feedback systems with constrained "plant"
-‘_‘\
L P, and output feedback. Due to uncertainty, P is known only to be a member
S of a set P = {P}. It is required for all Pe P, the nz system transfer
-
v
kg functions tuv be members of specified sets of acceptable outputs.
-t
o~
) Auv; u, v=1, ..., n. The problem is rigorously converted into a number
,.,: of single input-output (sio)' uncertainty problems, whose solutions are
;'i:: guaranteed to solve the original mio problem. The technique has several
NG advantages over a previous one, which also converted the mio system to
equivalent sio systems: (1) Fixed point theory is not needed to rigourously
::‘::' justify the theory. The justification is very simple. (2) There is
YA
™ .
:',. significantly less overdesign inherent in the method. (3) If arbitrary
e small sensitivity is desired over arbitrary large bandwidth, then the Set P
'-i must satisfy certain constraints as s + », It is shown that these constraints
ot
-'_-’jj are inherent in all linear time invariant cospensation techniques. In the
- old technique, these constraints were always present, even in non-arbitrarily
o
-~ small sensitivity specifications.
X
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ABBREVIATIONS

adjoint

arbitrarily large
arbitrarily small
bandwidth

left half plane
linear time invariant
multiple input-output
minimum=-phase

right half-plane

single input-output
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IMPROVED DESIGN TECHNIQUE FOR UNCERTAIN
MULTIPLE INPUT-OUTPUT FEEDBACK SYSTEMS

[l

‘j 1. INTRODUCTION

,gé A number of synthesis techniques have recently appeared for linear

bi.: time invariant (1ti) nxn multiple input-output (mio) feedback systems

:%: with significant plant uncertainty (Horowitz 1979, Cruz et al, ]981,

': Doyie and Stein 1981, Postlethwaite et al 1981, Lehtomaki et al 1981, "
Safanov et al 1981, Davison and Ferguson 1981, Zames and Bensoussdn 1982).

';i Most of these are based on tye singular value approach, and do not readily

:3{ permit detailed control over the individual n2 closed-loop responses, nor

v;: trade-off between the loop bandwidths. The method of (Horowitz 1979) does

é i permit such detailed control. It is also quite transparent in revealing the

0 price paid for the benefits of feedback, in terms of the various loop

.4 :ransnissibn bandwidths, and permitting trade-off between them. It has

;z; been applied successfully to a number of highly uncertain mio problems

:ig | : (Hbzowitz anﬁ Sidi 1980, Horowitz and Loecher 198l1), including the YF16CCV

b 3x3 flight control system (Horowitz et al 198l).

;iz The method is based on fixed point theory and replaces the uncertain

:;é nxn mio system by a number of single input-output (sic) uncertain systems,

GiQ whose solutions are guaranteed to solve the original mio problem. However,

g:i there is some overdesign inherent in the method. This paper presents

%}i several refinements of the method, with reduced overdesign, and retaining

::? the sio oquivalinc- approach. One of these does not require fixed point |

;Nv theory for its derivation, only simple matrix manipulation. Also,

ggl constraints on the mio plant are derived which permit this design method

g;i' to achieve arbitrarily small (a.s.) sensitivity over arbitrarily large

(a.l.) bandwidth. It is shown that these constraints are inherent in every

.
. .
I

1ti design technique.
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i 2. THE 2x2 SYSTEM

>

:.’Z The general nxn system is defined in Fig. 1, with the matrices:

N
1 plant P = [pi j]' compensations G = [gi] diagonal ,F all nxn matrices of
A e transfer functions. Preliminary quasi-diagonalization of the plant may
. be desirable, which is here absorbed in P. This is discussed in Sec. 6.

Hence diagonal G does not necessarily mean diagonal compensation inside

‘r‘nv’:

the loop in Fig. 1. Due to uncertainty, P ¢ P a defined set. Tolerances

g! of the form

S a <t Gu| b ,VreP (1a)
% have been assigned on the magnitudes of the elements of the closed loop
':\ system transfer function matrix T = [tw(jw)]. Such tolerances suffice
i for minimm-phase (mp) elements (Horowitz ]979) and determine sets of
‘\& acceptable tw(jm) denoted by

"5 Auv(jm) - {Auv(jw)} = set of acceptable t _(ju). (1b)
o4

\ |

Often one wants some or all nondiagonal elements of T to be small JpeP.

For such elements, denoted as "basically noninteracting", av™ 0, and

b their f_ are also made zero (Horowitz and Sidi 1980).

In the new technique, the design equations (for the 2x2 mio system)

: for tll' tlz {or alternatively t21, tzz) are identical to Eqn (4a,b) in

3 (Horowitz 1979). They are derived from the matrix equation T = (I + E’G)-1 PGF
1 of Fig. 1, by manipulating it into (!?.:L + G) T = GF, letting P-l = [Pij] =

r. [1/Qi j] =V a + vn with Vd, vn the diagonal and nondiagonal parts (the

:; diagonal elements of V_ are zero and vice-versa for V,), giving T = (V, + et
? (GP - vn'r) which is used to define (potential) fixed-point mappings.

:i
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x¢
(g f _+4d )Q
. u uv uv’ _uu -

tw " T790 - pd 1§u Puitiv (2a,b)
> wu (4a,b Horowitz 1979)
J'. .
o So the design equations used here for t,; are:
%9
£..L.+4d, .0

1i°1 11i*11 .

) s ivi, Ly =93¢ (3a=a)
‘t -t 3
g, d, =22, ¢ €A of (Ib); P L= [p, ] = [1/9,.]
B~ 11 Q.. " "2i 21 ij ij
12
g?
% The objective is to choose fu(s) ’ flz(s), ql(s) such that the ¢li(s)
= have no right half-plane (rhp) poles, and satisfy the. tolerances (1) on
s Itli(jm)l, YVPeP and Vtu € Azi appearing in d;;. These are
s precisely the sio design problems of Fig. 2a.
&) '
{ When tli is substituted for ¢li in (3a), the resulting equations are
&) *
< exact. Hence, if indeed $; € Ali for all t,. (of dli) € A2i’ PpeP,
iz then the design objectives for tl.i have been achieved by the fll' f12' 9,
+ but only if actually tz i € Az i A gystematic design procedure for choosing
1;' fll' £12' 9 for the above purpose, has been detailed with examples in
A (Horowitz and Sidi 1980, Horowitz and Loecher 198l1). A 2x2 nonlinear
' uncertain plant example is given in (Horowitz and Breiner 1981).
'j The final step, in the 2x2 system, is to choose f21, f2 . g, to
& 2 2
] ensure that the tzV(s) have no rhp poles and that t, ¢ A2v' Vepepr.
7, In (Horowitz 1979) the design equations are again (2a,b) with u = 2 and
;r the dzv containing tlv' Instead, here, there are used equations independent
<,
- of the tlv' by simply finding tZi from T = (I + PG)-lPGF:
N, e o laal2et 0. = 9021 * L)) 955, 4Ly)
% - [4
g 21 1+ LZQ 2e 2%22e 1 712 + Ll 1+ glpll
A P; .P
2 ' Yij - i474i s (4a-e)
, | PyiPyy
~
M - ’ .
Y A 1-y 1L ij
kN
2
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with the sio structures of Fig. 2b. This design is done after Fig. 2a has

been completed by means of (3a-d), so that L are known. It is

1’ f11' f12

then necessary to find 9y £ so that in Fig. 2b the outputs

21’ f22

t,)s t,, are stable and satisfy the tolerances (1) on [tzll, ltzzl

respectively, which are single-loop problems similar to Fig. 2a, except that

only the uncertainty P ¢ P need be considered, as the d,, in (4a-e) are not

2i
functions of the elements of Auv' which they are in (3a-d). At each

step,design execution is that of single input-output (sio) single loop
systems--which is what makes this design procedure so tractable.
Summarizing, the theoretical justification of the above design procedure

is as follows: The design specifications (1) are satisfied for t2v of

Pig. 2b,.by proper choice of the £2v' g2 for the given £ So the

w’ 91
design is satisfactory for t21' tzz because (4a,b) are exactly the expressions

for t21, tzz, (even if the specs. for t are not satisfied). Now

12* t11

Figs. 2a have been designed (via Egqs. 3a-d), so that 011 are stable

412

and satisfy the specs. on t Y’P € P, if the t.. appearing in d

1’ %12 2i 14
are in AZi (which they are). And the equations for $,,+ $;, Correspond

precisely to those for t Thus, no fixed point theory is needed

11° %12°
to rigorously justify this design procedure, although the idea and approach

were motivated by the fixed point method in (Horowitz 1979). There, the

design equations for t are of the same form as Egs. (3a-d) with the

21’ %22

d21 functions of tli' so fixed point theory is required to justify the
method.
R R S R S Y SRR R )
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2.1 Reduced Overdesign
Pigs. 2a are the same as in (Horowitz 1979) in which t21' t22 appear

in the disturbance d There is inherent overdesign in Fig. 2a,

11’ d12'
because in reality there is correlation between the t21. tzz and the
1

qu of P . This correlation is not being exploited. The uncertainties
in t) €A, , t,, €A, are assumed independent of P € P in Figs. 2a
(see Horowitz and Loecher 1981 for discussion how to reduce this overdesign.)

But such overdesign does not exist in Fig. 2b because d are not

21° 922
functions of the elements of any Aw. In (Horowitz 1979) the design for

tzl' tzz involved overdesign precisely as in Figs. 2a. The above procedure

can, of course, be reversed with ¢21, ¢22 using Egs. (2a,b) with u = 2,

and t using Eqs. (4a-e) by exchanging numbers 1,2.

11’ %12

3. 3x3 DESIGN EQUATIONS
Nine design equations may be defined in a manner similar to (3,4) of

Sec. 2. Let ¢1v’ v = 1-3, be the same as in (Horowitz 1979, Egs. 4a,b which

are Eqs. (2a,b) here):

Cheh t 4

L]
1v l+ Ll

r I "9 0 e T il Pty (5a=e)

giving sio problems. L, and the three fiv are chosen so that °Lv are stable

1

and satisfy the tolerances (1) for all ti, € Aiv appearing in div and

all P ¢ P - see (Horowitz and Loecher 198l) for procedure and detailed
design example. The equations for¢2vgze obtained from Eg. 2 setting

u= 2 in which t are here replaced by the ¢1v

v and t3v appear, but the tlv

of (5), giving for v = 1-3, in the notation of Egs. (3,4):

P S I N “te . Y

T __-"\ ‘-_...,__- LIRS,
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. - fZVI‘Ze M d2v
3 2v 1+ LZe (6a-c)
2, 9%
3 L2e ™ Y
" 1l - 12
. 1+L1
v
: I'Ze P__P £f. L.P
< dzv-g—-{t3v[ 2113, 1- _1lvi2a}
\: 2 P11(1+L1) 23 1+ Ll
again sio problems. Ll and the flv are known from the designs of (5).
‘
\
3 Here, the fzv and L,, are chosen so that 9,, are stable for all t, € A3v
appearing in d2v and, of course, for all P e P, Although the forms for
and L, in (6) are different from those in (5), (5a,6a) are otherwise
y v 2e
o
~)' identical in form, so the design techniques for both are basically the
: same, as detailed in (Horowitz and Loecher 1981).
Finally, sio design equations for t3v are gotten by finding t3v from
T = (I + PG) 'PGF, or from Eq. (2) for U = 3 and eliminating ety
Y by means of Egs. (5,6):
T T A L
R 34 1+L ¢ L3g =% ¢ U3 = Q3393
3e
= (1+L1) (1+I-2) =Yy
e .
. A= Yyg (L4L)) + Y 4 (14L5) = (v 50, + Yi3H3) (7a~3)
- P23f31 .- P3oPa1
’
. SR PYL 3 PyPy
- a £1489330; * £5;L50330;
- a2 2 33 L1
s 3i T - A
- N} = 23,P5;P3p = Py 1+ Ly)
; "2 T 41F1pfy T Pt )
*

PO L S T A L:j
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Since Ll' L2 flv' fzv are known, the only unknowns in the above

are the £_. and Iy Egqs. (7a-~j) constitute single-loop uncertinty problems,

3
for which the technique and examples of the references (Horowitz, etc.)
apply, i.e. they are chosen so that the t3i are stable and satisfy the
tolerances in (1). Note, again, that at each step, design execution is that
of sio single-loop systems.

The justification of the above design approach is the same as of the
2x2 case: Suppose the nine fuv and three 9 in (7a-j) are such that the
t3i are stable and their tolerances are satisfied, which is so by definitic
here. Now the design based on (6a-c) guarantees that the tZi tolerances
are satisfied, providing the ta appearing in d21 are ¢ A3i - which
is the case here. Hence, the tZi tolerances are also satisfied. Finally,
the design based on (5a-c) guarantees that the tli tolerances are satisfied,
providing that the tZi' tBi' appearing in dlv are € AZi' A3i respectively,
which has been established. In the above, there is some overdesign in
(5a-c) because the t, € Aiv' (i = 2,3), (v=1,2,3) appear as disturbances
uncorrelated to the plant uncertainty. In (6a-d) there is less overdesign
because only the t3v so appear, while there is no such overdesign in
(7a-j). Of course, the order can be changed and equations of the form

(Sa-c) used for the second or third channel, etc.

4. nxn SYSTEM, n>3

The procedure for generating the design equations for nxn mio systems
with n > 3, should be clear from the above. One uses for any channel (say
the first) design equatiocns in which all the tiv (1 # 1) appear as
disturbances. Denote these as Eqs. A. These equations can be derived

or obtained from (Horowitz 1979, Eqs. (4a,b) with u = 1). For the next

-, . .o - [ P - . . -
) -.\'. '.~.’ o “(‘ Lt '.-."‘1. Ly (0.'.-.: T 'z.."'.I B L I e e e e e e

N _‘w

N BRE I . K .

. - T - . . - . - e T e T e R . : . N -
- - » - - - - . - - . t. . N - . . . S - N
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chosen channel (say the second), one starts with Eqs. (4a,b) of (Horowitz 1979)
with u = 2, but eliminates all the tlv by means of Eqs. A above. Denote the
resulting design equations as Egs. B. For the next chosen channel (say the
third), start again with Egqs. (4a,b) u = 3, but eliminate all the tlv' t2v

by means of Eqs. A, B above. The process continues until the end, and the
theoretical justification is the same as given above for n = 2,3.

Mixtures of the technique in (Horowitz 1979) and the one described above,
may also be used. For example, for the 3x3 system, Eq. 2 may be used for both
channels 1,2 and (7a-j) for channel 3. The theoretical justification is
now as follows: Design for channel 3 is correct by definition, but fixed
point theory, precisely as in (Horowitz 1979) is used to justify the designs

for channels (1,2): The two sets of design equations for t are

1w’ Sav
taken as the mappings on the acceptable sets Auv and the third set of

mappings is simply b3y = 33y € A3v. The nine £ _, three 9y have been

v
chosen so that these mappings map Auv into themselves, etc., so a fixed point
exists, etc., as in (Horowitz 1979). For larger n, it is clear that a

larger variety of mixtures is possible, giving the designer useful flexibility.
However, he must understand the sioc design theory used in the design

execution, which reveals the cost of feedback and the av;ilable tradeoffs
among the loops, in order to be able to exploit this flexibility to its

fullest extent. A detailed 3x3 example based on fixed point theory is given

in (Horowitz and Loecher 1981).
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5. CONDITIONS FOR EXISTENCE OF A SOLUTION

This section considers the conditions required for the applicability
of the above design technique. Also, it considers the inherent, irreducible
conditions applicable for lti compensations in general, and compares the
two sets of conditions. This is done for "arbitrarily small (a.s.) sensitivity"
defined as achievement of a.s. sensitivity of the tuv over arbitrarily large
(a.1l.) bandwidth. Such "a.s. sensitivity" also achieves a.l. attenuation
over a.l. bandwidth, of external disturbances acting on the plant. This
problem has also been studied in an abstract setting by (Zames and Bensoussan
1982).

In Fig. 2a, it is required that 9, € A A for all

11’ %12 & Pia’
Pe P, t,, € AZl' and t,, € A22' In the general n case, the disturbance
component in, for example, ¢11 is

T . dlvgll . E . (Adj P)li/(AdJ P)ll
dl; 1+ngll izl “iv

l+ gl det P
(Adj P)ll

Right half-plane (Rhp) poles of (adj P)li are normally cancelled by similar
poles in det P, since (Adj P)li is a term in expansion of det P. FRhp

zeros of (Adj P)11 are, of course, normally c;hcelled by similar ones in
the denominator. There may be exceptional cases when in det P, for example,
a rhp pole of (Adj P)li is cancelled by an identical zero of Py; and

does not appear in the other terms of det P. Such cases are excluded.
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5.1 Conditions for "a.s. sengitivity” in single-=loop design

In Eqs. (3), it is seen that a.s. tolerances over a.l. bandwidth

117 t12 are achievable if Ll = ngll

made a.l. over a.l. bandwidth. Indeed this is at least theoretically

(i.e. "a.s. sensitivity”) for t can be
possible, if Qll satisfies certain constraints. These have been detailed in
(Horowitz 1979, Appendix 1), so are only qualitatively described here by meams
of Fig. 3.

Fig. 3 is the extended logarithmic complex plane (Nichols chart).

Since P ranges over P, the set {Ll (jw)} is not a single complex

=99
number (at any fixed w) in the Nichols chart but a region, denoted as
Tp (L(jw)), the template of L which is the same as Tp (Qll(ju) but
translated horizontally by 20 log [gl(jm)| db and vertically by Arg

ql(jm) degrees, because L In a design with significant plant

1= 9%
L

uncertainty Tp (Ll(jm)) must lie relatively high up, above the zero db line

as shown in Fig. 3 for wg - This is so over the important w range of tll'

tlz (their bandwidths generally), in order to achieve the desired sensitivity
reduction. Such large values for Tp(Ll(jm)) can be maintained theoretically
for any finite w range, if Qll is m.p. For those w for which Tp (Ll(jm)

is so located, the uncertainty in the magnitude and phase of Qll(jm)

(i.e. the area of Tp (Qll(jw)), can be arbitrarily large. (Note, however,
that in order to maintain Tp (Ll(jm)) above the zero db line, any zeros of
Qll(jm) on the jw axis must be known and finite in number in order for
gl(s) to be assigned poles there. (Obviously, transcendental compensation
can be used for special countable cases.) If the range of such jy axis

zeros is uncertain, then the specifications(l) must be modified to pemmit

such zeros of t

1)
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b
Sooner or later Ll(jm) must decrease and + 0 as w + ®, Stability
;::::\: over the range of Prequires that Tp(Ll( jw)) move downward in between the
': vertical lines V,, V, without the points . . . 0_,0,0,,... lying in any
"™ Tp (I-l(jm)). This appears to allow (360-26m) degrees phase width for
-‘;: Tp Qll(jm), with Om phase margin. However LLl(jw) must be negative on the
S average, in order for ILl(jw)l to decrease. So in practice only (180~ em)
:::*’ phase width is tolerable in this range. As w increases and the Tp (Ll(jw))
¥ - descend lower on the chart below the zero d line, clearly their width may
:' increase again, but it is essential that the points ...01,02,... never be a
: part of any Tp (L,(ju)). Unstable Q , are included in the above discussion
- and don't require separate treatment. It follows from the above that the
' manageable uncertainties depend on the assigned t . tolerances, but two
important constraints are stated here for the case of "a.s. sensitivity."
(5.1a) Q , = det P/Adj. P),, must be mp.
(5.1b) Supposq}wh, .9 for all w > wh, the width of Tp (Qll(jw)) exceeds
- !\180-6m) ’ em a desired phase margin, then it is impossible to achieve a.s.
;:; tolerances for w > w - This prevents "a.s. sensitivity" if Quu - kn(s+zi)/
::::' n(s+-Pj) » with the k uncertainty including a sign change which is independent
i “ of the signs of the z;0 P 5° Also excluded is a factor (1+Ts) in the numerator
'i:s or denominator of Quu' with the uncertainty in r including a sign change which
_,EE is independent of other parameters.
26 5.2 Application of 5.1 to New Design Technigue
Szx The above constraints therefore apply to the Q\m = det P/ (Adj P)uu
.: of the first channel u, used in the new design technique of Secs. 2, 3. So
=
2
oy
v
n B e I St A e oy
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from (5.la), Quu must be m.p. \‘ P ¢ P (rhp poles are tolerable), for "a.s.

. e
sensitivity” design. Suppose P = [puv] has each Py * kuv/s as 8 + o ,
For n = 2

_ PPz T PPy | Kikas T Kiokg
uu pw kwse

Q ' (8)

Let K = [kuv]’ 8o (5.1b) states that there may be no change in the sign of
det mw as P ranges over P. In this paper it is assumed that all kuv > 0
p ¢ P, or vice versa. To

for all P ¢ P, so (5.1b) gives k > k

11%22 > *¥12%21
remove the ambiguity it is also assumed that the plant terminals are numbered

so that for at least one P ¢ P, kllkzz > k12k21' so (5.1b) gives the constraint

k.. .k Veep (9)

11522 * *12%0)

This is a diagonal dominance condition as s + =». (Zamey and Bensoussan)
have defined a di;gonal dominance condition as s + «, in more abstract form.
The above applies to the first channel, say no. 1, for which (3) is

used. Eqs. (4) are uséd for the second channel. The mp condition of

(5.1a) therefore applies to 922(14-1.1), most of which is not new because

mp (1+L1):det P are already required. As for (5.1b), there are two extremes.
"A.s. sensitivity" can be achieved by L, bandwidth >> that of L, (denoted

by BW(Ll) >> BW(LZ)), and then (4b) implies (5.1b) applies to Q,,- It can
also be achieved by the opposite strong inequality, and then (5.1b) applies
to Pyye For the condition assumed with Egs. 8,9) of no sign changes in the
kuv’ the results are the same. It may also be so in the general case but

this would require consideration of simultaneous sign changes among the k av’

which is not done here.
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n=3. Application of (5.1) to the firat channel makes it applicable to

Qll' Application to the second (eqs. 6) gives the same results as to the

second in n=2 above, because L, has the same form in both (compare 4b, 6b).

2e
If “a.s. sensitivity” is achieved (as it may be) by BW(Ll) >> BW(Lz) >> BW(L3),

the result is that (5.1) apply to Q If the opposite is done,

11° %27 %s-
in the notation of (3.7), they apply to Qll'_SZZ_ '
1=,

Q331 =v,,)

—t——

L= lrygp *vp3 % vg3) ¥ (yppup * vpgey)

It has not been ascertained whether these two sets of contstraints are
identical. However Sec. 5.3 shows that (5.1) must always apply to each Quu'

u=1 ton. Constraints for n > 3 may be similarly developed.

5.3 Inherent Constraints

It is important to determine whether the above constraints are due to
the specific d;sign technique, or are inherent in the problem itself. For
How can "a.s. sensitivity” of t22 be
o' the usual

this purpose examine (4a) for tzz.

achieved despite large uncertainty in P? Clearly by large L2

feedback method. Large L2e is achieved by large 92Q22' because large Ll

(needed likewise for small tll sensitivity) gives Lze = 92922 = Lz.

The latter also attenuates d22’ which may not be small because of g1 in its
numerator. This same principle applies to all tuv' and is basically the
game as that derived from examination of (3), i.e. there is need for a.l.

Lz, L1 over a.l. bandwidth in order to achieve "a.s. sensitivity." But

do the constraints of Sec. 5.1, in particular (5.la,b) apply to sz and Qll?
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This is indeed s0, and proven by (3a) and its analog for tZi (by

interchanging 1,2), by simply asking whether stable t . is possible if 1 + L

11 1

has rhp zeros? For if not, and since a.l. L, over a.l. bandwidth is needed,

1

it follows that Ll (and Lz) must satisfy constraints (5.1). Suppose (1 + Ll)

has rhp zeros. These are rhp poles of tll' unless in (3a for i = 1) the

numerator of tll has these same zeros. Suppose it has them, and there is a

small change in fz Since F is outside the feedback loops, system stability

1
is unaffected. The zeros of 1 + ngll in (3a) are thereby unaffected, so

neither should the zeros of the numerator of (3a for i = 1). The term £

(1 + Ll) has rhp zeros is untenable, so (5.1) applies to Q11 (and sz).

Comparing these results with Sec. 5.2, the conclusion is that "a.s.

gsensitivity” may be achieved by the new design technique, with plant constraints

which are inherent and irreducible, i.e. not more severe than inherently
necessary. This is achieved by letting BW(Ll) >> BH(LZ) >> BW(L3), wherein

the only constraints are (5.1) applicable to Q » which have been

11’ %2 933
shown to be inherent. This is associated with the following design order:

first L1 (Egs. 5), second L2(6), third L3(7). The design procedure is

facilitated by such inequalities, because then in (6b), Lye Ly = 9,0,

over its important design range, and L3e -+ L3 = 93933. If other factors are

equal (Tp (Quu), tolerances on tui’ i = 1-3 for each u), there is a natural

tendency for this order of the inequalities because of the inherent greater

(recall Secs. 2.1, and

overdesign of Ll' legsser of Lz and least of L3

last paragraph in Sec. 3.).

‘ 191
is unaffected, but t21 is affected--see (4) with i = 1. Hence, the hypothesis
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However, the above is rather of theoretical, academic interest, because
; it applies only for "a.s. sensitivity,” defined at the beginning of Sec. 5.
:2': Thus it applies if one is given a plant with specific uncertainty range and
is challenged to achieve a.s. petfomance tolerances over a.l. bandwidths.

:': However, given a mio plant set P and sets of tolerances Auv (u,v = n), it is
\ conceivable that the latter are not achievable by the new technique, but are

.“:. inherently achievable. The reason (e.g. for n = 2) is that in Eq. (2), the

% demand on I‘l to achieve the desired sensitivity reduction, may be greater than
’] is inherently needed, because of the overdesign, discussed in Sec. 2.1, and is
», therefore unachievable, because of the nature of P, say it has some non-mp

_ elements. Thus, a specific problem may be incompatible with (5.1) only due

; to this overdesign. There may exist as yet undiscovered better methods with
: reduced demand on L , which renders them compatible with (5.1). From Sec. 2.1,
it is clear that the best method will be achieved with Eqs. (3) by maximum

;-: use of the correlation which exists between the P uncertainty and the 1:21 € A2i
E in (3a-d). | A suggestion for this purpose has been given in (Horowitz and

a Loecher 1981). One subdivides the plant set into subsets P, which are

: correlated with subsets A avi of Auv' Egs. (3) (similarly 5,6) are now applied
.: to these pairs Pi' Auvi. separately for each i. This approach has not as yet
- been attempted in any numerical problem.

;: It is worth noting that constraints of the diagonal dominance type as

‘:': 8 + =», appear in the design technique of (Hornwitz 1979). However, they are
always present there, even if "a.s. sensitivity" is not attempted. In the
::( new technique they are in effect only for "a.s. sensitivity." Hence, it is
SE ’ possible that a specific synthesis problem with given Auv' P sets may not be
': solvable by the older method, but is solvable by the new method. This was the
R case in (Horowitz et al 1981).

N
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6. NONDIAGONAL G

The constraints on P in Sec. 5 were deduced on the asgumption G is diagonal.
Are these constraints eased if nondiagonal G is used? To answer this question,
let H be a fixed lti pre-compensator matrix inserted ahead of the plant and let
V = PH be the new effective plant in the set V = {PH, P ¢ P}. The design
techniques with diagonal G, are now applied to set V instead of set P. If
H is helpful in overcoming some constraint, then it is necessary that the
constraint violated by P, is not violatea by V. The constraint det P is mp.
¥PpePisnot eased at all, because det V = (det P) (det H), and obviously
cancellation of rhp zeros of det P by det H cannot be done for many reasons.
The other important comstraint involving diagonal dominantce as s + », is also
not eased, because it applies to the sign of det V not changing, as 8 + » .
Thus the constraints on P for "a.s. sensitivity" are not eased by nondiagonal

G.

However, H may be very helpful in reducing the amount of feedback needed
to achieve specified tolerance sets (1), for a given plant set P, so that a
design unachievable by diagonal G (say, because of non-mp P or sensor noise
problems) may be achievable via H. For example in Eq. (4a), L, wmust handle

2e
the uncertainties due to L o itself and attenuate the effective distubance

2
set {dzi}‘ Por basically noninteracting tolerances on tuv(u#v), fuv is made
zero, so only the latter need exist. It may be possible to considerably
reduce IGZikux by means of H, by making V = PH quasidiagonal, even though
P has large nondiagonal components.
Off diagonal plant elements appear in all the design equations (2-7) in
the 'disturbance’ components, so their reduction via H is desirable. How is

this systematically done in the case of significant P uncertainty? For n = 2,
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let the normalized H have 1 for its diagonal elements and h12 =y, h21 =V,

= . < : 2 P
Then Via ® WPy, * Piyr Vo1 7 Py + vp,, The objective is to minimize over

. P |4
|, |v,,| at each &s. Sketches of the sets 2 Gwl, 22 G
Lz a P1 Pa

in the complex plane, are clearly very helpful in choosing u(jw), v{jw).

max|v

However, one should check the effect on the resulting sets of Vi1 < Py, + VP’

Vo2 = WPy * Pyyr because of the obligations on the loop transmissions due

to their uncertainties. The final choice depends on the relative importance
of the two terms in the numerators of ¢1i'¢2i in (3,4). (See Horowitz and
Loecher 1981 Secs. 3.2,4 for discussion relevant to this topic).

If the elements of P have a rhp pole in common, i.e. P = Pl/(s-p),

then one should not try to diagonalize P by means of PH = A diagonal, because

1

in practice H = P; A with P;l # P-]' exactly, giving PH = P P;l Awith rhp

dipoles. Instead, one tries to diagonalize P

-1 -1
H=P, A and PH = PP~

by means of P.H = A , giving

1 1

A/(s - p).

7. CONCLUSIONS

This paper has presented new synthesis techniques for highly uncertain
nxn mio lti feedback systems with output feedback, with the following
features:

(a) There is detailed control over the nz individual system transfer
functions.

(b) The mio uncertainty problem is rigorously converted into a numbef
of sio uncertainty problems. Solutions of the latter are
guaranteed to be satisfactory for the former. Relatively
simple sio,single loop feedback techniques can be used to solve

the sio problems.




(c) For "arbitrary small sensitivity" over arbitrary large bandwidth,
the technique in Secs. 2, 3 give constraints on the plant which
are inherent and irreducible, i.e. every lti compensation
technique has these constraints.

(d) Part of the constraints (at infinite s) in (c) were always

N present in the previously developed sio equivalence techniques

of (Horowitz 1979), i.e. even if "a.s. sensitivity” was not
required. They are present in the new techniques only for a.s.
sensitivity. Also, fixed point theory is not required for
justification of the new technique.

(e) The overdesign inherent in the fixed point techniques of
(Horowitz 1979), has beén reduced but some overdesign is still

N present.
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