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Yaw Pointing The first and third are 3x3, the second is 2x2, while the

fourth is a mixture of 2x2 and 3x3.
The outstanding feature of the synthesis technique is the replacement of

the uncertain MIO system by a number of uncertain single input, single output
(SIO) single-loop systems, with disturbances. The solutions of these SI0
problems are guaranteed to solve the MIO problem. In this synthesis technique
one proceeds systematically step by step from the ystem specifications, to
the derivation of the system compensation functio . The design steps are
given in considerable detail, to enable the reaer to learn and apply the
technique to his own problems. Simulations are presented for all the designs,
azo whidh-hceiy satisfy the assigned performance specifications.

>The tradeoffs between complexity of compensation and loop bandwidth
economy are studied and presented. Performance under severe limiting and rate
limiting is included for the A. mode, and is highly satisfactory. Incorpora-
tion of scheduling and prediagonalization are also presented. A digital
compensation design is included for the vertical translation mode. -

Much of the same design technique is applicable to exact desie3for
uncertain nonlinear MIO plants. The 2x2 vertical translation 2 mde nd 3x3
laterial translation B2 mode were combined, using a 5x5 nonlinear plantmdel,
with the same specifications as for the separate modes. In this nonlinear
design technique a preliminary step converts the nonlinear MIO problem into an
equivalent linear MIO invariant problemp- the equivalence being exact with
respect to the class of inputs under consideration. When this preliminary
step was executed, the resulting equivalent linear problem was found to be
very similar to the original two linear ones. Hence, the same compensation
functions result - which was thoroughly verified by simulation.
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CHAPTER 1

A SYNTHESIS TECHNIQUE FOR UNCERTAIN MU! TIPLE IPr'T-( ITPUT

FEEDBACK SYSTEMS

1.1 Introduction.

The flight control problem is basically a multiple input-output

(mio) feedback problem with an acertain plant. In this report, the

lateral and longitudinal systems are treated separately. The lateral

system is taken as three by three with rudder, ailerons and canard as

the plant control input variables. The output variables vary with the

mode, for example sideslip (3) , roll (0) and side force (Ay) in one
y

case. The longitudinal system has elevator and flap as the plant inputs

and the outputs are usually normal acceleration (A ) and pitch (e)% n

In this work the linearized plant equations are used, so different

flight conditions give different coefficients in the linear equations,

thereby giving a set of plants P -{P} . The fact that P is only

known to be a member of a set P (but it is not known which member),

constitutes uncertainty. Of course much of this uncertainty could be

removed by "scheduling", but in any realistic control system, there

always remains some uncertainty. Nevertheless one is interested in a

feedback design which does not use scheduling, even if only as an

option. Also, it is desirable to know the trade-off between the

extent of scheduling and the resulting economy achieved in other system

factors. Hence, it is important to have a synthesis technique for

uncertain mio systems, which is flexible enough to include scheduling

of any desired extent.

,...............
* ,. ... 5 -. .
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The difficulty inherent in developing a synthesis theory for

3 " uncertain mio systems, can be appreciated by considering the 3 x 3

output-feedback structure in Fig. 1.1, with 3 x 3 nirricis:

P = [p. j ] of plant; G m [gijI , F [fij] of compensation functions.

We even let G- [gi] be diagonal and consider only the transfer

function T1 1  relating output (1) to input (1):

1TI M(Pll f11 g1 + p1 2 f2 1 g2 + P1 3 f 3 1 g3 ) [(1 + P 2 2 g 2 ) ( 1 + P3 3 g 3 )

- 23 P32 g2 g3] - (P2 1 fll g1 + P2 2 f21 g2 + P2 3 f31 g3)

+ [P 1 2 g2 (1 + p 
33 g3) - P32 P 13 g2 g3

] +

(P 3 1 fllgl + P 3 2 f 2 1  + P3 3 f 3 1 3 )[P 2 3 'P1 2 92 g3 - P1 3 g3(l+P2 2 g2 )]

(1 + P11 g1 )[( I + P2 292 )(1 + P3 3 93 ) - p23 p32 g2g3]

- p 1 2 gl[p1 2 g2 (l + P 33 g3 ) - P32 p1 3 g2 g3 1 + P1 3 gl[p1 2 p2 3
9 2 g 3 - P 1 3 g 3 (l+k 2 g2)]

(1.la)

There are nine such T functions, each one as complicated as this.
i-

Note that the variables normally refer to Laplace transforms or transfer

functions. Functions of time will be explicitly expressed, e.g. f(t)

Suppose that there is significant uncertainty in the functions

Pij ' for example Pij - (Aijs + Bij)/(Eij s 2 + Jijs + F ij) with

intervals of uncertainty, for (ij) -(11) say A11 E [1,2]

B E [2,4] , E11 E [1,2.5' , J 1 E [-1,31 , F11 E [-2,1] , or

each may be a function of other parameters with large uncertain

intervals (as in the flight control problem). The problem seems

hopeless, unless one is thoroughly familiar with the system, with _4_
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" ]considerable cut and try experience so that he has a good initial

! starting point.

A synthesis technique has been developed r1-41 which considerably

reduces the complexity of the above problm. Since ir has , resented

'in detail in the references, it is only summarized in the next

sections.

1.2 Summary of Mb synthesis technique

Fig. 1.2 applies for a 3 x 3 system and consists of nine single-

Iloop structures. Note that in the first row the elements inside the

Iloops are Gl(s) , Qll(s) the same for each of the three structures.

But the disturbances dli(s) are different. Also, the prefilters Fli

are different. This situation is repeated for each of the three rows.

The F are the elements of the F matrix in Fig. 1.1, while the

G i  are the diagonal elements of the G matrix, which for the moment

* is taken as a diagonal matrix (see Sec. 1.4). The Quv in Fig. 1.

are the inverses of the elements of the P-1 matrix, P-1 = [l/Quv]

where P is the plant matrix. Because of the plant parameter

uncertainty, there is a set P - {P1 of plant matrices, which

generates a set of 11 matrices. Since y - P6 in Fig. 1.1,

6 -P-y , so 61 - yl/Qll+ y2 /Q12 +y 3 /Q1 3 
6  2 yl/Q21 + Y2/Q22 + Y3/Q 2 3

etc. The following is a physical interpretation of (for example) Q12
Adjust the inputs 61 t 62 ' 63 so that Yl " Y3 " 0 . Th e n the

resulting ratio of transforms y2/61(s) is equal to Q12' Y2 /6 2 - Q22

y 16 Q2 In practice, one simply inverts P in order to obtain

* ,the Qu

The elements buv in Fig. 1.2 are real positive functions of

. .. . . . . . . . . .. - 9 - - * -. .. .. . - ..
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frequency w , obtained as follows. The 3 3 system in Fig. 1.1 has

nine closed-loop transfer functions

T,'.-,= y (s)

uv r (s)
V

In many problems, for u v one wants T to be small, ideally zero,

which is certainly possible at one combination of plant parameter values.

But if there is uncertainty, this cannot in general be achieved for all

P E P , so one sets a lower bound which can be a function of w

ITu (Ja)I .< b (w) , u v (1.2)

uv uv

to be achieved for all P E P Such a system is called "basically

noninteracting" BNIC. In this report the designs are all desired to be

BNIC. Usually one wants some sensible response for the diagonal elements

T (s) in Fig. 1.1, so in minimum-phase systems [31, specifications on

ITuu(iw)I suffice of the form

%a u(w) < IT uu (jw)l < b uu(w) (1.3)

See Chapter 2 for examples of b a of (1.2, 1.3). Thus, the
uv uu

disturbances d in Fig. 1.2 are derived from the Qui of the plantuv

and the specifications bim on the closed-loop response functions.

The problem in Fig. 1.2, is to choose the G. , F.. so as to

satisfy the specifications on the T of Fig. 1.1; for example
ij

choose FI , so that yll satisfies the specification (1.3)

with u- 1. Choose FI2  G so that y1 2  satisfies (1.2) with

u - 1 , v = 2 , etc. The output yI 2  in Fig. 1.2, is the sum of

two components: one due to the unit input, the second due to d12

As it is required (Eq. 1.2) that iYl 2 (jw)l $ b 1 2 (w) for all w it

.Y1 1

$ .A..



is clearly best to let F1 2 , which we can control, be zero. Similarly

let F - 0 for all u 0 v . Since G is the same for all 3 structures

in the first row of Fig. 1.2, it must be "good enough" (have large enough

zain over large enough frequency range) to ' ! the "feedback needs" of th

worst of the three at each *, value. If it is possible to find F

Gi which solve these nine single-loop problems, then it is guaranteed that

these same Fij , Gi when used as elements of the F , G matrices in
ij 2

Fig. 1.1, are satisfactory for the original mio problem [1]. Thus, the

3 1 3 mio problem has been converted into three loop problems (choice

of Gi ) and nine prefilter problems (choice of Fij).

1.2.1 Derivation of Table 1.1.

Table 1.1 lists the demands on the three loop transmission functions

Li M Pii Gi so as to solve the nine single-loop problems of Fig. 1.2,

for the BNIC case. They were obtained as follows. In Fig. 1.2 each

diagonal y uu element has two components, one due to the unit input,

the second due to d (s). Let their respective outputs be
uu

Y uu,(S) -T uu(S) + Tdus
~ ~inuu s)r duu(CS)

(i.4a-d)
FLdQ
u U duuQuu L G Q

uu( S +L duu l+L u uU
U



PA P A

r-

-r - I'-

'AA

-I- . -,

I + - -

It 0 *-

I~N r- -



-7-

From (1.3) it is necessary that

's (jw)I E [auu(w) , b (w)] (1.5)

But Yu(J ) = (J + - (j) , and since their relative phases

are not known, the harsher condition is used:

Iruu(QW)I + IT1 uu (jw)l E [auu,b uu (1.6)

Suppose IT (jw)l E [a'u(w),bu' (w)] (1.7)
uu uu u

which must be chosen such that,

b + rduv .< b , a - Tduu >auu ,uu uu uu d uu

(1.8a-c)

b a +2t =b - a
uu Uu duu max uU uu

For example, suppose ly uu(j2)I E [.9.1.1] is required. This

allowance of 1.1-.9 = .2 variation in IT uu(j2) I can be split up inan

infinitude of ways between T uu(j2) and T duu(j2): e.g. T = .05

b = 1.05, a - .95 satisfying (1.8c). But rdu = .07 , b = 1.03

a - .97 would also be satisfactory, etc. What is the optimum choice?
UU

To satisfy (1.7), a minimum value of IL(Jw)I is needed, and a minimum

value of IL(jw)j is needed to achieve Id l . its allowed value.1du.
Hence, the optimum division is when these two minimum required ILl

values are the same.

In table 1.1, the (1.7) obligation on L is denoted as an A type,
U uu

of the form

Lu b'u < a' (1.9)

SI a'
u uu

'p

,"-1 - - ; . " -',i ' - "., .,.:- .- .- . .



while the Tduu is denoted as a B type, of form (see Fig. 1.2)
du. UU

uu uu : d
l+L

But - d = ) b. /iQui , giving

LiU iU Lil

if u

1I dll
etc. (1.10)

Il + EL 1Q + 1q I
?11Q12  311QI31

In the BNIC design, only this type of inequality exists for all off-

diagonal elements and is denoted as a D type, with b replacing
uv Liv

% 'duu

S 1.2.2 Optimization and trade-off

There are interactions betweeen the entries of Table 1.1, via the

.b For example, suppose b is decreased from its original value of
uv 21

-3 -3
say 10 to 5 < 10 , which certainly doesn't violate the

requirement IT211 < 10
-  . This helps B11 , because Ii + L I now

may be less than before. It helps D31  for the same reason, but clearly

* makes it harder on D . But suppose D2 3  imposes a tougher

obligation on L than does D (this is denoted by D23  .D2 1

D - D means that each imposes the same requirement on L2)21 232

Then it doesn't matter if b2 1  is decreased to some extent, thereby

increasing the D21 obligation on L2  Note that this interaction is

always between the elements of the same column in Table 1.1. Thus bl,

b21 , b 31  appear only in the first column; b 12 , b22 , b 32  onlv in

the second column etc. Similarly, decrease of b3 1  helps (AIIBII)

.20
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D 1but makes it harder on D 31

In the above, it was possible to help LIat no expense to the

other L's. Equilibrium is defined as when this is no longer possible.

Thne following has been proven [2]:

Theorem: A necessary and sufficient condition for equilibrium is

when all the L are dominated by the members of the same column.
u

For example, D 12  dominates L, 9 (A 2 2, B 22) dominatesL-

D3  dominates L This does not preclude one or more of D D32312 D13

(A 9 22 32 D 21 etc.

Trade-off

After equilibrium has been reached, it is still possible and may

be desirable to trade-off, i.e. sacrifice one or more L ufor others.

*For example, if the sensor of y2  is noisier than the others, or

Q2has higher-order modes in a rather low w range, it is important to

reduce IL 2(jw) I rapidly vs. w .This can be done by reducing b 23(or b 33

if D '(A BD a h xes fD (23 22' B22) 21 atteepneo 13 ' A33 ' B3 3)

chereby imposing greater demands on L (if D dominates L)
1 13 1

and/or on L 3 , if (A 33, B 33) dominates L3. of course, if so,

eventually one or more of ( A22 , B 2 2 ) , D 1 2 say the former.

Then b 22can be decreased but only until it approaches a 22in value,

whereas any b Cu 0 v) can be reduced by any amount.
uv

Equilibrium and trade-off give the designer valuable flexibility,

which he can exploit, according to the circumstances of his specific

system.
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1.3 Necessary conditions for use of of MIO synthesis technique

Certain conditions must be satisfied in order that the above

synthesis technique may be used. These conditions are not difficult

to derive, by simply examining the operations involved in executing

the design techniques. Normally the plant matrix P is available, so

its inverse P 1  must exist, in order to evaluate the Q from
uv

P-I [/Quv  . This means that det P must not be indentically

zero for any P E P . This is the much-touted "controllability" condition.

If det P 0 it means that the plant outputs y are not independently
-U

realizable, for that specific P

The other conditions are due to the need that the single-loop

problems of Fig. 1.2 be solvable, for only then can the F , G be
U U

found. The uncertainty in the Q must be compatible with the

specifications on the T u(W) If Q (s) is minimum-phase, then
UU. uu

very general Q uncertainty and T performance tolerances can be
uu uU

handled (see [1] for details). But if Q (s) is nonminimum-phase
uu

(has zeros in the right half complex plane), then the T tolerances
" %'UU

must be compatible with the limitations on the realizeable bandwidth

of L (jw) [4], due to the right half-plane zeros of Qu(s)u uU

Right half-plane poles of Q can be handled [2].

1.3.1 A high-frequency condition

There is an important high-frequency condition on the Q which
uv

must be satisfied. It will be derived for the 2 x 2 case, and only

stated for the 3 x 3 case. At high frequencies, the a of Fig.
uu

1.2, Table 1.1 and Eq. (1.3) are so small that they can be taken as

zero. All the A of Table 1.1 then disappear and the B have tne
uu uu

.. _UUU
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sam form as the D , with b replacing the Tdu. In the 2 2sae or a te uv 'uu ru

case the inequalities of Table 1.1 then are:

b2 1  1 12 12 112
" 1 (1 L . b

1 blI  ' b12
-1 2 1  ___1 b 92  1Q2 11

1 2  b b11  Q2?21 b b12  IQ221

In (l.lla), one might as well let b l/b21 = b 12/b22 since 11 + L

must satisfy both inequalities. This can't hurt and may help, because

suppose b 12 /b2 2 > b 1/b21 * Reducing b12/b22 doesn't hurt (a) but

may help (b), if b22/b12 < b21/b . For the same reason set

b 21/b = b 22/b12 in (b). These two results are identi,-al:

bllb 22 ' b12b , and give

11 + LI1 -11 + L2 1 < 221 (1.12)
[~1 QQ22

Now we know that sooner or later in w , any practical 1I + L u < I

unless L is restricted to larg LI :< 1/2 which is impossible in anyU

practical system. (This impractical condition is blithely assumed in the

"optimal quadratic regulator,", so popular in Modern Control Theory).

If we play safe and want to allow 11 + LuI < 1 for all w larger than

some w , then (1.12) requires that there exist a w um such that

= V!1221 > 1 for all P E P and all w > w (1.13)
fp1 2p2 1  IQ 11 Q221u

The analogous condition in the 3 x 3 case is more complicated in its

derivation [l], so is only stated here:

p ,

. ,, ., , - / , , . , , . , , . . .. . , - ' - .. . .. . . .
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1 PIP 22P3 3 1 1 1 PI2 3P32 1 + jPl2P2lP331 + 'P1 2P23P3'1

+ I 13 P2P 3 1 I + P3P21P32I
13 1(113'. 124a,b)

-- Pu = 1/Qu
Puv UQuv

The above are not necessary conditions because in (1.12) we could

stagger the w regions in which Ii + L I , I1 + L I are less than

unity, i.e. have L in the second or third quadrants uhen L is in the
U V

first or fourth and vice versa. But it simplifies matters if the

condition is satisfied. By renumbering the terminals at the plant input

(but not at the output) the new pl1  is old pnew = l~old

etc. And if this renumbering is done at the plant output,

(Pll)new = (P2)old etc. In both case (1.13) becomes

,' 12~1Ql( 1122 1 (1.15)
SIQ1 22 new .Q 2Q21 'old i 1

Of course renumbering of either the input or the output terminals of the

plant changes the expressions (1.14,1.15). This may be tried if in a

specific numbering, the inequality is not satisfied VP E P . It is worth

noting that Rosenbrock [5] has a condition for his synthesis technique,

which is harder to satisfy than (1.13) or (1.15), even though his synthesis

technique does not cope with plant parameter uncertainty. His condition is

that the diagonal element lPI be large than the sum of all the other

elements in the same row (or of the same column), and this must be so

for all Ai E [0,-)

L"
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Finally, suppose that in the 2 x 2 case neither (1.13) nor (1.15)

j is satisfied for all w > some wh , precluding the use of this synthesis

technique in precisely its present form. This is the situation in some

of the moc,-s of our air:raft flight control problem. no matter what tie

P • numbering of the plant terminals, i.e. (1.14) is not satisfied. Never-

* theless, all is far from lost. In the 2 x 2 case one uses this
4.

synthesis technique for designing one of the Lu F (say u = 1). So

the design of Lu  F is that of single-loop system design. Then oneU U

uses the exact system equations to design G2 , F2 . This second part is

not difficult because it too becomes a single-loop type of problem, when

GI ,F I  is known:

PlIP21FI L1

L20F2 T Plo (+Ll)T2 2  L20 . ' 21 L 2+P
L20+

(1. 16a-d)

+ L)
P Pll PllP22 1PlO (1 + L I 1 PlIP22-Pl2P21

L 20 G 2Q2 20  is a nominal loop transmission at some P E P chosen

as the nominal plant. If L20 is large enough then from (l.16a)

T22 -" F2  * In (l.16b), large enough L20  also guarantees IT2 11 can

be made as small as desired over any finite w range. Since FI and

L are known, it is simple enough to choose L to satisfy the tolerances
1 20

on T21 , T2 2 . In this way, the restriction (1.13) can avoided, and .in

a similar manner restriction (1.14) for the 3 x 3 system (see Sec. 2.4).

The above situation in the YF16CCV system motivated us to research this

problem and develop an improvement of the mio synthesis theory. This is

presented in Appendix 1. It is a good example of fundamental research

motivated by practical problems.
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1.4 A shortcoming: use of nondiagonal G

A good criterion of any feedback design technique is that the

amount of feedback should be related to the amount of parameter u',-ert:iintv and

co naLro )rness of the tolerances. Ln particuL it, i h ziieru is no urc rt

there is no need for any feedback at all, and the design technique should

emerge with this result. As presented so far, the above design technique

fails this test because of the existence of the B.. , D.. elements in

Table 1.1. This can be corrected by inserting a precompensator H in

front of the plant, whose function is to diagonalize the new modified

N., plant PH , as much as possible. If there is no uncertainty it can be

done precisely and then Q ij- for all i i j , and in Table 1.1

the Bii , Dij all give 1i + Lu- with no resulting obligation

on the L
u

When there is parameter uncertainty, the elements of H can be

chosen to minimize the Bii I Dij factors in the design problem. Let

the new modified Q elements be denoted by wi.. , the old (due to P alone)

by Qij For the 2 x 2 case

[1/wi.] = (PH) -  H-li/Qij]
kij

l+X I
' 21 + 12 +

1Q2 1 ) 1 Q2)

V 22 )V (l.17a-d)1 22 Q22

In the low and medium LArag where i L is >1 significantly

+an+

11 12 2

I +Lu I ILu i, so DI for example becomes closely G I
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Hence it is desirable to choose A1  to minimize max +1P QII Q22

This is also the best that can be done for (AII,B) in this w range.

In the higher -) range where IL I i or less (1.lla,b) apply so thenI

one seeks to minimze

max 1w11/w121 = max A1 (1.18)
P +

Q1 2  Q22
if the right side in (l.lla) really is the constraint on L Often

the right side is so large that instead one arbitrarily sets a gain

margin type of constraint like Ii + L II < Gm db in the higher

range.

1. 5 Summary

We have presented the highlights of a multiple input-output (mio)

synthesis technique for uncertain feedback system. Its main attractive

feature is its reduction of the highly complex uncertain mio system into

a number of single loop uncertain systems. Under very general conditions,

the solutions of the latter are guaranteed to be satisfactory for the

original mio problem.

The technique was applied very successfully to four linear time

invariant mio problems with highly uncertain plants (1- 3 ] . The most

complex was 3 x 3 with a mixture of BNIC and more complex performance

tolerances. Also, it was extended to a class of nonlinear uncertain mio

plants, including a 2 x 2 highly nonlinear, uncertain and interacting

example t4]. However, all of these were fabricated academic examples.

The balance of this report applies this technique for the first time,

to a real life practical design problem.
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CHAPTER 2

DESIGN FOR DIRECT SIDE FORCE MODE

The synthesis technique of Chapter 1 is applied to the design of

the "Direct Side Force (A) " mode of a fighter CCV aircraft. Direct~Y

side force (A y) is commanded and the objective is to achieve specified

A step response tolerances, while maintaing specified small sideslip~y

(S) and roll (0) . The control surfaces are 6 (rudder), 5 (ailerons),

6 (r-nard). The definition and units of the symbols are all listed inc

the List of Symbols at the beginning of the report.

2.1 Plant equations

The plant equations are

s x Ax+BS , y C x+ D

r p,r,a ] - [ C (2.1a-g)

S[,,]' p , r 'p yaw rate
y

2VC

tp Rtr b
2 VC

A - 2Sb C C nc (2.2)
2V np nr b

2  2VC
C 4-E C 2--y
yp yr qSb b

..
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iCPdr cz6a c

BqS 'D C C n (2.3)

"-,

Cydr Cy6a Cv5 c

L. -

b/ 0 0

b/I Y 2mV 2
.. "-. ¢ I 0 0 ,E =  s--- qSb

_ 0 /m
(2.4a,b)

0 0 07 p 0  01<" I1s 0 0 D = 0 0 0 _

Lc31 c32 c33 Cydr Cy6a Cy6c

(2.5a,b)

(c 3 1 ,c 32 ,c 3 3 ) = C C (2.6a)31-2'3 2Vm ,p yr, -b ya)(.a

Note that the third row of D is precisely the product of V

and the third row of B

From (2.la) x=(sI - A) 1 B 6

~1 A

= [C(sI-A)--B+D]6 = P . (2.6b)

Our technique requires evaluation of P- = [l/Qi . Let

R B-1 0 0 (2.6c)

00
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from (2.3, 2.5b), so

-l/Q ] = {[C(sI-A) + DB IBI B [R + C(sl - A)-1]- I

[ - L 2 .7 )[- -l [R s _ I ( I A -1 -K B-1-
t[R(s-A)+C](sI-A) = (sI-A)[R(sl-A)+C]

It is readily found that

2 0 0 s

Cs+R(s2 I-As) = 11 0 0 (2.8a)

-(as+Y )V Vs Vs

and its inverse is

-1 (as+Y )/s l/sV (2.8b)
-, ls 0 0

--l -[l/Q ij is obtained by premultiplying (2.8b) by B (sI-A) This

was programmed on the digital computer.

2.2 Flight Conditions

Ten flight conditions were considered in pairs of two. Conditions

(1,6) are quite similar to each other, so are (2,7), ... (5,10) in

having the same mach, velocity etc, differing only in the Ci6 c  values,

due to the odd cases having v.c. = 15, the even cases v.c. = 25 . The

parameter values for these conditions are listed in Table 2.2. The
-1
1uv transfer functions for the 10 cases are listed in Table 2.3 in the

form Q = kTr(s+pi) The value of k is listed first, followed by theuv

At the end in brackets is the zero frequency value of Q-v For
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example in Case 1, Q .0723(s+.907+j 8.2) (s+.q07-j 8.2)
-1

whose value at s = 0 , is 4.92 Q31 -.0909(s+6.13)(s-6.10) whose

value at s 0 is 3.40 , etc.

T7 ic ,,,n,J irins give .it each frequency ten dir -e rent vlues

of Q uv( w) The sets {Quu (jw)} , denoted as "templates" TP uU.) ,

* are needed in the synthesis technique. A number of these are shown in

Figs. 2.1-3, in Nichols chart coordinates. A missing flight condition

number in these figures, means that its Qi (jw) value is very close to
11

that for another flight condition. The star refers to Case 10.

4.
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Table 2.2

Fighter CCV, Trimmed Aero Date, 01/18/79

Area. , : '0 .000 fr . Mac, c = 10.9 tt. : H:) ,l. 1 = '9.0 ft.

I = 12.b06 , Ixy = 12.824 , Lood factor = 1.0,

CG location 35.300 % Mac, at W.L. 93,200 . I = 3100 , I = 47000,xx yy

l = 53300 , I = 354 slug ft- .

Flight 1 2 3 4 5

Conditions 6 7 8 9 10

Mach .6 .8 .9 .6 .9

Altitude (ft) 0 20000 0 30000 30000

Impact P, Q 582.98 510.38 1462.84 173.48 435.30

Dynamic P,q 533.22 435.97 1199.75 158.67 357.01

(lb/ft2 )
P /P 1.00 .460 1.00 .298 .298

s 0

Qc /P .276 .524 .691 .276 .691

895.41
Vel (ft/sec) 669.84 828.32 1004.76 596.94

rRIMIED LATERAL DIRECTION DATA

a(degrees) 1.890 2.145 .901 6.129 2.470

103 C n(1/deg) 2.291 2.759 2.169 3.463 2.947

103C 8(1/deg) -1.836 -1.999 -1.721 -2.705 -2.005

102 C Y(1/deg) -2.030 -2.201 -2.100 -2.203 -2.220

102 C np(1/rad) -1.949 -2.658 .9888 -2.709 -2.780

10(C p(1/rad) -2.908 -3.148 -3.180 -2.790 -3.203

lOC (1/ rad) 1.054 1.329 .5486 1.495 1.227
yp

10(Cn (1/deg) -3.834 -3.665 -3.562-383387
-386r3.3



Con't Table 2.2

l0Cjr(l/deg) 1.752 2.109 i.b08 2.324 2.136

" c (1/deg) 6.910 6.896 6.434 7.218 7. 351
v r

10 C c Idg -1.217 -1Inn .0989 -1.-F5 -1. 1. 2)6
nmr

10C r(1/deg) 3.720 3.090 2.057 3.229 3.306

310 C y6 (1/deg) 2.347 2.147 1.240 2.873 2.080

3
10 C (1/deg) -1.008 -1.082 -1.067 -.9541 -1.107

n a

3

1 03Cz6 a -1.012 -1.060 - .9443 -1.089 -1.082

10B 2.343 2.567 2.508 2.352 2.671
Cyoa

3
10 C 1.310 1.314 1.306 1.190 1.310

~n c

1.01.0 1.008 1.027 .8761 .9977

4
10 Cz& 2.091 2.253 3.058 1.290 2.816

2.104 2.199 3.075 1.293 2.727

103Cy6c 2.066 2.027 2.207 1.396 1.965

1.800 1.770 1.912 1.248 1.720
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2.3 Design procedure

It was found that condition (1.14) was not satisfied for all P E P

no matter what plant terminal numbering w;is tried. The modifintin

described in Sec. 1. 3, was therefore used: The technique is used in its

original form to derive L and L . Then the exact equation is used to
12

derive L3 .First, the bounds on IT3 3(jw)1  are needed. Examination of

the simulation data supplied by the contractor (A mode response-Fig. 2.4),
y

suggests modelling T 33 (s) as a second-order function with a pair of poles

at approximately -5. This gives a first cut at IT3 3(J,)I Then, curves

of larger and smaller values are tried in order to widen the acceptable set.

In this way the bounds shown in Fig. 2.5 were obtained. It is required

(recall 1.3)), that

a33 (w) 1T33(J w)I . b3 3 (W) (2.9)

This approach may be criticized as rather crude for translating time-domain

into w-domain tolerances, but we found it highly reliable in many design

examples for example [8,91, and it is easy to execute. Reasons for working

in the frequency domain rather than in state-space, have been given in

In this mode r2  r3  0 , so the only command input is r3  of

Fig. 1.1, and in Table 1.1 only D 3 , D , (A33 , B3 3) are applicable.

Consider D written as

b23QI + b

11 + Ll1 > 1 (2.10)
." b13

Recall that b 13(M ) is the maximum allowable value of IT13(J I , b23(W)

that of IT23(Ju)I If a command of lg for A is to result in a
23 y

. ..- .-
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maximum of one degree steady-state value of 8 , then

b 1 3 (0) = 1/(57.3)(32.2) =(.5)10 3  . We can prescribe this value for

all w . Comparing this value to b33 in Fig. 2.5, clearlv b 3>> b23

at least :rom = 0 to - 20 . But if it will ilt-lp in the dtsign,

b33 can be decreased right down to a3 3 . This will make it harder on

the design of L3 , because the tolerances on IT 3 3 (jl) are then

• narrower, but it is later found that the demands on L, L2  are much

harder than those on L3

Returning to (2.10) since b33 b in the low frequency range,33 23
b33 QI will dominate in the numerator unless IQ /Q I IQ /Q I.

33 Q 11 12 11 13

We therefore sketch in Fig. 2.6a,b these two ratiLs from the data available

in Table 2.3. Cases 1-5 suffice, because Cases 6-10 are pairwise very

similar to Cases 1-5. Clearly, b33IQ11 /Ql3 I dominates at least up to

w = 10 , so in this w range, we need

11 + LI= 11 + G1Q11J b 33  __ (2.11)
13 13

which is - 66db + (-50 db) - 16db for w E [0,6] It helps to approximate

11 + G Q I by !G1Q111 , because (2.11) then becomes

IG1 (jw) I>, b33 /b1 3 1QI 3 1 (2.12)

and the bounds on G are easily determined in this range. The value

-10
(1500) was chosen for b13 , corresponding to 1.50 max B for

13l
A of lg . The maximum value of IQI3

- 
= .0375 for Case 4, giving

y 1

55 for IGI . Case 9 was chosen as the nominal plant case Q
1 mi

with the nominal loop transmission L1 0 = G1 Q1 1 0 * It is convenient to

have the bounds on LI0 rather than on GI , because in the higher w

-. .. ... -, .. .. , .-, ' ., , ' ., , , ,< , .. , , . -. ./ i - --. ..'. ..-1 0. . "
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range one can no longer take 1i + LI L I  In any case, the procedure

for finding the bounds on L10  in the low w range is fairly clear

from the above.

As increases, b decreases (see Fig. 2.5) and so does /(. b33 b9 I 1 13

b 23 I11 
_(see Fig. 2.6b). The first term b f in (2.10) is never large, so

the demand on Ii + L11 in (2.10) steadily decreases. Eventually i + L 1
may be quite small which would permit LI  - But it is sensible to

impose reasonable stability margins on the L1  loop by itself. Physically,

this would correspond to the case y2 = = 0 , Y3 = Ay = 0 and the only

feedback is from 8 because then in 5 = y 1 (see Eq. (2.5)), 6 = Y /QII

So in the higher w range bounds were found on L10 such that

1i + L 1 -1 < 2db . The resulting bounds on LIO are shown in the Nichols

shart tn Fig. 2.7. The next step is to find a Llo(s) , such that LIO(JW)

satisfies the bounds of Fig. 2.7. This was done simply by cut and try.

The Bode plots of L10 (jw) are shown in Fig. 2.8, and L10 (Jw) is also

shown in Fig. 2.7.

The resulting jG1 J(jw)l = IL 0/QI1 o1  is sketchpd in Fig. 2.13, and

it is seen it must be greater than one, over an extremely large w range.

The reason for this is evident from Fig. 2.7. The intrinsic demands

on IL 01 due to the specifications, become negligible at w = 25. However,

IL1o(jw)I cannot decrease very rapidly vs w , because its phase lag is

not allowed to be more than - 130 ° . And this constraint holds until

ILI 0 (jw)I has decreased to about -24 db . This is due to the large spread
-10

in the high frequency values of Q (see Fig. 2.1). The present design

Z is clearly overly conservative. At w = 8 1L101 is about 3 db larger

than necessary. From 15 to -24 db levels there is a change of 39 db, at
aaergslpof-130
an average slope of - -- O x 12 = -8.7 db/octave, requiring 39/8.7 = 4.5

octaves, giving (8) 24"5 180 for the frequency at which 1,101 -24 db

.-

. . . ... • - -..- .- . ...
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The decrease of IL I can be more rapid thereafter, but again we have
10

been rather conservative.

There is a trade-off between the complexity of the compensation

function (the number of its poles and zros), and rhei 1 in,1width of GI

It is clearly possible to decreas G more rapidly in the mid-frequency

range. Also more far-off poles can be inserted in the higher w range.

All this requires more careful shaping of LIO(Jw) , with more poles and

zeros. This will be done in later designs.

-" It is also noted that a significant reasona for the large bandwidth

of GI  is the large gain margin (about 25 db) needed for LI0 because

W": of the large spread in the high-frequency value of Q (see Fig. 2.1).

This spread can be reduced by high-frequency scheduling, which is done in

Sec. 2.8. The analytic expressions for the L o(s) , Gi(s) etc are given

in Appendix 1 of this chapter.

We next turn to the design of L 20(s). From Table 1.1, the only

requirement here (since only A is being commnanded) is D2  of Table 1.1,
y 2

11. + L2 1 > 1 (2.13)
':- b23

The bounds on L20 (Jw) are obtained in the same manner as those on L

with the result shown in Fig. 2.9. This figure has precisely the same

features as Fig. 2.7 and for precisely the same reasons - especially the

even larger gain margin needed, due to the larger spread in the high-

frequency gain factor of Q22 (see Fig. 2.2). The L20(Qw) chosen is

shown in Fig. 2.10, and is also rather conservative. It should be noted

that as Q has a right half-plane pole at .0283 (see Table 1.2,

Case 9), it is imperative that L20 has this same pole; otherwise there

* -. . -. . . . . . .



- 30 -

is attempted right half-plane pole cancellation, which would give a

dipole in the right half-plane, and the system would then be unstable.

2.4 Design of third (A) Loop

It is recalled that condition (1.14) could not be satisfied in this

problem, so the design of the third loop is performed by using the exact

equation. In FIg. 1.1,

~-iL
T = (I + L) 1 , L = PG (2.14)

We are interested in the actual expression for

L3 F3 [(l+LI )(l+L2 )-Y 2 (-T: 3333 1 2 1 (2.15)
___., 33

(1+L I ) ( I+L 2 ) (l+L 3 )-[Y1 2 ( l+L 3)+y 1 3 (I+L 2 )+Y 2 3 (I+L I ) ]+r

22i- Q QIz QIQ3 QzzQ3

= 11 22 ,~ 1 1Q33  223
- 12 Q 12Q21 ' 13 Q13Q31 ' 123 Q2 3 Q3 2

(2.16a-d)

"= Q11 Q22 Q33 (Q 2Q 3Q3 1 Q 2 1 2Q 13

The above was obtained by expanding the matrices in (2.14). For purpose

'.. of design of L3 , it is desirable to rewirte (2.15) in the following form:

T F33 L30 /(2 L1GQ
33 L L 3 0  G 3 Q 3 3 0  (2.17a,b)

Q [yI 3(l+L2) + Y23(l+Ll)-r]T'(ja)- -330 1i 13 2 3 (2.18)

Q33 (I+L I )(l+L2 ) - Y1

Of course, p is a function of w and of the plant parameters. There is a

different value for each of the ten flight conditions.

The procedure is to find the templates Tp (w) , of t(jw) i.e.

T1 ,) = { c)(ju). Sonc tcn-.rlatcs are chotm in "ig. 2.11. It is recuired
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that

a3 (w) . T (jw) - b 3CA) (2.19)

of Fiz. 2.5. The function nf I. is tn 2uarantee that over the range

A log L0 log - (2.20)

+ L 30 a 33

The Nichols chart is the perfect design tool for this purpose because

it contains loci of constant IL/(l+L) . Here L 30 T takes the place

of L . As there is no uncertainty in L , the template (set L30 /'J})

of L301/Y is simply the template of 1/ shifted by the value of

L30 (jw) . One positions the template of i/V on the Nichols chart until

(2.20) is barely satisfied, giving a bound on L30 . The design procedure

is in fact precisely the same as in single-loop design, described in detail

in t3].

The bounds on L30 thus obtained are shown in Fig. 2.11, together

with the L30 (jw) chosen. A Bode plot of L 30  is shown in Fig. 2.12.

There is heretoo the same phenomenon as in the design of L1 0 , L20

(Figs. 2.7, 2.9). In the higher w range, an additional constraint of the

form I1 + L3 1-1 < some specified value becomes more demanding on L3

than (2.19). Also, the large spread in the value of the high-frequency gain

factor of Q33 (see Fig. 2.3), forces IL3 0 (jw)I to be decreased

slowly until IL30 1 - -30 db . However, since IQ330 (jw) l is considerably

larger thatn IQo101 and 1Q22I , the demand on G3 = IL30 /Q330 1 is

considerably less than on GI , G2 , as seen in the Bode plots of the

(asymptotic) GI , 2 , G3(Jw) in Figs. 2.13, and 2.14.

. . . . - .%.. . '-.
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Proper choice of L 30  only guarantees that the change in IT 3 3 (i,)

is within the amount allowed by (2.20). The role of F3 (jw) in Fig. L.1,

is to position IT3 3 (, )I within the rolfrances of (2.19). For ex;,mple

S : a(O) = -23.5 db . b3(10) = -8.5, Lnd if (L0 l-(L3 0  ) I
3333 30 30.

in practice ranges from -10 db to + 2 db at u) = 10 , then it is

necessary that, -13.5 I 1F3(jlO)I < -10.5 db . Bounds in IF3 (Ja)I are

obtained in this manner and then, by cut and try, F 3(s) was selected
I3

which satisfied these bounds (see Appendix 1 for F 3(s)).

Note that T3 3 (J w) F3 (Jw) over the significant frequency range,

because the bandwidth of L3 (Jw) is so much larger than that of T3 3 (JW)

This happens in systems in which large parameter uncertainty demands large

loop bandwidths.

2.5 Simulation results, Design 1

The system was simulated on the digital computer for Ig step

command of A . The responses are shown in Figs. 2.15a-c in degrees

for 3, 0 and g's for A . The A responses for the five cases were
y y

very similar, so result in almost a single curve in Fig. 2 .15c. The

other five cases (6, 7,...,10) are pairwise very similar to these first

five and are not shown. The control surface deflections 6 6 6
r a c

in degrees are shown in Fig. 2.16a-c. The control surface rates are

shown in Figs. 2.17a-c. The actual control surface limits are respect-

ively t300 , -200 , -250 for 6 r6 6 ,so Case 3 is well•r 'a c

below saturation, while Case 1 barely causes canard saturation (25.70).

The other canard values are 33 , 120 , 540 for Cases 2, 4, 5

respectively, so that to avoid this amplitude limiting, A commanded
y

must be reduced to .76 , .21, .46 g's respectively. In all cases
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the canard is the limiting surface.

The rate limits are 120, 56, 100 deglsec for 6 r ' a ' 5c

whereas Fig. 2.17 shows that in Case 4, the canard r;ate i -t-r3-,-hir

-greater [imitig fi cor than thne canard amplitude, limiting A to
y

* .17 g for this Case 4. This can be improved by slowing up T33 ' If

the step response of A is slowed up by X (the time scale in Figs. 2.15
y

multiplied by X , then the 's will be reduced by this factor very closely,

because as noted in Scc. 2.4, T33 (jw) F3(jw) over the significant

range of T33(QJ) . This slowing up by a factor X is achieved by

multiplying each of the F3 3 poles by X . The reason is that F3 3

with its much smaller bandwidth than the L. , dominates the system

response to commands (see Sec. 2.10).

2.6. Responses under amplitude and rate limiting

The control surfaces amplitude and rate limits were incorporated into

the system model, in both cases as simple algebraic nonlinearities. If

the rate saturates first, the amplitude can continue to increase until

it becomes saturated, and vice versa. The commanded A input was in
y

each case made so high as to force the system to saturate. The resulting

6i responses are shown in Figs. 2.18a-c, and the 6 responses in

.. Figs. 2.19a-c. In all cases the canard rate was the first to saturate and

the canard amplitude eventually also saturated. Figs. 2.2 0a-c show the

A Y responses under these very hard saturated conditions. In

all cases, the responses are very nice, with little overshoot. Note that

in all cases except 3, 3.1 g's were cmmanded and 9.3 g for Case 3, so

as to deliberately drive the system into very hard saturation.
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2.7 Design two

Several more designs were made, primarily in order to decrease the

bandwidths of C , G. In design 2 some sarrific .w.is m;d,- in r he final

Slues , f and when A is com!and-d s. 1 s L: viuenr fro m tn
V

smaller values of G (0) , G 2(0) in this design as compared to Design I.

Also, an additional two far-off poles were assigned to G (s) , G2(s) in

order that they may reach zeco db magnitude at a considerably smaller

frequency than in the first design - compare Designs 1, 2 in Figs. 2.13-4.

Otherwise, the design procedure is identical to that of Design 1, and is

therefore not described. Because of the faster reduction of IL o , IL201
10' 2

a greater burden was imposed on L3 , so G in Fig. 2.13 has a larger
3 3

bandwidth for Design 2, than in Design 1. But this is acceptable, because

the demand on G3  is so much less than on G, G2  The Bode plots of

L 0 , L20 , L30 are shown in Fig. 2.21a-c. The computer simulation results

are shown in Fig. 2.22 It is seen that the 1, ¢ responses are

as expected somewhat poorer than those in Figs. 2.15-2.17 for Design 1.

2.8 A design with scheduling

One of the reasons for the large G. , G2 bandwidths of Design 1,

noted in Sec. 2.3, was the large gain margins needed (Figs. 2.7, 2.9) for

L L This was due to the large uncertainty in the high-frequency
10 20

gain factors of QI Q2 2  (Figs. 2.1, 2.2). A significant decrease in

the G1 , C2  bandwidths should be possible, if there can be a significant

--. decrease in this high-frequency uncertainty. We therefore examine Eqs.

2.1-8 for lim Q The results are (letting q Q-I IJs uv qUV uv

%, -

J.'
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"- -I -s '(C w C Z~ - C .~ ~ "

Oa ZU -. y(,c

-q Sb I (2 .22a-c)

C C-, .' (" - ' ,,

: t _' q s b -- -

r q1
q1 3  - Vs

2
qq Sb A (C Cy - (C C c

Z (2.23a-c)

2 (C C C C )
q? s n6c yor no r -yo c q,,S b~ ANcq2 'q SbA I U2

q 21

q23 - -sV

2

q 3 1  -q ( Sb6I ( y6r C6a CZ6 rCy6a)q z

sr y~a y 6 r rnd -

q 3 2  qSbA I 31x

q
3 1

q 3 3  sV

C Cr (C n6aCy6c -Cy6aC nc) - Cn6r(CGpaCy6c - CyaC Z6c )

+ C yd r(COr(Cta(Cn6c - C 6 C c)

(2.24a-d)

Thus all the Q are inversely proportional to q as s +C
uv

Hence, the part of the uncertainty due to the q variations could be

eliminated, if q can be accurately measured rapidly enough. We assume

that q can be measured with t 20% error, i.e. the measured value may

in fact be between .8 and 1.2 imes the correct value. The zero w values



-36-

of the Q are independent of q , so the measured q are to be used
uv

only in the higher w range. Accordingly, we insert in front of the

plant a diagonal scheduled compensator, each of whose elements i

J(s) = , rT= (2.25)+ s q Ts s 1200

where q is the measured value of q . One should really experiment

with the value of T . But our primary purpose here is to demonstrate

how well-known techniques, such as scheduling, can be incorporated into

our design procedure.

This incoporation of scheduling into our design technique is very

simple. Let the new plant be P = PJ (s) , so the new

L " -1 [I/QP- [/Qu - [ u(2.26)

n uvn J(s) J(s)

with J(s) a function of q and therefore of each flight condition. The

procedure is now exactly the same as before, but Q (functions of theuvn

flight condition) replace Quv " But now there are thirty cases because

for each flight condition q in (2.25) may be .8 q, q or 1.2 q.

. Some of the templates of Quun are shown in Figs. 2.23-2.25, for

Qln ' Q22n Comparing with the templates of Quu (old) in Figs. 2.1-3,

it is seen that there is little difference at low w values, but with

significant changes of the templates at higher w values. The new

template Q at large w (100) is actually larger in size that the
lln

unscheduled QI1 (100) . However, the nominal (Case 9) Q ln is near

the top of its template, rather than the bottom as it was for the

unscheduled case. So the resulting bound on L at high j is not
10

so far down, we don't need as large as gain margin and G (jIQO) for

•
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the scheduled design is much smaller than for Design I or 2. In finding

these templates of Q uun three different values were assigned to q

of (2.25) for each flight condition. These were q .8q , q and L.2 q.

The bounds on the Nichols chart 3ma logcs t those in the rirsr

design (Figs. 2.7, 2.9, 2.11) are shown in Figs. 2.26a-,, which also

include L (Jw) Bode plots of the L are shown in figs. 2.27a-c
uO uO

Digital simulation results are shown in Figs. 2.28a-c. For each flight

condition three runs are shown, one for the case qm .8q , the second

if q happended to be q and the third for qm 1.2 q.

Figs. 2.13, 2.14 show that a scheduled design can be more economical

in G bandwidths required. We have probably overestimated the measure-
U

ment error i.e. the allowance E [O.8q, 1.2q] is probably much more than

the actual error. Also experimentation in the value of T used in (2.25)

will lead to better results, as would a more sophisticated J(s) function

of (2.25). In any case, our main point was to demonstrate how easily

scheduling may be incorporated into this new design technique. Also how

the design technique reveals the frequency ranges in which scheduling is

worth implementing.

2.9 Nondiagonal G

The three designs presented so far, all have the shortcoming discussed

. in Sec. 1.4. The are the products of a design technique which requires

4 loop transmissions, even when there is no uncertainty. The remedy was

given in Sec. 1.4. One precedes the plant with a nondiagonal matrix,

say H = [h ij] which diagonalizes the new effective plant PH as much

as possible. The design technique is then applied to the new plant PH.
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K

Tn our problem only A is commanded so there is need only for

hil The others of diagonal elements -; n be made zern. Tn

|_,lcr.II., tn 1t-n.,.nts or ml v h , n ,uncri,ins pr rl t-i c'.' . n'lC , *,ur

primary purpose is to demonstrate the new technique, we shall concentrate

on w = 0 , and indicate the procedure which can be followed for w in

general.

Recall from Sec. 1.3, (Eqs. 2.10, 2.13) that the bounds on LI0

L20 are determined by the requirements that

b23 1 2 + b3 3  Q I3

13 (2.27a,b)

bI+b Q22

3 Q22 33 IQ" b13 Q21 Q23

21 b2 3

Recall also that it was shown in Sec. 1.3 that the second terms in the

above involving QI3 , Q23  easily dominated the right sides of (2.27a,b)

up to about 10 ' 15 rps. Hence, it is desirable to make the new Q

Q23 very large. Let the new P be P = PH , so the new

[i/Quvn  H- 1 P - 1 = H- I[/Quv . Let h1 1 - h22 = h2 3 = 1 , h 1 3 -

h - , the others zero and then

Q = (P3 [P -i9

Ql3n 1 3 - cP33  Q23n [P2 3 - 33

(2.28a-c)
P =lJ/QI
uv uv

If the b , b 3 3  values were the same for all flight conditions, then
13 '3

a reasonable objective, at any w , is to choose a , 3 to minimize

max IP 13 - aP3 3 1 over various flight conditions. However, in
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pra-ti,-e the maximum A commanded is generally different. Hence, if
V

say a constant maximum 2 angle is tolerable independentlv of A
y

.mmIr <. icn b . sho Id u ,} inverqo I r. r, in i .\ A .,,-n '1:A

Tiis w.issur.ed h so in estimate was needed or the maximum A
V

commanded for each flight condition. The estimate was made approximately

on the basis of the A needed to achieve amplitude saturation in
y

earlier designs with Ig the maximum value:

Cases 1,6 - Ig ; Cases 2,7 - .6g ; 3,8 - ig
(2.29)

!.,9 - .25g ; 5,10 - .5g

Accordingly, we seek to min[max WI(PI3 - cP33 )I] , where

W, b33/b13 ,whose values are now: 2000 ,1200 ,2000 ,500, 1000

respectively for the cases (1,6), (2,7),...,(5,10). The result is

a -.571 , giving 5.64 for the min. max. value, which is 15 db needed

for G at w = 0 , instead of 55 (= 34.8 db) neeeded previously.

Similarly, the optimum 8 is found to be .347 , with only 12 db needed

for G2 at w = 0 . In principle, this process can be continued as

a function of frequency, but was not done here because there is not

much change in the above parameters up to w = 10 . So a matrix of

constants is used here for H

Hereafter, the design procedure is precisely the same. New templates

SQuun must be found, and the values of the new Quvn calculated for use

in (2.27a,b). The new Quun are:

Q =(P -nP (P - P3)
lln 11 31 022n 222

(2.30a-c)

Q33n 33' Puv -/Quv

-... .,-i-.-. --
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Some of these new Qlln, Q2 2n templates are shown in Figs. 2.29a,b.

They are somewhat larger than those of the diagonal G design, in

Figs. 2.1. 2.2. Bur the much g reiter reduction of off-djil,,n.'

elements in (2.28a,b) leads ro the nondiagonal design being significantly

more economical than the diagonal. However, this point should not be

K overlooked. The choice of H should consider the effect on the uncertain-

ty rangers of the new Qun A more sophisticated optimization techniquer-un

is needed for this purpose. The new bounds on LI0 , L20 are shown in

. Figs. 2.30a, b and Bode polts in Figs. 2.31 a, b. The new G, G

values are shown in Figs. 2.13 , 2.14 where it is seen that they are

significantly more economical than those in previous designs.

Simulation results are shown in Figs. 2.32a-c: 6 , , A iny
..Fig. 2.32a ; 6r , 6a , 6 in Fig. 2.32 b and 6 , 6 ,

r a C r a c
in Fig. 2 .3 2c. In these simulation results, we deliberately commanded

0
* sufficient A so as to obtain the maximum avaliable 25 canard value,

y

except for Cases 3, 8. The commanded A values are given in brackets
y

in the A responses in Fig. 2.32a. Exceedingly small a , valuesI y
are achieved in this design, part of the reason being the smaller A

y

being commanded for 6 of the 10 cases. There is no rate limiting in

all of these cases. The A commanded are (in g's):

y

Case 1, lg ; 2, .8g ; 3, lg; 4, .23g ; 5, .5g ; 6, .73g

7, .6g ; 8, lg ; 9, .17g ; 10, .35g (2.31)

From Fig. 2.13, 2.14, it is seen that this is the most economical

design so far. It could, of course, be made even more ecoromical by

, incorporating "scheduling"as well.

- . - . .--- . . . . . . . . .
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2.10 Trade-off between speed of response and rate limiting

It was noted in Sec. 2. that one could achieve smaller peak control

surface rates, by slowing up the A response. This is illustrated here
*' V

for Design I of Sec. 2.3-2.5, simply by changing the prefilter F3  In

Design 1,

100
F 3 F 3a (s+5)(s+20) (2.32a)

This was changed to

36
F =F = (2.32b)
3 3b (s+3)(s+12)

The G matrix is not changed, so 8 , should be only secondary affected

and A slowed up. The simulation results for Cases 1-5 are shown
y

in Fig. 2.33 and should be compared with those in Fig. 2.15. The control

surface deflections 6 6 are shown in Fig. 2.34, and should

be compared to those in Figs. 2.16, 2.17. It is seen that it is

primarily the 1;i max which are significantly reduced. Hence, this

method may be used to trade-off between the speed of A response
y

andIila

S.. --- S. - - S -
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APPENDIX 2.1

. COMPENSATION FUNCTIONS FOR VARIOUS DESIGNS

Design 1 (Sects. 2. 3-5 )

L'""(260) 104 (s+7) (s+60)
* .10 2 2 2

(s + .706s + 27.3)(s + 25)[s + 4 00s + (400)

4
=,-(52)10 (s+7)(s+60)

2 2(s + 25)[s + 4 00s + (400) 2 ]

5
(5)10 (s+10)(s+180)

s20 - 0283)(s + 1.1)(s + 60)[s 2 + 280s + (350)2]

G " -(4.08)10 4(s + 180)(s+10)+-.0)(G2  2
2 (s + 60)[s 2 + 280s + (350) 2

2
L' ""28,100(s +12s+100)(s+200)
30 (s2 + 4s + 6.25)(s + 25)(s + 60)(s + 00)

2
G...(22.5)(s+100)(s +12s+100)(s+200)

3 2
(s + 4s + 6.25)(s + 25)(s + 60)(s + 600)

F-- 100
F3-

" (s + 5)(s + 20)

...

S°- ,
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Design 2

-5.4( + .S) I + )

+ + SJ 7 + (3Ys J JLt43 t+15-) T5-0

34.9 (1+.ls) (i - s

8 (1+.Ols) ( + -

G ~ 3+ s
1+~ ~+30) 60C}

F = 100
3 (s + 5)(s + 20)

Scheduling design

(4.14)10 5(s 2+12s+100)(s+75)
L0 (s 2+.706s+27.3)(s 2+4 5s+6 25)[s 2+136s+(1 70) 2 2

0.24 x 10 5 (s 2 +12s+100)(s+75)(l-+s/s
0

(s 2+45s+625) s 2+136s+170) 2] 2

L (1.029) 10As+5) (s+30) (s+60)L20 2
(s-.0283)(s 2+48s+1600)[s 2+170s+(170) 2] (s+1.1)

-(4.195) 109 (1+.2s) (s+30) (s+60) (1+s/s 0)
2 2 2 22(s2+48s+1600) [s2+170s+(170) 2]
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V 4
K (4.8)10 (s+25)

L 0 (s+3) (s+tO) (s+400)

38.4'(s+25) (s+100)
(s+3) (s+I0) (s+400)

100
F3  2

(S+5) (s+20)

L. G GQ. (old) 1
i .ii (1 + s/7.56)

Nondiagonal design

6
Li (93.6)10 (s+2.3)(s+14)

(s+6)(s 2+0.296s+5.4)[s 2+83s+(83) 2I

(44.6)10 6(s+2.3) (3+14)
G = 2 2 2

(s+6)[s +83s+(83)

L 20 (50)10 8(s+4) (s+40)222
(s-.0264)(s+.957)(s+10)[s +200s+(200)

8
G -5.2 x 10 (s+4)(s+40)

2 (s+10) [s 2+200s + (200) 2

1.2

3 1 + 1.67s

F 100
3 (s+5)(s+20)
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CHAPTER 3

VERTICAL TRANSLATION MODE (=2)

L.mr 3 is Jd.'ted to a longicudinai 6iode in which v,?r

velocity (Vz ) and pitch angle (9) are the output variables ofFz
interest. The plant inputs (6 control surfaces) are the elevator.,.2.

and flaps (Fig. 3.1).

3.1 Plant equations

The plant equations are gJctn trom [12, pp. 292-8], modifi .or

inclusion of flaps. The parameters are defined in

y [u, w, ]' , 6 = [e6f (3.1a,b]

Ay- B6 , z- [a, 61 -My (3.2a,b)

s-X X g cosa
U W

A -Z u  s-Z -Vs (2.3)

-M s(S-Mq)
w q

.X SC D6 -C Df
fm nm2 -

pSV -C -C
B 6  Zf - 2 Lfm (3.4)

M6 a Hf CM cc M

I I

.a
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0 s 12.6s2-sv1
M 0 L (3.5)

Since P is defined by z =P6 , we have z = Mv MA B ,' so

P = MA- IB = (Pij] (3.6)

Xu = -SVC/m , Xw PSV(CL-C Da)/2m

X -QSV2C D6/2m Xf =K - SV2C Df/2m

M. = pSc 2C /41 , Mw  QSVcC /21
w M Ma y

Zu  -PSVC/m , Zw = -0SV(C +CD)/2mL wLa D

Z6  , -PSV 2CL6/2m Zf = -PSV
2CLf/2m , (3.7)

Mq " PSVC2C Mq/41y , -,SV 2CCM6/21y ,

Z a -PSCC L /4m Mf Sv2 CcMf/21y

Zq - SVcC Lq/4m

S11 V2 det A (Pil(l) s4 + plI(2)s3 + Pl1 (3)s2 +p11(
4)s] (3.8a)

oS2

p de A [PI 2(
1)s + P 2

(2)s + PI2 (
3)s + P1 2 (

4)s] (3.8b)

2 2 p21(1)s + (2)s + p2 (3)] (3.8c)21 2 det A P21

p SV 2  2 () 3](.d

22 2 det A [P2 2 (1)s + P2 2(
2 )s + 22(3.8d)
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P(1) b + 12.6b

11 2 1  31

(2 = -ba 2 -b2 (Xu+Mq)-1 2 .6b 21a 32-12. 6b31 (xu+Zw)

PU L 1) = )j(1 q+ 21 32 21 u q'u32 k 3 .9a-d)

+b3 1 (12.6X Z +VZ -12. 2)1
p() 1 u2 32 w 6 13uw 122

Pl = -b11a21 a32V-b 21a 32X V+b31 (a 21 a13-VXuZw+a 12a 21V)

p1 2 (1) = b22+12.6b

ip1(2) = -b12a2 1-b2 (X +M )-12.6b a -12.6b (X +Zw)
1122 22u q 22 32 32 u w

• . p1 2(3) = b1 2 (a21Mq+1
2 .6a21 a3 2)+b2 2 (XuMq+12 .6a32Xu+a 32V)+ (3.10a-d)

+b32(12.6XuZw+VZw-12.6a 12a 21)

p (4 -ba a V-b a X V+b (aa -VX Z+a a V)
12 -b1 2 2132 2232 u 32(21a13 u w 12a21

P21(1 =31

(3 .lla-c)
21(2)= -b21a3 2-b3 1(Xu+Zw)

P2 1(
3) b11a21a32+b21a32Xu+ 31uw 221
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P22 (1) = b32

P2 2 (2) = -b 2 2 a 3 2 -b 3 2 (Xu+Z w) (3. 12a-c)

P22 (3) =b 12a21a3 2+b 22a32 Xu+b 3 2 
( XuzW -a

1 2 a 21

det4A s -s 3 (Z w+Mq+Xu )+s 2[zMwMq V+X(Z+M)-aadet A qsu [wq 32V+u(Z Mq-2112]

} (3.13)
s[ u ZwMq+Va 32) -a 21a1 2M q]+a 2 1a 32a 1 3

Q SV 
2  Q______Q__

11 2 det A [P22 (1)s 2+P2 2 (
2) S+P2 2 (

3)]I

-1 psv2  QQ

2 det A [P12( 1 )s 2 +P2 2(2)s+P2 2(3)]

Q PSV2  Q Q

"21 Q 2 de :

22 2det A 4 3 2[p 12(l)s 4+p1(2)s +P12(3)s +p12(
4)s]

. . . . . . . . . . . .
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Q(l) - pll(l)p22, )l2(1  p, 2l)-p 1
2 p 1 I-~() 2

Q(2) = (2

Q() plC4) P2 2 (1)+pll(3) P2 2 (2)+pll(2) P2 2 (3) -P1 2 (4)P2 1) (3.15a-g)

Q(5) = p () ()pl3 3 - 4 2 3pl3

Q(6) - 1M 2M p1 4p2 3

QQ Q(1)s6+Q(2)s5+Q(3)s 4+Q (4)s 3+Q (5)s 42Q(Ms

o4
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3.2 Flight conditions

As in Chapter 2, there are five different combinations of mach

and altitu~e. The aerodynamic coefficients CLi , C , CDi of the

Tables below are functions of the elevator and flap angles, and were

supplied for five different values of elevator angle and for two of

flap angle. Since these surfaces work generally in opposite directions,

only such combinations were used, giving a total of five cases for

each of the five flight conditions - a total of 25 different sets of

plant parameter values. Some of the data common to both the lateral

and longitudinal modes, has already been listed in Tablle 2.2, so is

not repeated in Table 3.1.

........ .
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3.3 Transfer functions for 25 flight conditions

The fransfer functions for the 25 flight conditions of Sec. 3.2,are

in Appendix 3.1. Those of the elements pij of P - [pi.] , as well

as .. se of the inversa P = [1 . are prcse:.ce . 1

refers to the high-frequency gain factor. Thus p -kij /s 'j as

s - - , and "gain" refers to kij for p.ij or Q , as the

case may be.

3.4 Problem statement and response specifications
t

The original problem statement was "Vertical velocity Vz  i /A dt
0is commanded. This is to be achieved with very small effect on the

pitch (8) angle -would like 0.10 max., but .50 may have to be

accepted. The elevator and flap are needed for this purpose. For

test results and responses see "m2 mode response" (Fig. 3.2b here) --

try for steady state achieved in <4 seconds, hopefully in 2 seconds.

Re maximum values, see how much can be done. About 25ft/sec. rate of

4climb was about the maximum achieved in test results, but more would

be desirable".

Suppose we allow .1650 for 0 due to 25 ft/sec. Then b of
21

Chapter 1 (the equivalent of Table 1.1 for n - 2, and of Eq. 1.2) is

.165 -4b 5 5 = (1.15)10 (-78.7db) (3.16a)b21 =57.3 x 25

To find (a11 ,b11 ), suppose we use a critically damped second-order

model, and ask for 90% response in 2.8 seconds. From the response curves

at C 1 e.g. [13 ,p. 200], this corresponds to w 2.8 = 4 so = 1.4.n n

We shall use w 1.4 , i.e. the T 1 (s) model is
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V'.

T (S) 2 (1.4) 2 (3.16b)

and shall use IT1 I(jw)I = b ( ) , because preliminary examination

indicates that as in Chapter 2, iLI1() (here, cf L33 (j) there)

will be very large, so A T11 (jw) due to varying flight conditions will

be small over the important w range. Accordingly, b1 l(w) = ITI(Jw)I

*. is sketched in Fig. 3.2a.

3.5 Bounds and design of L20(Jw)

The equivalent (for n = 2) of D21 of Table 1.1 is used, written

as

" '" t + L1 .>b l  Q22

1 b 1 +L2 L G Q (3.17a)21 b21  Q21 2 2 2

In the low w range, IL2 I >> so write I1 + L21 IL 21 = G2Q221

so (3.17a) can be written

I b 1 (.86)10 4bi

IG(w)h1 (3.17b)
2C) b21Q21(jw) iQ211

Clearly, at any given w , mn IQ21 1 ia needed, so we prepare asymptotic

plots of 1Q2 1 (jw)I . This was done only in cases la to 5a, shown in Fig. 3.3.

We also want to check when the approximation 11 + G2 Q221 -" 1C2Q221 is no

longer valid, so similarly prepare asymptotic plots of IQ22 1 , shown in

Fig. 3.4. Case 4a was chosen as the nominal case. With these sketches, it

was relatively easy to prepare Table 3.2 based only on Cases la-5a.
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For 1 > 10 , we use the constraint I + L -1 < 5 db , and

use the templates of Q22 to obtain the bounds on L2 0 (Ow) , which are

shown in the Nichols Chart in Fig. 3.5. Some templates of Q22 needed

-,-r th is : r-,,s , ire shonn in Fi,. 3..

half-plane pole, which must be present in L , so Arg L 0 = -180 °

at w - 0 . By cut and try a L20C j) which satisfies the bounds

of Fig. 3.5, was found. Its Bode plot is shown in Fig. 3.7, dnd it is

also shown in Fig. 3.5. The resulting 1G2 (ju)l is sketched in Fig. 3.8.

The dashed lines show the greater reduction of IG2(J j)l vs w that

may be achieved (should this be important) by adding a zero at -400 and

a pair of complex poles with .3 and w = 800

3.6 Design of G1 , F1

The exact equation for Tll(s) is used to determine L1 0 (s) It is

F1L 1 (l+L2)  QIIQ22

T (+L)(+L 2)-y Y Li Gi Qi " (3.18a-c)

This can be manipulated into,

F LL',... 1  L1  , 1- (s ) 1 , , L (3 .19 a ,b )

"+LI - l+L 2

Since (3.19a) is exactly the expression for a single loop system with

plant

Q 11 - (3.20)

1+L2

single-loop synthesis theory (3] may be used to find the bounds on

L 10 GIQll
0

./

L;. .. °. ... . ° .,. .. . . .. . . . . . . ., . . ... - . . .
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Quo QII
Q110 - YO

=Q 11 0 Q220
0 Q120 Q2 10

To do such a design, the templates of Q are needed, and are
411 P*

available because L20 is known. Some of these templates of Q are

shown in Fig. 3.9. The small circle marks the nominal Q In order

to get an idea of how large G I in L I = GIQ must be, in order to
11 G1 11  ms e nodrt

handle the T11(cJw) problem, we sketch Q11 0 (Jw) in Fig. 3.10, and

see that it is very large over the bandwidth of T1 1 (Jw) . A Nyquist
,

sketch of Ql10 makes it obvious that it has a net right half-plane

pole; excess of right half-plane poles over right half-plane zeros = 1

so Q11 0 (s) was factored on the computer and found to have a pole at

3.94 (due to Q220

There is no need to find bounds on , because it is so easy to

have IL*/(l+L*)I almost invariant over the significant w range of

T 1l(jw) Rather G (Jw) is simply chosen to achieve reasonable

stability margins for T over the various flight conditions. The

correspondingly L1 0(jw) chosen is sketched in Fig. 3.11. The locus

of the.templates of L I  GIQ(j ) , is shown in Fig. 3.12, with the

triangles marking L 10
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Finally F (s) is chosen to achieve T 1 1 (j-) of Fig. 3.3.

The compensation functions for the above design, are:
s s

-(1 + - )( + -)
33 1500

,, (sj =

76 30 3000is
230(1 + ( + )(i + )

G2 (s) = o- (3.22a-c)s + s+ (s 21
.6 40j 350 k 3so}J

F (s)
+ 2s + s

1 . + , "_)

3.7 Simulation results

Computer simulations of the design are shown in Fig. 3.13 for commanded

V of 25 ft/sec. and it is seen that the specifications of Sec. 3.4 are remark-
z

ably well satisfied. Also, for this V command of 25 ft/sec., the saturation~Z

value of 6 (200) is exceeded moderately only for Case 3 (mach .9; alt. 0 ft).
f

The rate saturation value 6f(56*/sec) is exceeded only for Case 4 (mach .6;

alt. 30,000 ft.)

Fig. 3.14 shows the faster responses achieved by using the faster prefilter

F - 1.4/(s + 1.4). In both cases, the results are highly satisfactory.

!.1
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APPENDIX 3.1

Transfer Functions for 25 Flight Conditions

-.- :: _ = , _= i i , =
e.) UV,

"Gain" refers to high-frequency gain factor.

&- ..- i ." , .. J ,
* ' L -. ' G

SI- , C C ( X42E+Ci C
-C 1- l,- 7 _-O1) (-3.lS;-C!, ~Jo755E-C1)

P ~ 1 -4..

7-; "-S -F P12
(-C+ ( "I 3 ) ( , ' '2_+Cl, oC)C- -.. ' - -C, - 3 (& ,,X,,3

-. O.L. .c P: 2

" (-j,4 J-c421, C C ) ( 1o4 +2 , - .L
( 1 2,7:5,-C,77-) (-j 15- 2-, J.755--2)

'I '. ;. = -

(-J,. LT7h+,1, C:O 3(-,'1o1 C h'B-Cl, J.C

P L-S *jF P.l
(-U,4J+Z. CI C 0.l4iE+Cl, JoC(-0, 1 t) C-O 1v-Ca 7 5 5E-J 1 (-Lo 15,QC-CI, 0,755E-CI)

C, 1 . P22 : - 1, 13

.(-3,2'-.c+J , +O ) (-0,272E-Cl, 0.C

P 7L S I P P2
(-O, aJ 4 , ,0 U 1 0JoJ42E+O1, J.C
-0, 1 . -1 ,-C. 7 5 5E-0 (-0. 15,F- L 1 0 755E-C1
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011(j) = C,

ZiR'ES -F r:!

PCLES -F ll

GA IN 4)12 = -21

Q12(01 -20.5

ZERGES OF Q12
(-0e 2 1 E- 0 1, 0.0
PCLES CF 012
(-09480EfrCl, C0 1 3*352EeC1,, 0.0o

GAIN 021

- ~ Q21(0) C.

ZEROES OF 021
(-0.Z21LE-01,t C.C (000 0.0
POLES OF Q21
(-0* 157E+Cl , C. 0 )(-0*3C6E-Cj, 0.0

GAIN Q22 = 8.

Q22(01 = 3e70

ZEROES OF Q322
:-0.211E-01,tC 00

Pr!LE S OF Q22
(-09829E+.01, 0.0 I o06d5E+C1, 0.0
(-Oe27TE-Cl, Ce 0

a z7-
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CASE NC. 113 (A B I MEANS A.J8

GA IN Oilz -3E4.

ZERCES OF~ P-'
(-C. aq;: +C1, 0.0 J*686E+Cl, 0.0

0 !2LES CF P 11
(-0e4j4E.CjV C*C 0 (0142E+01, 0.0
(-0,.155rE-Cl,-C. 755E-01JI (-O.155E-Cl, 0.755E-Cl)

GAIN P12 2v -184a

* ZEROES OF P12
*(-0*48oE*Cl, 0.0 ( I 0352E+Cl, 0.0
-%(-0.253E-019 0.0 ( 100 0.0

POLES OF P12
4-09404E+0l, 0.0 ( 0*O142E+Cl, 0oC

*(-0*155E-Clt-0*755E-01) (-0*155E-01, 0.755E-Cl)

GAIN P21 = -20.7

(-09157E+Clv C.0 (-0e 258S-C1, 0.0e

PCLES OF P21
(-0.404E+Cl, Co0 0*142E+Cl, 0.0
(-0*155E-Ci,-C*755E-01) (-0.155E-Cli 0.755E-Cl)

GAIN P22 = -1.90

ZEROES OF P22
(-00244E+01, 0,0 I (-0.2722-01, 09C I

POLES OF P22
(-0@404E+01, C*0 ) I0.42EeClt QCC
(-09155E-01,-0.75SE-01) (-0*155E-01, 0.755E-Cl)
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GAIN 911 0161E+04

(-0*22bE-0,)l C. 0 ) 0.3 1 O6C

P'2LES OiF Q11
(-0,244E+019 0.0 (-0.272E-Cli O.C

* GAIN Q12 z -16.7

* . 12(0) -27o6

ZERCES O~F 012
(-0.226E-Cl, C*O

PCLES OF Q12
(:0:48CE*Clv 0:0 )(09352E*Clv 0.0

*GAIN Q21 x -148.

Q21(0) - Co

* ZEROES IF Q21
(-0.226E-Clo Co0 0.0 1 00

POLES OF 021
(-0.157E+01, 0.0 )(-0.298E-01, C.C

GAIN Q22 a 8.00

Q22(0) = !o70

ZEROES OF 022
(-0.226E-Cl, C*O)
PCLES OF 022
(-0.8252.+Cl, C*0 I ( 06862.01, 0.0
(-092682-01, 0.0
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CASE NC. JC (A98) MEANS A+JB

GAIN~ Pli 2 -442.

ZERCES OF P11
(-~d~~+1,C.0 ) 4~682E+Cis vo.C

PCLES OF Pu.
(-O. ZJ4E +CI, C.O0 1 ( 3.1'2E*Clt 0oCI
t -0. 155,E-Clt-0. 755E-OI. I -0. 155E-Cl, 0. 745E-Cl)

GAIN P12 -207.

ZERCES OF PIZ
(-0*464E.Q1, 060 ) I 0336E+CI, 09C
(-Oe272E-Cli C*0 ( 000 0.0
PCLES OF P12
l0.o4O4E+Ol, C.0 I 0*142E+01, 01
(-0*155E-Clt-0*755E-01) (-0*155E-Cli 0*755E-Cl)

GAIN P21 st -23.5

ZERCES OF P21
1-Oel1c3EC1, 0.0 (-O287E-Clv 0.0

PCLFS OF P21
(-0o404E*01, 0.0 1 C0*142E+Clv 0.0

-0o 155E-Cl 9-0e 75E-01) (-0* 155E-C1, t0.755E-C1)
GAIN4 P22 z ae

ZERICES OF P22
(-0.261E+01, 0.0 1 (-Oo290E-019 0.0
PCLES OF P22

*(-0*404E+0i, C*0 I C0.42E+Clt 0.C
* -0@155E-C1,-0*755E-01) 1-0*155E-C1., 0.155E-01)
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.1 )2 19E +04

-C. 294E-1 CI C ) Ce h3 ja 34

PTLES IF Gil
*(-#0.2beU-+01 COO3 (-0*290E-Cl, O*C

GAIN Q12 a -19.5

G12(0) = -29.9

ZERCES OF Q12

PCLES OF Q1l2
* (-0*464E.Cl, 0.0* 0*336E+Clp 0.0

GAIN 92Z1 2 -172o

021(0) - Co

ZEROES OF Q21
(-C*294E-Cl, C.0OO 00 00

* POLES OF Q21
(-09158E+01, 0.0 1 (-0*2e7E-C19 0.0

GAIN Q22 u 5.14

*022(0) = -c

ZEROES OF 022
(-0e294E-0lt C*O

PCLES JF Q22
* (-0*824=+Cl, 0.0I 0*682E+C1, 0.0

I-*5EC~ O



CaIsa tic, 11 (A 913 4EANS A4.JB

GAIN P11 -335

PCLE S J P!1
(-0*.404E+Cl, Co0o 09142E+Cl, 0,C(-091355-01,-0*75SE-01) (-0*155E-Cl, O.755E-ClU

GAIdN P1,2 -207.
* ZEROES t)F P12

(-0:'44ECl, 0.0 )( 0:336E+C1, 0.0
(-0 27ZE-Cl, 0.0 )( 0 C , 000
PCLES O)F P12
(-Ce4J4E.C1, Coo ( 09142E+01P 0.0

GAIN P21 = -18.3
Z2Rn-E IF P21

(-1d'E+C1, Coo (-0.2812-Cl, 0.0

PCLES OF P21
(-0e404gE.0l, 0.0 3(0*l42E.Cl, 0, L

GAIN P22 3 -1.85

ZERCES JF P22
(-0e261E4.01, 0.0 1 (-0*29CE-ot, 0.0

OCLES OF P22
(-0*404E.Cl, 0.0 1 0*142E+019 0,C

S..5EC,075E01(015EC,075-1
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*GAIN Qll 2 0*171E+0'-

Qi1( 0) C.

Z=Qcts IF
( Z0C. 3%'w4:-C, C.Q C 0.0 , *0

OCLES OF Q11
I-0*26iE*Clip 0.0 ) -0*290E-Cl, 0.0

* GAIN 012 * -15.2

012(0) a -22.6

* ZEROES OF Q12
(-O*304E-Cli Cso

-. PCLES OF 012
(-09.464E +Cl Co0 J 0*336E+01, 0.0
(-O.27ZE-Clt 0.0

-GAIN 021 x -173.

* Q21(01 C.

ZEROES OF Q21
(-Os.304E-01, 0. ) 1 0.0 1 0.00

* POLES OF 021
C-0.158E+Q1, 0.0 1 (-O.281E-C1, 0.0

GAIN 022 * 9.3

*0221 = 4.09

* ZEROES OF 022
* (-0*304E-C., C*0

-PCLES OF Q2 2
*(-Ce 828E.01, Co0 I e0686E+C1, 0.0

(-0*252E-019 C*0
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CASE N4C. it: (A,98 MEANS A+JB

GAI' P11 - -268e

Z--Cr-S 'F P11
(-0a~E11, coo ( J*.33E+C1, 0.0

(-%C'247?_-Clv coo ( C .0, .

PC LES OF P:i1
*(-0*404E+C1, C*0 ( 0*142E+Cl, O.C

GAIN P12 -207o

* ZERCES OF 012
* -0*4o4E*Clt 0.90 1 ( 0*336E*Cl, 0.0

(-0*272E-Cl, C.O I C 0.0 9 000

PCLES OF P12
(-094J4E+Cl, C*0 ( C 0.42E+01, 0.0

GAIN P21 z -14.3

- ZEROES OF P21
(-0.158E+CL, 0.0 (-0*276E-Cl, 0.0

PCLES OF P21
C-0.404E+Glt 0.0 I C0.42E+Cl, 0.0
(-09 155E-01 P-0a755E-01 1 (-0* 155E-C, 0.Go755E-01I

-GAIN P22 a -1.85

* ZEROES OF P22
(-0@261E+01, C*0 I (-0*29GE-019 0.0

-, POLES OF P22
(-0.404E+Ol, 0.0 109142E+01, OeC

- I.55E-Clt-0*755E-01) C-O.155E-01, 0*755E-C1)



-114-

GAIN Q11 U*J133E.04

011(0) = C.

ZERZES :F
(-0*3i.IE-Cl, C.O 0 ( 0.

PCLES OF Q11
(-O.2615E+Cl, C*0 (-0.290E-Clt 3.0

GAIN Q12 = -11.9
Q12(0) a -17.4

ZERCES OF 012
I-0o3llE-Cl, CoC

PCLES OF 012
(-0*464E+Clt C.0 I 00336EeC1, 0.00
(-0.272E-O1, 0.0

GAIN 021 -172.
Q21(0) - C.

ZER~OES OF Q21
(-0.311E-CI, C.O 310.0 0.00
PCLES OF Q21
(-CeL58E.Cl, 0.0 (-O.276E-Cl, 0.0
GAIN Q22 9.17

022(01 = 4.09

ZEROES OF 022
(-09311E-C1, Co0
POLES OF 022
f-Qo824E+O1, Co0 I (096a3E.Cl, 0.C
(-C.247E-Cl, Co.0



C-S------(,~ MEANS A+J8

GAIri P11 z -217.

z Q7ES -F Pii
(-:C*74qE+01 COO ) 3.6.5gE+Cl, 0.0

(-).~7ECl, C.0 ( ail 0.0

PC LE Cz F Pi1
* (-0.3'tlE+Cl, C.0 ( 0*O15'EeCI, C.C

f-Q-105-0Q1,-0.579E-01) 1-0.105E-01, 0.579E-C1)

GAIN P12 a -174.

ZEROES CF P12
(-C.'-93rEt(l, 0.0 3( 0*4C3E4+Cl, 0.C
(-0;.1712,-Cl, C.C 3 Q 00 t 0.00

POLES CF P12
(-Q.34 1-+C1, C.0 ( 0.159E.01, 0.0
(-0- 101g-01,-C.574SE-C1) (-0.105E-C1, 0*579E-Cl)

GAIN P21 = -11.6

ZERCES OF P21
(-0.110E+01, 0.0 3(-0.2114E-01, 0.C

PCLES OF P~,1
(-09341E+01, C.C ( C*159E+Cl, 0.0

*GAIN P22 -3*CO

* ZEROES oF P22
C-C.140dE.01, 0.0 I (-0.192E-01, 0.0

POLEC OF P22
*(-0.34lE.CL, 0.0 1 00159E+C1, 0.0

1-0.105E-01,-0.579E-01) 1-0.105E-Clv 0.579E-01)
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GAIIN Qll '-55.

Z=QZES CF --I
* -C.J.-l,.c Ce 3.3

PCLES JF 9n1
* E-C*140E.01, J*J (-09192E-Cl, J.C

GAIN C12 2 -7.89

* G12(0) z -14.4

ZEROES OF Q12
(-0*108E-Clt Ce C
PCLES 'IF Q12
( -0.493E~Cl p C*O 3 o04J.3E+Cl, 0.0
(-0@171E-Clt 'iou

GAIN Q21 -lid.

* 21Z(0) z C.

tZERGCEJQ1 CC C 0.0 q 0.00

PCLES OF Q21
* (-0.liOE.0l, CoO )(-09215E-01, 0C

* GAIN 022 6 *34

Q22(0) a 4*28

ZEROES OF C22
(-0*108-01,Ol C.C

* PCLES JF Q22
- (-0*749E.Cl, CoO 3C09649E+Cl, 0.0

(-0*187E-Clt 0.0



-117-

CASE NOe 28 (4,63) MEANS A.JS

GAIN P11 -330.

Z 'R!ES OF P11
(-C.74lQEcI, C.) ( O648E+Cl, On"

-0 11E -Cl, 0 00. 0.

PCL-zS OF P11
(-C3'E+1,c.C I 0@159E+Clt C&C

GAIN P12 = -174.

ZERCES OF P12 )I043.1 .
(-0*493E+Cl, C00(O43+l .(-C*171E-Clv c*o ( 000 000

PCLES OF P12
(-C*3'iLE+Cl, 0.0 ( 0*O159E401,t 0.0(-0*105E-C1,-C.575;E-O1) (-Oo1C5E-Cl p O.579E-Cl)

GAIN P21 = -17.6

ZSROES OF P21
(-C.110E+C1, 0.0 I (-09208E-C1, 0.0

PCLES OF P21
(-0*341E*Clt C*O 00O159E+Clt o0
(-0*105E-01,-0*57SE-au) I-O.105E-C1, 0*519E-Cl)

GAIN P22 -3oCO

ZEROES OF P22
1-Q*l40E4+01, 0.0 (-O.192E-CI, a*c

* PCLES OF P22 11019+1 .
(-0.341E*C1,, 0.0Ol9ECt
(-091.05E-01,-O.579E-01) (-0.105E-01, 0.57qE-01)



-118-

GAIN (.111 691.

* Cll(0) 2 C.

* ZERCES IF C11
*(-C3EL C. a C 1 0.3 1 oj.

P-LES CF Q11
f-09140E+Cl, Co 0 f -0.1922-Clt C.C

*GAIN Q12 -11.9

r.1Z(O3 -20.9

ZERtEZS OF Q12
(-09.33E-Cl, C.C

PCLiS fSF Q12
(-094'93F+Cl, C.o 0 O.0403E+C19 0.0

*(-0. 17lE-Cl, C eO

GAIN Q21 z -lie*

- Q21(0) C.

ZERCES 'IF Q21
*(-0.1332-Cl, Co Co 1 0.0 t 0.0

PCLES OF Q21
(-Co11OE+019 COO (-0.208E-Cl, 0.C

GAIN Q22 * 6.29

Q22(0) 4928

ZERCES OF Z2
(-0@133E-CI, CoC I

PCLES -2F 022
(-0*74dE+C.1 C@C I C 06482.01, 0.0

(-0.812ClC*0



-119-

CASE NC. 2C (A98) vzANS A+js

GAIN P11 -372a

ZERCES -)F P1,1
(-:C.751-9-0l, 0.0 1( 0*65,4E+C1, 0.C
t-0.172-=-Clv 0.0 ( 0.0 , 0.C

* PCL=S OF Pil1
(-0 341l-+Ol, CoQ ( 0*15SE+Cl 0

GAIN P12 -18

* ZEROES 3F P1,2
(-0..50E*Cl, 0.0 ( 09362E+Cl, 0.C
( -0* . 3E-Cl 9 C*0 1 ( 0.C t 0.00

PCLES OF P12
*(-0.341E+-31, 0.0 I ( 0*159E+01, 0.00
-*(-0*105E-01,-Gv575;E-01) (-0*105E-C1., 0*579E-Cl)

GAIN P21 = -20.2

ZERO:ES CF P21
*(-Co.11cE+C1, 0.0o (-0*2COE-C1, 0.0

PCLES CF P21
1-0.341E*01, C*0 IC0*159EeClt 0.0

*(-0el05E-Cl,-O.579E-01) t-0.105lE-Clt 0*579E-C1)

*GAIN P22 -2.5r

* ZEROES OF P22
(-0*155E+0l, 0.0 (-0.2C3E-Cli 0.01

* POLES OF P22
C-09341E+Cl, C*0 I C0.5SE.Clg 0.0
C-0*105E-019-0957rjE-01) (-0e105E-Cl* 0*579E-01)



-120-

GAIN '. 2 Oel23E.C4

ZERCES CF ;1

PrCLES OF Qll
I-c.1j5t.C1, 0.0 4-0o203E-C19 0C

*GAIN Q1Z At -15.5

Q1ZtJ) z -22o5

ZEROES -F C12

PCLES OJF Q12
(-C.450E*Cl, C.o0 4 09360E4Clg 09C
(-09183E-019 C.C

GAIN C2 z -152.

Q21( C) C.
* ZEROES O2F Q21

(-0*210E-01, 0.0 )40.0 0CC

POLES OF Q21
(-0oll3E,0lp C.C I (-0*200E-Clt CC

GAIN 022 z 8.27

ZEROJES OFVZ
(-C.ZIOE-Cl, C. C

PCLES OF C22
I-C.754E+Clv C.0 ICOe654E+Gl, )00
(-09 1 7E-cl 9 0.0



-121-

CASE NC. 2D (AB) MEANS A+JB

GAIN P11 -277o

ZERCES 'OF Pit
(-0*757E+Cl, C.3 ( 0.65EE.Clt 0oC
(-0.167E-Cl, 0.0 (0.0 9 C.C

* PCL~rS OF Pl1
(-O.341r+Cl, C.0 )( 0*159Ei.Cl, 0.0

GAIN P12 -198.
Z=CES OF P12 (030.l ~

(-10.450-E.01, 0.0 1( 0*30Ec l 0.0
I-Cs183E-C1, COO(o0 .

POLES OF P120.5E1, 0

* G[NP21 z -15e2

PCLES 'iF P21
(-00341E+Clv 0.0 ( 0.5SE.C1, 0.0

*(-0e105F-01,v-0e57gE-01) (-0*105E-Cly 0*579E-Cl)

GAIN F~2? -2.5
* ZEROES OF P22

(-0*155E+01, 0.0 (-0*203E-Clv 0.0

POLES OF P22
( -09341E+C1, 0.0 J(0*15SSE.Clt 0eC
(-0o105E-C1,-0e579E-01) (-0.105E-O1, 0*519E-01)



-122-

GAIN Q11 ';3Co
011(0) x C.

* ZERCOES IF Q11
(-23.Z2e-0 30C.0 C

PCLES OF C11
(-Gol55:+Cl, 090 1 (-0*2C3E-C1, aeC
GAIN Q12 - 11.7

C12(0) * -16.4

ZERCES JF C12

PCLES )F 012
1-0945CE1C1, 0.0 0* O360E.01, 0.0
I-0.1,83E-C1, C*O

G5I1I 021 -13
Q21(0) = Co

ZERCES OJF 021
(-0*Z2iE-CI, C.O3 1 0.0 9 CC
PCLES OF Q21
(-Q.109E+Cl, 0*0 (-O.195E-01, 0.0
GAIN Q22 e .38
022(0) * 4.19

ZEROES OF Q22
(-0*221E-Clt (.0C

PCLES O)F Q22
(-C.*757E.Cl, 0.0 C 0658E.O1, 0.0



-123-

CASE NC* 2E (A, MEANS A+JB

* GAIN P11l-28

ZE4CES OF Pul
C-* 74 7E +Cl 1 . 1 0*645E+Clg O.C

* -0i~E-~1,C. 0 000 1 0.0

0 C LE DF P41
(-0.341E+Ol, CO 0 I 0O.159E+Clt 09C

(-: j5;E-Cj,-C. 579E-01) (-0.105E-Clv 0.5792-Cl)

GAMP12 -198.

ZER'OES OF P12
(-0.45JE4+Clt C.O ( I 03602+01, C.C

*(-C.183E-Cl, LG ( 1 00 0.00

PCLES OF P12
(-C*341E*Cl, 0.0 ( 0*159E+Cl, 0.0
(-0*105E-Ol,-C.57SE-Cl) (-0*lC5E-Cl9 C.579E-Cl)

*GAIN P21 -m -11.6

* Z=RCwES OF P21
(-%^.1102+01, 0.0 I(-0.192E-Cl, G0

OLE S OF P21 (015+L .
(-0. 341E +C1, 0.0a0*5ECl 9
(-0el05E-O1,-0s579E-01) (-0.105E-Cl, O 05 ISE-C I

GAIN P22 z -2.5

* ZEROES OF P22
(-O.155E+Clv 0.0 1(-0.203,E-Cl, C*C

POLES OF P22
t-0*341EGClv C.0 Lo 10159E+Clt O*C

*(-0.105E-C1,-C.579E-0I) -0.105E-01, 0*5792-Cl)



-124-

GAV4 011 z 704.

011(0) z co

ZFACPS OlF Qi1
I -Co229z-Cl , Coo) 0.0 1 co0
PCLES OF Q*-
t-O.155ze.Cl, 0.0 )(-0.203E-Cli 0.C

GAIN Q12 z -ee8a

* 012(0) = -12o4

PCLES CF C12 ~03C41 .

(-0.133E-Cl, 0.0

GAIIN Q21 2 -151.

(121(0) = C.

ZERCES 3F C21
(-C.229r'-CI .0 * ( 0.0 1O.C

PCLES OF Q21
(-001LJE+C1, COO (-0.192E-Clt C*O

* GAIN 022 so8Cs

Q22(01 4.19

ZEROES OF Q22

PC2LE OF Q22
* (-091 47E..olt 0.0 1 1 09649E.019 0.0
* (-0.164E-01, 0.0



-125-

CASE NC, 3A (A, MEANS A+J8

GAIN P11 -567o

ZEROES OF P1,1
(-0*134E+O2, 0,0 3 (0.C9E+C2, 0,C
(-0. 142--E-01. 0.30 0.0 ,COO

PCLES OF P1
(-Oobj2E+Cl, C.0 0* O146Ee.C1, C.C
(-0.219E-01,-C.53CE-01) (-0.21SE-01, 0.530E-01)

GAIN P12 = -36e*

ZERCES OF P12
(-c 9 6E+C1, COO ( 0,749E+01, 0.0(-0:427E-01, 000 ( 000 000

PCLES OF P12
(-0.612E.Cl, C.C 3( 09146E4.01, 0.0
(-O.219 2--01,-0.530E-01) (-0.2l9E-01, O.530E-Cl)

GAUN P21 -31.o2

ZERCES OF PZJ
(-09264;-+Cj, CO 3(-0*450E-C1, 0.0

PCLES OF P21
(-0*612E..Cl, 0.0 I 09O146E+C1, 0.C
(-0*219E-C1,-C*530E-01) (-0*215E-Cl, 0,530E-01)
GAIN P22 -9.15

ZEROES OF P22
(-0*Z96EeG1, 0.0o I (-09434E-019 0.0)

PCLES CF P22
(-0*612E.C1, C,03 Ool46E+01, 06C
(-09219E-O1,-C..53CE-01) (-0.*219E-Cl, C.530E-Cl)



-126-

GAIN Q11 6 910

Cub() = co

ZEROES OF QC.1
(-Oo3JOE-0219 COO )(000 1 00C

PCLES CF Ql 1
1 -00 29E3l * (-0*434E-Cl, C.C

GAIN Q312 m-17.2

01210) = -127.

ZEROES OF (312
t-O.300E-01, CO

POLES OF Q312
(-O.986E+C1, C*O I e0749E+Ol, 0.0

GAIN Q21 = -202.

Q21(0) z 0.
r -ROES OF Q321

I-0.300E-Cl, COO 3 0C, 000

PCLES O)F Q21
(-O.264E+Gl, CoO I (-O.450E-Cl, 0.0

GAIN4 Q22 m 11.2

Q322(01 40o1

ZEROES OF Q322
(-0*300E-Ol, 0.0

POLES OF Q322
(-0.134E+02, 0.0 3 *O109E+OZ, O.C



-127-

CASE NO. 3 5 (A,8 MEANS A+JB

GAIN P11 -819.

* ZEROES OF Pij.1
*(-0.1T33E+C2, 0.0 P o0lOSE+029 0.CI
*(-0.43 3E-Cl, C.C PC0.0 q 0.0

PCLPS OF P11
(-C.612E+Cl, O.3 Oe 0l46E+Clt 0.CI

*(-C@219E-C1,-C*53CE-01) (-0e2l9E-Cl, 0.530E-C1P

GAIN P12 = -368.

ZEROES OF P12
(-C*986E+Cl, 0.0 I ( 0.749E+Cli C*0
(-0.427E-Clt 0.0 ( 000 0.0

PCLES OF P12
(-0*612E*01. 0.0 ( 0*146E+01, 0.0

SG41!N P21 z -44.4

* ZERCES OF P21
(-C*265E+Cl, 0.0 P(-0*446E-Cl, 3.0

- POLES OF P21
I-0.6l2E+Cl, 0.0 P10*146E4C1, 090C
(-0*219E-01,-Co53CE-011 (-0*ZISE-Glt 0*530E-C1)

- GAIN P22 - 9-915

ZERCES OF P22
(-0*Z96E+Glt 0.0 )(-0.'q34E-C1, 0.0

PCLES OF P22
(-Co6l2E+C1, C*0 I 0*146E+Cli 0.0 I



-128-

GAIN QiI = 56eo
C11(o) = Co

Zc-RCES OF 011
(-0.334.E-01, C,0 ) 0.0 , 0.

PCL='z OF Q11
(-0.zeC1 .1 (-O.434E-Cl , 3.0

GA IN Q 12 -24.1

Q12(0) z -179.

ZSQCES OF Q12
(-0.334E-Clt 0.0

PULES OF Q12
(-0.986E.Clg Co0 I 0*749E+C1, C.C
(-0*427E-Clo C.0

CAIN Q21~ -2CtC.

C21(of =C.

ZERGES OF W21
(-0@334E-Olt 0.0 1 0.0 , 00

PCLES OF C21
1-0.265E.01, C.0 (-0*446E-Clp 0.0
GAIN Q22 N10.8

- Q 22(0) - 40.1

ZEROES OF Q22
-C*334E-Clt Ce 0

POLES JF Q22
4-O.133E+C29 0.0 0* Q108E+C2t C*C
(-0.43dE-Clt C.3



-129-

CASE N C 3 C ( A,93 MEANS A+JO

GAIN P11 = -976a

ZERCES 'F Oil
ill :'2, C.3 ( Jo11QE+02, 00

*(-04432-C1, Ca 0 ( 3e. I coo

PCUL S OF P!1
(-Joted2E+Clo CIO ( 0.146E+Cl, 0.C

J..GAIN P12 -485.

ZERCES DF P12
(-0.916E.01, 0.0 I( 0*631E+C1, C.CI
(-0*436E-01, CIO ( %),a t 000

POLES OF PIZ
(-oo6l2S-+Clv 0.0 I ( O*146E.01, Q.C

* GAIN P21 = -54.3

* ZERGES 'F P21
(-C.2+C CIO0 (-0.44CE-C1, 3.0

PCLES OF P21
(-0*612E+Cl, C.C I 0*146E+01, 0.0

*(-0.2I9E-01,-C*53CE-01) (-0*219E-019 C*'- 01)

GAIN P22 = -9.73

ZERCES 3F P22
(-0@309E+01, C.0 (-09443E-01, 0.0

- POLES OF P22
*(-0eL12E4C1, CIC I Ce 0146E+Cl 0.C

(-0.219E-01,-Ca530E-01) (-0*219E-Clt 0.530E-Cl)



-130-

GAIN Q11 = t)173E*04

* 911(0) = C.

(-00 4= E-1, 0.00 0.0 ,coC

DrIES OF rQ11
*(-:0.309E+Cj, C.0 )(-Oe443E-Cl, OCC

GAIN C12 z -3496

* Q12(01 -215.

ZERCES 2F 912
(-C*45'9E-O19 C.C)

PCLES OF C12
(-0.916E.01, 0.J 3 *O681E+C1, 0.C
(-09436E-Clo C90

GAIN (421 -3090

Q- 0)= 0.

ZEROES OF Q.21
(-0.459E-Cl, C.O )C0.0 , C.C

PCLES OF 021
(-09264-=+Clv C*O 3(-O.'.4CE-Cl, C*C

GAIN 022 2 17.2

Q 22(01 = 45e5

ZERCES I3F Q22
(-C*459E-019 C.C

PCLES OF Q22
(-0.134E'029 C*O J* 3110E+CZ, 0.C
f-0*432E-C1, C.C



-131-

CASE NCO 30 (AB MEANS A+JB

GAIN Pl1 = 7E

* ~ZERCES O)F P11C0) .0E+2 .

* -0. ' 12;E +02 CoG 0 1 0*109E+C1, 0.0

* POLES OFP11
(-0.612E.01, COO I ( 0*146E.01, 0*C
(-0.21E-C1,-C.530E-01) I-0e21.9E-Cl, C.530E-Cl)

GAIN P12 -48.3

ZERCES OF P12
(-0246+-C1,00) .37 COO.C *

PCLES OF P12
I-'0.612E+C1, 0.0OO 0*146E+01, 0.C
(-0e2l9E-Cl,-C.53CE-01) (-0*219E-G1, C*530E-ClI

GAIN 0221 -9.13l

ZERCES OF P22
(-C.309E.Cl, 0.0 3 -0.4437E-C, 0.0

PCLES OF P22
(-0.~12E+Cl, C.C I 0.l4fE.C1, 0.0

*-0219E-01,-Ce530E-01) (-0*219E-Cl, C.530E-Cl)

GAIN P2 -9e7



-132-

GAIN 011. U*128E+04

Q11(0) C.

Z~rPCES OF Q11
(-:0. 4 7%-Cl , C.0 3(0.0,0.
POLES OF Q11
(-09309E.Cl, 0,0 3(-O.443E-Cl, 0.C

GAIN Q12 x -25.7

ZERCES 11F 012
(-C.,479E-Clo, C.0

POLES OF Q12
(-0.9l6E'Cl, 0.0 3 *2681E.Cl, 0.0
(-0*436E-Cl, CeC

*GAIN 021 = 39

Q21(0) =C.

ZEROES OF Q21
(-0*479E-0l, 0.0 3(0.0 , 0.
POLES OF 021
(-O.264E*Ol, C.0 (-0*437E-Cl, 0.0

GAIN 022 17.1

Q 22(0) a 4b5

ZERCES OJF C22
(-0.479E-01, C.C

* PCLES OF Q22
(-09134E+C2t C.O I(0*109E+C2, 0.C
(-0.429E-Cl, C*C



-133-

CASE NO. 3E (A, 3 4EANS A+JB

* GAIN P11 -6079
ZERCES r F Pil
(-C.133E+2", C.C 09 3108E+02, 0.0

(-0 42E-1, .0) CQ. p )0.0
PCLES OF Pil

- (-Oet-12E+C1, 0.0 ) Io.46E+Cl, 0.0
f-0.219r-Q1J,-C.5,3CE-0j) (-oeelSE-01, 0*530E-Ol)

GAIN P12 3 -485.

ZEROES OF P12
(-00916=+01, 0.0 10*68!E+Cl, C*O(-0.436-.., C*O )I. ,0.0

POLES UF P12
(-0 6 12E +o1, 00 0 0.146E.Cl, 0.C(0 219E-C1,-0.53CE-01) (-0*219E-01, 09530E-01)

* GAIN P21 = -32.6

* Z=RC~S OF P21
(-C.265E.Cl, C.0 I -0.'t35E-Cl, 0.0

* FCLES OF P21*(-O. 6 12E+C1, 0.0 1 0*146E+Cl, 0.c*(-0.219LE-o19-C.53CE-ol) (-0-21';E-Cl, Co530E-O1)
*GAIN P22 z -9.73

ZEROES OF P22
(-0.3O09E*C1, Coo ) -O.443E-C1, OoC
PCLES, 0-F P2 2
f-0.612E*Cl, C.0 )I0*146E+C1, D.C(-0*219E-Cl,-C. 53CE-01 I (-0.219E-C1, Co5?0E-Cl)



-134-

GA IN QJ11 C.19 C2E+C4

P C LE cJF Q01
(-,)3..29E+0)1, C. 0 3 -*4E-l *

* GAIN 912 = -20.5

* 02( 0) -128.*

ZEQCES OF 012
(-C*491E-Cl, CO0

POLES OFQ1
- - (-09916E+Cl, 0.0 3 1 8C1E+Cl, COG
*(-C.436E-Cl, C.Cr I

GAIN Q21 -3C49

021(0) = GC

ZEPOES OF Q21
(-0e491E-Cl, 0.03 1 0.0 1 0.00

*PCLE S OF 021
(-0*265E.Cl, C.O (-0.'435E-Cli 0.C

GAIN Q22 16.3

Q22(03 = 45.5

ZEERCES OF 022
1 -C*491E-Cl, C.OO

OCLES JF 022
(-09133c+029 COG3 U9108E+C2, 0.C3
(-C.'.27E-Cl, CO0



-1.35-

CASE NO. 4A (A t5 MEANS A+JB

GAIN P1]. -53.e3

-ZERCES, OF P11
(-0.445cE+Cl, 0.0 1 0.3948E019 0.01
(-G.14Q%-Cl, C. 00 (. 0 '9C

-PrL= S OF P 11
(-0.-2142:+01, C.C (0o124E+O1, r0.0

-(-0.959E-02,-0.781E-01) (O.*5 'E-Ce, 0*7aEECl)

*GAIN PIZ120

ZEROES OF P12
(-0.234E.01, 0.0) 0.1518+01, 0.01
(-O.569E-C2t C*O) 000 0.0

PCLES OF P12
(-Oe2l4E+Cl, 0*0) 0.1248+01, 0.0
c-0*955E-C2,-0.781E-ol) (-0. 9558-C,, 0,.7818-01)

GAIN P21 -4.86

* ZE=RCES OF P21
(-0s5!)Lb-+tCjt COO (-Jo.2558-Cl, 0.*

PCLES, OF P2 1
*(-O.214E+Cl, Ce0 ) C0.24E+C1, 0.0

-0.9519E-C2,-O.78lE-01) (-0.959E-02, 0.7818-Cl)

GAIN P22 z -0*3CI.

ZEROES OF P22
(-Oel32E+Clt 0.0 (-O.1418-C1, 0.CI

PrLES OF P22
(-0*214E2.01, 0.0eC 0.1248+01, C*CI

*(-0*959E-C2,-0e781E-01) (-0.959E-C2, 0.7E18-Cl)

~~- .iK> ~ -. ..2 ... - ----------.--- *~.--..-o -) l I ,* -



-136-

GAIN 011 761.

Q11(0) x 0.
ZERCES OF 911
(-09 576E- C2, 0.0 )(0.0 1 00
PCLES OF Q11
(-O.132E.Cl, 0. 0 )(-0* 1E-C1, 00.C

GAIN Q12 z-4*33

Q12(0) -3.6

ZEROES OF Ql12
(-0*576E-CZ, C.O

PCLES OF Q12
(-Oo234.E+01, C0)( OolglE+Cl, 0.0
(-C*969E-02, C.0)

GAIN QZL -4791

C21(0) = ca

ZEROES OF C21
(-09576E-CZ, 0.0 I 060 O*C

PCLES OF 021
(-0.556E+CC9 0.0 (-Q.255E-Clt 0.0
GAIN (J22 2 2.46

022(0)a 09337

ZEROES OF 922
(-O.576E-02, C*C I

PCLES OF 22
(-O.445E*01, CoO )I0*394E.Clt 0.0
(0.19c9Cl,, C.O
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CASE 40. 413 MAB EANS A+JB

G GA IN P I -121o

Z FPOES IF P4.1
(-.~~+L,0.0 ) '.398E+Ci, O.C

P!:L =S IF P,1
- (0.1'~.c.,C..0) 0*124E+Cl, 0,C*(-Ce95;E-C2,-(;*781E-01) (-Oa.5'E-C2, 0.7ElE-01)

*GAIN P12 z -52.9

ZERCES OF P12 311+1 .
(-G.9b9E-%;2p C,0 ( 3.c , 0.

* PCLES OF PIZ
- (-0.214E+.1, C.0 I (0.2'2+O1, 0.0
-(-0*

9 59E-%;2,-0.781E-01) (-0.559E-C2, 007E-01)
* GAIN P21 = -6.46
* ZERCES OF P21

(-0*555E+CO, 0,0 )(-0.246E-Cl, CoQ
PCLES OF P21 ?(O14.1 .(-0.214E.01, Ca.012E0l ,(-0*959E-C2,-0*781E-01) I-0.959E-C2, C.Thl2-01)

* GAIN P22 a -09301

ZEROES OF P22
*(-09132E+01, C*0 (-0.141E-01, 0.01
- POLES OF P22
-. (-Oe2l4E+Clt Co0) 0*124E+Cl, 0.C-C*959E-02,-0*781E-1') (-0*959E-02, 0,781E-01)
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GAIN 011 Oel.ClE+04

Cub)) = c.

Z=QrFES
A0:c '61 C2 ( j.0 , Q6C

PCLES OF Q11
(-00132Ee.CI, 0.0o (-0*141E-Cl, 0.0

* GAIN 012 -5.7

012(0) - 44

ZERCES OF 012
( C.646E-CZ, C.C(
PCLiS OF 012
(-C.2 3 4E+Q1, C.C ( 0.9lEe'01, 0.0(-0.969E-C2, C.C

GAIN 0;21l -47.2

^21(a) = c.

ZSROES OF Q21
(-0.e646E-C2# 0.0) 0.0 P 00C

POLES OF Q21
(-0.55sEeCC, 0.0 1 (-O.246E-Cl, 0.0
GAIN 022 * 2.51

Q22(0) - 0.33 7
ZEROES OF 022
(-0.646E-C2, 0.0

PCLES OF 022
(-C*448E.Cl, 0.0 1 0939eEiG1, 0.0

('-O140ECICOO
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CASE NO, 4C (A,8 MEANS A4JB

GAIN Plg. -136.
iEQCES OF P11
(-C*45!E+Cl, Ca0 I ( 0.4CIE+Cl, OeC(-0*127=-Glv C.O ( 0.00,0

P C L C'F Pil
(-0:214 .+C1, CoC ( 0.124E+Cl, C*C
(-O.959E-C2t-Q.7alE-01) (-Oo959E-C2, 0*7ElE-Cl)

GAIN P12 -66.5
ZERCES OF P12
(-C*220E+01, 0.0 ( C 0.16E+C1, 09C
(-C*128E-C.t C0 ) 00 000

PCLES 1~F P12
(-0.214E+O1, C.0 ( Oo124E+C1, 0.0

GAIN P21 - -7.38

ZERCES OF P21
(-0655E;+Co, 0.0 3 -0*232E-Cl, 0.C

PC LES OF P21
(-0o2l4IE+CL, C.C 3 *O12'tE+C1, 0.0
C-0*959E-C2,-Oe781E-01) (-0.q5SE-C2, O.Th1E-013

* GAIN P22 1 -O.242

ZEROES OF P22
(-09179E+01,i 0.0 (-0.160E-01, 0.0

* POLES OF P22
(-0.214E.01, coa 3 C0.24E4C1, 0.C
i-0*959E-CZ,-O.781E-01) (-0s959E-C2, 0*7elE-01)
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G.IIN Q1l 3 e).89E+04

011(0) = Co

ZE0 CES OF g1l
( -0. l28;-c I, C.j3 0.0 :3.0
PCLzS OF Q11.

GAIN Q12 a -6o88

ZERO0ES OF Q12
(-0el28E-ClI, Co0

PCLES CF 012
(-0.2202..Cl, Go 0 0.176E+Cl, 0.C
(-00 128E-c1, C',

GAIIN C21 -62.0

* ZERCES OF Q21
*(:-0-128E-01, C,o ) c C, 00
*PCL=S 55IF Q2 1

(--555E+CC, C.0 I (-09232E-01, 0.03
GAIN 022 3.36

Q22(0) s 0.419

ZEROES OF Q22
(-O.1Z!3E-01, C,0
DCLES OF Q22
C-0*45L14.01, 0.0 3 o04CIE+Cl, 0,C
(-09127E-Cl, C.O
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CASE NC* 4C (A,8 MEANS A.J8

GAIN Pll -ides

ZERCES OF P11
(-0.452:4K]., 0..) 3 oC3+l

(X1 7'=- . C. C (0.0 t O.0

PCLcS CF' PUl
(-O.21 4c 019 C.C0 0.12'E+C1, 0.C
(-0. 954E-C2,-J. 781E-01) (-0.95q;E-C2, 0.7K1E-01)

GA~IN P12 a -66.5

* ZERCES OF P12
(-0.220E+Cl, C.0 ( 3*116E+Clt O.C
(-09128E-019 ceoo ( 0.0 1 000

PCLES JF P12
(-Oe2l4E+Cl 0*0 Lo C 124E+Clv O*CI
(-C*959E-02,-0e78lE-01) (0.959E-C29 0*7ElE-01)
GAIN P21 = -5. 51

ZEROES OJF P21
(-C.555E+CC, C.3 3(-09222E-019 0.0 1

PCLES OF P21
C-OoZ14E+Cl, 0.0 )C0*12',4Clt C*C)

*(-0. 559E-C2,-0. 781E-01) (-0. 95SE-CZ, 0*781E-01 3

*GAIN P22 -0.242

ZERCES OF P22
(-O.179E+CI, 0.0 I (-0. 16CE-01, 0.0C

* PCLES iJF P22
(-0.214E+C1, C*C 09 Q124E*01, 0.C)
(-0o')59E-C29-0.781E-Cl) C-0. 959E-CZ,9 0o 7ElE-01)
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GAIN 911 094E0

Q11(01 = Co

Z~RCE C~ i
(-09 132E-01, C 0 0.0 1 00
PrLES OF Q11
(-,)*179Ea+C1, C*0 I (-0*16JE-01, 0.0

GAIN C12 -5.14

Q12(0 C) -2. 75
ZEROES JF 912
(-0* 132E-Cl , Ce 0 1

PCLE5 SJF 012
(-0.220E.CI, C*0 O.176E.C1, C*C
(-0.128E-Cl, CCcI

GaP IN02162oC

(.210 C.

ZEROES -IF Q21
(-0.132E-01, C*O 3 0.0 1 00
PCLES OF 021
(-0*555E+00, 0.0 3(-O22E-Clt OC
GaIN Q22 = 3.38

Q22(0) = 0.'.19

ZERCES -IF 022
(-0.132E-019 CooI

* PCLES IF Q22
(-0*4!52E+01, 0.0 3(09403E+Clt 0.C

J- 9 1 -- l o
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CASE NC* 4S (A,3 MEANS A+J8

GAIN PU s -79o3

ZEROES IF P11
t-C.'.512.C1, C.O I J.4J2E.01, 0
(-Jo11JE-Cl, C*C I Ce J.C

ZPCES 'IF P!1
f-0.220E:+C1, C.O I C0*124E+C1, 0.C
(-00459E-C2,-C.7aE-I C 0.0 ,E- 0.01ECl

ZEROES uF P12
(-0*220E+Clv C.0 ( 0*O176E+Cl, O.C

*(-C159E-C,-*71E-1) (-0,959E-02Z, 0978Ei-011

G111N Pi1 z -4.30

* ZERCOES OF P21
(-0552+ZC.0 (-0*215E-Cl, Q.C

l~i PCLES CF P21
(-0*214E+01, CoCC 09124E+Cl, 0.0
(-0e959E-02,-C.781E-01) (-O.1959Ea-C2, 0*7alE-Cl)

*GAIN P22 z -0.242

ZEROES ]F P22
(-0.179E+01, 0.0 1(-0*160E-Cl, 0.C

PCLES OF P22
* C-0.2l4;E+Cl, C.Co C 0*124E+Clt 0CC
* C0*959t:-02,-C781EO01) (-0*959E-C2t 0*7ElE-Cl)
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* GAIN Q11 0.11E+C4

* Z PCES 'F'11
* -0*136---Olt ceo 0 2.0 OO0.

POLE S OF Q~ll
(-0.179rE+Cl, 0.0 (-0,16CE-Ol, CC

*GAIN Q12 z -4eCZ

Q12(0) -2* 01

ZEROES OF Q12
(-O.136E-Cli, CoC

PCLES OF 012
(-C*220E.Clg C&O 3 (0.76E+Clt 0.0
(-0.128E-01, C.C

GAIN Q21 = -62.0

021(0) = C.

* ZEROES OF Q21
-(-0el36e-01v C*O 3(0.0 f 000

POLES OF Q021(021EC1 .
(-O.556E.COv 0.0 (025-l *

GAIN 022 = 3o37

* 022(0) 0*O419

* ZEROES OF Q22
* (-C.136E-C1, C.0

PCLES OF 022
(-0.451E+Cl, 0003 Oe4C2E+C1, 0.0
(-0ellJE-0l, 0.0
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rCASE NC. 5A (A,13)M N S A+JB

GAIN P11= -1340

Z=RCES -F Pl1
(C. 713 E + 01, C. o ( Os 627E+Cl , 0
(-Oe134E-01 I0.0 0 ( 0.0 , 0.

PCLES OF P11.
(-0.30.5E+Ol, C*0) 09145E+Cl, C.C

- (-0*8559-0G2,-0*536E-01) (-O.855E-C29 0*536E-C1)

* GAIN P12 -149.

* ZEROES OF P12
*(-Oe5C62,+C1, 0.0 ( 09424E+C1, 0.0

(-0.120E-Cl, C.0 1 0.0 ,0.00

PCLES OF P12
(-0.3G5E+Cl, 0.0 ( 0*145E.01, 0.0

* -09 855=-C2, -0.536E-01) (-0.855E-C2, 0*536E-01)

* GAIN P21 = -10.00

ZEPOES .jF P21
(-09915E+CO, 0.0 1 -0.163E-019 0.0

PCLES OF P21
(-0.,305E+019 C.0I 0.145E+Cl, 0.0
(-0s 855E-C2,-O9.536E-01J (-0*855E-02, 0*536E-01)

GAIN P22 -3o37

ZEROES OF P22
(-0ol06E-*Cl, 0.0 1(-0.144E-Cl, 0.0

PCLES OF P22
(-0*305E.01, 0.0 1 1 .1'-E+C1, 0.C
(-0*855-O2,-0*536E-01) (-O.855E-CZ, 0*536E-01I
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GAIN1 (411 2 5,;

* ZERCES !F 1).
( I- Ce2 79E-C2 , C.O 0 0.0 1 0.00

PCLES OF Qll
t-O.106ic+01, .oo) (-0*144E-019 0.0

GAIN C12 = -5986

Q12(0) -11.4

ZEROES OF Q12
(-0*279E-C29 C*0

POLES OF 012
(-0.5C6E+C1, 0.0 3 o0424E+C1, 0*0
(-0*120E-Clt C.C

GAIN Q21 = -87.4

C21(C) = co

ZEROES OF Q21
(-0.279E-C2, C*0O 00 00

* PCLES OF C21
(-06915E+CC, coo I (-O.163E-Olt 0.0

GAIN C22 a 4976

Q22(0) a 3.56

ZEROES OF Q22
(-Oe279E-C2., CoO

PCLES OF 022
(-0.713fE+Olt 0.0o 0*627E+C1, C.C
(-0*134E-Cl, C*0
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CASE NCO 55 (A 8 MEANS A+J8

GAIN P11 -272.

* Z-:PES ~FPi1
1-0.71L"E+J1, C.0 C0.633E+Cl, 0.0
-0.12-: 0.0 q C. 0.0 , C.0

PCL=S C-F PUl
* (-0*3J5E+(G1, C.0 )C0*145E+Clp CeCC

(-C.855E-CZ,-C*536E-01) C-0.e55E-C2, 0.536E-01)

*GAIN P12 a -14g.

ZZERCES OF P12
* -0*506E+Cl, C.0 0*O424E+C1, C.e0

(-0912OE-Clt C*0 1 . 00

PCLES OF P12
(-Ce305E+Clt C*0 I 0*145E+01, 0.0)
C-0*855E-C2,-0*536E-O1) (-0.855E-C2t 09536E-01)

GAIN P21 = -15.1

ZERCES OF P21
* -C.914c+C0, 0.0 I (-0*157E-Cl, 0.0

PGLES OJF P21
* C-0*3OSE+01lCt 0) @C 0*145E+Clt 0.0

-0*855E-C2,-Co536E-ou) (-0* e55E-C2, t0.536E-01

GAIN P22 a -3.37

ZERCES OF P22
(-Oo 106E+01, 0. 0 3(-09 144E-01, 0.0e

* PCLES OF P22
(-0*3 .5E+C1, .0 CCO 0.145E+C1, 0.0
C-0*855E-C2,-0e536E-01) (-09855E-029 0* 536E-01)
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GAIN QUi

* Q11(o) = Ce

*Z -- CES OJF Qll
I-0,b26E-C2, C3 ( 0.0 ,coo

PCLES OF Qll
* (-0*106E+Cl, C.O 1(-0. l'4-C1, C*C

* GAIN 012 = -8.99

Q12(0) -16.5

* ZEROES '-F 012
(-00626C-02, Coo

PCLES OF Q12 (044+1 .
(-G.506E.Cl, 0.0 044+l *

* (-C.12CE-Cl, C.0C

*GAIN Q21 -88.7

* 021(0) = C.

ZEROES OF Q21
(-0a 6Z6E-C2 t C.03 0.00 COC

* PCLES OF 021
(-0.9l4E+CC, C.O (-0e 157E- C 1 C e

*GAIN C22 4.93

Q 22(01 a 3.596

ZERCES OF Q22
-(-C. 626E-C2 , C.0

PCLES OF Q22
(-0@71;E+01, 0.0 1 o0633E+C1, 0.0
(-00129E-C1, COO
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CASE 5 c (Ale) MEANS A+Ja

GAINj P11, -314s

Z&EZ;PS 2F Pi1
(-Co7l3E+Cl, ( D*C6.34E+Cl, ceo(- 4.IE- A.0 t 0.0 CO
prLE S OF Pil

(-C9855t-C2,-009S3bE-01p (-O.855E-C2, 0,536E-01)
GAIN PIZ -1569
ZERCES OF P12
(-C*4bqE.Cl, 0.0 ( 0 0387E+01, 0,0(-00132E-Cl, C.C ( 0:C co0.
PCLES OF P12
C-0.305E+cl, c.0 ( 0.145E4Cl, 0.0)(-Q.855E-C2,-C.,536E-01) (-0.855E-C2, C. 56Ee-Cip

GAIN P21 = -17.5

ZERCIE OF 2
*(-00914E+CO, 0.0 P -O.150E-C1, 0.C)

PCLES OF P21
C-0.305E+Cl, COO) 0 145E+C1,9 C.C(-0*855E-C2,-o536E-o1) :-.~Ec,056-1

GAIN P22 3 -3o52
ZERCES OF P22
(ZO.113E.C1, 0.0 P(-O.155E-Cl, 0.0
P'-,L ES OF P22
(-0.305E.Cl, C.0 0 .145E+C1, C.CC-0.855E-02,-C.536E-01) -0.855E-02, 0.536E-Cl)
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Q11( 0~1 c

(-C.173--01, C.) ) 0.) 0 .0
Pf2LzS OF Q11
(-() *113E+01, Coo (-0.155E-Cl, CC

GAIN Q12 -1.

.12(o) = -17.6

ZERGES OF C12
(-O0.178E-Cl, C.C
PCLES OF 012
(-0*4,69E.Cl, C~o 0 Oo387E+Gl, 0.0(-0%132E-01, Coo

GAIN Q21 2 -132o

021(0) Co

POLES OF Q21
*(-O.514E.CQ, Coo I(-0.15CE-Cl, Coo

*GAIN Q22 7o38

Q22(0) a 4e73

ZEROES OF Q22
( -Ce178E-01 , C. a

*PCLES, OF Q22
* (-0*719E+01, 0.01 0*634E.CI, 0.0

-').122E-CI, C.o
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I:,CASE NC, 5D (A98) MEANS A+JB

G .11 .1 L 1 - 23Cs

* Z=RrS CF Oi
-C o7 2 + C 1, C .C ( C .63a;E+C1, 0J.0

cO. 119E-c 1, c . c 0.0 1 0.00

PCLtS OF P11
(-09305E+019 C*0 09O1'S-E+C1, C.0
(-0,855E-C2v-0e536E-01) C-0.855E-C2, 0*536E-O1)
GAIN P12 a -1960

ZEROES OF P12
C-09/'69E+Clt(0.0 ) e0387E+Cl, 0.0
C-0. 132E-Cl p C.0 (0.00 0.00

PCLES OF P1.2
(-093kO5EeClt 0.0 1 C0*145E+Cl, 0C
(-0*855E-C2t-0*536E-O1) (-0.655E-C2, 0.536E-01)

*GAIN P21 -13.0

ZEROES OF P21
(-0*913E+CCi Co0 (-O.146E-Cli 0.0
PCLES OF P21

* (-0,30r-E+Cl, C.0 )C0*145E+C1, 0.0
(-0*855E-C2,-09536E-01) (-0*855E-C2, 0.536E-C1)

GAIN P22 a -3e52

* ZERGES OF P22
C-09113k.Cl. 0.0 (-O.155E-C1, C*0

PCLES OF P22
C-0*305E.Cl, C*0 I I 0*145E.CI, 0.0

* -0e855E-C2,-09536E-01) -0*855E-02, 09536E-01)
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GAIN W1 14

0 C.

Z=PCES -F ~1
-,-0.1-3E-C1, C (o C3. 0 e

PCLES JF Q11
(-0*113E+O1, C1.0 (-O.155E-Clt C*C

GAIN 012=

Q12(0) 9 -. 7

- ZE-ROEi OF Q12
(-0ol93E-Olr C@C

* PCLES OF Q12
(-C.469E+Cl, C 0 )(0*387E4C1, 0.0

- (-O.132E-01, C.O

*GAIN 921 -133.

0v21101 = C.

ZERCES OF Q21
-(-Ce 193E-Cl 9 C.0) 0.0 , 0.0

- PCLES OF Q21
(-C.913E4COP 0.0 )(-09146E-Clo 0.0

* GAIN Q22 = 7,54

Q22(0) a 4.73

ZEROES OF Q22
* (-0.193E-01, C.0

PCLES OF 022
(-C&724E+Clv C@0I 0*638E101, 0*C
(-Oelt8E-01, 0.0
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KCA S -N C 5E (A ME A NS A+JB

GIN PU I -1960

* ZERI2 S 'jF 01 1
(-0.7J9E+Oj, C1.3 0* 3624E+Clt 0.0

11 t E j JaC 0. .,C.C

P--LES :F I1.
* (-,J.3J5=+C1, C.0 0*145E+Clv 0.C

(-0*855c-029-0e53!:E-01) (-OJ.855E-02, 0.5362-01)

* GAIN P12 1509

ZEROES OF P12
( -0.469E+Cl , 0 ( 0,387E+Clt 0.0
( -Oo 132E-Cl 9 Ce C I ( 0.0 1 000

PCLES OF P12
(-O.305E4Clt Cs0 I 09145E+01, 0.0
I -0e855E-02v-Q.536E-0l) (-0@855E-C29 0. 536E-C1)

GAIN P21 a -1000

ZSRCES OF P21
(-0*919E+CO, 0.0 1(-0*14'4E-Clt 0.C

POLES OF P21
(-0*305E.Clt 0.0 1 0*145E.C1, 0.C
(-0*855E-02,-0o536E-0j) (-09855E-C29 0.536E-Cl)

GAIN P22 -3.52

ZERC-ES OF P22
(-09113E+01, 0.0 (-0.155E-Cl, 0.C

POLES OF P22
(-0.305E.01, 0.0 1C0*145E.C1, 0.C
(-09855E-0Z,-0*536E-01) (-0*8552-C29 C.536E-C1)



-'54-

GAIN Q11 371.

Q11(c) C.

ZaERctS :F Qli
(-0*205,E-'J., C.Q 3 00. 30 0*

PCLES OF Q'l

GAIN Q12 -6.68

012(0) -9.61

Z;:OGS OF C12
(-0.205E-01, C.C3

PCLES OF C12
(-C*469E.Clt 090 0 O387E.Cl, 0.03
(-0. 132E-019 C. 0

GAIN 021 = -13C*

Q21(0) Co
ZEROES OF 021
(-09205E-Clt 0.0 C0.00 0.00

POLES OF Q21
(-09913E+009 Co0 (-0914,E-C1, ceC

GAIN Q22 S 7*C3

Q22(01 4o~73

ZEROES OF 022
(-0.2C5E-Clv C.C3

PCLES OF 022
(-Ce 7C9E+Cl 9 C.O 0 09624E+Cl, 0.03
(-0*116E-Oly C.C I
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Fig. 3.1 System structure for longitudinal pitch-pointing mode (al)
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Chapter 4

DESIGN 07 1. TR.1NSLATY: ) MODE

-. 1 Problem s

In thi mode th, plant inputs are listed as c ' r ac r ' a

(canard, rudder, aileron), and its outputs are: side velocity

v = A dt , yaw p = fr dt , roll D (Fig. 4.1). The objective is to

achieve a commanded side velocity v with small yaw 1. and small

roll angles. For a command of v = 60 ft/sec, we shall aim for
c

1 0 for , and < 20 for . Hence

b = -70 db ; = 2b = -64 db (4.la,b)
21 (60)57.3 " 31 21

As for bll we take in the meantime the model

T (S) -I + i + s\2 (4.2)

11s L

whose Bode plot is sketched in Fig. 4.2. We do not consider the lower

bound a (cJ) for IT (Jw) at this point, because in the previous

designs the corresponding loop transmission was so large that the

(T33  in Chapter 2, TII in Chapter 3) was almost invariant over its

important w range.

4.2 Plant equations

While the plant system here is essentially the same as in Chapter 2,

there the variables of interest were sideslip 3 , roll t , side

force A whereas here they are side velocity, yaw and roll, so we get

different plant equation. In (2.1), yaw was not present while side slip

. ... . ' .
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was in the output vector y But the procedure for finding the new

plant matrix is the same as in Chapter 2, so is not repeated here.

r"' (i..3e

" .... . ',', i = P x = [
r' a

The elements Qij of Q = P-1 = [I/Qij ]  for the ten cases liated in

Chapter 2 are given in Table 4.1 below, in which the entries are of the

form

--. 3-2 s3 ."s2

Q =D..s + C.s + A.. + B.. (4.4a)- ij 1] iJ ijs ij

except for

3 2
Qi3 s[D ijs + Cijs + A ujs + B..] (4b)1 1:-:u
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Ta~r 4.1 LL- '0-NT$ QIJi(: SEC. 4,.2)

CZ . 21

I J c
1 2 -. o.1 O22E"0-43E0 o7E0

1 3 -') 3 3E 0 0, 7 E C Oo' QE') *jol .E

3 1. JSJ.o . 87EC C19E
2 090 ~ ~~~ .,'E-2024E0 -. 4EO

1 1 3.0J l.i C.185E-02 0.350-ic02
1 2 ana 0*3C9E+C0 -o213E-02 -.372E'+J.
1 3 0h363E-02 0.36E9-C2 0,532E.0O C.145Ed00
2 1 0.0 0 .0 0*635E-02 0.720E-02
2 2 0.0 -*7E-C1 -el43E+UJ -*817E+01

02 3 4 =)30E-O1 t -57-C-0 0.12 BE-+00 C.232E+C'i
3 1 0.) 000 C.787E-02 C*779E-03
3 2 0.0 -0169E-02 09211-01 -. 642+301
3 3 -a 107E-01 -o737E-Cl 1 1.2412-01 C 363E-01

C AS E 4

I J 0 C B
1 1 0*.0 ")*0 C,69b't770E-02c.2

1 2 0,.U Oo377E-0l -0570 -C' t+3
1 3 0*11oE-01 J916!:E-C2 0.572-Cl C0l12E+O0
2 1 0.0 0.00 0.377E-01 O.a793:-02
2 2 0.0 -. 6378E-0 -. 1482+00 -.584E+01
2 3- 0.1'12-O--O.1OI3E-01C -0*125E+C 0.315+0O

3 1 04.0 0.0 03852-02 C.13CE-02
3 3- 07- -*.682-1 1iE-C 0. 363E-01 5E0

C A S E 5

I J- - - - A - L
I 1 0.0 0.00 0.614E-01 0.700E-02

*1 2 0*0 0.3761E-CC -. 3729-01 -. 4182+01
1 ~ ~ ~ ~ a 10 U1'-1 316-2 04700 Cr25&fOC

2 1 3.3 0.0 0.3E7-01 C. 792'J
2 2 6.0 -:172E+CO -. 14200 -582+01
2 3 J95122-U01 Oo538E-Cl C0.65+CO 0.3152+00
3 1 u.0 0.a0 09148E-C1 -.43u-03
3 2 0.0G -.7b2-02l-- 0.75-01 0.2507E+Gl
3 3 -9227E3-01 -.927E-C1 - -.274&-0l -.139-01

-Y__ n 7n--2 T2 00-12+O -14+0 -85~
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CASE 6

:7 J CeIC
1 ~ ~ ~ ~ 0 i 0 , 9''-

Ja el. +,

1 3 J,4E0 V*60)C 097E0 A7E0
I) 1-. 3. m~ . E-CL Co550E-02

2 2 0 0.134E+CO -.505E-02 -565E+01

2 3 .o2c~Qi 3.653EC V. Jo2llE+Ju 0*219E+00
3 1 )ID 3."3 CoSISE-02 Ce 954E-3
3 2 OwO .*327E-C2 C.240E-0. -.7CIE+00
3 3 -2 83-0 -C1 -. 36E-Cl 0,4ti5E-0l 0*275E-01

1 1; J ,. .,dnE-02 C 3 -J 2
2 Joj .t4FC , Z 2-2 ~ 3 9 F+3
2 1i7 c Z, ~~7 4 7 C2 0.(-8 C 14 ; +30
I 1 o .0.0 Q.57CE-C2 C*758E-02

2 2 J.0 -*694E-01 -a'147E+00 -9762E+01
2 3 Q0l8'9E-Q1I 0*999E-Oi 0,@120E+00 0.244E+00~-- O- ---- -9-,O -- 0.37BE-02 0.l26E-32
3 2 0.0 .9328E-C3 Ca1C0E-01 -s 126E+01
3 3 -,107E-01 -.6062-Cl 0.199E-01 C0405E-01

[) J Uc A 0
Os i 3.3 C.0 776 E- Cl Ce879E-02

1 2 O&-) 7475E+C0 -.4482-02 -4524E+31
1 3 J. 1440E-01 )s 196E-C2 J. 56 1 E+)J 0*233E+yU

4 0. .).0 C,33 3 5 -C1 0 .932 E- "2
2 2is') -*203E+00 -*143tCO -. 5c+

2 3 os.vi4c-CI ,**530iE-Cl. 0595E+30 Oo3COE+03
3 1 3.0 0.0 0.1912-01 -*356E-03
3 2 3.0 -. 384E-C2 0.474E-01 C*213E+0O
3 3 -.o8 1 _7- 31 -a9 2 7 E- 01 -.227E-01 -I115E-01

C A S E 10

1 -000-- - 40.0 Gw3b6E-GI C*915E-02
1 2 0.0 0.7702-01 -. 82 6E-01 -. 819E+01
1 3 O.297E-Ol. 0.,445E-C1 0* 353E+CG C.294K+00

2 3 0.482E-01 09790E-01 0,318E+00 0.265E+00
3 1 0.0 3.-0 09347E-01 0*275E-02
3 2 0.0 -. 3552-01 -.125E-Ol -*2'46E+01
3,--- ---3----.2--k-.43-G1 -O-406E+00 G."85E-04 ----
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4.3 Design of L3

" The inequality to be satisfied is

11 I 31 21 Q32 A

.11 + L 3 1 >b B 3  (4.5)i . . . 3 1

For w E 10.1,5] b ! b Q33 and B > 60 db ,so
Fo Q 32 21 &323

we need

i + L31 >b 1  > 60 db (4.6)
b31 Q31

Since IL = IIQ3G3I >> 1 11 + L3 IL i (4.6) becomes

3 333 3 3

[ -G 1- ( 4 .7 )13I b31 Q3. fmin

The resulting bounds on IG3(Jw)I are shown in Fig. 4.3, and on

L Q G in Fig. 4.4.30 Q3 30G3

For w > 8 in (4.5), B3  0 db, so the only requirement is stability

of (1+L3) and a reasonable margin IL3/(I+L 3)1 < ; 5 db was

chosen. The results are shown in Fig. 4.4. Some templates of Q are

shown in Fig. 4.5. At low w values, a right half-plane rle of Q33

near the origin and a zero at s - 0 (recall (4b)) dominate, so we use

G 3 -8(s+0.l)/s for w < 5 , which handles both w < .1 and the

requirement IGI > 5 for w E [0.1,51 The final L =G Q
n is s30 in F 3 30" ' -chosen, is shown in Fig. 4.4, with

J "~
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-0.8(1+0s) i +

C 3(s) = (4.8)

S +S ( 0+)( + 500)

4.4 Design of L

The inequality to be satisfied (see Chapter 1), is:

b Qb" Q 22 + b 31 _2

"! bll &2--1- Q23 i

I + L2j > = B2  (4.9)

For w E [.1,5] >>b 3 22 and B >,70db so
"21 23

as in Eqs. [4.6,7] , we need

IG2 I> bl > 30 db (4.10)
:i" ':b 21 IQ21 1

;T':Q22 
Q222

For w small, b31 Q23 >> b l1 Q21

because of the zero of Q23 at the origin, so G2  is assigned a pole

at the origin and its low frequency form is

G K.lOs + 1) K > 30 db (4.11)

2 s

see Fig. 4.6. For w > 15 , B 2  0 so the only demands are of

stability and suitable margin for IL 2 /(l + L2 ) . The template of

Q determine the resulting bounds on L2 0 , see Figs. 4.7, 4.8.

22 20

Z 7
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L20 (j-) is sketched in Fig. 4.8, and

-3. I(10s+L) (.ls+l)
, LL

4.5 Design of G1

As in Chapter 2, the exact equation is used for the design of

the final loop involving G1  The exact expression for T is

manipulated into the form

T I1 * * * QI
11~ s  

* , LI = QIGI 11 i -l-

l+Li

Y12 (l+L 3 )+Y 1 3 ( I+L2 ) -F
(I+L 2 )(l+L 3)-Y 23

(4.13a-f)

Qii Qjj
Yij = Qij Qji

Q Q 1 + 111 -QQ22Q33 [Q12Q23Q31 Q21Q32QI 3 J

The design of F, G is therefore precisely a single-loop design,

for which Ref. [3] is highly appropriate. Templates of Q are obtained

(Fig. 4.9). These are used, as described in [3], to obtain bounds on

LI , such that &1 /(I+LI does not exceed the allowed range. The

bounds shown in Fig. 10 were used here. The upper bound does not correspond

to that used in Fig. 4.2. This may affect the T21 , T 31 results. If it
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does do so too much adversely, we can redesign F1  In any case, the

resulting bounds on L are shown in Fig. 11, as well as L with
10 1

0.01(s+i
1 = s(.ls+l)

which involves very little bandwitdth for G1 (jw) (It might be a good

idea to make G1  larger.) Two choices'of F I were tried

0.3 0.5
la (s+.3) lb (s+.5) (4.15a,b)

4.6 Simulation of Design

The two designs (F a , Fib) were simulated on the digital computer.

The results are shown in Figs. 4.12, 4.13 respectively and are seen to be

very good. The commanded v was adjusted so that in most cases, one of

the control surfaces (it was 6 the canard) saturated. The yaw andc

roll values obtain, are very small.

Obviously, Lne v responses with Flb are faster than those for

Fla. However, the canard then saturates for some cases (those with

some overshoot) at smaller commanded v values. One could perhaps

eliminate the overshoot for these cases, by careful examination of

these cases, and this would be worth doing in a design meant for actual

implementation. If the overshoot in some of these 6 responses could be

eliminated, the limiting factor in speeding up the response of v would

be the saturation values of the 5. rather that those of some of the .
1 1

In any case, the results achieved nicely satisfy the snecifications of

Sec. 4.1.
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4.7 Use of Digital Compensation

Digital compensation is becoming increasingly attractive, due to :he

tremendous progress in rzr.roprocessing. The sampling causes the compensation

.':n:tion to be ronminimum phase but the extra ihse ,

L r CU1:-:;. is inCreas d,. t sL Iaisti

have several parallel digital compensations with different sampling rates. The

networks with smaller bandwidth in their transfer functions could be assigned

larger sampling periods. The optimum arrangement of such parallel compensation

is worthy of study. In the present case, we simply replaced the compensation

functions in Design 1, by equivalent digital networks. Tustin's method r ]

was used in which s is replaced in the transfer function by

2~ z-
S = - T(4.16)

-T z+lI

Different sampling periods T were tried and it was found that T = .02 seconds

gave the satisfactory results shown in Fig. 4.14.
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F ; G3

Fig. 4.1 System structure for lateral translation (S2) mode

w(RPS)
0.1 0.3 1.0 10
0--

-IC-
" bllo o-

-30-

-40-

Fig. 4.2 Bode plot of bl 1 (W)

" , . . " --. - -. , . -.- 
. .-- -,- . - . -.- . .- .- .- -



3~ -1:-- "17". . . - . .-

-176-

w (RPS)
0.01 0.1 1.0

60 I

50-
BOUND ON I L301

40-

30-

=BOUND ON I G3 1

20 - b31lQ31I min.

I0-

Fig. 4.3 Bounds on IG (iw)I for part of frequency range
3



-177-

% 
I

30 2 2

20- 3

L30 (iw)

5

-. 10
'9'

DB

0
Ix 20

-180

50

-20

120

-30 -

-1800 -1200 -600
DEGREES

Fig. 4.4 Bounds on L30 in Nichols Chart and L30 JW)
k30

a-.q
,4, '., ." , .. •. . - .: -i . ...5 --: "• .... .i . .2 - ': - - - ..-.' - - . - -'' -- ' -4 - -.-,-: - - -.

A%



-178-

....

Il~~ 77iJ2

F 60

7 1.
77

Fig. 4.5 Some templates of Q (W)
33

w(RPS)

0.01 0.1 0.3 1.050 1 I

4.4Q

40-

0 30- IG21

20 1 L201

Fig. 4.6 Bounds on IG2(jw)I and on IL20(jw)I for part of frequency range.
-.4,

2 20



4 -179-

0 22

(&S 3 44

a )

2. 
7

44

a S

7

3
10

Fig. 4.7 Some templates ofQ22(w



-180-

40-

30 6 5

066

*44

11 1 .6 0

"0 -

A:_ -10 I 1
-0 0

! I
S -80 -120* -60 °  0

: DEGREES

-.%

,.,.-L2 (J ) de ig e

a 10

Li~ ~ ~~~ ~~~~~( ) )tt 5" 
° 

jw )"•%" 

* "° ." .
••. ....



-181-

S.1

4.0~7 W2.017 1

5. 1. W-00

~44

6 76 wa.5

7 10

o- '.'

5 4

5 5
5 56

I0 IW L

RANGE OFI 3

S w6.

'"" -10- O

5.. ,, q

Fig. 4.10 Bounds on T ) which were used
Ve



-182-

30r

20 0.1
,LI

-10

10 LLn (jw)

0.4

D8

.0

-I0-

-20

-180 °  -140* -1000 -600
DEGREES

Fig. 4.11 Bounds on Llo(jw) and Llo(jw)



-183-

w5

LAJ

Fi.410 iuainrsls a 03(+3



-184-

.10

L... ..... 9 ... .. .... ...

0j1

JJS

a Ca



-185-

37

* 1:7 17
-,

IA 

7 
V 

._ 
!.

Or-

. -... 

..

- .
" /- 

T

r. ryr A ~

..

Fig. 4.12 (cont.) Simulation results, Fi Is 0.3/(s+.3)



-186-

-ac

6

-- -- 10

0-10

-1-3 5i -' el. ISO.

Fig. 4.12 (cant.) Simulation results, F la Q.3/(s+.3)



-- 4- -j

-187-

9c

7

9

1 20

I~ 10

os

2- C7

(1)g 4.1 (cot. siuain eut l



-188-

.10
Cf) 

-.

31.~' . _ 8C

:j I~

I,-J,

~ --
C.7-

-- L7

-~1 3i r ~
-ACD

Fig 4.3SmlainrsltFl205 +5



-189-

qq5

7 6-
LL .0

* t ,*

Fi. 4.3(ot)Smlto rsls b 05(+5



W 4 -T. ,rjn t 7. 
4- ~

-190-

kI

.. . ,,. .....

71

" c,. - r~r --"

i _ i __ ,..

:-c

C:_

I, i

'CE-C

F.-

, V rI.

;; .:: .. .. m. .. a .



J_, l . , . H ! .. ..... P ! m j _ p . u M •' " - . - . " . _ . . " .

-191-

6,7
.....-- __ _ IO

,-d ----- -____......._--

' 10, ; '

88

7
-. 10

,_. I*

* 6
7 8 10

Fig. 4.13 (cont.) Simulation results, F - 0.5/(s+.5)

- ' ~.. .. ... . . .. . ... ......". . ". -- -i .. . :-



P. F. .777 7-7- -7 7.* * - ~

-192-

*1 ~ ~ ~ ~ ~ 7 A.,- .

*1<%8

w . -67

-I9

6)

Fig. 4.13 (cant.) simulation results, Fi - 5/(s+.5)

.4lb



-193-

O~O 2.00 4'.00 6.00O
SEC

1 2

Fig. 4.14 Simulation results with digital compensation, T -0.02 seconds, F F Fa

J Expanded time scale in last two figures



-194-

'I .- '

7/ -7

"" (.0

ri 4

,00 2.00 0020

S
.9

020O 22. 0 so E2 C

1 .)

g-)
0l

.

0.,, '3 90 2.o ,-IS

Fig. 4.14 Ccout.l Slmulation results with digital compensation, T = 0.02 seconds,F F

Expanded time scale in last two figures

• . , " ..,,". - -'-. -. v "- '- ""- - .'- -" " }- "....- - -,_. --- .---- ~



-195-

.. -..

go 2.00 4

Yig. 4.14 (cont.) Simulation results with digital compensation, T -0.02 secorids,F -F 1

Expanded time scale in last two figures



S ..- w- _ -

-196-

-SC.

2 0-

"F

I -

1. 0 2.0 4Sr I IS C-1.c% CSEC

0 0O 2.00 4.100 01 8 s

Fig. 4.14 (cont.) Simulation results vith digital compensation, T - 0.02 seconds, F - Fa

Emxpnded time scale in last two figures

4% & :



-197-

-'Ir

5 .
0

z.,



-198-

~f4i

-a. C.'hS

... _ .

-i -----

N I 1

,-O 25 O . 50 .. 75 1 ;o
SEC

"0r- 01 0 7I

"T °,O O025 O,5O ,. Q7C .0

SEC

Fig. 4.14 (cont.) Simulation results with digital compensation, T - 0.02 seconds, F - Fla
£la

Expanded time scale in last two figures

"" " " *"" " * '-: -" .. . .- . .- .. ,.., - - -.. . . . . . .- .

* ."_S -- - I .1 I 1 - : I - 1



,qq

*Chapter 5

DESIGN BASED ON NONLINEAR MULTIPLE
INPUT-OUTPUT PLANT MODEL

5.1 Nonlinear MIO Design Technique

In the preceeding chapters a linear MIO (multiple input-output) model

was used for the plant. Such a model is only an approximation of the more

accurate nonlinear model (Eqs. 5.1-5.5 below). Our design technique is able

to cope precisely with a large class of highly uncertain nonlinear MIO plants.

It is emphasized that the design technique is exact. The rigorous develop-

ment of the technique with two detailed numerical examples, is given in [ 4 1.

For the sake of completeness, a qualitative description of the technique is

here included.

Let yi = wx. be the nonlinear relation between a n-vector x. of plant1 1

. inputs and a n-vector yi of plant outputs. Due to uncertainty w E W, a set.

Let there be n such (xiY i) vector-pairs, forming two nxn matrices

S-(,,...X n ) Y  (yip .... ,yn) with the x.-vector the ith column of X, etc,X1

and y. wx.; j - 1,...,n. It is assumed that the n x. are an independent

set, as are the n y.. Let the matrix P of transfer functions be defined by

Y - PX, where Y is the matrix of Laplace transforms of the elements uf Y,

etc. The P matrix is denoted as the LTIE (linear time invariant equivalent)

of the mio nonlinear plant w, with respect to the n-vector Y set of outputs.

A different X,Y set gives in general a different P, when w is nonlinear.

Repeat the process over a set V of n-vectors, to obtain a set of LTIE

plants. Repeat over the elements of W = {w}, to obtain an overall set

P - JP) of LTIE plants. This set P is the LTIE of the set W, with respect

of the set of n-vectors V = {Y} (or the set X = (X}).

............. ,*
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5.1.1 The barrel analogy

The following analugy may be helpful in comprehending the LTIE idea.

Imagine a barrel V = *v, of all the desired n-output vectors the nonli.near

plant is supposed to deliver over its lif-. Also there is a barrel

W {w} of all possible nxn nonlinear plants, due to the parameter uncertainty.

We create by the above technique, a barrel P = {P} of nxn linear time

invariant plants, which has therefore the following property. Suppose one

picks any w. from the W barrel and any y. vector from the Y barrel. Then1. J

there is a n-vector x i- of inputs, such that y. w.x... Then in theJ 1J

P barrel, there is guaranteed to be a P.., such that Y. = P..x... Thus, the
-13 13 3-3

P barrel is equivalent to the W barrel, with respect to the Y barrel.

* . The vital point is that the designer can forget about W. If he

makes a proDer linear time invariant design for the P barrel, then this

same design is guaranteed to work for the W barrel. By a proper design for

the P barrel, it is meant that the actual plant output is a member of the

desired output set V, no matter which P in P is used as the plant. Thus,

the nxn nonlinear uncertainty design problem has been converted to a nxn mio

linear time invariant uncertainty problem. It is important to include in

Y a good sampling of all the desired nonlinear plant output vectors,

because the linear design is guaranteed to work only for the P set which

is generated in the above manner by the W, V sets, i.e. P is a function

. of Y as well as of W.

5.2 The Nonlinear Plant

Because of the nonlinear coupling between them, the 2x2 vertical

translation (a ) mode of Chapter 3 and the 3x3 lateral translation (82)

mode of Ch. 4 were combined into a single 5x5 nonlinear plant:
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Control inputs: Elevons 5 0 flaps 6f, canards 6 , rudder 5 , ailerons .
Ue c r a

Plant outputs: Vertical velocity v z , pitch angle @, lateral velocity v

yaw angle ', roll angle .

CDmmnand in: uts and urfcrmarce tolranc-s: T.:r. ar !rran dd-d sit:. o_-,..'

vertical velocity of 25 ft./sec. and lateral velocity of 60 ft./sec., with

tolerances on these outpus as in Chs. 3,4. The other tolerances are:

pitch angle 0 < 0.165, yaw < 1.0, roll < 2, all in degrees.

Nonlinear Equation of Motion

I -I I I M
p1  q'r + -r + I pq + x

;.I- I I M
x x x x

. = z x xz 2 xz 2 (5. la-c)
.I p-r + y- r IP + I

% y y y y

I -I I I M

x xz xz,- I----- qp + p- q'r+I
r zz z z z

F
u = v-r - w-q + -

m

S= w'p - u-r + -  
(5.2a-c)

m

F
zw = u-q - r-p +

.J.
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Mx V2 Sb CC + C 3 + C S + +b C, P)]x2 -e U6rr t a ec C 2V~ Zr

: V-Sc[ (c ' + C 63 +~ cm -~- C a)] (.3a-c)~~;M 2 fne ~ mrr r 2V "ma

Mz =pV 2Sb C6 + C 6 + c 6 + C + (C r +C P)]z2 n6a a n6r r n6c C n 2V nr np

F = - mg sine + 1p V2 SC 6  + c 6 + + (5. 4a-i)

2 b~ ~

Fy =mg Cos 6sinO +_IPV2S(C 6 + C 6 + C 6 +'-C + 1-(C r +C p)]Y2 y6r r yda a ydc C y 2V yr yp

Fz mg Cos 6cos + PV 2 S[C 6 + C 6 + C + £(C q)]z2 z6e e z6f f z 2V zq

F rt F
A ~ vj A dt A =-;V A Adtn m n y m y jy

p + qtan esin + rtan 6Cos~ dt

e=q Cos *-r sin~ { dt +e 0  (5.5a-f)

Cos CosG ' d'

%-
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7. V =Total velocity

a =Trim AOA (0 =a 1o 00

U0 = V Cos a0, w0  V sin a0

(5.6a-e)

.'*' u = uU dt + u0 , v = f dt, w = w dt + w"'' 0

W v
a tan sn

Strictly the aerodynamic coefficients C.. are functions of a and 8.

However, here they are so restricted in magnitude by the specifications that.

*. they are effectively constants. The nonlinearities are due to the

multiplication, etc, of state variables in the above equations (5.1-5.5).

5.3 The Nonlinear Plant Input-Output Sets

Formally, the LTIE P set is obtained by picking any y vector,

solving for x = w y and repeating over V and W. This is one way, which

was used in E 4 ]. Another way is to simulate the nonlinear plant and try

to drive it in such a way as to produce the kind of y vectors required by

the specifications. This is normally very difficult, but in this problem

we already have the linear designs of Chs. 3,4. So the same f,g elements

were used as compensations around the 5x5 nonlinear plant, the entire system

simulated on the digital computer and subjected to the inputs listed in

the specifications. It was hoped that the nonlinear 5x5 plant outputs

would not differ very greatly from those achieved separately in the linear

2x2 and 3x3 designs. If they did so differ, one could experiment with other

command inputs and hopefully find some which would result in the desired

output vectors. It was an experiment worth trying.
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The results achieved were very interesting, because they were

closely similar to those achieved in the two separate linear designs. This

is seen by comparing the two. Figs. 5.1 a,b (nonlinear results) should be
9.

compared with 5f, 5 curves respectively, in Fig. 3.13 (p. 165),e

Figs. 5.2a,b with the e, v curves of Fig. 3.13. Each of these gives thez

results for the five cases listed in Ch. 3. It is seen that case by case

the curves are very similar. Figs. 5.3a-c present the nonlinear results

for v, ,O (cases 1-5), to be compared with the linear results in Fig. 4.12,

p. 183 for the same variables; Figs. 5.4a-c (nonlinear, cases 6-10) with

the linear results of Fig. 4.12, p, 184; Figs. 5.5a-b for 6c' 5r' 6a

(nonlinear, cases 1-5) with Fig. 4.12 (p. 185) linear results; Figs.

5.6a-c (nonlinear, cases 2-10) with Fig. 4.12 (p. 186) linear results.

It is seen that case by case, the results are very similar for both the

control inputs and the plant outputs. This proves that the LTIE of the 5x5

nonlinear plant (combined lateral and longitudinal) for the above cases, and

for this class of plant outputs is essentially that used in the two

separate, decoupled linear problems of Chapters 3,4. Hence straightforward

application of our technique to the resulting 5x5 LTIE problem would

undoubtedly result in the same f,g compensation functions obtained in the

two separate 2x2, 3x3 designs. In fact our nonlinear simulation with these

compensations has already been done. There is no need for any more work.

Figs. 5.1-5.6 are indeed the simulation results.

The above results suggest that at least in mio flight control

problems, it is worth doing first a design based on linearized models, before

embarking on one based on the more accurate nonlinear model. The compensa-

tions resulting from the linear design may then be tried for the nonlinear

.'0

4,!
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plant. Comparison of the results with the linear system, indicates how

serious are the nonlinearities. In the above example, the results would

undoubtedly be significantly different if the a,3 rangeq' were much larqer,

" such that the C.. are then in the strongly nonlinear ranq=s of tnte

variables.
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CHAPTER 6

FUSELAGE YAW POINTING MODE (S

.n this mode the con,-rol ,urfac(.s and the lant outiuts are tnt- saoe

as in Chapter 2 (Direct Side Force Mode), so the same plant equations apply,

except for the numbering (see 6.2).

6.1 Specifications

Part I 2x2 System

Ninety degrees roll (0) is commanded and the sideslip (8) is to be main-

tained as small as possible with +2* as extremes. Time to roll 900 is to be as

small as possible (0.75 sec if possible) with little or no overshoot. After

steady state has been achieved, a sinusoidal roll is commanded as in fig. 6.1-a

tentatively up to 13.5 ° amplitude and period bounds .5 to 2.5 sec (.8 w to

4 w rps). The roll output is to be within the tolerances given in fig. 6.1-b

where *c is the commanded roll, i.e. error < 15*. The two control inputs are

the ailerons and the rudder; the canard input is not used.

Part II 3x3 System

Repeat part I with sideslip step command added after steady state has

been achieved, as in fig. 6.1-c. The resulting side-force is to be less than

0.2 g and the canard is now used. The sideslip output is to be within the

tolerances given in fig. 6.1d.

6.1.1 Compatibility of Specifications with
Inherent Capabilities

The control input numbering is (1) 6 -ailerons, (2) 6 -rudder,

(3) 6c-Canards. The outputs are (1) 0-roll angle, (2) 8-sideslips,

(3) A -sideforce.
y

-. . .-. i;k&LL..LI7 Y .. .. * *..
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Part 1: For the roll step response, the transfer model T = [(SI. 2 +11 n

1.6 (s/- ) + 1] was used with dampinq factor = .8 to achieve small
n

ov~rshlcet; = in order to afn' - fal valu- :r-.i:. ft

and = 8 was tentatively tried as an uL-r round D .TIW. Consider the

n 11

resulting 5 due to sinusoidal commanded roll (o ). From 6 = p-iY• a ss'
-1

Y = (,,A )', P = [P..], = P I + P 8 + P A , and it is found that
y i~j a 11 12 13 y

at w = 12.5,13.5 ° commanded sinusoid amplitude, and the assigned tolerances

of 6.1, 6 a P II , with 10(j 12.5)1 = (13.50)IT 1(j 12.5) . This calculation

gives a range of 270 minimum (case 4) to 1900 maximum (case 2) for 6 , both
a

exceeding the ailerons limit value. A similar calculation of 5 gives aa

range of 364 deg/sec (Case 4) to 2500*/sec (Case 2), both far exceeding the

ailerons rate limit.

The inverse calculation can be made: at 13.50 amplitude command, given

m6 = 20, 56/sec, and w = 8 for the second order Tl(s)

model, it is found that rate saturation would occur at w = 3 (Case 3) and

position saturation at w = 9. For case 4, rate limit as low as w = 2, position

at w = 3. The conclusion is that w = 8 is beyond the system capability for

13.50 sinusoidal input. In the meantime we use w = 5,8 as the bounds onn

Tl(JW), but only for step input. Since the sinusoidal roll command input

generally is from another source, it is possible to use a separate prefilter

for the sinusoidal signals.

6.1.2 Specifications on T.

Those on T were given above. For T 1, roll due to sideslip step

command < 2° dominates, giving IT1 2 1 < 2/5 = 0.4. For T 22 (W response due to

6 command), the following transfer function models were found suitable.

...........................
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Upper bound b: 1((i) 2(.s) (1s 1}
22 5 1 3 80's 2 s s -

Lower bound a 2 2 : {(- ) s(1) (2.5 10 80

T = < 2"/90 '*,22 dominates Qiving b T = A = (0.c1
21 - 21i' T3.1

(32) (57.3)/5 gives b 32 = 55 ft/sec/deg. while T = Ay/(C= (.05)(32)(57.3)/13.5

gives b = 6.8 ft/sec/deg.

6.2 Design

The detailed design steps are the same as in the other modes, and there

is therefore no need to repeat them here. They are somewhat more complicated

because (a) the same compensations are wanted for both the 2x2 system and the 3x3

system, and (b) both step and sinusoidal inputs must be considered. Due to

the former, the most severe bounds on G1 and G2 (emanating from the 2x2 and

3x3 problems) must be used. As for the second, it has already been noted that

the sinusoidal response tolerances were not compatible with the system satura-

tion levels and the step response tolerances, so the approach was to design

the loops (Gi, i=-3) to satisfy the step response tolerances, and then find

separate prefilters for the sinusoidal comands such that saturation resulted

only for an extreme flight condition. The precise design details are not given,

because the design technique is the same as has already been greatly detailed
.7

in previous chapters, especially Chapter 2. However, the templates, bounds.7

etc and the compensation transfer functions are presented.

6.2.1 Design graphs

The frequency domain bounds on IT11 (jW)I, IT2 2 (jw)I are shown in Figs.

6.2a,b. Templates of (2x2) are shown in Fig. 6.3a, 11 (3x3) in Fig. 6.3b,

(3x3) in Fig. 6.3c, (3x3) in Fig. 6.3d. Nichols chart bounds on

and sketches of L. (jw) are shown in Fig. 6.4 a-c for i - 1 to 3 (case 9 is
n n

L J nominal) .

- ."
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6.2.2 Compensation functions

The compensation functions are:

*. gl = -0.5 (.8s+l)/(iu0,, -)

'<"+- - g~2 =  14 ,, ss t/ L , .5

g3 = 0.14 (150,1200,250)/(30) (1200,0.5) (500)

f 1 (step) = 1/(6,0.8) (1200,0.5) (500)

f (sinusoidal) = (4.34) (4.34)/(4.34,.707) (4.34,.707)(12.5)
1

f 2 (step) = 1.4/(5) (5) (13) (80)

f (sinusoid) = f, (sinusoid)
2

(A,B) indicates a complex pair [(s/tn ) + (2s/w n) + 1] with A = w n, B =;

(E) indicates a factor [(s/E)+l]. The first number is the value of the

transfer function at s = 0

6.2.3 Simulation Results

In Figs. 6.5-7, the system is 2x2 for the roll command c of 900 at

t=0. At t=l.8 sec. there is a sideslip 8c of 5*, and the system is 3x3.

The roll responses are shown in Fig. 6.5a, sideslip in 6.5b, sideforce in

6.5c. The results are very good, except that in 6.5a, the response time is

not the desired 0.75 sec. But this is because the system is physically

incapable of such fast response. This is seen in Fig. 6.6a, 6.7a where the

ailerons limit in rate in most cases and in amplitude in two extreme cases.

The rates are shown in Figs. 6.7a-c.

In Figs. 6.8-6.10, the system is 3x3-. A step roll command is given at

t-0 and a sinusoidal roll command with amplitude of 15* and frequency 12.5 rps

is given at t=1.8 sec. The three responses are shown in Figs. 6.8a-c. The

control surface time histories are shown in Figs. 6.9a-c and their rates in

6.10a-c. From Fig. 6.8a, 6.9a it is seen that the best possible response is

* . being achieved, because of the ailerons amplitude and rate limiting.
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Figs. 6.11-6.13 are similar to Figs. 6.8-10, i.e. the system is 3x3,

,. there is a step roll command of 900 at t=0 and a sinusoidal command at t=l.8,

of 150 amplitude. But now the frequency is the lower bound one of 4 rps,

with much better roll sinusoidal response as stri in Fig. . Lla (note that

saturations of a occur in the extreme cases - Figs. 6 12a, 6 !3a) The

a a

. actuator responses are shown in Figs. 6.12a-c. their ratez .i: Figs. 6.13a-c.

. Figs. 6.14-6.16 are- the responses in the 3x3 system d--ign due to a

2.5' sideslip command B at t=0, followed by a sideslip sinusoidal

command at t=l of 1.50 (see Fig. 6.1c) amplitude, frequency 15 rps;

6.14a-c: 0, 3, A ; 6.14d-f: ailerons, rudder, canard; 6.14g-i : rates of

y

these control surfaces. In the next group, Figs. 6.15a-i, the command

is again sideslip, step of 2.50 at t=O, sinusoid at t=l of 1.50 amplitude,

but now the frequency is 4 rps.

In all of the above the interactive specifications are excellently

satisfied. The responses to commands which do not satisfy the desired tolerances

are due to the physical inability to do so, i.e. the response specifications

are not reasonable in view of the ailerons amplitude and rate limits.
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Figure 6.1a,b Specifications 2x2 system.

Figure 6.1c,d Specifications 3x3 system.
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Figure 6.3d Q3 (3x3) templates.
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Figures 6.5a,b Roll and sideslip responses (0c 900 at t0O,

2x2, B .50 at t=1.8, 3x3).
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Figure 6.6b,c Rudder and canard responses (=90*, t=O; 5c=5' , t=1.8).
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Figure 6.7a,b Aileron and rudder rates (O =900, t=O; sc&50, t=1.8).
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CASES 1 -5
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110.0

Figure 6.8a 100.0-

C 90.0
sinusoid w = 12. 5 rps,
amplitude 150). - 80.0

~-70.0

(60.0z
-J50.0

40.0

30.0

20.0

10.0-

.00.4.1.1.2.2.2.3.3.4.4.4.

TIME(SEC)
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CASES 1-5

1.0

.6

-~ ~ .4

Li

z
< .0
(L

-J -. 2

-.4

-1.01*.0 .4 .8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.
TIM E(S EC)

CASES 1-5

.006

C..004

000

_'-.002

-. 00

o .008

0 1

-.. 0 .4 .8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8TIM E(S EC)

Figure 6.8b,c Sideslip a-nd lateral acceleration, 3x3 ($ -=90*, t=O;

t=1.8,. sinusoid w 12.5 rps, amplitude 15").
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25.0 I I I

20.0 -

15.0 -
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,.J 5.0 -

z .0
0

. -5.0

-10.0

-15.0

-20.0

i- -25.0'
. . .0 .4 .8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8

TIME(SEC)

CASES 1 - 5
35.0 1 1 1 1 1 1

28.0

21.0

14.0

". 7.0

.0K .0

• -7.0

-14.0()

-21.0-

-28.0

p.:. ~~~~-35.0
.0 .4 .8 1 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8

TIME(SEC)

I, Figure 6.9a,b Aileron and rudder responses, 3x3 (¢ =900 t=0; tl.8

sinusoid w = 12.5 rps, amplitude 150)
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CA S ES -5

10.03

8.0N 6.0

2.01

00

<-2.0

-4.0 -i

-6.0

-8.0

-10.0 1 1 1 1 I I
.0 .4 .8 1.2 1.6 2.0 2.4 2.81 3.2 3.6 4.0 4.4 .4.8

Iv! E (S EC)

Figure 6.9c Canard response 3x3 (O =90*, t=0; t=1.8, sinusoid w =1).5 rps,

amplitude 150)
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I- - .0
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CASES 1 - 5
100.0 I

80.0 --

Figure 6.10a,b Aileron and

rudder rates, 3x3 (Ocsg- 600

t=0; t=1.8, sinusoid

12.5 rps, amplitude 150 ) 4.

o, 20.0

0.0

0 .0

-20.0

0 -40.0

-60.0

-80.0

-100.0r

.0 .4 .8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8
TIME(SEC)
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16.0 Figure 6.10c Canard rate, 3x3
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sinusoid w = 12.5 rps,8.0- Ln amplitude 150)

U 4.0
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.0 .4 .8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8
TIM E(SEC)

CASES 1 -5

Figure 6.11a 110.0

Roll response 3x3 100.0
(0 =90-, t=0, t=l.8, 90.0

sinusoid w = 4 rps, ~ 8.
amplitude 150) 8.

S70.0
O60.0

z

S50.0"

40.0

30.0

20.0

10.0

.0
.0 .4 .8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8
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!1 1.0 I I t I

.8

.6

o .. 4

0

uii ,

z
-< .0

II

-1.0
r .- -. 2

w

-1.4

.0 .4 .8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 -.8
TIME(SEC)

.1 CASES 1 - 5
..- ' "~~0101
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.006

z .0040

< .002
0 0

.002

"J .000-. 002

"-.004

" .006 (_,c.

-.008

-. 010 I
.0 .4 .8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8

TIME(SEC)

Figure 6.llb,c Sideslip and lateral acceleration responses ( c=90, t=O;

t=l.8, sinusoid w = 4 rps, amplitude 150).
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TIM E(SEC)
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sinusoid w - 4 rps, 7.
amplitude 150).

Uj .0
.0

.. m~ -7.0-

-14.0 -)
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/, ~~~~~~-35.0 I I I I I I I I I I I
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10.0 F I I - - I

8.0
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Figure 6.12c Canard response 3x3
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* 2.0amplitude 150)
(.0
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Figure 6.13a
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c vwn 24.0-
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W= 4 rps, '~12.0

amplitude 150)

Ix,
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Figure 6.13b,c Rudder and
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t=O, t=1.8, sinusoid
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4.0

3.3
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-2.0-
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-- 4.0'I
0. 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8

TIM E(SEC)

Figure 6.14a Roll

Figure 6.14 a-i Responses due to slideslip command B 2.58 step at t-0,

sinusoid at t-1.0, amplitude 1.50, frequency 12.5 rps.
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Figure 6.14b Sideslip
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Figure 6.14c Acceleration
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Figure 6.14d Ailerons
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Figure 6.14e Rudder
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Figure 6 .14f Caniards
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Figure 6.14g Aileron rate.
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* . Figure 6.14h Rudder rate.
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Figure 6.14i Canard rate
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-J

0.
z
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0

~ 1.7
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-5 .0 1 I I I I I I I I I II
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A Figure 6.15a Roll

Figure 6.15a-i Responses due to sideslip command ;2.50 step at t=O,

sinusoid at t-1.0, amplitude 1.50, frequency 4 rps.
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,,i 3.0

2.5
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Figure 6.15b Sideslip.
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Figure 6.150
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Figure 6.15d

.. ..



262

CASESi -5
30.0

27.01

- 24.0

21.0

S18.0

S15.0

S12.0-

9.0

6.0

3.0-

0.
0. 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8

TIME(SEC)

Fiquxe 6.1sm,



263

CASES 1-5
24.0 I

21.0

* U 18.0

15.0
U,

Q12.0
Ln

9.0
* z

o 6.0

3.0

0.
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Figure 6.1Sf
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Figure 6.15g Aileron rate
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Figure 6.15h Rudder rate
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Figure 6.lSi Canard rats



"[ - ... , . - . - ' " -" . . . - ¥ - - i- . .- ' . ". • ,- -- - 3 . -. r - -..

Chapter 7

DISCUSSION AND CONCLUSIONS

The outstanding feature of the design procedure presented in Chapter 1,

is its conversion of the multiple input-output (MIO) design problem with

uncertainty, into a number of single input-output (SIO) single loop design

problems with uncertainty and disturbances. For a large problem class, it

is guaranteed that the designs which satisfy the SIO problems, are also

satisfactory for the original MIO problems. To use this method, it is very

helpful to assign apriori performance tolerances on the system, to be achieved

despite the parameter uncertainty. These can be tentative tolerances, changed

in the course of the design because of the transparency of the design technique,

which clearly reveals the trade-off between the severity of the tolerances and

the price paid in loop gain and bandwidth.

Heretofore this design procedure was successfully applied to academically

contrived prcu±ems [1-3,61. They all had very large parameter uncertainty,

and the most complex involved a 3x3 plant (2] with a range of plant instability,

and some nonminimum-phase elements. In its closed-loop performance specifica-

,- tions, some off-diagonal channels were specified to be "basically noninteracting",

while some others were to have significant interaction.

The aircraft problems treated in this report are the first practical real-

life ones to be handled (at least by the authors) by this new technique, which

revealed its flexibility in several ways. A high-irequency condition (Sec. 1.3.1)

existed for this technique, which while not absolutely necessary, was still

extremely useful to simplify the design. This high-frequency condition was not

satisfied in Chapter 2. A method was found for overcoming this obstacle and

which, in fact, significantly _improved the technique. This method was explained
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in Sec. 1.3.1 and thereafter used successfully in the design of each mode

(Chapters 2-4). It is a good example of the importance of application to

real problems, by the academic researcher. (See Appendix)

Also, "scheduling" is a well-known, long-standing very useful technique

in flight control f or economizing on the feedback loop bandwidths. Therefore,

the authors considered it important to see how it could be incorporated in a

simple manner, within the design technique. This was treated in Sec. 2.8 and

it was seen that the technique goes well with scheduling, because it reveals

the frequency ranges in which scheduling is most useful, and those in which

it is of lesser usefulness.

An area which deserves more theoretical treatment and practical experience

involves the use of nondiagonal compensation. This was considered and applied

to some extent in Sec. 2.9, but insufficiently. This topic definitely requires

more research.

There is considerable interest now in digital realization of compensation

networks. A digital compensator always contributes effectively a right half-

plane zero in its "ransfer function, with its accompanying phase lag, which

is not good in feedback design. TIhe larger the sampling rate, the smaller this

phase lag. The technique lends itself very easilv c~o finding the smallest

sampling rates commensurate with specific performance degradations, thus per-

mitting the designer to make intelligent trade-off s. The minimum sampling rate

needed for the feedback properties of the system (parameter uncertainty, dis-

turbance attenuation), need not be the same sampling rate needed for its filter

properties, i.e. the cono'and inputs m~ay not need to be sampled anywhere as

often as the feedback sensors. And some of the sensors may not need to be

sampled as often as some others. The feedback technique reveals this informa-

tion very readily.
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Finally, it is worth emphasizing that the authors for the most part

have hardly any experience in flight control design. They are specialists

in feedback theory. Yet the synthesis technique permitted them to zero in

relatively quickly and in a systematic manner, onto the vital design conflicts

and trade-offs. This is the purpose of a scientific theory - to enable a

non-specialist in the specific application to get to the heart of the

• . matter, without the need for a long apprenticeship. But it is important

for the theorists to relatively early apply their theory to realistic

problems. In this case we were confronted with a situation which wreaked

some havoc with our theory (see p. 13, and Appendix), which forced us to a

significant advance in the theory.

J\.

. . . . . .

. . . . . . . .
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4APPENDIX 1

IMPROVED DESIGN TECHNIQUE FOR UNCERTAIN
MULTIPLE INPUT-OUTPUT FEEDBACK SYSTEMS

Isaac Horowitz*

ABSTRACT

This paper presents a synthesis technique for linear time invariant

nm multiple input-output (mio) feedback systems with constrained "plant"

P, and output feedback. Due to uncertainty, P is known only to be a member
2

of a set P - {P}. It is required for all Pe P, the n system transfer

functions tuv be members of specified sets of acceptable outputs.

A uv; u, v - 1, ..., n. The problem is rigorously converted into a number

of single input-output (sio) uncertainty problems, whose solutions are

guaranteed to solve the original mio problem. The technique has several

advantages over a previous one, which also converted the mis system to

equivalent sio systems: (1) Fixed point theory is not needed to rigourously

justify the theory. The justification is very simple. (2) There is

significantly less overdesign inherent in the method. (3) If arbitrary

small sensitivity is desired over arbitrary large bandwidth, then the set P

must satisfy certain constraints as s . It is shown that these constraints

are inherent in all linear time invariant compensation techniques. In the

old technique, these constraints were always present, even in non-arbitrarily

small sensitivity specifications.

*Cohen Professor of Applied Mathematics, Weizmann Institute of Science,
Rehovot, IsraeI and Dept. of Electrical Engineering, University of Colorado,
Boulder.
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ABBREVIATIONS

Adj adjoint

* a.1. arbitrarily large

a.s. arbitrarily small

BW bandwidth

A lhp left half plane

iti linear time invariant

mio multiple input-output

SP minimum-phase

rhp right half-plane

sio single input-output

-4

.'4

a.

,
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IMRVED DESIG TECHNIQUE FOR UNCERTAIN
NULTIPLE INPUT-OUTUT FEEDBACK SYSTEMS

1. INTODUCTION

A number of synthesis techniques have recently appeared for linear

time invariant (iti) nim multiple input-output (mio) feedback systems

with significant plant uncertainty (Horowitz 1979, Cruz et al, 1981,

Doyle and Stein 1981, Postlethwaite at al 1981, Lehtomaki et al 1981,

Safanov et al 1981, Davison and Ferguson 1981, Zames and Bensoussan 1982).

Most of these are based on the singular value approach, and do not readily

2
permit detailed control over the individual n closed-loop responses, nor

trade-off between the loop bandwidths. The method of (Horowitz 1979) does

permit' such detailed control. It is also quite transparent in revealing the

price paid for the benefits of feedback, in terms of the various loop

transmission bandwidths, and permitting trade-off between them. It has

been applied successfully to a number of highly uncertain mio problems

(Horowitz and Sidi 1980, Horowitz and Loecher 1981), including the YFI6CCV
'V

3x3 flight control system (Horowitz et al 1981).

The method is based on fixed point theory and replaces the uncertain

xun mio system by a number of single input-output (sio) uncertain systems,

whose solutions are guaranteed to solve the original mio problem. However,

there is some oerdesign inherent in the method. This paper presents

several refinements of the method, with reduced overdesign, and retaining

the sio equival nce approach. One of these does not require fixed point

theory for its derivation, only simple matrix manipulation. Also,

constraints on the mio plant are derived which permit this design method

to achieve arbitrarily small (a.s.) sensitivity over arbitrarily large

(a.l.) bandwidth. It is shown that these constraints are inherent in every

lti design technique.

.6
* .,. .
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2. THE 2x2 SYSTEM

The general nxn system is defined in Fig. 1, with the matrices:

plant P - [pij], compensations G - [gi] diagonal ,F all nxn matrices of

transfer functions. Preliminary quasi-diagonalization of the plant may

be desirable, which is here absorbed in P. This is discussed in Sec. 6.

Hence diagonal G does not necessarily mean diagonal compensation inside

the loop in Fig. 1. Due to uncertainty, P c P a defined set. Tolerances

of the form
a,

auv(w) < ItUV (jW)j 1_ buv (), V P C P (la)

have been assigned on the magnitudes of the elements of the closed loop
system transfer function matrix T - [t v(jw)]. Such tolerances suffice

for minimm-phase (mp) elements (Horowitz 1979) and determine sets of

acceptable tu(vj) denoted by

A uv jw) - {Auv (jw)) - set of acceptable tUV (JN). (lb)

Often one wants some or all nondiagonal elements of T to be small V P e P

For such elements, denoted as "basically noninteracting", auv - 0, and

their fuv are also made zero (Horowitz and Sidi 1980).

In the new technique, the design equations (for the 2x2 mio system)

for t 1 1 , t 12 (or alternatively t 2 1 , t 2 2 ) are identical to Eqn (4a,b) in

(Horowitz 1979). They are derived from the matrix equation T - (I + PG) - PGF
of Fig. 1, by manipulating it into (P-1 + G) T - GF, letting P-1 = [P -

19 [I/ij I- Vd + Vn with Vd, Vn the diagonal and nondiagonal parts (the

diagoral elements of V are zero and vice-versa for Vd), giving T - (Vd + G) -I

F(G - VnT) which is used to define (potential) fixed-point mappings.

-J

. * *.!* * * . .. .
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S1 + Qu U Ud . Puitiv (2ab)
iou (4a,b Horowitz 1979)

So the design equations used here for ti are:

fIi 1  L1 ,1 1  (3a-d)

d - t2 1i A of (lb) ; P- (P I - 1/QI
li 2 ' t 21 i 21 " ij

The objective is to choose f1 1 (s), f1 2 (s), g1 (s) such that the (s)

have no right half-plane (rhp) poles, and satisfy the tolerances (1) on

It liW) Ij, P P and t 21 c A 2 1 appearing in d1i. These are

precisely the sio design problems of Fig. 2a.

When tli is substituted for in (3a), the resulting equations are

exact. Hence, if indeed eli A for all t21 (of d2i') e A2i P P

then the design objectives for ti have been achieved by the fll f 1 2 ' g1

but only if actually t 21 e A2 1 . A systematic design procedure for choosing

fll' f 12' g1 for the above purpose, has been detailed with examples in

(Horowitz and Sidi 1980, Horowitz and Loecher 1981). A 2x2 nonlinear

uncertain plant example is given in (Horowitz and Breiner 1981).

The final step, in the 2x2 system, is to choose f2 1' f 2 2 ' g2 to

ensure that the t 2vs) have no rhp poles and that t2v e A 2v P C P.

"9., In (Horowitz 1979) the design equations are again (2a,b) with u - 2 and

the d2v containing t . Instead, here, there are used equations independent

of the tlv, by simply finding t from T - (I + PG)- PGF:

f2iL2e g d2 1  
g2Q2 2 (1 + LI) g2f22 (1+LI)

2i 1 + L L 2 e y 2922e " 1 - y12 + L1  1 + glpll

Y a ,11 P (4a-e)TiJ piipj i

d a qfliP21 11- '121 E
% 1Y-2 +

-%2± 2
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with the sio structures of Fig. 2b. This design is done after Fig. 2a has

been completed by means of (3a-d), so that L 1 . fll f12 are known. It is

then necessary to find g2, f21. f 2 2 so that in Fig. 2b the outputs

t21, t22 are stable and satisfy the tolerances (1) on It211, 1t221

respectively, which are single-loop problems similar to Fig. 2a, except that

only the uncertainty P e P need be considered, as the d2i in (4a-e) are not

functions of the elements of Am,, which they are in (3a-d). At each

step,design execut;n is that of single input-output (sio) single loop

systems--which is what makes this design procedure so tractable.

Summarizing, the theoretical justification of the above design procedure

is as follows: The design specifications (1) are satisfied for t2v of

Fig. 2b, by proper choice of the f2v' g2 for the given flv' gl" So the

4 design is satisfactory for t 2 1 , t22 because (4a,b) are exactly the expressions

for t2 1, t 2 2 ' (even if the specs. for t1 2, t 1 1 are not satisfied). Now

Figs. 2a have been designed (via Eqs. 3a-d), so that *I102 are stable

and satisfy the specs. on t11, t 1 2 V P e P , if the t2i appearing in dl,

are in A21 (which they are). And the equations for ll' *12 correspond

precisely to those for till t12' Thus, no fixed point theory is needed

to rigorously justify this design procedure, although the idea and approach

were motivated by the fixed point method in (Horowitz 1979). There, the

design equations for t21' t22 are of the same form as Eqs. (3a-d) with the

d 21 functions of tli, so fixed point theory is required to justify the

method.

i



276

2.1 Reduced Overdesign

Figs. 2a are the same as in (Horowitz 1979) in which t 2 1 , t 2 2 appear

in the disturbance dll d 12 There is inherent overdesign in Fig. 2a,

because in reality there is correlation between the t 2 1 , t 2 2 and the

Quv of P-1 . This correlation is not being exploited. The uncertainties

in t2 1  A2 1 , t2 2  A2 2 are assumed independent of P e P in Figs. 2a

(see Horowitz and Loecher 1981 for discussion how to reduce this overdesign.)

But such overdesign does not exist in Fig. 2b because d2 1 , d2 2 are not

functions of the elements of any A . In (Horowitz 1979) the design for

t 2 1 , t 2 2 involved overdesign precisely as in Figs. 2a. The above procedure

can, of course, be reversed with *21' *22 using Eqs. (2a,b) with u = 2,

and till, t 12 using Eqs. (4a-e) by exchanging numbers 1,2.

3. 3x3 EESIGN EQUATIONS

V Nine design equations may be defined in a manner similar to (3,4) of

Sec. 2. Let iv, v - 1-3, be the same as in (Horowitz 1979, Eqs. 4a,b which

are Eqs. (2a,b) here):

lv-f 1 vl + *d~Ql L =inq1 Qll , div i~Pltv (a-c)

giving sio problems. L1 and the three fiv are chosen so that *LV are stable

and satisfy the tolerances (1) for all tiv e A appearing in div and

all P e P - see (Horowitz and Loecher 1981) for procedure and detailed

design example. The equations for 2vaie obtained from Eq. 2 setting

u - 2 in which t Lv and t3v appear, but the tlv are here replaced by the *lv
of (5), giving for v - 1-3, in the notation of Eqs. (3,4):

-- .P P
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f2vL2e + d2v

42v " 1 + L2e (6a-c)

g2Q22

L2e Y
S- 12

1+ IL

d L 2e {t P21P 13 f fiv L P 21
2 g2 3v P (1+L) P23 1 + L

again sio problems. L and the f are known from the designs of (5).

Here, the f2v and L2e are chosen so that *2v are stable for all t3v e A3v

appearing in d2v and, of course, for all P e P. Although the forms for

dv and L2e in (6) are different from those in (5), (5a,6a) are otherwise

identical in form, so the design techniques for both are basically the

same, as detailed in (Horowitz and Loecher 1981).

Finally, sio design equations for t3v are gotten by finding t 3v from

T- (I + PG)-PG, or from Eq. (2) for u 3 and eliminating tli, t2i

, by means of Eqs. (5,6):

f3iL3e + d3i L3 CUi 1 + L L3e " ' L 3  Q3393L3e

- (I+L1 ) (+L2) - 12

A 23 (1+L + y 1 3 (1+L 2 ) - (Y1 2 12 + Y13 P3) (7a-j)

P23P31 P32P212 V F- ' 113"
2 P21P33 P31P22

d f li 1 33 n1 + f21L 2Q 33n2:, ~d3 i -A

- Q2 2 P2 1 P3 2 - P3 1 (l + L2)

n2 QIIPI2 P31  P32 (I + L1)

. - .. - . . . . - .. . .. ..
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Since LI, L2 fl',, f 2v are known, the only unknowns in the above

are the f and g Eqs. (7a-j) constitute single-loop uncertinty problems,

for which the technique and examples of the references (Horowitz, etc.)

apply, i.e. they are chosen so that the t31 are stable and satisfy the

tolerances in (1). Note, again, that at each step, design execution is that

of sio single-loop systems.

The justification of the above design approach is the same as of the

2x2 case: Suppose the nine fuv and three g in (7a-j) are such that the

t31 are stable and their tolerances are satisfied, which is so by definitic

here. Now the design based on (6a-c) guarantees that the t2i tolerances

are satisfied, providing the t31 appearing in d2 i are e A - which

is the case here. Hence, the t2i tolerances are also satisfied. Finally,

the design based on (Sa-c) guarantees that the tli tolerances are satisfied,

providing that the t21 , t31, appearing in dlv are e A21, A3, respectively,

which has been established. In the above, there is some overdesign in

(Sa-c) because the tiv e Aiv, (i - 2,3), (v - 1,2,3) appear as disturbances

uncorrelated to the plant uncertainty. In (6a-d) there is less overdesign

because only the t3v so appear, while there is no such overdesign in

(7a-j). Of course, the order can be changed and equations of the form

(Sa-c) used for the second or third channel, etc.

4. umm SYSTEM, n>3

The procedure for generating the design equations for nxn mio systems

with n > 3, should be clear from the above. One uses for any channel (say

the first) design equations in which all the tiv i ' 1) appear as

disturbances. Denote these as Eqs. A. These equations can be derived

or obtained from (Horowitz 1979, Eqs. (4a,b) with u - 1). For the next

,4 ' ., :. v , ... , .... :,. .......... . . .:. .. , .:.-- ,:. .... . ; . . . . . :. . .
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chosen channel (say the second), one starts with Eqs. (4a,b) of (Horowitz 1979)

with u - 2, but eliminates all the t by means of Eqs. A above. Denote the

resulting design equations as Eqs. B. For the next chosen channel (say the

third), start again with Eqs. (4a,b) u - 3, but eliminate all the tlv, t2v

by means of Eqs. A, B above. The process continues until the end, and the

theoretical justification is the same as given above for n = 2,3.

Mixtures of the technique in (Horowitz 1979) and the one described above,

may also be used. For example, for the 3x3 system, Eq. 2 may be used for both

channels 1,2 and (7a-j) for channel 3. The theoretical justification is

now as follows: Design for channel 3 is correct by definition, but fixed

point theory, precisely as in (Horowitz 1979) is used to justify the designs

for channels (1,2): The two sets of design equations for tlv, t2v are

taken as the mappings on the acceptable sets A and the third set ofuv

mappings is simply hv - a3v e A3v" The nine fuv, three gu have been

chosen so that these mappings map A into themselves, etc., so a fixed point

exists, etc., as in (Horowitz 1979). For larger n, it is clear that a

larger variety of mixtures is possible, giving the designer useful flexibility.

However, he must understand the sio design theory used in the design

execution, which reveals the cost of feedback and the available tradeoffs

among the loops, in order to be able to exploit this flexibility to its

fullest extent. A detailed 3x3 example based on fixed point theory is given

in (Horowitz and Loecher 1981).
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5. CONDITIONS FOR EXISTENCE OF A SOLUTION

This section considers the conditions required for the applicability

of the above design technique. Also, it considers the inherent, irreducible

conditions applicable for iti compensations in general, and compares the

two sets of conditions. This is done for "arbitrarily small (a.s.) sensitivity"

defined as achievement of a.s. sensitivity of the t over arbitrarily largeuv

(a.l.) bandwidth. Such "a.s. sensitivity" also achieves a.l. attenuation

over a.l. bandwidth, of external disturbances acting on the plant. This

problem has also been studied in an abstract setting by (Zames and Bensoussan

1982).

In Fig. 2a, it is required that 11 e Aill' 12 e A1 2, for all
PLP, t2 1 e A21' and t22 A 22. In the general n case, the disturbance

component in, for example, 11 is

T d1 Q1 1  (Adj P)i/(Adj P)1 1
11 +glQ 4 1 + g  det P

~(Adj P)

Right half-plane (Rhp) poles of (Adj P11i are normally cancelled by similar

poles in det P, since (idj P) is a term in expansion of det P. Rhpi"i
zeros of (Adj P) 1 are, of course, normally cancelled by similar ones in

the denominator. There may be exceptional cases when in det P, for example,

a rhp pole of (Adj P) li is cancelled by an identical zero of pli and

does not appear in the other terms of det P. Such cases are excluded.
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5.1 Conditions for "a.s. sensitivity" in a.Lngle-loop design

In Eqs. (3), it is seen that a.s. tolerances over a.l. bandwidth

(i.e. "a.s. sensitivity") for t11 , t1 2 are achievable if L W -1 Q  can be

made a.l. over a.l. bandwidth. Indeed this is at least theoretically

possible, if Q satisfies certain constraints. These have been detailed in

(Horowitz 1979, Appendix 1), so are only qualitatively described here by means

of Fig. 3.

Fig. 3 is the extended logarithmic complex plane (Nichols chart).

Since P ranges over P, the set {L1 = glQll(Jw)} is not a single complex

number (at any fixed w) in the Nichols chart but a region, denoted as

Tp (L(jw)), the template of LI, which is the same as Tp (Q11 (jw) but

translated horizontally by 20 log Ig (jw)l db and vertically by Arg

1g(jw) degrees, because - glQll. In a design with significant plant
0

uncertainty Tp (L1 (jw)) must lie relatively high up, above the zero db line

as shown in Fig. 3 for wl" This is so over the important w range of tll,

t12 (their bandwidths generally), in order to achieve the desired sensitivity

reduction. Such large values for Tp(L 1 (jw)) can be maintained theoretically

for any finite w range, if Q11 is m.p. For those w for which Tp (LI(JW)

is so located, the uncertainty in the magnitude and phase of Q11 (JW)

(i.e. the area of Tp (Q1 1 (jw)), can be arbitrarily large. (Note, however,

that in order to maintain Tp (L (Jw)) above the zero db line, any zeros of

QII(jw) on the jw axis must be known and finite in number in order for

9 (s) to be assigned poles there. (Obviously, transcendental compensation

can be used for special countable cases.) If the range of such jw axis

zeros is uncertain, then the specifications(1) must be modified to permit

such zeros of tli.
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Sooner or later LI(jw) must decrease and 0 as w * *. Stability

over the range of Prequires that Tp (I1 (jw)) move downward in between the

vertical lines VI , V2 without the points . . . 010102,.. lying in any

Tp (l(jw)). This appears to allow (360-20) degrees phase width form

Tp Q11 (jw), with 8m phase margin. However /LI(jw) must be negative on the

average, in order for ILI(JW)I to decrease. So in practice only (180- 0
1 m

phase width is tolerable in this range. As w increases and the Tp (LI(JW))

descend lower on the chart below the zero db line, clearly their width may

increase again, but it is essential that the points ...01,0 2,... never be a

part of any Tp (L (jw)). Unstable Q are included in the above discussion

and don't require separate treatment. It follows from the above that the

manageable uncertainties depend on the assigned tuv tolerances, but two

important constraints are stated here for the case of "a.s. sensitivity."

(5.la) Q det P/dj. P) must be mp.
~11

(5.1b) Suppose for all w > wh, the width of Tp (Qll(jw)) exceeds

18-e) , em a desired phase margin, then it is impossible to achieve a.s.*180 m em
tolerances for w > wh" This prevents "a.s. sensitivity" if Qu ku(s+z.V

* .'- ir (s+P.), with the k uncertainty including a sign change which is independent

of the signs of the z i , pJ. Also excluded is a factor (l+Ts) in the numerator

or denominator of Quu' with the uncertainty in I including a sign change which

is independent of other parameters.

5.2 Application of 5.1 to New Design Technique
%%

The above constraints therefore apply to the Quu det P/(Adj P)uu

I %- of the first channel u, used in the new design technique of Secs. 2, 3. So

..............................



k ; I~~~~~. . .. ;. ....-.... ... , .. :...... ... ,........... "

283

from (5.1a), Quu must be m.p. VP P (rhp poles are tolerable), for "a.s.

sensitivity" design. Suppose P -[p U] has each puv - kVse as s

For n- 2

V Q "lIP22 - PlZ21 k 11k22 - k12k21"u pkse ,(8)

, Pw k se

Let K - kuv] , so (5.1b) states that there may be no change in the sign of

det K/km, as P ranges over P. In this paper it is assumed that allk U > 0

for all P e P, so (5.1b) givesk k > k k • P c P, or vice versa. To
P11 22 12 21.

remove the ambiguity it is also assumed that the plant terminals are numbered

so that for at least one P e P, k 11 k22 > k12k21, so (5.1b) gives the constraint

11 kl22 k12k21

This is a diagonal dominance condition as s *m. (Zame$ and Bensoussan)

have defined a diagonal dominance condition as s . m, in more abstract form.

The above applies to the first cbannel, say no. 1, for which (3) is

used. Eqs. (4) are used for the second channel. The mp condition of

(5.la) therefore applies to Q2 2 (+L 1 ), most of which is not new because

up (i+L), det P are already required. As for (5.1b), there are two extremes.

"A.s. seniitivity" can be achieved by L1 bandwidth >> that of L2 (denoted

by BW(L1 ) >> BW(L2 ) ), and then (4b) implies (5.1b) applies to Q22 " It can

also be achieved by the opposite strong inequality, and then (5.Ib) applies

to p For the condition assumed with Eqs. 8,9) of no sign changes in the

kI u, the results are the same. It may also be so in the general case but

this would require consideration of simultaneous sign changes among the k,

which is not done here.
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n-3. Application of (5.1) to the first channel makes it applicable to

Qll* Application to the second (eqs. 6) gives the same results as to the

second in n-2 above, because L2e has the same form in both (compare 4b, 6b).

If "a.s. sensitivity" is achieved (as it may be) by BW(L 1 ) >> BW(L 2 ) >> BWIL 31 ,

the result is that (5.1) apply to Q11 , Q2 2 ' Q 33 " If the opposite is done,

in the notation of (3.7), they apply to Qll Q22

12

4 Q3 3(l -Y12)

1 - (Y12 + Y23 + Y1 3 ) + (Y12 "2 + Y1 3 " 3 )

It has not been ascertained whether these two sets of contstraints are

identical. However Sec. 5.3 shows that (5.1) must always apply to each Quu*

'u - 1 to n. Constraints for n > 3 may be similarly developed.

S- 5.3 Inherent Constraints

It is important to determine whether the above constraints are due to

the specific design technique, or are inherent in the problem itself. For

this purpose examine (4a) for t 2 2 . How can "a.s. sensitivity" of t 2 be

achieved despite large uncertainty in P? Clearly by large L2e the usual

feedback method. Large L12e is achieved by large g 2 Q2 2 ' because large L 1

(needed likewise for small t1 1 sensitivity) gives L2e L g2Q 22 - L2 *

The latter also attenuates d 2 2 , which may not be small because of g1 in its

numerator. This same principle applies to all tuv, and is basically the

same as that derived from examination of (3), i.e. there is need for a.l.

2 ., L1 over a.l. bandwidth in order to achieve "a.s. sensitivity." But

do the constraints of Sec. 5.1, in particular (5. la,b) apply to Q22 and Q11 ?

,1
4'4

.4 ' " . . . ... - , .. - . . : .. - . .. . . . . : . " . . " . - .. ' -" - .
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This is indeed so, and proven by (3a) and its analog for t21 (by

interchanging 1,2), by simply asking whether stable t 1 is possible if 1 + L1

has rhp zeros? For if not, and since a.l. L1 over a.l. bandwidth is needed,

it follows that L1 (and L2 ) must satisfy constraints (5.1). Suppose (1 + Ll)

has rhp zeros. These are rhp poles of t 1 1 , unless in (3a for i - 1) the

numerator of t l has these same zeros. Suppose it has them, and there is a

small change in f 21 Since F is outside the feedback loops, system stability

is unaffected. The zeros of 1 + g1Q11 in (3a) are thereby unaffected, so

neither should the zeros of the numerator of (3a for i - 1). The term fllglQll

is unaffected, but t21 is affected--see (4) with i - 1. Hence, the hypothesis

(1 + L1 ) has rhp zeros is untenable, so (5.1) applies to Q (and Q

Comparing these results with Sec. 5.2, the conclusion is that "a.s.

sensitivity" may be achieved by the new design technique, with plant constraints

which are inherent and irreducible, i.e. not more severe than inherently

necessary. This is achieved by letting BW(L 1 ) >> BW(L2 ) >> BW(L 3 ), wherein

the only constraints are (5.1) applicable to Q11, Q2 2 ' Q33 ' which have been

shown to be inherent. This is associated with the following design order:

first L1 (Eqs. 5), second L2 (6), third L3 (7). The design procedure is

facilitated by such inequalities, because then in (6b), L2e * L2 - g2Q22

over its important design range, and L3e . L3 ' g3 Q33 ' If other factors are

equal (Tp (Quu), tolerances on tui, i - 1-3 for each u), there is a natural

4tendency for this order of the inequalities because of the inherent greater

overdesign of LI, lesser of L and least of L (recall Secs. 2.1, and
.2

last paragraph in Sec. 3.).
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However, the above is rather of theoretical, academic interest. because

it applies only for *a.s. sensitivity," defined at the beginning of Sec. 5.

Thus it applies if one is given a plant with specific uncertainty range and

is challenged to achieve a.s. performance tolerances over a.1. bandwidths.

However, given a mio plant set P and sets of tolerances Auv (uv - n), it is

conceivable that the latter are not achievable by the new technique, but are

inherently achievable. The reason (e.g. for n - 2) is that in Eq. (2), the

demand on L1 to achieve the desired sensitivity reduction, may be greater than

is inherently needed, because of the overdesign, discussed in Sec. 2.1, and is

therefore unachievable, because of the nature of P, say it has some non-up

elements. Thus, a specific problem may be incompatible with (5.1) only due

to this overdesiqn. There may exist as yet undiscovered better methods with

reduced demand on L1, which renders them compatible with (5.1). From Sec. 2.1,

it is clear that the best method will be achieved with Eqs. (3) by maximum

use of the correlation which exists between the P uncertainty and the t21 e A2i

in (3a-d). A suggestion for this purpose has been given in (Horowitz and

Loecher 1981). One subdivides the plant set into subsets Pi which are

correlated with subsets Auvi of A uv. Eqs. (3) (similarly 5,6) are now applied

to these pairs P i A uv separately for each i. This approach has not as yet

been attempted in any numerical problem.

It is worth noting that constraints of the diagonal dominance type as

s *a, appear in the design technique of (Horowitz 1979). However, they are

always present there, even if "a.s. sensitivity" is not attempted. In the

new technique they are in effect only for "a.s. sensitivity." Hence, it is

. possible that a specific synthesis problem with given Auv, P sets may not be

solvable by the older method, but is solvable by the new method. This was the

%; case in (Horowitz et al 1981).
4.A

.4
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6. GOHDIAGOHAL G

The constraints on P in Sec. 5 were deduced on the assumption G is diagonal.

Are these constraints eased if nondiagonal G is used? To answer this question,

let H be a fixed lti pre-compensator matrix inserted ahead of the plant and let

V- PH be the new effective plant in the set V - {PH, P e P}. The design

techniques with diagonal G, are now applied to set V instead of set P. If

H is helpful in overcoming some constraint, then it is necessary that the

constraint violated by P, is not violatea by V. The constraint det P is up.

VP P is not eased at all, because det V - (det P) (det H), and obviously

cancellation of rhp zeros of det P by det H cannot be done for many reasons.

The other important constraint involving diagonal dominance as s - -, is also

not eased, because it applies to the sign of det V not changing, as s - - .

Thus the constraints on P for "a.s. sensitivity" are not eased by nondiagonal

G.

However, H may be very helpful in reducing the amount of feedback needed

to achieve specified tolerance sets (1), for a given plant set P, so that a

design unachievable by diagonal G (say, because of non-up P or sensor noise

problems) may be achievable via H. For example in Eq. (4a), L2e must handle

the uncertainties due to L29 itself and attenuate the effective distubance

set {2}. For basically noninteracting tolerances on tuv (uv), f is made

zero, so only the latter need exist. It may be possible to considerably

reduce Id2 im by means of H, by making V - PH quasidiagonal, even though

P has large nondiagonal components.

Off diagonal plant elements appear in all the design equations (2-7) in

the 'disturbance' components, so their reduction via H is desirable. How is

this systematically done in the case of significant P uncertainty? For n 2,

. .. A....... .................... .
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let the normalized H have 1 for its diagonal elements and h 1 2 - , 21 v.

Then v12 - UPl1 + P1 2' v2 1 w P 2 1 + 'P 2 2 " The objective is to minimize over P
axlvul, 1v21l at each i. Sketches of the sets {!_l2 0 ,, {2 001

Pl 1  P 2 1
in the complex plane, are clearly very helpful in choosing u(jw), v(jw).

However, one should check the effect on the resulting sets of v1 1  pl 1 + Vp1 2'

v22 ' OP21 + P2 2 ' because of the obligations on the loop transmissions due

to their uncertainties. The final choice depends on the relative importance

of the two terms in the numerators of *li,#2i in (3,4). (See Horowitz and

Loecher 1981 Secs. 3.2,4 for discussion relevant to this topic).

If the elements of P have a rhp pole in common, i.e. P - P1/lS-p),

then one should not try to diagonalize P by means of PH = A diagonal, because

in practice H - P-1 A with P-1 0P -1 exactly, giving PH - P P-1 Awith rhp
a a a

dipoles. Instead, one tries to diagonalize P1 by means of P1H - A , giving

H aP A, and PH - P1P A/(s - p).la 1lla

7. CONCLUSIONS

This paper has presented new synthesis techniques for highly uncertain

nxn mio lti feedback systems with output feedback, with the following

features:

(a) There is detailed control over the n2 individual system transfer

functions.

(b) The mio uncertainty problem is rigorously converted into a number

of sio uncertainty problems. Solutions of the latter are

guaranteed to be satisfactory for the former. Relatively

simple sio. single loop feedback techniques can be used to solve

the sio problems.

ci,0K
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(c) For "arbitrary small sensitivity" over arbitrary large bandwidth,

the technique in Secs. 2, 3 give constraints on the plant which

are inherent and irreducible, i.e. every iti compensation

technique has .these constraints.
U

(d) Part of the constraints (at infinite s) in (c) were always

present in the previously developed sio equivalence techniques

of (Horowitz 1979), i.e. even if "a.s. sensitivity" was not

required. They are present in the new techniques only for a.s.

sensitivity. Also, fixed point theory is not required for

justification of the new technique.

(e) The overdesign inherent in the fixed point techniques of

(Horowitz 1979), has been reduced but some overdesign is still

present.

4

-4

% zr.:9.K.i.*-. .. . -. *...
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Fig. 1 General nzn system

Fig. 2. Sio structure for t U Fi. 2b. Sio structure for t21

(1- 1,2), Eq. 3a. (i- 1,2), Eq. 4a.
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Fig. 3. Tesplates of L (JW) on logorithmic complex plane (Nichols chart)
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