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Satellite Communication Temporal Statistics
Space Based Radar Rayleigh Fading
Signal Scintillation

Analytic and simulation results are presc-nted which describe the
statistics of the duration and separation of scintiglation which results
when radio frequency signals propagate through randomly ionized media.
This work is applicable to the problems of satellite cowmmunication and
space based radar observation through disturbed ionospheric channels that
result from high altitude chemical release or nuclear detonation. In
these environments, a radio frequency signal that traverses the disturbed
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ionosphere a sinqle time has Rayleiqh amplitude statistics and power
spectral densities that range from f- 3 in the slow fadinq limit to
Gaussian in the fast fadinq limit.

The amplitude statistics of the received signal are extended to mono-
static and bistatic propagation through the disturbed ionosphere. The
bistatic qeometry is applicable to either a bistatic radar or to a two-way
communication link Vrat utilizes a linear transponder. The statistics of
the amplitude used for demodulation in dual channel communication links
are presented for systems that use spatial, frequency, or other diversity
techniques. The distributions of the received amplitude are used to
calculate bit error rates for two-way or dual charnel communication links
and for various PSK and FSK demodulation techniques. These results are
compared with bit error rates in single channel or one-way communication
links and with bit error rates in communica'.n links through the ambient
ionosphere.

Analytic expressions are obtained for the mean number of level cross-
ings and the mean duration and separation of scintillation above or below
arbitrary power levels in the one-way, monostatic, and bistatic propaga-
tion geometries. These mran quantities are plotted for a Gaussian power
spectral density or, equivalently, for a fast fading environment. The
meen duration, separation, and number of level crossings for arbitrary
fVu power spectral dersities can be obtained from the Gaussian values by
scaling factors which are calculated for u in the range 3 to 10.

The distributions of the number of level crossings and the duration
and separation of fast fading scintillation are obtained using Monte Carlo
techniques for the one-way, monostatic, and bistatic propagation geome-
tries and for dual channel communication links. The simulation results
are presented in tabular form dnd are compared with analytic results where
possible. Histograms of the duration and separation of scintillationr for
the one-way propagation geometry are also presented. Qualitative compari-
sons are made of the effects of Rayleigh fading conditions on ore-way
versus two-way and single channel versus dual channel communication links
or monostatic versus bistatic radar systems.
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SECTION 1

INTRODUCTION

The performance of a space based communication or radar system

operatinq in a nuclear environment is degraded by the re.sultinq random

amplitude atid phase fluctuations of the received radio frequency signal.

In qeneral, the random amplitude fluctuations produce an instantaneous

sianal power that is less than the averaqe power, while occasionally, the

instantaneous sional power will he larqer than the averaqe power. The

first situation is referred to in this report as a fade and the latter as

a flare. Because the propagation disturbances are correlated Ii, time,

these fades or flares have a finite mean duration and mean separation.

More qenerally, fades below an arbitrary level or flares above that level

have varying probability of occurence, mean durdtion, and mean separation

as the level is changed re!ative to the mean received power. It is the

purpose of this report to describe the statistics of the duration and

separation of fades and flares for several cases of importance to space

based communication and radar systems. This work was performed in

response to requests from contractor and SPO personnel involved in the DSP

and IONDS programs.

Three propagation geometries are considered and are denoted one-

way, monostatic, and histatic throuqhout this discussion. The one-way

case corresponds to a one-way communication link and the monostatic case

corresponds to a monostatic space based radar. The bistatic case corre-

sponds to either a bistatic space based radar or to P two-way communica-

tion link. The bistatic case reduces to the one-way case in the event

9
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that only one of the propagation paths is through a Rayleigh fadii-q chan-

nel while the other path is through an undisturbed channel. However, it

is expected that this situation has a low probability of occurance and it

is mentioned here for completeness only. Dual channel communication

systems which combine the received siqnal from two independent one-way

communication channels before demodulation are also discussed in this

report. In practice the independent channels can be achieved by the use

of spatial diversity (e.q., separated receiver antennas or transmitter

locations) or other diversity techniques such as multiple transmitter

frequencies. Two different algorithms for comnbining the siqnals into the

amplitude used for demodulation have been considered. The summation algo-

rithm adds the siqnal amplitudes from the two chanrnels while the maximum

algorithm selects the larger of the two amplitudes.

The first and second order statistics 9 f the received signal for

the monostatic and bistatic propagation cases are described in the second

section assuming Rayleigh amplitude statistics and Gaussian temporal auto-

correlation functions or equivalently Gaussian p~wer spectral densities

(PSD) for the received one-way voltaqe. The distribution of the amplitude

used for demodulation is also calculated in this section for the two dual

channel communication link algorithms and is compared with a sinqle chan-

nel or one-way communication link. As an application of the first order

statistics results, binary error probabilities are calculated in the third

section for two-way and dual channel communication links under slow

Rayleiqh fadinq conditions and for various frequency-shift keying and

phase-shift keyinq demodulation techniques.

The mean number of level crossings per unit time for Rayleiqh

fadinq with an arbitrary PSD is rilculated next in closed form for the

three propagation cases. The mean duration and separation of fades and

flares is obtained from the mean number of level crossings. These anal-

ytic results provide a qualitative comparison of the effects of Rayleiqh

10

/

S. /t'



fadinq conditions on one-way versus two-way communication links or mono-

static versus bistatic radar systems. The mean number of level crossings

and the rrean duration and separation of fades and flares are plotted for a

Gaussian PSD. These numerical results can be scaled to obtain the mean

Quantities for an arbitrary f-P PSD using scaling factors which are

calculated in Appendix A.

The problem of calculating the probability density functions of

the duration and separation of fade,; or Ilares cannot be solved in closed

forr, for even the simplest propagation geometry. Thus Section 5 briefly

outlines the method of aenerating random sequences of voltages with the

desired first and second order statistics. The distributions of the dura-

tion and separation of fades and flares for a Gaussian PSP are then

obtained in numerical form, from the random data. These simulation results

are tabulated In Section 6 and are compared with the analytic mean quanti-

ties. The one-way results are compared in Appendix C with mean fade

duration and separation data from several multiple phase screen (MPS)

realizations. HistoQrams and cumulative distributions of fade and flare

separation and duration are presented in Appendix D for the one-way propa-

nation case.

The major conclusions of this study are summarized in the final

section. They are:

1) To achieve a demodulator bit error rate of 10-3 under slow

Payleigh fadinq conditions, a two-way communication link* requires about 9

dE more bit energy-to-noise density than does a one-way link while a dual

channel communication link requires about 10 dB less bit energy-to-noise

density than does a single channel link.

* Assurinq no satellite processing and a perfect (linear) transponder.

11MI.



2) The mean duration of fades below the mean power is longest

for the monostatic geometry and shortest for the one-way geometry with the

bistatic geometry mean fade duration falling between the other two. For

fades more than 11 dB below the meanpower, the monostatic case also has

the shortest mean separation between fades.

3) When compared to fades in single channel communication links

which are more than 10 dB below the mean power, the 10 dB fades of dual

channel links are, on the average, two thirds as long and spaced three

times farther apart.

127
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SECTION 2
FIRST AND SECOND ORDER STATISTICS or THE RECEIVED SIGNAL

In this section well known empirical descriptions are presented

of the first and second order statistics of the one-way received voltaqe

in the stronq scatterinq limit. From these results, the first and second

order statistics of the received voltaqe for the monostatic and bistatic

cases are constructed. The distribution of the received power for the

three propaqation cases dre then calculated as are the distributions of

the combined power for the two dual channel alqorithms.

2.1 STATISTICS OF THE ONE-WAY VOLTAGE

After propaqatino one-way throuqh an ionized layer, the received

voltaoe can be expressed as two independent quadrature components

p(t) = x(t) + iy(t) (2-1)

where p(t) is the received complex voltaqe with in-phase component x(t)

and quadrature-phase component y(t). Both MPS calculationsl,2 and

theoretical calculations in the stronq scattering reqime 3 show that trans-

mission of an initially constant amplitude and phase siqnal one-way

throuqh a stronqly turbulent layer results in a received siqnal whose

quadrature components x(t) and y(t) are independent Gaussian random

variables with joint probability density function

f(x,y) = exp[-(x 2 +y2 )/2a2 ]/2wao2 . (2-2)

13
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At two different times, the in-phase components of p(t1) and p(t 2 ),

denoted x, and x2 respectively, have the joint Gaussian probability

density function

f(x1 ,x 2) = exp[-(x -2px1x2+x2)/2.2(1-p2)]/2.n2Y1--p • (2-3)

The joint probability density function of the quadrature-phase components

A and y2 is identical to Equation 2-3. The autocorrelation of the com-

plex voltage is then

<p(t)p*(t+T)> = <x(t)x(t+T)> + <y(t)y(t+T)> = 2a p(T). (2-4)

In the strong scattering limit

p(T) = exp[ -(T/T )2 )] (2-5)

where T! is the one-way signal decorrelation time. General f-1 power

spectral densities with corresponding Bessel function forms for p(T) are

considered in Appendix A. In subsequent developments, the strong scatter-

ing limit Gaussian form of p(T) will be used as an example with appropri-

ate scaling factors included to render the results valid for any properly

behaved PSD. It will be seen later in this section that only in the case

of one-way propagation through the ionized medium does the decorrelation

time of the received signal, To, equal the one.way decorrelation time

T] •

The amplitude r of p(t),

r = (2-6)

has a Rayleigh probability density function

f (r) = r exp(-r 2 /2 0
2 )/ 0

2 , r > 0 (2-7)
R

14
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and the average power of the signal is

<ptp() r> 2a2 (2-8)

2.2 GENERAL FIRST ORDER STATISTICS

The received voltage q(t) of a radio'frequency signal which

traverses an ionized layer either once or twice can be represented as

Sp(t) one-way

q(t) p 2(t) monostatic
Sp1(t)p2(t) bistatic (2-9)

when it i s assumed that in the radar cases the target cross section is

non-fluctuating and that in the two-way communication link case there is

no on boa rd satellite processitig and the transponder used is perfectly

linear. The effect of target cre'ss section fluctuations on the received

signal ha~s been discussed in detail elsewhere.4 In the bistatic case,

pl(t) rep~resents the signal transmitted along path 1 and incident on the

transponder or the radar target and p2(t) represents the signal retrans-

mitted or! reflected by the target and received along path 2. The received

power S i's then given by

r2 one-way

S q(t)q*(t) r-4  monostat ic

r? r 2~ bistatic (2-10)

The probability density function of S is easily calculated from the

Rayleigh probability density function of r as

exp[-S/USIU/S> one-way

f(S) exp[ I2_S/-S>I//2S<S> monostatic

2K0[ 2i//S>j/< S> bistatic (2-11)

15
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where Ko is a modified Bessel function. The mean power is

2 2.2 one-way

<S> 804 monostatic

4 4a" bistatic (2-12)

where a2 is the variance of the underlying Gaussian probability density

function of Equation 2-2. V

The cumulative distribution function of the received power, /

defined as

S
F(S) = Prob [received power < S) = f f(S')dS' , (2-13)

0

gives an indication of the probability of occurrence of deep fades which

are detrimental to the performance of communication or radar systems.

This function is readily calculated for the three cases considered with

the results

1 - exp[-S/<S>] one-way

F(S) 1 - exp[-/2S/<S>] monostatic

1 - 2/SI<S Kj[2V//S>- bistatic (2-14)

where K1 is a modified Bessel function.

The median power M, defined by

F(M) = 1/2, (2-15)

is equal to

I n(2) = -1.6oB one-way

MPS;. > [n(2)12/2 = -6.2dB monostatic

Uo/4 - -4.0dB bistatic (2-16)

/6
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where uo for the bistatic case is given by solving the equation

u0 Kl(u) = 1/2 (2-17)

which gives

u0 = 1.25715 . (2-18)

Thus for the one-way propagation geometry, one half of the time the

received power is 1.6 dB or more below the mean power while for a mono-

static radar the received power is 6.2 dB or more below the mean power

one-half of the time.

Thecumulative distributions are plotted on probability paper in

Figure 1 for the three cases. It is apparent that the monostatic case has

10.

0

-2

A L

0.0 0.1 1.0 10. 40. 60. 90. 99. 99.9 99.99

PROBABILIY [POWER/(POWER) SX]

Figure 1. Cumulative distribution of the received power.
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the highest probability of deep fades, the one-way case has the lowest

probability, and the bistatic case falls between the other two. For

example, the one-way case has a probability of 10-4 of fades of 40 dB or

greater while this probability is about 8 x 10-4 for the bistatic case and

is about 1.5 x 10-2 for the monostatic case.

2.3 GENERAL SECOND ORDER STATISTICS

The frequency of occurrence, the duration and the separation of

fades or flares is determined by both the first order or amplitude statis-

tics described above and by the second ordev or correlation properties of

the received voltage defined in Equation 2-4. The correlation function

for the monostatic case is

<q(t)q*(t+T)> = <p2(t)p2k(t+¶)>

22 22 22 >2
I X2+ ylY2  1 4XlX2 YIY 2 - xlY2 - X2Yl> (2-19)

2 2 2 2
+ 2i<XlX2 y- x1y1 Y2 X-X2.y 2 + x2 yly 2 > •

Noting that x and y are independent, zero mean random variables, the imag-

inary part of <q(t)q*(t+t)> is identically zero. In addition, it is easy

to demonstrate the following using Equation 2-3:
<x 2 2 > = <2 2 > o,04 2)

2 >Y Y2 ,1+2p 2

<xI x2 YlY 2 > = <X1 X2 ><Yly 2 > = (0 2 p) 2  (2-20)

22 22 ( 2 < 2

<x y2 > Z <x2 Y2> <x2><y2> C;4

so that for the monostatic case,

<q(t)q*(t+T)> <S>p 2 (r) (2-21)

18
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The correlation function for the bistatic case is

<q(t)q*(t+T)> = < pI(t)p 2 (t)pl*(t+T)p2 *(t+T)>

= < pI(t)pl*(t+T)><P 2 (t)P 2 *(t+T)> (2-22)

when .it is assumed that pi(t) and p2(t) are independent. In this case,

<q(t)q*(t+T)> = <S>P I (T)p 2 (T) (2-23)

In qeneral for a Gaussian PSD,

<q(t)q*(t+T)> = <S> exp[-(T.'T0 )2 ] (2-24)

where io is the decorrelation time of the received voltage and

STi one-way

T T1/1(2 monostatic

2
T=0 TI T1 ,2  bistatic (T 1 , 1 *Tj, 2 ) (2-25)

112 22

Tj 11VT b i bistatic (TIl =T

,2),

For bistatic propaqation, T1 ,i =-- 1 or .,, is the one-way decorrelation

time of the ith path. It can be seen for the bistatic case, that if one
of the paths has a small decorrelation time relative to the cther one-way
path, the resultinq decorrelation time of he received signal corresponds
to the smaller decorrelation time. If bot one way paths have the same
decorrelatlon time, the resulting To corres )onds to the n'onostatic case
with a decorrelation time of Ti//?. In oo h two-way cases, it is

apparent that the decorrelation time of the received signal is smaller
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than the decorrelation time oF the one-way propagation path. For

arbitrary power spectral densities and propagation qeometries, the

decorrelation time of the received voltage is related to the one-way

decorrelation time as

Ti one way

To : T,/V2 monostatic (2-?6)

12 2
6TI, 1 TI 1, 2 / Ti,1 + -1,2 bistatic

The scale factor 6 differs from unity in general if the PSD is not

Gaussian.

2.4 FIRST ORDER STATISTICS FOR DUAL CHANNEL COMMUNICATIO?' SYSTEMS

Dual channel communication systems may combine the amplitudes oF

two independent channels in order to mitigate the effects of propagation

fading. Two possible alqorithms for combining the amplitudes of the two

channels into the amplitude z used for demodulat'en are

Sr, + r 2  summation algorithm

S=1(2-27)

z max(rl,r 2 ) maximum algorithm

where ri, i=1 or 2, is the amplitude of the received voltage on the i th

channel and the function max(x,y) is equal to the larqe of x and y. If it

is assumed that the two channels utilize propagation paths of sufficient

spatial separation that the propagation effects on the received voltages

are independent. Then in the stronq scattering limit, r, and r 2 are

incependent, Rayleigh distributed random variables. It will also be

assumed that the transmitted power is equal in the two channels so that
2 2

<rl> <r2>.

20
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For the summation algorithm, the cumulative distribution of z

has been given by Marcum5 from which the cumulative distribution of the

combined power (S z2 ) is obtained as

F(S) = 1-exp[-S/2o2 ] - AwS/4o2 eS/ 4 0 erf(!S/4ao2) (2-28)

where 202 is the mean power in each of the channels and erf is the error

function. The mean power of the comtined amplitude is

2> 2 2 2 -9

<S> = <z 2 > = <rl> + 2<r 1><r 2 > + <r 2 > = (4 + w)o (2-29)

The cumulative distribution of z for the maximum algorithm is

F(z) = [1 - exp(-z 2 /2o 2 )] 2  (2-30)

where the term inside the brackets is the probability that one of the

Rayleigh distributed amplitudes is less than or equal to z and the square

gives the probability that both r1 and r2 are less than or equal to z.

The mean received power is then easily calculated as

S <Z2> z2 dF(z) = 3o2 (2-31)
0

and the cumulative distribution of the combined power is

F(S) = (1 - exp[-3S/2<S>]} 2 
. (2-32)
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The probability density function of the combined power is obtained by

differentiatinq Equation 2-32 qivinq

f(S) = (.3/<S>) exp(-3S/2<S>) [1 - exp('3S/2<S>] (2-33)

The median combined power for the e.:31 channel communication

systems is

4u°/(4+w) = -0.81dB summatlon algorithm
M/<S>= (2-34)

2 In[V/2I1r52-1)] -0.87dB maximum algorithm

where uo is the solution of the equation

-2uo - -uo
e + Iru e erf(/u') 0 2 (2-35)

which yields

uo = 1.482227 (2-36)

When compared with th'e single channel median power of 1.6 dB below the

mean power, these results indicate that the dual channel syste:,i does in

fact mitiqate the effects of scintillation.

The cumulative distributions f3r the combined power are plotted

on probability paper in Fiqure 2 for the two dual channel algorithms along

with the cumulative distributine Lr the received power of the one-way

communication link or single chdnnel case. The near coincidence of the

dual channel curves is a consequence of the fact that because the ampli-

tudes from the two channels are independent and Rayleigh distributed, it

is probable that one amplitude is much smaller than the other and hence

that the larger amplitude is nearly equal to the sum of the two ampli-

tudes. It is apparent fuom the figure that the dual channel system has a

lower probability of deep fades than does the single channel system. For
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Figure 2. Cumulative distribution of the signal power used for demodula-
tion in single and dual channel communication links.

example, the dual channel system has a probability of about 3 x 10-1 of

fades of 2OdB or greater while this probability is 102 for the single

channel system.

2.5 AMPLITUDE MOMENTS ,,(

The expected values of the first 4 moments of the received

amplitude z, where

z 2q(t) , (2-36)
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for one-way, monostatic, a;.d bistatic cases, and for the combined ampli-

tude defined in Equation 2-26 for the dual channel communications systems

are needed for comparison with the simulation results. These are given in

Table I and can be calculated directly from the moments of a Rayleigh

distribution for all but dual channel maximum algorithm. In the latter

case, Equation 2-29 is used to calculate the moments of z.

Table I. Moments of the amplitude of the received voltage.

Case n 2 3 4

One-way i2•# 2.2 34-12- #J '.

Poiostt ic 7,. 8 44,9'

Dual Chean•,

Sumuat lon AlgorIthm 1-- a (40)02 '-w 4(10* )o'

NemIm Algorithm (T. - a,/1) 3 .(12 -3 1,-16) .' 14.e

oz Is the variance of the underlylnq normal distributions.
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SECTION 3

BINARY ERROR PROBABILITIES FOR TWO-WAY AND DUAL CHANNEL

COMMUNICATiON LINKS UNDER SLOW RAYLEIGH FA5DIG CGNDiTIONS

Binary error probabilities of two-way and dual channel communi-

cation links are derived in this section for noncoherent M-ary frequency

shift keying (M-ary FSK). coherent phase-shift keyinq (PSK), differen-

tially encoded coherent PSK (APSK), and differentially coherent binary PSK

(9RPSK) under slow Rayleigh fadinq conditions. Perfect phase tracking

will be assumed for the PSK demodulation techniques. Tn the two-way

qeometry, a signal is transmitted throuqh an ionospheric channel to a

transponder which then retransmits the siqnal through an independent

ionospheric channel to a receiver which is not colocated with the original

transmitter. It is assumed that the transponder is an ideal linear ampli-

fier that is noiseless and that outputs a signal with identical statistics

to the input signal. For a dual channel communication link, independent

sianals are obtained by the use of spatial diversity (e.g., separated

receiver antennds or transmitter locations) or by other diversity tech-

niques such as multiple transmission frequencies. The results of the

previous section showed that the distributions of the combined signals for

the two alqorithms considered are essentially identical. Therefore, the

binary error probabilities will be calculated only for the maximum alqo-

rithm which has the simpler mathematical form for the distribution of

combined power.

The probability of bit error in an additive white Gaussian noise

(AWGN) channel for a constant energy signal and for M-ary FSK modulation
•6

is

P(E /N) 1x M r kiE(3)
be b o 72M-) k1 ? " k( k 2 No
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and is

(/2) erfc(Eb/No) ideal coherent PSK

Pbe(Eb/No) = erfc(bNo) [1 - (1/2) erfc(/Eb/NO)] ideal APSK

(112) exp(- Eb/No) DBPSK (3-2)

for PSK modulation where Pbe represents the binary error rate at the

demodulation output and Eb/No is the input modulation bit energy-to-noise

density ratio. Under slow Rayleigh fadinq conditions, the probability of

bit error must be averaged over the probability density function of the

b;, energy which for two-way links is given by the bistatic form of

Equation 2-14 and for dual channel links is qiven by Equation 2-33 as

12Ko[2E b/<Eb>I/<Eb> Two-way
f(Eb)= (3-3)

b (3/<Sb>) exp(- 3 Fb/2<Eb>) [1 -exp(-3Eb/2<Eb>] Dual Channel

where <Eb> is the mean bit energy. The average probability of bit error

is then

<Pbe> = f Pb (Eb/No) f(Eb) dEb (3-4) . ,..
0

For two-way slow Rayleigh fading, evaluation of Equation 3-4 for

M-ary FSK and for DBPSK involves an integral of the form

1 =•2 7 exp(-aEblNo) Ko[2,AEb-"'<Eb>] dEb (3-5)>I

where

S(-•-.) (log 2 M) M-ary FSK

1 DBPSK
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Upon changing variables (u 2VrEb/<Eb>), the integral reduces to /

I = u exp[-a<Eb/No>U2 /4) K0 (u) du (3-6)
0

This integral is given by Gradshteyn and Ryzhik 7 in terms of one of

Whittaker's function which can be further reduced using the mathematical

properties of confluent hypergeometric functions from Abramowitz and

Stegun8 to give

exp[1/c,<Eb/N>] El[i/Eb/No>,A>

a<Eb/No>
b,-0

where El is the exponential integral. N-

The average probability of bit error is then

<P > _____________ Mk (3-8)
be 2(M-1)(log2M)<EbN> k=2 ' (I) -l-

k/(k-b) k/(k-k)

exp(log2 M) <Eb/No>i E[l[10g2 M) <Eb/N°0

for M-ary FSK demodulation and is

exp[l/<Eb/N>] El [1/<Eb/No>]
<Pbe> 2 <Eb7No> (3-9)

for DBDSK demodulation. The mean probability of bit error cannot to the

authors knowledge be obtained in closed form for ideal coherent PSK or

APSK modulation. However, by using the same change of variables that was
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used to derive Equation 3-6, the mean probability of bit error for these

cases can be rewritten as

(1/2) f u K (u) erfc[.-Eb/No> u/2] du ideal PSK

<P be> = (3-10)

Su K0(u)u erfc[/<Eb/No> u/2] {1 - (112) erfc[i<Eb/Ao> u/2]} du

ideal aPSK

Both integrals of Equation 3-10 nave well behaved Integrands and are

easily evaluated numerically.

For dual channel links under slow Rayleigh fading conditions,

-..-he average bit error probability with M-ary FSK demodulation can be

evaluated directly to give

1 M-1-

be 2(M-1) k=2 (3-11)

9
[3+(k-1)(log2M)<E b/No0>/k] [ 3+2(k-1)(1og2M)<E b/ANo>/k]

N

Similarly, with DBPSK demodulation,

P 9/2 '312)
Pbe ( 3 +<Eb/N>)( 3 +2<Eb/N>)

The evaluatinn of Equation 3-4 for ideal PSK and ideal APSK

involves integrals of the form

I = f erfc('7) e"Ux dx = (2/a) (1-i/€+/') (3-13)
0
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and

erfC2(/'x) e"Ox dx (3-14)
0

4tarr1 v
a ,- 7 /1+; /

where the first.integral is given by Gradshteyn and Ryzhik and the second

integral can be integrated by parts to reduce it to a form given by

Gradshteyn and Ryzhik. The mean probability of bit error for ideal PSK

then becomes

<Pb> + 1/2 1
b/'1+3/<Eb/No> /l+3 1 (2<EbIN>)

and for ideal APSK it becomes

[1-(2/w) tan -' I1+31<Eb/N ] (3-16)0

/ I+3 /<Eb/No>. \

/1+3/<E IN >2[ 1-(2/w) tan-1 ý'l+3!2<Eb/No7].,

bb0,/1+312<E b /No>"

The probabilities of bit error for one-way or single channel
communication links, for two-way links, and for dual channel links under

slow Rayleigh fading conditions are sliown in Figures 3 through 8 for non-
coherent M-ary FSK with M equal to 2, 4, and 6, ideal coherent PSK, APSK,
and DBPSK demodulation respectively. The probability of bit error for an
AWGN channel is also shown for each of the techniques. Note that an ideal

coherent PSK dual channel system is not achievable in practice because of
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NONCOHERENT BINARY FSK

Qto

E6/N. (d0)

Figure 3. Theoretical performance of noncoherent binary FSK. demodulation
in an AUGN channel and under slow Rayleigh fading conditions.

SLOW' RA4YLEIGH FADING

I-O

E/N. (viB)
Figure 4. Theoretical performance of noncoherent quaternary FSK demodula-

tion in an AWGN channel and under slow Rayleigh fading
conditions.
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NONCOHERENT 8-ARY FSK

lo~l SLOW' RAYLEIGH FADINGSto-

Sa

0 o1 15 20 25 30 33 40

SJN. (dB)

Figure 5. Theoretical performance of noncoherent 8-ary FSK demodulation
in an AiMGN channel and under slow Rayleigh fading conditions.

lop . ......... ..... I I

IDEAL COHERENT PSK
SLOW RAYLEIGH FADING

S1.

10. 1 od- =• " t i

!0 13 20 25 30 35 40

ZJN. (dVJ .
Figure 6. Theoretical performance of ideal coherent PSK demodulation in

an NWGN channel and under slow Rayleigh fading conditions.
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DIFFERENTIALLY ENCODED COHERENT PSK
SLOW RAYLEICH FADING

2/
r

IP -4-

o 10_J!

:- . /
10

to0 5 10 15 20 25 30 35 40

E/N. (dB)

Figure 7. Theoretical performance of ideal coherent APSK demodulation
in an AWGN channel and under slow Rayleigh fading conditions.

too

DIFFERENTIALLY COHERENT PSK
SLOW RAYLEICH FADIVC

o io-•• ."

a..

I00

E/N. (dB)
Figure 8. Theoretical performance of differentially coherent binary P5K

demodulation in an MLGN channel and under slow Rayleigh fading
cond it ions.
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the w phase ambiguity. As can be seen from the figures, the mean proba-

bility of bit error for a given bit energy-to-noise density ratio is

hiqher for a two-way link than it is for a one-way link because of the

increased probability of occurrence of deep fades in the two-way geom-

etry. However, the mean probability of bit error for a given bit energy- "

to-noise density ratio is lower for a dual channel link than it is for a

single channel link because of the decreased probability of occurrence of

deep fades in the dual channel link. At a bit error probability of 10-3,

the two-way link requires between 8.5 dB and 9.5 dB more bit enerqy-to-

noise density than does the one-way link for all demodulation techniques

considered. Conversely, the dual channel link requires between 9.5 dB and "

11 dB less bit energy-to-noise density than does the single channel link

to achieve a 10-3 bit error probability.
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SECTION 4

LEVEL CROSSING PROBLEM

The main point of this study is a statistical characterization

of the zero crossinqs of a random process z'(t) defined as

zI(t) = z(t) - (4-1)

where I is an arbitrary amplitude level. This problem was first treated

in detail by Rice 9 for the case that z(t) is a normally distributed random

variable. The purpose of this section is to extend the results of Rice to

the cases where z(t) is the amplitude of q(t) defined in Equation 2-9.

For one-way, monostatic, or bistatic cases, an. interesting statistic of

the zero crossing problem that can be calculated in closed form is the

mean number <N(L,T)> of crossings of the level . in the time interval T.

From the mean number of level crossings, the mean duration and separation

of fades and flares can also be calculated in closed form. V\ .,

It can be shown that 9

t'+T
<N(,T)>= f dt f dZ Ji f(l,z;t) (4-2)

where f(z,z;t) is the joint probability density function of z and its time

derivative z at time t. For the stationary processes considered here,

f(z,z;t) is independent of t and

<N(1,T)> T f .;Jf(X,;)d . (4-3)
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4.1 ONE-WAY PROPAGATION

The first step in evaluatinq Equation 4-3 is to calculate the joint proba-

bility density Function of the components of the one-way received voltage

and their time derivatives. The joint probability density function of the

in-phase and the quadrature phase components of the received one-way volt-

age, denoted by x and y respectively, is qiven by Equation 2-2. Rice has

shown that if x and y are normally distributed and stationary with zero

means, then x and y are normally distributed and stationary with zero

means and variances qiven by

A22
2=2 - o2 V(o) = 2o 2 A2 /T 1  (4-4)
x y

where p(T) is the second time derivative of the autocorrelation function

of the one way voltaqe. In addition, x and y are independent of both x

and y. For arbitrary power spectral densities, it is then required that

p(o) be finite. The implications of this requirement are discussed in

more detail in Appendix A. The scalinq factor A2 is unity for a Gaussian

PSD and is calculated for a f- PSD in the Appendix. Thus the joint

probability density function of x, ;, y, and y is K-'

exp{-[x2+y2+ T1(2+2)/2A2]/2o2-
f(xxyy) (4-5)

(21ta 2 ) 2 (2A2 /T2 )

The joint probability density function of the amplitude r of the

one-way received voltaqe and of r can-now he obtained from Equation 4-5 by

chanqinq variables. Lettinq

x = r cose (4-6)

y - r sin8
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4

where 0 is the phase of the received voltage, the time derivatives of x

and y become

S= r- cose - re sine

y r sine + re cose (4-7)

so that

x2 + y2 =r2 
i .:

;2 + r.,2 + r2;2  (4-8)

Equation 4-5 can be ther, be rewritten in terms of r, r, e, and 8 as

f(x,;,y,ý) dxd~dydý - f(r,;,8,b) Idet(.J)Idrd;dede (4-9)

where the determinant of the Jacobian J of the coordinate transformation

is

[ax/3r a r/a ay/ar a3/arW 1'
aX/ar axa 3y/3; a/a

det(J) = det
ax/ae a;i6x, ay/ye a-iae
ax/a; *a;a; ay/a; a.yleJ (4-10)"

cose -esine sine Ocose ;

0 cose 0 sine . 1
det

-rsine -;sine-rOcosO rcosO rcosB-rOsin,

0 -rsine 0 rcose J
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The joint prohability density function of r and r is qiven by inteqrating

Equation 4-9 over 0 and 0:

2it

f(r,r)drdr = J dO f d5 f(r,;,O,5) drd" (4-11)
0 -

r2 exp[-(r 2 +T 2 ; 2 /2A 2 )1202 ldrd;

(27ra2)2 (2A 2 /t 2 )

2WT
x2f dO 7 d4 exp(-t 2 r 2 A2 /4A 2o 2 )0 -=P 1

r exp(-r 212a2 ) exp(-t 2 ; 2 /4A 2o 2 )
dr 1 d;

02 V44 A202I/T2 /
2!

It can he seen from Equation 4-11 that the probability density function of

r is Rayleioh; the probability density function of r is Gaussian with zero

mean and ?A 2 o2 /Tl standard deviation; and because f(r,r) is separable into

a function of r times a function of r, r and r are independent.

The mean number of crossino in the time interval T for the

one-way casP can now be easily evaluated from Equations 4-3 and 4-11.

Jlsinq Equition 2-12 to write a in terms of the mean received power, the

nrean number of crossinq becomes -

=N(LT)> A(T/t) VP/L/<S> e"L/<S> (4-12)

where L kI is the power of the level I and where To is equal to T1 in

this case. The effect of arbitrary power spectral densities is then to

scale the mean number of level crossinqs in the one-way propaqation by the

quantity A. Notinq that two crossinqs are required for a fade (flare)

below (ahbvp) the level C, the expected number of fades (flares) per unit

time is "N(L,T)>/2T.
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4.2 MONOSTATIC PROPAGATION

For the monostatic case, the amplitude z of the received voltage

is equal to r2 so that x and y as functions of z and the phase e are

=z /2 c4

1/2 (4-13)
y = sine

Using this transformation, the calculation of f(z,!) is then identical to

the one-way case. In this case, the time derivatives or x and y become .

Z-- /2 cose/2- Z1/2 ; sine
(4-14)

y= z Z sine/2 + z e cose

so that

(4-15) , ..-

2+V2 = 12/4z + Z62

Again the change of variables requires the evaluation ef the determinant 7 2

of the Jacobian, defined in Equation 4-10 by replacing r with z, which

gives

I- Cosse12 z coss/4 - 2 sine/? 2/ SIa 2 stn14 2 shll/? z

0 c1 el/? 0 2-1/2 slnl2-

det(J) diet
- iZ 1/ slIn@ - zmh I 2 c06 21/2 Cse l coss/? - z1 1/ sin

0 -:1/2 sins 0 I Coss

S1/4

(4-16)
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The joint probability density function of z and z can now be written as

2w
f(z,z)dzdz (1/4) f do f do f(z,z,e,e)dzdz

0 -"

(4-17)

exp[-(z+.r2 j2/8A2z)/2021 2w do
-I4(2'oz)i(2A 2 /) f dO.f d6 exp(-t2 1 4AzoA2)dzdz

(T /8ia3,Aw-z) exp[-t z + [2ý2 /8A2 z)/2o2 ]dzd
I 1

Because Equation (4-17) is not separable into a function of z times a

function of }, z and • are statistically dependent.

The meat, number of crossings for the monostatic case of the

level L per time interval T is easily evaluated from Equations 4-3 and

4-17 as

<N(L,T)> 6A(T/To) [32L/I 2 <S>] exp[-/2L/<S'] (4-18)

00
where -r is equal to 6-rl/,r2 for two-way propagation and is again written

in terms of the mean power using Equation 2-12.

4.3 BISTATIC PROPiAGATION

For the bistatic propagation case, the amplitude z of the

received voltage q(t) from Equation 2-9 can be written as

z = st (4-19)
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where s and t are the amplitudes of the two independent bistatic path

voltages pl(t) and p2 (t). The joint probability density function of s, s,

t, and t is then

f(s,s,t,' *L) Z:, f(' (4-20)

where f(s,s) and f(t,t) are both given by Equation 4-11 assuming that each

path has the same PSD and decorrelation time. The more general problem

where the PSD and/or the decorrelation time of the two paths differ is

considered in Appendix B.

In this case it is convenient to use Equation 4-19 to write ..

f(s,s,t,t) in terms 3f a new set of variables z, z, s, and s. The

Jacobian of this transformation is

a s/a z a s/a z a t/a z at/az
* . : * . *

a s/aZ as/az at/az at/z (4-21)

/

a S/3 s a ;/a s a t/h s a ;/a s ,•

where the old variables (s, s, t, and t) in terms of the new variables

(s, s, z, and z) are

s s

(4-22)

t = z/s zs/s 2

so that the determinant of the Jacobian becomes

det(J) = ( (4-23)
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The joint probability density function of z and z is then obtained by -

integrating f(s,s,z,z) over s and s as

0 W

(4-24)

x exp{-[s2 + z2 /s 2 + T.2 s(.2 + 1S z2+ 2 s4 -4 22z!/sl)/)2A2 ]/2o7}

The s integral can be performed in closed form to give

f(zz) = T1Z/2/I605) 7 ds (s4+z2 ....

0

x exp{-[s 2 + z2 /s 2 + T2s 2 12(S 4+Z2 )'1 /2A 2 ]/202} (4-25) /

The mean number of crossings of the level L requires an integral .

of Equation 4-25 over z which can be obtained in closed form. Upon chang-

ing variables in the remaining integral to u = s/o; using Equation 2-12 to

write o in terms of the mean power; and noting that To is equal to 6T 1//2

in tn• bistatic geometry when the two paths have the same decorrelation

t•ime; the mean number of crossings becomes
Im

S<NiL,T); =6SA(TITo) 1 8L/(<S>, /I+4L/<S>u4 exp[-(1+4L/<S>u')u 2 /2] du
0

(4-26)

The remaining integral is easy to evaluate using numerical techniques

because the exponential term in the integrand is exp(-2L/<S>u2 ) for u << 1 N.

and is exp(-u 2 /2) for u >> 1. Hence the integrand goes exponentially to

zero at both limits of the integral.
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4.4 MEAN DURATION AND SEPARATION OF FADES AND FLARES

The mean numbers of level crossings per received decorrelation

time are plotted in Figure 9 versus the ratio L/<S> in dB for the one-way,

monostatic, and bistatic propagation cases dnd for a Gaussian PSD for

which A and % are both unity. These results show the higher frequency of

deep fades in the two-way monostatic or bistatic propagation cases versus N.

the one-way propagation case. They also show that for levels between +5 7 -

dB and about -12 dB relative to the mean power, the bistatic case has a

higher frequency of level crossings than does the monostatic case.

0.8J0o8.e - . . ,i . . . . i . . . ." lll•

0.7 RAYLEIGH FADING
GAUSSIAN PSD

0.6

40.5

0.4

> 0.3 ¶-$~

~0.2

0.1•

0.0-80 -50 -40 -30 -20 -10 0 10 20

LEVEL/<POWER> (dE8)

Figure 9. Mean number of level crossings in one decorrelation time To.
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The mean duration <tD> of fades or flares can be obtained

directly from the mean number of level crossings by noting that 10

(1/2) <N(L,T )> <t >/To= F(L)
0 D,fade o

(4-27)
(112) <N(L,To)> <tD,flare>/To o F(L)

where F(L) is the probability that the received power is less than or

equal to 1 (Equation 2-11) and (1/2) <N(L,T )>/WT is the mean number of

fades or flares per unit time. In addition, the mean separation <tS>

fades or flares is
<ts~fade> = <ts~flare > z 2T /<N(L,T )> (4-28)

or just twice the mean interval between level crossings.

The scaling of the mean duration and separation of fades or

flares from the Gaussian values <tD>G and <tS>G is

<tD > - <t D>G

(4-29)
1

<ts> L <t >G

where again 8 is unity for one-way propagation. Under Rayleigh fading

conditions, the PSD will be bounded by the Gaussian form in the strong

scatter, fast fading limit with 1/6A = 1 and by an f- 3 PSD in the slow

fading limit. An f- spectrum lies between these two limits and is of

particular interest since it is frequently used for system specification

and testing. 11  For an f_4 PSD, the values of I/6A that are calculated in

Appendix A are 0.66 for one-way propagation and 0.74 for two-way propaga-

tion when both of the one-way paths have the same decorrelation time. /

The mean duration of fades below an arbitrary level L for a

Gaussian PSD is shown in Figure 10 and the mean duration of flares above

the level L for a Gaussian PSD is shown in Figure 11. The monostatic case
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RA YLEIGJI FADING
CAUSSIAN PSD

togo

, , !. .. ....

-40 -30 -20 -10 0 10 20

LEVEL/<POWER> (dB)

Figure 10. Mean duration cf fades below an arbitrary level.

RA YLEICH FADING
GAUSSIAN PSD

Itop

lO I . . . . . . . ......... !......... !... . . . .........

-40 -30 -20 -10 0 10 20

LEVEL/<POWER> (dB)

Figure 11. Mean duration of flares above an arbitrary level.
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has the longest mean duration of fades for any level L and the one-way

case has the shortest nean duration of fades. However, above levels of

about -3 dB relative to the mean power, the monostatic case also has the

longest mean duration of flares while the one-way case has the shortest

mean duration of flares. The situation is reversed at levels below -3

dB. That is, the one-way case has the longest mean time above levels

which are 3 dB or more below the mean power. The bistatic mean duration

of fades or flares lies between the other two cases except in the cross-

over region (-10 dB to -3 dB) of the mean auration of flares.

The mean separation of fades or flares for the Gaussian PSD is

shown in Figure 12. The monostatic case has shortest mean separation of

RA YLEICH FADING
GAUSSIAN PSD

C',

10

-60 -50 -40 -20 -10 0 10 20

LE;¶L/<POWER> (dB)

Figure 12. Mean separation of fades or flares.
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fades or flares for levels 11 dB or more below the mean power and for

levels 8 dB or more above the mean power. For levels between -9 do and 2

dB relative to the mean power, the one-way case has the shortest mean

separation of fades or flares. Except where the curves cross over, the

bistatic mean separation of fades or flares lies between the other two

cases.

Using these results, qualitative information can be obtained on

the difference between mean performance effects of a Rayleigh fading

environment on one-way versus two-way communication links or monostatic

versus bistatic space based radars. In the communication link case, a

comparison of the one-way and bistatic propagation cases shows that the

mean duration of fades is longer for the two-way link; that the mean dura-

tion of flares above the mean power is longer for the two-way link; and

that for levels between -9 dB and 2 dB relative to the mean power, the

one-way link has shorter mean separations between fades or flares while

the one-way link has longer mean separations between fades or flares for

levels outside of the -9 dB to 2 dB range. By comparing the monostatic

and bistatic propagation cases it can be seen that the mean duration of

fades is longer for the monostatic radar; that the mean duration of flares

above the mean power is also longer for the monostatic radar; and that the

bistatic radar has shorter mean separations of fades or flares for levels

between -11 dB and 3 dB relative to the mean power while the monostatic

radar has longer mean separations of fades or flares outside of the -11 dB

to 3 dB range.
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SECTION 5

GENERATION OF THE RECEIVED VOLTAGES AND DATA GATHERING

The probability density functions of the durations and separa-

tions of fades or flares are unobtainable by analytic methods for even the

simplest case of a one-way communication link. However, the desired

statistics are easily calculated using Monte-Carlo methods by generating

either one or two random sequences of the one-way voltage p(t) with Gaus-
sian correlation and then using Equation 2-9 to generate the sequences of

the received voltage q(t). It is then an easy matter to find the statis-
tics of the duration separation of fades or flares relative to a given

level that exist in the amplitudes z(t). The sequences generated are
limited to be less than or equal to 8192 sa,'ples because of the fast

Fourier transform routine that is utilized. Thus this process is repeated
multiple times in order to collect sufficient data.

The method of generating the sequences is described in detail

elsewhere 12 and is briefly reviewed here. The desired Gaussian autocor-

relation is equivalent to a Gaussian PSD S(f) where

S(f) = f p(t) exp(-i2wft)dt

(5-1)

= " lr "exp(- r2 T2 f2 ).
1 1 . .

The voltage samples are first generated in frequency space using the

discrete equivalent Sn of the PSD S(f) and are then discrete Fourier
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transformed to the time domain. A total of N=2m (m is a positive

integer less than a equal to 13) voltage samples are generated covering a

total time of

T =NAt . (5-2)

If there are n samples per one-way decorrelation time, then

At -- TIn .(5-3)

Because the spectral samples of a stationary random process are independ-

ent, N complex voltages Ej (j=0,1,..., N-1) are generated with Rayleigh

distributed amplitudes and unifrmly distributed phases. Thus '

j= /-2oa29n(u 1 ,j) exp(i2wu 2 ,j), j = Jl,...,N-1 (5-4)

where u1 ,j and u2 ,j are independent, uniformly distributed random varia-

bles on the interval [0,1). The real and imaginary parts of Ej are

independent, normally distributed random variables with zero means and

a2 variances. The parameter a is set by requiring that the average

received power be unity in all cases. The frequency samples Ej are then

weighted symmetrically by the discrete voltage spectral density V7T where

S. = Af S[(j-N/2)Af], j - 0,1,...,N-1, (5-5)

and where the frequency sample spacing is

Af= l/T 1/NAt = n/NTI . (5-6)

i/

./
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Hence, the frequency voltaqes ;j are given by

•. (n/" /N) 1/2 exp[-w 2 n2 (j-N/2) 2 /(2N 2 )] (5-7)

j =

The one-way received voltage p is the discrete Fourier transform of

N-1
P= • i exp(i21irk/N), k = 0,I,...,N-1. (5-8)k J=O/

In order to show that the samples pk have the correct corre-

lation properties, the autocorrelation of p can be written as

N-i N-i
<pk P1*> I I <; m *> exp[i2w(jk-1m)/N] (5-9)

j=O m=O \

However, because the frequency samples ;j are independent,

<x X> < *>Sj if j =m
xj Xm* 0iJ m(-)

if j *m
where

< *>= 22 ... (5-i1)

Therefore

<k =22 N Si expr127rj(k-t)/Nl] 2a2 P(k-1) (5-12)

where p(k-L) is the discrete autocorrelation function which is equal to

the discrete Fourier transform of Sj.
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The first 100 decorrelation times of the received or combined

power for the one-way, monostatic, bistatic, and dual channel summation

algorithm, and dual channel maximum algorithm cases are plotted in Figures

13 a,b,c,d,e respectively for sequences generated with 10 amplitude

samples per one-way decor:-elation time. From the figures, it can be seen

that during the time plotted the one-way received power has one fade more

than -25 dB below the mean power and none more than -30 dB below the mean

power; the monostatic received power has ten fades more than -30 dlJ below :

the mean power; and the bistatic received-power has two fades more than

-30 dB below the mean power. The dual channel- combined power sequences

have no fades more then 20 dB below the mean power. The summation algo-

rithm sequence has sever, fades which are more than 10 dB below the mean

power but none of those fades reaches 15. dB below the mean. The maximum

algorithm has eight fades which fall more than 10 dB below the mean power

and two that exceed 15 dB below the mean power.
....................................................................... ___" I'l~C• '•'

~- 0 I l-15 ,

A

•"-20-25"

-8 10 20 30 40 50 so 70 so 90 100
T'IMEI/T.

Figure 13a. Example of the received power for the one-way case.
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Figure 13b. Example of the received power for the ritxnsttiC Case.
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Figure 13d. Example of the combined power for identically distributed
dual channels (summation algorithm).
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Figure 13e. Example of the combined power for identically distributed
dual channels (maximum algorithm). /
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Tie phase of the one-way received voltage,

e(t) = tan- 1 jIm[p(t)]/Re[p(t)]} (5-13)

is shown in Fiqure 14 where it can be observed that the most rapid changes

in the phase occur when the received power is in a deep fade. The auto-

correlation of the one-way voltage shown in Figure 13a is plotted in Fio-

ure 15 alona with the Gaussian form. Althouoh the autocorrelation of one

sequence is a rardom variate and therefore has a distribution about its

mean, the averaqe autocorrelation of twenty sequences, plotted in Fiqure

16, shows close agreement with the desired Gaussian form.

/40

.30-

20

10-

C4'

0, S-IC -' ;!

-2(7

L- .

10 20 30 40 50 60 70 8o 90 10O
TIME/tr

Figure 14. Phase of the voltage for the one-way received power shown in

Figure 13a.
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Figure 15. Autocorrelat ion of one random sequence of the one-way received

voltage and the desired Gaussian form.
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Figure 16. Average autocorrelation of 20 random sequences of the one-way
received voltage and the desired Gaussian form.
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The statistics of the duration and separation of fades or flares

is gathered by stepping through the random sequences and comparing the

received power with the desired level. Because of the finite lenoth of

the voltage sequences, some boundary effects exist. For example, when a

new sequence is generated the first fade (flare) baiow (above) some level v

L can be recorded only after encountering the first amplitude above

(below) L. Similarly, a fade or flare must end before the end of the

sequence to be included in the data. Also, except when the sequence ends

during a fade. or flare, the number of intervals between fades or flares in

a sequence will be one less than the number of occurrences of fades or

flares. Histograms are generated of the samples of duration an1 separa-

tion from which median values are calculated. In addition, statistics are

collected on the amplitudes z(t).and on the number of crossings of the

level L.

The total number of received voltage samples generated, which is

equal to the number of voltages per sequence times the number of sequences

generated, is selected in order to achieve about 104 fades or fiares. The

mean number of occurrences per sequence is <N(L,Tl)>/2(N/n) where N/n is

the number of decorrelation times per sequence. The number of samples n .

per decorrelation time has been selected so that the mean duration of a

fade or flare is roughly greater than 10 samples in order to collect mean-

ingful duration data. Thus for very deep fades with correspondingly short

durations, 20 or more samples per decorrelation time are required to

obtain good statistics on the fade duration. Consequently, the number of

decorrelation times per sequence is reduced and the required number of

sequences that must be generated is increased. Because of these consider-

ations, the minimum level relative to the mean power for fades has been

limited to -15 dB and the maximum level for flares has been limited to +5 ."K

dB.
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SECTION 6

SIMULATION RESULTS

The results from the Monte Carlo simulation with a Gaussian PSO

are presented in this section for the one-way, monostatic, and bistatic

cases, and for the dual channel communication link cases. First, the

moments of the amplitude z for each of thp cases are compared with the

expected values given in Table I (Page 24) in order to verify that the

simulated received voltages have the desired amplitude statistics. Then

the correlation properties of the received voltages are verified by

cJmparinq the mean number of level crossings and the mean duration and

mean separation of fades and flares with the results calculated in Section

4. Finally, the mean, median, and standard deviation of the duration and

interval between fades or flares are presented in tabular form. A compar-

ison is made with multiple phase screen calculation results in Appendix

C Plots of the probability density function and the cumulative probabil-

ity distribution are shown for the one-way case in Appendix 0.

The first four moments of the amplitude z of the received volt-

age normalized to the expected values are snown in Table II for the

various propagation cases given in Table I. The larqest deviation of the
/

amplitude moments from the expected values occur in the monostatic and

bistatic cases while the one-way amplitude moments vary by at most 4.3 ,

percent from the expected values.

The statistics of one-way, monostatic, and bistatic fades and

flares are summarized in Tables I11, IV, and V respectively. The mean,
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median, and standard deviation, normalized to To of fade or flare dura-

tion and separation are shown for various levels along with the mean-to-

standard deviation (ii/o) ratios.

Table I. Moments of the received voltages from the Monte Carlo
simulation.

<zn>/1 Zn]. no. of Amplitude
Samples

Case n 1 n 2 n-3 n 4

One-way 1.007 1.017 1.029 1.043 344064

Pomostatic 1.010 1.028 1.049 1.071 524788

Sistatic 0.995 0.989 0.985 0.983 524288

Dual Channel Communication

Sumation Algorithm 1.000 1.001 1.002 1.003 524288

Maximum Algorithm 0.997 0.995 0.993 0.992 524288

*<In) denotes simulation results for 0 dB fading.

E{[nj denotes expected values given In Table 1.

Close agreement is seen between the analytic results of Section .

4 and the simulation results for the mean number of level crossings and

the mean duration and separation of fades and flares. The close agreement

of the analytic and simulation mean values confirms that the simulated

received voltaqe has both the proper amplitude statistics and correlation

properties because the mean number of level crossings depends depends on

both the first and second order statistics of the received voltage.

The mean-to-standard deviation ratios of the data range from 1.1

to 1.8 with most in the range from 1.2 to 1.5. As a point of comparisonv

a Rayleigh distribution has

/= (4/w - 1)-1/2 = 1.913 . (6-1)
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Thus the durations and separation have narrower distributions about their

means than does a Rayleigh distribution.

The statistics of dual channel fades are summarized in Table

VI. In this case, no analytic expressions are available for the mean

,quantities. When comparing the summation algorithm (denoted by SUM in the

table) with the maximum algorithm (denoted by MAX), the mean durations and

separations of fades are slightly larger for the summation algorithm at

all levels shown while the mean number of level crossings is slightly

smaller. In comparison with the single channel one-way communication link

data, the dual channel has on the average shorter fade durations which for

deep fades below -10 dB occur much farther apart. Fades -10 dB below the

mean power in the dual channel system occur only about 1/3 as often as

they occur in the single channel system and they are only 2/3 as long.

Table VI: Statistics of dual channel fades.

S(L> ___ý__ Duration of Fades_ Separation of Fades

SX (dlo) n' simulation No Mean" Std. Dev.* Medlan* w/o No Mean* Std. Dev.* Median" P/a

0 10 0.,62 17339 1.83 1.60 1.30 2.24 17311 3.01 I.7 2.50 1.69

1 .3 20 0.674 10S9 0.821 0.663 0.60 1.24 10546 2.96 2.94 2.4 1.53

X -5 30 0.508 9843 0.556 0.431 0.433 2.27 9722 3.90 2.98 3.03 1.31

X -10- 30- 0.143 10230 0.271 0.196 0.20 1.38 9716 13.3 12.5 9.43 1.06

o0 0 0,633 16581 1.88 1.57 1.30 1.20 16559 3.15 1.81 2.60 1.74

-3 20 0.62? 10436 0.859 0.653 0.65 1.32 10376 3.20 1.99 2.65 1.61

-5 30 0.462 9707 0.590 0.421 0.46? 1.40 9573 4.28 3.35 3.23 1.28

111 10 130 10.129 12896 10.286 1 0.194 10.233 11.47 2 2175 14.6 3. 10.3 1.05

iNormalized to to

41imber of samples of the duration or separation

"•Number of voltage samples per To
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SECTION 7

RESULTS ANa CONCLUSIONS

The major results of this st:idy ar-e:

* Binary error rates under slow Rayleigh fading conditions for

various frequenCy-shift keying and phase-shift keying demodu-

lation techniques have been calculated for two-way and dual .

channel communication links.

* Analytic expressions have been derived for the mean number of
level crossings ;and the mean duration and separation of fades
and flares for one-way, monostatic, and bistatic propagation

with Rayleigh amplitude statistics and arbitrary power spec-

tral densities.

The probability density functions and cumulative distribu-

tions of the duration and separation of fades and flares for
one-way propagation, Rayleigh amplitude statistics, and a

Gaussian power spectral density are compiled in Appendix D.

The key conclusions of this study are:

Under slow Rayleigh fading conditions, a bistatic communica-
tion link through a satellite transponder requires about 9 dB

more bit energy-to-noise density than does a one-way link to

achieve a bit error rate of 10-3 while a dual channel commun-

ication link requires about 10 dB less bit energy-to-noise

density to achieve a 10-3 bit error rate.
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Relative to monostatic space based radar systems, bistatic

radars have shorter mean fade durations and longer mean

separations of deep fades more than 10 dB below the mean

power.I
Fades in dual channel communication links which are more than

10 dB below the mean power are, on the average, two-thirds as

long and occur about one third as often as fades 10 dB below

the mean power in single channel links.

/
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APPENDIX A

SCALING FACTORS FOR f-M POWER SPECTRAL DENSITIES

It was shown in Section 4 that the mean number of level cross- x

ings and the mean duration and separation of fades or flares for an

arbitrary power spectral density (PSD) can be obtained from the mean

values for a Gaussian PSD by simple scaling factors. It is the purpose of

this Appendix to calculate the scaling factors for general f" power /
spectral densities and to sketch the formalism for calculating the scaling /
factors for arbitrary power spectral densities.

In order to make these calculations as simple as possible, it is
assumed in bistatic geometries that the two one-way paths have identical

first and second order statistics. It is an easy matter to generalize

these results to a bistatic geometry with different second order statist-

ics on each path (i.e., to geometries where the PSO and/or the decorrela-

tion time of the two paths differ).

A.1 GENERAL RESULTS

Before calculating the scaling factors, some general results

need to be established. The autocorrelation function of the complex volt-

age p(t) is related to the PSO S(f) by the Fourier transform pair

P(f) f S(f)e' 2 fTdt (A-i)
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S(f) = f P(T)e'i2'f dT (A-2)

For a Gaussian autocorrelation function

P(T) = exp-- -(T/T 1)
2] (A-3)

it is well know that the PSD is also Gaussian (c.f. Equation 5-1).

The scale factor A, defined in Equation 4-4, is proportional to

the second time derivative of p(T) evaluated at zero time delay.

Differentiatinq Equation A-1 twice gives

p(o) = -4 w2 7 f 2 S(f)df (A-d)

2
which for a Gaussian PSD reduces to -2/Tj. The scale factor A for an

arbitrary PSD is then

A2 =2 2,21T2f f2S(f)df . (A-S)

./

Convergence of the integral in Equation A-5 requires that S(f) approach

zero faster than f-3 for large f.

The other scale factor 6, defined in Equation 2-26, relates the

two-way decorrelation time to the one-way decorrelation time. It was

shown in qeneral in Section 7 that for two-way qeometries

() n (T) (A-6)two-way one-way
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The one-way decorrelation time T, is defined by

Pone-way(TO = I/e (A-7

The decorrelation time of the received voltage in a two-way propagation

geometry, To, is then calculated from the equation

P (TO) 1//I-e (A-8)one-way

Again for a Gaussian PSD, To is just Tl/If so that in general

6 = -TOIt • (A-9)

A.2 f' (U > 3) POWER SPECTRAL DENSITIES

A simple form for the PSD with an f-u frequency dependence

is

so
S(f) = (A-10)

(f 2 + fo 2)2

where the coefficient So is given by the normalization condition

p(o) f S(f)df = 1 (A-I1)

which reduces to

S fo 0 -M r(ul2) ( -2

0 r (1/2) r[ (u-l)/2]
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Note that Equation A-I1 is valid only for v > 3 because of the requirement

that '(o) be finite. A second more general form with an inner scale which

is valid for p . 3 is considered later in this appendix. The autocorrela-

tion function corresponding to the PSD of Equation A-10 is

( 2w fo0 ) (t -1" ) /2K1 ii)2 (2 f2 -

p(r) = (A-13)P( T) 2 ( U-3 )/2 r [ ( u- 1) 12 )]

where K. is the vth order K Bessel function. The one-way and two-way

decorrelation times can now be calculated by solving the transcendental

equat ions

x(P-I )/2 K u_)12 Wx

(A-14)
2(.j-3)/2 r[(I,-1)/2] e

-- _ =(A-15 )
2(u-3 )/2 r[ (p-1)/2] Fe

for x and y where

x = 2f fo01  (A-16)

Y = 2wfo~o • (A-17)

The scale factor 6 is simply

6 /-2y/x (A-1)
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which is only a function of V. The scale factor a is given by evaluating

Equations A-5 and using Equation A-16 to write fo in terms of x and Tj"

This results in

2 r[(p-3)/2] x2  
(A-19)

4 r[(p-l)I2]

which is again only a function of p and is therefore independent of the

decorrelation time and of the level of the fades or flares.

The scale factor 6 is plotted in Figure A-i for 3 < U < 10 where

it can be seen that a approaches unity as p increases. Recall that 6 and

A are both unity for a Gaussian PSD. The scaling for the mean duration

and separation of fades or flares, 1/6A (c.f., Equation 4-29), is shown in

Figure A-2 for one-way (6 1 1) and two-way propagation. For U = 4, the

scale factors are as follows:

6= 0.8946

1/6A = 0.6589 one-way S(A-20)
o0.7365 two-way

Note that 1/6A changes rapidly between f-4 and f_3 where I/6A is zero.

A.3 f-0 POWER SPECTRAL DENSITIES WITH AN INNER SCALE

The PSD pf Equation A-l0 can be used for p > 3 only. A more

general form has b:en given by Shkarofsky1 3 as

(2 'foto)'J/2 (to/fo)1/2 % /2 [2irto/f2 + f2o]"l

S(f) = (A-21)
( (1)2w (foto [2wtoFf2 + f2])J/2

which depends on both an outer scale fo and an inner scale to. This

PSD, which is shown schematically in Figure A-3, is valid for any p. For
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Figure A-3. Schematic diagram of the power spectral density with an inner
and an outer scale.

frequencies in the range fo << f << t-1, S(f) has an approximate f-'j

0 0

frequency dependence. Once p has been fixed, the outer scale fo is

determined by the decorrelation time. The other scale is left as a param-

eter. Because an f PSD provides a slow scattering limit to Rayleigh

fading environments, the subsequent discussion will consider only p = 3.

Setting V 3 in Equation A-21, the corresponding autocorrelation function

is

/ ÷(2wfoT)2 K11[/02 + (2sfoT )21 .
p(T) =KI (A-22)...

KI Ig

where

fq c in th (A-23)
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In this case, the one-way and two-way decorrelation times are computed by

solving the equations

/02 + x2 K, [V62 + x2] 1 (A-24)
sK (0) e

82+ y7 K1  + _ i(A-25)
8K1(() /-e

for x and y where

x = 2ff o TI (A-26)

y = 2f for 0

and where x and y are now functions of the parameter 8. Once x and y have

been obtained, Equation A-18 is used to determine 6 as a function of 8.

The scale factor A is determined by evaluating Equation A-5 which yields

A2 : Ko(o)x2  (A-28)
a K1 (a)

The scale factor 6 and the scaling for the mean duration of fades and
flares (1/6A) are plotted in Figures A-4 and A-5 respectively with 8 in

the range 10-10 <_ < 1. Note however, that as 8 approaches unity, the

range of frequencies for which the PSD has an f- 3 frequency dependence

shrinks to zero. For 8 < 10-3, Figure A-5 shows that 1/6A is only weakly

dependent on 8, and for 8 . 10-2, Figure A-4 show% that 6 is independent

of 8.

All that remains to complete this discussion is to relate a to
physical quantities. To this end, Equation A-26 is used to related fo
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Figure A-'a. Scaling of the mean separation and duration of fades and
flares for an f- power spectral density.
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to the decorrelation distance and the solution of Equation A-24. The

inner scale t-1 can be estimated by noting that physically the PSD must go
0

rapidly zero for frequencies that exceed the radio transmission frequency

fRF- The inner scale is then n/fRF where n is a parameter which is

the order of unity. The value of B is then determined by

B/x(o) n/(TlfRF) (A-29)

where x(B) is the solution of Equation A-24 which is itself a function of

0. This equation is easily inverted by plotting a versus x(s)/B which is
equal to t 1 fRF/n. The results are shown on Figure A-6. Becouse x(B)

for B < 10-2 is independent of a and constant at a value of 1.658, 6 is

accurately given by

1 = 1. 6 5 8 n/(TifRF), B 10-2 (A-30)

0

-2 I

-6

-a-

-5

I-l

-14

-II

2 4 6 a 10 12 14 16 1 20

log(-r1 I/n)

Figure A-6. 0 as a function of r1 and the transmission frequency fRF*
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The parameter B is a function of the decorrelation time and hence the

scaling factors are also functions of TI.

The scaling factors for satellite systems with transmission

frequencies in the range 250 IHz to 23 GHz are shown in Table VII for slow

fading conditions. Typically, the one-way scalino factor I/A is 0.18 and

the two-way scaling factor 1/6A is 0.21.

Table VII. Slow fading (f- 3 PSD) scaling factors for satellite systems.

1/6A

fRF(CHz) Tj (sec) log(ý)* 6 one-way two-way

0.25 20 -9.5 0.844 0.182 0.216

1.2 10 -9.9 0.844 0.178 0.211

7.5 3 -10.1 0.844 0.176 0.209

20.0 2 -10.4 0.844 0.174 0.206
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APPENDIX B

LEVEL CROSSING PROBLEM FOR BISTATIC PROPAGATION WITH

INDEPENDENT SECOND ORDER STATISTICS

The mean number of level crossinqs is calculated in this Appen-

dix for bistatic propaaation where the second order statistics of the two

paths are independent. The amplitudes of the one-way voltages of the two

paths are assumed to be Rayleigh distributed and independent. A.

Let pI(T) and P2(T) denote the autocorrelation functions of the

two paths. Both the power spectral densities, or equivalently the func-

tionAl form of the autocorrelation functions, and the decorrelation times

are allowed to differ. The calculation of the mean number of level cross-

inqs then follows the deviation of Section 4.

The ,joint probability density function of the amplitude and the

time derivative of the amplitude for the ith one-way propagation path is

given by Equation 4-11 as

r exp(-r1o 2 ) exp(-•Tiv 2 /4Ao 2)-
f(r,r) = 4Ao/~i(B-1)°'• V47rA412/TI, i

(i = 1 or 2)

where Ai is defined in Equation 4-4 and 'li is the one-way decorrela-

tion time of the ith path. The joint probability density function of
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the amplitudes s and t of the two independent paths and of the time

derivatives of s and t can be wr~tten as

te-(s s2+t2 )12a2 ep[ .( T2 ,1s'lA2+•,t2tj2)/42 ]
2x 2 1 2 )/o2

f 4 (4A 1L%201!
2/T1, T], 2 )

(8-2) j A"- a

Usinq the same chanqe, of variables that was used in Section 4, the Joint

probability density function of the received amplitude z and the time

derivative z becomes

0 f ds ds zs" '

(B-3) "

r 2 2/2+ A 2 23 21 21

exp{.s +Z/5+1 ;/2A1 +T 2,2(i s. 2+z2;2s. -. 2z;;s.)/2,,2f1o2

Only the s inteqral can be performed in closed form which reduces Equation

8-3 to

f(z,z) = (Tjjz/2/V1A 1
5 ) 7 ds (.¢r;•,z2)-1/2

0

Sexpf-[s +z-s T2 2  s(•s"+z 1)-.;/2A2]/2o21 (8-4)

where

2 2 2 2
i= 1A2/(TI 2A1 ) (B-5)
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The mean number of level crossir~gs is obtained by substituting Equation

B-4 into Equation 4-3 and performing the integral over ;. After changing

the variables in the remaining integral to u = s/a, using Equation 2-12 to

write a 4 in terms of the mean received power <S>, and using Eq~uat ion 2-26

*to write rl1 in terms of the decorrelation time of'the received signal,

the mean number of cross'dg of the power level L becomes

I 16L,w(<5> 11/2

(B-6)

J 7 /+4L/<S>u 4  expij-[+4L /<S>u4]U2/121 du!
0

This expression reduces to Equation 0-26 when -rland I,2 an

1 62
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APPENDIX C

MPS RESULTS

The first four moments of the amplitudes of the five MPS reali-

zations that have been analyzed for this report are presented in Table

V111. Each realization consists of 16384 amplitude samples and the corre-

sponding phases. The data have been normalized so that the average power

is unity. Hence <z2> is identically one in each case. The other moments

show close aqreement with Rayleigh values.

Table VIII: Amplitude statistics of the W'S data.

<z">/E[ zn]*

Realization n =1 n= 2 n= 3 n 4

8091 1.001 1.000 1.001 1.005

8094 0.993 1.000 1.021 1.058 ,

8143 0.998 1.000 1.001 1.000

8642 1.000 1.000 0.999 0.995

9069 0.994 1.000 1.013 1.034

*<zn> denotes the average from 16384 MPS samples

E[zn] denotes the Rayleigh value
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The realizations differ in the number of samples, n, per decor-

relation time which varies from 72.8 for MPS 8091 to 3.35 for MPS 8143.

In the latter case, the statistics of deep fade durations will be unreli-

able because almost all of thE deep fades will last for just one sample.

With this in mind, the means, medians, standard deviations, and mean-to-

standard deviation ratios are presented in Tables IX through XIII for the

five VPS realizations.

Table IX: Stitistics of fades for the MPS 8091 realization.

OurrAtion $ of Fade-, Separation of Fade,

110) n#' N(l o No' Mean* Sid . Mr.Ii.An N mean' Std. Pev.* Median* -Ii

(1 22. 1.0 I3 oo ], 3.10 1.33 0.77? 0f.900 13? 3 .93 3.59 13.7 1.7

L", 0 .? 137 0.64', ().(Q3 (1 45,1 (). Q 30 16 13.64 13.70 1. I 3.7N
S. S., 7? . 0 1 . 11 32 0 0.4 06 0 .40 6 0 .1 5% 3. 27 41 l . Y 3. 44 1.61 1 .3 0

. .8 7. 1 0.716h R3 0.24q 0.254 0.1 0.9 q3 .9 8 7 .71 2.?2 7.1 3.2?

*; '2.P 0 .'A91 44 0.1s3 0.330 0.096 3.20 4.1 5 17 5.46 3.63 1.944

.N,n$40r of sample' of the duFrat Ion or ,eparat Ion

Ni'$N t r of volfailP sample• per To

Table X: Statistics ef fades for the MPS 8094 realization.

Duration nf Fades Separat Ion of Fades

(01) n < N(t,,O)> No Mean* Std. Dev. Median* / No' Mean* Std. Dev. Median* ./o

0 3- .3 0.137 312 1.75 13.63 .24 1.A7 333 2.71 1.92 2.28 1.43

-3 19.1 0 875 371 0.924 f 0.7, ° l 0.672 1.17 370 2.28 1.48 3.91 1.54

.5 10.3 0.067 365 0.655 0.539 0.466 1.21 364 2.32 j.64 1.93 3.43

S1 0. 0. 0.288 0.07 .7 53 3. 2.78 2.43 .20
-15 19.3 0.3P3 16V 0.137 O.lU9 0.103 13. 2 2613 5.19 S 17 3.2 3 .00

Normalized to yo

÷Nunher of samples of the duration or separation

"Nunber of voltaqe samples per io
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Table XI: Statistics of fades for the MPS 8143 realization.

Duration of Fades Separat ,•n of Fades
(0) n** (N(L.,o)> Wo t Mean* Std. Dev.* Median' u/o No Mean' Std. Dcv.* Median* p/c

0 3.35 0.631 1543 1.99 1.7? 1.19 1.16 1542 3. 1 1.89 2.39 1.67

.3 3.3-•5 .72, Il7s 1.09 0.874 0.598 1.25 1774 2.76 1.54 2.09 1.79

-5 3.35 0.MB 1686 0.807 0.607 0.2"9 1.32 1685 2.90 1.80 2.09 1.61

-10 3.35 0., 1052s 0.460 0.290 0.299 2.58 1050 4.66 3.95 3.29 1.18

.15 3.35 0.184 45? 0.355 0.146 0.799 2.44 451 10.7 10.3 7.15 1.04

Normalized to TO

*Number of s$pples of the duration or separation

*Number of voltaqe samples per wO

Table XII: Statistics of fades for the MPS 8642 realization.

N o o datoion of Fades Separation of Fades

(dBi) n" I(.s) No* Mean' Std. Dev.' "edIan' Us/6 No* Means* Std. 0ev.' Median' u/o

0 3.48 0.565 1328 2.24 1.93 1.44 1.16 1372 3.54 C1.14 2.87 1.65

-3 3.48 0.650 1529 1.21 0.948 0.574 1.21 1528 3.08 1.69 2.30 1.87

.S 3.48 0.625 1447 0.885 0.69A 0.287 1.27 1446 3.25 2.02 2 58 1.61

-10 3.48 0.399 939 0.497 0.347 0.287 2.43 938 5.02 4.20 3.44 1.19

-15 3.48 0.17? 404 0.371 0.209 0.287 1.78 403 21.6 22.0 7.18 0.967

Normalized to To

4Nsjeer of samples of the duration or separat ion
"44 Numer of voltage samples per TO
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Table XIII: Statistics of fades for the MPS 9069 realization.

Duration of Fades Separation of FadesWIS)

(dB) n*4 <N(L.,,)> No0 Mean' Std. Dav.' Median* 0/o No' Mean* Std. Dev.* Medi n*' u/.

0 10.5 0.554 433 2.30 2,44 1.34 0.943. 432 3.61 2.60 2.77 1.39

-3 103. 0.664 519 1.21 1x08 0.763 1.12 518 3.01 1.93 2.48 1.56

-5 10.5 0.616 481 0.923 0.801 0.572 1.15 480 3.24 2.28 2.48 1.42

-10 10.5 0.442 345 0.453 0.354 0.286 1.28 344 4.52 4.60 2.86 0.983

*15 10.5 0.261 204 0.259 0.184 0.095 1.41 203 7.67 8.93 4.86 0.859

FNormalized to o"

4Number of samples of the duration or separation

"Number of voltaqe sapples per to

The average and the standard deviation of the MPS scaling.
factors for the mean duration and separation of fades and flares have been
calculated from the ratio of the mean number of level crossings for the
MPS realizations to the mean number of level crossings for a Gaussian
power spectral density. The mean scaling factor is calculated as

<1/A> = b. <N(L , 0 )> G /<N(L,11T MPS (C-I)

where Lt, I = 1 through 5, are the five levels of the tabulated MPS

data. The mean duration and separation data are not included in the
average because these values are more sensitive to the number of amplitude
samples per decorrelation time and are not independent of the mean number
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of level crossings. The results are shown in Table XIV. Realizations
8143, 8642, and 9069 all have average values of 1/a of about unity which
indicates that their power spectral densities are nearly Gaussian. The
power spectral densities of the other two realizations can be estimated by
using <1/0> and the one-way curve of Figure A-2 to find an effective
f-0 dependence. The power spectral density is then approximately

f ~-3 -8 f or MPS 8091 and i S f~ -4. f or MPS 8094.

Table XIV: Average Scaling Factors (1/h).

Realization <1/A> Std. 0ev. (l1/0

8091 0.617 0.054
8094 0.763 0.030
8143 1.077 0.240
8642 1.180 0.238
9069 1.048 0.015

87



88



APPENDIX D

PROBABILITY DENSITY FUNCTIONS AND CUMULATIVE
PROBABILITY DISTRIBUTIONS FOR ONE-WAY SCINTILLATION

The probability density function histograms and cumulative

distributions of the duration and separation of fades or flares under

Rayleigh fading conditions with a Gaussian power spectral density are

presented here for oneway propagation. All levels are relative to the

mreait power. In a few cases noted on the figures, the data have been

rebinned to give the probability density histograms a more continuous

appearance. Otherwise, each interval of the histogram corresponds to one

sample of the received voltage sequences. The mean (pi), median (M), stan-

dard deviation (a), (all normalized to TO and number of samples are

indicated on the figures. For fades 15 dB below the mean power and flares

5 d3 above the mean power, the conflicting conditions of short durations,

which requires a large number of samples per decorrelation time, and long

intervals between events resulted in about 10 and 20 percent of the separ-

at ion data respectively exceeding the separation histogram array size.

However, because the moments were calculated from the raw data and less

than 20 percent of the data were effected, the mean, standard deviation,

and median values are uneffected by the improper array sizes.
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