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1. lut roduction

The important aspects of cancarrent language design are communications, synchronisation
and composition of processes, The fiest two have becn ovtensively studied, focusine
questions such as conivol, seheduting and nondeterminisor, and problems such as deadtock
starvation and fairmess, Less has been said about how cotnplex processes may be composed
from other processes, and ultimately  from elementary  sequential operation: and
commuunications primitives.  This paper discusses grouny composition techniques, and the
conmmunications interfuces between processes when they are organised as a group.

When a message is sent to a group of processes as a whole, one or more of the component
processes may receive it We distinguish two aspects of grroup message reception in systems
where messages are typed. Frstly, processes are typicalty provided with the means to sclect
messages for reception, by scheduling arrangements such as system queties, or by user code
involving local variables to choose between messages o7 different types. We deline group
input protocol to be the input behaviour of the group (15 a whole, for all message types.
Secondly, we define for each message type, a group policy which determines the disposition
of muessages within the group.

We shall argue that policies have more o do with the transactions handled by groups than
the reception of individual messages by processes, and are consequently beter expressed at
the group level. Because the control of group policy  will be predicated on transaction
attributes rather than process variables, and because the control issues seem simpler, a
separate notation is proposed for group policy.  The notation also provides for the
encapsulation of one process by another without the use of shared variables.

2. Processes and Modularity

anguage proposals for concurrent systems usually  define a basic component, an
async hronous process with facilities for external commu vications and synchronisation. The
process is basic in the sense that it is the building mosJule of concurrent systems.  The
details of the propuosals vary a great deal. and we shadl mention some which have an
influcnce on the way processes may be composed together,

One ditference is whether communications is mainly by access to shared memory, or by
muessage passing. o shared memory systems (Simulad Y [Dahl 70). Monitors [Hoare 74),
Concurrent Pascal [Brinch Hansen 77}, Modula [Wirth 77]). processes communicate by
writing and reading shared variables.  Access to shared objects gives a tight conpling of
processes and can result in efficient implementations.  Synchronisation can also be
achicved by setting and testing shared variables, cither Gy ordinary assigntitent o1 through
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special signalling facilitics of the language. ;

The curly proposuls  which  eschewed  shared memory  (PLEES  [Feldman - 79,
Communicating Sequential Processes (CSP) [Hoare 78], Distributed Processes (DP) [Brinch
Hansen 78] Actors [Hewitt 77)) promoted message passing in various forms on the grounds
of simphicity, reliability and clanty of expression, at least with respect to communications
and synchronssation. Tt s interesting o note that some of the most recent proposals
(Synchronising Resources (SR)[Andrews 81, E-CLU [Hiskov and Scheitler 83, Modular
Processes (MP) [Choi 811 allow sihared variables (with the rezommendation that they be
used sparingly and with care). The sharing of variables occurs within an exphat grouping
of processes (viz, the resource in SR, guardians in F-CLLU and the node in MP).

Communications and synchronisation issues are often difficult to separate in particular
language proposals, for itis frequently the case that both aspects are involved in the same
Linguage feature: For example, the input and output commands of CSP are the sole means
of communication grd synchronisation. These issues have been neatly separeted by Choi
[Choi &1]. where for cach communication event there is o process which provides a service,
and a process which is requesting a service (the sender of the message). Synchronisation is
gencraliy the concern of the sender of the message, and there are three possible
arranzements, the no-wait send, the wait send and the remote call, With no-wait send. the
sending process does not synchronise with che destination process, and continies execution
after sending the message (e.p. PLIEFS). With wait send. the sending process synchronises
with the receipt of the message by the destination process, then both processes continue
independently (e, CSP). With remote cail, the sending process synchionises with the
completion of the service regaested by the sender and invoked by the reeeipt of the message
(c.e. DP).

From the point of view of the receiver, three kinds of service are identificd. message
service, procedure service and subiprocess service. A message service ssmply veceives the
message, perhaps assipning values 1o local variables in the recciver, and the receiving
process then continues normal execution. I the message requires a reply, it must be
cxplicitly constructed and sent by the receiver as a noew communication (c.g. CSPoand
PLIES).  With procedure service, message reeeption invokes a procedure to handle the ,
messags, which may also construct the value of a reply (the "out™ variables in DP and Ada
Hehbiah 79)). Lastly, a service may be provided by a process rather than a procedure. for
greater concurrency.  In NP, subprocesses are created dynamically o handle subprocess :
service requests, while in SR, all requests are handled by processes, but the processes are
not dy namically created. The arrangements for sending and receiving deseribed above are
Jarpely orthogonal, and all memingful combinations have been proposed in i literature,
The proposals Tor groaping processes advanced i this paper permit the consiruction of
process gronps which achieve all the arrangements for sending and receiving sunveyed
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above,

Communications is mediated by arrangements such as sender-re- zeiver pairing (as in CSP),
ports [Baizer 71, message types [Milne and Milner 79) u asactions JEeldman 79).
conctructions [Barter 78], pattern matching [Hewitt 79) and vari: was notations such as Path
Fapressions {Campbell and Fraberman 74} and Input Tools foan o Ten Bos et al 81],

Major differences exist in the structure of the process os themselores, largely determined by
the Kinds of service provided. In CSP, the basic process is o miply a list of sequential
commands, using a nondeterministic guarded command notatio v (o control input, output
and ordinary sequential exceution. the commumications comma s appear as in-line code.
In contrast, DP provides a process with service proce dures whic 1 may be called remotely,
using a monitor-like discipline. A process may have a conventional process body as well,
and the exceution of the main body and the service procedure: . interleave 1 an unusual
voay [Welsh et al 80). Ada has both in-line message receivers (ent rics) and communications
procedures, inan attempt o combine the advantages of CSP a d DP. The proposals for
grouping processes in this paper are independent of proces s structure:. the enample
program at the end of the paper uses in-line code for services, bt itis casy to see how the
other kinds of service may be used.

2.2 The Composition of Systems of Processes

A simple way to compose processes is 10 form a loose group ng of processes within a
common communications environment, with a global convention for process names and
messages.  Various refinements of this model have been propos od which provide ways of
restricting the scope of these names. For example, Milne and ivifner use an operator to
restrict the visibility of port names [Milne and Milrer 79, CP uses textual nesting of
processes (parallel commands) and Algol-like scope rules for acce ss o variables in different
processes. Thus there are shared variables, but a "disiointness™ 1 roperty ensures that there
is no shared write access.

Textual nesting has also been used o construct hicrarchical grou s of processes with scope
rules on process names to hide the process structure of groups: from the point of view of
the sender of a message, the destination is simply a process. ‘The destination may in fact be
a group of processes, and the primitive process within the gsroup which receives the
message is determined by the group composition andl the type « ¥ the message [Rarter 78].
Structure hiding has been achieved in CSP by the use of a "hole ~in-scope” rule whereby a
process name is known in all of the enclosing processs but not it the numed process itself;
structure hiding is used in o stepwise refinement programming  imcthodology, where cach
refinement step adds an additional process o a proup in ot der 10 moedify the group
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behavionr [Hoare and McKceag 79 Shapiro has deseloped this methodology through an
avtension of CSPwhich adds some flexibitity o the naming conventions for processey and
message constructors, and applicd it o a large system design [Shapiro 80).

Some recent proposals (SR, E-CEU, MP), influenced by the additional considerations of
distributed systems, have defined a middle-level structure involving a group ol processes,
and some shared objects (usually variables).  This grouping may be regarded as the
counterpart of @ processor node in g network of processors, The authors of SR and MP
regard these special groups as being different to processes, and do not allow wbitrary
nesting of processes und groups.

The most interesting composition ideas have come from languages which were not
primarily intended or concurrent programming, but had a strong object-oriented approach
and with particular applications in mind (Simula67, Smalltalk [Kay and Goldberg 77,
Ingalls 78], Thinglab [Borning 81] and Lisp Machine Flavors [Cannon 79, Weinreh and
NMoon 81]). The reason is that without the complication of concurrency it is natural to
caploit the advantages of shared memory, and this has been done in most imaginative ways.
fn these fpuages we see the composition of processes to mean the actual mergmg of state
spaces, process bodies and service procedures, involving a much tighter composition than
the loose coupling deseribed cartier. Simula67 introduced the idea of elass coneatenation,
where a class could inherit the attributes of another class. By this method. superclass
hicrarchies could be constructed. The original intention was to provide language support
for program modularity, where the modules (clisses) would correspend closely with the
conceptual layers of a systeim design, Class concatenation also foreshadowed  unother
imiportant kind of group composition where one object encapsulates another (see later).
The adea of class introduced by Simula67 has been extraordinarily influental, even though
some of its details have been criticized (the details ol concatenation, Algol scoping and
remote aceessing of class attributes).

2.3 Superclass Schemes and Process Composition

Languages such as Simula67 and Smalltalk allowed class objeccts o inherit attributes
(procedures, methods and even vanables) from other classes by class concatenation.
However, the structures which can be built this way are strictly hicrachical, and muay be
classificd as single superclass systems, Multiple superclass systems such as Thiglab and
Flavors allow inheritance lattices. The inheritance mainly applies to the inheritance of
methods (which may be viewed as message services), although there may be some state
space sharing as well.

In the Flavor system, a avor (o class-like specification) can be constructed from other
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flavors by atechnigue called "mixing”. A mixed Navor neny have compaononts such that
]

maore than one component has a method with the same name; an important coatribution of
the Favor system is that i an objeet of the mixed Navor is instantated, an<d a method of

that object is invoked, more than one method may be excented trom the set of component
methods. The programmer selects a one of a set of method combinations (o contiol which
component methods are exeeuted, and in which order. The dotzolt method combination is
called daemon combimation which allows mcthods to be classilicd as before, primary o after
methods: all before methods are handled first, then the single pomary method. and finally
the afier methods are handied. Within the betore and after groaps of methods, method
order is determined by the order in which component favors are mined o form the
composite flavor (in fact a tree walk order). In cvery case, the message handling policy is
statically determined by the text of the flavors and methods. Our proposal difters in several

ays.  Fustly, the specification of group policy is separated (rom  that of group
compuosition; sccondly, policy is expressed only at the group level, and not within methods,
and finally, dynamic policies will be allowed (dynamic in the sense that method ordering
can change depending on the exceution environment).

3. Communications Policy

In this section we address a question which is fundamental o any proposal for forming
processes into groups, namely how is a message received within a group when it is sent 10
the groep as a whole? This question may be simplified by using message types and ensuring
that there is always exactly one process in the group able to receive messages of that type.
We define group policy to be a specification of how messages of a given type will be
received within the group, and this will be the key concept upon which other ideas
concerning transaction handling and encapsulation will be based. We shall now examine
morc flexible policies such as broadcasting to all processes able to receive the message, or
the selection of some subset of those tligble. Of course policy may he implemented in an
additional "policy manager” process (dispatcher) associated with the group, but we shall
describe pulicies in a descriptive notation through policy expressions. exaimples of which
now follow.

Consider a group of processes P, and a message type "msg™. et (PL, P2, ... Pn) be those
processes of P which accept messages of type msg. ‘Three basic policies are now given by
example.

0 A policy of selection for P is written: policy msg:(P1{] P2)
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Onlhy processes P and 12 are considered as possible destinations for messages of Lype
msg. The choice between P and P2 s nondeterminisue, all other things being cquil,
(An mplementation coutd choose the first process ready 1o receive.)  For example,
constder a print request sent 10 a pool of print resources, and the request may be
satisfied by any menber of a subsct of printing resources (.. those three which are
nearby ). The policy for the group "printer-pool™ may be expressed:

policy print-request: (print-resource(1) [} print-resource(2) [] print-resource(3) )
0 A policy of broadcasting for P is written: policy msg:(P1 // P2)

Both PT and P2 receive the message. but the order is unspecified.  For example, a
requiest for some services may also be logged on an accounting file, and registered
with a load monitor.  The policy for such an encapsulated printer pool may be
expressed:

policy print-request: ( printer-pool // accounts // load-monitor )
0 A policy of serial broadceasting for P is written: policy msg:(P1 ; P2)

Both P1 and P2 receive the miessage, dbut process P1 must complete the processing of’
the message before P2 starts. Serial broadeasting is Jikely o be most useful in groups
with shared memony: for example, it is the defanlt policy for calling combined
methods in the Lisp Machine Flavor system,  Both forms of broadcasting require a
convention when used with remote call, to determine which service sends the reply;
see later for default policies.

An important degenerate case is policy msg:(P1). which simply directs all messages of type
msg to P1.

A policy expression describes the disposition of every message received by the group, and
therefore may be regarded as a repeating construct.  (Additional notation will bbe
introduced later to specily repetition of inocr components). A policy expression for a
group cannot directdy affect the eeption of messages oy that group; policy only
determings the disposition of a 1essage whe it is recenved by the group.

Compound policy expressions may be formed in three obvious ways:
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0 By nesting groups as in:
policy [oF group P is policy nesi(P1]] 1P2)
policy for group Q is poliey misg(Q1 [} Q2)
pohicy for group PQ is policy msp:(P /77 Q)
where a message for group PO is sent o PLor P2 and also 10 Q1 or Q2.

0 By expression nesting, c.g. policy for I is policy mse: (P[] P 77 (P3 [} )

where a message for group P s sent o PLor P2 and also 1o P3 or P4,

0 Asasequence of policies, policy msg:((P1[} P2y >> (P3 [] P4)

The initial policy is (P[] P2). which directs one message to either 1 or P2, The
policy then changes to (P3 [] P4y, and after that the policy expression repeats, A
scquence of policies achieves asimilar effect to actor replacement [Hewitt et al 79),

In a language using policy expressions, some convention for default policy would be useful,
and perhaps some way of defining message type aliases (a reasonable defiult would be the
selection of a single recciver. using a static criterion such as text order in the group
description, or a dynamic sclection over all eligible processes).

3.2 Policy Model

The semantics of policies are now given as code for a virtual group message handler, The
notation is CSP-like, where "Plmsg™ is the usual CSP wait send of message "msg” 10
destination P. The notation is extended so that "Pamsg” signifies a remote call to Prif a
process Q executes a remote call "Pumsp™ which activates the guarded command "7msg -->
command-list”, then "Pansg™ in Q does not terminate until "command-hist”™ in P does.
Also. the input command "msg" differs from CSP in that it does not name a sender, but
will receive messages of the appropriate type [Barter 78], Phe three basic policies are:

policy msg:(P1 [} P2)  ==> [7msg > [true --> Plamsg [J true --> P2.msg J)
policy msg:(P1 7/ P2) => ["usg > [[ Plmsg ] 7/ [ P2msg ]}

policy msg:(P1:P2)  => [Tmsp -->[PLmsg: P2msg])
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Note that all the virtwal handlers have the same structure, [ LHS --> RIS | where HHS s
abways the virtual input commund for the group, and RHS 1s a simple tunsformation ol the
policy expression. Virtual handlers lor nested policy expressions are similarly constructed
by repeated transformation:

policy msg:(P1[| P2) 7/ (P3[]P4)) =>

[msg --> [ [oue > PLmsg [] true > PLimsg )
// [ e - Plmsg [] true --> P2amsg 1]

Sequences of policies result in sequential compuosition of virtual handlers; the operator
"> takes precedence over the others in deriving the virtr: “handler:

policy msg:(P1>>P2) => [Mmsg-->Plmsg]:[Mmsg- .msg]
policy msg:(P1[|P2) > (P3[JP4)) =>

I[ 7msg > [ true --> PLmsg, [} true > P2.msg J) ;
{ Tmsg -2 [ true --> PLmsg [] truc -> P2.msg []]

4. Commsunications Protocol

The meaning of a process may be given in terms of its input-output behaviour [Milne and
Midner 79). Behaviour can also be cxpressed as the set of all possible communication
sequences [Hoare 78] In the Actor model of concurrency, an actor recciving a message
may change its local state, send messages to other actors and create new actors. The arrival
of a message at an actor s called an event. and local time for an actor is the arrival ordering
of events. Message sending is not important in the event ordering as the model is
asynchronous . However, an event can cause a message 10 be sent, and henee cause another
arnival event; in which case the first event is said to activate the sccond event,
Commumications between actors is represented by such aetivation orderings. 'The meaning
of o program is given by the combined ordering [Hewitt et al 79, Clinger 81).

In this paper we are interested in control over input messages, and input protocol will mean
Just the input behaviour of a process. We shall refer to input protocol as protocol for short
(this s a narrower detinition than used in the literature on networks).

The protocol of a process is determined by the mechanisms within the process for selecting
the next message 10 receive from a set of pending messages.  These mechanisms depend
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epon an abthty o discrmninate Bets eon mesaaees beosotie vlobal aie e el o el
cidermy [Hewnt et al 790 e on the basis ol messeee attnibutes such as tpes seicet and
poonty, Arrival ordering s sometimes tsed nocombimation swith messaee ciinbutes as o
subsidiany selecton criienion (PLEES, COSPOL JRoper and - Barter =H). Foa Doy
mechanisms have been used:

0 Firstly, there are proocoesses which have a process body which convols the sclooion of
the nent message o be recenved, ustg m-fee recene comnends fthe mput oommand
ol CSP and the enty of Ad). Focal variables cons be tsed 1o contro® miessage
sclection by normal ow of control and by zuardimg mput commands,

o Sceondlyv. there are schemes which have service procedures or processes which are
directly accessible to other processes. without the controb of o "mam body ™ (e SR,
F-CLU). Local variables can be used to guard access 1o services.

o Thirdly, message reception can be entirely determined by arrival ordering e Actor
Languages, messages can b toped (mplicith by pattern), and the pattera may be
miatched against a set of alternatve actions, bt the paticrn matching determiacs the
body which is to be evecuted, not the message 1o be selected. While Limguayes siuch
as CSP have “choice nondeterminism®™ which affects message selecton ordering,
Actor Tanguages only  have "wrival nondetenmimsm”™ due o asynchiionous
commumeation [Clinger 81},

0 Finally, there are languaces whoch use o separate notation o contral micssage
scleetion, such as Path Fxpressions [Campbell ond Hiberman 4] and Inpuc Tools
fvan den Bos et al 81].

Path Fxpressions are based on regular expressions, using the names of the service
procedures of a recource. As well as schedulmyg service requests, Path Bxpressions also
control the amount of concurrency in the resource services.

T1he Input Tool Process model provides an event-driven model based on input events,
controtled by input rules.  An Input Tool has o name, an input iule. a tool body and an
imtialisation scetion. Tools may be composed in parallels or nested. An mput rule s based
on a regular expression noetation, using the names of other tools. 1 an ipuat rule is
matched, the ool body is exceuted, and that ool name may cause further matchyrg inan in
input rule at a higher level. Direet commuaications between processes inmvalves a mateh
between asend command in one process and a receive rule in another (a ool may specify a
receive rule instead of an input rule). A puarser uses the input rules to dvnamically construct
the currently "active” structure of input tools G tree for cach proces, whose terminal nodes
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are basic tools with receive rules). hnputs swhich do not nuteh the carrent stracture are
ipnored. Thus put rules control input protocol and, as we shall show, some ispects of

what we have callad policy.

Input rules can be used to control bath policy and protocol (indeed the authors do not draw
the distinction). Because the Input Tool model has sirong simikarities with our poficy
proposals and strong differences with our treatment of input protocol, we shall discuss the

muodel in somie detail;

4.2 The Input Toel Model

The example of a printer server is given [van den Bos et al 81]:

tool printer == input (fisst-line; jmore}: source --> linch)$ end 5
bool more: process set source; |
tool first-line = input line end 1

il more _
then source ;= {sender}
@i
end
tool line = receive string msg;
more ;= (msg < EOF);
if more
then lineprint(msg) 1
else skip-page |
fi J

end ‘
1
end ’ ;

[Kbeolcan-expression>]: for guarding, The notation “source =->™ restricts input messa2es o
be from a particulae sender, in this example it is the one bound by the assignment “source
c= {sender}”.

Me input rule uses ™" for sequences of matches, "$" for repetion,  and

When the ool "printer™ s activated, the parser activates the wol "first-line”, and through
i, the tool "line™; "hine™ is & basic tool which receives amessage "msg”, which matches its
receive tule, and so the body of "line” is executed.  This matches the input rule of
"first-fine”, and s its body is executed, and the component "first-line” of the top-level is
matched, The parser now moves 1o the next component of the top-level input rule: this
will be "jmords source --> lined™ if the boolean guard "more™ is true, but if "more™ is fulse
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thut component will be invisible o the parser, and so the nest component will apain be
"irst-line”,

A second eaample shows anput rales used o direct @ message ol the same type o
alternative tools:

tool squash = input |go-on|: (star -+ nostar)$ end
tool star = input character(c): je = "*"| end

end
tool nostar = input charccter(c): Jc O "*"| end

if ¢ == FOF then go-on ::= false fi
end

init ... ; go-on ;= true end
end
The operator ™+ " specifies a choice between (wo tools, and the input rule “‘character(c): Jc
=2 " uses aopost-test on the value of the parameter "¢”, so that the post-test must
succeed if the rule is to mateh,

An cxample of o bounded buffer is given to Hustrate an input rule controlling a simple
input protocol; the example is given here in abbreviated form:

tool buffer = input (Jcount < sizel: put + Jeount > 0]: get)$ end

tool put = receive char ¢;
end
tool get = receive;

end
end
‘The parser does not activate the tool "put” if the bulfer is full, and similarly doces not

activate the tool “get" if the buffer is empty. The boulean guards are computed within the
badics of put and get.
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The example progeams show three vses of input rules, The fist example shows an input
rule spectlying a message poliey: aning ut line is processed by cither one oi bath teais. The
purpose 1s to provide some encapsulation of ol “fine” by ool “first-line”. This particular
enc: psulation does not peneralise wetls encapsulation will be treated later, Hhe third
cvample also spectlies policy tor inpat characters, using the tool "star™ or "nostar”
depending on the data. In both examples, the input rules affect pohey but not input
protocol. o the scecond examiple, the input rule controls protocol in the sense that it
dircctly determines the scheduling of taput requests. Inall three examples the mput tules
avercise control through share d vanables.

The use of prograny variables i these expresstons allows arbitrary interactions between the
evpressions and the code of the processes controlled. But typical protocot and scheduling
descriptions do involve vanables which are focal 10 (and sometimes shared between) the
processes concerned; this is & strong 1eason not 1o place these deseriptions in a separate
expression, but 1o teave them in the code of the processes themselves. On the other hand,
we shall show that policies have Tess to o with individual processes and their variables, and
mor. o do with groups of precesses and miessage sequences; for this reason we shall argue
that groun policy 15 better placed in @ separate description associated with the group, and
that a scparate notation is uselul for its description.,

Becuuse the method of process compiesition suggested in this paper does not involve
message re-scheduling, the protocol of a group is simply the merge of individual protocols
(i.e. all orderings which preserve the pardal ordering ol the component processes). Next
we show how policy and protocol may interact without using shared variables in cither the
processes or the policy expressions.,

5. Policy-Protocol fnteraction

Consider a group of children and gifls wriving,

The group is: (Sharon, Carol, Jenny, Michael)
The moessages are: (g, boy-giflt, girl-gift)

Some example policies are:
policy gift:(Sharon > Carol > Jenny 3> Michael) -- i.e. take turns.
policy pirl-piic(Sharon [] Carcl [] Jenny) -- ie. choice

policy bor -gift:(Miclael) - 1.2, single receiver

The three policies are independent - e.g. the policy for messages of type "gift" has no
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mfluence on the policy for messages of the type “pirl-gift™.
Consider the tollowing policies:

policy gilt:(Sharon /7 Carol 7/ Jenny /77 Michael)
policy gift:(Sharon ; Carol : Jenny : Michael)

tn these two policies, for every incoming message of type "gift”, four messages are copied
to the group members, concurrently in the former policy and sequentially in the latter.

The policy for "girlgift” is not fully determined by the policy eapression; an
implementation may have some additional criteria for making the choice, such as choosing
the process which has been waiting longest for g message of that type. (An alternative
strategy s 1o choose without consideration of w hether processes are ready or not, and wait
il the chosen process is not ready; this can fead to more deadlocks than the first strategy).
Ruther than regarding the previous as an miplemientation issue, the selection method could
be part of the language definition and exploited 1o schedule message reception or
synchronisation; but this encourages o dangerons interdependence between processes in a
way which undermines modularity and clean interfacing. We now  ¢xamine some
policy-protocol  interactions  which  depend  only  on more  general  aspects of
communications:

o A process may terminate, which is a most drastic change of protocol.  The most
desivable behaviour with respect to group policy if a component of the group
terminates will depend on the composition method. 1 the terminated component is
composed with the policy operators "//7™ or "|]", then the process may be dropped
(dynamically) from the policy provided that there is some live component 10 receive
the message: if not, the group should abort.

0 A process may close a typed message service, which is similar to termination, but only
with respect to that message type and the corresponding message policy.

|
o  The policy for a group is by definition a repeating construct, and as such associates
with message sequences rather than a single message. The policies given carlier could
have madde this explicit with a repetition operator such as the Kleene star, e.g.: policy
msg:(P1 [} P2)*.
} An explicit operator is necessary to express repetitions of policies within sequences of

policics, ¢.g.:
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policy msg:((P1 [} P2)* >> (P3 [] PH*)

In this policy, a sequence of messages is dispatched under the policy (1°1 [] P2)*,
before the policy changes to (P3 [] P Some means of breaking the sequence is
required, and we propose an explicit break-policy signal ritther than a test on a
program variable, A logically associated sequence of messages is usually called a
transaction. it is uscful to strengthen the attributes of o transaction by
sender-receiver bindings, and two  operations are proposcd  for this purpose:
attach-sender and break-sender.

break-policy has the following effect: If the current policy is part of a scquence of
policies, and not the last policy in that sequence, the next policy becomes the current
policy; otherwise the break is passed up to the next level, if any. When there is no
"next level up” (the group is not a component of another group), the policy at that
level does not signal a break, but restarts the entire policy expression at that level,
(Repetition in policy expressions and the break-policy operation are simikar to catch
and throw in some versions of Lisp [Weinreb and Moon 81}.)

attach-sender restricts all further messages received by the group to be from the
sender of the last message, and this prevails until break-sender is executed within a
process of the same group.

The three policy operations described above will be illustrated in an example after a
discussion of encapsulation.

6. Encapsulation

Simula67 supports a form of encapsulation through class concatenation; a special symbol
inner is used 10 mark a point in the code of the body of a process, to identify where the
code body of the encapsulated may be regarded to notionally execute. A similar
encapsulation facility with respect to method bodies is available in the Flavor system
(wrappers).

Hewitt's serialisers/guardians may be used to concapsulate a  resource process by
intercepting and re-scheduling all communications with the resource. The guardian acts on
behalf of the user of the sesource. The purpose of the encapsulation is to enforce a stronger
protocol than that of the resource itself; i.e. the resource may have been designed without
considering the possibility of carcless or malicious use, and the cencapsulation is then
designed to compensate for this.
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Although shared variables are often exploited to provide the kinds of run time
chvitonment encapsulation possible in the languages doseribed above, we shall only discuss
sharmg through the communication environment, rather than through process state spaces.
The most important communication attributes to be shared are those 10 do with
transactions involving more than one message passing event. Fxamples of transaction
attributes of interest such as policy-sequence bindings and sender-receiver bindings have
alrcady been mentioned.

We now introduce the construct inner 1o provide some encapsulation abilities in groups.
The name inner is borrowed from Simula67, but because it s used without aceess to shared
variables, its semantics is dilferent to that in Simula, A process receiving o message will
execute its command list (or service) up to the occurrence of the inner marker, and skip the
remainder; when an entire policy expression is complete, all command lists whose
remainder parts were skipped are then exectited, in reverse order to the order in which they
wuere skipped. Each remainder will be executed as many times as it was skipped in cach
component of the policy expression.

Thus an cncapsulating process encapsulates the transactions or message sequences of the
cncapsilated process, rather than its cxecution environment; but this is often what is
required anyway. A common use of encapsulation is resource focking, where only requests
of the current transaction are allowed to access the resource, and all other requests are
locked out for the duration of the transaction. To achicve this ¢ffect. encapsulating process
could contain the following code:

... lock; inner; unlock; ...

In the following cxample, inner is used to illustrate head and tail encapsulation in the
printer problem. The example is an extended version of the carlier printer example, with
the added requirements that cach file be printed with a header and a trailer, both
containing information extracted from the first line of the file, and that empty files should
not cause a page-skip.  The programming language usced is the same as that used for the
duscription of virtual group policy handlers {Barter 78] for the sake of example, and it is not
intended that the group policy model associate with any specific language.

[ Printer :;
group-members : (Newfile, Printlines, ...)
policy line : (Newfile* > Printlines®)

.. policies for other message types
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]
1/

[ Newfile ::
* Nine >

[ hine.cof --> skip

[Inot line.cof -->
attach-sender;
print-header(line);
hreak-policy

inner,

print-trailer(line);
page-skip;
break-sender,;

I 11
1/

[ Printlines ::
* Nine >
| linc.eof --> break-policy
[Jnot line.cof --> prini(line)

111

The modularity achieved is typically that which is to be expected from carcful
cncapsulation, The process Newfile only performs operations at the file level, either empty
ones which are skipped, or non-empty ones which have headers, bodies (for which inner is
a surropate), and railers. The process Printlines just handles sequences of lines under some
prevaling policy, breaking at end-of-file.

Note that the sender-receiver binding is now handled in the same process, and that the
lecader and trailer procedures usc the same value of line as their parameters.

Conclusions

Message policy has been defined to be the description of the disposition of messages of the
same type, when received by a group of processes. Group policy applics to all the
processes of a group, but for a single message type. It is proposcd that group policy be
specified in an expression which is separate from the code of the processes of the group,
and in o separate notation, Scparate specification seems natural, for policies are associated
with transactions and message sequences rather than the details of processes; for this reason
it is possible o write policy expression which are independent of process state variables,

e —————




CJ. Barter <17 -

I AMJ

and as well use a simpler control notation based on regular expressions.

Input protocol, on the other hand, applics 1o single processes (or a group as a whole) for afl
muessage types. When policy aspects are separated from input protocol, scheduling is what
ustally remains, and scheduling often has strong associations with process state vantables;
for this reason it is often difticult o specify protocol expressions withont using contiol
constructs which access process state variables.  Accordingly, we leanve conuol over
protocol in the code of the processes themselves.

e e e i

Encapsulation of processes s presented with an unusual ecniphasis on the transactions and
resources which associate with an encapsulated process rather than the state space of the
process environment. This is due to the notion of encapsulation without shared variables,
and to the association b ween groap policies, message sequences and transactions.

We have tried o avoid committment to any particular language within the gencral
message-passing group surveyed, though there are important interactions which will aftect
group composition and policy expression, as well as implementaton (c.g. the prescence of
remote call ina danguage will significantly influence implementation strategies). We have
not argued against shared variables (in small smount), but have shown what is possible
without them. The cxample program given used a CSP-hike syntax, and suggested a
load-and-go cxecution envitonment.  We believe that the deas transter 1o incremental
exceution environments as well, such as provided by Lisp. This coudd be done in several
ways. Firstly, policies could be expressed as Lisp (Lisp Machine) functions, dispatching
messages 1o objects of the appropriate flavor and wrappers: the programmer would have 1o
cnumerate all the flavor mixes requived by the policies. This achieves dynamic control over
over method execution by object replication. A macto technigue could make this casier to
use, Finally, the Ravor and wrapper concepts could be unified, and genceralised so that the
policy for exccuting methods could be controlled dynamically, rather than being tied to the
order in which flavors arc combined.

Two significant problems need immediate consideration. Firstly, we have discussed the
formation of groups from classes rather than objects. and the difference is important in
languages with dypamic process creation. Secondly, we have not examined the question of ,
objects being components of more than onc group (shared objects).
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