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ABSTRACT
This Semiannual Technical Summary covers the period 1 October
1982 through 31 March 1983. It describes the significant results of the
Lincoln Laboratory Multi-Dimensional Signal Processing Research
Program, sponsored by the Rome Air Development Center, in the
areas of multiprocessor architectures for image processing and algo-
rithms for object detection and region classification in aerial recon-

naissance imagery.
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1. INTRODUCTION AND SUMMARY

The Lincoln Laboratory Multi-Dimensional Signal Processing Research Program was
initiated in FY 80 as a research effort directed toward the development and understanding
of the theory of digital processing of multi-dimensional signals and its application to real-
time image processing and analysis. A specific long-range application is the automated pro-
cessing of aerial reconnaissance imagery. Current research projects that support this long-
range goal are image modeling for target detection and multiprocessor architectures to
implement image processing algorithms.

This Semjannual Technical Summary discusses our work in several areas. In Section 2
we present a discussion of our recent efforts in improving the target detection algorithm
developed in FY 82. The improvements lie in modifying the algorithin to detect targes of
size comparable to that of the estimation window.

In Section 3 we present some preliminary theoretical results in the area of vector-valued
image processing. This approach assumes that sensor measurements give rise to multispectral
or vector-valued image picture elements (pixels). Techniques based on signal processing and
detection theory are then developed which differ fundamentally from classical feature extrac-
tion and pattern recognition techniques.

Sections 4 and 5 contain discussions of multiprocessor architectures that are useful for
processing image data. In Section 4 we present an overview of a multiprocessor architecture
consisting of 16 nodal processors that communicate through a butterfly interconnection net-
work, aud we report on our efforts 10 develop an integrated circuit to implement the basic
switching element. Section § focuses on the emerging nodal processor architecture itself and
discusses how certain architectural principles could be used to obtain a high-performance
nodal processor.

Finally, in Section 6 we claborate on some recent improvements (o our image processs
ing facility that we have found useful in the development of algorithms for the processing
of aerial reconnaissance photographs.
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2. TARGET DETECTION

During the current reporting period, we have continued our work in target detection
along two lines. First, we have coded the algorithm for detection of anomalous areas in the
C language and incorporated it as a module in our image processing facility on the VAX
computer (see Section 6). Secondly, we have begun to explore methods for using linear pre-
diction to detect larger targets. Each of these activities is discussed separately below.

2.1 ANOMALY DETECTION

The algorithm for detection of anomalous arcas in aerial photographs (see Refer-
ences | and 2) was originally developed in the APL language on the Lincoln Laboratory
Amdahl 470 central computer. The APL language provided a suitable environment for
development of the algorithm since it is interactive and permits algorithm variations to be
coded and testcd rapidly. We have now incorporated the algorithm as a module in our
image processing laboratory facility. The algorithm was completely rewritten in the C lan-
guage and compiled for more efficient execution. The new version of the algorithm is flexi-
ble with respect to parameter selection and is convenient to use for someone not totally
familiar with its details or with the APL language.

The algorithm as coded still requires relatively large amounts of computer time due to
tue lengthy matrix calculations. We are currently seeking ways 1o reduce the computation by
using algorithms that are recursive and exploit symmetry.

2,2 LARGE TARGET DETECTION

The algorithm referred to in the previous section was developed for the purpose of
detecting point targets or anomalies. Such targets are cither a single pixel or at most a few
pixels in diameter. The philosophical point of view taken for this problem was that statisti-
cal paramecters for the background would either be known @ priori or could be estimated
from the data while target parameters (since targets may be a variety of different types)
were basically unknown. If one then examines a small area of the image, one could ask the
question “Is this area pure background, or is it not? If the area is not pure background.
then it must contain a target. The branch of staustics that deals with such questions is that
of significance testing. When significance testing is applied to this problem and combined
with certain other assumptions, a 2-D adaptive lincar prediction algorithmy results. This algo-
rithm compares the sum of normalized lincar prediction errors surrounding cach pixel to a
threshold to detect the “targets.”

This approach can be extended to the detection of larger objects (say tens of pixels
wide). Philosophically, one can still take the position that background parameters can be
estimated and that target parameters are unknown and apply a significance test to small
areas of the image. However, since in this case target parameters significantly affect the
cstimation of background paramcters, a slightly different tack has to be taken.




Consider first a situation where a target has a portion of its boundary roughly parallel
to the left edge of the image as shown in Figure 2-1. The approach considered here is to
detect points along the left edge of the object boundary by an algorithm that processes data
- horizontally from the left side of the image. The remaining boundary points are found in a
similar manner by processing in three other directions.

B —
DIRECTION OF
LINEAR PREDICTION

YIRCGY N

Figure 2-1. Bouncary detaction by aignificance wetiag.

We will attempt to detect points along the left edge of the object boundary (heavy line)
by considering small rectangular regions one row wide and performing a significance test. If
the region § corresponding 10 a given point fails the test, then the point is considercd to
be a boundary point or an interior point of the object. I we were to scan the image from
top to bottom, left 1o right, performing this test at cach pixel, w¢ would arrive at some
number of points which are candidates for boundary or ebject points. Because the test does
not give perfect results, we expect that this procodure would produce a number of points in
the image that are not truly object or boundary points (false alarmg) and miss 2 number of
the true boundary or object points. One way to improve the procedure therefore is to cou-
ple the decisions for ncarby points by some additional structure imposed on the problem.
We can do this by modifying the significance test to incorporate a “priot” probability that
depeads on the assignment of ncighboring points.

Recall that our implementation of the significance test for images involves comparing
the joint probability density function for points in the region S 10 a threshold. That is. we
look at

P > A
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where p represents the background probability density function. If the inequality is true, we
conclude that only background is preseni. Otherwise, we decide that there are some target
points in the region S. In the modified significance test, we make the comparison

Py . plx) > A

where Py is the prior probability of background. Clearly when Py is large, we are more
likely to decide on background and when Pj is small we are more likely to decide on a
target. If the density function p(x) can be approximated by a multivariate Gaussian form,
then some straightforward procedures (see Reference 2) permit reformulation of the test in
terms of the error residuals of linear prediction. In particular, the meodified significance test
for constant false alarm takes the form

2

Slemm ) 20 py < A
5| o

i n.m

where A s a threshold derived from A. The error residuals ¢ and vanances t;:2 can be com-
puted adaptively from the data as described in Reference 2.

The decisions made by applying the significance test te neighboring points can now oe¢
linked through the prior probabilities Py. In particular, we assume that the prior probability
evolves in a Markov-like manner, i.e. its value depends on the decisions made at previously
considered points. If we allow Py to be dependemt on points in a region which is a non-
symmetric hall plane located above and to the left of the given point (see Figure 2-2), then
in scanning the image from the upper left corner suceessive decisions van be made without
iteration.

We have implemented a rudimentary version of this algorithm on the VAX facility and
are beginning to test its performance on data with known statistical characteristics. We are
currently studying how differences in parameters that specify the statistical character of the
background and targel data affect our ability to detect the boundary.

DECISION SUPPORT REGION

® @————POINT UNDER CONSIDERATION

Figure 2-2. Support mgioa tor svolution of prior probabiiity.
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3. VECTOR-VALUED IMAGE PROCESSING

During the current reporting period, we have been considering the extension of the
existing algorithms for segmentation and target detection to the case of vector-valued images.
By a vector-valued image we mecan a set of related images in pixel alignment which are
treated as a single entity for purposes of image processing (see Figure 3-1). Examples would
be the set of three color components representing a color image, the multiple channel
images taken at differing wavelengths by certain types of scanning sensors, and a set of

images (aken from different sensors (e.g., radar, IR, video) that have been registered for
purposes of joint processing.

/ e [T , Fy(n.m)
n
4.-;:7 Elnm) = | Faln.m)

Fa(n.m)

//, A

F;(n,ml

Figute 3-1. Veclor sutoregrestion model tor meges.

Although a considerable amount ol work has been done on vector-valued images using
patiern recogiition ideas (extracting features and performing classification and clustering on
the Features), very little work has been done in modeling images as vector-valued spatial
tandom processes and examining the telated problems of filtering, prediction, cstimation and
so on for this class of images. Our atterapis to extend the existing algorithins for segmenta-
tion and object detection o vecto~-valued images are a first step in this direction.

3.1 EXTENSIONS OF SEGMENTATION AND DETECTION ALGORITHMS

Both the segmentation algorithm and the object detection algorithm are based on an
autoregressive mode! Tor images. The vector form of this model is
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where F is the modeled image and W is a white noise driving term. Both F and W repre-
sent vector quantities with K components and the A; are K X K matrices. “The model is
illustrated in Figure 3-t for K = 3. A typical point wuh coordinates (n,m) is shown in each
of the three image planes and the region of summation in Equation (1), also known as the
region of support, is shown as a rectangular area that excludes the given point. The par-
tcular support illustrated and used in Equation (1) is referred to as quarter plane support

and will be the specific form considered in the vest of this discussion. Other forms of sup-
port are also possible.

The driving term W is not illustrated in Figure 3-1. However, one can picture this as
another set of planes consisting of white noise. ¥or cach point {(n.m) in the image a set of
white notse terms i selected from the corresponding point in the noise planes and used in
the model. {t is important to note that although the white noise terms are uncorrelated spa-
tally, these terms are generally correlated between image planes. Thus, the white noise vee-

tor W at any poimt (n.m) is described by a K X K covanance matrix S, which s not. in
general, diagonal.

Once a model of the form (1) s postulated, then it is possibic to generalize the seg-

mentation and object detection algorithms to the veclor image case. We will not go through
derivations here but merely state the results.

3.2 VECTOR M.A.P. SEGMENTATION

Recall that the maximum o posieriori {MAP) segmentation algorithm attempts to find
regions in the image with homogeneous testure (see Reference Y). The algonithm docs this
by assigning “states™ to the pixels; when a pixel has siate s, it 15 interpreted as belonging
t a region with texture class i. Let Fin.m) represent the vector image P after semoval of

tie mean of class i,
Define the vector prediction error EMnan) as
M-I
N-1 _
Eam) = Fiknm) » 2 Ay Fn - tomo-j) . v
i=0
520
{€jp4(0.0)
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Then the MAP segmentation algorithm assigns states s(n,m) to pixels by iteratively evaluat-
ing the expressions

[EOn,m)T [2O]! EG(n,m) + ¢n {TO] - 2¢n Prob [s(n,m) = i|S, ] 3
g _— n.m

where () is the prediction error covariance matrix and Sp.m is a set of states for pixels
surrounding point (n,m). At each stage of the iteration, s(n,m) is assigned the label i where
ip is the value of i that minimizes expression (3). For the two-class segmentation, this
procedure results in a comparison of (3) for i = 0 to a similar expression for i = | and an
assignment of states accordingly. The final states arrived at by iteratively applying (3) cor-
respond to a segmentation of the image into regions.

3.3 VECTOR TARGET DETECTION

The target detection algorithm (see Refercnces | and 2) uses statistical significance test-
ing to decide if a smal! area of an image S centered at a point (n,m) is pure background
or if it contains something else (a “target”). The algorithm performs this test using the error
residuals of linear prediction. Let E(O(n,m) be defined by (3) where in this case the mean
of the image is estimated locally and subtracted from F to obtain the zero mean image
FO. Then the vector image form of the object detection algorithm makes the comparison

3 [EO@m)T [EO)! EOnm) > A . @)
(n,m)eS ~ -

If the quantity on the left is above threshold, an object is announced to exist at point
(n.m). Otherwise, no object is assumed to have been present. Observe that in both this
algorithm and the segmentation algorithm (above), the coupling between image planes
appears in two ways. It appears f{irst in the lincar prediction coefficients Aij. since any com-
ponent of the error residual E(n,m) in a given planc generally depends on data in all
planes. Secondly, it appears in the Equations (3) and (4) where the error terms arc coupled
throngh the prediction error covariance matrix X. It will be seen later that even when sim-
plifying assumptions are made in the autoregressive model that lead to a decoupling of the
linear prediction coefficients, the coupling appearing in Equations {3) and (4) is still present.
Thus, when dealing with vector images it is generally suboptimal to perform a scalar version
of the algorithm on separate image planes and attempt to combine results.

3.4 ALGORITHM PARAMETER ESTIMATION

The vector image processing algorithms described above tequire the computation of
matrix linear prediction parameters. Computation of these parameters involves solution of
so-called Normal equations which, although linear, can be of high dimensionality in the vec-
tor case. In this section, we examine the form of these cquations, some of their propertics,
and discuss possible procedures for simplifying their solution.
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The statistical characterization of vector images begins with grouping the various inten-
sity values Fy(n,m) that make up the vector image into one larger vector. This vector will
have NMK componenis. Although many orderings for these components are possible, two

- such orderings appear to be most useful. The first ordering, which is shown in Figure 3-2,
will be called row ordering. In this case, the N vector rows of the image are stacked into
one large vector. Each row vector consists of M column elements, each of which is a
K-dimensional vector quantity. Thus, this ordering is similar to that which would be used
for scalar images except the image elements forming the components of the vector are not
scalars but K-dimensional vectors.

The second ordering that we shall consider is shown in Figure 3-3 and will be called
component ordering. In this case, each image plane is scanned by rows and represented by
a vector. These vectors are then stacked in component order to arrive at the vector repre-
sentation for the set of images. Both orderings appear to be useful and are related by a
permutation transforration. We shall discriminate the two orderings notationally by using
unprimed variables for row ordering and primed variables for component ordering.

Figures 3-2 and 3-3 also show the form of the correlation matrices (or covariance
matrices) for the two orderings. Since the correlation matnx is the expectation of the outer
product of the vectors, a particular ordering of the vectors induces a corresponding parti-
tioning of the matrix. If it is assumed that the images arc stationary in the spatial dimen-
sions, then their correlation matrices have certain symmetry properties. In particular, for row
ordering, the matiix is dblock Toeptitz with block Toeplitz blocks. The inaermost blocks are
not Toeplitz in general. For component ordering, the overall matrix is neither block Toeplitz
nor block symmetric. The blocks however are block Toeplitz and arc comprised of Toeplitz
blocks.

The Normal equations of linear prediction are most conveniently written with row
ordering. In this case, the equations assume the form

KA = § (5
where R is the row-ordered correlation or covariance matrix and the matrices A and S are
given by

Ay ] S ]
Ay 0
A= . S = (6)
L ] -
L [ ]
hew AN“ - = 0 ™~
"
LR T Ry P W YR LI . ‘* ‘\-A.f.v
Eaw
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where

A 3
Aq 0
Ay = ) 5 = @)
b AnM'l - b 0 p=

and where Ay = I and I is the prediction error covariance matrix. Note that the quantities
A and § are MNK-by-K matrices.

The structure of these equations seems to have many possibilities for obtaining a solu-
tion to (5) by methods other than brute force. The development of recursive solutions to
the Normal equations has led to interesting results in both the vector time series cases and
in the (scalar) two-dimensional image cases (References 4, S, and 6). These kinds of solu-
tions are often ideally suited for recursive estimation of parameters as is required for the
target detection algocithm. We are currently seeking to extend some of these results to the
vector image case.

Some special resuits for solution of the Normal equations can be obtained when the
covariance matrix R has some further structure. This is the case of when correlation
between image planes is separate from correlations within each plane. Hunt and Kubler?
have indicated that in many cases such a separation of correlations is well justified empiri-
cally. This separability of correlation is best represented in terms of componcnt ordering
where the matrix R’ has the direct product form

R' = R, X R,
rrii R, 12 Rs s v ok Ry T
le R‘ l‘zz R, s ¢ o 0K Rs
Y B (8)
Lk R r2 Ry o o o rxx Ry

where R, is a matrix of spatial correlation paramcters within each image and the T; arc the
components of R, representing correlations between xmagc plancs. In this special casc. one
can show that the prediction coefficient matrices A; in (2) are diagonal with equal diagonal

clements. Thus, the prediction problems for the various planes are decoupled and within

13
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each plane the optimal linear predictive filters are identical. However, the prediction error
covariance matrix % that appears in Equations (3) and (4) is not diagonal and is in fact
equal to R Thus, the prediction errors are correlated from plane to plane and this fact
- must be acknowledged in a vector-oriented image processing algorithm.

The foregoing analysis indicates that there are a number of potentially interesting topics
associated with vector image analysis and that there is potential for improving results for
single images by treating the analysis of a set of images as a vector image processing prob-
lem. This area is one that seems to have been overlooked in most of the classical work in
image analysis.

14
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4. MULTIPROCESSOR ARCHITECTURES
FOR IMAGE PROCESSING

As part of the Muilti-Dimensional Signal Processing Research Program sponsored by
RADC, we have been investigating multiprocessor architectures for image processing and
other multi-dimensional signal processing applications. Typical image processing problems
involve data sets comprised of several hundred thousands (or millions) of pixels (picture
clements) and large amounts of computation (several hundreds of processor instructions per
pixel). To satisfy the real-time requirements of some applications and the general require-
ment for rapid turnaround, the multiprocessor architecture must be capable of supporting
rapid computation on large data sets.

To utilize fully the processing power of the multiprocessor system, it is imperative that
the system be straightforward to program. This will allow new ideas to be implemented,
tested, evaluated, and refined in a timely fashion. Thus, the two primary requirements of the
multiprocessor architecture are high speed (in an operational sense, not necessarily in an
instructions/second sense) and ease of programming.

We have been considering a multiprocessor architecture consisting of sixteen nodal pro-
cessors connected by an interprocessor communications network (see Figure 4-1). The
number of processors is somewhat arbitrary from an architectural point-of-view; sixteen was
chosen because it is a power of two of nontrivial yet manageable size. This architecture
implies that there is no shared memory; cach nodal processor has its own, private data
memory and data are passed between processor memories using the communication network.
The architecture of the nodal processors is discussed in Section 5.

The preliminary choice for the interprocessor communication network is a butterfly net-
work, which necessitates a power-of-two number of processors (see Section 4.1). In the
future other communication networks, such as a fibre-optic bus, may prove useful for inter-
processor communication. Thus, the multiprocessor architecture must be modular so that
communication networks can be interchanged without requiring significant hardware or soft-
ware changes.

A preliminary guess indicates that the 16-processor system could execute roughly 200M
instructions/second. This rate is somewhat less than that required for operational real-time
image analysis. (At this time our best guess is that an operational system will be reguired
to exccute 1G-10G instructions/second.) If the individual instructions are powerful enough. it
i conceived that a second-generation 64-processor system could mect the operational
throughput requircments.

(The range of 1G-10G instructions/sccond was arrived at very crudely. A photointerpre-
ter wishing to process a high-resolution image consisting of 4K-by-4K pixels in 1 s with
100-1000 instructions/pixel requircs a multiprocessor bandwidth of 1.6G-16G instructions/
second. The MIES channel capacity of 144M bps results in a pixel rate of 18M pixels;
second, assuming 8 bits/pixel. Using 100-1000 instructions/pixel for processing results in a
processor bandwidth requirement of 1.8G-18G instructions/second. The range of 100-1000
instructions/pixel is probably rcasonable for many current image processing algorithms. if

15
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Figure 4-1. A high-level block diagram for & multiprocessor system.
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the instruction set is a particularly powerful one tuned to the image processing application,

the number of instructions/pixel required to implement any particular algorithm will be rela-
tively small, On the other hand a reduced-instruction-set architecture will require a relatively
" large number of instructions/pixsl to do the same computation.)

4.1 BUTTERFLY INTERCONNECTION NETWORK

A butterfly interconnection network is useful for providing communication between N
processors, where N is equal to two raised to some integer power. In contrast to a crossbar
switching system whose complexity grows as N2, the butterfly interconnection network has a
complexity that grows only as (N/2) logoN. An example of a butterfly interconnection net-
work is shown in Figure 4-2 for N = 16. The nodal processors are labeled PQ through P15,
but for convenience of illustration, the outputs of the nodal processors are found on the left
side of the figure while the inputs to the processors are found on the right side of the
figure.

Although the butterfly network does not possess the complete connectivity of the cross-
bar switch, it nevertheless supports several important classes of simultaneous communications
between pairs of nodal processors. Qur experience has shown that this type of network can
support the communication necessary for the efficient multiprocessor implementation of
important signal processing operations such as fast Fourier transforms, convolutions, and
processing pipelines. For image processing applications, efficient use of a multiprocessor
system can be made in many cases simply by partitioning the image data so that each
nodal processor can work independently on its own sub-images with the butterfly network
providing any communications required by the nodal processors working on neighboring
sub-images.

The butterfly interconnection network, shown in Figure 4-2, can be used to support up
to sixteen parallel communications between sixteen pairs of nodal processor outputs and
inputs. (In general, a butterfly network can support up to N parallel communications, where
N is the number of processors.) In addition, it will support a broadcast mode where any
single nodal processor output can transmit messages to the inputs of all the nodal
Processors,

Each circle in Figure 4-2 represents a single butterfly switch and its associated control
logic. Each switch can be set to one of four external states (straight, crossed, upper-
broadcast, and lower-broadcast), as shown in Figure ¢-3. We are currently designing a cus-
tom LSI integrated circuit that will implement one two-inpui, two-output butterfly switch.
As currently planned. ecach chip will be capable of switching two B-bit-wide data paths as
well as the necessary control signals. This will permit the chips to implement butterfly net-
works of any size up to and including N = 256. Each chip will also have the capability of
acting in “slave™ mode, using the control signals of another chip (its “master”) to determine
its external state. This permits two chips to implement a 16-bit-wide switch, three chips to
implement a 24-bit-wide switch, and so on,

Figure 4-4 shows the high-level block diagram for the two-input, two-output butterfly
switch. The control plane will accept request signals (CreqA and CreqB) from cither of the
two input ports (labeled PORT A CONTROL and PORT B CONTROL in Figure 4-4) and.
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Figure 4.3. Extesrnal statss of » two-input, two-gutput switching element.

after seuting itself to the appropriate external state, will route the request to the next switch
in the network. When the requested connection has been established, an acknowledgment
signal is propagated back through the network using the CackA, CackB, CackC, and CackD
lines. The data plane is used to switch 8-bit-wide data (DAA, DAB, DAC, and DAD lines)
as well as data strobe signals (DstbA, DstbB, DstbC. and DstbD) and data acknowledgment
signals (DackA, DackB, DackC, and DackD).

The tagA and tugB lines are wired to one of the bits of the DAA and DAB signals,
respectively. The particular bit selected depends on the rank of the butterfly network in
which the switch lies. During the initialization of a connection, the DAA or DAB signal is
used to carry destination addressing information. During this period, the cortesponding tag
signal indicates which switching mode is being implicitly requested by the sender (straight or
crossedj. The reset signal can be used to reset the switch to a cleared initial state and the
priority signal (pr) determines which request is to be serviced first in cases of contention.
Not shown in Figure 44 are signals used to request a broadcast mode configuration,

The control plane gencerates two bits of information (labeled x and v in Figure 4-4)
that arc used to sct the switch into one of its four cxternal states. Figure 4-5 shows how
cach bit of the DAA and DAB inputs is switched to the DAC and DAD outputs. The
control plane is designed as an asynchronous finite-state machine that uses an NMOS pro-
grammable logic array (PLA) and a static NMOS register. A second PLA is used to sclect
between the internal (on-chip) x and y contrel signals or cxternally gencrated x and y con-
trol signals which cnable the switch’s data plane to be used in “slave™ mode.
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When a processor wishes to send a block of data to another processor, it first puts the
appropriate addressing information on s data output lines (these hines lead to a DAA or
DAB input of a switch in the first rank of the butterfly network) and then raises its
request line. The request propagates through the network as each switch uses the addressing
information to set itself to the appropriate state, When the receiving processor sees the
request line go high, it responds by raising its acknowledgment line. The acknowledgment
signal is routed back through the network to the sending processor. When the sending pro-
cessor sces the acknowledgment line go high, it knows that the connection has been estab-
lished and that it can begin transmitting data.

To actually transmut the data, the sending processor places the data value on its data
output lines and then raises its data strobe signal. The data strobe signal tells the receiving
processor that the data lines may now be read. The sending proccssor later lowers the data
strobe line, places the next picce of data on its data output lines, and then raises the data
strobe hne again, thus repeating the process. The data acknowledgment line may be used
after cvery picce of data to acknowledge receipt by the rectiving processor, or it may be
used after the entire block of data has been reveived. The processor-level protocel will
determine which procedure is to be used; the switch design will support both protocols.
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5. NODAL PROCESSOR ARCHITECTURE

In this section, we shall discuss the architecture of the nodal processor, sixteen of which
will comprise the multiprocessor system. The objective is to advocate a number of architec-
tural features that we feel will help achieve the dual goals of high performance and ease of
programming. The perspective is one of a user who is interested in developing and refining
image processing algorithms with a minimum of effort and having them execute very
rapidly.

As a basic ground rule, we have tried to separate architectural issues from implementa-
tional issues. Some architectural principles may ultimately have to be comprised in the inter-
est of efficient and timely hardware implementation. However, with the advent of VLSI and
VHSIC technology, implementation techniques will doubtless change once again. The devel-
opment of an image processing architecture may influence future chip sets, thus permitting
the implementation of architectural features that may have to be comprised with today's
technology. Therefore, our objective thus far has been to develop the best architecture possi-
ble without many preconceptions about implementation details.

One approach to building a fast processor is to use the fastest available logic family for
the implementation. For a fixed architecture the basic machine cycle time will determine the
speed of execution. There are mitigating concerns, of course. Fast logic in general implics
more power consumption, more demanding board layout, lower-level integration, snd less
reliability. Thus, it will probably be nccessary to compromise between raw logic speed and
other measures such as integration level or powar consumption.

5.1 ARCHITECTURAL REQUIREMENTS FOR A NODAL PROCESSOR

Based on the premise that the nodal processors in @ multiprocessor image processing
system will have to be fast computers in their own right which are capable of Fandling
large arrays, we can outline some of the architectural requirements for the nodal processors.
Traditional high-speed array processer architectures have been very “horizontal” using tech-
niques such as separate program and data wwemoriss, sepatate -hardware for address compu-
tation and index register manipulation, and pipelined fetch, decode, und execution of instruc-
tons. Typically, however, commercially available array processors have proven difficult (and
thus expensive) for nsers to program, and they have been primarnily used as pre-programmed
function boxcs for host computers. Undoubtedly many of these architettural features will be
used in the nodal processor architecture, provided that they do not impair the case with
which the machine can be programmed.

To permit simple, straightforward progiamming. the nodal provessor architesture should
efficiently support a high-level language. In addition, the machine language itself should bhe
relatively high-level. It is important to isolate the programuer as much ax possible from the
particular implementation of the nodal processor. The programmer should be concerned with
specifying operations and data objects 0 be used as operands and not with the dewils of
address computation or index register manipulation.

Since the nodal processors will be handling large arrays of image data, the accessing of
array clements must be very efficient. Similarly, it is important that the processor hardware
provide a mochanism for controlling progra loops that accrues very littke overhead. To
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encourage structured, top-down programming discipline the processor hardware must support
very efficient subroutine call and reiurn linkares. An assembly language programmer should
be able to transfer control to a subroutine und provide a list of arguments in a single
instruction. Loca! and temporary variables used inside a subroutine should be allocated
dynamically to permit re-entrant (recursive) subroutines and efficient interrupt handling.

The machine-level instructic:~ set should be flexible so that it can be tuned for different
applications. In particular, it shovld provide some simple =rray handling instructions such as
clearing an array or adding two arrays. A set of .:veral z:ray instructions could relieve the
programmer of a significant amount of dutailed code generation in an image processing
application and allow him/her to concer: ate on the important parts of the program,

It would be desirable if machine-level instructions and subroutine calls had a common
format from the programmer’s viewpoint. This would permit the implementation of new
machine-level instructions first as subroutines for testing and evaluation of their utility.

The nodal processor architecture should make some provision for including special-
purpose computational devices tailored for specific applications. For example, a high-speed
multiplier/accumulator could be considered a “special-purpose™ device, though for image pro-
cessing and multi-dimensional signal processing applications it is a requirement. Other
special-purpose devices might include an FFT butterfly box, a 16-point FFT, or a CORDIC
rotation element. A special-purpose processor may also be necessary to facilitate 1/O with
the outside world as well as the interconnecnion network. The important point is to allow
sufficient flexibility to permit the nodal processors to be retrofitted with special-purpose
components to increase computational throughput for a particular application.

5.2 MACHINE-LEVEL INSTRUCTIONS

In this section we shall outline most of the machine-level instructions which are envi-
sioned as being necessary for the nodal processor to implement. There arc two major sub-
sections, one dealirg with arithmetic and logic operations to be performed on data objects
and the other dea.ng with instructions used to contiol the program flow. A detailed discus-
sion of what is a data object and how it is accessed is deferred until later.

5.2.1 Arithmetic and Logic Operations

In many cases execution of a machine instruction will take two source operands, per-
form an operation on them, and store the result in a designated destination (or equivalently
set the destination operand equal to the result). Thus, three data objects need to be speci-
fied in a typical arithmetic/logic instruction. Other instructions have a single source operand
and a destination, requiring *he specification of only two data objects. On some occasions
the destinstion will be one of the source operands, such us in the case of incrementing a
variable, On other occasions the result of the opcration nesd only be stored temporarily
because it will be an operand for the next instruction or an instruction to be executed
shortly.

Some computer architectures usc one of the source addresses as the destination address
at all times, while more primitive architectures use an accumulator register as one source as
well as the destination. However, programs written for these architectures usually require a
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significant number of LOAD, STORE, or MOVE instructions which simply transfer data
without doing any useful computation. A three-address architecture should alleviate much of
this overhead, resulting in fewer instructions needed to accoinplish a particular computation.

"~ The use of three-address instructions is consistent with the philosophy of & horizontal archi-

PR

tecture, permitting the source and destination addresses to be computed in parallel.

There is a line of reasoning which indicates that instructions should be permitted to
have an arbitrary (within reason) number of source operands and destinations. This would
permit the user to define sup~r-instructions (or macro-instructions) tailored to particular
applications. It wouid also permit consistency of form for instructions and subroutine calls.
allowing one to emulate super-instructions easily. The array instructions discussed below
could be considered as a set of super-instructions.

Below is a list of more or less traditional arithmetic/logic operations implemented in
some fashion on most conventional computers. Given their widespread utility it makes sense
for the nodal processor to provide them as well. At this point the list should probably not
be regarded as being complete.

ARITHMETIC OPERATIONS

Instructions with two source operands and one destination.

ADD - Add the two source operands and set the destination equal to
the sum.
SUB - Subtract the second source operand from the first source op-

crang and set the destination cqual to the difference.

MUL - Multiply the two source operands and set the usstination
equal to the product.

o - Divide the first source operand by the seccond source operand
and sot the destination equal to the quotient.

Instructions with iwo source operands asd no destination.

COMPAR - Compare. Subtract the second source operand from the first
source operand and use the difference to set the condition
flags. Do not store the difference anywhere.

Instructions with one source operand and onc destination.

NEG - Negate the source operand and set the destination equal to
the result,
INC - Increment the source operand by onc and set the destination

cqual to the result.

DEC - Decrement the source operand by one and set the destination
cquai o Jhe result.
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COPY - Set the destination equal to the source operand.

ABS - Set the destination equal to the absolute value of the source
operand.

Instructions with no source operands and one destination.
ZERO - Set the destination equal to the value zero.

ONE - Set the destination equal to the value one.
LOGICAL INSTRUCTIONS

Instructions with two source operands and one destination.

AND - Take the bit-by-bit logical “and” of the two source operands
and set the destination equal to the result.

OR - Take the bit-by-bit logical “or"” of the two source operands
and set the destination equal to the result.

XOR - Take the bit-by-bit “exclusive-or” of the two source operands
and set the destination equal to the result.

NAND - Take the logical complement of the logical “and™ of the two
source operands and set the destination equal to the result.

NOR Take the logical complement of the logical “or™ of the two

source operands and set the destination equal to the result.

NXOR - Take the logical complement of the “exclusive-or™ of the two
source operands and set the destination equal to the result.

BIS - Bit Sct. Functionally identical to OR.

BIC - Bit Clear. Take the logical complement of the first source
operand and “and” it with the second source operand. Set the
destination equal to the result. This will clear any bits in the
sccond operand corresponding to logical “ones™ in the first
operand, leaving the remaining bits unchanged.

LSHL - Long Shift Left. Shift the sccond source operand to the left
by thc number of bits specificd by the first source opevand
and set the destination equal to the resuit.

LSHR - Long Shift Right. Shift the second source operand to the

right by the number of bits specified by the first sourcc op-
crand and set the destination cqual to the result.
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LROTL - Long Rotate Left. Rotate the second source operand t¢ the
left by the number of bits specified by the first source op-
erand and set the destination equal to the result.

LROTR - Long Rotate Right. Rotate the second source operand to the
right by the number of bits specified by the first source op-
erand and set the destination equal to the result.

Instructions with one source operand and one destination.

SHL - Shift Left. Shift the source operand one bit to the left and
set the destination equal to the result.

SHR - Shift Right. Shift the source operand one bit to the right and
set the destination equal to the result.

ROTL - Rotate Left. Rotate the source operand one bit to the left
and set the destination equal to the result,

ROTR - Rotate Right. Rotate the source operand one bit to the right
and set the destination equal to the result.

COMPL - Complement. Take the logical complement of the source op-

erand and set the destination equal to the result.
Instructions with no source operands and one destination.
CLEAR - Clear all the bits of the destination.
SET - Set all the bits of the destination to logical “one.”

It may be useful to consider adding other instructions such as incrementing or decrementing
a source operand by a small number (say 1S or less), doubling the value of a source oper-
and, or halving the value of a source operand.

In many instances the destination will be identical to one of the source operands. The
programmer can specify this simply by using the same data object for both the source and
destination,

65.2.2 Array Instructions

For image processing as well as other array processing applications, it seems prudent to
provide the nodal processor architecture with a small but powerful set of instructions for
performing array operat.ons. These operations would include element-by-element addition,
subtraction, multiplication, and division of two arrays. As with the scalar arithmetic opera-
tions discussed in the previous subsection, the array instructions would have two source op-
crands and a destination, with provisions for the destination being cquivalent to one of the
source operands. Other operations, such as the absolute value array operation listed below,
take a single source array as well as a destination that may or may not be the same as the
source array. If they seem useful, it should be possible to incorporate array logical opera-
tions similar to the scalar logical operations listed carlier.
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BASIC ARRAY ARITHMETIC INSTRUCTIONS
AADD - Add the corresponding elements of the two source arrays and
store the sum in the corresponding elements of the destination
array. ‘

- ASUB - Subtract the elements of the second source array from the
corresponding elements of the first source array and store the
k. difference in the corresponding elements of the destination.
AMUL - Multiply the corresponding elements of the two source arrays
3 ; and store the product in the corresponding elements of the
: 2 destination array.

ADIV - Divide an element of the first source array by the correspond-
' g ing element of the second array and store the quotient in the
corresponding element of the destination array.
3 _ AABS - Store the absolute value of the elements of the source array
b - in the corresponding elements of the destination array.
The array instructions listed above should work on arrays of any dimensionality and

size as long as they are consistent with those of the other arrays used in the same instruc-
£ tion. Other array instructions such as those listed below involve the computation of a scalar
- result from one or more source arrays.

OTHER ARRAY PROCESSING INSTRUCTIONS
INNER - Inner product, Multiply the corresponding elements of the two

source arrays and sum the resulting products. Store the sum

in the destination.

ASUM - Add all the clements of the source array and place the result-

ing sum in the destination.

ASUM2 - Add the squares of all the clements of the source array and

place the resulting sum in the destination.

T AMAX - Store the value of the largest element in the source array in
f v the destination.

‘ " AMIN - Store the value of the smallest element in the source array in
{ the destination.
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In the AMAX and AMIN instructions, it may be worth considering storing the indices of
the maximum and minimum array values somewhere as well as the values themselves. As
with the basic array instructions, these instructions should be able to handle arrays of

" arbitrary dimensionality and size.

For image processing applications, it will be very useful to be able to select a subarray
out of an array to use as the source operand in an array instruction.

Other array operations, such as 2-D convolution, would be useful as well, but because
they involve source and destination arrays of varying sizes, they may be more difficult to
implement as machine-level instructions. Such operations are good candidates for becoming
“instructions” that are initially emulated by subroutines.

It would also be very useful to provide a mechanism, either in hardware, software, or
some combination of the two, that would allow a programmer to specify a complicated
operation, or set of operations, to be performed on individual array elements and then
invoke the complicated operation as an array “instruction” to be performed over all the
array elements. This would relieve the programmer of the necessity of writing code that
explicitly loops over all elements in the source arrays. The interpretive array processing lan-
guage APL provides this facility and it has proven very useful for the efficient development
of image processing programs.

5.2.3 User-Defined Instructions

Earlier we alluded to providing users with the option of defining new instructions
tailored to specific applications to be added to the instruction set of the nodal processor.
Presumably this could be accomplished by providing enough unused op-codes in the instruc-
tion set and a mechanism for allowing users to load their own micro-code. Before going to
the labor-intensive step of writing microcode, users will no doubt want to emulate their new
instructions in some fashion so they can test their usefulness in the context of some applica-
tions software. This argues for providing a subroutine calling mechanism which has the same
format as an ordinary instruction.

Users may want to micro-code additional instructions not only to provide complicated
arithmetic operations but also to control special-purpose processors integrated into the nodal
processor for their particular application. For example, if a CORDIC rotation element is
added to the nodal processor, it will be necessary to provide machine-level instructions to
send data to it, control it, and get answers from it. This may imply a need for control
paths and data paths in the nodal processor design in anticipation of various special-purpose
processors.

6.2.4 Controlling Program Flow

In this section, we shall discuss instructions that are used to control the flow of pro-
grams written for a nodal processor. There are cssentially three classes of these instructions:
those used for simply transferring control, those used for controlling loops, and those used
in conjunction with subroutine calls.

JUMP and BRANCH are instructions used to transfer control from onc part of a pro-
gram to another. A JUMP instruction scts the program counter equal to the instruction
address contained in the JUMP instruction. (Usually the program counter is simply
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incremented to fetch the next instruction in sequence.) A BRANCH instruction transfers
control to an instruction located at some address relative to the BRANCH instruction by
adding the contents of the program counter to the offset contained in the BRANCH
instruction. Thus, the BRANCH instruction acts like a relative jump.

If instruction words vary in length, then separate BRANCH and JUMP instructions are
useful because most transfers of control are local, and the BRANCH instruction will require
fewer bits to represent the offset than the equivalent JUMP instruction will require to
represent an absolute instruction address. On the other hand, if ali instructions are the same
length, that length must be long enough to incorporate JUMPs to any absolute instruction
address, and the necessity of having a separate BRANCH instruction is eliminated.

In practice the programmer would not use the JUMP or BRANCH instruction directly,
but would rely on an assembler or compiler to translate /F-THEN-ELSE constructs into the
appropriate tests and conditional jumps. A jump, of course, is directly analogous to a
GOTO statement in high-level language, the use of which is frowned upon by the advocates
of structured, top-down programming. In addition, the programmer must te prevented from
JUMPing out of a loop directly for reasons that we shall discuss later. This is easily done
if an assembler or compiler stands between the programmer and the machine-language.

l.oops are important constructs in many types of programming, but especially in signal
processing applications programming. It is important to develop an architecture that effi-
ciently supports the execution of instruction loops. From the programmer’s point of view,
most loops can be written using the following loop control instructions: LOOP-INIT, LOOP-
TEST, ENDLOOP, REPEAT-LOOP. BREAK, and NEXT. Since loops are always perfectly
nested, auxiliary variables used to control the execution of the loop, such as the loop coun-
ter, loop increment, loop limit, break address, top-of-loop address, and next-iteration address,
can be stored on a set of parallel stacks (see Figure S5-1). New values of the variables are
pushed onto these loop control stacks when a loop is entered, and they are popped off
when the loop has been satisfied.

The LOOP-INIT instrucuion indicates the beginning of a loop and the addresses of the
data objects whose values are to be used as the initial value of the loop counter, the loop
increment, and the loop limit. (These values are inherently integers.) Note that infinite loops,
to be exited by a conditional BREAK instruction, can be formed by specifying a loop
increment of value zero. The LOOP-INIT instruction would include a test to see if the loop
counter already exceeded the loop limit. (Here “exceeded” must be used in a sense consis-
tent with the sign of the loop increment.) If it does, control would pass immediately to the
first instruction after the loop (the break address). This defensive programming tactic may
save cffort during debugging and execution.

The ENDLOOP instruction indicates the physical end of a loop. When an ENDLOOP
instruction is executed, the loop counter is incremented by the loop increment, then it is
tested against the loop limit. If more iterations of the loop are to be exccuted, control is
transferred to the top-of-loop address. If not, control is transferred to the first instruction
after the ENDLOOP instruction and the loop control stacks are popped. (This is equivalent
to exccuting a BREAK instruction.)
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For infinite loops to be exited by a conditional BREAK instruction, the REPEAT-
LOOP instruction can be used instead of the ENDLOOP instruction, Execution of the
REPEAT-LOOP instruction simply causes 8 BRANCH or JUMP to the top-of-loop address.

Because high-speed processors tend to be pipelined, there is a disruption of the instruc-
tion fetch-decode-execute pipeline when control is transferred to other than the next instruc-
tion in sequence. It may be possible to circumvent this problem at the bottom of loops by
realizing that the instruction to be fetched will generally be the one whose address is stored
in the top-of-loop register rather than the next address in sequence.

The LOOP-INIT and ENDLOOP instructions will be adequate for most of the loops in
image processing applications programs. However, in some cases the LOOP-TEST instruc-
tion, which may occur anywhere in the loop, may be useful. The LOOP-TEST instruction is
basically a conditional BREAK instruction. The loop counter is tested against the loop limit
(taking the sign of the loop increment into account) and, if the loop is to be exited, con-
trol is transferred to the first instruction aftec the ENDLOOP instruction and the loop con-
trol stacks are popped.

The BREAK instruction alluded to earlier can be used to bail out of a loop at any
time. It can be executed conditionally based on satisfaction of the loop variables (which is
what essentially happens in the LOOP-INIT, LOOP-TEST, and ENDLOOP instructions) or
based on other conditions such as the results of arithmetic/logic operations. When BREAK
is executed, control is transferred to the break address, usually the first instruction after the
ENDLOOP or REPEAT-LOOP instruction, and the loop control stacks are popped.

The NEXT instruction is used to stop the current iteration of the loop and immediately
begin the next iteration. Control is transferred to the instruction at the next-iteration
address, which is typically the ENDLOOP address. For loops terminated by the REPEAT-
LOOP instruction, the next-iteration address is the same as the top-of-loop address.

As discussed above, the LOOP-INIT instruction must initialize several parameters used
in controlling the loop. Instruction addresses such as the break address, next-iteration, and
the top-of-loop address could be encoded in the LOOP-INIT instruction as offsets from the
address of the LOOP-INIT instruction. It should be straightforward for an assembler to
deduce and compute these offsets from assembly language code so that the programmer
need not be bothered with this task. Other parameters such as the initial value of the loop
counter, the loop limit, and the loop increment can be accessed as if they were ordinary
data objects.

To prevent the loop control stacks from getting out of synch, programs are not permit-
ted to get out of loops except by using some varian¢ of the BREAK instruction. In particu-
lar, a program should not JUMP or BRANCH out of the scope of a loop.

Structured software tends to have many subroutines and consequently many subroutine
calls and returns, Thus, it is important to have an efficient subroutine linkage mechanism so
that the overhead for short subroutines is not too large.

One approach that has appeared in the computer literature (and has been alluded to
carlier in this section) involves making a subroutine call look like an ordinary instruction
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invocation. This approach allows the application programmer to develop new “instructions,”
which are implemented as subroutines, that are tailored to a specific application. The new
“instruction” could eventually be implemented in micro-code if warranted by frequency of

- usage and performance requirements. This approach is similar in many respects to the sub-

routine linkage mechanisms used in threaded-code architectures. It has the potential advan-
tage of permitting the called routine to be one of a variety of subroutine types that can
handle the bookkeeping of the subroutine linkage in different ways. The calling routine
simply supplies the “name” of the called routine and a list of data objects to be used as
arguments, in the same way that an ordinary instruction supplies the “name” of the opera-
tion to be executed (as embodied in the op-code) and a list of data objects to be used as
arguments.

A subroutine call can be implemented by having an op-code with a leading 1 to distin-
guish it from ordinary instructions (whose op-codes are assumed to have a leading 0) fol-
lowed by an 8- or 10-bit subroutine “name.” The subroutine “name™ is used to look up the
subroutine starting address in a table, and control is transferred there. The subroutine call
will contain pointers to the “names™ of the data objects to be used as arguments and it
may also be desirable for it to contain the number of arguments as well,

The first instruction in a subroutine must be an ENTER-SUBR instruction. The
ENTER-SUBR instruction is responsible for setting up the environment of the called subrou-
tine and stacking the rcturn address back to the calling routine. Naturally, control is
returned to the routine by executing a RETURN instruction, It must clean up the subrou-
tine’s environment, restore the environment of the calling program, and pop the return
address off the return stack to the program counter thus transferring control back to the
calling program. In some sense it is the opposite of the ENTER-SUBR instruction, and
consequently different types of RETURN instructions can implemented each corresponding to
a different type of ENTER-SUBR instruction. The calling routine has no knowledge of what
kind of ENTER-SUBR and RETURN instructions lie ahead in the called subroutine.

Bear in mind that the RETURN instruction must also clean up the loop control stacks
if it is executed within the scope of a loop. This problem could be avoided if it were ille-
gal to issue a RETURN instruction within the scope of a loop just as it should be illegal
to JUMP or BRANCH out of a loop. This would force the programmer to get out of
loops by using the BREAK instruction or its relatives, which would keep the loop control
stacks from being incorrectly manipulated.

Providing access to data objects in the calling routine is an important aspect of subrou-
tine linkage. We shall assume that the CALL instruction will include the number of argu-
ments to be passed as well as the locations of the “names” of the data objects to be used
as the arguments, The ENTER-SUBR instruction must therefore access the “names" and
store them in locations used inside the subroutine.

Since the calling program may be a subroutine as well, the details of subroutine linkage
may be viewed as establishing the environment for the called subroutine within the environ-
ment for the calling subroutine and dismantling it when control is returncd to the calling
subroutine. One mechanism for doing this involves the use of an argument stack. Typically
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three pointers are associated with an argument stack: the top-of-stack pointer (SP), the
frame pointer (FP), and the global pointer (GP). The “names” of data objects used in the
calling routine are accessed by references to the registers which comprise the argument stack.
(The registers of the argument stack contain the data object “names.”) For example, (SP)
would refer to the register at the top of the stack, 4FP) would refer to the fourth register
above the register pointed to by the frame pointer, -I(FP) would refer to the register below
the register pointed to by the frame pointer, and 7(GP) would refer to the seventh register
above the register pointed to by the global pointer. (Typically the global pointer points to
the register at the bottom of the argument stack.) Another type of “name” is a literal. In
this case the data object is simply the scalar value supplied by the appropriate bits of the
literal “name.”

When the CALL instruction is encountered, it contains the “name” of the subroutine to
which control will be passed (which gets turned into an instruction address by table-lookup),
the number of arguments, and the registers that contain the “names” of the data objects to
be used as arguments. Control is passed to the first instruction in the called subroutine,
which must be an ENTER-SUBR instruction of some type. The ENTER-SUBR instruction
is responsible for setting up the environment of the called subroutine. For example, it must
allocate storage on the argument stack for the “names™ of all the local data objects used in
the called subroutine. In addition, it must allocate storage in the data memory for scalar
valucs, arrays, records, and other dawa structures, and sct up the appropriate links between
the “names™ of the local data objects and the places where their values are stored.

One simple method to effect the linkage of argument names is as follows: When control
is passed to the ENTER-SUBR instruction, the program counter still points to the CALL
instruction. Using the program counter as a pointer, the ENTER-SUBR instruction learns
the number of arguments to be passed and the registers containing the “names™ of the data
objects to be used as arguments. The ENTER-SUBR instruction pushes the “names™ of the
data objects onto the argument stack and pushes the number of arguments onio another
stack (the Harg stack). At this point it is convenient to think of the SP and the FP as
being the top two registers on yet another stack (the pointer stack). The current value of
the SP is now pushed onto the pointer stack, effectively setting the FP equal to the SP.
Then the SP is incremented to allocate space for the “names”™ of the local data objects to
be used in the subroutine. The ENTER-SUBR instruction then allocates storage in the data
memory for the local data objects and makes the link between the “nantes™ of the local
data objects and the places where their values are stored. The return address is computed
by incrementing the value of the old program counter (so that it points (o the instruction
after the CALL instruction) and pushed onto the return stack. Then the program counter is
set to point at the first instruction after the ENTER-SUBR instruction and exccution con-
tinucs in the subroutine [sce Figures 5-2(a) and (b)).

The RETURN instruction cssentially reverses the effects of the ENTER-SUBR instruc-
tion. First, the storage used for the local duta objects is deallocated. The pointer stack is
popped. cffectively restoring the FP of the calling routine and resetting the SP 1o deallocate
the registers used for local data object “names™ by the called routine. Then the number of
arguments is popped off the #arg stack and subtracted from the SP to restore it to the
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value that it had at the time the CALL instruction was executed. Finally, the return address
is popped off the return address stack into the program counter so that execution resumes
with the first instruction after the CALL instruction.

6.2.6 Input-Output Instructions

There are two aspects of nodal processor 1/O: communication with the outside world
and communication with other nodal processors in the multiprocessor system. Here we shall
comment only on the latter. In terms of architectural requirements, we want the nodal pro-
cessor to handle the protocols for 1/Q as little as possible for two primary reasons. First,
we do not want to slow the nodal processor down with bookkeeping tasks related to 1/O;
and second, we want the flexibility to interface improved interprocessor connection networks
as 1hey are developed with a minimum of hardware and software changes to the nodal pro-
cessors themselves.

These requirements argue for a direct memory access (DMA) capability with a separate
I/O processor to handle the necessary communications protocols. The nodal processor should
simply be able to request that data be sent to another processor or be received from
another processor. In addition, it should be possible to interrupt the nodal processor to
inform it that data have been received from another processor.

The detailed requirements for the 1/O instructions have not been worked out. However,
it is probably important to have them operate in at least two modes. ln the first mode an
1O instruction is used to initizte some }/O operation. Then, after perhaps doing some use-
ful computation, the processor exccutes a WAJT instruction which suspends its execution
until a condition flag is set by the [/O processor indicating that the 1/O operation has
been completed. Alternatively, the 170 instruction could enable an ntercupt which becomes
active when the 1/O operation has been completed.

6.3 DATA OBJECTS

An underlying assumption of the nodal processor architecture is that ¥ must support a
fairly large data memory (256K to IM bytes) for image processing applications. For direct
addressing, this implics addresses as least 20 bits in length, and perhaps 24 or even 32 bits
o provide for future expansion of the memory size or to incorporate any address tagging
required by the architecture. With three address instructions, the number of bits needed for
specifying source and destination addresses thus ranges from 60 to 96 bits, resulting in very
wide instruction words. In order to keep the instructions width down, some architectures
mmake use of addvess registers. These registers, which contain the addresses of the desired
opcrands, are few esnough in number so that they can be specified with 2 small number of
bits in an instruction word. Opcrands arc thus accessed indirectly. However, address registers
must be saved and restored during context switches like subroutine calls and returns and
interrupt servicing, and this may imply a high level of overhead.

In this section we shall outline the simple concept of using data objects as argumeits
for the arithmetic/logic instruction. By using data objects we arc trying to prevent the
applications programmer from getting involved with data addressing. In any onc program
the number of distinct objects (such as scalar variables and arrays) is relatively small (say
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the order of a thousand or so, sometimes much less) compared with the number of possible
data addresses. Since programmers are much more productive when thinking and work.ng at
a high level, it may make sense for them to refer to and manipulate data objects by
“name.” The “name” of a data object could be used to look up any pertinent information
about the data object (such as its tvpe and current value) in a table.

The address of a location in the data memory could be interpreted as a “name” which
permits the value stored in that location to be accessed. As menticned above, such a
“name” would be long, perhaps as long as 32 bits, and would only provide access to the
values of scalar data objects. The length of a name could be shortened by assuming that a
maximum of 4096 (for example) data objects would occur in any one program. Thus, only
12 bits need to be used to identify any one data object. The 12-bit “name” could be used
to access a table containing the address in data memory where information about the data
ubject in question is stored. This would permit data objects to consist of more than one
value (such as records and arrays) as well as other ancillary information {(such as data type,
array length, and array dimensionality). In the paragraphs below we shall discuss one possi-
ble mechanism that tries to embody the notion of having programmers regard the number
that the processor manipulates as data objects.

As mentioned earlier the “names” of data objects would be contained in an argument
stack that would be accessed by a stack pointer (SP), a frame pointer (FP), and a global
pointer (GP). For data objects which possess only a single value, the data object “name”
can be used to look up the appropriate address which is then used to access the desired
value.

In order to insulate the programmer from the nuisance of computing the addresses of
array elements, multi-valued data abjects such as arrays and records will be accessed in an

-unconventional manner. The address referenced by the data object “name™ will point o the

“header™ that contains all the information necessary to access data from the “named” array.
The “header™ will include things hike the base address in the data memory where the values
are stored. the number of dimensions of the aray, the number of storage cells slong cach
dimension, the number of words (or bytes) of data memory used for a single storage cell,
the type of values stored in the array, ete. In addition, it can contain index registess as
well as the cffective addvess corresponding to the cusrent values of the index registers. This
perinits a separate, noninterfenng set of index registers for accessing cach distinct array (see
Figute 5-1).

When an array data object is referred to by “name.” the value returned by the data
wemory is the value indicated by the cutrent values of the index fegister in the “header™ of
the array. The values of the index registers tay be altered by special instruchions (e.g.,
MODIFY-INDEX) that wall store the values of other data objects into the index registets.
This can get a hitle cumbersome if one is bouncing all over an array, accessing values at
random. On the other hand, if one is accessing values from the artay i a struciured way,
it would be useful to incorporate autosincrementing. auto-decrementing, and zeroing of the
index registers when an array “namic™ is used to access the value of an array clement. The
data memory must be signaled to indicate the desired alteration to the mdex registers of
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the “named” array, the index registers must be changed, and the new effective address must
be computed before the “named” array is accessed again.

The simple scheme discussed above illustrates some of the ideas behind treating arrays
as data objects rather than a collection of values. However, with the simple scheme, all ref-
erences to data objects are doubly indirect. An instruction refers to some register in the
argument stack such as 4(FP) which contains a data object “name” whosc decoded address
leads to the place where the value is stored. (For arrays the access ends up being triply
indirect because the effective address in the array “header” must be used to retrieve the
appropriate value.) We are currently exploring various schemes for reducing the number of
levels of indirection required for accessing the values associated with both scalar and array
data objects while retaining the essence of object-based addressing.

For many image processing operations it is desirable to access pixels within a small,
usually rectangular window centered at some point in the image (see Figure 54). To facili-
tate this, the nodal processor should be capable of specifying the location of elements within
an array in terms of a window location and an offset within the window as well as the
usual method of specifying an offset from the array origin. The location and size of the
window could be stored in the array header in the data memory along with a separate set
of index registers to be used to contain the offset with respect to the window location. Any
additional information to facilitate the address computation could also be stored in the
header.

v/,

[, WINDOW

/ 7/‘

Iy

WINDOW

ORIGIN
IMAGE
IMAGE ORIGIN

Figure B-4. Accessing windowed image data,
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Special instructions will be nceded to set up windows within arrays and manipulate
their location, For example, a DEFINE-WINDOW instruction would be used to specify the
size and initial location of a window. Note that parts of the window may not overlap with
the array. This can occur when the center pixel of the window is positioned at a corner of
the array. If the data memory is asked to return a value that is within the window but not
within the array, it must return an error value. A MOVE-WINDOW instruction is needed
to alter the location of the window within the array. The arguments of the MOVE-
WINDOW instruction are used to specify the window location within the array. Some con-
sideration should be given to the possibility of moving the window by one pixel along any
dimension without having to resort to a full-blown MOVE-WINDOW instruction. This
mechanism could be extremely useful in image processing operations that compute the resuit
of a function of the pixel values within a sliding window.

It might alsc be useful to provide a mechanism to allow multiple windows into the
same array. There are some image processing operations that make use of concentric win-
dows (a 3-by-3 inside a S5-by-5, for example) and the availability of multiple windows might
make it very easy for a programms<: to implement such an operation. In order to imple-
ment multiple windows into the same array, it might be easy to create a dummy array with
a header whose pointers point to the values of the desired array. The second window would
make use of the header of the dummy array. Alternatively, the array header could be
generalized to provide for multiple windows, but some mechanism must be provided that
indicates which window to use when the array “name” is used as an argument in an
instruction.

5.4 DATA MEMORY

It should be somewhat evident from many of the forcgoing discussions that the data
memory must do much more than store bits. Basically it must be a big memory with some
amount of computational capability, It must accept a “name™ and return the appropriate
value. It must keep track of the parameters necessary to access values in arrays and other
data structures. It must respond appropriately to instructions such as MODIFY-INDEX.
DEFINE-WINDOW, and MOVE-WINDOW. It must be capable of rapidly doing computa-
tions of the form ADDR = BASE + INDEXI + INDEX2 * OFFSET 2. It must be able
to compute three addresses in parallel to support the threc-operand instructions efficiently.

There is no reason to presuppose that the data memory must consist of sequential stor-
age locations like the memory of a conventional computer. The rapid retrieval of multi-
dimensional array clements may imply a more sophisticated memory organization. For
example, a memory could be designed that would fetch an entire image neighborhood rather
than a single pixel. Alternatively, a memory system may contain a linked list of array cle-
men's. Each element could then provide access to neighboring elements, giving the data
memory a local connectivity that could be useful for image processing operations. The total
number of bits needed to store a given quantity of data would be larger thun that used in
a conventional sequential memory, but that is the price for faster potential access to
multi-dimensional array clements.




6. IMAGE PROCESSING LABORATORY

During the current reporting period, we have begun to establish a comprehensive labora-
tory facility for supporting image processing research. Until now our computational support
for the research was split between Lincoln Laboratory’s Amdahl 470 central computer and a
VAX 11/780 within our Division. The COMTAL Vision One/20 display was typically used
in a stand-alone mode with tape input. The laboratory facility will now be integrated
around the VAX and the COMTAL and provide a flexible testbed for development and
testing of new algorithms.

A block diagram of the laboratory facility is shown in Figure 6-1. A number of general
and special-purpose image processing modules interact individually or in tandem with a data
base of images. These modules read images from the data base and may generate new
images that are added to the data base. Typical functions performed are target detection,
segmentation, enhancement, edge detection, filtering, and so on. The resulting images can be
displayed and manipulated interactively on the COMTAL and transferred via tape to the
Laboratory’s central computer or other facilities as necessary. A hard-copy camera (see dis-
cussion below) that produces high-quality photographs is attached to the COMTAL and can
be shared with other display devices in the arca.

Special APL and LISP environments will also be present. The APL environment, which
itself provides a powerful set of tools for image processing, has access to the data base and
provides important additional capability. (Both the target detection and the segmentation
algorithms were originally developed in APL.) LISP seems to be useful for both image pro-
cessing and architecture simulation studies that we expect to carry out in the future.

Our specific activitics during this reporting period have been:

(a) Development of a workable APL facility on the VAX. This includes develop-
ment of some basic low-level APL utilities (such as 1/O functions), transfer-
ring existing APL programs and libraries from the 470 to the VAX, and con-
version of these programs as necessary. Most of this work has now been
completed.

(b) Recoding the target detection algorithm. The original APL research version of
the target detection algorithm was brought over to the VAX as part of
step (a) above. However, it was desirable to have a compiled version of this
algorithm for more production-oriented applications. We have, therefore, rewrit-
ten the algorithm in the C language and made it available as an image pro-
cessing module in the system. The compiled version has more flexibility with
respect to parameters, and interfaces well with the UNIX operating system.

(c) Coding several generic image processing modutes. A number of image process-
ing modules for performing such functions as lincar prediction, Karhunen-
Loeve transformation. and gencral matrix transformations have been coded and
placed in scrvice. Theie and future modules are designed to take advantage of
the unique command-.riented and stream-directed 170 features of the UNIX
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environment. Through use of these UNIX features, it is possible to interactively
apply several operations, represented by distinct program modules, in pipelined
fashion without link editing these modules into a larger program or writing inter-
mediate files. We have also coded several more basic programs in C. These per-
form such functions as input/output of images in standard form, matrix inversion,
etc., and will support future software development.

In line with the above activities, we have added to the hardware devices available in
the image processing laboratory through the purchase of a MATRIX model 3000 hard<copy
recording device and some additional terminals. Figure 6-2 is a picture of the facility show-
ing an APL terminal, COMTAL keyboard and display, and the MATRIX hard-copy device.
The hard-copy unit provides high-quality color or black and white photographs (prints or
transparencies) in formats ranging from 35 mm to 8 by 10. Either conventional film or
Polaroid instant film may be used. .
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