AD-A135 726 A STATISTICAL STUDY OF HARDWARE RELATED SOF TWARE ERRORS

. IN MVS(U} STANFORD UNIV CA CENTER FOR RELIABLE
COMPUTING R K IYER ET AL. OCT 83 CRC-TR-83-12

UNCLASSIFIED ARO-18690.8-EL DAAG29-82-K-0105 F/G 9/2

3

L
3.2

o
B

2

_— =

=2
s

= Nig
N2z s, s,

tACROCOPY RESOLUTION TEST CHARTY
NAT.ONAL BUREAU OF STANDARDS - 983 - &

READ INSTRUCTIONS

— e k. L Y. — ——
SECUMITY CLASSIFICATION OF THIS PAGE (When Dete Entered) X' L /ﬂa

REPOR' MCU“ENTAT'ON PAGE BEFORE COMPLETING FORM
. AEPORT NuMBER ‘) 2. GOVY ACCESSION NOZJ 3. RECIPIENT'S CATALOG NUMBER
CRC Tech. Rpt. 83-12 h \‘)’ (;79,

4 TITLE (and Subiitle) v S TYPE OF REPOAT & PEMOD COVERED

A statlétical Study of Hardware Related Software Interim Tech. Report

Errors in MVS
6 PERFOMMING ORG. REPORY NUMRER

”

26

AUTHOR(s) § CONTRACT OR GRANT NUMBER(a)]
Ravishankar K. Iyer and Paola Velardi DAAG-29-82-K-0105

PEAFORMING ORGANIZATION NAME AND ADORESS 10. ::ggl;k:oﬁnl.‘ﬁss'NTT."PUR“O.J(EgsT. TASK
Center for Reliable Computing DD Form 2222, Project No
Computer Systems Laboratory : P-18690-EL ’ :
Stanford University; Stanford, CA 94305
1. CONTROLLING OFFICE NAME AND ADORESS 12. REPORT DATE
U. S. Army Research Office October 1983
Post Office Box 12211 [T} ;uuniﬂ OF PAGES
0

Research Triangle Park, NC 27709
T8 MONITORING AGENCY NAME & ADORESS(/ differant from Controlling Ollice) 18. SECURITY CLASS. (of thie report) 5
Mr. James Gault; Electronics Division
U.S. Army Research QOffice Unclassified

P.0. Box 12211, Research Triangle Park, NC 27709 [7sa gggéﬁi::ucAﬂoVoo'nonomc

16. ISTRIBUTION STATEMENT (of chis Report)

Approved for public release; distribution unlimited.

C\b”"

17. DISTRISUTION STATEMENT (of the sbatract entered in Bleck 20, if dilferent rom Report)

NA

18. SUPPLEMENTAARY NOTES
The view, opinions, and/or findings contained in this report are those of the
aut?or(s) and.should not.be construed as an official Department of the Army
position, policy, or decision, uniess so designated by other documentation.

10 XEY WORDS (Continue en reverse side if neceasary and identily oy 0ioca m-.;r)

Software reliability, hardware/software interactions, recovery

20. APATRACY (Cantinuwe an reveres oids ¥ and § ity by block number)

This paper describes an analysis of hardware related software errors on the

MVS operating system at the Center for Infurmation Technology(CIT) at Stanford
University. The study first examines the software error detectfon mechanisms

with particular raference to the dection of software errors related to temporar
and permanent hardware problems. About 11% of all software errors and over 40%
of all software fatlures were found to be hardware related. It is shown that
the system is seldom able to diagnose the fact that a software error may be

0D . £0IMON OF 1 HOV 6315 0BSTLETL UNCLASS | F1ED

SECUMTY CLAASIFICATION OF THIS PAGE (When Date Entered)

DTIC FILE COPY

82 12 19 2P

.

- N s " s e~ -

, o .
L e g ——

H———I

e st = e

SECURITY CLASSIFICATION OF Tiil Paul Whew Les Enieren)

-

hardware related. Key patterns in the occurence of hardware related software
errors are determined and their effects on the system recovery examined.
In a HW/SW record, both the hardware and the software errors occur in large
clusters and have a significant percentage of lost records associated with
them. The system recovery management is less likely to recover from hardware
related software errors than software errors in general. It is suggested that
error patterns found in this study could form the basis for the detection and
recovery management of hardware related sofiware errors.

i

Unclassified

SECURMITY CLASSIFICATION OF ThiS PAGE(When Dete Entered) -

w

R ﬁ-—'**w*('

enter for
eliable

omputing

A Statistical Study of Hardware Related Softuare Errors in MVS
Ravishankar K. Iyer and Paola Velardi

CRC Technical Report No. 83-12
(CSL TN No. 83-231)

October 1983

CENTER FOR RELIABLE COMPUTING
Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science
Stanford University
Stanford, California 94305

This work was supported in part by the Department of the Army under
Contract Number DAAG29-82-K-0105., the Ugo Bordoni Foundation and the
Italian National Research Council (CNR).

Copyright (:) 1983 by the Center for Reliable Computing, Stanford
University. All rights reserved, including the right to reproduce this
report, or portions thereof, in any form.

M " B - . B B R eSS

SN

Ravishankar K. lyer and Paola Velardi

CRC Technical Report No. 83~12

(CSL TN No. 83-231)

! October 1983

CENTER FOR RELIABLE COMPUTING
Computer Systems Laboratory A ‘
Departments of Electrical Engineering and Computer Science ! :
Stanford University
Stanford, California 94305

ABSTRACT

o

This paper describes an analysis of harduare related software errors on .
the MVS operating system at the Center for Information Technology (CIT) < _
at Stanford University. The study first examines the softuare error
detection mechanisms with particular reference to the detection of soft-
ware errors related to temporary and permanent harduare problems. About

11 percent of all software errors and over 40 percent of all software
failures were found to be harduware retated. It is shoun that the system

is seldom able to diagnose the fact that a software error may be hard-
ware related. Key patterns in the occurrence of hardware related soft-
ware errors are determined and their effect on system recovery examined.

In a HUW/SW record, both the harduare and the software errors occur in
large clusters and have a significant percentage of lost records associ-

ated with thenm. The system recovery management is less likely to
recover from harduare related softuare errors than softuare errors in
general. 1t is suggested that the error patterns found in this study

could form the basis for the detection and recovery management of hard-

ware related softuare errors,
<

Keywords: Softuare reliabili{v. harduwaressoftuare interactions, recov-
ery
Mo e R e
[} "‘ ! ' .
— ——~————— } X . —_—
e = "

CONTENTS

Abstract L 0 0 0 0 v e e e e e e e e

1. INTROBUCTION ¢ v ¢ ¢ o « o o s o o o « &«
2. RELATED RESEARCH AND MOTIVATION
3. THE DATA BASE .
Processing the error data
4. ANALYSIS OF ERROR DETECTION .
Error classification
Error detection statistics . .
Error detection and recovery . .
Detection of harduare-related softuare errors
5. ANALYSIS OF HARDWARE RELATED SOFTWARE PROBLEMS
Recovery of hardware-related software errors . . .
6. CONCLUSIONS
7. ACKNOWLEDGMENTS ¢ ¢« ¢ ¢ = o « v o o &«
REFERENCES
Appendix
A. MVS ERROR DETECTION AND RECOVERY PROCESSING .
Error detection e .
Recovery processing . . « e e e s
Error recording on SYSI. LOGREC « e
B. SOFTWARE ERRORS - FREQUENCY PLOTS

1"

11

14
15

17

. 25

. 27

. 29

. 29
30
32

. 38

Eigure

1. Sample of harduares/software errors . . .

2. Sottuare handling of soiftware errors on MVS .
3. Hour of day plot of software errors .

4. MNour of day plot HW/SU Temporary errors .

5. HKour of day plot HW/SW Permanent errors .

6. Hour of day plot all Temporary HW errors

7. Hour of day plot all Permanent KW errors

8. Frequency plot of all software errors by month

FIGURES

-

e — -

-

. 39

. 4

iv

TABLES

. . 13

. .« . . .14
. 15

. 16

. 17

Statistics on hardwaressoftuware interaction 19

Specification of recovery routines for HW/SW errors 20

HW/SW-Temporary: Recovery management 2

. 22

Event that caused program termination 35

Iable

1. Sources of data

2. Summary of the data
3. Distribution of error categories .
4. Effecfiveness of the recovery

5. Effect of recovery routines . |
6. HW/SK errors - detection .

7. Device involvement statistics

8.

9.

10.

11. HUW/SW-Temporary: Error types .
12.

13. Examples of ABEND reason codes .
14. Recovery information

.37

1. INTRODUCTION

The design of reliable and fault tolerant software systems is one of the
most important issues facing computer designers today. Softuare cost
and reliability are the major problem areas affecting modern computer
systems. The question of harduare and software interaction and its
effect on system reliability is particularly difficult to comprehend.
It is further compounded by the lack of availability of real data. It
is our view that results based on actual measurements and experiments
are essential for developing a clear understanding of the problem.

The MVS system on the on the IBM 3081 at the Center for Information
Technology (CIT) at Stanford University, provided an ideal opportunity
in this regard. The operating system automatically collects information
on error detection and correction. The state of the machine at the
time of the error is also recorded. CIT is the main campus computation
facility. It is used for production programs (payrolls and administra-
tion), student and research projects, and for general purpose computing.
The installation consists of two IBM 3081 processors wmhich run the MVS
operating system. The tuo processors are loosely coupled, e.g., they
have distinct control programs and different 1/0 configurations. on a
typical day, the tuo systems support around 500 users and run approxi-
mately 4000 batch jobs.

The general objective of this study was to determine the extent and
impact of temporary and permanent harduare errors on the operating sys-
tem. The analysis differentiates betueen the terms "error™ and "fail-
ure”. A failure is an "error”™ which causes the termination of the sys-

tem (i.e., a system failure). Thus an error, in general, may or may not

-~

sl hudti

e

2

result in a failure. It is generally believed that the operating system
is not aluays able to diagnose a software error related to a harduare
error or failure. We define this as a hardware related software error
and denote it as a "HW/SU™ error. Note that the relationship may be
either cause and effect (i.e. the harduare error caused the softuare
error) or symptomatic (i.e both the hardware error and the softuare
error are symptoms of another, yet unidentitied, problem). A HUW/SKH
error is further subdivided as follous:

1. Software errors found related to temporary harduare errors

(denoted by "HW/SW-Temp.™).
2. Software failures found related to permanent harduare failures
(denoted by "HW/SW-Perm.").

We commence by analysing the error detection facilities in MVS with
particular reference to harduare related problems. The most common
types of harduare-related software errors are identified and their reta-
tive frequencies found. Finally the impact of HW/SW errors on the sys-
tem is evaluated by measuring the effectiveness of system recovery in
handling harduare related softuare errors.

The approach adopted was to start with a substantial quantity of high
quality data on all software errors (recoverable and non-recoverable).
The data on error detection and recovery is automatically logged by the
operating system. An error collection mechanism which selected and fil-
tered the raw data so as to cluster records referring to the same error,
was developed (see [Velardi 83] for details). The data set so obtained
was then merged with data sets of temporary and permanent harduare

errors. The data on temporary harduare errors came from channel and

3
disk error logs [IBM 79]. Data on permanent harduare problems came from
UNILOG [Butner 80), an installation (CIT) maintained log of failures and
repair.

The important results of the study are summarised below:

1. The operating system 1is seldom able to diagnose the fact that a
softuare error may be harduare related.

2. About 11 percent of all software errors were determined ¢to be
harduare related.

3. Over 40 percent of all softuare failures were found to be hard-
ware related.

4. The key pattern of a HW/SW record is that both the harduare and
the softuzre records occur in large clusters gnd have a signifi-
cant percentage of lost records associated with them.

5. The system recovery management is less effective in handling
harduare related software errors than softmare errors in general.

Before describing this work in detail, an overview of reiated research

in this area is presented.

2. RELATED RESEARCH AND MOTIVATION

Designing harduare systems that tolerate faults is relatively well
understood, at least from a theoretical viewpoint. Houwever, the problem
of software fault tolerance has yet to be well investigated [Hecht
80a,b].

The term "softwuare reliability model"™ is usually taken to mean mathe-
matical relationships for assessing the reliability of software (in

terms of statistical parameters such as Mean Time Between Failures) dur-

e e oy :

[, lﬁ___..—-wq_,-—“..v- somups—— =

vy - — -

4

ing the development, debugging or testing phases. A feu of these models
have also been applied in follow-up operational phases. Several compet-
ing models have appeared 1in the 1literature (see [Musa 1980] for
details), and a number of authors have attempted to analyse their suit-
ability. An appreciation of the extent and nature of this discussion
can be obtained from [Goel 80]. The main difficulty wuwith these
approaches is that, although each model appears to be valid within its
own assumptions, there is insufficient experimental evidence available

to judge their general validity.

Research most closely related to the present ‘dy is ‘n the area of
analysis of errors and their causes in large sof -~ systems. [Endres
75) discusses and categorises errors and error .quencies during the

internal testing phase of the IBM DO0OS/VS system. In {Thayer 78] data
collected from four large software development projects is analysed.
[(Hamilton 78) applies the well known execution time model {[Musa 80] to
measure the operational reliability of computer center software, and
[Glass 80] examines the occurrence of persistent bugs and their causes
in operational software. Another useful study is [Maxwell 78], which
tabulates and examines error statistics on softuare.

None of these studies tries to relate system reliability or the error
frequencies to the usage environment ot the softuare itself in a system-
atic manner. Results based on such measurements are essential in order
to evaluate the system fault tolerance and automatic recovery features.

In an early study of failures at the SLAC (Stanford Linear Accelera-

tor Center) computation facility, [Butner 80] and {Iyer 82a] found a

strong correlation betueen the occurrence of failures and the level of

5
system activity at the time of failure. A more detailed and sccurate
analysis of failures on a VM/370 system (in service at SLAC since Febru-
ary 1981) confirmed this relationship [Rossetti 82]. 1n addition this

study found that a significant proportion (16 percent) of software-re-

wer v oTw e T8

lated system failures were due to hardware problems. In many of these

cases it was determined that the system should have been designed to

T OWR W St

continue operation at least in a degraded mode. To the authors’ knowl-
edge there are no other experimental studies reported in the literature
on harduare-softuare interaction.

More recently [Velardi 83] analysed the error recovery facilities on

the MVS system. Data on error recovery showed that the system fault

tolerance almost doubles when recovery routines are provided for failing
programs, in comparison Wwith the case where only system provided recov-

ery management is available. The recovery routines are most effective

in handling storage management probliems (an important feature of MVS).
However, even when recovery routines are provided, there is almost a 50%
chance of system failure when critical syste$ jobs are involved. Thus
there is still considerable scope for improvement. Deadlocks, 1/0 and

data management, and exceptions are the main problem areas.

Finally, a preliminary examination of the data appeared to indicate i
that the error detection in MVS is not always able to diagnose software
problems resulting from a hardware failure. It was clear that further

analysis was necessary to fully understand this problem.

3. THE DATA BASE

The automatic detection of a software error in MVS can be through hard-
ware or software facilities. Harduare detects conditions such as over-
flows, addressing or divide exceptions and, is generally used to protect
storage or other system resources from unauthorised access. Harduare
detection manifests itself as a program interruption (program check).
Softuare detects more complex conditions such as an incorrect parameter
specification in a macro or the unvalid use of control statements. Data
on the type of detection (harduare or software) and recovery is logged
by the system on to a data set called SYS!.LOGREC. A description of
error detection and recovery processing in MVS appears in Appendix A
and, in [IBM 79].

Initially, the SYS1.LOGREC data set (which is in hexadecimal code),
was compacted in order to extract the relevant information, and to pro-
vide explanations for hexadecimal codes. Then, the records believed to
be repeated occurrences of the same problem were clustered. The number
of observations in a cluster (SWPOINTS, HUWPOINTS) and time span of the
cluster (SWSPAN, HWSPAN) wuwere also added to the record. The result of
this manipulation was a data set ready for statistical analysis. The

building of this data base is discussed in detail in [velardi 83].

3.1 PROCESSING THE ERROR DATA

The raw LOGREC data includes CPU, channel, and device errors for all
equipment in the installation. Initially the software records on the
tuo 1BM 3081’s were selected for this analysis. 1In each software record

there are a number of bits describing the type of error, its severity,

RS

R e

——— .

7

and the result of harduware and softuare attempts to recover from the

problem. The cvneral software error status indicators provided by the

harduware and softuare are TYPE (of detection), EVENT (causing the detec-

tion) and ERRCODE (code or symptom of the error).! For the purposes of

this study two additional data sets which contained information on hard-

wares/softuare interaction were also generated:
1. Softuare errors found related to tenporary harduware errors (HW/
SW-Temp.).
2. Softuware failures found relzted to permanent harduare failures
(HW/SW-Perm.).

The HW/SU-Perm. data set was created by matching the softuare revords

with the log (UNILOG) of all harduare failures manually maintained at

cIT. The matched records were then inspected to confirm that the

resulting data (neariy 70 failures) did indeed correspond to hardware-

related softuare failures. The HW/SW-Temp. data set was obtained by

matching the software errors with temporary channel and disk problems.

The data on channel probliems came +from the Channel Check (CCH) records

) and from Missing Interruption Handling (MIH) records. The data on disk
' errors came from the system outboard records (0OBR). Again the merged
data set was carefully inspected to confirm that the records reasonably

well corresponded to hardware-related software errors. Table 1 provides

brief descriptions of the sources of data employed in this study (see

{18M 79] and [Butner 80] for a detailed description of these records).
J A sample of the hardware-related softuare records is given in Fig. 1. A
summary of the data appears in Table 2. Interesting frequency plots of

' the data are given in Appendix B.

' The IBM names for these fields are [IBM 79): TYPE ~ HDRTYP; EVENT -
SOWERRA; ERRCODE - SDUWACMPC.

TABLE 1

Sources of data

Type of Record Explanation
Channel Check Record These records are generated for
(CCH) every channel error (includes

Channel Control Checks, Channel
Data Checks and Interface Control
Checks). CCH’s are temporary
harduare errors and do not result
in system termination. i

Missing Interruption MIH records are due to missing or

Handling (MIH) pending device and channel end
interruptions.

Out Board Records (OBR) 0BR records are generated for a

wide range of events (normal and
abnormal). The category used in
this analysis is temporary and
permanent device errors.

Software Records Softuare records are generated
for selected software events.
Examples are invalid SVC, program
checks, system abends or user
abends which request a recording.

UNILOG UNILOG is an installation
maintained log of all software
and harduare component and system
failures.

PY VR TR Y !

s nasme BIPOINTS PN 08 e
] OIRARBR 117131142 (] mr PO
t 2 [PG 700 SODERR
3 . PrIGRZT00 WOSHEMR
4 3 (] PIERLT60 S INERR
3 SSMARGZ 11148038 " L A
L3 SHMARSE: 11108134 e INIT MDSHERR
7 10MARS2: 83 ~ LOSTRECS LOSTRECS
[TIARBL 11400 [uyL R SHDINERE
04 ARG ¢ A58 mrr WD SUERR
AL] t ¢ LosTRECS LOSTRECS
" 1" HOME -FRR SDIIMERR
123 SEHARSL 108159142 . JE32 HDSHERR
13 LARBI 08154150 . JES2 WD IERR
1% JINARBZ117:87103 . JECCPY WD SKERR
18 JIRARBR 17410127 . Ll BOSHERR
14 SIMARSZF17¢111856 [[4 SHDSNERR
17 TOAPROZ:IB14914] 3 NanY SDSHERR
18 ? nvLoum SHOSHERR
19 1 SMASTER® OPERODERR
" TTAFRER OB 1Y 1 \TRL

Tmesne

OAMARS2: 08231000
10MARS2113143:59
TSMARSZ 181 1100 Y
18MARSL102113: 30
1OMARA2:02:13:58
10MMARB2: 10127121
1OMAND2 1 14:131:52
F2MARSL 05128138
22MANB2:08:25:)1
FMARL2: 185148131

ZOMARS2109:12213)
29MARB211011 3134
2ONAPB2 11111952
3J0MAROZ114:84:03
JIMARG2:117107103
BYIAPRE2:13:33:0¢
O4APRSZ112134:25
DAAPREZ ! 14: 05144
OBAPRS2: 19122129
C8APRAZ119:27108
094PRS2:05:35:3)
10APRA21 16516148
11APRO2:16:08112
144PPS2:03115:08
28APREZ:11:23:59

®
srnOBIRNRNOONSS

s
RS Y R

Figure 1:

HW/SW Perm.

HW/SW Temp.

WPOINTS BEPAN BESPAN JoB

14 [] 101 MILYEN
458 . LOSTRECS
[.07 LOSTRECS
1] AL} NONE-FRR
L] MILYEN
179 L Jes2
8 7 MNONE-FRR
[] 18 ORVYLRLE
[} 17 ORVYLRLE
0 as PIAVESDS
[] L] INIT
43 56e wYLBUR
3 177 o MANY
2 [° TAPE
(3] [] R LOSTRECS
te . *4 JecrY
1 L] [JXH16390
1 ° . NILTEN
1 (3] L] NILTEN
o L 73 JES2
L] 22 713 MANY
3 ° 184 NILTEN
[[] 54 nezEIeze
s 9 L WILVEN
o [] 1888 MILTEN
1 o0 L] RANY

Sample of harduare/softuare errors

10

It can be seen from the data in Fig. 1 that it is not unusual to have
more than one software record for a permanent harduare problem (i.e.
HuW/SW-permanent). Obseravations 2-4 and 12-13 are some examples. for
temporary harduware problems note that not only some of the observations
are very close in time they also refer to different harduare or softuare
problems. For example observations 4 and 5 indicate that tuwo softuare
errors occurred in connection with a channel check and a temporary disk
error on different programs. The time vicinity of these errors suggests
that the cause of these problems was common. It is clear that the sys-
tem was not able to diagnose and relate these records (e.g. tuo SUW
records, one CCH and one OBR, for the temporary harduare probliem). A
detailed analysis of the data (both HW/SW-perm. and HW/SW~temp.) con-
firmed that the system is seldom able to diagnose a hardware related

softuare error.

TABLE 2

Summary of the data

Period of Study: March 1982 - May 1983

Data Set Source Freq.
All SW Errors SH Records 1547
Al) Permanent HW Failures UNILOG 264
All Temporary HW Errors CCH, OBR 4461
SW Errors Related to Temporary SW Records/
HW Errors CCH, OBR 108
SUW Errors Related to Permanent SW Records/
HW Failures UNILOG 69

|
]

.-

1
The next section investigate the detection of software errors. Par-
ticular attention is paid to the detection of software errors related to

temporary and permanent hardware problems.

4. ANALYSIS OF ERROR DETECTION
This section investigates the the detection of software errors in MvS.
In particular, the following points are considered:
1. The relationship between the type of software problem and the
type of detection (i.e. harduare or softuare).
2. The impact of hardware or software detection on system recovery.

3. The detection of software errors found to be harduare-related.

4.1 ERROR CLASSIFJCATION
In common uith octher analyses of this type, the ERRCODE provided by the
system uere grouped into classes of similar problems. The error classes
were chosen to reflect commonly encountered problems. In addition,
other studies of this nature were also consulted (e.g., [Thayer 78],
(Endres 75), [Rossetti 82]). Finally, it was important to make sure
that each error category had a statistically significant number of
errors in it.

Seven classes of errors were defined:

1. Control: indicates the invalid use of control statements and

invalid supervisor calls.
2.]1/0 and data management: indicates a problem occurred during l/0

management or during the creation and processing of data sets.

3. Storage management: indicates an error in the storage alloca-
tion/de-allocation process or in virtual memory mapping.

4. Storage exceptions: indicates addressing of non-existent or
inaccessible memory locations.

S. Proaramming exceptions: indicates a program error other than a
storage exception.

6. Deadlocks: indicates a system or operator detected endless loop,
endless wait state or violation of system or user defined time
limits.

7. Lost Records: indicates that the error recording process uas

itself affected by an error.

4.2 ERROR DETECTION STATISTICS

There are significant differences in the error distributions betueen the
tuo detection mechanism. Table 3 gives the percentage distribution of
the errors during the analysed period. On the average, the tuo major
error categories are storage exceptions (252) and storage management
(262%).

It can be seen that all exception type problems are detected by harduware
and storage management type problems are detected by softuware. In the
case of control and 1/0 problems, it is found that almost tuice as many
are software-detected. An analysis of the harduware-detected control and
170 problems showed that these were in fact forced program checks and
were detected as a result of specific softuare traps. Note from Table 3
that storage related problems dominate both harduare and software-de-

tected errors. Recall that a major feature of the MVS operating system

e e e e g a7

s

TABLE 3

Distribution ot error categories

4 Harduare Softuare Al

3 Detected Detected
Error type Freq. % freq. % %
Storage management 1 1.9 395 44.2 26.2
Storage exceptions 382 67.0 0 0.0 24.7

i Deadlocks o 0.0 310 34.6 20.2
1/0 and data management 45 7.9 116 13.0 10.5
Programming exceptions 114 19.9 0 0.0 7.4
Control 18 3.2 50 5.6 4.4
Invalid 1 0.1 23 2.6 6.6
ALL 571 100.0 894 100.90 100.0

is the multiple virtual storage organisation. Storage management is &

high volume activity and is critical to the proper operation of the sys-
tem. One might therefore expect its contribution to errors to be sig-

nificant.

t4
4.3 ERROR DETECTION AND RECOVERY

In MVS the system can recover from an error by a retry or by aborting
the job or task (a module of the job) in progress [1BM 80]. 1¥ the job
or task is critical for system continuation, abortion will cause system
failure. Table 4 provides information on how an error uwas handled. The
table shous that a harduare-detected error is more likely to result in a
system failure and less likely to be retried successfully than a soft-

ware-detected error.

TABLE 4

Effectiveness of the recovery

Detection Freq. JOBTERM TASKTERM RETRY FAILURE

% % % %
Harduare 571 0.9 45.2 24.0 29.9
Softuare 894 20.0 26.6 35.6 17.7
A1 1547 13.0 33.5 31.1 22.4

* This includes Lost Records and Operator detected errors also.

Recovery routines are specified 1in MVS for major system functions
[Auslander 82]. Table S relates the provision of recovery routines to
the detection mechanisms. We find that recovery routines are specified
for almost tuwice as many software-detected problems than for harduare-
detected. The table shous that softuare-detected problems are better

handled (higher chance of a recovery than for hardware-detected prob-

18
TABLE 5
Effect of recovery routines
Error Type Recvy Routine Failures Failures
Provided (Rcvy Routine (Rcvy Routine
Provided) Not Provided)
4 %z 4
Harduare 43.5 27.6 31.6
Software 84.8 13.3 42.19
Al 66.1 16.8 34.8
lems). In both cases houever we find that the availability of a recov-

ery routine substantially improves the recovery probability. An impor-
tant reason for the better performance of software-detected problems, is

due to the fact that software detects most (or all) management type

problems. Since storage management is an important function of MVS and
it is more carefully designed and better protected by recovery routines.
! Rlso the system has more information available regarding a software

detected problem than one detected by the harduare.

4.4 DETECTION OF HARDWARE-RELAYED SOFTWARE ERRORS

Our previous analysis ([vVelardi 83] appeared to indicate that the
error detection mechanism on MVS is not always able to diagnose softuare
problems resulting from a hardware failure. Recall that the error data
set used in this study contains information on software errors and fail-
ures found to be related to both temporary and permanent hardware prob-

lems.

16
TABLE 6
HW/SW errors - detection
HW/SW-Temporary HW/SW-Permanent All Su*

Detection Freq. % Freq. % Freq. %
Harduware 23 21.3 27 39.1 521 38.0
Softuare 64 59.3 30 43.5 800 58.5
Lost record 21 19.4 10 14.5 46 3.4
Operator 0 0.0 2 2.9 1 0.1
Total 108 100.0 69 100.0 1368 100.0
* Note: This does not include harduware-related problems

Table 6 analyses the detection of softuare errors found to be
harduware-related. It can be seen from Table 6 that lost records are a
significant proportion of harduare-related software errors. Note also
the fact that more than 40 percent of all lost records occur in combina-
tion with a HW/SW error (whereas HW/SW errors are only 11.0 percent of
all software errors). This seems to show that software error data cotl-
lection itself is atfected by the occurrence of a harduare error. Fur-
ther investigation of this problem revealed that the job name of the
hardware record associated with the software error tagged "LOST" gener-
ally indicated a system critical job. 1In addition lost records commonly
appear in very large clusters indicating the persistency of a problem

and usually result in system termination. It appears from the data that

17
such an occurrence can almost always be considered as a symptom of a

harduware-related software problem.

5. ANALYSIS OF HARDWARE RELATED SOFTWARE PROBLEMS
This section analyses temporary and permanent harduare-related softuare
problems. Significant features of harduare-related softuare errors are

determined and their effect on recovery management is examined.

TABLE 7

Device involvement statistics

Device HW/SW~Temporary HW/SW-Permanent A1l HW/SU
Freq. X freq. b %
(A1l Su (ATl SW (AlT SuW
Errors) Failures) Errors)
CPU/Channel 76 4.9 20 7.0 6.1
Disk 32 2.1 42 14.6 4.8
Other 0 0.0 ? 2.4 0.1
Total 108 7.0 69 24.0 11.0

Table 7 shows the frequency and percentage of hardware devices involved
in software errors. Disks or channels are almost always involved. cPY
and channel are considered together because the IBM 308t contains both
in one box and usually a channel problem also effects the CPU. The

table also shous that about 11 percent of softuare errors are found

18
related to a hardware problem. About 7 percent of all softuare errors
were related to temporary harduare problems. Nearly 25 percent of all

softuare failures houever uwere related to permanent harduare problems.
The statistics on permanent hardware failures is somewhat higher than
the results on VM/370 reported in [Rossetti 82]. That study found 16
percent of all software failures were hardware-related.

Table 8 provides statistics on hardware related software errors, i.e.
Time Between Errors, the number of records (SWPOINTS) in a cluster (i.e.
referring to the same problem) and the time span (SWSPAN) of the error
(time between the first and the last record in a cluster). 1t is noted
that both HW/SW-Temp. and HW/SW-Perm. have larger clusters and larger
error handling times (i.e. SWSPAN) in comparison with all! SW errors.
The permanent failures have the larger times of the two. It was also
observed that several of the large clusters had many jobs involved.

Summarsing, we find that the key features of harduare-related soft-
ware problems are that they are very likely to result in lost records,

occur in large clusters and involve many jobs.

T et UL i) sl

TABLE 8

Statistics on hardwares/software interaction

TIME BETWEEN ERRORS (Hours)

HUW/SU-Temp. A1l Su HW/SW-FPerm. All su
Errors Failures
Mean 100.9 7.9 159.4 44.8
Standard deviation 208.3 12.8 304.8 108.8
Median 26.2 2.5 43.5 6.3
SWSPAN (Seconds)
HW/SW-Temp. All su HW/SU-Perm. A}l SH
Errors Failures
Mean 91.0 49.5 205.4 47.9
Standard deviation 312.4 203.8 958.6 183.7
Median 0.0 6.0 6.0 6.0
SWPOINTS
HU/SK-Temp. All sSu HW/SW-Perm. All su
Errors Failures
Mean 11.5 4.2 16.9 4.8
Standard deviation 33.1 15.7 60.3 23.3
Median 2.0 2.0 4.0 2.0

20

5.1 RECOVERY OF HARDWARE-RELATED SOFTWARE ERRORS

This section analyses the recovery mangement of temporary and permanent
‘ harduware-related software problems. Recall that in handling a softuare
problem the system can recover by issuing a retry, or by aborting the

current job or task (a module of the job) in progress. 1f the 3job

involved 1is critical for system continuation, system failure will

result.
1 TABLE 9
Specification of recovery routines for HW/SW errors
Error Type Recvy Routine Failures Fajlures

Provided (Recvy Routine (Rcvy Routine
Provided) Not Provided)

% % %

Temporary 62.9 20.6 84.2

Permanent 46.4 100.0 100.0

All 56.5 46.0 92.0

Recovery routines are specified in MVS for major system functions.
Table 9 shows that software errors related to permanent hardware fail-
ures have a lower probability of having recovery routines specified than
softuware errors related to temporary hardware errors or normal software
errors. The figure is almost a third lower, Comparing Tables 9 and 5,
it is also clear that, although recovery routines are specified for

almost the same proportion of HW/SW-temporary errors as for all softuare

ettt ARt o sanatlh

YA
errors, they are not nearly as effective. In addition, the percentage
of failures uwhen recovery routines are not provided is substantially
higher. Thus, the system recovery management is significantly less
effective in handling a HW/SW error than it is in dealing with a soft-
ware problem in general. This is significant since it points to a par-
ticularly weak aspect of the system. 1t may be argued that a better
provision of recovery routines specifically geared toward the harduware-

softuware interaction could considerably alleviate the problem.

TABLE 10

HW/SW-Temporary: Recovery management

Error type TOTAL CCH MIH DISK
freg. % % % 4
Retry 25 23.2 20.5 18.9 31.3
Task Term. 16 14.8 10.3 13.5 21.8
Job Term. 19 17.6 7.7 43.2 0.0
Failure 25 23.2 18.0 16.2 37.5
Lost Records 23 21.3 43.6 8.1 9.4
Al 108 100.0 36.1 34.3 29.6

Tables 10 and Table 11 provide information on recovery from HW/SW-Tempo-
rary errors. It can be seen from the table 10 that MIH (Missing Inter-
ruption Handling) causes the highest job and task terminations and sytem

damage. These are seen from table 11 to be most closely related to

} TABLE 11

HW/SW-Temporary: Error types

Error type TOTAL CCH DISK MIH

freq. % % % 3

X Control 4 3.7 6.0 3.1 8.1

] Deadlocks 29 26.9 15.4 0.0 62.2
170 and data

ﬁ' management 7 6.5 2.6 9.4 8.1

i Storage management 23 21.3 18.0 31.3 16.2

E Storage exceptions 12 11.1 15.4 18.8 0.0

Programming

exceptions 8 7.4 0.0 21.9 2.7

Unclassified 25 23.2 48.7 15.6 2.7

Al 108 100.0 36.1 29.6 34.3
deadlocks. This is quite reasonable since MIH are due to interrupts
which are not completed in a specified time. The deadlocks are most

commonly due to the detection of a wait state or an endless loop.
Retries are also the lowest for MIH since most of them are deadlocks.
More than 48% of the channel related software errors result in a tost
record. We find that in most of these cases both the harduware and the
software problem have large clusters associated with them. The disk and
channel errors most commonly manifest themselves as storage problems or
exceptions. This could also imply that the real problem was not in the
channel but perhaps in main storage which resulted in both the channel

error and the software record.

— e e ~ ——— = - . AT gttt WDt rma—a.

- T S e g g "7

WP

o

23

It is significant to note that 23% of HW/SW-temporary errors result
in system failure. Taking this and HW/SW-permanent failures into
account, it was found that nearly 35 percent of all software failures
are harduare related. In addition, it was found that most of the lost
records also resulted in system termination. Jhus the true percentage
of softuare failures (in our data) which are harduare related, is over
40 percent.

In summary, the analysis shows that recovery management of HW/SW
errors, 1is significantly less effective than that of software errors in
general. In many of these cases it was felt that the system could have
been designed to continue in a degraded mode. At least the softmare
should be capable of recognising a hardware failure and take the offend-
ing component off-line or put the system in a wait state.?

Software problems related to temporary hardware errors are not well
managed either. The system has a low fault tolerance for these errors.
Over 40 percent of all software failures are harduware related. It is
believed that an important reason for this is the inadequate communica-
tion between the hardware and software regarding the occurrence of
errors. 1¥ a hardware error was diagnosed and tagged as a potential
software error, it is possible that better recovery could be designed.
This would be especially true if the system was geared to recognise cer-
tain patterns in these errors (such as those observed here) and classify
them as potential software problems. More data analysis and experimen-

tation is necessary before this can be achieved in a reliable manner.

2 Although this capability does exist in MVS in handling some harduware
problems e.g. channel errors, there is no specific provision for han-
dling HW/SW errors in general.

-

© it Qe Pttt

24
6. CONCLUSIONS

It has been the purpose of this paper to analyse the interaction betueen
harduare and software as it relates to system reliability. 1t was seen
that a harduware-detected error 1s more 1likely to result in a system
failure than a software~-detected problem. An important reason for the
better performance of software-detected problems, is due to the fact
that software detects most (or all) management type problems. This is
an important function of MVS and hence more carefully designed and bet-
ter protected by recovery routines.

Statistics on HW/SW errors shows that about 1! percent of softuware
errors are harduare related. About 7 percent of goftuare errors were
related to temporary hardware problems; more than 24 percent of all
softuare failures however were related to permanent hardware problems.?
Taking all harduare errors into account (HW/SK-Temp. and HW/SW-Perm.)
over 40 percent of software failures were determined to be harduare
related.

Importantly, the analysis indicates that ;here is poor communication
between facilities detecting harduare and software problems. An analy-
sis of the data clearly shows that the system is not able to diagnose
the fact that a software error may be hardware related. The key fea-
tures of HW/SW errors identified in our data were:

1. Both hardware and software errors occur in large clusters

2. The HW/SW errors have a significant percentage of lost records.

3. The SW record in a HW/SW error may have many jobs involved.

3 In comparison [Rossetti 821 found that 16 percent of softuare failures
on VM/370 were hardware related.

ST e 0-*‘- o e ek T e e— e i

25

4. The system recovery managment is less likely to recover from a

HU/SW error than a software error in general.

1t is suggested that some of the error patterns found in this study
could form the basis for detection of hardware related softwuare errors.
It s of course possible the both the hardware error and the softuare
error indicate no more than a symptom of the real problem. There is
some evidence in our data to suggest that this is a possible scenario.
However, if the detection was better coordinated, it is possible that at
feast system termination due to temporary harduare problems could be
reduced. Better communication between the hardware and software error
detection mechanisms may be an area where further effort toward allevi-
ating this problem can be directed; There is no doubt that more data
analysis and experimentation is necessary before patterns found in this

study can be used as a basis for a suitable detection policy.

7. ACKNOWLEDGMENTS

The authors would like to thank Prof. E.J. McCluskey for his interest in
this work and for extensive discussions during the period of this study.
Special thanks are extended to Larry Rivers and Lincoln Ong at CIT and,
to Dave Rossetti and Bill Weeks at SLAC for valuable discussions.
Acknouledgments are also due to Dorothy Andreus for her careful reading
of an earlier draft of this paper.

This work was supported in part by the U.S. Army Research O0ffice
under contract number DAAG29-82-K-0105, the Ugo Bordoni Foundation and
the Italian National Research Council (CNR). The vieus, opinions,

and/or findings contained in this document are those of the authors and

e —— e e———— . -

LT T T T e g gt~

26

should not be construed as an official Department of the Army position,

policy,

tion.

or decision,

unless so designated by other official documenta-

27

PRy

REFERENCES

[Austander 81] M.A. Auslander, D.C. Larkin and A.L. Scherr, "The

evolution of the MVS operating system,”]BM Journal of Research
Development , Vol. 25, No. 5, September 1931,

(Butner 80] S.E. Butner and R.K. Iyer, "A statistical study of
reliability and system load at SLAC," Digest. Yenth International
Symposium on Fault Jolerant Computing, Kyoto, Japan, October 1930.

[Curtis 80)] B. Curtis, "Measurement and experimentation in softuare

engineering," Proceedings of the IEEE, Vol. 68, No. 9, pp.
1144-1157, September 1980.

f{Endres 75] A. Endres, "An analysis of errors and their causes in

systems programs,” IEEE Yrang. Software Engineering, Vol. SE~1, No. ;
2, pp. 140-149, June 1975. ’ !

{Glass 80) R.L. Glass, "Persistent software errors,” JEEE Irans.
Software Engineering, Vol. SE-7, No. 2, pp. 162-168, March 1981,

{Goel 80] A.K. Goel, "A summary of the discussion on ‘An analysis of !

competing softuare reliability modeis’," I1EEE Jransg. Softuare
Enaineering, Vol. SE-6, No. 5, pp. 501-502, September 1980.

[Hamitton 78] P.A. Hamilton and J.D. Musa, "Measuring reliability ot

computation center software,” Proc. Third Int. Conf. Software
Engineering, Atlanta Georgia, pp. 29-36, May 1978.

‘ [Recht 80al H. Hecht, "Current issues in fault tolerent software,"
Proceedings COMPSAC 80, Chicago Illinois, pp. 603-607, November 1980.

[Hecht 80b] H. Hecht, "Mini-tutoria) on software reliability,”
Proceedings COMPSAC 80, Chicago Illinois, pp. 383-385, November 1980.

[I8M 81] 1BM Corp., 0S/VS2 MVS, System Proaramming Library: MVS
Diagnostics Yechniques, Order No. GC28-0725, 1981.

‘ [1BM 80] 1IBM Corp., 0S/VS2 MVS, System Programming Library: Supervisor,
{ Order No. GC28-1046, 1980.

; {18M 79] 1BM Corp., 0S/V¥S2 MVS, System Programming Library: SYS1.LOGREC
) Error Recording, Order No. GC28-0677-5, 1979,

i [{Iyer 82a] R. K. Iyer, S. E. Butner, and E. J. McCluskey, ™A
i statistical failure/load relationship; Results of a multi-computer

study," 1EEE Yransactions on Compyters, July 1982,

28

(Iyer 82b] R.K. lyer and D.J. Rossetti, ™A statistical load dependency

model for CPU errors at SLAC," The Diq. FICS-12, Imelfth
International Symposium on fault Yolerant Computing, Santa Monica,
california, June 1982.

[(Maxwell 78) F.D. Maxwell, The Determination of Measures of Software
Reliability, Final Report, NASA~CR-158960, The Aerospace Corporation,
E! Segundo California, December 1978.

{Melliar-Smith 81] P.M. Melliar-Smith and R.L. Schuartz, "Current

progress on the proof of SIFT,™ The Diq. FI1CS-11, Eleventh
Jnternational Symposium on Fault Jolerant Computing, Portland, Maine,
June 1981.

[Musa 80] J. Musa, "The measurement and management of software
reliability,” Proc. JEEE, Vol. 68, pp. 1131-1143, September 1980.

[Rossetti 82) D.J. Rossetti and R.K. lyer, "Software related failures
on the 1BM 3081: A relationship with system utilization,™ Proc.
COMPSAC 82, Chicago, Il1linois, November 82.

[Thayer 78] T.A. Thayer, M. Lipow and E.C. Nelson, Software

Reljability: Study of Large Project Reality, TRW Series of Softuare
Technology, Vol. 2, North-Holland, 1978.

(velardi 83) P. velardi and R.K. Iyer, A Study of Software Failures and
Recovery in MVS, CRC Tech. Report No. 83-7, Center for Reliable
Computing, Stanford University, August 1983.

A

29

Appendix A

MVS ERROR DETECTION AND RECOVERY PROCESSING

ERROR DETECT]ON

The supervisor in MVS offers many services to detect and process abnor-

ma) conditions during system execution.

1.

The hardware detects conditions such as memory violations, pro-
gram errors (arithmetic exceptions, invalid operation codes),
addressing errors and password checking on critical system
resources.

The softuare also provides detection of software problems.

The data management and supervisor routines ensure that valid
data are processed and non-conflicting requests are made. Exam-
ples are the incorrect specification of a parameter in a contro!l
structure or in a system macro, or a supervisor call issued by an
unauthorized program.

Jhe installation might improve the system error detection
capability by means of a software facility called Resource Access
Control Facility (RACF). The RACF is wused to build detailed
’profiles’ of system softuare modules. These profiles are
defined 1in order to inspect the correct usage of system
resources.

The user can also employ other softuare facilities to detect

the occurrences of selected events. "Appendages™ are routines

e ' ' . N
¢
g —— N _T_. e - m——— - - - ‘;—”—.M‘-ﬂ‘j

30

that enable the user to get control during different phases of an
170 operation. The "“Servicability Level 1Indication Processing
(SLIP) aids in error-detection and diagnosis also. The SLIP com-
mand allous the user to traps that cause a program interruption
when particular events are intercepted. The user might also
define his own detection mechanisms by means of the "Set Program
Interruption Element™ (SPIE) macro. This macro instruction
detects programmer defined exceptions like wusing an incorrect
address or attempting to execute privileged instructions. Using
these facilities, user defined error conditions can be detected
in addition to system provided program checks.

3. The operator might detect some evident error condition and decide
to cancel or restart the job. For example, the operator can

detect loop conditions or endless wait states.

A.2 RECOVERY PROCESSING
Whenever a program is abnormally interrupted due to the detection of an
error, the Supervisor gets control. If the problem is such that a fur-
ther processing could degrade the system or destroy data, the Supervisor
gives control to the Recovery Termination Manager (RTM). If a recovery
routine is available for the problem program, RTM gives control to this
routine before processing the program termination.

Recovery is designed as a means by which the system can prevent total
loss. The purpose of a recovery routine is to free the resouces kept by
the failing program (if any), to locate the error and to request either

for a continuation of the termination process or for a retry. Recovery

3
routines are generally provided to cover all MVS functions [Auslander
31]. It is however the responsibility of the installation or of the
user to urite recovery routine for other programs.

More than one recovery routine can be specified for the same program;
if the latest recovery routine asks for a termination of the program,
the RTM can give control to another recovery routine (if provided).
This process is called ‘percolation”’.

The percolation process ends if either a routine issues a valid retry

request, or no more routines are available. In the latter case, the
program and its related subtasks are terminated. The termination of a
program might imply the termination of jobstep. 1f{ a valid retry is

requested, a retry routine restores a valid status, using the informa-
tion supplied by the recovery routine(s), and can give control to the
program. In order for a retry to be valid the system should verify that
there is no risk of recurrence of the error to the same recovery rou-
tine, and that the retry address is properly specified. Figure 2 illus-

trates the steps in the recovery process.

- —— - -~ L g Qe el

TR

L KT 5 Wbl s e o

32
ABEND
CONTROL
RECOVERY
TERMINATION
PROGRAM MANAGER
(RTM)
RETRY RECOVERY TERMINATION
ROUTINES ROUTINES ROUTINES
|
i
Figure 2: Software handling of softuare errors on MVS

A.3 ERROR RECGRDING ON SYS1.LOGREC
Before a recovery routine takes control, the RTM inititialises a work
area called the System Diagnostic Work Area (SDWA). This area is by the
RTM to communicate with the recovery routines and, to log information
regarding the error. Thus at the end of the recovery process the SDWA
contains a history of the incident and the associated recove- process.
At the end of the recovery process the RTM invokes the error recording
routines to generate a record of the incident. The data set containing
this information is called SYS1.LOGREC.

A softuare record also contains the information about the event
(EVENT) that caused *'(-~eccrd to be generated, and a 12 bit error symp-
tom code (ERRCODE) describin) the reason for the program abnormal termi-

nation. These codes are issced by the system or by the problem program

’

T v e st e e RN - eee s Vi i S

i3
that used an ABEND macro instruction. The system and user completion
codes appear together in the ERRCODE field. User codes are meaningful

only for specific applications.

Table 12 describes the values assumed by the variable EVENT. Table
13 gives some example of common system ERRCODE’s encountered in this
study. The detection mechanism and the action taken by the system are
also described. More than 500 different ERRCODE’s are issued by the
system for a problem program.

Traces of the recovery process are recorded on LOGREC. This includes
the name and the type of the recovery routine which handled the problem
(RECNAME), the result (RESULT) of the recovery process and the impact
of the error on the related jobstep (JOBTERM). A description of these
fields is given in Table 14. Other data colle-‘ed during the recovery
process, includes detailed program status information such as the con-
tents ot registers and the program address space identifier. This can
be helpful in error diagnosis.

During the recovery process the system basically attempts to maintain

operation despite an error. It is possible that the recovery process
itself encounters the same error. In this case, there exists the risk
of recursive recovery processes, or the generation of bad data. How-~

ever, such occurences can be detected by analyzing the SDWA field into
LOGREC. 1f the jobname for example is ’NONE-FRR’, this indicates that
the record is generated by a functional recovery routine during a recov-
ery attempt. Finally, 1f the recording process was also affected by an

error, a LOSTREC value appears in the TYPE field.

TABLE 12

Event that caused program termination

Variable EVENT
Yalues Meaning
b MACHECK A hardware event caused a machine check that
; could not handle the problem |
b PROGCHECK A program check interrupt occurred due to the
- detection of some exception or to the violation
- of some memory protection mechanism
3 TRSFAIL A translation error, e.g., an error occurred

during the storage allocation process
RESTART The operator pressed the restart key
ROUTABT A system service routine detected an invalid SvVC

and issued an abnormal termination of the
program (ABEND)

ROUTSVC A system routine issued an invalid supervisor
call (SVC)

PROGABT The program itself requested the ABEND

SYSABTY The system detected a problem and forced a

\ program ABEND

P A

e —

TABLE 13

Examples of ABEND reason codes

Hex code

Explanation

System action

05A

071

oct

020

A service routine that
handles real storage
deallocation received
an invalid address

The operator determined
that the program uwas in
a loop or endless uait

state

Operation exception: an
operation code is not
assigned

The error occurred during
the creation of a data set
due to the incorrect speci-
fication of some data para-
meter

The program that called
the service routine or
the routine abnormally
terminates

The operator pressed the
RESTART key

A program interruption
occurred; the task is
terminated if no routine
had been specified to
handie the interruption

The task is terminated
if no routine has been
specified for the
problem program

X ’ .

S e g a7
SRR == -

36
TABLE 14

Recovery information

Variable name Values Meaning

RECNAME 8 character Name of the recovery
name routine which handled
the problem

RESULT RETRY The recovery routine
decide that a retry
might be successful

CONTTERM The recovery routine
asks to continue mith
termination (this might
imply percolation)

JOBTERM YES/NO 1¥ JOBTERM=YES the entire
jobstep has to be
terminated

37

An error may have four possible effects:

1.

RETRY: The system successfully recovered and returned control to
the problem program.

TASK TERMINATION: The progrma and its related subtasks are ter-
minated, but the system is not affected.

JOB TERMINATION: The job in control at the time of the error is
aborted.

SYSTEM DAMAGE: The job or task in control at the time of the
error was critical for system continuation. Thus job/task termi-

nation resulted in system failure.

!
9

38

Appendix B

SOFTWARE ERRORS - FREQUENCY PLOTS

AL NG

ans
aes
ann
wes
sas
wan
son
wan
ane
wen
e
wee
wan

Figure 3:

Hour of day plot of software errors

1 $ Vi
.
e -
1%
|
16 ¢
]
ty .
1
12 .
+
11 ¢
1
10 *
1
.-
]
.-
]
ve
! asses
L
)
. veess
3
] assse esnan
esss
\ scsse swsve
nesss esevs weses Geame ReNEE e e———————e
) 3 1] ? 1 3]
Figure 4: Hour of day plot HW/SW Temporary errors

1'1.'

T T T T T T ST WT“""‘"’ T

maxe: 39

Figure 5: Hour of day plot HW/SH Permanent errors

Figure 6: HWour of day plot all Temporary HW errors

40

28

FREAENCY

e g g -

1

1

| wee
. wee
| esw
1
1
{

Figure 7: Hour of day plot all Permanent HW errors

assses ssesn BRENG

PURSD APWA? MATOY AMBZ JULE? AUGA: SEPB2 ecsz

Figure 8: Frequency plot of all softuware errors by month

