AD	-A13	5 721	REG	IONS (OF ÁTMO OF 035	MICR.	. (U) 0	ALIFOR	SNIA 2	TATE U	WAYELE NIV	NGTH	1/	2.
UN	NORTHRIDGE SCHOOL OF ENGINEERING AND CO. UNCLASSIFIED N JENKINS ET AL. AUG 83 AFFTC-TIM-83-3 F/G 20/14						0/14	NL						
-		_												

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

A STUDY OF ATMOSPHERIC TRANSMISSION IN THE WAVELENGTH REGIONS OF 0.35 um to 14um

Raymond Cammilleri

Casey Ko Neil Jenkins

Laurence Caretto

Timothy W. Fox

California State University Northridge
School of Engineering and Computer Science

FINAL REPORT AUGUST 1983

This document has been approved for public release and resale.

Its distribution is unlimited.

AIR FORCE FLIGHT TEST CENTER
EDWARDS AIR FORCE BASE, CALIFORNIA
AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE

TIC FILE COP

8 60, 64

This report was submitted by the School of Engineering and Computer Science California State University, Northridge, 18111 Nordhoff Ave., Northridge, CA 91330, under contract No. F0470083M0053, Job Order Number SC6320, with the Air Force Flight Test Center, Edwards AFB, California 93523. Mr. B. Lyle Schofield was the AFFTC Project Engineer in charge of the procurement.

This report has been reviewed and cleared for open publication and/or public release by the AFFTC Office of Information in accordance with AFR 190-17 and DODD 5230.0. There is no objection to unlimited distribution of this report to the public at large, or by DTIC to the National Technical Information Service (NTIS). At NTIS it will be available to the general public including foreign nationals.

Publication of this report does not constitute Air Force approval of its findings or conclusions. It is published only as a record of the technical effort.

This report has been reviewed and is approved for publication:

L. S. Caretto

W. Fox

Faculty Advisors

EDWARD B. DUSSELL, Colonel, USAF

Commander, 6320 Test Group

When U.S. Government drawings, specifications, or other data are used for any purpose other than a definitely related government procurement operation, the government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Do not return this copy; retain or destroy

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM				
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER			
AFFTC-TIM-83-3	AD-A135 721				
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED			
A Study of Atmospheric Radiation	Transmission	Final Report			
in the Wavelength Regions of 0.35	um to 14 um	Oct 82 - Aug 83			
		6. PERFORMING ORG. REPORT NUMBER			
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(#)			
Neil Jenkins Raymond Ca					
Casey Ko Laurence C	aretto				
Timothy W. Fox		F0470083M0053			
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS			
School of Engineering and Compute					
California State University, Nort	hridge				
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE			
		August 1983			
6520 TESTG/ENMT, Stop 239		13. NUMBER OF PAGES			
Edwards AFB, CA 93523		95			
14. MONITORING AGENCY NAME & ADDRESS(II dilleren	t from Controlling Office)	15. SECURITY CLASS. (of this report)			
		UNCLASSIFIED			
		15a. DECLASSIFICATION/DOWNGRADING			
		SCHEDULE			
16. DISTRIBUTION STATEMENT (of this Report)					
This document has been approved f	or public release	e and resale. Its			
distribution is unlimited.	•				
		}			
		İ			
	In Prince DO 14 different from	Proof.			
17. DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, it different from	n Keport)			
		1			
		ļ			
18. SUPPLEMENTARY NOTES					
		ł			
19 KEY WORDS (Continue on reverse side if necessary and	d identify by block number)				
Infrared		1			
IR		i			
Atmospheric Transmission					
Radiation					
20. ABSTRACT (Continue on reverse side if necessary and	Identify by black number				
This report documents a study of low altitude atmospheric radiation transmis-					
sion conducted by a student-faculty team at California State University,					
Northridge, School of Engineering. The report was generated under a contract					
issued by the Air Force Flight Test Center at Edwards Air Force Base. A					
simple computer program, LARTAP, h	as been develope	d. The simplicity of the			
program makes it easy to modify to	suit users requ	irements. Should detailed			
testing be required to improve pro	gram accuracy, c	urrently available instrum-			
tation has been evaluated. It has	atso been sugge	sted that a technique			

DD 1 JAN 73 1473 EDITION OF THOU 65 IS OBSOLETE

UNCLASSIFIED

UNCLASSIFIED PRITY CLASSIFICATION OF THIS PAGE(When E	Ante Entered	
AULT OF WHILE LIAM OL THIS LYAC (MAN)		
20. Continued.		
involving direct measureme a numerical filtering tech atmospheric transmission a	nique may provide a more a	on and utilizati
	\	
)	

ACTIVITY ACTIVITY MANAGEM INCOMES ACTIVITY AND ACTIVITY A

TABLE OF CONTENTS

	PAGE	NO.
LIST OF ILLUSTRATIONS	2	
LIST OF TABLES	4	
ABSTRACT	5	
INTRODUCTION	7	
SECTION I Basic Concepts in Radiation Transmission	11	
SECTION II Radiation Properties of Gases and Particles	17	
SECTION III Radiation Model	24	
SECTION IV User Guide	49	
SECTION V Summary of Radiation Instruments	68	
CONCLUSION	74	
REFERENCES	78	
APPENDIX A Listing of Computer Program	79	

DTIC COPY INSPECTED 3

LIST OF ILLUSTRATIONS

Figure No.	<u>Title</u>	Page No.
1	How a Medium Affects Radiation	12
2	Schematic of Accessible Energy States of a Medium Component	19
3	Absorption Coefficient of a Gas	21
4	Uniformly Mixed Gases	31
5	Nitrogen Continuum (4 um)	31
6	H ₂ O Gas	32
7	H_2^0 Continuum (8 um to 11 um)	32
8	H ₂ 0 Continuum (3.5 um to 4.2 um)	33
9	Ozone I.R. Region	33
10	Ozone U. V. Region	34
11	Molecular Scattering	34
12	(No figure)	
13	(No figure)	
14	(No figure)	
15	CVE - Maritime Particulate	38
16	CVA - Maritime Particulate	38
17	CVE - Urban Particulate	39
18	CVA - Urban Particulate	39
19	CVE - Rural Particulate	40
20	CVA - Rural Particulate	40
21	CVE - Advection Fog	41
22	CVA - Advection Fog	41
23	CVE - Radiation Fog	42
24	CVA - Radiation Fog	42

LIST OF ILLUSTRATIONS (Continued)

Figure No.	<u>Title</u>	Page No.
25	Sample Configuration	46
26	Sample Results O Degrees	58
27	Sample Results O Degrees	58
28	Sample Results O Degrees	59
29	Sample Results 60 Degrees	60
30	Sample Results 60 Degrees	60
31	Sample Results 60 Degrees	61
32	Sample Results 90 Degrees	62
33	Sample Results 90 Degrees	62
34	Sample Results 90 Degrees	63
35	Sample Results 120 Degrees	64
36	Sample Results 120 Degrees	64
37	Sample Results 120 Degrees	65
38	Sample Results 180 Degrees	66
39	Sample Results 180 Degrees	66
40	Sample Results 180 Degrees	67

LIST OF TABLES

Table No.	<u>Title</u>	Page No
1	Sample Data Files	56
2	Molectron PR 200 Pyroelectric Radiometer	77

ABSTRACT

The following report documents a study of low altitude atmospheric radiation transmission conducted by a student-faculty team at California State University, Northridge, School of Engineering.

The report was generated under a contract issued by the Air Force Flight Test Center at Edwards Air Force Base. A simple computer program, LARTAP, has been developed. The simplicity of the program makes it easy to modify to suit users requirements. Should detailed testing be required to improve program accuracy, currently available instrumentation has been evaluated. It has also been suggested that a technique involving direct measurement of radiation transmission and utilization or a numerical filtering technique may provide a more accurate model of atmospheric radiation transmission at a test site.

THIS PAGE INTENTIONALLY LEFT BLANK

INTRODUCTION

As radiation technology becomes more and more a part of our defense capabilities, the need arises to be able to understand and predict the effects of the earth's atmosphere on radiation transmission. The need is especially great for the low altitude regions of the earth's atmosphere because many systems are being designed to operate in this region. Particular examples of such systems are Forward Looking infrared (FLIR) Lasers, Low Light Level Television, and Night Vision Goggles.

The Air Force Flight Test Center (AFFT Edwards Air Force
Base (Edwards AFB) requires such knowledge to evaluate sensors in the
visible through infrared spectrum. In order to acquire this knowledge
AFFTC issued a contract to the School of Engineering at California
State University, Northridge (CSUN).

CSUN was to evaluate the transmission of radiation in the atmosphere of the earth. The radiation of interest was in the wavelenth region of 0.35 um to 14 um. The atmosphere of interest was from an altitude of 0.0 km (AGL) to an altitude of 0.7 km (AGL), with a maximum altitude of 5 km (ASL). CSUN was also to identify atmospheric components that effect the transmission of radiation in the aforementioned wavelength region.

The contract was carried out at CSUN through the use of a student Design Clinic. A Design Clinic is an independent study course offered at CSUN where students work under the guidance of faculty members on contracts issued to the School of Engineering. The faculty and student team that worked on this contract is listed on the title page

as authors.

The project began with a literature search. The first goal of the literature search was to acquire and understand the theoretical equations that describe the transmission of radiation in the earth's atmosphere. The second goal of the literature search was to investigate the atmospheric components affecting the transmission of radiation. The final goal of the literature search was to evaluate presently existing computer software that modeled the transmission of radiation in the earth's atmosphere.

Currently, the most comprehensive computer program that models transmission of radiation in the earth's atmosphere is LOWTRAN.

LOWTRAN is a product of Air Force Geophysics Laboratory at Hanscom AFB, Massachusetts. This program was first developed in the mid-1970's and several modified versions have been released since that time.

Unfortunately, the LOWTRAN computer code is extremely complicated. This complication posed a problem since AFFTC had expressed a need for a computer program that could be used at a test site. It was determined that LOWTRAN could not be used to satisfy this need. However, LOWTRAN contains an extremely comprehensive empirical data base. Thus CSUN developed a new computer program, LARTAP, that is much simpler than LOWTRAN, however the new computer program still utilizes the same empirical data base as LOWTRAN. Preliminary test runs of LARTAP have shown agreement with LOWTRAN. However, it is suggested that further testing be done to compare LARTAP to actual test data.

CSUN has also evaluated the AFFTC test equipment to assess the

capability of AFFTC to measure atmospheric components that affect radiation transmission. The equipment existing at AFFTC is more than adequate to support the current version of LARTAP. However, should the need arise for more comprehensive measurements, suggestions are made for possible acquisitions.

Finally, suggestions are made for possible future work. As was mentioned previously, more testing needs to be performed to verify the LARTAP computer program. One of the short comings of both LARTAP and LOWTRAN is the inability to handle the possible affects of solar radiation. It is suggested that a model be developed to account for this affect. The resulting model could easily be incorporated in LARTAP.

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION I

BASIC CONCEPTS IN RADIATION TRANSMISSION

If a source emits radiation into a medium (such as the atmosphere of the earth) then the intensity of the emitted radiation will be changed by the medium. The situation is presented qualitatively in figure 1. The radiative intensity from the source of interest is changed through four mechanisms. Radiation may be absorbed, radiation may be scattered out of the line of sight, radiation may be emitted and radiation from sources other than the one of interest may be scattered into the line of sight.

It is demonstrated in reference 1 that the change in radiative intensity of wavelength λ , along some path S through a medium is given by the following differential equation.

$$\frac{dI}{ds} = \alpha I_b - \alpha I - \alpha I + \frac{\alpha}{4\pi} \int_{4\pi}^{\pi} I^* d\omega \qquad (1)$$

where:

S - path

I - monochromatic radiative intensity at S

 $\mathbf{I}_{\mathbf{b}}$ - blackbody intensity using the temperature of the medium at S $_{\cdot}$ and wavelength

- absorption coefficient of the medium at S and

- scattering coefficient of the medium at S and

w - solid angle

- phase function of scattering

I* - radiative intensity along S from sources other than the one

of interest.

The first term to the right of the equal sign accounts for emission by the medium. Note that Kirkoff's Law has been invoked in the derivation of equation (1) since the absorption coefficient is used in the emission term. The second and third terms account for attenuation due to the absorption and scattering out of the line of sight, respectively. The fourth term accounts for the scattering of radiation from sources other than the one of interest into the line of sight.

The scattering coefficient and phase function in the fourth term may be interpreted qualitatively as follows. The scattering coefficient determines the total amount of radiation from sources other than the one of interest that is scattered. The phase function accounts for the proportion of radiation that is scattered into the line of sight. A good example of I* source of radiation would be solar intensity.

Unfortunately, in order to properly evaluate the last term in equation (1) it would be necessary to know the local intensity along the line of sight from all possible radiative sources around and in the region of the medium under consideration. This is quite a formidable task. Briefly it involves transforming equation (1) into an integro-partial-differential equation. Then this equation is solved for an intensity field function that may be evaluated at any point in the region of the medium under consideration. In general this integro-partial-differential equation may be solved only by a numerical technique such as finite element.

Thus in the interest of simplicity the last term of equation (1)

was dropped. It should be pointed out, however, that for a line of sight that extends from the surface of the earth upwards I* source term resulting from the scattering of solar radiation may be quite significant. It is felt that a future effort should be undertaken to find a simplified method to model this effect.

Dropping the last term, equation (1) may be written as:

$$\frac{dI}{ds} + \epsilon I = aI_b \tag{2}$$

where:

 ϵ = ∞ + a - extinction coefficient

Equation (2) is a linear, ordinary differential equation which has the following solution.

$$I_{L} = I_{o} e^{-\int_{0}^{L} \epsilon(u) du} + \int_{0}^{L} I_{b}(s^{*}) a(s^{*}) e^{-\int_{0}^{L} \epsilon(u) du} ds^{*}$$
(3)

where \mathbf{I}_{L} and \mathbf{I}_{D} are the following Dirichlet boundary conditions.

 \mathbf{I}_{o} - monochromatic intensity at the source of interest.

 \mathbf{I}_{L} - monochromatic intensity at a point a distance L along S.

Equation (3) may be interpreted qualitative as follows. Consider the case where the medium is cold such that $T_b\approx 0$, then equation (3) would reduce to:

$$I_{L} = I_{o} e^{-\int_{0}^{L} \epsilon(u) du}$$

Thus the exponential with an integral augument represents the attenuation of the intensity \mathbf{I}_o along the line of sight extending from 0 to \mathbf{L}_o . This exponential with an integral augument defines the transmittance of the path from 0 to \mathbf{L}_o . Note that the transmittance

will vary from zero to one.

The second term is a little more complicated. Consider a differential path length at S* some where along S between 0 and L. Over this differential path length dS* radiation will be emitted by the medium. The exact amount is given by $I_b(S*)a(S*)dS*$. However, this amount will be attenuated between S* and L where the fransmittance is given by:

- (u) du

Summing all the contributions from every dS* between 0 and L gives the second term in equation (3).

Equation (3) may be written as follows:

$$I_{L} = I_{0} e^{0}$$

$$I_{L} = I_{0} e^{0}$$

$$+ \int_{0}^{L} \frac{-\int_{0}^{\infty} \epsilon(u) du}{-\int_{0}^{\infty} a(u) du} du = \int_{0}^{\infty} \frac{-\int_{0}^{\infty} a(u) du}{-\int_{0}^{\infty} a(u) du} du = \int_{$$

Define Υ_a and Υ_{ε} as follows:

$$-\int_{x}^{y} \epsilon(u) du \qquad -\int_{x}^{y} a(u) du$$

$$\tau_{\epsilon}(x, y) = e \qquad \qquad \tau_{a}(x, y) = e \qquad (4b)$$

Then equation (4) may be written as:

$$I_{L} = I_{o} \Upsilon_{e}(0,L) + \int_{0}^{L} \frac{I_{b}(s^{*}) \Upsilon_{e}(s^{*},L)}{T_{0}(s^{*},L)} \frac{d \Upsilon(s^{*},L)}{d s^{*}} d s^{*}$$
 (5

At first glance it may appear that equation (5) is more

complicated than equation (3), however, the numerical analogue of equation (5) will prove to be very convenient for evaluating I_{\perp} with a computer program. The numerical analogue of equation (5) is:

$$I_{L} = I_{0} \ T_{e}(0, L)$$

$$+ \sum_{i=1}^{n-1} \left\{ \frac{I_{b}(S_{i+1}^{*}) \ T_{e}(S_{i+1}^{*}, L)}{T_{a}(S_{i+1}^{*}, L)} + \frac{I_{b}(S_{i}^{*}) \ T_{e}(S_{i}^{*}, L)}{T_{a}(S_{i}^{*}, L)} \right\} \frac{1}{2}$$

$$\times \left[\Upsilon_{a}(S_{i+1}^{*}, L) - \Upsilon_{a}(S_{i}^{*}, L) \right] \right\}$$
(6)

where the path from 0 to L has been divided into n=1 distances of $(s_{i+1}^* - s_i^*)$.

SECTION 11

RADIATION PROPERTIES OF GASES AND PARTICLES

In section I the concepts of absorption, emission and scattering were introduced. The purpose of this section is to discuss these concepts in more detail. However, before discussing the microscopic effects producing these three phenomenon it is helpful to review the continuous matter assumption.

Equation (1) assumes continuity of matter in the following sense.

A macroscopic differential volume of matter contains an infinite number of molecules; such that, in equilibrium although the microscopic states of the molecules are continuously changing, the macroscopic state of the matter in dV is the time average of the continuously changing microscopic states of the molecules within dV.

In order to understand absorption, emission and scattering it is necessary to utilize Quantum Mechanics. From a Quantum Mechanical point of view the radiative transfer problem becomes one of determining the characteristics of photons. In particular the local number density, energy distribution and direction of motion. If these three characteristics are known then the macroscopic quantity, intensity, may be determined. Any or all of these characteristics are altered by interactions between the photons and the medium components (atoms, molecules and particulates).

Absorption occurs when a photon encounters a component of the medium and is absorbed thereby increasing the energy of that component. Emission occurs when a component emits a photon thereby decreasing the energy of that component. Scattering occurs when a

photon encounters a component of the medium and the direction of motion of the photon is changed.

According to Quantum Mechanics a single medium component may exist in any one of a number of accessible energy states. This concept is displayed in figure 2. The ground state is the lowest energy level that a medium component may have. The ionization state is the energy required to ionize the medium component. In figure 2, two other accessible energy states are shown between ground and ionization. For an actual medium component there may be any number of accessible energy states between ground and ionization.

Consider a single gas molecule that has accessible energy states as shown in figure 2. According to Quantum Mechanics the energy of a photon is howhere his Planck's Constant and γ is frequency. Thus in order for this gas molecule to move from energy state E_1 to energy state E_2 it must absorb a photon of the following frequency.

$$Y = \frac{E_3 - E_1}{h}$$

if there were no interaction between molecules and no other effects the absorption coefficient for a large number of these gas molecules would be a single vertical line at frequency \forall . The magnitude of the absorption coefficient would depend of the number of gas molecules within the medium at energy level E_1 . However, in the case of a real gases collisions between molecules cause the accessible states displayed in figure 2 to shift. Thus for a real gas the absorption coefficient is a distribution around frequency \forall . The spread of the distribution depends on the number of molecules experiencing a collision. The number of gas molecules experiencing a

FIGURE 2

Schematic of Accessible Energy States of a Medium Component collision is related to pressure. As was previously mentioned the magnitude of the absorption coefficient at frequency \checkmark depends on the number of molecules in energy state E_j . This number is dependent on the density and temperature of the gas.

Thus the following conclusions can be drawn about the absorption coefficient of a gas. First, the absorption coefficient will depend on the local thermodynamic state of the gas. Second, the absorption coefficient for a gas is a strong function of incident radiation frequency. The principles presented thus far are displayed in figure 3.

Finally, if the schematic displayed in figure 2 were for a real gas, then a plot of absorption coefficient versus all frequencies would appear as three distributions of the type displayed in figure 3.

These distributions would be centered at the following frequencies:

$$Y_1 = \frac{E_1 - E_0}{h}$$
 $Y_2 = \frac{E_2 - E_0}{h}$ $Y_3 = \frac{E_2 - E_1}{h}$

The relative magnitude of the absorption coefficient at each of these frequencies would depend of the thermodynamic state of the gas.

Attention is now turned to the medium components that are referred to as particulates or aerosols. These components are solid particles that are suspended in the gaseous components of the medium. Examples of particulates are dust particles, water droplets, etc.

It is important to note at this point the size of particulates and how it relates to the continuum assumption discussed at the

FIGURE 3

Absorption Coefficient of a Gas

Frequency of Incident Radiation

beginning of this section. In order to treat the particulates using a continuum equation such as equation (1), it must be assumed that the dimensions of the problem under consideration are large enough such that a differential volume dV contains a large number of particulates.

Where as a gas exhibits an absorption coefficient that is a strong function of frequency, particulates tend to exhibit absorption coefficients that are somewhat smoother functions of frequency. The reason is that a particulate is composed of a number of closely interacting molecules. Figure 2 for such particulates becomes a continuum of accessible states. Thus the molecular collision-pressure relationship that is significant for gas has essentially been carried to an extreme in the case of particulates resulting in a smoothing of the frequency dependence.

The absorption coefficient for particulates also depends on the thermodynamic state of each particle since this is related to the energy state of each molecule comprising the particle. However this dependence is negligible.

Thus the absorption coefficient for particulates in the medium is a function of frequency and particle density. The density dependence is expanded to include particulate size distribution, since larger particles will tend to absorb more radiation than a smaller particle. This is due simply to the larger cross-section presented to the incident radiation by larger particles.

If a photon encounters a molecule and the energy of the photon is such that the molecule cannot absorb it, then that photon will be scattered into a different direction as a result of the collision.

In the case of particulates the scattering phenomenon is

complicated by the fact that when a photon encounters a particulate it encounters the surface molecules of the structure. Thus it is these molecules that determine the resulting motion of the photon. For example, a photon may encounter a surface molecule that scatters the photon toward a molecule on the same particulate that finally absorbs this photon.

As can be seen by this last example the mechanism that govern scattering can get quite complicated. However, scattering coefficients of molecules and particulates exhibit the same dependence characteristics as the absorption coefficients.

SECTION III

RADIATION MODEL

Given the tools developed in sections I & II it is now possible to formulate a mathematical model to analyze the transmission of thermal radiation through the earth's atmosphere. Such a model has been developed by C.S.U.N. in the form of a computer program. This section documents this computer program.

The model was designed to function under the following constraints. The radiation to be considered by the model is in the wavelength range from 0.25 um to 25 um. The region of the atmosphere to be considered extends from ground level to an altitude of 0.7 km above ground level with a maximum of 5 km above sea level.

The objective of the computer program is to evaluate equation (6) of section I. From the information presented in section II it can be concluded that the absorption and extinction coefficients will be a function of the local thermodynamic state of the atmosphere and the frequency of the incident radiation. In general the thermodynamic state of the atmosphere will vary in all directions, however, for this report it is assumed only to be a function of altitude measured vertically to the earth.

The atmosphere is composed of a large number of components. It is assumed that the total absorption coefficient of the atmosphere is the summation of the absorption coefficients of each of the components:

$$a_{\tau o \tau} = \sum_{i=1}^{n} a_i$$

This assumption is also made for the total scattering coefficient:

This implies that the total extinction coefficient as defined in section I is:

$$\epsilon_{\text{TOT}} = \sum_{i=1}^{n} \epsilon_i$$

These assumptions lead to the following conclusions concerning Υ_{a} and Υ_{e} as defined in section).

$$\Upsilon_{\epsilon \tau o \tau} (x, y) = \left[\Upsilon_{\epsilon_1}(x, y)\right] \left[\Upsilon_{\epsilon_2}(x, y)\right] . . . \left[\Upsilon_{\epsilon_n}(x, y)\right]$$
 (7a)

$$\Upsilon_{\alpha \tau \sigma \tau}(x,y) = \left[\Upsilon_{\alpha,(x,y)}\right] \left[\Upsilon_{\alpha,(x,y)}\right] \cdot \cdot \cdot \left[\Upsilon_{\alpha,(x,y)}\right]$$
 (76)

Also, based on the above assumptions and definitions in section 1, τ_{α_i} and τ_{ϵ_i} for atmospheric component 1 are functions of path length, the thermodynamic state of component 1 along that path length and the frequency of the incident radiation.

Thus if empirical data were obtained to establish functional relationships for γ_{a_i} and γ_{e_i} , then these relationships and equation (6) would provide the desired result. This is exactly the approach that was taken in formulating the model developed at C.S.U.N.

Fortunately, the required empirical data has already been obtained for use in a computer program known LOWTRAN. This computer program was developed by the Geophysics Laboratory in Cambridge, Mass. The objective of LOWTRAN is to solve problems similar to the one

considered in this report. The obvious question now arises as to why it was necessary to develop a new program?

The answer to this question lies in the fact that LOWTRAN was developed to handle problems more general than the one under consideration in this report. The consequence of this generality is complication. Thus by developing a new model and extracting the pertinent data from LOWTRAN as required, C.S.U.N. was able to develop a simpler computer program that was geared only to the problem at hand.

According to LOWTRAN documentation (reference 2), $\gamma_{\alpha_i}(x,y)$ and $\gamma_{\epsilon_i}(x,y)$ may be expressed as follows:

function
$$\left[Cr_i(r) \right]_{x}^{y} w_i(h) ds$$
 (8)

where:

γ - frequency

 C_{Υ_i} - spectral coefficient for component i

h - altitude measured vertically from the ground

s - path (x to y)

 ω_{i} - absorber or scattering amount of component I

There is an assumption that needs to be made in order to utilize the empirical data from LOWTRAN. The assumption is related to the fact that equation (6) from section I applies only for radiation of a discrete frequency. Unfortunately, it is virtually impossible to obtain the required empirical data at discrete frequencies. The data obtained for LOWTRAN was acquired by instruments that essentially

obtained the average values of Υ_a and Υ_b over a narrow band of frequencies. Thus in order to utilize equation (6) the assumption must be made that this equation is also valid over a narrow band of frequencies.

LOWTRAN provided data for the following atmospheric components:

 H_2O , O_2 , CO_2 , CH_4 , N_2O , CO, O_3 , N_2

and also five general categories of particulates (aerosols)

- 1. Maritime
- 2. Urban
- 3. Rural
- 4. Advection Fog
- 5. Radiation Fog

The components CO_2 , CH_4 , N_2O , CO, and O_2 were lumped as one component which is referred to as the uniformly mixed gases. The absorber amount for this component is given by:

$$\omega = \frac{P}{1013.0} \frac{273.15}{T} \left[\frac{P}{1013.0} \sqrt{\frac{273.15}{T}} \right]^{0.75}$$

where:

P - local total pressure (mb)

T - local temperature (K°)

For incident radiation having a wavelength in the region of 4 μ m, N₂ molecules experiencing a collision provide a continuum of accessible energy states which are capable of absorbing radiation in this region. This effect is considered by the program and the absorber amount is given by:

$$W = 0.8 \left[\frac{P}{1013.0} \right]^{2} \left[\frac{273.15}{T} \right]^{3/2}$$

where:

P - local total pressure (mb)

T - local pressure (K°)

The atmospheric component H_2O is treated as three separate components in order to artificially account for three separate absorption characteristics. The first characteristic involves the standard type of gaseous absorption that was discussed in section II. The absorber amount for this component is given by:

$$W = 0.1 W_{H2} \left[\frac{P}{1013.0} \sqrt{\frac{273.15}{T}} \right]^{0.9}$$

where:

P - local total pressure (mb)

T - local temperature (K^o)

 W_{Hz} - local density of H₂O (gm/m³)

The other two absorption characteristics attributed to $\rm H_2O$ involve continuum absorption. The two continuums are in the wavelength regions of 3.5 um to 4.2 um and 8 um to 11 um. Unfortunately, theoretical explanations for the existence of these two regions of continuum absorption does not presently exist. However they are accounted for, and the absorber amounts are calculated as follows:

8.0 um to 11.0 um

$$W = W_{H2} \left\{ P_{H_{20}} EXP \left[6.08 \left(\frac{296}{T} - 1 \right) \right] + 0.002 \left(P - P_{H_{20}} \right) \right\}$$

where:

 P_{H_2O} - local partial pressure of H_2O (atm.)

P - local total pressure (atm.)

T - local temperature (K)

 W_{HZ} - local density of H₂O gm/cm - km

3.5 um to 4.2 um

$$W = W_{HZ} \left[P_{H_2O} + 0.12 \left(P - P_{H_2O} \right) \right] E X P \left[4.56 \left(\frac{296}{T} - 1 \right) \right]$$

where nomenclature and units are the same as 8.0 um to 11.0 um region.

The atmospheric component O_3 is treated as two separate components in order to artificially account for two separate absorption characteristics. The first O_3 component accounts for the standard type of gaseous absorption that was discussed in section ii. This component will be referred to as Ozone i.R. Where the i.R. refers to infrared. The absorber amount is given as follows:

$$W = 46.67 \text{ Woz} \left[\frac{P}{1013.0} \sqrt{\frac{273.15}{T}} \right]^{0.4}$$

where:

P - local total pressure (mb)

T - local temperature (K)

 W_{oz} - density of O_3 (gm/m)

The second 0_3 component accounts for the absorption of photons by the electronic structure of the 0_3 molecule. This type of absorption was not discussed in section if because it would have required a complete dissertation in Quantum Mechanics. Briefly, absorption at the electronic level of molecules is associated with high frequency incident radiation which is referred to as ultraviolet (U.V.) (1 um to 0.01 um). The absorber amount is given as follows:

where:

$$U_{oz}$$
 - density of O_3 (gm/m³)

According to the LOWTRAN documentation, the total effect of scattering by the molecular atmospheric components discussed thus far can be lumped together. The scattering amount is given as follows:

$$W = \frac{P}{1013.0} = \frac{273.15}{T}$$

where:

P - local total pressure (mb)

T - local temperature (K°)

The spectral coefficients for each of the attenuation components discussed thus far are presented in figure 4 to figure 11. In these figures the independent spectral quantity is the wave number (η) and it is defined as follows:

where λ is the wavelength. Thus a wave number of η cm $^{-1}$ is equivalent

to a wavelength of:

$$\lambda = \frac{10^4}{7} \text{ um}$$

It is worthwhile to note that all of the thermodynamic properties required to evaluate each W; are functions of h. Thus each W; is a function of h.

As was mentioned earlier, LOWTRAN provided empirical data for five general categories of particulates (aerosols). They are as follows:

- 1. Maritime
- 2. Urban
- 3. Rural
- 4. Advection Fog
- 5. Radiation Fog

The Maritine category applies to oceanic regions and coast line areas. The particulates result from sea salt particles which are produced by the evaporation of sea spray droplets.

The Urban category applies to industrial and urban areas where the majority of particulates result from combustion processes.

The Rural category is intended to represent the aerosol conditions found in continental areas which are not directly influenced by urban particular sources.

When the air becomes nearly saturated with water vapor, fog can form. Saturation of the air can occur as a result of two different processes; the mixing of air masses with different temperatures (advection fog) or by cooling of the air to the point where the temperature approaches the dew point (radiation fog). It should be

mentioned that a cloud cover is nothing more than a fog that does not contact the ground.

Based on the information presented in section II, the extinction and absorption coefficients for particulates are a function of particulate concentration, size distribution and frequency of incident radiation. The spectral and size distribution data was obtained from LOWTRAN for the five categories of particulates. This data is presented in figure 15 through figure 24. The particle size distribution for each of the five categories of particulates was obtained empirically. It only remains to account for variations in particulate concentration. Note that in each case the data has been normalized such that the extinction coefficient is one at a wavelength of 0.55 um. The reason is to incorporate the particulate concentration utilizing a quantity called the Meterological Range (V). The quantity V is the distance required for the radiant intensity of some source to drop to 2% of the original source intensity at a wavelength of 0.55 um. If the source intensity is such that emission by the particulates is negligable, then

or

$$\beta = 3.912$$

where

B - particulate extinction coefficient at $0.55 \, \text{um} \, (\text{km}^{-1})$.

The obvious question arises as to the effect of other atmospheric

components on B. The answer lies in the specified wavelength of 0.55 μ m, which is approximately equal to a wave number of 18000 μ cm.

By reviewing figure 4 through figure 11 it can be seen that the only atmospheric components affecting $\Upsilon_{\epsilon}(0,V)$ at 0.55 um are 0_3 and molecular scattering. The concentration of 0_3 at low altitudes is virtually negligible. It was only considered in this model for completeness. Also the effect of molecular scattering at 0.55 um is negligible. Thus the quantity V depends on the particulate concentration.

The reason for normalizing the particulate data to an extinction coefficient of one at 0.55 um should now be obvious. By measuring or estimating a value of V and selecting the appropriate particulate category, the extinction and absorption coefficients at any other wavelength may be calculated as follows:

$$a_i = 3.912$$
 $C_{va_i}(\lambda, W_{Hz})$

$$\epsilon_i = 3.912 \quad Crei(\lambda, W_{HZ})$$

where:

→ - wavelength

 $W_{\rm HZ}$ - $H_{\rm A}O$ density

V - meterological range

 C_{tra} and C_{tre} are presented in figure 15 through figure 24.

Note that $C_{\sigma a}$ and $C_{\sigma e}$ are functions of the H_20 density. This is shown in the figures by relative humidity. The reason for this functional relationship is that the H_20 molecules tend to accrete to

the surface of the particulates. Thus the incident photons encounter $\rm H_20$ molecules. The higher $\omega_{\rm Hz}$ the more accretion takes place.

It is worth mentioning some more information about the fog models. For thick fogs (clouds) where V is less than 200m the extinction coefficient is virtually independent of wavelength. These conditions are modeled best by the advection fog. For moderate fogs 200 m < V < 1000 m the radiation fog should be used. For thin fogs, 1 km < V < 2 km a maritime, urban or rural particulate model should be used with a 99% relative humidity.

Utilizing equation 4b from section I and the above equations for the particulate absorption and extinction coefficient, $\Upsilon_{\bf q}({\bf x},{\bf y})$ and $T_{\bf c}({\bf x},{\bf y})$ for a particulate atmospheric component may be expressed as follows:

function
$$\left[\int_{x}^{y} C_{vi}(v, W_{Hz}) W_{i}(h) ds\right]$$

where

$$W_i(h) = \frac{3.912}{V}$$

 $\omega_{\rm HZ}$ - shows the dependence of the spectral coefficient on the H₂O density (relative humidity)

υ - frequency

 $C_{V_{L}}(v, W_{HZ})$ - from figure 14 through figure 24. (extinction and absorption)

h - altitude

The spectral coefficient for a particulate atmospheric component is part of the integrand due to its dependence on $\rm H_2O$ density which is

dependent of h. This is in contrast to the equivalent expression for molecular atmospheric components (see equation 8). The above equation can be placed in the same form as equation 8 by evaluating the spectral coefficient at the average H_2O density between x and y. Then $T_{a_i}(x,y)$ and $T_{e_i}(x,y)$ for the particulate atmospheric component may be expressed as follows:

function
$$\left[C_{v_i}(v, \overline{W_{Hz}}) \int_{x}^{y} W_i(h) ds\right]$$
 (9)

where

$$\overline{W}_{HZ} = \underline{W}_{HZ}(x) + \underline{W}_{HZ}(y)$$

Based on the data presented thus far in this section it is now possible to evaluate the following term for each of the atmospheric components

$$K_i = C_{\sigma_i}(\sigma) \int_{x}^{y} W_i(h) ds$$

All that remains is to know the functional relationship between $T_{e\,i} \ (x,y), \quad T_{a\,i}(x,y), \ \text{and} \ K_i.$

For the Uniformity Mixed Gases

$$T_{\epsilon} = T_{a} = EXP \left[-0.0689 \,\mathrm{K}^{0.555}\right] \tag{10}$$

For the Nitrogen Continuum

$$T_{\epsilon} = T_{\alpha} = E \times P \left[-K \right]$$
 (11)

For the H₂0

$$T_e = T_a = E \times P \left[-0.0689 \, K^{0.555} \right]$$
 (12)

For the H_2O Continuum (8.0 um to 11.0 um)

$$T_{\epsilon} = T_{\alpha} = E \times P \left[-K \right]$$
 (13)

For the $H_{\rm a}0$ Continuum (3.5 um to 4.2 um)

$$\Upsilon_{\epsilon} = \Upsilon_{a} = E \times P \left[-K \right]$$
 (14)

For the 03 1.R. Region

$$\Upsilon_{e} = \Upsilon_{o} = E \times P \left[-0.0643 \text{ K}^{0.666} \right]$$
 (15)

For the 03 U.V. Region

$$T_{e} = T_{a} = E \times P \left[- K \right] \tag{16}$$

For Molecular Scattering

$$\Upsilon_{\epsilon} = \mathsf{E} \mathsf{X} \mathsf{P} \left[-\mathsf{K} \right] \tag{17}$$

$$T_a = O.O \tag{18}$$

For Particulates

$$\Upsilon_{\epsilon} = E \times P \left[- \kappa_{\epsilon} \right] \tag{19}$$

$$\Upsilon_{a} = E \times P \left[-K_{a} \right] \tag{20}$$

Note that for a particulate component there are two values for K where K_a is obtained by evaluating equation (9) for absorption and K_{ϵ} is obtained by evaluating equation (9) for extinction.

Consider the situation depicted in figure 25, where

 h_i - altitude of point x

h₂ - altitude of point y

T(h,) - temperature at h,

 $T(h_1)$ - temperature at h_1

 $W_i(h_i)$ - absorber amount of component i at h_i

 $W_i(h_a)$ - absorber amount of component i at h_a

thus

$$ds = \frac{dh}{\cos \theta}$$

FIGURE 25 Sample Configuration

and

$$C_{v_i}(v)$$
 $\int_{x}^{y} W_i(h) ds = \frac{C_{v_i}(v)}{Cos \Theta} \int_{x}^{y} W_i(h) dh$

assume that $W_i(h)$ is a semi-log function of altitude, then

$$\omega_{i}(h) = \omega_{i}(h,) \left[\frac{\omega_{i}(h_{2})}{\omega_{i}(h_{3})} \right]^{\frac{h-h_{1}}{h_{2}-h_{1}}}$$

$$C_{v_{i}}(v) \int_{x}^{y} \omega_{i}(h) dh = \frac{\left[\omega_{i}(h_{2}) - \omega_{i}(h_{3}) \right] \left[y-x \right] C_{v_{i}}(v) }{\left[y-x \right]}$$

$$do ge \left[\frac{\omega_{i}(h_{2})}{\omega_{i}(h_{3})} \right]$$

$$do ge \left[\frac{\omega_{i}(h_{2})}{\omega_{i}(h_{3})} \right]$$

$$C_{v_{i}}(v) \int_{x}^{y} \omega_{i}(h) dh \longrightarrow \omega_{i}(h_{i}) \left[y-x \right] C_{v_{i}}(v)$$

from the last two expressions and equations (10) through (20) it is possible to evaluate equations (7a) and (7b) for $\Upsilon_{e_{\tau o \tau}}(x,y)$ and $\Upsilon_{q_{\tau o \tau}}(x,y)$. Thus equation (6) of section i can now be evaluated where $\Upsilon(h_{\tau})$ and $\Upsilon(h_{\tau})$ would be used in the black body function. The quantity n for the numerical analogue of the emission integral in equation (6) would be 2 for this particular example, and also note that in general.

$$\tau_{\epsilon_{TOT}}(y,y) = 1.0$$
 $\tau_{\epsilon_{TOT}}(y,y) = 1.0$

The above has been a simplified example of how the computer

program operates. This example is simplified in the sense that only two points were used to evaluate the numerical analogue of the emission integral. The actual computer program will use more points.

A listing of the computer program is presented in Appendix A. The program is well commented with intent of being self-documenting.

SECTION IV

Sections !, !!, and !!! provide the theoretical basis for the computer program LARTAP. The objective of this section is to provide the user with a guide of how to use the current version of LARTAP. The word, current, is significant because one of the major guidelines utilized during the development of LARTAP was that the program be simple. The objective of this simplicity was to allow for easy modification. Thus, the program may be tailored with little effort to accommodate any project that requires the analysis of low altitude radiation transmission.

In order to use LARTAP the user must place the required program inputs in a disk file. This is accomplished by utilizing the editor on the user's computer. The disk file must be named DATA. On each line of the file the user must specify the numerical data as presented in the following paragraphs. The program utilizes free format read statements. Thus each numerical value must be followed by a comma except for the last piece of data on a line.

On line 1 of the file DATA, 3 values must be specified, as follows:

MODEL, GRASL, NPTS

MODEL - An integer that Jetermines the default atmospheric thermodynamic data to be used if the user desires. The uses

of MODEL will become apparent when one enters the data for line 3. The possible value of MODEL are:

MODEL	Default Atmospheric Model
1	Tropical
2	Midlatitude Summer
3	Midlatitude Winter
4	Subarctic Summer
5	Subarctic Winter
6	1962 U.S. Standard

Further documentation of these atmospheric models can be found in reference 2.

- GRASL A real number that specifies the local ground altitude measured relative to sea level in kilometers.
- NPTS An integer that specifies the number of points to be entered after, and including, line 3 to define the thermodynamic state of the atmosphere as a function of altitude. Note the larger NPTS, the more accurate the results given by LARTAP. A good value for NPTS would be 10.

On line 2 of the file DATA, 3 values must be specified, as follows:

HI, SMAX, ANGLE

HI - A real number that specifies the altitude of the radiative

source measured relative to the local ground altitude (GRASL) in kilometers.

- SMAX A real number that specifies the distance from the source to the observer along a straight line between the source and the observer, in kilometers.
- ANGLE A real number that specifies the angle between a vertical line and the line between the source and the observer, in degrees.

 This variable is represented in Figure 25 of Section III by the angle Θ .

On line 3 through line 3+NPTS the user specifies the thermodynamic state of the atmosphere as a function of altitude. On each of these lines, the user must specify the following data:

ZGR, P, T, RH, WO, VIS, IHA

- ZGR A real number that specifies the altitude, in kilometers, relative to ground level at which the rest of the data on the line is measured.
- P A real number that specifies the total atmospheric pressure, in millibars, at altitude ZGR. A value of -1000. will cause a use of default data as specified by the value of MODEL.
- T A real number that specifies the atmospheric temperature, in degrees C, at altitude ZGR. A value of -1000. will cause a use of default data as specified by the value of MODEL.
- RH A real number that specifies the relative humidity of the atmosphere, in percent, at altitude of ZGR. A value of -1000.

will cause a use of default data as specified by the value of MODEL.

- WO A real number that specifies the density of ozone in the atmosphere, in grams per cubic meter, at altitude ZGR. A value of -1000. will cause a use of default data as specified by the value of MODEL.
- VIS A real number that specifies the value of the meterological range, in kilometers, at altitude ZGR. A value of -1000. will cause a use of default value as specified by the value of IHA.
- IHA An integer that specifies the type of particulate in the atmosphere region between ZGR and the next specified altitude above ZGR. The possible values of IHA are as follows:

Туре

- O No particulates present
- 1 Rural with a default meterological range of 23 km
- 2 Rural with a default meterological range of 5 km
- 3 Maritime with a default meterological range of 23 km
- 4 Maritime with a default meterological range of 5 km
- 5 Urban with a default meterological range of 5 km
- 8 Advection Fog with a default meterological range of 0.5 km
- 9 Radiation Fog with a default meterological range of 0.5 km

The Rural type is intended to represent the particulate conditions found in continental areas which are not directly influenced by urban particulate sources.

The Maritime type applies to oceanic regions and coast line

produced by the evaporation of sea-spray droplets.

The Urban type applies to industrial and urban areas where we majority of particulates result from combustion processes.

When the atmosphere becomes nearly saturated with water vapor, fog can form. Saturation of the air can occur as a result of two different processes; the mixing of air masses with different temperatures (advection fog) or by cooling of the air to the point where its temperature approaches the dew-point (radiation fog).

For thick fogs where V is less than 200m the extinction coefficient is virtually independent of wave length. These conditions are modeled best by the advection fog. For moderate fogs, 200m V 1000m, the radiation fog should be used. For thin fogs, 1km V 2km, a maritime, urban or rural particulate model should be used with a 99% relative humidity.

It should be mentioned that a cloud is nothing more than a thick fog that does not contact the ground.

Since the density of ozone at low aititudes is quite low it is suggested that no special effort be undertaken to measure ozone density. However, for completeness, it is recommended that ozone be included utilizing one of the program default model capabilities.

In order for LARTAP to operate correctly, NPTS must have a value of at least two. This means that the thermodynamic state of the atmosphere must be specified at a minimum of two altitudes, (two values of ZGR). These two altitudes have to bound the atmospheric region of interest. For example ZGR = 0.0 and ZGR = 0.7 where 0.0 represents the minimum altitude of interest relative to ground [evel

a contract represents the maximum altitude of interest relative to ground

The output from the current version of LARTAP is in the form of three disk files. The names of the disk files are WAVN, TRAS, and RADA. The file WAVN contains the wave numbers for the spectral region studied by LARTAP. WAVN contains one wave number on each line of the file. The file TRAS contains the transmittance for the atmospheric configuration specified in DATA. TRAS contains one value of transmittance on each line. The value of transmittance on a particular line of TRAS corresponds to the wave number on the same line in WAVN. The file RADA contains the intensity of radiation emitted by the atmosphere between the source and the observer for the atmospheric configuration specified in DATA. The value of emitted intensity on a particular line in RADA corresponds to the wave number on the same line in WAVN.

The spectral region studied by the current version of LARTAP is from a wave number of 350 cm $\,$ to a wave number of 40,000 cm $\,$ in increments of 10 cm $\,$.

In table I, five sample input data files are presented. Each of the five sample data files shown in table I is preceded by a title indicating the values of HI, SMAX, and ANGLE for that particular data file. These titles are not part of the data files. LARTAP output for these five sample data files is presented graphically in figure 26 through figure 40.

The program also requires seven other input data files. These files are not controlled by the user. They supply the necessary spectral data that was discussed in section iii. The reasons for

storing this spectral data in files is as follows.

In order to facilitate this possible conversion of this program to a micro-computer for use in the field, it was determined that the large spectral data based would have to be stored in peripheral equipment. Thus these seven spectral data files were incorporated to emulate such peripheral equipment.

TABLE 1 - SAMPLE DATA FILES

H1=1.0 KM SMAX=1.0 KM ANGLE=0 DEGREES

- 1, 0, 000, 5
- 1. 0, 1. 0, 0, 000
- 0.000, -1000.0, -1000.0, -1000.0, -1000.0, -1000.0, 0
- 0.500, -1000.0, -1000.0, -1000.0, -1000.0, -1000.0, 0
- 1.000, -1000.0, -1000.0, -1000.0, -1000.0, 0
- 1. 500, -1000. 0, -1000. 0, -1000. 0, -1000. 0, -1000. 0, O 2.000, -1000.0, -1000.0, -1000.0, -1000.0, -1000.0

H1=1.0 KM SMAX=1.0 KM ANGLE=60 DEGREES

- 1, 0, 000, 5
- 1. 0, 1. 0, 60. 000
- 0.000, -1000.0, -1000.0, -1000.0, -1000.0, -1000.0, 0
- 0. 500, -1000. 0, -1000. 0, -1000. 0, -1000. 0, -1000. 0, 0
- 1.000, -1000.0, -1000.0, -1000.0, -1000.0, -1000.0
- 1.500, -1000.0, -1000.0, -1000.0, -1000.0, 0
- 2.000, -1000.0, -1000.0, -1000.0, -1000.0, 0

H1=1.0 KM SMAX=1.0 KM ANGLE=90 DEGREES

- 1, 0, 000, 5
- 1. 0, 1. 0, 90. 000
- 0.000, -1000.0, -1000.0, -1000.0, -1000.0, -1000.0, 0
- 0.500, -1000.0, -1000.0, -1000.0, -1000.0, -1000.0, 0
- 1.000, -1000.0, -1000.0, -1000.0, -1000.0, -1000.0, 0
- 1.500, -1000.0, -1000.0, -1000.0, -1000.0, -1000.0, 0
- 2.000, -1000.0, -1000.0, -1000.0, -1000.0, -1000.0, 0

H1=1.0 KM SMAX=1.0 KM ANGLE=120 DEGREES

- 1, 0, 000, 5
- 1, 0, 1, 0, 120, 000
- 0.000, -1000.0, -1000.0, -1000.0, -1000.0, -1000.0, 0
- 0.500, -1000.0, -1000.0, -1000.0, -1000.0, 0
- 1.000, -1000.0, -1000.0, -1000.0, -1000.0, 0
- 1. 500, -1000. 0, -1000. 0, -1000. 0, -1000. 0, -1000. 0, 0 2.000, -1000.0, -1000.0, -1000.0, -1000.0, 0

TABLE 1 (CONTINUED)

HI=1.0 KM SMAX=1.0 KM ANGLE=180 DEGREES

- 1, 0, 000, 5
- 1.0,1.0,120.000

- 0.000, -1000.0, -1000.0, -1000.0, -1000.0, -1000.0, 0 0.500, -1000.0, -1000.0, -1000.0, -1000.0, 0 1.000, -1000.0, -1000.0, -1000.0, -1000.0, 0 1.500, -1000.0, -1000.0, -1000.0, -1000.0, 0 2.000, -1000.0, -1000.0, -1000.0, -1000.0, -1000.0, 0

SECTION V

SUMMARY OF RADIATION INSTRUMENTS

It can be concluded from section IV that in order to support the current version of LARTAP, it is necessary to make four measurements. These four measurements are pressure, temperature, relative humidity and meterological range. As was discussed in section IV, since the density of ozone at low altitudes is small. It is suggested that no special effort be made to measure ozone density. However, for completeness, it is recommended that ozone be included utilizing one of the program default model capabilities.

The pressure measurement can be made utilizing a barometer. The temperature and relative humidity measurements can be made utilizing an AN/TMQ-11 Temperature Dew Point. Finally, the meterological range measurement can be made utilizing an AN/GMQ-10 Transmissometer. This instrumentation is available at most AFB installations.

The atmospheric components that effect radiation transmission are $\mathrm{H_2O}$, $\mathrm{O_2}$, $\mathrm{CO_3}$, $\mathrm{CH_4}$, $\mathrm{N_2O}$, CO , $\mathrm{O_3}$, $\mathrm{N_2}$ and particulates. The question now arises as to how each of these components is accounted for by the four required measurements. The $\mathrm{H_2O}$ component is accounted for by the relative humidity measurement. The $\mathrm{O_3}$ component would ordinarily be accounted for by direct measurement, however, as was just discussed it is recommended that default data be utilized so no measurement is necessary. The other gaseous components and the particulate component are accounted for by the use of two assumptions. First, in order to account for the remaining gaseous components it is assumed that the mole fraction concentration of each of these components is a world

wide constant. Secondly, as was discussed in section III, by assuming standard size distributions, the particulate component can be accounted for by utilizing the meterological range. These two assumptions are inherent in the data base obtained from LOWTRAN for use in LARTAP. According to reference 2 these assumptions are valid for the intended uses of LOWTRAN. However, LARTAP will be used by AFFTC at Edwards AFB where, state of the art, radiation systems are being tested. Thus the question arises as to the accuracy of these assumptions for the intended uses of LARTAP. This question can only be answered by comparing results predicted by LARTAP with those obtained from test data. Should disagreement arise then the LARTAP data base would have to be expanded through detailed testing and more detailed measurements would have to be taken to support LARTAP.

CSUN has surveyed the equipment available at Edwards AFB to determine the currently existing capability to support such a detailed testing program. The present inventory at Edwards AFB contained instrumentation to measure $\rm H_2O$, $\rm O_3$, and $\rm CO$ concentrations. The following is an outline of this instrumentation.

TMO - 11:

This is standard equipment at most AFB installations capable of indicating relative or absolute water content of the air.

Monitor Labs 8410: Ozone Analyzer

The concentration of ozone is measured by a chemiluminescent detector. The ozone sample and ethylene are mixed in a reaction chamber. The ozone reacts with the ethylene to form activated aldehyde. The aldehyde then emits infrared with an intensity directly proportional to the ozone concentration.

Full Scale Ranges - 0.1, 0.5, 1.0, 5.0, 10.0 ppm.

Precision - \pm 0.339% full-scale

Minimum Sensitivity - 2 ppb.

Monitor Labs 8310 - Carbon Monoxide Analyzer:

Ambient air is pumped in and split into two paths. One path flows through a sample cell where an infrared beam's intensity is measured. The higher the CO content, the greater the attenuation of the IR beam. The second flow path travels through a catalytic converter, which changes all the CO to CO_2 , and then flows to a second sample cell. This second cell is used as a reference, and the difference in the IR attenuations is used to display the CO concentration.

Full Scale Ranges - 50, 100 ppm.

Precision - \pm 0.1 ppm.

Minimum Sensitivity - 0.1 ppm.

Edwards AFB also has a good support instrument available in the following:

Monitor Labs 9300: Data Logger

This instrument is a general purpose, microprocessor controlled, data logger. Analog inputs are attached to any of the 40 channels, where the signal is digitized and stored. The data flow is programmed via the front key board. Standard features include: English language programming with alpha-numeric display, auto-ranging on input voltages, thermocouple printout, and alarm conditions. Optimal features available are: alarm relay panel, external recording devices, special order conversion tables, and programmable alarms.

No. of Channels - 40

Channel Voltage Ranges - 10.000V, 3.000V, 300.00mV, 30.000mV.

Input Impedance - 100 Meg ohm

Channel Scan Rate - 1 sec. to 999 hrs.

Printer Scan Rate - 1 sec. to 999 hrs.

Optional External Recording Devices -

Teletype

Serial Terminals and Printers

Paper Tape Punches

Incremental Mag. Tape

Synchronous Mag. Tape with read after write data check

Alarms - Channel Overrange (exceeds full scale)

Thermocouple burned out (open channel)

In an effort to complete the required capability, instrument manufacturers were contacted. CSUN was able to acquire information concerning instruments capable of measuring $\rm CO_2$ concentrations, $\rm CH_4$ concentrations and particulate concentrations (and size distribution). The following is a summary of this instrumentation.

Monitor Labs 3300/3400: Carbon Monoxide/Dioxide Meter

This instrument utilizes a single beam infrared source in conjunction with a mechanical chopper. The 3300 is single component and 3400 dual component.

Full Scale Range CO2 - 400 ppm.

Full Scale Range Co - 1000 ppm.

Precision - ±1%

Price 3300/3400 - \$2,975/\$4,500

Beckman Model 400: Hydrocarbon Analyzer

This meter was chosen because of its sensitivity to low Hydrocarbon concentrations and its compatibility with the Monitor Labs Data

Logger. The Model 400 measures hydrocarbons utilizing flame ionization detection. The sample is injected into a burning hydrocarbon flame where the hydrocarbons become ionized. A voltage is applied between the burner jet and a collection plate that results in ion migration. The induced current is proportional to the hydrocarbon concentration.

*Full Scale Range - 1, 10, 100, 1000 ppm.

Precision - $\pm 1\%$ of full scale

Output - 10mV, 100mV, 1V, 5V (selectable)

Price - \$4,600

Recommended Accessories:

Part No.	<u>Description</u>	Price
630779	Air Pump	\$ 410
630157	Auto Fuel Shut-off	\$ 145
	Solinoid for Shut-off	\$ 57

*With pure hydrogen fuel accessory

It is possible to obtain more detailed measurements of hydrocarbons by using a gas chromatograph. The chromatograph can break down the different hydrocarbon component, but such an instrument must be designed for the particular tests, and chromatographs are in the \$20,000 price range.

Various particle-sizing instruments were evaluated for measuring particulate concentration and size distribution. Those capable of measuring particles of size less than 10 micrometers with reasonable accuracy and ease of operation were selected. Those instruments found to satisfy these requirements are presented below.

Anderson Samplers Inc.: Low-Pressure Impactor

The Anderson LPI utilizes the well-known inertial impactor principle of the particles in the gas flow; the higher inertia of the heavier phase can cause the particle trajectories to differ from the gas flow streamlines. By staging plates with nozzles of decreasing diameter, size differentiation is obtained; as the gas velocity increases, successively smaller particles will impact on the dish beneath the nozzle. The collected particles are transported to the laboratory for analysis.

The price of the complete system is \$4,875. The disadvantage is accuracy may be lost unless extreme care is exercised in handling and transporting the collected particles.

California Measurements Inc.: Aerosol Particle Analyzer Model
PC-2

The PC-2 is a 10 stage cascade impactor with quartz crystal microbalance mass monitors in each stage. It utilizes the inertial impactor principle as in the Anderson L.P.I., however, the PC-2 processes a list of special features which make it most attractive for its accuracy and ease of operation. The most prominent of its features is the employment of highly sensitive piezo electric crystal mass monitor in each stage which provides real time mass concentration information. The adhesive coated surface of the crystals retain the samples for further evaluation.

Other features include built-in crystal saturation indicator and built-in sample time stopwatch.

The estimated price for the complete system \$15,000.

CONCLUSION -

As infrared radiation technology becomes more and more a part of our defense capabilities, the need arises to be able to understand and predict the effects of the earth's atmosphere on the transmission of infrared radiation. The need is especially great for the low altitude regions of the earth's atmosphere.

LOWTRAN offers one possible solution to this problem. However, as LOWTRAN has evolved it has become a very complicated computer program. Thus a new program, LARTAP, has been developed. LARTAP utilizes the large empirical data base from LOWTRAN, however, this new program is geared specifically towards low altitude radiation problems, thus the resulting computer code is much simpler than LOWTRAN.

The net result is that LARTAP offers a good starting point for the development of any computer program to support a project that requires information concerning low altitude radiation transmission.

One of the specific goals of this project was to attempt to make LARTAP a tool that could be used in the field to provide analysis capability at a test site. This would require the conversion of the program to a micro-computer. In order to accomplish this conversion, the large empirical data base utilized by LARTAP would have to be stored on peripheral equipment. Thus in the current version of LARTAP this data base has been stored in disk files to emulate such peripheral equipment.

A short coming of both LOWTRAN and LARTAP is the neglect of scattering into the line of sight of radiation from sources other than the one of interest. It is felt that this could be quite significant

for the scattering of solar radiation. It is suggested that an effort should be under taken to model this effect. The resulting model could easily be incorporated into LARTAP.

It is suggested that the LARTAP program be tested. If the program should not agree with test data then detailed testing would have to be performed to modify the data base of LARTAP.

Although the primary concern of this project has been the modeling of radiation transmission, CSUN has also considered the possibility of direct measurement of radiation transmission at a test site.

More direct techniques of measuring radiation transmission can be accomplished by using a radiometer. A wide range radiometer, such as the Molectron PR200, (see table 2), is sensitive from the ultraviolet to the far infrared ranges. By using interchangeable filters, the proper frequency range can be obtained.

For example, the radiometer is mounted on a GMD-2 Balloon Tracker to track a radiation source that is rising through the atmosphere on a balloon. The light source has to be stable and also flash on and off so that changing background radiation can be measured.

The measurements from this test could be combined with the theory of sections I and II of this report utilizing a numerical filtering technique. The result would be an accurate model of radiation transmission at the test site.

in conclusion, a simple computer program, LARTAP, has been developed. This program needs to be tested. The simplicity of the program makes it easy to modify to suit users requirements. Should detailed testing be required to improve program accuracy, currently available instrumentation has been evaluated. It has also been

suggested that a technique involving direct measurement of radiation transmission and utilization of a numerical filter may provide a more accurate model of atmospheric radiation transmission at a test site.

TABLE 2

Molectron PR200 Pyroelectric Radiometer

Detector Type - Circular lithium tantalate pyroelectric crystal Spectral Range - 0.2 to 20 μ m $\pm 3\%$

0.2 to 40 Am ±5%

40 to 500 um uncalibrated

Ranges (Full Scale) - 2 MW, 20 MW, 200 MW, 2 mW, 20 mW, 200 mW/cm

System Response Time - Full Scale Range Fast Response Slow Response

2 uW	10 sec.	100 sec.
20 uW	3 sec.	100 sec.
200 AW	2 sec.	100 sec.
2,20,200 mW	1 sec.	100 sec.

Absolute Maximum Irradiance - 50 Watts/cm

Price - \$3,350

REFERENCES

- 1. Siegel, R. and Howell J.R.; Thermal Radiation Heat Transfer; Hemisphere Publishers; 1981.
- 2. Atmospheric Transmittance/Radiance: Computer Code LOWTRANS; Environmental Research Papers, No. 697; AFGL-TR-80-0067; 1980.
- 3. Chandrasekhar, S.; Radiative Transfer; Dover Publications; 1960.
- 4. Hudson, R.D., Jr.; Infrared System Engineering; John Wiley and Sons; 1969.
- 5. Goody, R.M.; Atmospheric Radiation; Oxford, Clarendon Press; 1964.
- 6. Zuev, V.E.; Propagation of Visible and Infrared Radiation in the Atmosphere; John Wiley and Sons; 1974.

APPENDIX A

Listing of Computer Program

```
C
 1
     C
                   LOW ALTITUDE RADIATION TRANSMISSION ANALYSER PROGRAM
 2
     С
                                      L. A. R. T. A. P.
 3
     C
 4
                   MAIN DRIVER PROGRAM
 5
           COMMON /BLK1/ ZGR(20), P(20), T(20), RH(20), WH(20), WD(20), VIS(20)
                               ANGLE
                                             , SMAX
           COMMON /BLK2/ H1
 6
 7
           COMMON /BLK3/ IHA(20), NPTS
 8
           COMMON /SPEC1/ C1ARR(2580), C2ARR(1575), C3ARR(540), C4ARR(133)
 9
           COMMON /SPEC2/ C7ARR(280,5), C8ARR(102,2), C9ARR(131)
10
           DIMENSION W1(10), W2(10), REL(20), WLAY(20,10), CVE(10), CVA(10)
           DIMENSION EXTN(20,10), ABSP(20,10), EMIS(20)
11
           DIMENSION TEMP(20), TRANE(20), TRANA(20)
12
13
           DIMENSION IHAZ(20)
14
                   OPEN OUTPUT FILES
     C
15
           OPEN(UNIT=6, FILE='WAVN')
16
           OPEN(UNIT=7, FILE='TRAS')
17
           OPEN(UNIT=8, FILE='RADA')
18
     C
                   READ SPECTRAL DATAFILES
19
           OPEN(UNIT=31, FILE='C1FILE')
20
           OPEN(UNIT=32, FILE='C2FILE')
21
           OPEN(UNIT=33, FILE='C3FILE')
           OPEN(UNIT=34, FILE='C4FILE')
22
23
           OPEN(UNIT=37, FILE='C7FILE')
24
           OPEN(UNIT=38, FILE='C8FILE')
25
           OPEN(UNIT=40, FILE='C9FILE')
     С
                   H20 SPECTRAL DATA
26
27
           DO 31 I=1,2580
28
           READ(31,*) C1ARR(I)
29
      31
           CONTINUE
                   UNIFORM GASES SPECTRAL DATA
     С
30
31
           DO 32 I=1,1575
32
           READ(32,*) C2ARR(I)
33
           CONTINUE
      32
34
     C
                   OZONE I.R. SPECTRAL DATA
35
           DO 33 I=1,540
36
           READ(33,*) C3ARR(I)
37
      33
           CONTINUE
                   N2 SPECTRAL DATA
38
     C
39
           DO 34 I=1,133
40
           READ(34,*) C4ARR(I)
41
      34
           CONTINUE
42
     С
                   AEROSOL SPECTRAL DATA
43
           DO 37 I=1,280
44
           READ(37,*) C7ARR(I,1), C7ARR(I,2), C7ARR(I,3), C7ARR(I,4), C7ARR(I,5)
45
           CONTINUE
      37
46
     С
                   OZONE U. V. SPECTRAL DATA
47
           DO 38 I=1,102
48
           READ(38,*) CBARR(I,1), CBARR(I,2)
49
      38
           CONTINUE
                   H20 CONTINUUM (4 UM) SPECTRAL DATA
50
     С
51
           DO 39 I=1,131
52
           READ(40,*) C9ARR(I)
53
      39
           CONTINUE
```

```
54
      C
                    DATA INITIALIZE
            CALL PROPUT
 55
                    CALCULATE COMPONENT AMOUNT INTEGRALS
      C
 56
            LY=0
 57
            S1=0.000
 58
                  - CALCULATE COMPONENT AMOUNTS AT START OF PATH
 59
      C
 60
            CALL EQUABS(S1, IHAZE1, W1, REL1, TEM1)
                    INTEGRAL EVALUATION LOOP
 61
       100
            LY=LY+1
 62
            S2=SMAX+1. OE-04
 63
                    CHECK FOR HORIZONTAL PATH
 64
            IF (ANGLE . GT. 89.5 . AND. ANGLE . LT. 90.5) GO TO 120
 65
                    FIND CLOSEST DATA POINT - DEFAULT IS SMAX
 66
      C
            DO 110 I=1, NPTS
 67
 68
            DSMIN=S2-S1
            TEST=((ZGR(I)-H1)/CDS(ANGLE*3.14159/180.0))-S1
 69
            IF (TEST . GT. 0.0001 . AND. TEST . LT. DSMIN) S2=TEST+S1
 70
 71
       110
            CONTINUE
                    CALCULATE COMPONENT AMOUNT INTEGRALS FOR LAYER LY
 72
 73
       120
            CALL EQUABS(S2, IHAZE2, W2, REL2, TEM2)
 74
            DO 130 I=1,9
            WLAY(LY, I) = (W2(I) + W1(I)) * (S2 - S1)/2. \cap
 75
            IF (W1(I) .EQ. 0.000 .OR. W2(I) .EQ. 0.000) GD TD 130
 76
 77
            AUG=W2(I)/W1(I)
 78
            WLAY(LY, I)=W1(I)*(S2-S1)
            IF (AUG . GT. 0.99 . AND. AUG . LT. 1.01) GO TO 130
 79
            WLAY(LY, I)=(W2(I)-W1(I))*(S2-S1)/ALOG(AUG)
 80
 81
       130
            CONTINUE
                    CALCULATE AVERAGE RELATIVE HUMIDITY FOR LAYER LY
 82
      C
            REL(LY) = (REL1 + REL2)/2.0
 83
                    DETERMINE AEROSOL TYPE FOR LAYER LY
 84
      C
            IF (ANGLE . LE. 90.0) IHAZ(LY)=IHAZE1
 85
             IF (ANGLE . GT. 90.0) IHAZ(LY)=IHAZE2
 86
 87
      C
                    STORE TEMPERATURE FOR EMISSION CALCULATION
 88
            TEMP(LY)=TEM1
 89
      C
                    INCREMENT DATA
 90
            S1=S2
            REL1=REL2
 91
 92
            IHAZE1=IHAZE2
 93
            TEM1=TEM2
 94
            DO 250 I=1,9
 95
            W1(I)=W2(I)
 96
       250
            CONTINUE
                    CHECK FOR END OF PATH
 97
      С
 98
            IF (S2 . LT. SMAX) GD TO 100
 99
            LYTOT=LY+1
                    STORE TEMPERATURE AT SMAX
100
      C
            TEMP(LYTOT)=TEN2
101
102
                    SPECTRAL LOOP
            DO 400 IV=350,40000,10
103
104
                    PATH INDEPENDENT SPECTRAL COEFFICIENTS
      C
105
            CALL CIDTA(CVE(1), IV)
106
            CVA(1)=CVE(1)
107
            CALL C2DTA(CVE(2), IV)
```

```
108
             CVA(2)=CVE(2)
109
             CALL C3DTA(CVE(3), IV)
110
             CVA(3) = CVE(3)
111
             CALL C4DTA(CVE(4), IV)
             CVA(4) = CVE(4)
112
113
             CALL C5DTA(CVE(5), IV)
114
             CVA(5) = CVE(5)
115
             CALL CODTA(CVE(6), IV)
             CVA(6)=0.000
116
117
             CALL SEDTA(CVE(8), IV)
             CVA(8) = CVE(8)
118
119
             CALL C9DTA(CVE(9), IV)
120
             CVA(9) = CVE(9)
                    ZERO EXTINCTION AND ABSORPTION ARRAYS
121
122
             DO 265 J=1,9
123
            EXTN(LYTOT, J)=0.000
124
             ABSP(LYTOT, J)=0.000
125
       265
             CONTINUE
126
      C
                    CALCULATE TRANSMITTANCES FROM EACH LAYER TO OBSERVER
127
      C
                    NOTE - WORK FROM OBSERVER BACK TO SOURCE
128
             I=LYTOT
129
             DO 300 K=1, LYTOT
                    CALCULATE TRANSMITTANCE AT WAVENUMBER IV (EXTINCTION)
130
      C
131
      C
                    H20
             TRANE(I)=1.00/EXP(0.0689*EXTN(I,1)**0.555)
132
133
                    UNIFORM GASES
             TRANE(I) = TRANE(I) / EXP(0.0689 * EXTN(I, 2) * * 0.555)
134
135
      C
                    OZONE I.R.
136
             TRANE(I) = TRANE(I) / EXP(0.0643 * EXTN(I, 3) * * 0.666)
137
                    N2 CONTINUUM
             TRANE(I)=TRANE(I)/EXP(EXTN(I,4))
138
139
      C
                    H20 CONTINUUM (10 UM)
140
             TRANE(I)=TRANE(I)/EXP(EXTN(I,5))
141
      C
                    MOLECULAR SCATTERING
142
             TRANE(I)=TRANE(I)/EXP(EXTN(I,6))
143
      С
                    AEROSOL
144
             TRANE(I)=TRANE(I)/EXP(EXTN(I,7))
145
      C
                    OZONE U. V.
146
             TRANE(I)=TRANE(I)/EXP(EXTN(I,8))
147
      C
                    H20 CONTINUUM (4 UM)
             TRANE(I)=TRANE(I)/EXP(EXTN(I,9))
148
149
      С
                    CALCULATE TRANSMITTANCE AT WAVENUMBER IV (ABSORPTION)
150
      C
             TRANA(I)=1.00/EXP(0.0689*ABSP(I,1)**0.555)
151
                    UNIFORM GASES
152
153
             TRANA(I) = TRANA(I) / EXP(0.0689 + ABSP(I,2) + +0.555)
154
      С
                    OZONE I.R.
155
             TRANA(I)=TRANA(I)/EXP(0.0643*ABSP(I,3)**0.666)
156
      С
                    N2 CONTINUUM
             TRANA(I)=TRANA(I)/EXP(ABSP(I,4))
157
158
      C
                    H20 CONTINUUM (10 UM)
159
             TRANA(I)=TRANA(I)/EXP(ABSP(I,5))
160
                    MOLECULAR SCATTERING
161
             TRANA(I)=TRANA(I)/EXP(ABSP(I,6))
```

```
162
      C
                    AEROSOL
163
            TRANA(I)=TRANA(I)/EXP(ABSP(I,7))
      C
                    OZONE U.V.
164
            TRANA(I)=TRANA(I)/EXP(ABSP(I,8))
165
      C
                    H20 CONTINUUM (4 UM)
166
            TRANA(I)=TRANA(I)/EXP(ABSP(I,9))
167
            I=I-1
168
            IF (I .EQ. 0) 90 TO 325
169
                    AEROSOL SPECTRAL COEFFICIENTS
170
171
            CALL C7DTA(CVE(7), CVA(7), IV, REL(I), IHAZ(I))
                    CALCULATE EXTINCTION-ABSORPTION COFFICIENTS
172
                    FROM BEGINNING OF LAYER I TO OBSERVER
173
174
            DO 275 J=1.9
175
            EXTN(I, J)=EXTN(I+1, J)+CVE(J)*WLAY(I, J)
            ABSP(I, J)=ABSP(I+1, J)+CVA(J)*WLAY(I, J)
176
       275
177
            CONTINUE
178
       300
            CONTINUE
179
      С
                    CALCULATE EMISSION ALONG PATH
180
       325
            DO 350 I=1, LYTOT
181
            EMIS(I)=PLAN(TEMP(I), IV)
182
       350
            CONTINUE
                    CALCULATE RADIANCE FOR PATH
183
      C
184
            RADI=0.000
185
            DO 375 I=1, LY
186
            DRAD=(EMIS(I+1)*TRANE(I+1)/TRANA(I+1))+(EMIS(I)*TRANE(I)/TRANA(I
187
            RADI=RADI+DRAD*(TRANA(I+1)-TRANA(I))/2.0
188
       375
            CONTINUE
189
                    PRINT RESULTS
190
            WRITE(6,1000) IV
191
            WRITE(7,1000) TRANE(1)
192
            WRITE(8,1000) RADI
193
            CONTINUE
194
       1000 FORMAT(1PE12.5)
195
            STOP
196
            END
```

```
197
198
      C** PROPUT ***********************
199
            SUBROUTINE PROPUT
200
                   DATA PROCESSING AND INPUT ROUTINE
201
      С
202
            COMMON /BLK1/ ZGR(20), P(20), T(20), RH(20), WH(20), WG(20), VIS(20)
                                 ANGLE
203
            COMMON /BLK2/ H1
                                             , SMAX
204
            COMMON /BLK3/ IHA(20), NPTS
205
                   OPEN INPUT DATA FILE
      C
            OPEN(UNIT=5, FILE='DATA')
206
207
                   DEFINE CONSTANTS
208
            RV=4. 6150E-03
207
                   PROGRAM CONTROL DATA
            READ(5,*) MODEL, GRASL, NPTS
210
211
            READ(5, *) H1, SMAX, ANGLE
212
            DO 100 I=1, NPTS
213
            READ(5,*) ZGR(I),P(I),T(I),RH(I),WO(I),VIS(I),IHA(I)
214
      С
                   CONVERT TEMPERATURE TO ABSOLUTE
215
            T(I)=T(I)+273.15
                   CHECK AND SET DEFAULT DATA
216
      C
            IF (P(I) .LT. -500.0) CALL PRMOD(ZGR(I)+GRASL, MODEL, P(I))
217
            IF (T(I) .LT. -500.0) CALL TEMOD(ZGR(I)+GRASL, MODEL, T(I))
218
            IF (RH(I) .LT. -500.0) CALL WHMOD(ZGR(I)+GRASL, MODEL, WH(I))
219
            IF (WO(I) .LT. -500.0) CALL WOMOD(ZGR(I)+GRASL, MODEL, WO(I))
220
                   DETERMINE WATER DENSITY
221
555
            TA=273. 15/T(I)
            IF (RH(I) .LT. -500.0) GO TO 50
223
            RHSAT=FCT(TA)
224
            RH0=0. 01*RH(I)
225
            DN=1. 0-(1. 0-RHO)*RHSAT*RV*T(I)/P(I)
226
            WH(I)=RHSAT*RHO/DN
227
228
            GO TO 100
                   CALCULATE RELATIVE HUMIDITY
229
       50
            RHOSTR=P(I)/(RV*T(I))
230
            RH(I)=100.0*(WH(I)/FCT(TA))*((RHOSTR-FCT(TA))/(RHOSTR-WH(I)))
231
232
       100
            CONTINUE
233
            RETURN
234
            END
```

```
235
236
     237
           SUBROUTINE PRMOD(Z, M, P)
535
239
     C
                 PRESSURE MODEL DATA ROUTINE
240
           DIMENSION ZD(6), PD(6,6)
                  ALTITUDE
241
     С
242
          DATA
243
          * ZD(1)
                    , ZD(2)
                            , ZD(3) , ZD(4)
                                                   , ZD(5)
                                                               , ZD(6)
244
          * 0.0
                    , 1.0
                              , 2.0
                                         , З.О
                                                   , 4.0
                                                              , 5. O
                  PRESSURE MODEL 1
245
     С
246
          DATA
247
          * PD(1,1) , PD(1,2) , PD(1,3) , PD(1,4) , PD(1,5) , PD(1,6)
248
          * 1.013E+03, 9.040E+02, 8.050E+02, 7.150E+02, 6.330E+02, 5.590E4
249
     C
                  PRESSURE MODEL 2
250
           DATA
251
          * PD(2,1) , PD(2,2) , PD(2,3) , PD(2,4) , PD(2,5) , PD(2,6)
252
          * 1.013E+03, 9.020E+02, 8.020E+02, 7.100E+02, 6.280E+02, 5.540E4
253
     С
                 PRESSURE MODEL 3
254
           DATA
255
          * PD(3,1) , PD(3,2) , PD(3,3) , PD(3,4) , PD(3,5) , PD(3,6)
256
          * 1.018E+03, 8.973E+02, 7.897E+02, 6.938E+02, 6.081E+02, 5.313E+
                  PRESSURE MODEL 4
257
     C
258
           DATA
259
          * PD(4,1) , PD(4,2) , PD(4,3) , PD(4,4) , PD(4,5) , PD(4,6)
          * 1.010E+03, 8.960E+02, 7.929E+02, 7.000E+02, 6.160E+02, 5.410E+
260
261
     С
                  PRESSURE MODEL 5
262
           DATA
          * PD(5,1) , PD(5,2) , PD(5,3) , PD(5,4) , PD(5,5) , PD(5,6)
263
          * 1.013E+03, 8.878E+02, 7.775E+02, 6.798E+02, 5.932E+02, 5.158E+
264
                  PRESSURE MODEL 6
265
     C
266
           DATA
          * PD(6.1) , PD(6.2) , PD(6.3) , PD(6.4) , PD(6.5) , PD(6.6)
267
          * 1.013E+03, 8.986E+02, 7.950E+02, 7.012E+02, 6.166E+02, 5.405E+
268
                 SEMI-LOG INTERPOLATION
269
     С
270
           DO 10 I=2,6
271
           L=I
272
           IF (Z . LT. ZD(L)) GO TO 12
           CONTINUE
273
      10
274
           FAC=(Z-ZD(L-1))/(ZD(L)-ZD(L-1))
275
           P=PD(M, L-1)*(PD(M, L)/PD(M, L-1))**FAC
276
                 RETURN
277
           RETURN
278
           END
```

```
279
     C** TEMOD ******************************
280
281
           SUBROUTINE TEMOD(Z, M, T)
282
                  TEMPERATURE MODEL DATA ROUTINE
283
           DIMENSION ZD(6), TE(6,6)
284
                  ALTITUDE
285
           DATA
286
                                                    , ZD(5)
                                          , ZD(4)
                                                                , ZD(6)
                    , ZD(2)
                               , ZD(3)
           * ZD(1)
287
                                          , 3.0
                                                                , 5.0
                                , 2.0
                                                     , 4. 0
                     , 1.0
288
          * 0.0
                  TEMPERATURE MODEL 1
289
     С
290
           DATA
           * TE(1,1) , TE(1,2) , TE(1,3) , TE(1,4) , TE(1,5) , TE(1,6)
291
           * 3.000E+02, 2.940E+02, 2.880E+02, 2.840E+02, 2.770E+02, 2.700E+02/
292
                  TEMPERATURE MODEL 2
293
      С
294
           DATA
           * TE(2,1) , TE(2,2) , TE(2,3) , TE(2,4) , TE(2,5) , TE(2,6)
295
           * 2.940E+02, 2.900E+02, 2.850E+02, 2.790E+02, 2.730E+02, 2.670E+02/
296
                  TEMPERATURE MODEL 3
297
      C
298
           DATA
           * TE(3,1) , TE(3,2) , TE(3,3) , TE(3,4) , TE(3,5) , TE(3,6)
299
           * 2.722E+02, 2.687E+02, 2.652E+02, 2.617E+02, 2.557E+02, 2.497E+02/
300
301
      C
                  TEMPERATURE MODEL 4
302
           DATA
           * TE(4,1) , TE(4,2) , TE(4,3) , TE(4,4) , TE(4,5) , TE(4,6)
303
           * 2.870E+02, 2.820E+02, 2.760E+02, 2.710E+02, 2.660E+02, 2.600E+02/
304
                  TEMPERATURE MODEL 5
305
           DATA
306
           * TE(5,1) , TE(5,2) , TE(5,3) , TE(5,4) , TE(5,5) , TE(5,6)
307
           * 2.570E+02, 2.590E+02, 2.559E+02, 2.527E+02, 2.477E+02, 2.409E+02/
308
                  TEMPERATURE MODEL 6
309
310
           DATA
           * TE(6,1) , TE(6,2) , TE(6,3) , TE(6,4) , TE(6,5) , TE(6,6) /
311
           * 2.881E+02, 2.816E+02, 2.751E+02, 2.687E+02, 2.622E+02, 2.557E+02/
312
                  SEMI-LOG INTERPOLATION
313
           DO 10 I=2,6
314
           L=I
315
           IF (Z .LT. ZD(L)) GO TO 12
316
      10
           CONTINUE
317
           FAC=(Z-ZD(L-1))/(ZD(L)-ZD(L-1))
318
      12
            T=TE(M, L-1)*(TE(M, L)/TE(M, L-1))**FAC
319
                 RETURN
350
            RETURN
321
322
            END
```

```
323
324
      C** WHMOD ***********************
325
326
            SUBROUTINE WHMOD (Z, M, WH)
                   WATER DENSITY MODEL DATA ROUTINE
327
328
            DIMENSION ZD(6), WHD(6,6)
329
      C
                   ALTITUDE
330
            DATA
           * ZD (1)
                      , ZD (2)
                                 , ZD (3)
                                            , ZD (4)
                                                        , ZD (5)
                                                                   , ZD (6)
331
                      1.0
                                 , 2.0
                                             , 3. O
                                                        4.0
                                                                   , 5.0
332
           * 0.0
                   WATER DENSITY MODEL 1
333
334
            DATA
           * WHD(1,1) , WHD(1,2) , WHD(1,3) , WHD(1,4) , WHD(1,5) , WHD(1,6)
335
           * 1.900E+01, 1.300E+01, 9.300E+00, 4.700E+00, 2.200E+00, 1.500E+00/
336
                   WATER DENSITY MODEL 2
337
      С
           DATA
338
           * WHD(2,1) , WHD(2,2) , WHD(2,3) , WHD(2,4) , WHD(2,5) , WHD(2,6) /
339
340
           * 1.400E+01, 9.300E+00, 5.900E+00, 3.300E+00, 1.900E+00, 1.000E+00/
                   WATER DENSITY MODEL 3
341
342
            DATA
           * WHD(3,1) , WHD(3,2) , WHD(3,3) , WHD(3,4) , WHD(3,5) , WHD(3,6) /
343
344
           * 3.500E+00, 2.500E+00, 1.800E+00, 1.200E+00, 6.600E-01, 3.800E-01/
345
                   WATER DENSITY MODEL 4
346
           DATA
347
           * WHD(4,1) , WHD(4,2) , WHD(4,3) , WHD(4,4) , WHD(4,5) , WHD(4,6) ,
           * 9.100E+00, 6.000E+00, 4.200E+00, 2.700E+00, 1.700E+00, 1.000E+00/
348
      С
                   WATER DENSITY MODEL 5
349
350
            DATA
351
           * WHD(5,1) , WHD(5,2) , WHD(5,3) , WHD(5,4) , WHD(5,5) , WHD(5,6) /
           * 1.200E+00, 1.200E+00, 9.400E-01, 6.800E-01, 4.100E-01, 2.000E-01/
352
                   WATER DENSITY MODEL 6
353
354
            DATA
355
           * WHD(6,1) , WHD(6,2) , WHD(6,3) , WHD(6,4) , WHD(6,5) , WHD(6,6) /
           * 5. 900E+00, 4. 200E+00, 2. 900E+00, 1. 800E+00, 1. 100E+00, 6. 400E-01/
356
                   SEMI-LOG INTERPOLATION
357
            DO 10 I=2,6
358
359
            L = I
360
            IF (Z .LT. ZD(L)) GO TO 12
361
       10
            CONTINUE
362
       12
            FAC=(Z-ZD(L-1))/(ZD(L)-ZD(L-1))
363
            WH=WHD(M,L-1)*(WHD(M,L)/WHD(M,L-1))**FAC
364
                   RETURN
365
            RETURN
366
            END
```

```
367
      C++ WOMOD ***********************
368
369
            SUBROUTINE WOMOD(Z, M, WO)
370
                   OZONE DENSITY MODEL DATA ROUTINE
371
372
            DIMENSION ZD(6), WOD(6,6)
373
                   ALTITUDE
374
            DATA
375
           * ZD (1)
                      , ZD (2)
                                  , ZD (3)
                                            , ZD (4)
                                                       , ZD (5)
                                                                    , ZD (6)
376
                      , 1.0
                                  , 2.0
                                             , З.О
                                                        4.0
                                                                    , 5.0
377
                   OZONE DENSITY MODEL 1
            DATA
378
          * * WOD(1,1) , WOD(1,2) , WOD(1,3) , WOD(1,4) , WOD(1,5) , WOD(1,6)
379
380
           * 5. 600E-05, 5. 600E-05, 5. 400E-05, 5. 100E-05, 4. 700E-05, 4. 500E-05
                   OZONE DENSITY MODEL 2
381
            DATA
382
           * WOD(2,1) , WOD(2,2) , WOD(2,3) , WOD(2,4) , WOD(2,5) , WOD(2,6)
383
           * 6. 000E-05, 6. 000E-05, 6. 000E-05, 6. 200E-05, 6. 400E-05, 6. 600E-05
384
385
                   OZONE DENSITY MODEL 3
386
            DATA
387
           * WOD(3,1) , WOD(3,2) , WOD(3,3) , WOD(3,4) , WOD(3,5) , WOD(3,6)
           * 6. 000E-05, 5. 400E-05, 4. 900E-05, 4. 900E-05, 4. 900E-05, 5. 800E-05
388
                   OZONE DENSITY MODEL 4
389
      C
390
           DATA
           * WOD(4,1) , WOD(4,2) , WOD(4,3) , WOD(4,4) , WOD(4,5) , WOD(4,6)
391
392
           * 4. 900E-05, 5. 400E-05, 5. 600E-05, 5. 800E-05, 6. 000E-05, 6. 400E-05
393
                   OZONE DENSITY MODEL 5
      C
394
            DATA
395
           * WOD(5,1) , WOD(5,2) , WOD(5,3) , WOD(5,4) , WOD(5,5) , WOD(5,6)
           * 4.100E-05, 4.100E-05, 4.100E-05, 4.300E-05, 4.500E-05, 4.700E-05
396
397
                   OZUNE DENSITY MODEL 6
398
            DATA
399
           * WOD(6,1) , WOD(6,2) , WOD(6,3) , WOD(6,4) , WOD(6,5) , WOD(6,6)
           * 5. 400E-05, 5. 400E-05, 5. 400E-05, 5. 000E-05, 4. 600E-05, 4. 600E-05
400
                   SEMI-LOG INTERPOLATION
401
402
            DO 10 I=2.6
403
            L=I
404
            IF (Z . LT. ZD(L)) GO TO 12
405
       10
            CONTINUE
406
       12
            FAC=(Z-ZD(L-1))/(ZD(L)-ZD(L-1))
407
            WO=WOD(M, L-1)*(WOD(M, L)/WOD(M, L-1))**FAC
                   RETURN
408
409
            RETURN
410
            END
```

```
411
412
      413
414
            SUBROUTINE EQUABS(S, IHAZE, W, RHZ, TZ)
415
                   CALCULATES COMPONENT AMOUNTS
            COMMON /BLK1/ ZGR(20), P(20), T(20), RH(20), WH(20), WH(20), VIS(20)
416
417
            COMMON /BLK2/ H1
                                           , SMAX
                                 ANGLE
            COMMON /BLK3/ IHA(20), NPTS
418
419
            DIMENSION W(10), VSB(9)
420
                   DETERMINE ALTITUDE
      С
421
            Z=H1+S*COS(ANGLE*3. 14159/180. 0)
422
                   DETERMINE DATA ARRAY LOCATION
423
            DO 100 I=2, NPTS
424
            L=I
425
            IF (Z .LT. ZGR(L)) GO TO 110
426
       100
            CONTINUE
427
                   DETERMINE FACTOR
            FAC=(Z-ZGR(L-1))/(ZGR(L)-ZGR(L-1))
428
       110
429
      С
                   PRESSURE AT Z
430
            PZ=P(L-1)*(P(L)/P(L-1))**FAC
431
      С
                   TEMPERATURE AT Z
432
            TZ=T(L-1)*(T(L)/T(L-1))**FAC
433
                   WATER DENSITY AT Z
434
            WHZ=WH(L-1)*(WH(L)/WH(L-1))**FAC
435
                   OZONE DENSITY AT Z
436
            WOZ=WO(L-1)*(WO(L)/WO(L-1))**FAC
437
                   RELATIVE HUMIDITY
      C
438
            RHZ=RH(L-1)*(RH(L)/RH(L-1))**FAC
439
                   SET AEROSOL
      C
            IHAZE=IHA(L-1)
440
441
            VISZ=VIS(L-1)
442
                   EQUIVALENT AEROSOL AMOUNT
443
            W(7)=0.0000
444
            IF (IHAZE . EQ. 0) GO TO 150
445
           * VSB(1), VSB(2), VSB(3), VSB(4), VSB(5), VSB(6), VSB(7), VSB(8), VSB(9)/
446
447
           * 23.0 , 5.0 ,23.0 , 5.0 , 5.0 ,50.0 ,23.0 , 0.2 , 0.5
            IF (VISZ .LT. -500.0) VISZ=VSB(IHAZE)
448
449
            W(7)=3.912023/VISZ
450
      C
451
       150
           PA=PZ/1013. 0
452
            TA=273. 15/TZ
453
                   SET EQUIVALENT AMOUNTS
454
            D=0. 1*WHZ
455
            X=PA*TA
            PT=PA*SQRT(TA)
456
457
                   EQUIVALENT H20 AMOUNT
458
            W(1)=D*PT**0.9
459
     C
                  EQUIVALENT CO2 N2O AND ETC. AMOUNT
460
            W(2)=X*PT**0.75
461
                   EQUIVALENT N2 AMOUNT
462
            W(4)=0.8*PT*X
463
     С
464
           PPW=4. 560E-05*D*TZ
```

465		TS1=296. 0/TZ
466	C	EQUIVALENT H20 CONTINUUM AMOUNT (10 UM)
467		W(5)=D*PPW*EXP(6.08*(TS1-1.0))+0.002*D*(PA-PPW)
468	С	EQUIVALENT H20 CONTINUUM AMOUNT (4 UM)
469		W(9)=D*(PPW+0.12*(PA-PPW))*EXP(4.56*(TS1-1.0))
470	С	EQUIVALENT MOLECULAR SCATTERING AMOUNT
471		W(4)=X
472	С	. EQUIVALENT OZONE AMOUNT (U.V. REGION)
473		W(8)=46.6667*WDZ
474	С	EQUIVALENT OZONE AMOUNT (I.R. REGION)
475		W(3)=W(8)*PT**O.4
476		RETURN
477		END

478	C ·	
479	C** FCT ********************************	**
480	C ·	
481	FUNCTION FCT(A)	
482	C FUNCTION	
483	FCT=A*EXP(18, 9766-14, 9595*A-2, 43882*A*A)	
484	RETURN	
485	END	

```
486
487
     C * PLAN ********************************
488
     С
489
           FUNCTION PLAN(T, IV)
490
                  PLANCK BLACKBODY FUNCTION
491
           XLAM=1 OE+04/IV
492
           C1=0. 59544E+08
493
           C2=14388. 000
494
           AUG=C2/(XLAM*T)
495
           PLAN=2. 0*C1/((XLAM**5)*(EXP(AUG)-1.0))
496
           RETURN
497
           END
```


MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

```
498
499
     500
501
           SUBROUTINE CIDTA(C1, IV)
     C
502
                  DETERMINE WATER VAPOR SPECTRAL COEFFICIENT
503
           COMMON /SPEC1/ CIARR(2580), C2ARR(1575), C3ARR(540), C4ARR(133)
           COMMON /SPEC2/ C7ARR(280,5), C8ARR(102,2) , C9ARR(131)
504
505
           I=0
506
           C1=0.000
507
           IF (IV . GE.
                         350 . AND. IV . LE.
                                            9195) I=(IV-350)/5+1
508
           IF (IV . GE.
                       9875 . AND. IV . LE. 12795) I=(IV-9875)/5+1771
509
           IF (IV . GE. 13400 . AND. IV . LE. 14520) I=(IV-13400)/5+2356
510
           IF (I . EQ. O) RETURN
511
           C1=10. 000**C1ARR(I)
512
           RETURN
513
           END
```

514	С
515	C+* C2DTA ************************************
516.	C
517	SUBROUTINE C2DTA(C2, IV)
518	C DETERMINE UNIFORM MIXED GASES SPECTRAL COEFFICIENT
519	COMMON /SPEC1/ Clarr(2580), C2ARR(1575), C3ARR(540), C4ARR(133)
520	COMMON /SPEC2/ C7ARR(280,5), C8ARR(102,2), C9ARR(131)
521	I=0
522	C2=0. 000
523	IF (IV . GE. 500 . AND. IV . LE. 8070) I=(IV-500)/5+1
524	IF (IV . GE. 12950 . AND. IV . LE. 13245) I=(IV-12950)/5+1516
525	IF (I .EQ. O) RETURN
526	C2=10. O##C2ARR(I)
527	RETURN
528	END

RECORD TRACERS TRACERS (RECESSES TRACESSES

```
529
530
      C** C3DTA ******************
531
532
            SUBROUTINE CODTA(CO, IV)
533
                  OZONE I. R. SPECTRAL COEFFICIENT
534
            COMMON /SPEC1/ C1ARR(2580), C2ARR(1575), C3ARR(540), C4ARR(133)
            COMMON /SPEC2/ C7ARR(280,5), CBARR(102,2), C9ARR(131)
535
536
            I=0
537
            C3=0. 000
538
            IF (IV . GE.
                         575 . AND. IV . LE. 3270) I=(IV-575)/5+1
            IF (I . EQ. O) RETURN
539
            C3=10. 000**C3ARR(I)
540
541
            RETURN
542
            END
```

```
543
544
      C** C4DTA ***
545
546
            SUBROUTINE CADTA(C4, IV)
547
                    NITROGEN CONTINUUM SPECTRAL COEFFICIENT
            COMMON /SPEC1/ C1ARR(2580), C2ARR(1575), C3ARR(540), C4ARR(133)
548.
            COMMON /SPEC2/ C7ARR(280,5), C8ARR(102,2) , C9ARR(131)
549
550
            I=0
551
            C4=0. 000
552
            IF (IV . QE.
                          2080 . AND. IV . LE.
                                                2740) I=(IV-2080)/5+1
553
            IF (I . EG. O) RETURN
554
            C4=C4ARR(I)
555
            RETURN
556
            END
```

```
357
558
559
560
            SUBROUTINE CODTA(CO, IV)
      C
561
                    WATER VAPER CONTINUUM (10UM) SPECTRAL COEFFICIENT
562
            C5=0. 0000
            IF (IV . GE. 670 . AND. IV . LE. 1350) GO TO 50
563
564
            RETURN
565
       50
            V=IV
566
            C5=4. 18+5578. 0*EXP(-7. 87E-03*V)
567
            RETURN
568
            END
```

569	C	
570	C**	C6DTA ****************************
571	C	•
572		SUBROUTINE CADTA(C6,IV)
573	C	MOLECULAR SCATTERING SPECTRAL COEFFICIENT
574	. •	C6=0. 000
575		IF (IV . GE. 4000) GB TB 50
576		RETURN
577	50	V=IV
578		C6=V++4/(9. 26 799 E+18-1. 07123E+09+V++2)
579		RETURN
580		END

```
581
      C
582
      583
584
            SUBROUTINE C7DTA(C7E, C7A, IV, RH, JHAZE)
                   DETERMINE AEROSOL SPECTRAL COEFFICIENT
585
      C
            COMMON /SPEC1/ C1ARR(2580), C2ARR(1575), C3ARR(540), C4ARR(133)
586
            COMMON /SPEC2/ C7ARR(280,5), C8ARR(102,2) , C9ARR(131)
587
588
            DIMENSION RHZONE(4)
589
            DATA
           * RHZONE(1), RHZONE(2), RHZONE(3), RHZONE(4)/
590
                           70.000,
                                      80. 000
591
592
                   CHECK FOR NO AEROSOL
      C
593
            C7A=0.000
594
            C7E=0.000
            IF (IHAZE . EQ. O) RETURN
595
596
                   DETERMINE DEPENDENT VARIABLES
      C
            V=IV
597
598
            Y=1. 0E+04/V
599
            X=100. 0-RH
                   CHECK FOR FOGS
600
            IF (IHAZE . EQ. 8 . OR. IHAZE . EQ. 9) GO TO 1000
601
                   DETERMINE DATAFILE COLUMN
602
            DO 100 K=2,4
603
            J=K
604
            IF (RH .LT. RHZONE(J)) GO TO 110
605
606
       100
            CONTINUE
           X1=100. O-RHZONE(J-1)
607
       110
608
            X2=100. O-RHZONE(J)
                   ALLOW FOR WAVELENGTH IN FIRST COLUMN
609
      C
610
            J=J+1
      C
                   DETERMINE EXTINCTION COEFFICIENT
611
                   DETERMINE TYPE OF AEROSOL
612
            IF (IHAZE .EQ. 1 .OR. IHAZE .EQ. 2) ISTRT=2
613
            IF (IHAZE . EQ. 3 . OR. IHAZE . EQ. 4) ISTRT=162
614
615
            IF (IHAZE . EQ. 5) ISTRT=82
            IEND=ISTRT+38
616
617
                   SET UP WAVELENGTH INTERPOLATION
            DO 200 K=ISTRT, IEND
618
619
620
            IF (Y .LT. C7ARR(I,1)) QO TO 210
621
       200
            CONTINUE
622
                   LOG ON RH AND LINEAR ON WAVELENGTH
623
       210
            Y1=C7ARR(I-1,1)
624
            Y2=C7ARR(I,1)
625
            ZA1=C7ARR(I-1, J-1)
626
            ZA2=C7ARR(I-1,J)
627
            ZB1=C7ARR(I, J-1)
628
            ZB2=C7ARR(I,J)
629
            FACA=ALOG(ZA2/ZA1)/ALOG(X2/X1)
            FACB=ALOG(ZB2/ZB1)/ALOG(X2/X1)
630
631
            ZA=ZA1+(X/X1)++FACA
632
            ZB=ZB1+(X/X1)++FACB
633
            FAC=(Y-Y1)/(Y2-Y1)
634
            CTE=FAC+(ZB-ZA)+ZA
```

```
DETERMINE ABSORPTION COEFFICIENT
635
636
            I = I + 40
                    LOG ON RH AND LINEAR ON WAVELENGTH
637
            Y1=C7ARR(I-1,1)
638
639
            Y2=C7ARR(I,1)
640
            ZA1=C7ARR(I-1, J-1)
            ZA2=C7ARR(I-1,J)
641
642
            ZB1=C7ARR(I, J-1)
            ZB2=C7ARR(I,J)
643
           FACA=ALDG(ZA2/ZA1)/ALBG(X2/X1)
644
            FACB=ALOQ(ZB2/ZB1)/ALOQ(X2/X1)
645
            ZA=ZA1+(X/X1)**FACA
646
647
            ZB=ZB1+(X/X1)++FACB
648
            FAC=(Y-Y1)/(Y2-Y1)
            C7A=FAC+(ZB-ZA)+ZA
649
650
            RETURN
      C
651
                    FOGS
                    DETERMINE EXTINCTION COEFFICIENT
652
       1000 IF (IHAZE . EQ. 8) J=2
653
654
            IF (IHAZE . EQ. 9) J=4
            ISTRT=242
655
            IEND=ISTRT+38
656
            DO 1100 K=ISTRT, IEND
457
458
            I=K
            IF (Y .LT. C7ARR(1,1)) GO TO 1110
659
660
       1100 CONTINUE
       1110 Y1=C7ARR(I-1,1)
661
662
            Y2=C7ARR(I,1)
663
            Z1=C7ARR(I-1, J)
664
            Z2=C7ARR(I,J)
            FAC=(Y-Y1)/(Y2-Y1)
665
            C7E=FAC+(Z2-Z1)+21
666
                    DETERMINE ABSORPTION COEFFICIENT
667
            IF (IHAZE . EQ. 8) J=3
866
            IF (IHAZE . EQ. 9) J=5
669
670
            Y1=C7ARR(I-1,1)
671
            Y2=C7ARR(I,1)
672
            Z1=C7ARR(I-1, J)
            Z2=C7ARR(I,J)
673
            FAC=(Y-Y1)/(Y2-Y1)
674
675
            C7A=FAC+(Z2-Z1)+Z1
            RETURN
676
677
            END
```

```
678
      C
679
      680
681
            SUBROUTINE CEDTA(CB, IV)
682
      C
                   OZONE U. V. SPECTRAL COST
            COMMON /SPECI/ CIARR(2580), C2A// LE75), CBARR(540), C4ARR(133)
683
            COMMON /SPEC2/ C7ARR(280,5), C8. (102,2) , C9ARR(131)
684
685
            C8=0. 000
686
            IF (IV . GE. 13000 . AND. IV . LE.
                                             . 1000) GB TB 100
            IF (IV . GE. 27500 . AND. IV . LE. 11400) GO TO 200
687
688
            RETURN
689
                   13000 CM-1 TO 24000 CM-1
690
       100
            V=IV
691
            DO 120 I=2,56
692
693
            IF (V . LT. CBARR(N, 1)) GO TO 131
694
       120
            CONTINUE
695
            N=56
            FAC=(CBARR(N-1, 2)-CBARR(N, 2))/(C . - CR(N-1, 1)-CBARR(N, 1))
696
       130
697
            C8=FAC*(V-C8ARR(N-1,1))+C8ARR(N-1,2)
698
            RETURN
699
                   27500 CM-1 TO 50000 CM-1
700
       200
            V=IV
701
            DO 220 I=58,102
702
            N=I
703
            IF (V . LT. CBARR(N, 1)) GO TO 200
704
       220
            CONTINUE
705
            N=102
            FAC=(CBARR(N-1,2)-CBARR(N,2))/(CE BR(N-1,1)-CBARR(N,1))
706
       230
707
            C8=FAC*(V-CBARR(N-1, 1))+CBARR(N-1, 2)
708
            RETURN
709
            END
```

```
710
     711
712
713
           SUBROUTINE CODTA(CO, IV)
714
     C
                 WATER VAPOR CONTINUUM (4UM) SPECTRAL COEFFICIENT
715
           CDMMON /SPEC1/ C1ARR(2580), C2ARR(1575), C3ARR(540), C4ARR(133)
           COMMON /SPEC2/ C7ARR(280,5), C8ARR(102,2) , C9ARR(131)
716
717
           I=0
718
           C9=0. 000
719
           IF (IV . GE. 2350 . AND. IV . LE. 3000) I=(IV-2350)/5+1
720
           IF (I .EQ. O) RETURN
721
           C9=C9ARR(I)
           RETURN
722
723
           END
```

الرابان وأبلا بالماسين ورواز فيافيا فاستعلامها مراهيك بمناهبته للمستمان والمساب

