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Abstract

» For several years the authors have been
involve@tn evaluating and developing numerical
simulation schemes for compressible, two
dimensional inviscid or viscous flows in
turbomachinery cascades. WNumerical schemes
considered meré all originally classified as
time-marching schemes.and include: 1) implicit
approximate factorization schemes:like those of
Beam and Warming, 2) explicit schemes due to
MacCormack, 3) explicit central difference schemes: -
due to Jameson, Schmidt and Turkel and Rizzi, and
4) the multi~grid scheme of Ni, As we have
developed these schemes we have ceme to believe
that the accuracy of computational results is
relatively insensitive to the numerical algorithm
chosen but highly sensitive to implementation
details such as boundary conditions, consistent
flux balancing, grigd resolution and numerical
smoothing. 1In order to illustrate our viewpoint,
we present an examination of the relationship
between a flux balancing interpretation of the
control volume conservation laws and various finite
difference formulations and comparisons of the
performance of these schemes on three test
problems: Ni's bump in a channel, a supersonic
nozzle, and flow in a supercfitical compressor
cascade.. As a final test example, a comparison is
made between measured and computed flow, using a
compressible, Navier-Stokes solver, for a high
speed turbine cascade.

Finite Difference Operator Definitions

1
85 uy,x = E(Uj‘1:k - uyq,x)
¥3 ug,k = 38541, * 95,%)
- 1
vy vy, = 3085,k * V5-1,%)
+
j 9.k T Y341,k T U3,k
85 uj,k = Uy, k " U3-1,k

(<]
8572 Y3,k = Ujad, k" Yj-f,k

Note that all coordinate positions at non-integer
mesh spacing are to be defined by simple averages,

+
Y344,k = ¥y Yik -
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INTRODUCTION !

Ffor several years the authors have been
involved in evaluating and developing numerical
methods for compressible, inviscid or viscous,
internal flow problems. The methods discussed in
this paper include (1) implicit approximation
factorization schemes due to Beam and Warming [1],
(2) explicit schemes due to MacCormack (2], (3) an
explicit central difference scheme suggested by
Jameson, Schmidt and Turkel [3) and Rizzi [4], and
(4) the multi-grid scheme due to Wi [5]. Most of
these methods were originally formulated as
time-marching methods although all are now run as
pseudo-time-marching methods.

Throughout these evaluations we have been
interested primarily in the accuracy of the steady
state solutions rather than the computer run time
or number of iterations to convergence. As we have
developed these methods we have come to believe
that the accuracy of the computational results is
relatively insensitive to the numerical scheme
chosen, but it is highly sensitive to implemen-
tation details such as boundary conditions,
consistent flux balancing, grid resolution and
numerical smoothing.

In order to illustrate our viewpoint we first
present an examination of the relationship between
a flux balancing or finite volume interpretation of
the control volume conservation laws and a finite
difference formulation in strong conservation law
form. While the development here is perhaps not
unique or entirely new, it is essential for under-
standing the relationships between various
numerical schemes. Next we present a development,
from a flux balance viewpoint, of the several
schemes which emphasizes their basic similarity
rather than their computational differences. The
conclusion here is that all these schemes should
produce nearly the same steady state solutions when
the same boundary conditions and smoothing
operators are applied. Results from three inviscid
computational test problems are then presented in
order to demonstrate the validity of this
conclusion. Llastly, results from computations
using a full Navier-Stokes version of the
Beam-Warming algorithm are compared to experimental
results for a high speed, high turning turbine
cascade. These results illustrate that a consis-
tent application of the flux balancing analysis can
produce accurate solutions even in extreme
geometries with rather modest cost. The number of
iterations to full convergence is about 500 for a
grid containing 100x50 nodes.
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ANALYSIS

Relationship Between Finite Difference and
Finite Volume Interpretations

Consider the two-dimensional Euler equation
expressed in conservation law form:

w  ar w6

1
it Ix Ay o . ()

3 pu oV
pu pu? + P puv

U= lov F=louv G =lov2 +p '
oE pu(E+P/p) PV(E+P/0)

and a coordinate system transformation,
= Lix,y) n = nix,y) t=t. (2)

The strong conservation law form under this
transformation is retained as, reference [6}:

_3fu) , (P 3K _G3E), aFan  Gan)
A\ AElT 9x J 3y anlJ ax J ¥y (3)

where J is the transformation Jacobian

G - G -

In shorthand notation, equation (3) becomes:

Ue+Fgt+tGpa=0 (5)
where
v=98,
J
§-§:,x+§c,y ‘
G = g n,x * § Ny ¢

I=Exny~Lynx -

Formal relationships exist between the
transformation from (x,y) coordinates to ({,n)
coordinates and the inverse transformation from
(f,n) coordinates to (x,y) coordinates which are:

<

=== £ 5(x,y)

7 = X, Y) \
2

- X —

\ Xs x(g_y)

y‘ymlw <<:

un

Figure 1. Relationsﬁip between transformation
from physical to computational space
and computational to physical space.

x =n /3 , y

' € Y £ = - ﬂ’x/J ‘

x’n = - ('y/J ’ y'“ = ('!/J B (6)

and the inverse Jacobian is
-1 = X - -
J 4 yl‘\ x:" yl[ vI o

The Jacobians express the ratio of cell areas
between the different representations.

The transformation metrics ([ x § o N
n,y) are most conveniently obtained, as
suggested by Steger {7], from a finite difference
evaluation of these derivatives in computational
space using equations (6). This process uses only
the fact that the coordinate transformation is a
one-to-one mapping. If we consider all these
derivatives to be evaluated by centered finite
differences, we have, assuming A{ = 4n = 1,

[Eﬁl]j,k S-S s THAZHEL @
[l:fi)j,k S-Sy TRV o)

If we consider the computational cells to be
polygons, the exact area of a cell can be
determined, see (8], from

N N
1
Area = ; :;1 X Yie1r - 121 Xi@1 Y§ (11)

where N is the number of edge nodes, and

ity if i+1 ¢ N
i1 = .
1 if 4i+1 > N
1 8
(3
S
2
3 ]

Figure 2. Node connection diagram for general
computational cell polygon.
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Now consider a possible finite difference
representation of equation (S),

au/ajn o~ o -
[T:—],,k = - 63 Fyx - 6% Gy, (12)

on a standard 9 point cell,

J=1,%+1  [3,k+1 J41,k+1
j=t.x j.x j+1,k
3-1,k=1 J. k=1 j+1,k=1

Figure 3. Finite difference node numbering scheme.

n n
+ [F —X + [G _413
Jok+1 J ) 3,x+9

n n
(%9, 0 78 (12)
3.k=1 3,k=1

Now replacing the metric derivatives with their
finite difference expressions, equations (7)
through (11), and writing out only the continuity
equation for clarity, we have

/31 L n ) _
2t 4% P pu 3+1,% Y3i+1,k+1 Y3i+1,%x-1
.

(OV)]+1 k( j"l'“" - x)"'rk"]]

[ pu J_, X Y;~1 k+1 = ¥3-1,k- 1}

(DV]j . u( X5-1,k+1 = Xj-1,k- J]

+ [ vy, u41( 341,k41 " Yj-1,k01]

(ov]j k*1[x3" k+1 T X3-1, k¢1)]

+

[ Jlk_1(Yj+1,k-1 - Yj-1,k-1]

* [DVJJ,R 1( 341,%x~1 *j—1,k-1]] (14)

or

au/a" © _.n o _n
[ 3t ]j x [65 AEL j'k]
’

= - (ROj,x - (15)

This form of the continuity equation is identical
to that which would be obtained by an integration
of the control volume fluid equations around the

cell area, assuming no variation of (pu) or (pv)

across a cell face.

Again using only the continuity equation for
clarity,

g2 | paxdy = = |plu iy + vig)»n & (16)

area control surface

- - : . o s
where 1i,, i, are unit vectors in original
Cartesian coordinates,

n is an outward normal vector to
the cell face, and

at is length along the face.

Equation (16), when expanded, is identical to
eqguation (14), and shows that the proper
interpretation of a metric derivative is that the
ratio of that derivative to the Jacobian is the
projected area of the face. Thus the solution of a
finite difference problem in strong conservation
law form in a transformed space is eguivalent to
the solution of a flux summation algorithm
expressed in physical space.

The flux sum of eguation (13) could be
improved by selecting a more accurate
approximation for the integral of (pu) or (pv)
over a face than simply its value at the center
of the face. For example, a piecewise continuous
interpretation of (pou) is eguivalent to

J}pu i)' ar = (u:(pu)j'k) 8 ¥3,x
+ (u;(ou)j,k] 6% Y3,k - (17)

An important property of equation (14) is that
a uniform solution ((°“)j,k « (ov)4 i constant
over cpace) remains identically uniform. This
property is generally referred to as area conserva=-
tion in finite element analysis and its importance
to maintaining constant freestream solutions was
first pointed out by Steger [7]. A recent paper by
Hindman [9] has also emphasized this property.




COMPARISON OF FLUX BALANCE FORM OF SEVERAL
TIME-MARCHING ALGORITHMS FOR INVISCID FLOW

Centered Difference Algorithms

METHOD R. Implicit Time-Marching Algorithm of
BEeam and Warming [1):

The first method to be considered is the
time marching algorithm introduced by Beam and
warming which is unconditionally stable, in the
linear problem, for two dimensional flows:

n+1 -~
(1 + 8t L{J[x + bt Lﬁ)( Sk - ug,k] =
o n [} n “n
== At(ﬁj FCy,x + 8x GCj,x -~ Lewav Uj,k]
n ~n .
= - At(RCj'k = Llapav Uj,k) . (18}
where LE and L% are finite difference
operators whose fori determines the order of
accuracy of the time-marching algorithm and Lgyay

is a finite difference smoothing operator.

Solution Procedure

Step 1:

[1 + Bt Lg)[AU k] = - At(ch'k - stnvug,k] (19)

Step 2:

-~
(1 + Bt L;] 803, = 805,k (20)
Step 3:
~“n+1 ~n
UJ x = U],k + AUJ k (21)

METHOD B. Modified Beam and Warming Algorithm

In order to improve the accuracy of the flux
balance operator in skewed mesh systems, a variety
of modified Beam and Warming algorithms have been
developed. The simplest modified operator, which
corresponds to several otker algorithms, is to
balance the flux on the cell shows-helow.

j=1,k+1 o k+1 3+1,k+1

i-d i 3+ i
J :’k‘x J+x’k+x

=tk +1,k

4
ied gad s+d k=d
J-qek-y Ity ek-y

!

3=1,%=1 3,k=1 3+1,k=1

Figure 4. Half-spacing resh cell in computational
space.

The flux balance operator is:
n o n o a
RCHy i = 85/2(FCH)j x + &y 2(GCHI§ x (22)
where

n  .n t o
(PCH)ji*lk = [Uj Fj,k](uj 8x/2 yj,k}

ul&

uk G3,

{5 i
(GCH)T 24 = [vi Fj ,x)[vi 83/2 Yj,kJ
" [ S

and the algorithm becomes
I I (~n+1 ~n
(I + Atj,kL()(I + Atj,kLn)(Uj,k - Uj,k]
n ~n
= - Atj,k (RCH)j'k = Leayav Uj,k . (23)

METHOD C. Explicit Time Integration Scheme of
Jameson [3) and Rizzi [4] :

The Runge-Kutta time stepping approach can be
expressed as:

aG‘,k n on ~n
_E%__ = - RCHj x + Lrrav Uy,x = - PU5j,x (24)

Step 1:

00 =gy, (25)

Step 2: :

(26)

Gl peo_ [AE] ()
‘ 2)5,x

Step 3:

(27)

52 glor, (551 SARY
2)3.0%

Step 4:

~(2) i

o3 =50 Aty x PU (28)

Step 5:

LI

. (53 (Pa(o)’ 200 "4 200204 B33 {20y
/3.x

Step 6

o3ty = o' (30)




This method is usually run with the
smoothing operator in each step formed as

~(1)

LRrxav u"  rather than Lrxav U .

If steps 2, 3, 4, 5 each converge independent-
ly, then the steady state solution is identical to
that of the modified Beam and Warming, method B, if

Lpwav = Lrxays 2nd the solution is independent
of ‘tj,k’
METHOD D. Flux Balance Form of MacCormack's

Method [2]):

A flux balance form of MacCormack's method
may be expressed as:

Step 1, Predictor:

ne ~n n n
Uj,k = Uj,k - Atj,k[(rj+1,kp1‘y1 - Gj+1,kPLx1)
n n
- [Fj,kpl‘y3 - Gj,kpl‘x3 ]
+

(' Fg,k¢1pLy4 + Gg,k+1pLx4]
- (- F5,)PLyz + G3,xPLy2 ]

- Luav Gg,k] . 131)
where the projected lengths are

+ o
PLyt = v5 8k/2 ¥5,k = Yi+d, k+d = Yi+d, k-4

+ [«]
Plyg = ¥k 8372 X5,% = Xjed ked = Xj-},k+d

-

fee ne .
Ujlk = Ujlk - Atjrk[(rjlkPLy1 - GJlkPL’d]
L

* *
- (Fj-1,kPLy3 = Gju1,xPly3 ]

+

. .
(- Fj,kpl‘yd + Gj,kpl‘xﬂ}

Ll -
- (' Fj,k-1Ply2 + G4 yx-1PLy2 ]

Lyav u;,k] . (32)

Step 3:

Ggf; -3 (Gglk + G;:k] (33)

Step 3 may be rewritten as

~n+1 ~n
Ui,k * Ys,k

At n . + 0
- __%l_k. [(Fj‘1,k + Pj,k”“j 6)(/2 yj'k)

- 163e1,x + 63,00 185 8%/2 xj'k)}

< (17 005 2 v

- 16, + 65, b3 $%/2 ”j:k])

+ (' (rg,k41 + Fg,x)‘“: 6?/2 Y3,

+ (Gv + 6§ )(u+ 63 x )]
3ok 3 kTR T3/2 T30k

- [' {F5, + Fj k=10 vy 65,2 vy,x)

n * - (=]
+ (Gj,k + Gjlk-1){uk 6j/2 "j,k))

- Ly (0F,x + U3,y . (34)

This form of MacCormack's method is area
preserving for each step (31 or 32) and offers
the possibility of steady state solutions which
are independent of 4t. When the predictor and
corrector step both converge, which we generally
find to be the case, then the steady state form
of equation (34) is:

-~

RCH,x - Luay U3,k = O . (35)

as with the modified Beam and Warming and fourth
order Runge-Kutta schemes, methods B and C.

Comments on Centered Difference Algorithms

For each of the methods considered, A, B, C and
D, the steady state solution desired is that the
centered differenced flux balancing residual
(RC)D y or (RCH)Y  is zero. For all
these schemes at interior points, this criterion is
possible only when the artificial smoothing
operators are neglected. The order of accuracy of
all these rethods is the same and each should be
expected to produce nearly the same steady state
solution except for differences in smoothing
requirements or boundary conditions. As we shall
see in the test examples, this conclusion can be
demonstrated by nurerical experiments.

Nor-Centered Difference Algorithms

METHOD E.

Cell Basis:

vacCormack’'s Method on a Non-Centered

A version of MacCormack's method which Jdoes a
flux sum on the cel:i structure shown in Figure 5
has been developed by Tong [10). This form is a




two or three dimensional extension of the strong
conservation law version of MacCormack's method
proposed by Hindman [9). This scheme uses the same
basic nine point cell as in Figure 3 or 4, but it
computes a flux sum over each of the four interior
cells.

Step 1:
* n n n
U3,k = Uik - “j,k(‘w’j*&,xd - Lucav Uj,k]
(36)
Step 2:
*e * PY .
Us,x = Y3,x - Atj,k(‘RMC)j-i,k—} = Lucav Uj,k]
(37)
Step 3:
n+ 1 1 n .
Usx =2 ["j,k + Uj,k] (38)
or
1 _on Atk n
Uk = U3,k T T |(RMC) 5 e
+ (RMC)5o3,k-4 = LmcaviUj,i + U;,k)] (39)
where
Gt tn * *+n
(RMC)?*i Key $9 (FM D5 * Sk (M )y ok, (40)
7 A3th,xtd
tn n * n .*
(PM7) 5, x = Fi,kbk¥5,k = G3,k8k%3,k - (41
tn n % n ,*
IGM 15,k = = F3,k83¥5,%x * G5,x835%5,k + (42)

RA3%1/2, k21,2 is the area of 4-point cell.

This form of MacCormack's method also obeys
geometric area cornservation on the 4~point cells
with the possibility of a steady state solution
that is independent of At. Both the predictor
and corrector steps can individually converge.
The predictor and corrector steps express flux
conservation on the 4-point cells and, if each
(RMC)j,k converces to zero, then we have global
flux ccnservation.

METHOD F. Ni's Lax-Wendroff Method [S5]:

Ni's method may be expressed in a one step
form as:

n+1 n o [} n
Uj,k = Uj,k - Atj'k(uj/z Vy/2 (RNI)j,k)

At2 o o n
NLASTL N P ( _W.I_] [RN‘_I_]
2 k/2 3/2[ v A

j.k
* 43268 ,2[(@1] (m]] "
WA ]y x
+ Iniav Ug,x . (43)

1 $ n b4 n
i vvrrerdl 1 L] SRR G VO PETY
(m}',-‘,k:;

t n * $ n *
= (“k Fj,k] (6)( yj,k] - (“k Gj,k) (3% lek] , (4%)
n
(G"I)jti,x
¥ n *  n 2
= - [uj Fj,k) (53 yj'k) + Uj Gj,k) (63 lek] (46)

This representation of Ni scheme, which is
not the computational form, is a Lax-Wendroff
type method which does a flux sum on 4-point
cells. A possible solution to the steady state

. n
form of equation (43) is that each (RNI)jt1/2,k:1/2
tecomes zero in the absence of artificial

smoothing.

Commnents on Non-Centered Schemes

Both the Tong and the Ni non-centered schemes
compute flux balances on the 4-point cells and
each solution can be consistent with these

n
balances, (RMC)?:1/2,kg1/2 or (RNI)j+1/2,xt1/2 ¢

becoming zero in the absence of smoothing. Thus the
Tong and Ni schemes should produce approximately
the same steady-~state solution, if the same
boundary conditions are applied. The two steady
state flux belance operators are not identical. We
would expect Ni's scheme to produce a more accurate
result in the absence of artificial smoothing, but
his method may reguire more smoothing than Tong's
method.

INVISCID TEST EXAMPLES

Three configurations were chosen as test
examples. The first case was the bump in a channel
problem introduced by Ni [5]; the second was a
supersonic nczzle with a rapid isentropic
expansion; and the third was a supercritical stator
designed by Sanz [11]. For each problem, an exact
steady state solution would be isentropic with
constant stagnation pressure, stagnation
temperature and mass flow rate. Methods are
compared on the basis of predicted Mach number
distributions and stagnation pressure loss over the
domain., For all methods on all problems, the mass
flow rate was conserved to within 0.3%.

Boundary Conditions

Inflow/outflow boundary conditions were of the
non-reflecting characteristic or extrapolation
type, but implementation details differed greatly
from method to method. We believe that the results
presented are as free as possible from contamina-
tion due to these conditions.
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It was impossible to maintain exactly the same
hard wall boundary conditions between the schemes.
Methods A and B, which were developed strictly for
viscous flow by the authors, used only a simple
pressure and parallel velocity extrapolation for
the inviscid case. These conditions were sufficient
for the first two cases but not the supercritical
stator case. The proper conditions for Ni's method
are not clear. The first two examples for WNi's
method predicted surface quantities from the
interior point scheme and then corrected these
quantities by a simple one-dimensional wave to
maintain flow tangency.

Methods C, D, and E used boundary procedures
which consistently satisfied

normal momentum
1

3p = eq9. 47)
an R

] H 2
where q =u +v

and R is the radius of curvature of the surface

streamwise momentum

2
3p = - p 2lg /2) (48)
s és

where s is the arc length along surface

flow tangency
v/u= 6jy / 6jx (49)

at each point on the boundary. To satisify all
three conditions at each point on the boundary
requires an iterative evaluation of the boundary
pressures at each time-marching step. This
procedure is costly but is essential for
simulations with minimum stagnation pressure error.

Artificial Smoothing Operators

For methods A, B, D, and F, the smoothing
operators were generally as proposed by their
auvthors with the smoothing coefficients "tuned-up”
for each calculation., For methods C, D, and E, the
calculation procedure was:

U = [I - RSFB)UP (50)
v*t = (1 + 50" (51)
Ut e {1+ s,)utt (52)

where RSFB is the flux balance operator and

Sy ¢ sy are the smoothing operators
SxU = £[ Ujaq+ U5-9-203) (53)
£ = S0 P . _{2___] (54)
1+£9 Ax/BXmin
fq = 0.1 £2 = 200.

For methods C and D, these smoothing cperators were
applied after each step, but for method E they were
aprlied only after the last step.

The steady state solutions are not independent
of the smoothing operators, but every effort was
made to reduce their effect.

CONVERGENCE CRITERION

For all of the methods except Tong's, the
convergence criterion was easy to establish. The
computed solutions were run until the steady state
flux balance operator plus the smoothing operator
converged to a specified value, 1.0 X 107
maximum at any point and 1.0 x 10" root mean
square value.

In Tong's method, as with any MacCormack type
method, the order of differencing in predictor and
corrector steps is not unique. The double sawtooth
solutions common to central difference schemes can
be reduced by cyclically permuting the operator
sequence. The disadvantage of this process plus the
smoothing sequence adopted is that we lose the
ability to drive a steady state residual below
about 1.0 x 10”4 maximum local value and about
1.0 x 10~% root mean square value. It is thus
difficult to determine when to stop iterating on a
solution, and we must supply some heuristic
principle to determine when to stop. The advantage
of this process is that the stagnation pressure
errors in the "converged" solution are greatly
reduced.

Ni Bump Test Case, Subsonic Flow

All of the methods produced acceptably accurate
solutions for the channel bump problem especially
in terms of symmetry and Mach number predictions.
The grid used contained 65X17 points and is
illustrated in Figure 5 along with a typical Mach
number contour plot. The predicted top and bottom
wall Mach numbers for each method are shown in
Figure 6. The stagnation pressure loss for each of
the methods is shown in Figure 7. All of the
centered schemes produced essentially the same
pressure loss of about 2% max 4Py/P;. The
non-centered schemes produced essentially no loss.
On balance, all the schemes performed adequately on
the bump case.

Supersonic Nozzle Test Case

The supersonic nozzle test case geometry
ané grid is shown in Figure 8. This grid has 65X33
peints. The inflow Mach number is 2.0, and an
idealized wave diagram is also shown in Figure 8.
The wave diagram shows that the wall outflow Mach
number should be 2.83, and that the Mach number
should be uniform in region 1. The idealized wave
diagram does not account for curvature of the
characteristics as the wave system from the lower
wall interacts with the upper wall wave system.
Under this assumptior the exit centerline Mach
number should be 2.625. The results for each of
the schemes is shown in Ficure 9 in terms of Mach
number contours. The correct wave system is
adequately predicted by all schemes. The
stagnation pressure loss contours for this test
case are all shown in Figure 10. The centered
schemes all hLave unacceptable losses in the range
of 3% to 6%. Ni's scheme has a small loss while
the non-centered MacCormack has virtually no loss.
It is likely that a better hard wall bouncdary
condition treatment with Ni's method would
eliminate the loss shown.
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The agreement between the 4 centered
schemes is quite remarkable:; in fact, as would be
expected from the analysis, all schemes produce
nearly the same steady state solutions. The
nor.~centered MacCormack and Ni's scheme produce
quite similar results.

Supercritical Stator Test Case

A much more demanding geometry is the
supercritical stator design presented by Sanz [11].
The grid for this test case is shown in Figure 11,
A simple sheared grid was used for simplicity which
required a fine grid near the blade leading edge
for accurate simulations.

The surface Mach number predictions for
the supercritical stator using the Tong's non-
centered MacCormack type method are shown in Figure
12. The agreement is satisfactory except at 8%
chord on the suction surface. Slight variations in
the specified downstream pressure specified
produced overshoots or undershoots in this region.
The sample calculation is for the downstream
pressure specified by Sanz. We are simply unsure
of the reason for this discrepancy. The stagnation
pressure loss for this calculation is shown in
Figqure '3. An unacceptably high loss of 14% exists
locally at the stagnation point and a maximum loss
of 4% exists on the suction surface.

The centered MacCormack scheme performed nearly
the same on the Sanz blade as is shown in Figqure
14. The stagnation pressure loss at the leading
edge is locally 14% and a maximum of 4% in the
remainder of the domain.

ViSCOUS TURBINE CALCULATION EXKMPLE

while the results from the supercritical
stator geometry illustrate that accurate Euler
eguation solutions can be obtained, the situation
is less clear for viscous flow problems. To
illustrate our level of computational abilities for
these flows, a calculation of the flow in a high
speed, high turning turbine cascade is presented.
The numerical method used is similar to the
approximate factorization method of Ream-Warming
{1} except that the flux balance operator uses
trapezoidal rule integration, as in eguation (17},
on the ccmputaticnal cell of Figure 4. Local
values of &4t are used to prcoduce a constant local
CFL number of about 4. Details of this algorithm
will be availatle in reference [12). ESoluticns for
turt:ine geometries gyenerally require about 500
iterations to converge to machine accuracy, 6
decimal digits.

The experimental results and geometric details
for the cascade were nmade available in reference
[13), and the geometry is shown in Figure 15, The
turning is 126 degrees with an outflow Mach
nurmber of 0.75. The design Reynolds number is
500000. All calculations assumed laminar flow,

The computational results are presented in
Figures 1€ and 17. The first figure compares
predicted blade surface pressure to the
experinmental values for a laminar calculation at
desigr. Reynolds number. The grid chosen has 100x29
points and is nearly orthogonal at eacn node point.

Predicted results are quite sensitive to the grid
resolution. Feasonably accurate surface pressures
were predicted everywhere including the stagnation
point and the trailing edge. The maximum stagnation
pressure error outside the boundary layer was about
1. We are as yet unable to explain the discrepancy
at 70% chord on the suction surface although we
believe it to be linked to the trailing edge flow
field.

The predicted trailing edge flow field is
illustrated in Figure 17 in terms of velocity
direction vectors. This calculation shows two small
separation zones comparable in size to the trailing
edge radius. While the predicted flow fieléd at the
trailing edge seems reasonable, we have no way to
verify its accuracy.

CONCLUSIONS AND DISCUSSION
The presentation of the time-marching

schemes in terms of a flux balancing interpretation
and the inviscid computatj -.21 examples shows that

the six schemes analyzed ~uite similar in their
steady state solution prr ties. While the
computational details of schemes are very
different, the steady sta Tutions of the
central difference scheme e nearly identical.
Computational details of won-centered schemes

are also quite different
simjilar steady state sol.

‘ey again produce

h consistent result throuchout the
evaluations was that the non-centered schemes
produced lower stagnation pressure errors than did
the centered schemes. Since entropy conservation or
stagration pressure conservation is not a
conservation property of the finite difference
equations, we expect these errors to be a function
of the truncation errors present in the solution.
The truncation error appears as an entropy
generation, and the stagration pressure error is
the entropy error raised to the y/(y~1} power.
€tagnation pressure loss is a very sensitive
measure of the entropy generation in a scheme.

The grid sizes for the inviscid problems were
chosen to produce small stagnaticn pressure errors
for the non-centered schemes, and the centered
schemes nearly always produced larger errors on the
came grid. We attribute this result either to the
space averag¢ing properties of the solution
operators or to artificial smoothing to eliminate
louble sawtocth errors.

kccurate Fuler flow simulations are possible
with the non-centered schermes as was shown by the
supercritical stator example. Both methods
reproduced the shock-free sclution with a minimum
of effort, and both produced only a small
stagnation prossure leoss on the test grid. With a
locally refined, orthogonal grid, the total number
of ¢rid pcints reguired can bhe reduced to a more
manageable nurber. Our ability to compute accurate
viscous flow solutions is increasing rapidly. The
turbine rascade solution is for a moderately
difficult gecmetry, and the computational results
are reasonable. Much more work must be done in this
area hefore we can compute viscous solutions as
accurately es for inviscid situations.

.
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plot, Ni's method
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Figure 16 Blade surface static pressure
comparison for turbine stator
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Figure 17 Velocity vector direction plot for

turbine stator trailing edge recgion

15







