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SOLUTION PROCEDURES FOR ACCURATE NUMERICAL

SIMULATIONS OF FLOW IN TURBOMACHINERY CASCADES

W. T. THOMPKINS Jr.*

S. S. TONG" 9.0
R. H. BUSH"

W. J. USAB Jr.**

R. J. G. NORTON
**

* .0 Or
Massachusetts Institute of Technology

Cambridge, Massachusetts

Abstract INTRODUCTI

For several years the authors have been For several years the authors have been
involved4-1 evaluating and developing numerical involved in evaluating and developing numerical

simulation schemes for compressible, two methods for compressible, inviscid or viscous,
dimensional inviscid or viscous flows in internal flow problems. The methods discussed in
turbomachinery cascades. Numerical schemes this paper include (1) implicit approximation
consideredueae all originally classified as factorization schemes due to Beam and Warming (1),
time-marching schemes--and include: 1) implicit (2) explicit schemes due to MacCormack (2], (3) an
approximate factorization schemes-like those of explicit central difference scheme suggested by

Beam and Warming, 2) explicit schemes due to Jameson, Schmidt and Turkel [3] and Rizzi [4], and
MacCormack* 3) explicit central difference schemes.- (4) the multi-grid scheme due to Ni [5]. Most of
due to Jameson, Schmidt and Turkel and Rizzi, and - these methods were originally formulated as
4) the multi-grid scheme of Ni As we have time-marching methods although all are now run as
developed these schemes we have cpme to believe pseudo-time-marching methods.

that the accuracy of computational results is
relatively insensitive to the numerical algorithm

chosen but highly sensitive to implementation Throughout these evaluations we have been

details such as boundary conditions, consistent interested primarily in the accuracy of the steady

flux balancing, grid resolution and numerical state solutions rather than the computer run time

smoothing. In order to illustrate our viewpoint, or number of iterations to convergence. As we have

we present an examination of the relationship developed these methods we have come to believe

between a flux balancing interpretation of the that the accuracy of the computational results is

control volume conservation laws and various finite relatively insensitive to the numerical scheme

difference formulations and comparisons of the chosen, but it is highly sensitive to implemen-

performance of these schemes on three test tation details such as boundary conditions,

problems: Ni's bump in a channel, a supersonic consistent flux baldncing, grid resolution and

nozzle, and flow in a supercritical compressor numerical smoothing.

cascade. As a final test example, a comparison is
made between measured and computed flow, using a In order to illustrate our viewpoint we first
compressible, Navier-Stokes solver, for a high present an examination of the relationship between
speed turbine cascade. a flux balancing or finite volume interpretation of

the control volume conservation laws and a finite
Finite Difference Otperator Definitions difference formulation in strong conservation law

- 1 form. While the development here is perhaps not
6 uj, k = (uj.,k - uj1,k) unique or entirely new, it is essential for under-

standing the relationships between various
u + 1 numerical schemes. Next we present a development,

j J U'k - 2(uj+1'k + Uj'k) from a flux balance viewpoint, of the several
1 schemes which emphasizes their basic similarity

uj uj,k - 2(uj,k + uj-1,k) rather than their computational differences. The
conclusion here is that all these schemes should

+ produce nearly the same steady state solutions when
6j uj, k - uj+1,k - uj,k the same boundary conditions and smoothing

operators are applied. Results from three inviscid

6) uj,k ' uj, k - uj-l,k computational test problems are then presented in
order to demonstrate the validity of this

60 U ut- u-k conclusion. Lastly, results from computations
J/2 ujk j+4,k uj, using a full Navier-Stokes version of the

Beam-Warming algorithm are compared to experimental

Note that all coordinate positions at non-integer results for a high speed, high turning turbine
mesh spacing are to be defined by simple averages, cascade. These results illustrate that a consis-

m tent application of the flux balancing analysis can

YJ+ ,k = IJ Yjk " produce accurate solutions even in extreme
geometries with rather modest cost. The number of

iterations to full convergence is about 500 for a
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ANALYSIS

Relationship Between Finite Difference and x , , y,

Finite Volume Interpretations

Consider the two-dimensional Euler equation x, - - y / , Y, C ,x/J (6)

expressed in conservation law form:

and the inverse Jacobian isu ar 3G -o ,(1)
t x y J-1 . x y - x y,[ - /J

'u (Ov The .acobians express the ratio of cell areas

Ou Ou
2 

+ P puv between the different representations.
U" - I F - uv G 2

PE u(E+P/0 Pv(E+P/) The transformation metrics (Ex C, y n,x
n1,y) are most conveniently obtained, as

and a coordinate system transformation, suggested by Steger [7], from a finite difference

evaluation of these derivatives in computational

C - C(x,y) n - n(x,y) t = t. (2) space using equations (6). This process uses only

the fact that the coordinate transformation is a

one-to-one mapping. If we consider all these
The strong conservation law form under this derivatives to be evaluated by centered finite
transformation is retained as, reference [6): differences, we have, assutong AC - - 1,

d _frn s, weI~~! hae asumn A60-An -.. 1 , 7

-it( i at Jx J3By J an J3ax J By 0 E )j,k 6 k Yj,k - (yi,k1l 2 jkl 7( 3) (-- 2

where J is the transformation Jacobian

iy) _ _ .C jT 4)6 Xk

In shorthand notation, equation (3) becomes: l(nx o -(Y)1,k - ," (9)

t-j) j k Yj,k" 2

;'t + F, + G,n = 0 , (5)

(_a) o P (
x j +

i
, k 

- xn-,
k )  

(10)

where )j,k 6 Xj, k " 2

S ,If we consider the computational cells to be
polygons, the exact area of a cell can be

C,x 
+ 

G ,y , determined, see (8], from

G n'x + ' Area = xi yie1  - xiel yj (11)

JCx '1y -C ,y n' ,where N is the number of edge nodes, and

Formal relationships exist between the

transformation from (x,y) coordinates to (C,n)

coordinates and the inverse transformation from i+ if i+1 C N

(C,q) coordinates to (x,y) coordinates which are: I if i+I > N

y 

Y

7(x,y) 7

,~y- y(g,l ==

Figure 1. Relationship between transformation Figure 2. Node connection diagram for general
from physical to computational space computational cell polygon.
and computational to physical space.
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Now consider a possible finite difference

representation of equation (5),

-aut " - j Fj. k  - j,k (12) [ Yj-l,k-1

at Yj-1kk-1(j~lk-

on a standard 9 point cell, ( (v (xk.
1  

-14)

j-l,k+l j.k+l j+l.k+l or

at jk + 6 GC

= -(RC)J,kj

j-1,k j,k j+ ,k

This form of the continuity equation is identical
to that which would be obtained by an integration
of the control volume fluid equations around the

j-l,k-1 J,k-1 j+ ,k- cell area, assuming no variation of (ou) or (Pv)
across a cell face.

Figure 3. Finite difference node numbering scheme. Again using only the continuity equation for
clarity,

n (pdxdy =- JP(u ix + v y)'F dL (16)

]j k- F J G j l) area control surface

where x, iy are unit vectors in original

(F 
Cartesian coordinates,

F jj-1k G j-l,k-n is an outward normal vector to

the cell face, and

+ [F + G niy dL is length along the face.Jj,k+1+ J )J,k+l

Equation (16), when expanded, is identical to
(F j(13) interpretation of a metric derivative is that the

_J G- j,k-I ratio of that derivative to the Jacobian is the
projected area of the face. Thus the solution of a

Now replacing the metric derivatives with their finite difference problem in strong conservation

finite difference expressions, equations (7) law form in a transformed space is equivalent to

through (11), and writing out only the continuity the solution of a flux summation algorithm
equation for clarity, we have expressed in physical space.

The flux sum of equation (13) could be
at J,k -- )+l Yj+1,k+1 - Yj+l,k-1) improved by selecting a more accurate

approximation for the integral of (pu) or (ov)

over a face than simply its value at the center
of the face. For example, a piecewise continuous

I p k( xJl
,k+ I

- x)+1k-1)] interpretation of (ou) is equivalent to

S- (Pu) -l,k(Yj-l,k+1 - Yj-l,k-1) (V~k(Pu)jk) 6k Yjk

Pv -,kxj
- ,k  xj

k - k(jk) Yk (17)

- J vAn important property of equation (14) is that

a uniform solution ((Pu)jk . (v),k constant

n over rpacel remains identically uniform. This
PU Vk+lY 1,k+1 - Yj-l,k 1 property is generally referred to as area conserva-

tion in finite element analysis and its importance
to maintaining constant freestream solutions wasjJ+1,k+l -l,k 1  first pointed out by Steger (7]. A recent paper by

j,k~l(" Hindman (9) has also emphasized this property.

. . . ., I . .. .. I - - I II " _3



COMPARISON OF FLUX BALANCE FORM OF SEVERAL

TIME-MARCHING ALGORITHMS FOR INVISCID FLOW The flux balance operator is:

Centered Difference AlQorithms n o n o
RCHj,k - 6j/ 2 (FCH)j,k + 6k/ 2 (GCH)j,k  , (22)

M
ETHOD A. Implicit Time-Marchina Algorithm of

Beam and Warming 11]: where

The first method to be considered is the (± n~(
time marching algorithm introduced by Beam and (FCH)'±4,k = U Fj,k j 

6
k/2 Yj,k

Warming which is unconditionally stable, in the

linear problem, for two dimensional flows: G n,,(± 602 jk

I + At L I(I + at L ( )u j - Uj,kl - ;jJk) 
i jk/2

=-at 6o Fn + n (GHjkj P 6k(~ 9/ jk
= -~ j k  GCj,k LBWAV U,k) = - k k 

6
j/2 Yj,k

AtRn ;n (:+(U±
n
,,)(,,±

= - kt{RCj,k - LBWAV Uj,k + jk Gk k 
6
j/2 Xj,k)

and the algorithm becomes

where Lj and LI 
are finite difference

operators whose for, determines the order of I 1 -1

accuracy of the time-marching algorithm and LBWAV (I + Atj,kL "I + Atj,kL )[Uj,k -U, k

is a finite difference smoothing operator.

Solution Procedure -tjk k LBWAV JJk)

Step 1:
M-THOD C. Explicit Time Intearation Scheme of

+ = n n Jameson [3) and Rizzi [4]
A t L (A;,k) =-at RCj, k -LBwAv j,k  (19)

Step 2: The Runge-Kutta time stepping approach can be

expressed as:

I + At LJ SUi, = U(20) nn n

=- RC k k  LRKAV j, k  P ,k  (24)

Step 3: dt (

-n+1 ^n ^n Step 1_:

Ujk  
j,k + SUj,k (21)

U =
0

j,k (25)

METHOD B. Modified Beam and Warming Algorithm

Step 2:
In order to improve the accuracy of the flux

balance operator in skewed mesh systems, a variety -ii) = (O t pU(O)

of modified Beam and Warming algorithms have been U2) j,k

developed. The simplest modified operator, which

corresponds to several ot-her algorithms, is to

balance the flux on the cell shown .elow. Step 3:

' ;(2) . (0) a~t) 1)(P;(1) (27)

j-l,k+1 j,k+1 j+1,k+2

Step 5:

j-jk+1 j+l,k+ +

;(3) ;(0)

. ............... ................. ) ^ 2 )(2 8 )

~ j1,1-1Step 6:

j-l,k ::iiil j+l,k

;n+1 6(4)

Figure 4. Half-spacing (esh cell in computational j,k = ; (30)

space.
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This method is usually run with the 
Step 3 may be rewritten as

smoothing operator in each step formed as n+l ;n

LRKAV rather than LJKAV u Jk -,k

If steps 2, 3, 4, .5 each converge independent- - f~ni.Jk {+I,k + F;,kI{(i 
6
k/2 Yj,k)

ly, then the steady state solution is identical to 2

that of the modified Beam and Warming, method B, if
LBWAV = Lj(AV, and the solution is independent - + Gk)(U 6k/2 xj k)
of btj, k -

METHOD D. Flux Balance Form of MacCormack's - Fj,k + F
6 /2

Method [2]:

A flux balance form of MacCormack's method - {G Ok *-1k)(U] o k)
may be expressed as: - 'k k 6k/2

Step 1, Predictor: + (Fn o+ F! k /

-+ FJ(k+1 G .k)(W 64/2 Yjk)

- -F6tk j+,kPLy1  G(+ 1 4kPLxl n{+ o Yj1k)
U k  fi U ,k  + , nt j1 G' { , +I  3,0 14 6(j/2 j k

- FJ,kPLy 3  - GJ PLx3  ( j,k * F k-1)(Yk j/2 Yj,k)

+ ( Fj,k+IPLy4 + Gj,k+lPLx4) + {Gj,k + G;,k.l)(Ik l 6j/2 xjk))

-(- FjkPLy2 + Gj,kPLx2 )- iv (Uj,k + ;,k] (34)

jk (31) This form of MacCormack's method is area
J preserving for each step (31 or 32) and offers

the possibility of steady state solutions which
where the projected lengths are are independent of 6t. When the predictor and

corrector step both converge, which we generally

PL j j Y+,k+
1 - j k find to be the case, then the steady state form

j k/2Yjk YJ, y of equation (34) is:

RCHj,k - LNAv k - 0 (35)

+ o as with the modified Beam and Warming and fourth
PLx4 Uk 6j/2 xj,k = xj+i,k+4 - xj-J,k+ order Runge-Kutta schemes, methods B and C.

Step_2, Corrector: Comments on Centered Difference Aloorithms

d"[F ' - For each of the methods considered, A, B, C and
l ~Uj: =,k  -U j,k  F'Py G! jPLx1

tjkl( kP.yL) D, the steady state solution desired is that the

L centered differenced flux balancing residual
-(BC)0,k or (RCH)Ok is zero. For all

(F*_I,kPLy3 - GCj,kPLx3) these schemes at interior points, this criterion is

possible only when the artificial smoothing
F* + * PL )operators are neglected. The order of accuracy of

* (- F,kPLy4  Gj,kPLx4) all these methods is the same and each should be
expected to produce nearly the same steady state

F! solution except for differences in smoothing
-"- Fk-PLy2 + G;,k-IPLx2 requirements or boundary conditions. As we shall

see in the test examples, this conclusion can be
=( d.monstrated by numerical experiments.

- L v  ),kJ (32)

Step 3: Non-Centered Difference Algorithms

n+1 1 k MFTH0D E. MacCormack's Method on a Non-Centered
Cell Basis:

A version of MacCormack's method which does a

flux sum on the celi structure shown in Figure 5
has been developed by Tong (10]. This form is a

. ill I - i.. . . - .. . --



where

two or three dimensional extension of the strong ( n
conservation law version of MacCormack's method RNI T,.

proposed by Hindman [9]. This scheme uses the same

basic nine point cell as in Figure 3 or 4, but it ____

computes a flux sum over each of the four interior Ajtl,k±l 
6 

FNI 6,k±+ G , (44)

cells.

Step 1: (FNI} jk±

U n -Ajk( nM)+~+ - LUk Ujk - t~~RCj~)+ MCAV Ui),k) Fn~' k 1 - I- k (H6 ±k45
(36) k j,k -(6± Qik Gj,k k xjk (45)

U;,k=M+ 1- LMCAV U k)

Step 3: = - j Fk) (6 Yjk) jk) (46)
Un+1 = 1 U k 4 U (

,k kJ (38) This representation of Ni scheme, which is

or not the computational form, is a Lax-Wendroff

o+1 n type method which does a flux sum on 4-point

=,t U 2 j+,k+j cells. A possible solution to the steady state

+ (RMC) n + 1 (39) form of equation (43) is that each ( ±I/2,k±1/2

k(RMC).-,
k -_
.1 - LMCAV(Uj k + (39) becomes zero in the absence of artificial

smoothing.
where

+ n ± n Comments on Non-Centered Schemes
(RMC) n F k + 6k (GM (40)

Cjj,k± 7  AJ±j,
k±

j Both the Tong and the Ni non-centered schemes
n)n Fn ± compute flux balances on the 4-point cells and

(FM ,k = FnkYj,k - Gj,k6kXj,k (41) each solution can be consistent with these

balances, (RMC)j±l/ 2 ,k±l/ 2 or (RNI)j±1/2,ktl/2

±n n n +
(GM )j,k = - Fj,k

6
jyj,k + Gj,k6jxj,k , (42) becoming zero in the absence of smoothing. Thus the

Tong and Ni schemes should produce approximately
the same steady-state solution, if the same

Aj±1/2,k±li2 is the area of 4-point cell. boundary conditions are applied. The two steady

state flux balance operators are not identical. We
This form of MacCormack's method also obeys would expect Ni's scheme to produce a more accurate

geometric area conservation on the 4-point cells result in the absence of artificial smoothing, but
with the possibility of a steady state solution his method may require more smoothing than Tong's
that is independent of At. Both the predictor method.

and corrector steps can individually converge.
The predictor and corrector steps express flux
conservation on the 4-point cells and, if each INVISCID TEST EXAMPLES
(RMC)j,k converoes to zero, then we have global
flux ccnservation. Three configurations were chosen as test

examples. The first case was the bump in a channel
METHOD F. Ni's Lax-Wendroff Method [5]: problem introduced by Ni (5]; the second was a

supersonic nozzle with a rapid isentropic
Ni's method may be expressed in a one step expansion; and the third was a supercritical stator

form as: designed by Sanz (11). For each problem, an exact

steady state solution would be isentropic with
n+1 n o n constant stacnation pressure, stagnation
j,k= Uj,k -tj,k{Pj/2 Vk/2 0N),k

}  
temperature and mass flow rate. Methods are

]n compared on the basis of predicted Mach number
+ Uk2RNI ndistributions and stagnation pressure loss over the

+ 1 Ll tk2j/2 ari l i2 , A j ,k domain. For all methods on all problems, the mass+(o ,o o / flow rate was conserved to within 0.3%.

6 , A .jJ Boundary Conditions

n Inflow/outflow boundary conditions were of the
+ LNIAV UJk (43) non-reflecting characteristic or extrapolation

type, but implementation details differed greatly
from method to method. We believe that the results
presented are as free as possible from contamina-

tion due to these conditions.

6
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CONVERGENCE CRITERION

It was impossible to maintain exactly the same For all of the methods except Tong's, the
hard wall boundary conditions between the schemes, convergence criterion was easy to establish. The
Methods A and B, which were developed strictly for computed solutions were run until the steady state
viscous flow by the authors, used only a simple flux balance operator plus the smoothing operator
pressure and parallel velocity extrapolation for converged to a specified value, 1.0 X 10-

5

the inviscid case. These conditions were sufficient maximum at any point and 1.0 x i0-6 root mean
for the first two cases but not the supercritical square value.
stator case. The proper conditions for Ni's method
are not clear. The first two examples for Ni's In Tong's method, as with any MacCormack type
method predicted surface quantities from the method, the order of differencing in predictor and
interior point scheme and then corrected these corrector steps is not unique. The double sawtooth
quantities by a simple one-dimensional wave to solutions common to central difference schemes can
maintain flow tangency. be reduced by cyclically permuting the operator

sequence. The disadvantage of this process plus the
Methods C, D, and E used boundary procedures smoothing sequence adopted is that we lose the

which consistently satisfied ability to drive a steady state residual below

about 1.0 x 10
-4 

maximum local value and about
normal momentum 1.0 x 10

-5 
root mean square value. It is thus

p' (47) difficult to determine when to stop iterating on a

an R solution, and we must supply some heuristic
I 1 2principle to determine when to stop. The advantage

where q = u + v of this process is that the stagnation pressure

errors in the "converged" solution are greatly
and R is the radius of curvature of the surface reduced.

streamwise momentum

as = - 0 / (48) Ni Pump Test Case, Subsonic Flow
as a

where s is the arc length along surface All of the methods produced acceptably accurate

solutions for the channel bump problem especially
flow tangency in terms of symmetry and Mach number predictions.

v/u
= 

6-y / 6ix (49) The grid used contained 65X17 points and is
v / 6illustrated in Figure 5 along with a typical Mach

at each point on the boundary. To satisify all number contour plot. The predicted top and bottom

three conditions at each point on the boundary wall Mach numbers for each method are shown in

requires an iterative evaluation of the boundary Figure 6. The stagnation pressure loss for each of

pressures at each time-marching step. This the methods is shown in Figure 7. All of the

procedure is costly but is essential for centered schemes produced essentially the same

simulations with minimum stagnation pressure error, pressure loss of about 2% max 6Pt/Pt. The
non-centered schemes produced essentially no loss.
On balance, all the schemes performed adequately on

Artificial Smoothing Operators the bump case.

For methods A, B, D, and F, the smoothing
operators were cenerally as proposed by their Spersonic Nozzle Test Case
authors with the smoothing coefficients "tuned-up"
for each calculation. For methods C, D, and E, the The supersonic nozzle test case geometry
calculation procedure was: and grid is shown in Figure 8. This grid has 65X33

points. The inflow Mach number is 2.0, and an
U = (I - RSFB]U

n  
(50) idealized wave diagram is also shown in Figure 8.

The wave diagram shows that the wall outflow Mach
Ut - [I + Sx)U* (51) number should be 2.83; and that the Mach number
U
n+ 1 

- (I + S yU.* (52) should be uniform in region 1. The idealized wave
diagram does not account for curvature of the

where RSFB is the flux balance operator and characteristics as the wave system from the lower
S, Sy are the smoothing operators wall interacts with the upper wall wave system.

Under this assumption the exit centerline Mach
number should be 2.625. The results for each of

r the schemes is shown in Figure 9 in terms of Mach
f = _l + f2 (54) number contours. The correct wave system is

1+f2 LxAxIinJ adequately predicted by all schemes. The

f- 0.1 f2 - 200. stagnation pressure loss contours for this test

case are all shown in Figare 10. The centered

For methods C and D, these smoothing cperators were schemes all have unacceptable losses in the range
applied after each step, but for method E they were of 3% to 6%. Ni's scheme has a small loss while
applied only after the lest step. the non-centered MacCormack has virtually no loss.

The steady state solutions are not independent It is likely that a better hard wall boundary
of the smoothing operators, but every effort was condition treatment with Ni's method would
made to reduce their effect. eliminate the loss shown.

7
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The agreement between the 4 centered Predicted results are quite sensitive to the grid
schemes is quite remarkable; in fact, as would be resolution. Feasonably accurate surface pressures
expected from the analysis, all schemes produce were predicted everywhere including the stagnation
nearly the same steady state solutions. The point and the trailing edge. The maximum stagnation
non-centered macCormack and Ni's scheme produce pressure error outside the boundary layer was about
quite similar results. 1%. We are as yet unable to explain the discrepancy

at 70% chord on the suction surface although we
Supercritical Stator Test Case believe it to be linked to the trailing edge flow

field.
A much more demanding geometry is the

supercritical stator design presented by Sanz [11]. The predicted trailing edge flow field is

The grid for this test case is shown in Figure 11. illustrated in Figure 17 in terms of velocity
A simple sheared grid was used for simplicity which direction vectors. This calculation shows two small
required a fine grid near the blade leading edge separation zones comparable in size to the trailing
for accurate simulations, edge radius. While the predicted flow field at the

trailing edge seems reasonable, we have no way to
The surface Mach number predictions for verify its accuracy.

the supercritical stator using the Tong's non-
centered MacCormack type method are shown in Fioure
12. The agreement is satisfactory except at 8% CONCLU.SIONS AND DISCUSSION
chord on the suction surface. Slight variations in

the specified downstream pressure specified The presentation of the time-marching
produced overshoots or undershoots in this region, schemes in terms of a flux balancing interpretation

The sample calculation is for the downstream and the inviscid computati ,al examples shows that
pressure specified by Sanz. we are simply unsure the six schemes analyzed nuite similar in their
of the reason for this discrepancy. The stagnation steady state solution pr- ties. While the
pressure loss for this calculation is shown in computational details of schemes are very
Fiure '3. An unacceptably high loss of 14% exists different, the steady sta 'utions of the
locally at the stagnation point and a maximum loss central difference scheme -e nearly identical.

of 4% exists on the suction surface. Computational details of ,on-centered schemes
are also quite different ey again produce

The centered MacCormack scheme performed nearly similar steady state sol.
the same on the Sanz blade as is shown in Figure
14. The stagnation pressure loss at the leading A consistent result throughout the
edge is locally 14% and a maximum of 4% in the evaluations was that the non-centered schemes
remainder of the domain, produced lower stagnation pressure errors than did

the centered schemes. Since entropy conservation or
stacnation pressure conservation is not a
conservation property of the finite difference

VISCOUS TURSINF CAICULATION EXAMPLE equations, we expect these errors to be a function

of the truncation errors present in the solution.
While the results from the supercritical The truncation error appears as an entropy

stator geometry illustrate that accurate Euler generation, and the stagnation pressure error is
equation solutions can be obtained, the situation the entropy error raised to the y/(1-1) power.

is less clear for viscous flow problems. To Stagnation pressure loss is a very sensitive
illustrate our level of computational abilities for measure of the entropy generation in a scheme.

these flows, a calculation of the flow in a high
speed, high turning turbine cascade is presented. The arid sizes for the inviscid rroblems were
The numerical method used is similar to the chosen to produce small stasnaticn pressure errors

approximate factorization method of Feam-Warming for the non-centered schemes, and the centered
[1) except that the flux balance operator uses schemes nearly always produced larger errors on the

trapezoidal rule integration, as in equation (17), same grid. We attribute this result either to the
on the computational cell of Figure 4. Local space averaging properties of the solution
values of At are used to produce a constant local operators or to artificial smoothing to eliminate
CFL number of about 4. Details of this aloorithm !ouble sawtooth errors.
will he available in reference [12 . Solutions for
turh.ne geometries u-nerally require about 500 Accurate Fuler flow simulations are possible
iterations to converge to machine accuracy, 6 with the non-contered scheres as was shown by the
decimal digits. supercritical stator example. Both methods

reproduced the shock-free solution with a minimum

The experimental results and geometric details of effort, and both produced only a small
for the cascade were made available in reference stagnation pr-orsure loss on the test grid. With a
[13!, and the geometry is shown in Figure 15. The locally refined, orthogonal grid, the total number

turning is 126 degrees with an outflow Mach of grid points required can be reduced to a more
number of 0.75. The design Reynolds number is manageahle nu.-ber. Our ability to compute accurate
500000. All calculations assumed laminar flow. viscous flow solutions is increasing rapidly. The

turbine -ascade solution is for a moderately

The computational results are presented in difficult geometry, and the computational results
Figures IC and 17. The first figure compares are reasonable. Much more work must be done in this
preA!icted blade surface pressure to the area before we can compute viscous solutions as

exrrimental values for a laminar calculation at accurately as for inviscid situations.

design Reynolds number. The grid chosen has 100x29

points and is nearly orthogonal at each node point.
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