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1.0 INTRODUCTION

1.1 Problem Definition

A recurrent problem in the transmission and recording

of speech signals is the crosstalk between communication

channels. For example, much effort has gone into, analyzing

and avoiding such interference in parallel telephone cir-

cuits. Where feasible, the preventive approach is the best

for solving the crosstalk problem. However, this is not
always possible due to different operational situations.

There is thus a strong interest in signal processing tech-

niques for separating two voices which exist in a single

channel. This will be referred to in this report as the

Oco-channel separation* problem.
b'

The purpose of this research is to develop post-

processing techniques for co-channel separation. In speech

-I enhancement research, the goal varies from improving
-, signal-to-noise ratio (SNR) to enhancing the quality or

listenability, to improving intelligibility. While a number

of claims have been made on quality or SNR improvements, no

research to date has been able to demonstrate any measurable

improvement in the intelligibility of the speech after co-

channel separation processing. Enhancement of the int.1.i
. 4

gib".itX of the desired voice signal (which has been inter-

fered by a second voice) is the ultimate concern in this

.. S,. ,, . ,;'- " : '" '" " ' " " "- , . , - , - .:. . . .. , . , .. . . . ., 2: . / . i . ;



study. Even though other attributes are important, the

transmission of information from the speaker to the listener

through the communication system is the primary goall thus

intelligibility of the received speech is the most signifi-

cant measure of system performance. In fact, the secondary

goals of reducing fatigue and improving "listenability"

[Berouti et al. 1979] often follow as a natural consequence

of intelligibility improvement.

The basic problem definition of this study is summar-

- ized in Fig. 1-1. The received signal is the sum of two

speech signals produced by two talkers. Although there are

also multiple speaker situations of interest, only two talk-

ers are considered in this study, both for simplicity and

because this is the most commonly encountered situation. One

of the two voices (Sl) will be denoted the "desired signal"

or speech, and the other (s2) is the "interfering noise".

The input of the system developed in this study is sl+s2 ,

and the output is an enhanced version (or estimate) of the

desired talker's speech, sI .

In this study no other information is assumed available

to the co-channel separation algorithms besides the summed

speech signal. This assumption considerably constrains the

approaches that can be taken. For example, if large amounts

of a priori data are available from either the desired or

interfering speakers alone, then certain speaker charac-

2
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teristics can be identified and used in the separation pro-

cess. Or, if supplementary data were available simultane-

ously with the co-channel speech, such as reference signals

which are correlated with either the signal or noise, then

adaptive noise cancellation techniques could be applied

(Strube 19811. Also, because the co-channel speech, Sl+S 2 ,

is monophonic (i.e. single-channel), binaural listening

techniques [see e.g. Berlin and MIcNeil 1976] are of little

use.

The problem definition as described above is listed in

Table 1-1. It should be noted that this problem definition

is representative of many practical situations.

" Input signal is monophonic, with

* one desired voice and

" one additive interfering voice.

" No a priori individual speaker information, training
data sets, or signal or noise references available.

" The goal is to develop post-processing techniques to

" enhance the intelligibility of the desired voice.

Table 1-1 Problem Definition

4



1.2 Review of Previous Research

Although a considerable amount of research has been

done on enhancement of speech in the presence of various

types of noise and distortion (see e.g. (Lim 19831), only a

limited number of these studies have been concerned with the

co-channel separation problem. This section briefly summar-

izes the previous studies on this subject.

A technique for co-channel separation that attempt to

filter out all spectral components of the co-channel : . 1

except those around the pitch harmonic frequencies of the

desired speaker was suggested by Shields (1970]. This

*comb-filtering" technique was implemented in the time

domain and made adaptive to changes in pitch frequency by

Frazier [19751. Comprehensive testing of Frazier's tech-

nique was conducted by Perlmutter et al. (1977] for dif-

ferent lengths of the comb filter. Some of Perlmutter's

better results are shown in Fig. 1-2. The intelligibility

of the desired speech after processing was found to be

always less than in the original unprocessed co-channel sig-

nali also as the length of the comb filter increased, the

intelligibility usually decreased even further. Two dif-

ferent methods of handling the unvoiced (i.e. non-periodic)

segments were also evaluated. In the attenuation technique,

the unvoiced segments are simply reduced by a constant

amount and passed directly to the output. For the inertial

5
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method, the comb filtering is continued into the unvoiced

desired speech segments using the last pitch value calcu-

lated for the preceding voiced speech. While both methods

failed to yield improved intelligibility over the unpro-

cessed data, it is interesting to note that the attenuation

method generally provided better results than inertial

unvoiced processing.

In Perlmutter's experiments the pitch contour used by

the separation algorithm is extracted from the individual

speech data before the speech is combined to form the co-

channel signal. Although this procedure is obviously not

applicable for actual operation, where only the co-channel

signal is available, this experimental methodology allows

one to divide the co-channel separation problem into two

subproblems: i) pitch detection on co-channel speech and ii)

desired speaker enhancement processing. This division

allows the enhancement processing to be considered alone;

once this problem is adequately solved, the co-channel pitch

issue can be tackled. The same methodology is adopted in

this study.

Other pitch-based separation approaches have been

reported by Dick [1980], Everton [19751, Parsons and Weiss

[19751, and Parsons [1975, 1976, 1978, 1979]. These can be

divided into time domain techniques (e.g. Frazier's comb

filtering described earlier) or frequency domain methods.

7



The research reported by Parsons is typical of the frequency

domain methods, so his work will be discussed here. The

basic procedure, as presented in [Parsons and Weiss 1975,

Parsons 1975,19761, is a frequency domain technique which

combines pitch detection and desired speaker enhancement

into a single algorithm.

Parsons' algorithm starts with estimation of the fre-

quency, amplitude, and phase for each peak in a short term

spectrum. This peak information is used to estimate the

pitch of the desired and interfering speech, which in turn

allows each peak to be assigned to one of the speakers

(after all overlapping peaks have been resolved with addi-

tional processing). Once the peak assignment is completed,

Parsons' procedure selects resynthesis of either the desired

or the interfering speaker spectra. When the interference

is synthesized, Parsons subtracts it from the original co-

channel signal to obtain the desired speech. He reports

that the subtraction results were not satisfactory and con-

centrates subsequent efforts on direct synthesis of the

desired speech. Although the synthesis approach is reported

to provide *fair to excellent" speech intelligibility, no

formal intelligibility testing has been reported.

- An interesting departure from the pitch-based approach

is the work of Young and Goodman [1977]. They suggest that

peak clipping of the pre-whitened co-channel speech may

e
°. . . . .



improve the intelligibility of the desired speaker. This is

based on the well known fact that clipping does not seri-

ously affect single-speaker intelligibility (see e.g. [Mar-

tin 1950]). The assumption is that in cases where the

desired speech is weaker than the interference, clipping

will equalize the energies of the desired and interfering

speech, thereby improving intelligibility. Young and Good-

man ran tests on this concept using co-channel data with

five simultaneously interfering speakers. However the test

results indicate that the intelligibility of the desired

speaker is severely reduced by the prewhitening/clipping

processing.

All past studies have failed to demonstrate measurable

intelligibility gains. At the onset of this study, it is

clear that there is- serious doubt that any signal processing

technique can improve the intelligibility of co-channel

interfered speech.

1.3 Outline of Report

One of the key steps in developing a co-channel separa-

tion system is evaluating the results. The formulation of a

well-defined method for formal subjective intelligibility

evaluation is developed in this study. While the subjective

measure is the preferred criterion, the test procedure is

i xtrenely time consuming. Therefore, computational objec-

9
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tive performance measures are developed for preliminary

screening and evaluation. The details of the measures, sub-

jective and objective evaluation methods, are discussed in

chapter two.

Several different approaches to co-channel separation

are investigated. The first approach is to estimate and

extract the desired signal, based on a harmonic synthesis

technique. Details of this signal extraction approach are

discussed in chapter three. Preliminary testing performed

on this extraction system is also reported. Although the

tests on this extraction system indicate no intelligibility

*' gains, the results provide new insights into the problem

which lead to the second approach.

The second approach to co-channel separation is to

estimate and then remove or suppress the interference sig-

nal. The development starts with the selection of an

appropriate spectral subtraction algorithm. To apply spec-

tral subtraction to the co-channel problem, the interference

spectrum must be estimated. Hence an estimation approach is

developed. Details of these studies are discussed in

chapter four.

Subjective tests on the spectral suppression technique

are performed. The test results demonstrate that for low

SNR co-channel speech, a statistically significant intelli-

gibility gain is realized with the proposed post-processing

10
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technique. Details of the test are presented in chapter

five.

Conclusions of this research and recommendations for

future research into implementing a total co-channel separa-

tion system are presented in the last chapter of this

-., report, chapter six.

'4
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2.0 ALGORITHM PERFORMANCE MEASURES

Before the development of a co-channel separation algo-

rithm, it is important to first define how the processing

algorithms can be evaluated. This chapter discusses two

different approaches to the performance evaluation problem.

The first is subjective listening tests. A formal procedure

for this is discussed in section 2.1. The second technique,

discussed in section 2.2, is calculation of numerical meas-

ures that approximate the behavior of human auditory pre-

processing, which is correlated to intelligibility.

2.1 Formal Intelligibility Testing

This section covers the procedures used in the intelli-

gibility tests. Deviations from these general procedures,

and the particular parameters used in each test (i.e. number

of subjects, SNR's, etc .), are discussed in subsequent

chapters.

A number of formal subjective testing procedures have

been developed for both speech quality and intelligibility

evaluation [IEEE 1969, Hawley 1977]. These procedures were

first developed for testing speech therapy subjects, they

were later developed for evaluating communications systems,

and more recently they are even used for testing electronic

12
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voice synthesizers. The goals of these test procedures are

to reliably and meaningfully quantify the quality or intel-

ligibility of speech. For intelligibility testing, the best

known procedures are the modified rhyme test [House et al.

19651 and the diagnostic rhyme test [Voiers 1977]. While

these procedures are well designed and quite widely adopted

by speech therapists and engineers alike, they are not

appropriate for this research because the test material con-

sists of isolated rhyme words. In order to properly simulate

a realistic co-channel interference situation, continuous

speech data is necessary, requiring new and different test

procedures.

There has been only one other published report of

intelligibility testing for the co-channel separation prob-

lem with a single interfering speaker [Perlmutter et al.

19771. Some of the procedures developed in the present

study are derived from this earlier work. However, due to

differences in the research application and emphasis, impor-

tant departures are necessary. The intelligibility test

procedures developed in this study are discussed below.

The first step in the intelligibility testing procedure

is the collection and preparation of a data base which is

representative of the data encountered by the co-channel

separation system. Earlier testing in this area [Perlmutter

13
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et al. 19771 used "syntactically normal nonsense sentencesm

for the desired speaker. These consisted of a fixed pattern
:.,

of verb, adjective, and nouns (e.g. "The round work came the

wellm). The interference signals were sentences from the

.1965 Revised List of Phonetically Balanced SentencesO

[Appendix C of IEEE 1969]. The use of nonsense sentences

for the desired (target) signal is to eliminate variabili-

ties due to linguisti; cues above the syntactical level.
The use of PB sentences as interference eased the problem of

Otarget-jammer alignment" (i.e. this avoided identical

speech-pause patterns in the target and jammer). We feel

that the artificial nonsense sentences are unnecessary, and

in fact unrealistic, so in the testing procedure used in

4. this study phonetically balanced sentences are used for both

the desired and interference speech. This use of meaningful

a. sentences allows the listeners to make full use of all lev-

els of linguistic cues for both the signal and interference,
providing a more realistic test for the system.

The test material (PB sentences) was read by a panel of

(two or more) speakers. These readings were recorded on

audiotape and then digitized at 10 kHz, 16 bits/sample. The

a.. input test data was generated by summing the speech from two

of the speakers at the specified signal-to-noise ratio

(SNR). This SNR is defined as the ratio of the average

14



energy in only the s portions of the desired and

interfering signals; pause segments are not included in the

averages. The *pause or speech3 decision is made by measur-

ing the background noise level just before the start of the

utterance, and then using this energy value as a threshold

to detect pause segments. Thus the SNR can be written as

the ratio of the sums of the energies from the thresholded

signal and noise speech frames:

-L IT [signal energy(i)]
SNR - Ns1(2-1)

.L 1 T [noise energy(i)]

where

energyli) - energy evaluated for i-th (20 msec) frame

fO for x<T
9T (xI - x for xIT

T - pause energy threshold
Ns - number of signal frames above threshold
Nn - number of noise frames above threshold

Pause removal before SNR computation is also adopted in

speech coding research to generate *segmental SNRO (Jayant

and Noll 1982, Noll 1974].

Another important consideration in test material

preparation is the alignment of the desired and interfering

speech signals. The sentences used for the desired speech

and the interference are first sorted according to duration.

*. The longest interfering speech segment is mixed with the

longest desired speech data and so on. The interference

,e,. 15
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signal is generally centered with respect to the desired

speech signal, leading to maximum coverage of the desired

speech by the interference. Perfect synchronization of sig-

nal and interference is neither practical nor desirable as

the speech-pause pattern of two voices on different channels

will not likely be synchronized. While the overlap is some-

what maximized by proper alignment, the exact pattern of

.*overlap is left to chance to approximate a realistic co-

channel situation. Variability is reduced by including a

large enough set (1 10) of PB sentences. The data described

forms the input or Ounprocessed" data. After passing this

data through the speech enhancement algorithm under con-

sideration, the output forms a second set of data, the "pro-

cessed* data.

1Lit,. ina Panel

A panel of subjects is recruited to compare the intel-

ligibility of the processed versus the unprocessed data. In

order to avoid possible retention effects from previously

heard speech, subjects chosen for the listening panel are

completely unfamiliar with the text of the speech data used

in the intelligibility tests. Most of the listeners are

professionals or graduate students in the speech and hearing

(or linguistic) field. Such "experienced listeners" are

selected because it is thought that they will be well-

motivated and hence more consistent in performance. This

16
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expectation is generally verified in comparing their results

to those of the less experienced listeners. Several "less

experienced" listeners were included in the panel to provide

enough data to get statistically significant results.

Zna sesio

Listening to processed and unprocessed co-channel data

is conducted in individual sessions for each listener. Two

listening procedures are used. In the first procedure, the

"comparison" test, half of the data presented to the listen-

*ing subject in a session is unprocessed and the other half

is processed. The processed and unprocessed data are dif-

ferent sentences spoken by the same speakers. The speech

data presented to the listeners are arranged so that half of

the subjects hear a particular sentence in its unprocessed

form and the other half of the subjects hear it as pro-

cessed. A simple case for this type of test with just two

sentences and two subjects is illustrated in Table 2-1(a).

"- With a sufficiently large panel of subjects and sentences,

the variability due to subjects and test material is aver-

aged out.

17
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SUBJECT A hears: Ul and P2
SUBJECT B hears: P1 and U2

(a) Intelligibility comparison test presentation

SUBJECT A hears: Ul then Ul and U2 then P2
SUBJECT B hears: Ul then P1 and U2 then U2

(b) Intelligibility improvement test presentation

Table 2-1: Intelligibility Testing Techniques
(Ul-unprocessed sentence 1 and Pl=processed sentence 1)

The second test procedure evaluates the degree to which

the processed data adds to (or improves) the intelligibility

of the unprocessed data. The procedure is the same as that

above except that both the processed and the unprocessed

data for half of the sentences are presented to the

listeners. The other half of the test material is presented

as unprocessed only (to give an equal number of repetitions

of the data, the unprocessed-only data is repeated twice).

A simple case of such an *intelligibility improvement" test

is indicated in Table 2-1(b).

The comparison testing technique compares the intelli-

gibility of the processed versus the unprocessed data, while

improvement testing determines whether the processing

improves the intelligibility of the input co-channel data.

The choice of intelligibility testing method to be used is

determined by how the enhancement algorithm is used. When

18
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the algorithm in chapter three was developed, it was thought

that unprocessed speech would be completely replaced by pro-

cessed speech, so the comparison test procedure was used.

The results of the test, however, showed that unprocessed

speech quite often is very intelligible, hence it is desir-

able to keep the unprocessed data where possible. The

improvement testing procedure is the preferred method in

such cases where the original unprocessed co-channel signal

is assumed to be also available.

At the start of a test session, the subject receives

written instructions for the test. A copy of these instruc-

tions is included in appendix A. The subject's task is to

orthographically transcribe as many of the intelligible

words as possible (including guesses) from all of the

presented data. To avoid biasing the subjects, the nature

of the research project is not discussed until after the

session is completed. This provides a uniform understanding

of the test for each subject.

The listener is then seated in a sound booth to avoid

possible outside noise interference or interruptions. The

booth is equipped with a D/A port, headphone amplifier, and

computer terminal. A short demonstration of the interactive

listening program (used by the listener to control the play-

back of speech samples in the test) is run to familiarize

the subject with its operation. The subject is then left to
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proceed at his own pace through the test material with the

interactive procedure.

The subjects are allowed as many repeats of the

material as needed to complete the transcription (multiple

repeats are used to determine the maximum amount of intelli-

gible information in the unprocessed and processed speech).

The rules used for scoring the subjects' transcriptions

are listed in Table 2-2. The primary goal of evaluating

intelligibility improvement implies that the semantic infor-

mation (i.e. meaning) of each utterance is most important,

and the scoring rules are based on this assumption. The

only exception is that homonyms are accepted as correct

because, for the low intelligibility cases dealt with in

this study, the contextual and grammatical clues are not

always present to select the right homonym. For example, if

the only intelligible word in a phrase is "to", the

4 responses "too" or "twou are scored as correct.

In the testing procedure used by Perlmutter et al.

[19771, "perfect transcription of each word was required.

In the present study, partial score rules are set up for

transcribed words that are very close to the correct text,

as shown in rule two. The rule allows for the insertion,

deletion, or substitution of one prefix or suffix mor-

20
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pheme. An example is allocation of one-half point for tran-

scribing "burn" or "burns' when the spoken word is "burned."

Such morphemic errors are allowed because the semantic

information is generally preserved.

Multiple guesses are also allowed as described by rule

three. For example, if two responses ("fired" or *tired")

are transcribed when the correct word is Otired", one-half

point is given. Finally, the score multiplication of rule 4

handles cases that involve both scoring rules 2 and 3 (i.e.

multiple guesses where one of the responses is very close,

as defined by rule 2).

1) One point for perfect word (or homonym).

2) One-half point for word with correct root morpheme
(or homonym) with incorrect prefix or suffix mor-
pheme which is only a single phoneme in duration.
For example, adding an "s" for a plural or making
a tense change with an added led".

3) 1/N point for one of N responses correct.

4) Rules are multiplicative (e.g. if one of two
choices satisfies rule #2 above, then score is 1/4).

Table 2-2 Scoring Rules

2.2 Computational Objective Performance Measures

Formal subjective intelligibility testing as described

in section 2.1 is time consuming because many subjects and

21



test samples are required to obtain statistically signifi-

cant results. Testing at all stages of algorithm develop-

ment is thus not practical. Therefore a computational

objective measure that is correlated with intelligibility is

needed for testing intermediate co-channel separation algo-

rithmic choices.

Signal-to-noise ratio has been shown to be correlated

with intelligibility for laboratory generated unprocessed

co-channel data [Miller 1947, Perlmutter et al. 1977). One

disadvantage of using SNR for evaluating the intelligibility

of r co-channel speech is the equal weighting given

to all frequencies in calculating SNR. The co-channel

separation processing may eliminate the interference only in

part of the frequency spectrum, and the effects of the

remaining interference are highly frequency dependent (i.e.

the interference in one part of the frequency spectrum may

contribute to the loss in intelligibility much more than the

interference in another part of the spectrum). Evaluation

of these frequency-dependent effects requires consideration

of several aspects of human auditory pre-processing.

Numerous psychoacoustic experiments have been conducted

to study the effects of interference on human auditory per-

ception (see e.g. [Small 1973, Harris 1974, Gelfand 19811).

An important conclusion of these studies is that the initial

stage of auditory processing has characteristics similar to

22
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a bank of bandpass filters. These bandpass characteristics

define the manner and frequency ranges (known as critical

.. bands) over which auditory stimuli interact. Scharf [1970]

summarizes much of the work in this field, and his graph of

critical bandwidths versus frequency is shown by the solid

, curve in Fig. 2-1. The so-called "Bark" scale [Zwicker 1961]

approximates this curve by modifying the frequency axis so

that the critical bandwidth is constant (i.e. one Bark)

everywhere on the scale. An approximate expression given by

Fourcin et al. (1977] relating frequency (in Hz) to Barks

(z) is:

f = 600 sinh(z/6) (2-2)

Comparison of the Bark scale to the well known mel scale

shows that these two scales are quite similar.

Filtering functions (i.e. magnitude responses) which

:9: model the observed psychoacoustical bandpass characteristics

are given by Schroeder in [Fourcin et al. 1977]. An

improved version of Schroeder's function, proposed by Sekey

and Hanson [1983], is used in the present work. Expressed

in Barks this function is:

"OLogF(z) - 7.0 - 7.5(z-0.215) - 17.5[0.l96+(z-0.215)2 ]1 /2

(2-3)
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Using equations (2-2) and (2-3) a set of sixteen filter

functions can be derived which cover the frequency range of

interest in this study (100 to 5000 Hz), with adjacent func-

tions crossing approximately at their 3 dB points. These

sixteen filter functions are plotted in Fig. 2-2. The

bandwidths of these filter functions, indicated by the

crosses on Fig. 2-1, generally agree with the bandwidths

given by Scharf.

A SNR-type measure which uses critical band filters

similar to the above is the well-known articulation index

(AI). The AI, as defined in [Kryter 1962a, ANSI 19691, is

basically an average of the SNR's from each critical band.

An important step in AI calculation is to assure that the

SNR from each frequency band does not exceed a certain max-

imum (or minimum) value. This SNR limiting implies that

increases in a critical band's SNR do not increase the AI

(and by implication the intelligibility) once the SNR

exceeds a maximum value; similarly, a critical band's con-

tribution to the Al (and intelligibility) does not decrease

further as the SNR drops below a minimum. The validity of

this procedure is supported by experimental intelligibility

data (e.g. Fig. 1-2). Kryter 11962a] uses limits of 30 and

0 dB in his formulation of the AI. However, in co-channel

speech different limits are recommended. Perlmutter et al.

(19771 demonstrated that the intelligibility of co-channel
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speech varies between about 10% and 90% over a range of

SNR's from -18 dB to +12 dB, with a monotonic increase in

intelligibility with SNR between these extremes (see Fig.
_ 1-2). Thus, for co-channel speech +12 and -18 dB are more

appropriate SNR limits.

The articulation index has been shown to be correlated

to intelligibility of noisy speech in numerous situations

(see e.g. [Kryter 1962b)). Unfortunately, when AI (or any

SNR-based measure) is used to evaluate r co-channel

speech, it is not always correlated with intelligibility.

This problem arises because calculation of the SNR values

" used in the AI requires an estimate of the noise remaining

"'_ after separation processing. This noise estimate, and the

resulting Al or SNR, can be seriously affected by

separation-processing-induced distortions (e.g. " phase

delays) which have little effect on intelligibility. Thus,

it is necessary to develop a computational measure which

incorporates the psychoacoustical aspects of the AI dis-

cussed above, but does not require an estimate of the noise

remaining after co-channel separation processing.

*A measure for evaluating intelligibility that does not

require noise estimates is the spectral distortion measure

(SDM). A number of these measures have been developed for

speech coding research [Gray et al. 1980, Gray and Markel

1976]. Recently Boll and Wahlford [1983] also applied SDM's

27
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to wideband noise reduction research. In the rest of this

section the mathematical definition and properties of one

class of SD4 are reviewed, and several concepts from the Al

are used to develop a modified SDM for co-channel algorithm

evaluation. Examples of the calculation and application of

this SDM will also be presented.

Spectral distortion measures are used to evaluate co-

channel separation algorithms in development work by compar-

ing SDM's between the clean desired speech and the co-

channel speech before and after processing. The class of

SDM's considered in this work measures the degree to which

the co-channel speech log spectrum matches the log spectrum

of the desired speech. The perceptual basis behind such

measures is that the closeness of spectral matching

expressed by the SDM correlates with intelligibility.

The SDM of interest is the mean absolute log SDM. It is

a typical SDM technique calculated by taking log spectral

differences at each frequency and integrating these over the

whole frequency band. Taking the p-th power of the differ-

ence and using discrete spectra, the general log difference

SDM is defined by:

SDMp X { I r.OGIS(k)I LoG19(k)IIP}p (2-4)

28
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wher e

S(k), S(k) = K point DFT's of desired and co-channel
speech, respectively

The value of p in equation (2-4) controls the relative

weighting of large and small spectral differences between

the desired and co-channel speech. For example, as p

approaches infinity the value of SDMp becomes dependent only

on the peak spectral difference. The mean absolute log case

(p-i) calculates the area between the two log spectra, with

all spectral differences weighted equally. This SDM with

p-i is an interesting case since, as the noise becomes con-

siderably larger than the signal in energy (i.e. SNR << 0

* dB), the SDM approaches the negative of the logarithmic

average SNR. This is shown in the following, where S(k),

, .S(k), and N(k) represent the discrete spectra of the desired

speech, co-channel signal, and co-channel interference,.

respectively:

SDI Z ILOG 1P-kj I LOG (2-5)

p-i k-l IS(k)I k=l IS(k)+N(k)

If SNR << 0 dB, then IS(k)l << IN(k)j and:

SDMp I  z LOG - - -average SNR (2-6)
k li IN(k) I
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Rather than directly summing the spectral differences

over all frequencies as in equation (2-4), critical band

*- . weighting can be incorporated into the SDM, as in the AI

calculation. This is achieved by calculating critical band

power outputs for the desired and co-channel speech, and

then taking log differences. These operations are indicated

below for the p-i case:

SDMCb - 10LOG10  (2-7)-1=i1 
pwri(s)

where

pwri( ) = power calculated in i-th critical band (for
desired or co-channel speech signals)

Use of critical band filtering outputs in a SDM, as in

equation (2-7,, has been considered before in other areas of

speech research, such as (Davis and Mermelstein 1980]. As

in the derivation of equation (2-6), it can be shown that as

the SNR decreases, SDMcb becomes roughly proportional to the

negative Al. Thus the SDMcb incorporates some properties of

the AI without having the computational difficulties of the

-* Al for processed data (i.e. estimation of the noise).

Another feature of Al calculation incorporated in SDMcb

is the SNR limiting imposed within each individual frequency

band. In the AI calculation, the SNR for each band is lim-

ited to a certain maximum value because it is assumed that

30
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when the maximum SNR is reached, increasing the SNR further

does little to increase intelligibility. This peak SNR

I. clipping property is approximated by the log differences in

the SDM, which contribute little to the total SDM whenever

the powers of s and s in a critical band are close. For a

lower SNR limit, the value of -18 dB was suggested earlier

for use in the AI; since log power differences of s and s

apprbach the negative SNR for low SNR values, this -18 dB

lower limit on SNR can be approximated by limiting the log

spectral differences in equation (2-7) at a maximum of +18

dB. Because this limit tends to emphasize the less dis-

torted parts of the processed speech, both SDM's with and

without the +18 dB limit will be calculated for comparison

*-- in most cases (the limited SDM's values will be labeled as

'18 dB limited").

Speech spectra are relatively invariant only over short

time intervals (typically less than 40 msec), so the SDM of

equation (2-7) is evaluated for short time segments of the

co-channel data and original clean desired speech. A typi-

cal short-term SDM contour is shown in Fig. 2-3. The SDM's

for a co-channel signal before and after processing with a

separation algorithm are calculated every 20 msec and plot-

ted versus time below the signal (i.e. desired speech) and

noise waveforms. The SDM contour shows where the separation

algorithm improves the spectral match with the clean desired
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speech signal as well as where the processing degrades the

match. Such information has been found to be useful during

algorithm development.

An overall performance measure of the processing algo-

rithm can also be computed by averaging the short term SDM's

over the length of the utterance:

SDM - SDM cb(m) (2-8)
m=l

where

SDMcb(i) - short time SDM from equation (2-7) for m-th
time interval (calculated every 20 msec)

The relation between SDM and SNR for ten unprocessed

co-channel speech samples summed at various SNR's is shown

in Fig. 2-4. Each point in this figure represents the SDM

and SNR values (calculated from equation (2-8) and a simple

energy ratio, respectively) for one co-channel sample con-

sisting o desired and interfering speech of about 2 seconds

*duration. The spread of each sample group around the input

SNR's (e.g. -6 dB, -9 dB) is a result of the pause removal

in equation (2-1) , which is not included in the simple

energy ratio SNR (the abscissa of t.: figure).

It can be seen in Fig. 2-4 that SDt' and SNR are highly

correlated, which then implies that the SDM is correlated

with the intelligibility of unprocessed co-channel speech.
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Since the SDM does not require an estimate of the noise left

after co-channel separation processing, it is also applica-

ble to processed co-channel speech. Thus, SDM is a useful

measure for estimating the intelligibility improvements

obtained from the algorithms studied in this work.
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3.0 SIGNAL HARMONIC EXTRACTION

As mentioned in chapter one, a number of speech separa-

tion techniques have been developed and tested in the past

few years. This chapter presents the development and test-

ing of a new extraction approach which incorporates the fol-

lowing features:

1. Signal pre-whitening with inverse
filtering

2. Spectral magnitude harmonic sampling
3. Harmonic synthesis

Section 3.1 discusses the proposed extraction system

and describes in detail its most important components. To

evaluate this approach, a limited size intelligibility test

was conducted and the results are presented in section 3.2.

Careful analysis of these results, as discussed in section

3.3, provides new insights and directions for the speech

separation problem that are applied in subsequent chapters.

3.1 A Pitch-Based Signal Extraction System

A signal in additive noise can be enhanced by either

extracting the signal or suppressing the interference based

on some consistent differences between the signal and noise

characteristics. When the interference and signal are both

speech, it is not possible to apply conventional filtering

techniques because their long-term spectral characteristics

are similar. Furthermore, since the short-ter spectral
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characteristics are most important when dealing with speech

signals (see e.g. [Flanagan 1972, Rabiner and Schafer

1978]), the enhancement technique must make use of short-

term differences.

One obvious short-term characteristic that can be

exploited is the pitch contour from voiced speech. It can

generally be assumed that the pitch contours of the desired

and interfering speech are sufficiently separated so that

the different pitch frequency harmonics are resolvable with

short-term spectral analysis. This is illustrated in Fig.

3-1 which shows short-term spectra from two different speak-

ers' voiced utterances. Note that sampling at speaker one's

pitch harmonics generally misses the spectral peaks of the

second speaker. A second important assumption of this

approach is that sections where the pitches d overlap are

short enough that the information carried in such segments

can be deduced from neighboring segments based on syntax and

* semantics.

A total system approach which uses short-term spectral

analysis of the signal pitch harmonics is shown in Fig. 3-2.

The signal is first processed by a linear prediction coding

(LPC) analysis and a pitch and voicing detection algorithm.

It is then pre-whitened with the LPC ir, -cse filter A(z)

The unvoiced signal is replaced by white noise scaled by an

estimated gain parameter. The voiced signal is processed

37
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with pitch harmonic sampling and synthesis algorithms. Both

signals are then filtered by the all-pole filter l/A(z).

There are three sets of problems that must be addressed

in developing and testing the system of Fig. 3-2: (i) pitch

and voicing detection on two-speaker speech, (ii) estima-

tion of unvoiced speech level for the desired speaker, and

(iii) harmonic sampling and synthesis of voiced speech.

Although the first two problems are very important for the

success of the system, the key to the system is the validity

of the harmonic sampling and synthes's procedure. There-

fore, in the experimentation discussed here, the first two

problems are circumvented by using pitch and gain parameters

estimated from speech free of interference. The details of

the harmonic processing of the voiced speech are discussed

in the next two subsections.

3.1.1 Spectral Pre-whitening and Sampling

Fig. 3-3 schematically illustrates a speech "analysis

and synthesis" model where the inverse filter A(z) is calcu-

lated using LPC analysis (Markel and Gray 1976]. As can be

seen, these models separate the input speech signal

(represented by its z-transform S(z)) into what are referred

to as its spectral envelope, A(z), and excitation (or resi-

*[] dual), E(z), components.
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To evaluate the relative importance of the excitation

- and spectral envelope information in speech separation, two

simple tests were run (these tests were originally proposed

and reported by Juang [1981]). The corrupted signal s+n

(desired speech plus interfering speech) and the clear

speech s are deconvolved into an envelope model and an exci-

tation signal by LPC analysis. Two output signals are then

generated by driving each LPC synthesis filter with the

other excitation signal. The output Sl is produced with

excitation from s+n and the spectral envelope from s. The

output s2 is produced with the spectral envelope from s+n

and the excitation from s. The construction of sI and s2 is

illustrated in Fig. 3-4.

Informal listening tests were conducted to compare

,. and s2 for several different speech samples.. Both out-

puts were found to sound much better than the unprocessed

s+n signal. The result that the Sl output is intelligible

is expected because exciting the desired speech envelope

with only random noise is known to produce "whispered" but

intelligible speech. What is significant, however, is that

S2 actually sounds better than sl This result suggests

that harmonic processing to extract the desired speaker's

residual signal may lead to better speech enhancement.

Accordingly, as indicated in Fig. 3-2, LPC pre-whitening is

performed before spectral sampling and harmonic synthesis,
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and the spectral envelope filter is applied after the har-

monic synthesizer.

Based on the assumption that the pitch frequencies of

two unrelated voice signals (or residuals) generally do not

overlap, the speech energy for a particular speaker would be

concentrated at his/her harmonic frequencies. If the spec-

trum is sampled at the desired speaker's pitch harmonics,

most of the energy of the spectrum samples would correspond

to that speaker's voice. After obtaining the harmonic

amplitudes, the desired time domain waveform is reproduced

with the harmonic synthesis algorithm.

3.1.2 Harmonic Synthesis

The harmonic synthesis technique as described here was

originally proposed by Markel and Gray [1978] as a possible

solution .to the problems of LPC synthesis at high pitch fre-

quencies. In speech enhancement, this algorithm is useful

since it avoids the problems with phase estimation from the

noisy speech spectrum by generating a smoothed phase func-

tion from interpolated pitch values. This phase-generating

feature, and the rest of the algorithm as developed by

Markel and Gray, are described below.

Given that the harmonic amplitudes are known, a speech

signal can be synthesized with a cosine series expansion:

L
s(n) G X Cm cos(men+4m ) (3-1)

m-i
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where

n a time index
Cm a spectral amplitude of the m-th pitch harmonic

rn,  = initial phase constants

G = gain

L a integer[F/2Fo]
(F - sample rate and Fo - pitch frequency)

an instantaneous phase for the first harmonic.

The initial phases at each harmonic 0m, can be calcu-

lated from the speech spectrum. However, informal listening

found that using all zero values for these phase constants

gives the same degree of naturalness in the synthesis. The

parameters Cm, G, and L are updated once for each N-point

frame. In our experiments, the frame length is 20 msec.

Assuming F0 is also updated once per frame (at n-0 and n=,]

for the current and next frames), then the intermediate

pitch values are approximated by linear interpolation:

gn (g91 - go) + go (3-2)

The term gn above can be viewed as the "instantaneous" pitch

normalized by Fo, so the phase On is approximated by summing

~gn :

On O 9n-1 + 27rg n  (3-3)
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Continuity between frames is insured by setting 80 for the

current frame to be N of the previous frame. The harmonic

amplitudes Cm are obtained by sampling the FFT magnitude,

and the gain term is approximated using the input speech

energy R0 :

""2 Z- 2 (3-4)

The approximation in equation (3-4) is due to the fact that

the energy matching of the input speech with the synthesis

is based on a fixed frame length which may not coincide with

an integral number of pitch periods. For an exact energy

match, the cosine series of equation (3-1) should be squared

and summed over each frame, but the approximation of equa-

tion (3-4) was found to be accurate enough.

The harmonic synthesizer bears resemblance to the phase

vocoder [Flanagan and Golden 1966]. Both systems consist of

a set of filterbanks (the cosine terms in the harmonic syn-

thesizer) controlled by magnitude and phase estimates. It

differs from the phase vocoder in that the filterbanks are

situated at the pitch harmonics, which makes them time-

varying. Also, the harmonic synthesizer generates its phase

information from pitch values, whereas the phase vocoder

estimates phase directly from the short-term spectra of the

input speech.
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As Markel and Gray [19781 have pointed out, harmonic

synthesis can be efficiently implemented if table lookups

are used for the cosine functions. Since no filtering

operation is carried out, filter instability problems, as in

linear prediction synthesis, are avoided. However, the har-

monic synthesizer cannot be applied for nonperiodic signals;

other techniques (such as standard LPC analysis/synthesis)

must be used instead. Because of this limitation, alternate

processing for the unvoiced desired speaker segments is used

in the extraction system of Fig. 3-2.

Prior to being incorporated into the speech extraction

system of Fig. 3-2, the harmonic synthesizer was tested on

voiced speech without interference. The synthesis from this

Oclean" speech was then evaluated with informal listening by

several researchers, and was found to be generally

equivalent in intelligibility and quality to LPC synthesis.

3.1.3 Effects of Phase

As the preceding subsection discusses, no expl" cit

phase measurement is required for the the harmonic s.

thesizer to generate reasonable quality speech. This syn-

thesis of speech without the exact phase information can be

viewed as another example of G.S. Ohm's "acoustic phase law"

[Schroeder 19751 , which states that "'aural perception

depends only on the amplitude spectrum of a sound and is

independent of the phase angles of the various frequency
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components contained in the spectrum'." This law generally

applies to "short-tji: spectram (e.g. < 50 msec). Although

exceptions to this phase law have been demonstrated in vari-

ous experiments [Milios and Oppenheim 1983, Cox and Robinson

1980], most of these involve non-speech stimuli such as

tones or long term phases. The main effect of phase on

speech appears to be the quality of the synthesized speech

(see e.g. [Wong 1979]).

In summary, while short-term spectral phase does have

perceivable effects on speech quality, its effect on intel-

ligibility is generally second order compared to spectral

magnitude. In this study on co-channel separation algo-

rithms, intelligibility is the first priority, hence the

proposed techniques will only consider spectral magnitude

i nf ormat ion.

3.2 Testing and Results

The system described in section 3.1 was tested on

several speech samples with voice interference. Informal

listening found the output to be significantly enhanced in

quality. To verify these qualitative judgments, formal

evaluation was conducted using a limited-size intelligibil-

ity test. The purpose of the test was to evaluate the pre-

whitening and spectrel sampling/harmonic synthesis parts of

the system shown in Fig. 3-2. Therefore, the pitch, voicing,

and gain contours were extracted from clean speech (using
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standard vocoder algorithms).

The general method of intelligibility testing has been

discussed in detail in section 2.1; a few specifics are

listed here. The test data consisted of phonetically bal-

anced sentences from male speakers with close and separated

pitch contours added at average SNR's of 0 and -6 dB

(representative pitch contours from the three speakers are

shown in Fig. 3-5). These test sentences were then pro-

cessed to extract the desired voice. For each test condi-

tion (SNR and pitch contour separation), one or two

listeners were presented with ten speech samples, five pro-

cessed and five unprocessed. The first listening procedure

discussed in section 2.1 is used (i.e. an intelligibility

comparison test). The percentage of correct words tran-

scribed from the desired speaker were then compared for the

processed versus the unprocessed data.

Single listener test scores are shown in Table 3-1. As

might be expected, intelligibility is lower for the close

pitch case and the lower SNR (-6 dB,. The most significant

result is that intelligibility scores are consistently !ower

for the processed speech. Although the test is limited in

scale, the large intelligibility differences and the close

correlation of these results with those of another study on

a similar system (Perlmutter et al. 1977] suggest that more

extensive testing is unnecessary. Given that further degra-
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dation will be introduced due to pitch and gain estimation

problems for corrupted speech, it is conclusive from these

tests that the harmonic synthesis approach will not lead to

intelligibility enhancement.

"Close Pitch"

Unprocessed - Processed

-6 dB SNR 35.9 27.6
0 dB SNR 88.7 62.1

SPitch S

Unprocessed Processed

-6 dB SNR 75.2 43.3
0 dB SNR 87.3 67.6

Table 3-1: Intelligibility Scores
(% Correct Words)

3.3 Conclusions and New Directions

The lack of intelligibility improvement indicated by

the testing was unexpected since informal listening had

clearly found enhancement in the quality of the desired

speech. The reason is that while processing does reduce the

interference power, the desired speech also undergoes a con-

siderable distortion in the synthesis process. The informal
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listening subjects, who were already familiar with the test

material, probably matched words to sounds, giving a false

impression of intelligibility improvement. Thus the impor-

tance of carefully designed listening experiments cannot be

overemphasized.

For voice interference, it has been shown here and in

other work [Perlmutter et al. 19771 that speech above 0 dB

average SNR is usually intelligible, but it degrades rapidly

below 0 dB and is nearly unintelligible below -6 &B for

:1 "close" pitch cases. For "separated" pitch cases the

desired speaker remains fairly intelligible down to even

lower SNR values. Close examination of the test results

presented in section 3.2 also finds 0 dB to be a significant

intelligibility threshold for frame-by-frame "instantaneous"

SIR, as illustrated in Fig. 3-6, which shows a typical tran-

scription against the instantaneous SNR contour. Even

* though the average SNR is -6 dB for this case, there are

short segments over which the instantaneous SNR is well

above 0 dB, such as during speech peaks or noise pauses.

Three of these segments with SNR > 0 dB coincide with the

desired speaker's words "dull and tiredw and were correctly

transcribed. Similar correlations between such segments

(i.e. with instantaneous SNR > 0 dB) and correct word tran-

scriptions are found throughout the listening results for

the unprocessed co-channel data. However, the same segments
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INTERFERENCE

the child almost hurt the small dog

DESIRED SPEECH

third act was dull and tired the players

20d9
INSTANTANEOUS* SNR

0

-20AA

Fig. 3-6: Correlation of Correct Word Transcriptions
(underlined) with Instantaneous SNR
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are much less intelligible after harmonic processing.

A significant conclusion drawn from close examination

of the test results is that when long term SNR exceeds 0 dB,

.0 it is best not to process the speech at all. Since co-
channel-interfered speech with SNR's above 0 dB has been

shown to be generally intelligible, the cases with the most

potential for intelligibility improvement are those with

average SNR's less than 0 dB.

Even for average SNR < 0 dB, the prccessing should be

limited to segments where instantaneous SNR is under 0 dB.

If such an SNR estimate could be obtained it would be very

useful for switching the enhancement processing cn and off

so that only the lower SNR segments would be processed.

This would avoid distorting the parts of the desired speech

that are already intelligible. The importance of this con-

trol of the enhancement processing by the frame-to-frame

characteristics of the input data (such as SNR) has also

been suggested recently by Boll and Wahlford [19831, who

proposed an *event driven speech enhancement" concept.

Further study on this approach is highly recommended.

le

The new focus on negative SNR's in turn leads to che|4.'

change in emphasis from signal extraction to noise suppres-

sion. That is, for negative average SNR, the interference

is generally stronger, so its parameters, such as pitch, are

more readily extractable. So the goal should be to e::tract
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the interference signal parameters, such as pitch and har-

monic amplitudes, which are more readily estimated, and use

these parameters to remove the interference. Another impor-

ptant advantage of the interference removal approach is that

it will generally leave the desired speech signal intact.

It is very likely that the main reason the signal extraction

technique of section 3.1 leads to degradation is that the

desired speech signal has to be synthesized. Even without

interference, the synthesized speech is noticeably degraded.

In summary, the new directions suggested by the results

presented in this chapter are:

1. For average SNR > 0 dB, generally no processing is
needed for all speech. Hence research should focus
on average SNR < 0 dB cases.

2. The enhancement processing is generally needed only
for speech segments with "instantaneous" SNR < 0
dB.

3. For negative SNR cases, interference suppression
techniques should be applied instead of signal
extraction.

I
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4.3 CO-CHANNEL INTERFERENCE SUPPRESSION ALGORITHMS

Based on the results presented in chapter three, noise

suppression algorithms for processing co-channel voice data

with negative-decibel SNR were developed. The noise

suppression algorithms developed in this chapter consist of

two distinct components: the co-channel interference estima-

tor and an algorithm that removes the estimated interfer-

ence. The interference removal technique developed is the

*same for all the suppression algorithms, and is based on the

spectral subtraction method. Accordingly, the first section

of this chapter discusses the development of this spectral

subtraction algorithm for co-channel interference removal.

Sections 4.2 and 4.3 then discuss the development of several

. co-channel interference estimation approaches. Comparisons

between the algorithms using spectral distortion measures

and informal listening are presented in section 4.4.

4.1 Spectral Subtraction Concepts

4.1.1 Background

There has been much research on the use of spectral

subtraction for enhancing noisy speech since its proposal by

Jeiss et al. [19741. This technique has mainly been used

for removing wideband noise from speech. Although no intel-

ligibility improvement has been achieved for wideband noise,

research is continuing on possible improvements to the

-4.
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method [Nawab 1981, Hoy 1983]. This interest is probably

due to the fact that spectral subtraction can improve the

perceived guality of noisy speech, and it has demonstrated

small gains in intelligibility when used as a preprocessor

for LPC systems (Boll 1979].

The basic assumption of spectral subtraction, as it has

been used for wideband noise reducticn, is that noise and

speech are uncorrelated processes. The noise power spectral

density (PSD) is first estimated from the segments where

there is no speech. Then the short-term energy spectrum of

the desired speech is estimated by subtracting the (properly

scaled) noise PSD from the short-term energy spectrum of the

unprocessed noisy speech. These computations involve only

the spectral energy because human perception is relatively

insensitive to phase in the short-term spectra (as discussed

in section 3.1.3). The final step consists of resynthesizing

* the desired speech waveform from the processed short-term

magnitude spectra (the square-root of the estimated energy

spectra) and the u 2hase.

These steps are illustrated by the diagram in Fig. 4-1,

where INt 2 denotes the noise PSD estimated from the non-

speech segments (as determined by the speech activity detec-

tor). The overlap-add (OLA) algorithm [Allen 1977, 1982]

performs the post-subtraction inverse fast Fourier transform

(IFFT) and smoothes over discontinuities at frame boundaries
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(heard as a continuous "buzz" at the frame frequency if OLA

is not applied).

The "power spectral subtraction" technique discussed

above may be generalized by raising the magnitude spectra to

an arbitrary power, a, before subtraction and taking the

-/alth root of the difference. The input to the OLA pro-

cessing is then given by:

" = HSw f+Nw f)a -Nw . eJ (f) (4-1)
w(f) Sw(f) jw(f a (f) jaj 1/a eJ f 41

where:

a = exponent parameter
Sw(f) = estimated short-term spectrum of windowed desired

speech (output signal is obtained by OLA processing
!i.of S M

!(f) = phase of windowed "noisy" speech, Sw+nw

In the above, Sw(f), Nw(f) and Nw(f) represent the spectra

of the windowed speech, noise, and estimated noise, respec-

tively. Power spectral subtraction is implemented by set-

ting a=2 in equation (4-1).

Note that if the estimated noise magnitude spectrum

becomes larger than the magnitude spectrum of the windowed

"noisy" speech at any frequency, it is possible to obtain a

non-positive spectral difference in equation (4-1). Since

the li/amth root of this spectral difference is interpreted

as the magnitude of Sw(f), this situation must be avoided.
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One solution is to set Sw(f) to zero for any differences

less than zero, and this approach will be applied in this

study (for simplicity this difference limitinq will not be

explicitly shown).

A formulation of spectral subtraction technique in

terms of linear filtering (due to Paul [1979, 1981]) pro-

vides some interesting interpretations of the technique's

operation. In his work on a robust vocoder alaorithm, Paul

shows that if the input to the spectral subtraction is the

sum of the windowed signal and noise spectra,

Xw(f) = Sw(f)+Nw(f) (4-2)

then the magnitude at the subtraction output, Sw (f), can be

written as the product of the magnitude of this input with a

filter magnitude function H(f)I:

ISw f I = IH(f) I IXw(f) I (4-3)

where
[" 1/m

IH(f)I = (R(f) 4-4)

IXw(f) I
R(f) w

By setting k=m=a, the above reduces to:

w(f) = ISw(f)+Nw(f) a I f) ia (4-5)
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This is equivalent to the spectral difference term in the

general spectral subtraction equation (4-1).

The term R(f) in equation (4-4) is a frequency depen-

dent "signal plus noise to noise" ratio. Thus, it is

* apparent that the "filtering" indicated in equation (4-3)

passes those spectral segments where this ratio is high

(i.e. strong signal and %2?ik noise), while suppressing seg-

ments where it is low (i.e. weak signal and strong noise).

In fact, minimum mean square error filtering is obtained for

stationary and uncorrelated signal and noise if k=2 and m=l.

Then equation (4-3) reduces to an estimate of the noncasual

Wiener filter:

Ill~f) IISw(f) 12

IH(f)-= (4-6)
ISw(f)l 2  + N (f)1 2

4.1.2 Analysis of Exponent Parameter

RefeL ring again to the general equation for spectral

subtraction given in (4-1), the influence of the exponent

parameter "a" on the results should be analyzed to determine

the proper value for implementation. In previous research

(Lim 1978, Berouti et al. 1979, and Paul 1979, 1981] dif-

ferent values of this parameter have been tried with varying

degrees of success for wideband noise situations. For exam-

pie, Lim tried 2, 1, .5, and .25 for "a" and found that for

constant SNR the intelligibility of the recovered speech
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decreased monotonically with the exponent parameter value.

While the results of these earlier researchers may not be

directly applicable to the co-channel interference case,

they do suggest that the exponent parameter requires careful

study. In this section a derivation is presented which con-

siders the effects of the exponent parameter for the low SN'R

case. The results of this analysis suggest that magnitude

difference may be preferable to other types of subtracticn

in this case.

The exponent parameter affects only the magnitude term

in equation (4-1), so denoting this difference as D(f),

then:

D(f) = fISw(f)+Ilw(f) 1a - (f) I 1a (4-7)

If the difference in phase between Sw(f) and Nw(f) is

defined as 9(f), then the magnitude of the sum can be

expanded (the "(f)" are dropped here to simplify the nota-

tion):

D(f) 1 i~w 2 + IS12 + 21NwSwIcos )a/2
" " (4-8)

If it is assumed the noise doesn't go to zero (i.e. INI 1>0),

it can be factored out:
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1/a
S1 2  S 1a/2

D(f) W a + 2 (l'w O- -)COIa( 4-9)

Equation (4-9) illustrates the dependency of the pro-

cessing on the SNR. Now assume that SNR << 0 dB. v.aking a

sccond assumpticn that 0 is not close to ±L, the
2 squared S1R

term in equation (4-9) becomes insignificant compared to the

linear SNR term:

2 <<IN wjcose (for SNR << 0 dB) (4-10)

Dropping the squared SNR from equation (4-9) and using the

first two terms in the Taylor expansion (again assuming SNR

<< 0 dB) yields:

D(f) 2c os8 + aIN (1 cosq a 4-11)

If a good estimate of the noise spectrum is available, then

INwI _ INwI, and:

D(f) : alNwfa-llSwlcOse (4-12)

Consider the effect of selecting several different

values of the exponent parameter a:

a = 2 (power diffs): D(f) 21!w I Sw lcos (4-13}
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a = 1 (mag. diffs): D(f) ISwIcos9 (4-14)

a = 0.5 (sqrt. diffs): D(f) 0.5jSwicoS9/sqrtINwj (4-15)

For all cases except the a=l case the spectral differ-

ence is multiplied by INwj, the magnitude of the noise spec-

trum. For broad-band noise this multiplicative factor is

not an important factor because INwi is nearly constant for

all frequencies. However, when the noise is speech (which

usually does not have a "flat" spectrum) the multiplication

factor INwI can result in considerable spectral distortion.

The phase difference between the signal and noise also

affects D(f) , through the cos9(f) term, but this term is

present for all values of the exponent parameter a. In our

listening tests, which will be described in the next sec-

tion, the cosO(f) term by itself (i.e. in the a=l case) does

not seriously affect the intelligibility of the inverse

transform of D(f) (which gives the spectral subtraction out-

put signal)

4.1.3 Spectral Subtraction Implementation and Testing

- Before implementing a noise suppression system based on

spectral subtraction, it is necessary to determine whether

. .spectral subtraction is a valid approach for suppressing

co-channel speech interference. The experiment presented

S. below considers the case where the interference macnitude

spectrum is available. The purpose of this experiment is to
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first validate the use of Onoisyw phase in the synthesis

process of the spectral subtraction algorithm for co-channel

speech. Secondly, this experiment compares the performance

of spectral subtraction for several values of the exponent

parameter "a".

The algorithm used for this evaluation is illustrated

in Figure 4-2. It is derived from the PSD subtraction shown

in Fig. 4-1. In this case the noise spectrum estimate is

calculated from n(t) (an estimated noise signal) and not

from the silence segments as indicated in Fig. 4-1. A con-

tinuous noise estimate is required here because the noise

signal is not stationary. To verify the analysis of section

4.1.2, where it is shown that a=l gives the spectral differ-

ence with the fewest distortion factors, values of a = 1, 2,

and 0.5 are used.

Consideration was originally given to alternative

transforms instead of the FFT, as suggested by a number of

recent studies. Petersen [1980] suggests that constant-O

transforms are more appropriate because of their closer

*: modeling of auditory processes. McAulay and Malpass [1980]

take a similar approach by using an "increasing-bandwidth-

with-frequency" filterbank in their modified spectral sub-

traction algorithm. However, both of these papers are con-

cerned with removing wideband noise and not with speech

interference. The noise estimation and suppression

-. 6
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approaches for speech interfere nce rely on :esolving the

individual pitch harmonics of the interference. The resolu-

tion afforded by "constant-Q" transforms is not sufficient.

Thus, standard FFT's are used for spectral estimaticn.

A Hamming window is applied to the input data because

of its preferred tradeoff of bandwidth versus leakage

suppression. This window is also compatible with the

overlap-add processing used at the output (Allen 1977,

19821. The mainlobe and first few sidelobes of the magni-

tude frequency response of a Hamming window to a sinusoid of

frequency f, are indicated in Fig. 4-3. As can be seen, the

mainlobe is 4/T Hz wide, where T is the window length in

seconds, so the spectral resolution improves with increasing

window lengths. Unfortunately, speech is not a stationary

process, so the window has to be relatively short in order

to capture enough time resolution. A reasonable compromise

between minimum window length and spectral resolution is a

40 msec window.

At the system sampling rate of 10 kHz, a 40 msec Ham-

ming window corresponds to 400 data samples, which require a

512-point FFT for the transform. .1ith the 50% overlap used

here for the overlap-add processing, the FFT's and spectral

subtraction are done every 20 msecs. This gives a satisfac-

tory degree of temporal resolution since vowel speech spec-

tra are relatively invariant over a 20 msec interval.
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The system was first checked with several test signals;

these consisted of speech with various additive tones and

wideband noise. Then co-channel interference speech samples

with SNR's ranging from -40 to -6 dB were processed. The

outputs for numerous cases with the different a-parameters

of 2, 1, and 0.5 were compared through informal listening

and with the spectral distortion measures discussed in

chapter two.

Typical results from the tests are given in Table 4-1

for an input SNR of -20 dB. The results show that the mag-

nitude subtraction gives the lowest spectral distortion,

with power subtraction a close second, and root magnitude

showing the highest spectral distortions. Informal listen-

ing finds that very little interference is perceivable after

spectral magnitude (a=l) subtraction. A moderate degree of

distortion is heard, but intelligibility is not perceived to

be affected. In contrast, the power (a=2) subtraction out-

put contains a significant amount of residual interference

and sounds less intelligible. The root magnitude (a=0.5)

subtraction results also sound less intelligible than the

magnitude data (however the root magnitude data appears to

contain less residual interference than the power subtrac-

tion output). The speech quality is particularly poor over

lower amplitude segments (such as voiceless consonants and

ends of words). The root magnitude subtraction output also
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contained Imusical tones" type background noise that is well

known in previous wideband noise spectral subtraction

research (see e.g. [Berouti et al. 1979, Wong 1979]).

The -20 dB SNR tests discussed above illustrate the

effect of the power parameter "a* on the output speech. The

S. magnitude subtraction (a=l) is found to perform better than

the other selections. The same result has been found to

different degrees over a wide range of SNR values (i.e. -40

to -6 dB).

4.1.4 Discussion

The experiment presented in 4.1.3 shows that magnitude

differencing is the preferred spectral subtraction technique

for co-channel interference suppression. Experiments with

spectral subtraction algorithms which use estimated

interference spectra have confirmed this result. Details

will be discussed in the following sections of this chapter.

IMore important than the selection of the difference

power "a" discussed above, is the conclusion, derived from

the experiments in section 4.1.3, that spectral subtraction

successfully suppresses co-channel interference using only

spectral mnu information from the interference. The

lack of accurate phase infor:mation in the resynthesis opera-

tion of spectral subtraction was initially thought to be a

possible source of error. However, since the tests done

71
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here show good intelligibility down to -40 dB SNR, the rela-

tive i-portance of phase is seen to be negligible.

Another point illustrated by this study is the effect

of the cross-spectral magnitude term of the signal plus

-.- noise magnitude spectrum, ISw+Nwl, rewritten below:

..( i1/2
i w+jwl iSwi 2 + lw 12 + 2 1SwIINwICOS 8  (4-16)

where:

0 = phase(Sw) - phase(Nrw)

it was originally thought that the cross ter m (i.e.

2 1SwjIjNwICOs8) was the source of error in the spectral

difference calculation. However as the derivation of section

4.1.2 shows, if a good estimate of the noise spectral -,agni-

tude is available, then for SNR << 0 dB the desired signal

magnitude spectrum is actually carried in the cross term.

4.2 Spectral Subtraction with Interference Synthesis

The preceding section investigated spectral subtract-ion

for co-channel interference suppression assuming a good

estimate of the interfering speech magnitude spectrum is

available. The rest of this chanter considers the other

half of the problem (i.e. estimating the co-channel
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interference) . Several interference estimation methods are

developed and combined with spectral subtraction. In sec-

tions 4.2.1 and 4.2.2, two time-domain noise estimation

techniques, LPC and harmonic synthesis, are presented.

All of the interference estimation techniques developed

are pitch-based, so the same assumptions (infrequent overlap

of desired and interfering talkers' pitch contours, etc.)

made for the pitch-based extraction algorithm of chapter

three are applicable. The primary difference is that the

pitch-based processing is now used to estimate and suppress

the noise. For the negative SNR conditions under considera-

tion, the assumption that good pitch estimates are available

is actually more reasonable (i.e. the pitch is now calcu-

lated for the interference which is the higher energy part

of the co-channel signal).

Pitch-based interference estimation and suppression

applies only to voiced segments of the interference, which

are generally higher in energy than the unvoiced (non-

harmonic) segments. Unvoiced interference segments are also

difficult to estimate on a short-term basis because of their

broadband noise character. Hence no attempt is made in this

study to estimate and eliminate unvoiced interfering speech.

73



4.2.1 Spectral Sampling/Harmonic Synthesis (SS/HS)

v*. The harmonic synthesis algorithm described in chapter

K:. three is used to obtain an interference estimate for spec-

tral subtraction by spectral sampling at the interference

pitch harmonics. A block diagram of this approach is shown

in Fig. 4-4. The "spectral magnitude subtraction" component

represents the spectral difference and resynthesis opera-

tions of Fig. 4-2, with a=l for magnitude differences. The

noise estimate, n, for this subtraction comes from the har-

monic synthesizer, which in turn uses the estimates of the

noise energy and pitch harmonic amplitudes determined from

the spectral sampling (R0 and Cm of equations (3-4) an6 (3-

1), respectively). Since the spectral sampling algorithm

requires computation of the same windowed "s+n" FFT used in

spectral magnitude subtraction, the FFT output is used for

both operations.

The output of the system is switched between the spec-

tral magnitude subtraction output and the original co-

channel interfered speech, s+n. When the interference is

unvoiced, s+n is simply passed through the system. Linear

interpolation between the two switch positions is performed

to reduce discontinuities caused by voicing changes. For

example, when the interference cha.ges from voiced to

unvoiced speech, the output is interpolated over " data

points around this transition using:
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s (m) = ¢ , )s(m)+ €, 2
1_ (s_(m) n(m)) (4-17)

The lei,9th of the "frame" or "block" of data in the above

interpolation, and for all operations of the noise estima-

tion, is 20 msec (i.e. M=200); this "frame" length equals

the interval between successive spectral subtra-ticn opera-

tions, as detailed in 4.1.3.

An important parameter that can be varied in taking

spectral differences, but has not yet been discussed, is the

gain factor, gs [Berouti et al. 1979, Wong 1979] . This can

be included in the spectral difference of equation (4-1) as

a multiplier of the estimated noise spectrum:

tsI)+Wf)I ia}

IS = iSw(f) +Nw(f)Ia - a) (4-18)

To incorporate this parameter into the present system, its

square (i.e. g2) can be inserted as a multiplying factor of

R0 in Fig. 4-4. A value of one was assumed for gs in sec-

tion 4.1, but other values can be used if it becomes neces-

sary to compensate for any consistent scale error in the

level of the estimated noise spectrum.

A rance of values was tried for gs, but no value

appeared to give significant improvement over the original

value of gs=l. It is interesting to note that if gs is made

too large (i.e. as > 2), "musical tone" noise is generated.
I
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This is to be expected, since such 'over subtraction" tends

to leave isolated non-zero spectral components.

Spectral distortion measure (SDN) comparisons were done

between power, magnitude, and root magnitude spectral sub-

traction with the harmonic synthesis noise estimation, and

Table 4-2 summarizes the findings. The magnitude spectral

subtraction (a=l) again yields the best overall results in

the SDM. Towever, since the interference spectra used here

are estimated, the distinctions between the three types of

spectral subtraction are not as pronounced as in the exact

noise spectral subtraction tests of Table 4-1. The magni-

tude and root magnitude subtraction SDM's are particularly

close.

Informal listening comparisons were also conducted. The

listening evaluation found that the magnitude subtraction

cases sound better than the root magnitude data; both

methods reduce the interference, but in the root magnitude

cases the cluality and gain characteristics oc the desired

speech are more distorted. Thus, magnitude spectral sub-

traction again appears to be a better choice than power or

root magnitude subtraction.

Comparisos to the other two inter20 rence estimation

algorithms will be discussed in section 4.4.

K .
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4.2.2 LPC Noise Synthesis (LPCN)

The algorithm considered in this section is almost the

same as the SS/HS algorithm Just described. It is different

only in that the interference is estimated by LPC analysis

and synthesis. A block diagram of the system is shown in

Fig. 4-5(a).

To evaluate the potential of this technique, LPC

analysis/synthesis of the interference alone is first

obtained as shown in Fig. 4-5(b). The "clean noise" LPC

synthesis is used to suppress the interference spectrum by

magnitude spectral subtraction. This experiment provides

testing of spectral subtraction for noise estimates whi'>

approximate the noise spectrum in envelope characteristics,

0/An(z), and pitch frequency spacing of the harmonics, Fo .

The test system of Fig. 4-5(b) resulted in a signifi-

cant amount of interference suppression according to infor-

mal listening. However the amount of interference suppres-

sion is much less than the near perfect results of the

*exact noise magnitude" tests described in section 4.1. The

difference is a result of errors in LPC synthesis modeling

of speech.

The next experiment determines whether adequate

interference suppression can be obtained with LPC noise syn-

thesis obtained by combining a Fo contour from "clean noise"

(i.e. n) and an LPC spectral model derived from s+n
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Fig. 4-5: Spectral Subtraction Using Estimated Noise from
LPC Analysis/Synthesis
(A) LPC analysis/synthesis from "s+n"
(B) LPC analysis/synthesis from noise alone
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(i.e. As+n (z)). It was originally expected, with the

assumption of low SUR, that As+n(Z) would be sufficiently

close to A n(z) that derivation of the LPC parameters from

"s+nN, as in Fig. 4-5(a), would yield similar results to

Fig. 4.5(b). Also, the relative importance of the LPC resi-

dual signal with respect to the envelope, shown by the

experiments discussed in section 3.1.1, suggests that if a

residual signal obtained from the Oclean noise" pitch were

used to excite As+n(z), a good noise estimate could be syn-

thesized. Unfortunately, the results obtained using As+n(z)

were substantially worse than the results from using the LPC

noise synthesis obtained from noise only.

Several modifications for improving the output quality

were investigated. First, since the total squared error of

the spectral modeling with LPC is known to decrease as the

filter order M is increased, a range of filter orders up to

M=24 was evaluated. As M approaches infinity, the model

spectrum approaches the short-term magnitude spectrum of the

input [Markel and Gray 19761

(:r /IAs.n(Z) I -- IS(z)+N(z)I, as M - o o (4-19)

where z -e 2 rf/F 5

So it was expected that for large N the LPC-synthesized

noise technique will give similar results to the SS/HS con-

sidered in section 4.2.1 (as shown in section 4.4, the



spectral distortion computations for this technique do

closely resemble those from SS/HS) . However, varying 14

between 12 and 24 makes no significant difference in the

results, so M=12 is used for the comparisons of section 4.4.

Next, window overlap in the spectral subtraction was

decreased from 20 msec to 10 msec in order to obtain better

time resolution, but _.his also did not significantly affect

the spectral distortion performance. Finally, the gain and

exponent parameters (gs and a in equation (4-18)) were

varied. These tests again showed that the preferred parame-

S- ter values are those initially used (a=l and gs=i).

Comparison to the other interference estimation tech-

niques will be presented in section 4.4.

-4.3 Harmonic Magnitude Suppression (HMS)

The basic premise of the HMS algorithm is that pitch

harmonic spectral sampling can be used to estimate the noise

magnitude spectrum for spectral subtraction, as done previ-

ously with the SS/HS technique of section 4.2.1. However,

the HMS approach exploits several properties of the situa-

*" tion to obtain better estimates of the interfering speaker's

magnitude spectrum:

1) Steady state voiced (periodic) segments of the
speech interference can be expressed as a sum of har-

. monics. Thus, interference magnitude spectrum can be
estimated from an approximation of a spectrum of win-

S2



dowed sinusoids, with amplitudes determined from 2)
below (this harmonic property is not accurate for
voiced speech segments where the pitch is changing
rapidly; however, in most cases the pitch is fairly
constant over a short window).

2) The best estimate of the amplitude of each
interference harmonic is obtained at the peak of the
harmonics (i.e. at integer multiples of fundamental
pitch frequency).

3) Pitch estimation errors of the voiced interference
are generally small (a few Hz). An adaptive procedure
using a minimum spectral difference power optimality
criterion is developed to correct such errors.

Consider modeling a voiced interfering speech segment

of constant pitch frequency Fo by a sum of cosines:

L
n(m) = Z D cos(mfp+Yp) (4-20)

p=l

where:

m = time index

D
p= spectral amplitude of p-th pitch harmonic

Yp = phase of p-th pitch harmonic

L = integer [Fs/2Fo] (Fs = sample rate)

f = 27rpFo/F s (normalized pitch harmonic frequency)

To measure the spectral amplitude values, Dp, the signal is

time limited with a finite length time window, w(m), and

discrete Fourier transformation (DFT) is performed on the

product (the "wn subscript on Nw(k) indicates this
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windowing):

Nw(k) = n (m) w(m) (4-21)
m= 0

Substituting the expansion for n(m) of equation (4-20) into

* - (4-21), denoting the transform of w(m) by W, and using con-

volution in the frequency domain for the time domain product

yields:

L jyp j(-fpl L -jp j(e+fp)
Nw(k) = 1 Dpe Wje J+ 8P I e P e )ip p=±

(4-22)

where e = 27rk/K (normalized frequency)

Equation (4-22) indicates that each of the interference

harmonics in the spectrum is represented by a single pair of

window transforms (at positive and negative frequencies fp).

With carefully chosen window shape and length (and/or suffi-

ciently high pitch frequency), each interference harmonic

can be individually resolved and the amplitudes D estimated

by sampling the magnitude DFT at the frequencies f A 40

msec Hamming window is selected, as discussed in section

4.1.3, as a a good compromise between frequency and time

" resolution.

The minimum size FFT required for 40 .sec of data at a

sampling frequency of 10 kHz is 512 points, which yields
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spectral samples spaced 20 Hz apart. Unfortunately, the

interference harmonics do not always occur every 20 Hz, so

interpolation of the spectral values is required to obtain

the most accurate amplitude estimates at the exact harmonic

frequencies. A simple way of accomplishing this is by

appending zeroes to the 40 msec windowed data and using a

higher-order FFT (the zero-padding is strictly for interpo-

lation purposes since the basic resolution of the spectral

analysis is fixed by the 40 msec Hamming window).

Because the interference harmonic amplitudes D are

estimated from the co-channel signal, there will be estima-

tion errors due to the presence of the desired speech. One

possible solution is to first derive the spectral parameters

of the desired speech and use these to improve the estimates

of Dp; however for the low SNR cases of interest here, it is

very difficult to derive A parameters of the desired

speech. Therefore, without desired speech spectral informa-

tion, the best estimates of the DpIs come from the points

where the interference has the highest spectral amplitudes,

which are at the pitch harmonics fp.

The noise magnitude spectrum estimate (used for spec-

tral subtraction) is based on the estimated harmonic ampli-

tude coefficients and the known frequency response charac-

teristics of the Hamming window. As mentioned earlier, the

length of the Hamming window has been chosen such that the
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mainlobes of the pitch harmonics of the windowed noise do

not usually overlap. Further, the sidelobes of the Hamming

window are more than 40 dB down from the mainlobe peak and

drop off at an asymptotic rate of 20 dB per decade. With

this degree of selectivity, it can be assumed that the

interaction between the windowed noise harmonics is minimal.

Thus, given a set of estimated noise harmonic amplitudes D

the noise magnitude spectrum can be expressed approximately

in terms of only the window's mainlobe characteristic, W,. ml '

at each pitch harmonic. Replacing each window spectrum with

Wml in equation (4-22) (only positive values of the normal-

ized frequency e indicated for simplicity) then gives:

L
Iw(k) 1: D W [fPI(4-23)

l w~kl -'}p=l 6p

where

I W(eje) for iei< first zero of W(eJe)

W~ml (e)
0 for lei>_ first zero of W(eje)

Fig. 4-6 illustrates the principle for the p-th harmonic of

the noise. The interpolated "s+n" magnitude spectrum (the

solid line) is evaluated at the frequency pFo, yielding the

value of D Then the noise magnitude is approximated by
p.

the mainlobe of the Hamming window frequency response scaled

to equal D at its peak. This is represented by the dashed
p

line in Fig. 4-6 (the first sidelobes are shown for
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reference only and are not used in the approximation). The

harmonic sampling and noise magnitude spectrum reconstruc-

tion described above provide the INI input to the spectral

magnitude subtraction, as indicated in the HMS algorithm

block diagram of Fig. 4-7.

An adaptive pitch optimization algorithm is indicated

by the dashed "feedback" from the spectral differencer to

the noise pitch estimation. The purpose of this algorithm

is to correct for small errors in the initial pitch estimate

by perturbing the pitch until the power of the spectral

difference is minimum. When the interference is of much

larger amplitude than the desired speech (generally true for

negative decibel SNR) and the interference signal is

periodic, the power at the output of the spectral dif-

ferencer should be minimized when the "true" noise pitch is

attained.

Assuming most of the errors in the initial pitch esti-

mates are only a few Hertz, the pitch perturbation procedure

described above finds the pitch value which provides the

most noise suppression. It should be noted that pitch

errors outside the perturbation range will not be corrected.

However, the perturbation range must be kept small because

if it is too large, the power minimization can be affected

by desired speech harmonics and/or multiples of the wrcncg
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noise harmonic (i.e. the 3rd, 6th, 9th, ... pitch harmonics
can be interpreted as due to 1.5F o instead of Fo ) . A :itch

perturbation of +3 Hz (in 1 Hz increments) was found suffi-

cient to correct most of the small errors; larger pitch per-

turbations did not significantly improve the SDM performance

of tre noise suppression algorithm.

-,peraticn of the pitch correction routine is illus-

trate- with an example in Fig. 4-8. The test signal con-

sss t of: ro harmonically-related sinusoids (at 96 and 576

Hz). The :cp waveform is the output from the H S algorithm

as tne initial pitch estimate is swept in steps of about 1

Hz through a range of frequencies which includes the test

signal fundamental of 96 Hz. When the initial pitch esti-

mate is within ±3 Hz of the fundamental, indicated by the

region between the dashed vertical lines, the test signal is

almost totally suppressed. Note the difference in scales

between the output and input ij about nineteen to one.

The test just described illustrates the upper bounds on

system performance because the test si_na1 is perfect! ;.

periodic and there is no competing signal (i.e. no desired

speech) to introduce errors into the spectral estimation.

When tested on co-channel speech, the HMS alcorithm provides

a lesser. but still significan.t, amount of interference

suppression. The amount ot suppression decends on tne 2cm-

racy of the harmonic model.

9-
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Power and root magnitude spectral subtraction were com-

pared with magnitude spectral differences, and the results

are summarized in Table 4-3. Similar to the tests of the

• :' SS/HS technique of section 4.2.1, all three subtraction

methods gave rather close SDM's. Results for the magnitude

and root magnitude cases are particularly close. Informal

I- listening comparisons between them are consistent with the

distortion performance results. The magnitude and root mag-

nitude samples contain less perceivable interference than

the power subtraction cases. However, the root magnitude

method is perceived to distort the quality and gain charac-

teristics of the desired speech more than the magnitude

difference method. Thus, magnitude spectral subtraction is

found to be the best approach for harmonic suppression. The

HMS algorithm will be compared with the other two algorithms

in the next section.

S4.4 Algorithm Performance Comparisons

Three methods of noise estimation and suppression have

been developed in this chapter: noise estimation using spec-

tral sampling/harmonic synthesis (SS/HS), LPC noise syn-

thesis (LPCN), and harmonic magnitude suppression (HMS).
These algorithms are compared based on SDM calculations and

informal listening evaluation. The implementations of theI . three algorithms were covered in the preceding two sections.
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The important parameters of the algorithms will be briefly

reviewed below.

All three algorithms are tested with "clean" pitch

derived from the known interference signal. The spectral

magnitude subtraction component is the same for all three

approaches: the gain factor gs is set to one, 40 msec Ham-

ming windows are applied to the ws+nn signal before FFT, and

a 20 msed window overlap is used. The SS/HS and HMS algo-

rithms also utilize the FFT output for spectral sampling.

The LPCN algorithm applies a 200-point window with a

12th-order LPC autocorrelation analysis to the co-channel

signal for estimation of the interference spectral envelope

parameters. The interference synthesis is performed with

* pitch synchronous interpolation of the gain, pitch, and

reflection coefficients (Markel and Gray 19761

In the HNS algorithm, the pitch perturbation range is

set at ±:3 Hz (in 1 Hz steps). As will be shown, this small

amount of pitch perturbation improves the results from the

algorithm, even though the pitch contours were extracted

from the "cleanw interference signal. Results from the HMS

algorithm without pitch perturbation (i.e. perturbation = 0

Hz) are included for comparison.

The SDM comparisons for these tests are shown in Table

4-4. As these figures indicate, the H!.S algorithm with ±_3

Bz pitch pe.turbations produces the lowest overall SDM
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values for both standard and 18 dB-limited spectral distor-

tions. However, the SDM values for all the algorithms are

relatively close.

Informal listening comparisons find comparable amounts

of interference suppression for all three algorithms,

although there were noticeable differences in the quality of

the processed outputs. The most obvious quality differences

occur between the LPCN and the other processing methods.

While the voiced interference remaining in the processed

output of the SS/HS and HIS algorithms is considerably dis-

torted and sounds *whispered or buzzy', the residual

interference using LPCN sounds speech-like.

The difference noted in the quality of the LPCN data is

also evident in the time waveform and spectral plots of the

output. Comparisons of sample outputs from the LPCN and HMIS

(with no pitch perturbation) algorithms for a segment of

co-channel speech where the desired speaker is virtually

silent are shown in Figs. 4-9 and 4-10. In this case the

a'appropriate output would be zero. While the HMS algorithm

removes most of the pitch harmonics of the noise, the LPCN

* misses several important harmonics, so the residual
a,.

interference waveform appears periodic and sounds like

voiced speech. Such incomplete cancellation of the

interference in the LPCN case is expected because in the

LPCN1 algorithm the interference estimate is based on the LPC

.4 96
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model spectrum, which is an approximate fit to the "s+n"

spectrum, while the HMS and SS/HS methods directly sample

the ls+nm spectrum. This illustrates the importance of

accurate interference spectrum estimation for spectral sub-

traction.

The HMS and SS/HS are preferred over the LPCN algorithm

because the interference is not speech-like, allowing the

listener to focus on the desired speaker's voice. The

differences between the HMS and SS/HS algorithms are much

more subtle, which is expected since both algorithms esti-

• mate the interference by spectral sampling. Without adap-
".

tive pitch correction, the HMS and SS/HS output sound very

similar. The extra interference suppression obtained with

adaptive pitch correction (with a +3 Hz perturbation range)

is a small, but perceivable, improvement.

Both SDM comparison and informal listening finds the

HMS with adaptive pitch correction to be the preferred

approach. Formal intelligibility evaluation of the method

will be discussed in chapter five.
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5.0 FINAL ALGORITHM TEST AND EVALUATION

Based on the spectral distortion measure and informal

listening comparisons discussed in section 4.4, the harmonic

magnitude suppression (HMS) algorithm was selected for the

final intelligibility test. The HMS algorithm tested is

briefly summarized in section 5.1. The test procedures are

discussed in section 5.2. The results are presented in sec-

tion 5.3.

5.1 The Harmonic Magnitude Suppression (HM4S) Algorithm

* A block diagram of the processing algorithm tested is

- shown in Fig. 5-1. It is the HMS algorithm, discussed in

sections 4.3 and 4.4 except for one small change. The change

is to use maximum estimated noise power instead of minimum
.4

spectral difference power as the feedback for pitch correc-

tion. This is shown in Fig. 5-1, where the dashed line

(indicating the feedback path for pitch correction) ori-

ginates from the estimated noise spectrum, INI, instead of

from the spectral magnitude difference II, as shown in Fig.

4-7. The new feedback produced equivalent SDM results and

the speech quality is informally judged to be the same.

This change saves computation time by avoiding the square-

root (required for magnitude subtraction) until all the

'Cpitch perturbations are finished.

100



J 4

2 - 0 Z0

0..

in

CLl

CLi

.. 0 >.

0 0'

C C

* 101



The pitch and voicing parameters used to estimate the

interference are extracted from the known interference, as

indicated by the noise input into the pitch and voicing box.

The assumption of *clean" pitch and voicing information has

been used throughout this work (and in previous studies

[Perlmutter et al. 1977]) for testing. This allows separa-

tion of the pitch detection problem from the H,'1S algorithm.

Except for this assumption on pitch and voicing, the rest of

the system of Fig. 5-1 is realizable and requires no other a

priori information about the co-channe! signal. It should

be emphasized again that fur co-channel speech with low

SNR's (i.e. -6 and -12 dB) tested in this study, accurate

pitch and voicing estimation for the interference signal is

reasonably achievable becauLe the interference is generally

much stronger than the desired signal.

The HMS algorithm applies only to voiced interference

segments. The unvoiced segments are passed through. It

should be noted that th-is approach occasionally leads to

distractingly high levels of unvoiced interference in the

output. One-frame linear interpolation between processed

and unprocessed data is performed at voicing transitions to

avoid abrupt changes. This is shown as the "voicina-

controlled switching and interpolation" in Fig. 5-1.
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5.2 Intelligibility Testing

Details of the testing procedures have been discussed

in section 2.1. Only several points specific to this test

are discussed here. They are summarized in Table 5-1.

- The first three items in Table 5-1 relate to test data

preparation. Ten phonetically balanced sentences were used

for the desired speaker, and ten different PB sentences for

the interference (split evenly between two different

interfering speakers). The text of the test sentences is

included in appendix B. Co-channel test data with SNR's of

-6 and -12 dB was constructed from these sentences using the

procedures described in section 2.1.

The listener panel consists of ten subjects, seven of

which were professionals or graduate students in the speech

and hearing field. Trained listeners were selected on the

assumption that they would yield more consistent results,

which is generally verified by the results. All the

listeners had no prior experience with co-channel type data,

and thus required some orientation and training, as dis-

cussed in section 2.1, by way of a handout (appendix A) and

short demonstrations.

The HMS-processed data was tested as an enhancement to

the unprocessed co-channel data. That is, the subjects

heard processed And unprocessed data for half of the sen-

tences, and only unprocessed data for the other half of the
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0 1 Desired Speaker, Two Different Interfering Speakers

. Ten Phonetically. Balanced Desired Speaker Sentences and
Ten Phonetically Balanced Interfering Speaker Sentences

-6 dB and -12 dB SNR's

Ten Listening Subjects

Unprocessed Only: 5 Sentences
Unprocessed and Processed: 5 Sentences

M Iultiple Listens Allowed

•.Orthographic Transcription

Table 5-1 Final Intelligibility Tests

1a.0
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sentences (this is the intelligibility improvement test pro-

cedure discussed in section 2.1). All listening subjects

heard the -12 dB data first. For each speech sample, as many

*: repeats as needed were allowed. After a short break, the

subjects were presented the -6 dB test. The data was

presented in the same order as the earlier test. It was

assumed that since the data at -6 dB would be more intelli-

gible than in the -12 dB test, and as many listens as needed

were allowed, the later session (-6 dB) did not benefit from

the earlier one (-12 dB). At the end of both listening ses-

sions, the transcriptions were scored. The results are dis-

cussed in the next section.

5.3 Results and Analysis

The listener transcriptions are scored according to the

rules defined in section 2.1. The results are tabulated in

Table 5-2. Each entry in the table is the number of words a

subject correctly (or partially) transcribed from a sample.

The even numbered subjects in the table heard the even num-

bered sentences after processing, and the odd numbered sub-

jects heard the the odd numbered sentences after processing.

Thus each sentence was heard by five subjects after process-

ing, and by the other five without processing.

*.. The average intelligibility scores are computed to pro-

vide an overall evaluation of the enhancement algorithm.

First the probabilities of correctly transcribing a word
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with and without processing are estimated:

- number of words correct with procesin(-

p p - p
£ number of words correct without trocessinp

- Pu Nu (5-2

where

Np a total number of words presented with processing

Nu - total number of words presented without processing

The average intelligibility improvement is then defined as
A ^

the difference, A = P put of the above. The calculated
,%

values, expressed in percentages for the SNR's of -6 and -12

dB, are given in Table 5-3. The most important result shown

there is an increase in intelligibility for the -12 dB case

from 53.8% without processing to 62.7% with processing.

This 8.9% intelligibility increase means 17% more words

became intelligible after processing. The improvement of

3.6% for the -6 dB test is considerably smaller, but this

was expected since the initial intelligibility for unpro-

cessed speech is 78.3%, leaving little room for improvement.

Confidence levels of the intelligibility gain were com-

puted based on the following statistical model of the test.

It is first assumed that the test procedure has removed as

much of the biases and variation as possible from the exper-
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iment so that only the variable of interest (intelligibil-

ity) affects the final results. Secondly, assume that a

word transcribed from the unprocessed data can be either

correct (with a probability of Pu) or wrong (with a proba-

bility of qu - 1 - Pu). Then if the probability Pu is

assumed to be the same for' all of the unprocessed words, a

transcription of each word can be considered a Bernoulli

trial. A shortcoming of the model is that the probability

. of a listener correctly transcribing each word is indepen-

dent of all the other words transcribed in the test (by him-

self or other listeners). With the above assumptions the

total number of correct transcriptions for a particular data

condition (processed or unprocessed) has a binomial distri-

bution. The transcriptions for data with and without pro-

cessing are thus two different binomial processes. The mean

and standard deviation of the difference between the proba-

bilities of correct transcription can be estimated by:

;PA p - (5-3)

-. (5-4).. : % p Nu

Given this statistical model, it is possible to test

the "null hypothesis": that p Pu a p. For sufficiently

large N's (i.e. Npq 2 9 [Siegel 1956]), the probability
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differences approach a Gaussian distribution. Substituting

p for Pp and Pu into equations (5-3) and (5-4), this Gaus-

sian distribution can be expressed in terms of the standard-

ized variable z:

P2- Pu (5-5)

where
a aI

Np ~ R- NU~ [estimated probability under nullP uNl N
P + u hypothesis: p p = Pu M P]

With the above formulation, the level of confidence

that the null hypothesis is false (i.e. the difference

between p and Pu is not due to chance) can be calculated.

A "one-tailed" test of the hypothesis assumes in this case

that processing only adds information, and gives the confi-

dence level for pp > Pu (i.e. including the processed data

gives a higher probability of a correct transcription than

using unprocessed data alone). The critical value, Zc, for

the above distribution is obtained by substituting the

estimated probabilities PP and Pu into equation (5-5). Then

the Gaussian variable z is integrated from zc to infinity,

providing the probability of rejecting the null hypothesis.

The level of confidence, Lconf , in the hypothesis that

Pp > Pu, is defined as:

Lconf 1.0 - -- e-z2/2 dz (5-6)

1c
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Tabulated values of the above integral versus zc are

*readily available [e.g. Siegel 1956 and Spiegel 19611. From

k] the correct transcription percentages given for the -12 dB

case above, the confidence level for the hypothesis that

processed speech improves the intelligibility is over 98%.

The intelligibility scores at -12 and -6 dB SNR (cases

A and C of Table 5-3) are plotted in Fig. 5-2. The solid

line for unprocessed speech is provided for referencei the

distance between this line and points A and C gives the

intelligibility gain with processing. Although only two SNR

2 values were used in these tests, approximate intelligibility

gains at other points can be estimated by retabulating the

data. For example, if only the top scoring listeners in

each test are considered, the intelligibilities of cases B

and D in Table 5-3 and Fig. 5-2 are obtained. These were

calculated by separately ranking the even and odd numbered

subjects and selecting the top three of each group as "top

scorers". Six subjects were chosen for these groups because

of the separation of their scores from the lowest three or

four scores.

To extrapolate points A through D to lower intelligi-

bility values, another approach is taken. The data from the

-12 dB SNR test are ranked sentence-by-sentence according to

their intelligibility without processing. Then the most

intelligible sentences are successively removed, and the

.q .
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intelligibilities with and without processing are recalcu-

lated for the remaining data; sentences with intelligibili-

ties within a few percentage points are removed together,

otherwise the removal of data is one sentence at a time.

The intelligibility values obtained in this manner are indi-

cated by the crosses in Fig. 5-2. It should be noted that

the amount of data used to calculate each point decreases

with the intelligibility (the point nearest the origin

represents only one sentence)) the confidence assigned to

these points decreases accordingly.

The increase in intelligibility gain with decreasing

unprocessed intelligibility shown in Fig. 5-2 is even more

apparent in Fig. 5-3, which plots relative intelligibility

improvement (gain + unprocessed intelligibility). The one

standard deviation limits for each point (based on the Gaus-

sian approximations) illustrate the increase in score varia-

bility as fewer sentences are included.

The trend indicated by Figs. 5-2 and 5-3 is very signi-

ficant: the gain from the HMS processing appears to increase,

up to a limit, as the intelligibility for unprocessed data

(and by implication SNR) decreases. Such behavior can be

explained as follows. The accuracy of the estimated noise

parameters (pitch and harmonic amplitudes for the EMS

algorithm) increases as SNR decreases, the noise suppression

improves, and thus the intelligibility gain increases.
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6.0 CONCLUSIONS AND RECOMMENDATIONS

-. 6.1 Conclusions

Several post-processing techniques for separating co-

channel speech have been studied and tested in this

research. The major conclusions derived from this work are:

1 1) The harmonic magnitude suppression (HMS) technique sig-

nificantly improves intelligibility for SNR < -6 dB.

This is the key result of the research. As reported in

chapter five, for -12 dB SNR co-channel data, an increase in

intelligibility from 53.8% before processing to 62.7% for

the cases with processing (representing a percentage gain of

17% more words) was obtained. Statistical analysis of the

* test data shows the result to be valid at a 98% confidence

level. No previous research in this area has demonstrated

any measurabi intelligibility gains.

' 2) Intelligibility improvement with HMS processing gen-

erally increases as SNR decreases.

Further analysis of the intelligibility test data, as

discussed in section 5.3, has shown that the relative intel-

ligibility gain tends to increase as the unprocessed intel-

ligibility (and SNR) decreases. In other words, the HMS

technique is most effective for the most corrupted data.
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3) The signal extraction algorithm based on harmonic syn-

thesis does not improve intelligibility.

While the test results on data processed with the har-

monic synthesis extraction approach of chapter three indi-

cate that no intelligibility improvement was obtained, this

initial work prcvided several new directions for investiaa-
.

tion.

4) The potential for intelligibility improvement is

highest for signals with SNR < 0 dB. This leads to a

SIR-dependent processing concept.

The emphasis on negative decibel SNR cases, derived

from the initial intelligibility tests, concentrated the

effort on interference suppressiun (the logical approach for

SNR < 0 dB), which ultimately led to the successful HMS

technique. Further, the importance of the zero decibel

threshold for 'instantaneous" SNR suggests that SNR control

of the processing is a promising concept that deserves close

study.

5) The spectral distortion measures (SDM) developed are

found to be useful algorithm development tools.

Algorithm performance measurement with SDM1's provides a

useful alternative to the often unreliable evaluations of

informal listening, and helps reduce dependence on time-

consuming formal intelligibility testing. It should be
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emphasized that SDM evaluation of processed co-channel

speech is a new concept, and until formal studies determine

a more exact relationship to co-channel speech intelligibil-

ity, SDM evaluation should only be used as a developmental

I tool and not as a replacement for final formal intelligibil-

* ity testing of algorithm performance.

6.2 Recommendations

The research which resulted in the intelligibility

gains reported here represents significant progress towards

realization of a useful co-channel speech separation system.

To further develop this system, the following research

directions are recommended:

1) Automatic pitch and voicing detection

The implementation of automatic pitch and voicing

detection is the key item remaining for completion of the

suppression system. This is a reasonable research task for

the negative SNR cases of interest because the interference

is of much larger amplitude than the desired signal.

2) Processing of unvoiced interference

In the HMS algorithm tested here, no processing is done

. when the interference is unvoiced. Although unvoiced speech

is generally of lower energy than vciced speech, the

.

unvoiced segments of the interfering speech are perceived as
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much louder after the voiced segments have been suppressed.

3) SNR-dependent processing

The results presented in chapter three on the harmonic

synthesis extraction method suggest that a SNR-dependent

algorithm may improve overall intelligibility; with this

,p approach, the processing is applied only on those segments

with the most interference, so that possible distortions to

segments with good SNR are avoided.

4) Interactive playback selection

Based on our experience with the intelligibility tests

conducted for this study, we have found that interactive

playback selection is desirable to allow the listeners to

select between the processed and unprocessed data when both

are available. Such a processed data/unprocessed data

switch is recommended for use in future intelligibility

tests and actual operating environments. This interactive

input from the user is indicated in Fig. 6-1, which shows

how the processing elements discussed above would be

combined in a complete noise suppression system.

5) Performance evaluation

Intelligibility testing is recommended at each major

stage of future development. This is necessary to quantify

the gains obtained and to identify areas requiring more

work. It is recommended that in future intelligibility
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tests more listening subjects, different talkers, and a

larger range of SNR's be included. In between major steps

in the development, spectral distortion measure evaluation

is recommended for algorithm verification and tuning.

6) Spectral distortion measures

The utility of SDM's in evaluating co-channel separa-

tion techniques has been demonstrated in this research. A

• .-, better understanding of the relationship of these measures

to intelligibility is desirable in order to fully exploit

their potential and further expedite algorithm development.

7) Application to automatic speech recognition

Once a prototype co-channel speech enhancement system

is developed, application as a front-end to automatic speech

recognition systems can be evaluated. Research efforts so

.- far have been focused on aiding human listeners, thus the

system's capabilities for improving ASR performance are yet

unknown. Modifications to the co-channel separation system

I.N may be necessary to obtain optimum performance as an ASR

front-end.

8 Real-time system implementation

The HMS algorithm developed is implementable in real-

time with available signal processers. Thus, there are no

inherent problems with developing a real-time system as long

as the additional components developed for the system (i.e.
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pitch-voicing detection, unvoiced interference processing,

* and SNR-dependent algorithn control) are also designed for

real-time implementation.
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SC-CHANNEL EXPERIMENT

A. Purpose of Test: To evaluate relative intelligibility of
different cochannel speech processing methods.

B. Test Procedure:

1) This experiment is semi-automated: proceed at your own rate.
The program waits for your responses at each step of the test.

2) The test consists of ten speech samples from which it is
desired to transcribe the Odesired" speaker's words.

a) A "clean* example of the desired speaker will be
played first; it can also be repeated at any time
as a reminder of the *desired" speaker's voice.

b) If you requested no repeats or examples, then the
dtest would have the following sequence:

Desired Test Test Test Test Test
Speaker--->Sample->S ample->Sample->Sample->Sample
Example #1 #2 #3 #4 #5

v
v Test Test Test Test TestL>__ >__>S ampl e->S ampl e->S ampl e- >Sampl e->S ample

#6 #7 $8 #9 #10

v
END

c) While the Odesired" speaker remains the same
throughout, the interfering speaker will change
after sample #5.

3) The test objective is to correctly write down what the
"desired' speaker says. Note that:

a) All words are standard English.
b) Homonym spellings are acceptable (do not worry if you

heard "to, too or twon)
c) Plurals are important (write the plural form if you
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heard it that way)
d) The articles "the, a or an" are not scored; don't

worry about recording them (you can write them down
if this helps)

e) Word order is important, so write down what you hear
in the right order (even if it doesn't make much sense).

f) Avoid contractions (for example, do not write he's for
*he isn)

g) Educated Oguessesu are acceptable as long as they are
based on what you heard. Also, parts of words or a
couple choices (such as "cup" or *sup" if you could not
decide between them) can also be recorded.

4) This test is designed to be difficult, so it is easy to
confuse the Odesiredu speaker with the interference. If
you have the slightest doubt about which voice is the
'desired" speaker, then record what both speakers arep. saying, and indicate which text is your best estimate of
the desired one.

5) While there are an unlimited number of repetitions allowed,
listeners generally reach a point of diminishing returns
beyond which little further information can be obtained
(at about 10 to 15 repetitions), so don't waste an inordinate
amount of time on any single sample.

6) Also note that there is no "backtracking" feature, so
previous samples cannot be reviewed! However, if you
unintentionally proceed to the next sample, the missing
repeats can be played at the end with help from the test
co-ordinator.

7) Before starting the test several examples of processed data
will be played and explained.
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Sentence Desired Speaker Sentence Number of
Number (Interfering Speaker Sentence) Scored Words

1 fairy tales should be fun to write 7
(steam hissed from the broken valve)

2 we admire and love a good cook 6
(the new girl was fired today at noon)

3 a young child should not suffer fright 6
(they felt gay when the ship arrived in port)

4 acid burns holes in wool cloth 6
(add the store's account to the last cent)

5 there the flood mark is ten inches 6
(the sky that morning was clear and bright blue)

6 add the column and put the sum here 6
"' (sunday is the best part of the week)

7 the third act was dull and tired the players 7
(torn scraps littered the stone floor)

8 she has a smart way of wearing clothes 7
(the child almost hurt the small dog)

9 he carved a head from the round block of marble 8
(there was a sound of dry leaves outside)

1 10 eight miles of woodland burned to waste 7
*(the doctor cured him with these pills)

Desired Speaker: sw (sentences 1-10)
Interference: dj (sentences 1-5)

jt (sentences 6-10)

APPENDIX B: Final Intelligibility Test PB Sentences
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