
W -R0-5695 THE USEFULNESS OF IMIPACT DAMPERS .FOR SPACE A PPLICATIONS 112
(U) AIR FORCE INS OF TECH IRIGHT-PATTERSOH AFB OH
SCHOOL OF ENGINEERING 8 W GIBSON MAR 83UNC|BBB||EhE

mhhhhhhhhhhhhI
mhhhE8EhhhhhhE
mhhhhhhhhhhhhE
EhhhhhhhhhhhhE.

E||hhhhh|EhhE



-- -- a. ~..g-

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANOAROS-1963-A

ILI

N I-.O L-.'-. . .- 1 ..- .



FOR SPACE APPLICATIONS

~THESIS

.,". FIT/GA/AA/83M-2 Bruce W. Gibson
',.'i st Lt USAF

.5 'DTIC

ditfibutif'n is uni td. 14 1983

THDEPARTMENT OF THE AIR FORCER

'.'. AIR UNIVERSITY (ATC)FAIR FORCE INSTITUTE OF TECHNOLOGY

TilES I

W right-Patterson Air Force Base, Ohio

ThFi do ILEen has n O DT C
- . -.- . - .-; ;. ..'a-d-8 ."3 1t 13 1



AFIT/GA/AA/8 3M-2

1

4

THE USEFULNESS OF IMPACT DAMPERS
FOR SPACE APPLICATIONS

THESIS

AFIT/GA/AA/83M-2 Bruce W. Gibson
1st Lt USAF

Approved for public release; distribution unlimited

44 ...

4 .

'Si 4%]



1- 1 .. 7...4

AFITIGA/AA/8 3M- 2

THE USEFULNESS OF IMPACT DAMPERS

FOR SPACE APPLICATIONS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

:-2

by

Bruce W. Gibson, B.S.
lst Lt USAF

Graduate Astronautical Engineering /

. AproedMarch 1983

Approved for public release; distribution unlimited



Preface

- The potential usefulness of the impact damper for

space applications was first proposed by Dr. Peter Torvik,

who suggested a study of it as a thesis topic. This topic

was of interest to me not only as an exercise in basic

dynamics and mechanics and as an opportunity to acquire

laboratory experience, but also as an opportunity to do

basic research in a promising field of vibration control

that is not common knowledge.

I would like to thank Dr. Torvik both for the

freedom he allowed me in this project, and for his knowl-

edgeable advice, which helped me overcome many frustrating

*stumbling blocks. Thanks are also due to Captain Wesley

Cox, for his assistance with the laboratory equipment, and

to Captain Patricia Lawlis, who helped me through the

tedious process of learning the UNIX computer operating

system. Last, I would like to thank Linda Stoddart of the

AFIT Library, who did an outstanding job of obtaining

1 reference material spanning fifty years, often from private

laboratories or journals published in Europe, Russia, and

Japan.
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Nomenclature

c -- Viscous damping coefficient for e of the pri-
mary system.

c -- Viscous damping coefficient for x of the impact-m
ing mass.

c -- Specific heat.

Cs  -- Constant factor in the equation relating s to
the system parameters.

c -- Viscous damping coefficient for a of the impact-
ing mass; c ( c L.

C -- Constant factor in the equation relating m
to the system parameters. mr

d-- Total horizontal distance the impacting mass
can travel; referred to as the effective gap.

d -- Length of the flex plate.

5

e -- Coefficient of restitution.

.0. E -- Modulus of elasticity of steel.

AE -- Change in total energy.

g -- Acceleration of gravity.

Ah -- Change in height.

H0  -- Magnitude of the total angular momentum about
point 0 of both the primary system and the
impacting mass.

H -- Magnitude of the angular momentum of the primarysystem about point 0.

H0  -- Magnitude of the angular momentum of the impact-
m ing mass about point 0.

viii
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i -- Number of impacts.

I --° Moment of inertia of the primary system about
its rotation point.

I' -- Moment of inertia of the cross-sectional area.
'S

I -- Moment of inertia of the impacting mass aboutthe rotation point of the primary system.

I' -- Moment of inertia of the cross-sectional areaB of the beam in the forced vibration labor- ory
* model.

I' -- Moment of inertia of the cross-sectional A
of the flex plate used in the free vibrat '
laboratory model.

k -- Stiffness constant resisting the angular "s-placement of the primary system.

k-- Stiffness constant resisting an x displacementm of the impacting mass.

L -- Magnitude of the moment arm used to calculate
the angular momentum changes (for the primary

V. system and the impacting mass) due to an impact.

Lb Length of the beam used in the forced vibration
laboratory model.

L -- Distance from the rotation point of the impact-
Lm ing mass to the impacting mass.

m -- Mass of the secondary, or impacting, mass.

M -- Moment in a beam.

M-- Moment applied to the primary system by the
8 flex plate.

T -- Total mass of the primary system.

0 -- Point about which the primary system rotates.

q Damped frequency of the primary system.

Cm -- Damped frequency of the impacting mass.

4.M
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r -- Iaximum amplitude of the primary system at time
zero.

rOm -- Distance from the point 0 to the center of mass
of the impacting mass.

rom -- Vector from the point 0 to the center of mass
of the impacting mass.

r -- Distance from the point 0 to the point where
the flex plate is attached to support the pri-
mary system in the free vibration laboratory
model.

s -- Constant time rate of change of eM. referred to
as the damper efficiency. j

t -- Time.

t. -- Time of the ith impact.1

-- Time immediately after the ith impact.

t-- Time immediately before the ith impact.
1

t-- Time during the jth cycle when the maximum
tS amplitude is reached.

At -- Time since the last impact, At = t - t..1

AT °  -- Change in temperature.

ATmax -- Change in the maximum kinetic energy.

u -- Distance from the center of the flex plate to
the surface.

V -- Velocity.

V -- Velocity of the impacting mass.

V -- Vector velocity .;f the impacting mass.

W -- Total weight of the primary system.

x -- Time dependent horizontal position of the impact-
ing mass.

x -- Time rate of change of x.

- y -- Coordinate along the length of the flex plate.

x



Greek Characters

a - Angle between the strings suspending the impact-
ing mass and the vertical. See Figure 24.

6 -- Logarithmic decrement.

e- Strain on the surface of the flex plate.

F_-- Measured strain on the surface of the flex plate.

-Viscous damping factor.

8 -- The angular displacement of the centerline of
the flex plate from the vertical. Along the
flex plate e is a function of y. At y = d
8-is the angular displacement of the primary
system from the vertical. See Figure 24.

0m M. Maximum amplitude of the primary system during
I cycle j.

o - Initial maximum amplitude of the primary system.
mO

o - Amplitude of the primary system at which the
Mr . impact damper becomes ineffective, referred to

as the residual amplitude.

O - Derivative of a with respect to time.

6 f -- Final maximum angular velocity of the primary
max system.

8 - Initial maximum angular velocity of the primary
0max system.

p - Mass per unit length of the beam in the forced
vibration laboratory model.

WF- Frequency at which the forced vibration labora-
tory model is excited.

W- Natural frequency of the primary system.

xi
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Abstract

The usefulness of the impact damper in eliminating

vibrations is studied analytically and experimentally.

Laboratory models of vibrating systems are constructed to

evaluate the performance of the impact damper in reducing

or eliminating forced and free vibrations. A computer simu-
.4

lation of a single degree-of-freedom primary system in free

vibration employing an impact damper is constructed for the

sane purpose. Laboratory free vibration results are com-

pared to the computer simulation in order to judge its

accuracy.

The computer simulation is employed to determine

the impact damper's performance in free vibration as the
'

system's parameters are varied. Two significant measures

of the damper's effectiveness are obtained as approximate

• " functions of the system's parameters.

Observations regarding reduction in amplitude and

steady state motion were made for the impact damper in

forced vibration.

,x •
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THE USEFULNESS OF IMPACT DAMPERS FOR

SPACE APPLICATIONS

I. Introduction

An impact damper, also referred to in the litera-

ture as a rattle damper or an acceleration damper, is a

simple, passive damping device. It operates by allowing a

vibrating primary mass to go through a series of collisions

with a secondary mass carried in or on the primary mass.

Figure 1 shows one of the simplest models of an impact

damper, with a primary mass M free to travel in one dimen-

0 sion only, acted upon by a forcing function F(t), a secon-

dary mass m, a spring of stiffness k, and a dashpot with a

damping constant c.

In the simplest case, the motion of the secondary,

or impacting, mass m is assumed to be a result of colli-

sions with the primary mass alone, so the impacting mass

has a constant velocity between impacts. If F(t) is sin u-

soidal, then the momentum exchange and the energy dissipa-

tion resulting from the impacts usually results in a

decrease in the amplitude of motion of the primary mass.

If the primary mass is in free vibration (F(t) = 0), then

the impacts cause a more rapid decay in the amplitude of the
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motion of the primary mass through energy dissipation and

'momentum exchange.

This simple damper could be of practical use for

space applications in eliminating the unwanted vibrations

of antennas, telescopes, or any other flexible structure

which tends to-oscillate about its intended orientation.

In the near vacuum of space, external damping forces are

essentially zero. Thus, such structures must have internal

damping designed into them. If the impact damper provides

sufficient, reliable damping without adding prohibitive

mass to the total payload, it could be a solution to some

oscillation problems.

An extensive literature search turned up much work

on the effectiveness of the impact damper in reducing forced

vibrations. Contradictory conclusions were identified.

Paget (Ref 1) probably did the earliest writing on the

impact damper, but the first serious analytical work

appears to be that of Lieber and Jenson (Ref 2). In their

paper, work and energy considerations were used to solve

for the one degree of freedom motion of a primary mass

undergoing perfectly inelastic collisions with a secondary

mass. These results were used to calculate a damping fac-

tor which was verified experimentally through comparison

with the damping observed in the free vibration of a beam

with an impact damper attached. Their solution predicted

the impact damper would be most efficient (do the most work

3



per cycle) if two impacts per cycle occurred with impacts

equally spaced in time.

Grubin and Lieber (Ref 3) gave a more straightfor-

ward solution of the motion of the system for collisions

ranging from perfectly inelastic to perfectly elastic. In

Reference (4), it is shown that solutions are possible

when stable and symmetric motion is assumed; i.e., that

two impacts occur at equal time intervals during the cycle.

This is referred to as symmetric, two impact per cycle

motion. Such motion has often been assumed, and in Refer-

ence (5) was reported to occur when an impact damper was'

attached to a cantilever beam in forced vibration. Grubin

and Lieber (Ref 6) went on to do a stability analysis on

this symmetric, two impact per cycle motion. Lieber and

Duffy (Ref 7) modeled a cantilever beam with an impact

damper as a system composed of four lumped masses and used

an electric analog model of this system to study the effects

of parametric changes on the dampers' performance.

Feygin (Ref 8) solved and did a stability analy-

sis for the motion of an impact damper similar to that

shown in Figure 1, but with the motion of the impacting

mass between impacts subjected to dry friction. Masri

(Ref 9) started with the assumption of symmetric, two

impact per cycle operation and solved for the motion of

the system under sinusoidal excitation. He also did a

;: ~stability analysis to show this motion did exist for a

4
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wide range of system parameters, and verified his results

experimentally and with both digital and analog computer

simulations.

Masri (Ref 10) solved for the motion of a forced

system with any number of impacts per cycle. Sadek (Ref 11)

assumed two impacts per cycle and used a Fourier series

representation of the impacting forces to come to the con-

clusion that, in general, symmetric impacts do not occur,

especially for system parameters leading to the maximum

reduction in amplitude of the primary system. He used a

laboratory model to verify his results.

Sadek and Mills (Ref 12) solved for the motion of

the system in forced vibration with the impact damper

* affected by gravity, while Sadek and Williams (Ref 13)

then provided a stability analysis on these results. Sadek

and Thomas (Ref 14) solved for the motion of a system in

forced vibration and with the secondary mass attached to a

spring and influenced by gravity.

Masri and Sadek have both published several papers

on impact dampers with carefully solved equations of motion

and stability analyses. The only significant difference in

their approach is that Masri, and many other authors,

modeled the impacts as being of infinitely short duration,

thereby causing a discontinuous change in the velocities,

but not the positions, of the two masses. Sadek uses a

Fourier series representation of the impact force and

* 5



'" treats impacts as being of short, but finite duration.

Masri's (Ref 9) solution for the sinusoidally forced system

shows symmetric, two impact per cycle motion to be pos-

sible for a wide range of system parameters, and that this

kind of system gives the maximum reduction in the primary

system's amplitude. Sadek's (Ref 11) solution is for a

system at a specified re 1o of secondary mass to primary

mass and at a specified forcing frequency. This solution

gives only one value for the gap in which the secondary

mass travels which will give symmetry, and this gap does

not give maximum reduction in amplitude. Masri (Ref 10)

also predicts that the amplitude decreases with an increase

in the ratio of the secondary mass to the primary mass,

while Sadek (Ref 11) says that there is an optimum value

for this ratio, and that increasing it beyond this point

increases the system's amplitude.

Roy, Rocke, and Foster (Ref 15) did an analytical

and experime.-tal study of the impact damper in the center

of a beam in bena'ng vibration, using both a simply sup-

ported beam and a beam with both ends clamped. They used

both a closed form solution for the motion of the beam

between impacts and a discrete mass model of the system to

do numerical calculations of the motion of the beam.

These numerical solutions were verified with experimental

results. All previous researchers did the analytical work

6



assuming a rigid bodied, single degree of freedom primary

system.

Dokainish and Elmaraghy (Ref 16) did a computer

simulation of an impact damper and produced a series of

curves from which damper performance can be predicted for a

given set of system parameters. Yamada (Ref 17) solved for

the motion of a sinusoidally excited impact damper similar

to Figure 1, but with a piecewise linear spring. Other

solutions to the forced motion of different impact dampers

can be found in References (18) , (19) , (20) , (21) , and (22).

Yasuda and Toyoda (Ref 23), considered the useful-

ness of an impact damper in reducing the free vibration of

a lightly damped system. They used experimental results

S to obtain parametric relations which could be used to

solve for the damping.

The purpose of this thesis is to examine the use-

fulness of the impact damper in reducing both forced and

free vibrations. A laboratory model and a computer model

of a freely vibrating system with an impact damper were con-

structed. These models were used to determine damper per-

formance as coefficient of restitution e, mass of impacting

mass m, distance between impacting surfaces d, and other

parameters were varied. The forced vibration case was

examined using a laboratory model consisting of an upright

flexible beam with an impact damper on top and a sinusoidal

angular displacement applied to the bottom.

7



II. Analytical Studies

The motion of the free vibration and forced vibra-

tion impact damper is considered in this chapter. The

analysis is for the types of impact dampers depicted in

Figures 2 and 3, which are the types used in the laboratory

studies. The motion of the free vibration impact damper of

Figure 2 can'be followed analytically through any number of

impacts. The solution to the motion of the forced vibra-

tion impact damper of Figure 3 is not completely described

in this thesis, but some useful information is obtained.

The equations given in this chapter are derived in detail

0 in Appendix A.

Free Vibration Impact Damper

The primary system of the free vibration impact

*damper of Figure 2 is the damper assembly, which provides

the impacting surfaces, and the beam. The impacting mass

is not considered part of the primary system. The angular

displacement e of the primary system can be described as a

rotation about an axis perpendicular to the plane of

Figure 2 and containing poinit0, called the rotation point.

Between impacts, the primary system is acted upon by the

flex plate, gravity, and viscous damping. The equation
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of motion of the primary system between impacts is, for

small values of e:

6I +c8 + WTrm + ds = 0 (1)

where:

I = moment of inertia of the primary system about 0,
with units of mass - length 2 ;

c = viscous damping constant, with units of force

length - time;

. WT = total weight of the primary system;

r4m = distance from 0 to the center of mass of the
primary system;

E = modulus of elasticity of the flex plate
material;

I' = moment of inertia of the cross-sectional area
of the flex plate, with units of length4 ; and

d = length of the flex plate.

This is more conveniently used in the form:

I + c; +k = 0 (2)

-* where:

EIs
k -W r + d

T Om d

and k has units of force length. The motion of the pri-

mary system between impacts is described by Equation (1)

if the rotation point 0 is stationary. This is shown to

be approximately true in Appendix A, where point 0 is shown

[[". 11
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to be located where the center of the flex plate is when

it is undeformed.

Solving Equation (2) for e between impacts i and

i+l gives:

At) e (t +(ti(+) c
(At) =e q + 21q sin qAt

+ (ti M) cos qt] (3)

where At is the time since impact i, O(ti(+) and e(ti

are the angular position and angular velocity after impact

i, and

If there is no viscous damping (c=O) then:
hM
" e (ti (+))

e(At) - q sin qAt + e(ti(+)) cos qAt (4)

and

"q k
IV

The equation of motion for the suspended impacting

mass between collisions is:

2M2 a + c a + mgLm = 0 (5)

where:

12



m = mass of impacting mass;

L = distance of the impacting mass from its rota-
tion point;

ax = angular displacement of the strings suspending
the impacting mass from the vertical;

cI = viscous damping constant, with units of force
length - time; and

g = acceleration of gravity.

For small values of a, this motion is almost entirely in

the horizontal direction or x direction. Therefore, Equa-

tion (3) can be approximated as:

mx +c x +k x =0 (6)
m m

where:

cm ;c/L 2and
ba m

k = mg/L m

"" c has units of force • time/length and k has units of

*--."force/length.

Solving Equation (6) for x between impacts i and

i+l gives:

c (+)(- At) [x(t i  )~ )cm
x(At) = e 2 + m m sin qmAt

(t cos qmAt (7)

13



() and x(ti ) are the position and velocity

immediately after impact i, and:

c 2qmm m
m 2m

If there is no viscous damping, then:

~~x (ti(). (+)

x(At) - sin qmAt + x(t i  ) cos qmAt (8)

and:

k m
qm m

Finally, if there is no viscous damping or gravity effects,

the impacting mass has constant velocity between impacts,

so:

x(At) x(ti + x(ti( )At (9)

The initial conditions used in the solutions to

Equations (2) and (6) for 6 and x during the motion between

impact i and impact i+l are e, e, x, and x evaluated at

time t. (immediately after impact i). If impacts are1

*assumed to be of infinitely short duration (during which

8 and x remain unchanged, and e and x change discontinuously),

then the initial conditions can be obtained in terms of
(-)

e, e, x, and x evaluated at time t. (immediately berore

14



impact i). The positions are given by:

.(t 6(ti(-) (10)

1xt 1 = i 11)

Angular momentum is conserved across the impact, so:

IO(ti(-) + mx(ti-))L = Ie(ti(+) + mx(ti(+))L

Also, the velocities across an impact are related by:

e[x(t il-l) - 8til-lL ] = 8til )L -xltil 1

where e is the coefficient of restitution. These two

relations give:

x(ti+ 1 = 2 [O(ti -l)I(l+e)
I+mL

+ x(ti(-)(mL - 1( (12)
1 L

O(ti1+1 = 1 [elti- ime)I+ML2

+ x(til-)mL(I+e)] (13)
1

Using Equations (10) to (13), the position and

velocity of both the beam and impacting mass are obtained

at time t. (immediately after the ith impact) in terms
t1

Uw°;-5.'15



of the positions and velocities at time t. (immediately

before the ith impact). If the overall system is started

with known initial conditions at time t0=0, and if the times

of impacts tit t 2 ' t3 . are known, the exact solutions

up to time t1  can be solved in terms of the initial con-

ditonsat 0 -. The initial conditions at t1  cnte

be solved in terms of the final conditions at t (;these

initial conditions can be used to solve for the exact solu-

tions from t1  to t2  . Initial conditions and exact

solutions can then be obtained from tmt 2  to3

and this process can be continued for as many impacts as

is desired.

This process assumes that all impact times t.i are

0known. Actually,.impact time t.i must be found by itera-

tion, using the known solut'ions after time t + anid the

requirement that the suspended mass must remain between the

two stops. The time t.i is then defined as the time when

the impacting mass first comes in contact with either stop

after time t!+i-V*

This solution technique was used in the two com-

puter programs of Appendix C. The first program, IDEAL,

uses Equations (4) and (9) to trace the motion of the pri-

mary system and impacting mass in an environment with no

viscous damping or gravity. The second program, LABSIM,

uses equations (3) and (7) to include viscous damping and

gravity effects on the system. Included in Appendix C

16



are the results obtained by running programs IDEAL and

LABSIM.

Program IDEAL was run for a variety of values for M,

L, e, q, and d, where d is the distance between the impact-

ing surfaces. The results of one of these runs is given

in Figure 4. Whenever m, L, and q are greater than zero,

e is positive and less than one, and d is positive and less

than 2 8max L (d < 2 6maxL is necessary for impacts to occur),

the impact damper will initially bring about a rapid reduc-

tion in amplitude. After the maximum amplitude attained

by the primary system during each cycle declines to a

certain value, the impact damper becomes much less effec-

tive, with a much slower reduction in amplitude of the pri-

, Omary system. In the region where the damper is effective,

the maximum amplitude attained is observed to decrease

* "approximately linearly with time, and a linear function

is fit to the peaks using a least squares method. The de-

cline in maximum amplitude with time is denoted by s, and is

a measure of the impact damper's performance. The maximum

amplitude attained when the impact damper becomes almost

ineffective is denoted em, and is also a measure of
Mr

damper performance.
It is important to determine if s and 0 are depen-

mr

dent upon parameters other than M, L, e, q, and d. All of

the computer simulations of the impact damper began with

the primary system displaced in the negative direction 0.1

17
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". 7 . .

. - .

Initial phase angles .zZ0ZZZZo+f
Initial maximum deflection -. I1000001e+00
natural frequency- .25ftZZ00e+02 the starting time- .LLOe+00
moment of inertia of the primary mass= .1093Zi00.Ge+00
magnitude of the secondary mass- .2jD0LY0Zff9e-Z2 length of the primary systems

p . 2.23.Jj922 the coefficient of restitution- .S0(OODge+Y
secondary masses initial velocity=
.OOOOMOgce+0 the gap setting= .250000000e+00

desired number of impacts- 50

mass= .20OZZ0009e-02
effective d= .2500I9ffZZge+0PF
e- .59LYZ0jCZe+00

x(B)= -.980jiA49e-01
deltat- .999999978e-92

the time Iteration did not converge for in 45
Impact tivr. deltat thetas x tdotv xdot thetam dthetam

1 .0G769 .067G87 .1121 -.0900zo 2.2958 7.0866 .0926 -.0074
2 .122Z7 .054383 .0923 .33D895 .4363 -2.7636 .0940 .0013
3 .18766 .065595 .0110 .149614 -2.2510 -6.23G3 .9.j7 -.0033
4 .26345 .075782 -.E039 -.323185 .2110 4.09G7 .9093 -.Z014
5 .41144 .147998 .0759 .283116 -1.1169 -6.0511 .08338 -.8055
6 .50952 .09808 -.0331 -.310375 -.4493 1.7270 .0850 .0912
7 .55043 .940905 -.0453 -.225910 1.7234 4.9069 .0025 -.0026
8 .66214 .103713 .0746 .291290 -.6468 -4.9173 Z789 -.0035
9 .78197 .119824 -.0775 -.297915 .1769 3.2G23 .0779 -.0011

10 ;86711 .85146 .U47D -.02Z143 1.5448 3.5436 .0776 -. 0002
11 .93917 .072054 .0494 .235180 -1.2663 -6.2654 .07Z8 -.Z069
1 12 1,02G7 .01503 -.0675 -. 275461 -. 7037 .9689 .0731 .0923
13 1.07296 .052289 -.0448 -. 2240Z4 1.3695 4.1819 .0707 -.0924
14 1.18756 .114606 .9580 .254357 -. 7959 -4.9939 .662 -.2046

' 15 1.29308 .105511 -.0662 -. 272560 -. 1705 2.1134 .665 .0004

Impact s 1 errmoms  .106264515e-97 errvel- .238418579e-06
impact- 2 errmom- .745J5SVGCe-03 errvel- -. 233418579e-06
impact- 3 errmom= .745f5S0JGc-i0 errvel -. 953674316e-G6
Impact= 4 errmom= .0jZjYtJ+ orrvol= .47CC37158e-06
Impact- 5 errmoni- -. 1I17507k.)e-07 errvel- -. 23841857ge-0G
Impact- G errmoln- -.372529tJe-k)8 errvcl= .2384185790-OG
impact- 7 errmom- .29CL23224e-07 errvcl= -. 59uJ46448e-06
Impacts 8 crrmom- -.745k'58.06e- j8 errvel= -. 23418579e-26
Impact- 9 errmom- .372529B30e-08 errvel- .238418579e-06
Impact- 10 errmoms .166473910e-07 errvelV -. 11920929Ze-06
impact- 11 errmnom = -. 290023224e-07 crrvel= .23,410579c-06
Impact- 12 errrnomn m.111757u9e-7 errvel= .236418579e-06
Impacts 13 errmom= -.55C793545e-.!0 errvel= .238418579e-96
Impact- 14 errmoms -. 111756709e-97 errvele -. 236418579e-06
impact- 15 errmom= .000Wie+00 errvel= .476837158e-06

Impact thetam time dthetam dtime
2 .0940 .1295 -. 0060 .1295 Maximum amplitude (thetam)
4 .0893 .3853 -. 0047 .2558 and time it is attained for
7 .0825 .6445 -.0068 .2592

i .0776 .9039 - .0048 2594 each cycle of primary system
13 .0707 1.1632 -.069 .2593

Fig. 4. Output from Program IDEAL

.18--------.



"4. -. 0 .

16 .0644 1.4230 -. 0063 .2598

19 .5594 1.6831 -.Bfl5O .260!
'-22 .0526 1.9427 -. 0069 .2596
.. 26 .5410 2.4622 -.0115 .5196

up to the 9
peak the least squares fit to the peaks Is thetamq+s*t with q-
.9756416#8e-O1 and s -.22961786ge-01 with max error= .848116292e-03 at peak-

4 and variances .214724355o-05

Impact thetam time dthetam dtime
. 26 .0410 2.4622 -.ZG9Z 2.4622

28 .0354 2.7238 -.0956 .2616
30 .9298 2.9863 -.0057 .2625
32 .0239 3.2495 -.0058 .2632
34 .0189 3.5136 -.Z059 .2641
36 .0117 3.7778 -.0063 .2642
38 .ZZ56 4 .9299 -.5061 .2521
39 .0955 4.2669 -. 0 i .2370
40 .0044 4.5122 -.0011 .2453
42 .025 5.2522 -.0019 .7400
43 .0024 5.7657 -. 0001 .5135
up to the 11
peak the least squares fit to the peaks is thetamnq+s*t with qu
.643201843c-01 and s= -.122949796e-01 with max error= .957593542e-02 nt peak-

11 and variances .354233722e-03

Fig. 4--Continued
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* - radians, and with the impacting mass in contact with the

positive stop. In order to determine how important these

initial conditions were, both the initial position and

velocity of the impacting mass was varied. Varying the ini-

tial position of the impacting mass through a range of +1"

to -l" from the center of the gaps, and giving it a velocity

ranging from +2 ft/sec to -2 ft/sec led to a t4% variation

of s from its average value. Doubling the initial ampli-

tude of the system from 6 0.08 radians to 0 =0.16
n0  I 0

radians increased s by 20 percent. None of these changes

significantly affected 0 . These results were for

I = 0.1893 slug - ft 2, impact mass =0.001 slug, L =2.23',

d =3", and w = 25 rad/sec.

V initial conditions obviously have an effect on

the damper efficiency s. This effect does not justify

complicating the analysis of s by considering initial condi-

tions, especially if s is evaluated while keeping e

constant. However, the variation of s with initial ampli-

tude E0 suggests that the system's decline in amplitude

is not perfectly linear, only approximately so.

An important energy consideration for space opera-

tions is that the only energy dissipation will be due to

the impacts. Whatever kinetic or potential energy is lost

due to these impacts will be converted to heat, which will

be distributed between the primary system and the impacting

mass. This heat can only be dissipated through radiation,

20
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which is a very slow process. Consider a primary system

with inertia I about its rotation point and a natural fre-

quency wn" If this system's only energy loss is due to

impact damping, which reduces the system's amplitude from

to 0m then the change in total energy equals the

change in maximum kinetic energy, so:

1 2 1 2
AE = ATmax = 2I(O ) - I( fmax (14)

where 0 is the initial maximum angular velocity, and
max

6 O is the final maximum angular velocity. From this it0max

is easy to obtain:

1 2 2 2

AE = n (6O - e ) (15)

This AE is the energy converted to heat.

A worst case example is worked out for the labora-

tory model's values of m, I and w , assuming all of the

heat goes to raise the temperature of the impacting mass.

For the smallest mass used, m = 0.000481 slug (about 1/4

ounce), I = 0.188 slug - ft2, wn = 25.9 radians per second,

and 6 and 6 are chosen to be 0.10 radians and zero,
m

respectively. This gives:

21

,, -. v - . ... .. .. . ._ . .- .. .. . . . .



L

12 2

AE = 1(0.188) (25.9) 2(0.10)

= 0.631 lb - ft

= 8.103 x 10 BTU

The temperature of the impacting mass will then be raised

by:

AT* AE (16)c m
p

where c is the specific heat of the material. If c =
p p

0.109 BTU/(lb - OF) (the value for nickel steel at room

temperature according to Reference 24), then

AT* = 0.048 °F

While this temperature increase is of no significance, the

fact that the impacts convert kinetic energy to heat should

be remembered when designing an impact damper, especially

if a very small mass is expected to absorb a great deal of

energy.

Forced Vibration

The forced vibration impact damper depicted in

Figure 3 consists of an upright slender beam with a damper

assembly on top and an impacting mass free to move between

the stops of the damper assembly. A time dependent angular

displacement is applied as a boundary condition to the

"" 22



. bottom of the beam. The motion of the primary system, con-

sisting of the beam and damper assembly, was not obtained.

* However, the motion of a similar system in free vibration,

shown in Figure 5, was obtained in Reference (25). From

this solution, the natural frequencies can be found.

The undamped, free vibration of the system depicted

in Figure 5 is, according to Reference (25):
.iw

iWFt
x(y,t) = X(y)e (17)

where:

X(y) = C1 sin (By) + C2 cos (By)

+ C3 sinh (BY) + C4 cosh ((y) (18)

-0 and:

4

EIIB (19)'-' B

sin Lb + sinh aLb!' C2  -C 4  C
C2.= 4 = Clcos Lb + cosh Lb

C = -c
3 1

C1 is determined by the initial conditions, while 8 is

solved for using:

1 M
(cos Lb) (cosh SLb) + 8- (tanh L- tan L = 0

(20)
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-- -MMass, modeled as

point mass at
y=L

Beam, with
mass/unit
length = p

L

y coordinate, moves
with center line
of beam

x coordin-
S:b ate,

Z7/7 fixed in
space

Fig. 5. Model of Free Vibration Problem
Solved in Reference 25
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p is the mass per unit length along the flexible beam, M

is the total mass of the damper assembly at the top of the

beam, and wF is the natural frequency of this system. Once

8 is obtained from Equation (20), wF can be found using

Equation (19).

25
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III. Laboratory Models

Two impact damping mnodel, were designed and con-

structed to experimentally study the performance of the

damper in forced and free vibration. The equations .

Chapter II were derived to apply to the models depicted in

Figures 6 and 7. The free vibration model of Figure 6 was

used to veri fy the analysis of Chapter II. The forced

vibration model of Figure 7 was used to take measurements

and make observations on its motion. Details on both of

these models, the measurement equipment and techniques, and

the conversion of the measurements to actual displacements

are given in Appendix B.

Free Vibration Model

The laboratory model of Figure 6 consisted of an

aluminum beam suspended by a short, flexible piece of steel

acting as a flex plate, with the damper assembly mounted on

the bottom. The impacting mass is suspended from a point

above the entire system to minimize friction forces. The

quantities needed to evaluate the motion using Equations

(3) and (7) are:

I = 0.188 slug -ft 2

c = 0.02 lb .ft - sec

26



0

Flex plate

Strain gauge

.. The model used to
study the impact
damper in free vibra-
tion (not to scale).
The top of the flex
plate was attached to

Aluminum Beam a secure mount, while
the rest of assembly
hung underneath.

Damper
Assembly

Fig. 6. Laboratory Model of Free Vibration
Impact Damper
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Damper

* Accelerometer

The model used to
study the impact
damper in forced
vibration (not to
scale). The mount

Steelclamped onto a pin
Seel that rocked, apply-

Beam ing the angular dis-

placement at the
base.

Excitation

L-

Fig. 7. Laboratory Model of Forced

Vibration Impact Damper
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k =W r + ds s

T Om dS

= 1565 lb in

WT = 2.91 lb

rom = 15.765"

E = 28 x 106 lb• in
2

SI' = 1/6144 in4
"-- S

d = 0.25'

q V k 2

y (2)

= 26.34 rad/sec

m = 0.000481 slug, 0.00149 slug, 0.00503 slug

C =0.0000217, 0.000023E, 0.0000267 lb - sec/ft

km = mg/L

= 0.00221, 0.00685, 0.0231 lb/ft

g = 32.174 ft/sec2

Lm= 7'
m

k Cmq• -=- m 1 )
S2mm

= 2.14 rad/sec
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Quantities needed to obtain the initial conditions after

each impact using Equations (10) through (13) are:

L =2.21'

e =0.4 -0.5

The measurement of these quantities is discussed

in Appendix B, but some comments are in order here. The

values of I, W T' r0Om d s, 11 s m, L mand L were measured,

weighed, and calculated to an acceptable degree of accuracy

with little uncertainty. E was obtained from Reference 26.

c and cm were obtained by measuring the reduction in ampli-

tude of the freely oscillating primary system and impact-

ing mass after a known number of cycles; c and cm could then

0 be calculated by the logarithmic decrement method. The

- - value of c obtained in this manner varied from 0.01 to 0.04

lbs -sec/ft, c = 0.02 was taken as the approximate value.

The value obtained for c m did not vary significantly for

different tests, but the impacting mass was traveling much

slower when these measurements were made than when it was

used in the impact damper. Since damping forces are not

always directly proportional to velocity, as Equation (6)

treats them, this could be a source of error. e was obtained

by allowing each of the impacting masses to swing as a pen-

dulum a known distance and strike the impacting surface of

the primary system, and then measuring the recoil of the

primary system and the impacting mass. These known

30



quantities and measurements were converted into velocities

for the primary system and impacting mass both before and

after the impact, from which e was determined. 0.4 and 0.5

are the upper and lower values of e obtained. Finally,

while q = 26.34 rad/sec was the calculated value for the

damped frequenqy of the system, the actual frequency of

the system was measured as 25.9 rad/sec.

The motion of the system was measured using two

SR-4 type AD-7 strain gages, centered on opposite sides

of the flex plate. These gages were connected to a 0-amp

in a Type 535A oscilloscope. The strain e obtained in

this manner could be converted to radians of displacement

of the primary system using:

0 = 4.80 x 105 C (21)

where e is measured in micro inches per inch. This rela-

tion is obtained in Appendix B, and is only valid for small

values of e, where the relation between c and 0 is linear.

Photographs of the oscilloscope trace were made to

obtain the beam deflection as a function of time. Some

of these photographs are shown in Figure 8. The actual

distance between the impacting surfaces was 3" in this

figure, but the actual distance the impacting mass could

travel between the impacting surfaces was 3" minus the

diameter of the impacting mass. The diameter of the

0.000481 slug mass was 15/32", the 0.00149 slug mass was
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11/16", and the 0.00503 slug mass was 1-1/32". d is the

actual horizontal distance between impacting surfaces that

the impacting mass can travel.

It can be seen from Figure 8 that when the impact

damper is operating, the maximum angular displacement

reached by the primary system decreases linearly with time.

This is not the constant damping of an exponentially decay-

ing system. The usual measures of damping, such as log-

arithmic decrement, will not be independent of the ampli-

tude-of the system. It is also apparent that the impact

damper ceases to be effective after the maximum amplitude

obtained during a cycle decreases to a certain value.

This value is denoted e and is referred to as the
Mr

residual amplitude. When the damper is effective, 0M

e m , where e m. is the maximum amplitude attained by the

primary system during cycle j. This implies that the

maximum angular displacement attained during the jth cycle

can be given by:

=m r - st.j (22)

where em. is the maximum angular deflection attained during

cycle j; t.j is the time at which the system reaches maxi-

mum amplitude during cycle j; r would be the amplitude e0

of the system if it were started with zero velocity at

t. to 0; and s is the rate at which the

33
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system's maximum amplitude decreases with time, which will

be referred to as the damper efficiency.

Forced Vibration Model

The laboratory model of a continuous system in

forced vibration, depicted in Figure 7, consisted of a

flexible, upright steel beam, with a time dependent angular

displacement applied to the base, and a damper assembly on

top. The quantities needed to obtain the natural frequency

from equations (16) and (17) are:

L = 18.5"

* - M = 0.01382 slug

p = 0.00110 slug/in

E =28 x 106 lb• in
2

1 i 4

B 6144 in

For these values, Equation (17) gives the first two values

of OL being 1.345 and 4.071. Using this, Equation (16)

gives the first two natural frequencies as being 37.28

and 341.7 rad/sec.

A model MB 303 accelerometer was mounted 1" below

the damper assembly. The accelerometer signal was ampli-

fied using a model 2614B amplifier powered by an Endevco

Mode 2621 power supply; this signal was then recorded using

34
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a Honeywell Model 2106 visicorder. High frequency noise

required sending the amplified signal through a simple

low pass filter before it reached the visicorder. Details

of this filter are given in Appendix C.

3
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IV. Correlation of Analytical and
Laboratory Results

This chapter compares the computed motion of the

free vibration impact damper to the motion measured in the

laboratory. Possible sources of errors in both laboratory

measurements and in the attempt to preduct the motion of a

real system using LABSIM and the equations of Chapter III

are discussed.

The program LABSIM, explained in Chapter II, was

used with the measured physical quantities of the labora-

tory free vibration model, given in Chapter III. Table 1

compares values of s and e obtained from LABSIM forI, mr
e = 0.4 and 0.5 with the measured laboratory values of s

and em for the different gap settings and impacting masses.
r

0.4 and 0.5 were the minimum and maximum values measured

for the coefficient of restitution e. As can be seen the

measured value of damper efficiency s is never more than

14 percent greater than the largest value of s computed,

or 5 percent less than the smallest value computed. How-

ever, the measured s is not consistent in falling between,

above, or below the computed values of s. The measured

value of em may be more than twice the nearest computed
mr

value. The rest of this chapter considers possible reasons

for these imperfect correlations.
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TABLE 1

COMPARISON OF COMPUTER SIMULATION AND LABORATORY
RESULTS FOR s and 0

mrr

Comqputer Laboratory

nmass
(slugs) e =0.4 e =0.5

d s m s m s mSr r r

0.000481 3.53" 0.0115 0.0102 0.0107 0.0113 0.010

0.00149 1.312" 0.0134 0.0040 0.0110 0.0032 0.0152 0.0082

2.312" 0.0199 0.0071 0.0176 0.0048 0.021 0.0137

3.312" 0.027 0.0105 0.023 0.0075 0.028 0.0184

0.00503 0.969" 3.029 0.025 0.0016 0.024 0.0042

1.969" 0.043 0.0033 0.037 0.0033 0.038 0.0063

2.969" 0.061 0.0057 0.052 0.0026 0.056 0.0130

Notes

s measured in radians/sec.

0 mr measured in radians.;. mr
The actual distances between impacting surfaces in

the laboratory were set at 2", 3", and 4"; the values given
here for the gap d are these distances minus the impacting
mass 's diameter.
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Sources of errors in obtaining the laboratory

results fall into two categories: (1) errors in measuring

the physical parameters of the system, and (2) errors in

measuring the resulting output. Of the physical parameters

measured, c and cm are the most uncertain, for the reasons

discussed in Chapter III. In measuring the mass of the

impacting masses, the 0.00005 slug mass of the line support-

ing them was neglected. This certainly increased the effec-

tive mass of the impacting masses by some small amount.

Measured lengths under six inches could have up to 1/32"

error in them, measured lengths over six feet could have

up to one inch error in them. In calculating I, the dis-

tributed mass of the damper assembly was modeled as a

°i point mass 26" from the rotation point. These are only

some of tha error sources, most of which can be assumed

to be small. With the exception of c, cm , and e, a quali-

tative estimate of the errors in the values of the physical

parameters given in Chapter III would be that errors are

±5 percent of the quantities given, or less.

Some of the error sources involved in measuring

the results of a laboratory test are simple: the strain

gage used was accurate to within ±2 percent, while the

traveling microscope used in measuring the photographed

oscilloscope trace had a small amount of play in the

adjustment, causing errors of approximately 0.1 percent

or less. Human judgement provided another error source;

38



in particular, in measuring the photographed oscilloscope

trace one had to decide where to take a measurement from on

an often fuzzy trace edge. A qualitative estimate of the

errors in measuring s and I0 is that the smallest values of
mr

s and 60 may be in error by as much as ±20%, with most
r

values of s and e0 being accurate to within ±5% or less.
mr

The computer model of the impact damper, LABSIM,

gives the correct values for s and e0 for the numbers it
mr

is given and the operations it performs. Errors caused

by limitations in the accuracy of single precision FORTRAN

would be insignificant (less than 1 percent error) for the

numbers and operations employed. The only reason LABSIM

would not give the motion of the laboratory model of the

fl free vibration impact damper would be if the equations of

motion, or their solutions, for this system are in error.

The equations of motion of the primary system

(Equation 2) and the impacting mass (Equation 6) employed

in LABSIM are based upon the assumption that restoring

moments and forces (kG and k Mx) are proportional to dis-

placement, and damping moments and forces (ce and c X)m

are proportional to velocities. It is commonly accepted

that spring forces on a body and gravity forces on a pendu-

6 lum restricted to small displacements are both approxi-

mately proportional to displacement. Damping forces are

not as well understood, and resistance to motion is often

assumed to be independent of all but the direction of
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motion (dry friction) or to be proportional to velocityi

squared (aerodynamic drag). Thus, the assumed damping

forces in Equations (2) and (6) may differ from the actual

damping of the laboratory model.

A certain source of error in the attempt to model

a real system using LABSIM lies in the small angle approxi-

mations made in the derivation of Equations (2) and (6).

Other differences between the LABSIM model and reality are

the assumption that impacts are of infinitely short dura-

tion, or that an impact occurs whenever an iteration puts

the impacting mass within 0.000001 feet of a stop. Finally,

it is unlikely that Equations (2) and (6) take into

account all of the forces acting upon the primary system

and the impacting mass. It would be very difficult to

quantify all of these sources of error, or to say if these

errors add up or cancel out over many cycles.

In view of the errors mentioned, the agreement

between the computed and measured values of s seems accept-

able. Which of these errors causes the differences between

the computed and measured values of e is unknown. While
mr

LABSIM does a poor job of predicting O , it is reasonable
r

to assume that the errors in LABSIM do not significantly

favor one set of system parameters over another. There-

fore, for an impact damper with equations of motion similar

to Equations (2) and (6), LABSIM should be able to predict

40



how changes in system parameters will affect s and 6,i' mr
even if it does not reach a correct actual value of

em. "

mm

r
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V. Results and Discussion

Free Vibration

All of the results discussed here were obtained

by using the computer model of the impact damper IDEAL,

the model with no gravity or viscous damping. The system

modeled had the parameters:

6 = initial amplitude = 0.10 radian;

0 2I = moment of inertia = 0.1893 slug ft

L = impact moment arm = 2.23 ft;

d = gap setting = 0.25 ft;

m = impact mass = 0.001 slug;

e = coefficient of restitution =0.5; and

w natural frequency =25 radians/sec.

The parameters 0 and I were kept constant, as was the

flex- plate stiffness; all of the other parameters were

varied one at a time. The effect that changes in the last

five parameters had on the damper efficiency, s, and the

residual amplitude, S are shown graphically.m r

Figure 9, which plots damper efficiency s for dif-

4ferent impact moment arms L, was made by varying L from

1 ft to 3-1/4 ft, in quarter foot increments, while holding

all other parameters at the values given in the preceding

4 paragraph. Figure 10, which gives s versus d, was obtained
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similarly, by varying the gap setting d from 1 inch to

4 inches in quarter inch increments, while all other

parameters were held constant. The same technique was

used in obtaining Figure 11, s versus coefficient of restitu-

tion e, and Figure 12, s versus the natural frequency w n

The data for Figure 13 was obtained in the same manner as

for the parameters of Figures 9 to 12, but the plot was

made a little different. It was found that the damper effi-

ciency s is approximately proportional to the quantity:

m

I M+

The data for Figure 13 was obtained by varying m from 0.001

slug to 0.005 slug in increments of 0.005 slug. The impact

moment arm L was kept at 2.23 ft and the moment of inertia

2I was kept at 0.1893 slug ft

The approximate linearity of Figures 9, 10, 12, and

13 and the linearity of Figure 11 for e > 0.3 make the

analysis of s a simple matter. Since s appears to be

directly proportional to the impact moment arm L, the gap,

d, one minus the coefficient of restitution, 1 - e (for

e greater than or equal to 0.3), the natural frequency wnl

and the mass over the total inertia, m/(I+rnL 2) , the follow-

ing relation can be written for e greater than or equal to

0.3:

s c5  mLd(l-e) Wn (23)
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It is interesting to point out that the damper

efficiency improves as the coefficient of restitution e

- - decreases, even for e less than 0.3, as Figure 11 shows.

This is not surprising, since low coefficients of restitu-

tion result in a greater energy loss. However, according

* to References (7), (8), (10), (16), and (20), for an impact

damper used in forced vibration, optimal damper efficiency

results by choosing e as close to unity as possible. The

difference between the two systems is that for the forced

vibration in steady state motion, the forcing function

must provide a constant energy input equal to the energy

loss, through impact or any other mechanism. In free

vibration, the system starts with a certain total energy

and any energy lost is not restored. This reduces the pos-

sible motion. This illustrates the fact that parameters

given in the literature which optimize the impact damper's

performance in forced vibration do not, in general, opti-

* * mize the impact damper's performance in free vibration.

A useful feature of Equation (23) is that the term

in brackets is dimensionless. This requires that c S be

dimensionless. If both s and w are measured in radians

per second, the solution of Equation (23) for c , taken as

the average solution for c5 over the full range of param-

* - eter variations, is:
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2
. "s(I+mL0.33 mLd (1-e)w (24)

Stated another way, the damper efficiency s is related to

its parameters by the relation:

s = 0.33 mLd(l-e)wn
n(25)

[ii- I+ML2

This relation is only good for e > 0.3, and may not apply

for parameters outside the range of those used here to

obtain Equation (25). Within these constraints, Equation

(25) should allow one to choose a damper efficiency s.

Figures 14 through 18 are plots of 0 versus L, d,
mr

" - e, wn' and m/(I+mL2), obtained in the same manner as Figures

5 through 9. These graphs illustrate that the relationship

- of the residual amplitude 0 to the parameters varied ism

complicated. Attempts were made to solve for 0 as a func-
r

tion of L/d, but these results were considerably more

erratic than those of Figure 14, where L is varied and d

kept constant; and Figure 15, where d is varied and L kept

constant.

By plotting the results given in Figure 14 on

logarithmic graph paper (also called log-log graph paper),

"' the graph of Figure 19 was obtained. This graph implies

that 0 can be approximated as:
m r
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em rad

O0.028.-

0.024-

0.020

0.016-

0.012-

0.008-

0.004t __ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ L

1.0 1.5 2.0 2.5 3.0

Fig. 19. Residual amplitude for Different Values
ofthe Impact Moment Arm on a Base 10 Logarithmic Scale.

m =0.001 slug, I = 0.1893 slug ft2, d =3", e =0.5,
and w = 25 rad/sec
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0mr~~ =~ ~ 3 5

where L, measured in feet, is divided by one foot to non-

dimensionalize it. If we assume that as L approaches

infinity, e approaches zero, or some negligible value,
mr.

this relation becomes:

em= 0.022 1 ft) 3  (26)
r

It is emphasized here that this is an approximation to a

function that is not well understood, and this approxima-

tion is obviously invalid for small values of L.

Figure 15 shows that, with the exception of one

d ata point, 6e is almost exactly linear in the gap d.
mr

This one bad data point can easily be explained. The

amplitude where the impact damper ceases to function was

not always precisely defined in the computer simulation.

In many cases there was a sharp transition from where the

amplitude declined linearly to where the damping action

ceased. However, in some cases the damper transition from

effective to ineffective operation took place over one or

two cycles, making the determination of e something of a

judgement call. For this reason, occasional variations

from what appears to be an otherwise well-defined trend can

be expected. in the case of e Mversus d, it can be
mr
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stated with confidence that e is linear in d.
mr

Figure 16, which is a graph of residual amplitude

em versus coefficient of restitution e, clearly shows that
r

a high value of e is useful in minimizing 0. Unfortun-- • m~r

ately, a low value of e is desired to maximize damper

efficiency s. A quadratic function was fit to the points

of Figure 16, using the least squares method to minimize

errors. This quadratic function is:

2e (e) = 0.02679 - 0.05132e + 0.0248e (27)
mr

This curve comes very close to all of the points plotted,

but it is only an approximation to an unknown function

relating e to e.
mr

The plot of e versus natural frequency w n shown
r

in Figure 17, shows e mto be unaffected by w . By
rn

examining the equations of Appendix A upon which the com-

* *puter simulation is based, it is seen that an increase in

W causes a proportional increase in the rate at which the

system operates, but does not otherwise affect how it

operates. Therefore, it is logical, that damper efficiency

s would be proportional to w n but that Sm would be
• r
unaffected by wn"

In evalLating Figure 18, the plot of 0 versus

2 m
Sm/ (I+mL ), it is difficult to envision what occurs as m

2 2
becomes very large, driving m/(I+mL 2 ) to the value of l/L
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In the range of masses varied e does not change as dra-mr

matically as it did when L, d and e were varied. Also,

Figure 18 does not suggest a function with which to approxi-

mate the 0mr dependence on m/(I+mL 2) . For these reasons,

it is noted that there is some dependence of 6m upon

m/(I+mL2 ), but no approximate relationship is given.

Putting together the results of Equations (26) and

(27), and using the linearity of 0 in d, the residual- mr

amplitude can be related to these parameters with:

0m = C0 - 1.914e + 0.925e 2)d (28)M. rIL/1 ft)1 "35

For Equation (28) to be in radians, C must have the dimen-

-- sion of l/ft. This relation is approximate, and totally

neglects 8 's dependence upon m. Solving for C0 for a
mr

variety of values of e, d, and L, with L and d measured in
feet, the average value of C0 is C0 = 0.33 /ft. This given

value varied by - 25percent to +15 percent when calculating

it for varied L. This emphasizes that the following rela-

tionship gives a very approximate value for e :
mr

r 2---i 8 0.33[(1 - 1.914e + 0.925e2}d (29)
imr = (L/1 ft)1 "3 5

Equation (29) is only approximately valid for the range of

L, d, and e varied, with m = 0.001 slug. The approxi-

mation becomes more uncertain as m is varied, and using a
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different value for m probably warrants a recalculationA

of Ce.* Ce is also only correct if L and d are measured

in feet, though it could easily be recalculated for other

units.

Forced Vibration

The motion of the beam in forced vibration was mea-

sured with an acclerometer mounted just below the damper

assembly. The output of the accelerometer had to have high

frequency noise filtered out before the visicorder trace

of this output would become readable. This noise was seri-

ous enough to drown out the sinusoidal signal expected when

the beam was excited without the impact damper. The noise

problem was even more serious when the impact damper was in

place. Presumably, the accelerometer was picking up the

high frequency beam vibrations that caused acoustical noise.

A hand tracing of the filtered accelerometer output

is shown in Figure 20, for the motion without the impacting

mass, and in Figure 21, for the motion with a 0.00149 slug

impacting mass and a total gap of two inches. The actual

visicorder traces are given in Appendix B. Figure 21 sug-

gests that there is no simple steady-state motion present.

This suspicion was confirmed by the sound of the irregu-

larly occurring impacts. Other than this, the visicorder

traces were of little use in a quantitative analysis of the

forced system.

60



.1

"-4

0

0

.4J

14J
0

0
4

a)

'-4
0

U

44

E1

N.r

'-44

.p. 61



04
('S

4-)

0 4
1-4

0

4

04

0 )

4)

- 0

> -4
4J

H4

04

NU)

*4 aN

-- 4
r4-

4-4 C

444

00 coU)

62o



Simply observing and listening to the forced sys-

tem with the damper operating gave some valuable informa-

tion. The motion of the system was not enough to initiate

and sustain impacts unless the system was forced near its

first resonant frequency, or unless the gap setting was

very small. Higher resonant frequencies caused very low

amplitude vibrations. No attempt was made to judge the

damper's effectiveness at these resonant frequencies.

At frequencies near the first resonance and gaps

greater than one inch the 0.00149 slug mass did reduce the

amplitude of the system by a factor of at least two, but it

did not approach any detectable steady state operation.

For very small gap settings there was a possible steady

state reached, but no detectable reduction in amplitude.

Using the 0.00503 slug mass at any gap large enough for it

to affect the motion of the system led to a very erratic

motion of the system with no evident steady state operating

state, and no significant sustained reduction in amplitude.
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VI. Conclusions and Recommendations

The impact damper shows considerable potential in

reducing the free vibration of long, lightly damped struc-

tures. It is especially promising for long structures

since the effectiveness of the damper increases, and the

amplitude at which the damper becomes ineffective decreases,

as the damper is moved farther from the rotation point.

For a coefficient of restitution of 0.3 or greater, Equa-

tion (24) gives a good estimate of the rate at which the

oscillations will be reduced, while Equation (29) gives an

estimate of the amplitude where the damper becomes ineffec-

tive. Even in the ineffective region, where impacts occur

sporadically, each impact converts some of the kinetic

energy of the system to heat, so only after all impacts

cease does the damper become totally ineffective.

A problem with the impact damper is the impacting

mass's need for room to travel and stops to impact against.

If this cannot be designed into or added onto the structure,

without an unacceptable gain in weight or loss of struc-

tural strength, the impact damper should not be used. If

structural strengti is a problem, using a damper with a

very low coefficient of restitution might be a solution.

While Equation (6) does not hold for e less than 0.3,
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r Figure 11 indicates that damper efficiency would still be

higher than for any e greater than 0.3. However, Figure 16

indicates that the residual amplitude also will be high.

The residual amplitude of the damper can be elimi-

nated using other damping techniques, or, to generalize an

idea proposed in Reference (23), by putting two dampers in

* parallel. one damper would be designed to quickly reduce

large amplitude oscillations, while the other would con-

* tinue to reduce oscillations to a smaller value at a slower

rate after the fast damper became ineffective. Another pos-

sibility is a system which reduces the gap as the ampli-

* tude of the primary system decreases. Maximum damper

efficiency could be obtained keeping the gap as large as

possible without the damper becoming ineffective; i.e.,

keep the gap just small enough so impacts are sustained.

Another potentially useful variation on the basic

design of the impact damper would be to let the impacting

mass travel in two or three dimensions, impacting against

a ring or sphere enclosing it. This could be of use in

damping out oscillations about more than one axis. This

same problem could be attacked by orienting one-dimensional

impact dampers along all possible rotation planes, but this

could get into weight problems.

Other variations on the impact damper in free vibra-

tion would be to replace the impacting mass with many

masses or a liquid. or, the hard stops could be replaced
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by springs or dashpots. Many of these variations have been

studied for the impact damper in forced vibration, but, as

has been noted, what maximizes the efficiency of the forced

* damper does not necessarily maximize the efficiency of the

* free damper. The basic system studied here shows enough

potential to warrant further study.

With the exception of Reference (5), all references

on the subject agreed that the impact damper shows great

promise in eliminating forced vibrations. (Reference (5)

studied impact dampers solely for the purpose of elimi-

nating vibrations in ship's hulls.) The results of this

study shows that the impact damper can provide some damping

of structures in forced vibration near resonance. However,

this damping was sensitive to system parameters, and no

steady-state motion was found.

The forced motion of the impact damper needs

further study, not only to resolve differences in theories,

but also in the laboratory. Laboratory models should be

designed not only with the objective of simulating struc-

tures of interest, but also with knowledge of the limits

of measuring equipment. Many instruments are poorly

equipped to handle vibrations of 30 to 35 radians per

second.

In summary, the impact damper did not show itself

to be effective or predictable in reducing or eliminating

force vibrations. However, the impact damper was both
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effective and predictable in reducing the free vibration of

a structure to a certain value. A comparatively small mass

can greatly reduce the amplitude of a much larger vibrating

structure, in many cases only taking a few cycles to do so.

The impact damper's results in reducing free vibrations not

only warrants further study, but also warrants careful,

cautious consideration for use in current, applicable vibra-

tion problems.
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Appendix A

Derivation of Equations

Introduction

The equations of motion and their solutions for the

free vibration of a simple one degree of freedom system are

well known. The laboratory model, depicted in Figure 22,

used to study the affect of the impact damper on free vibra-

tion is described by, for the period between impacts, .he

equations of motion solved for later in this appendix. The

model depicted in Figure 23 is a continuous system equiva-

lent to a flexible beam with a lumped mass attached to one

end. The free vibration of this type of structure was

solved in Reference (25), and is given in Chapter II of

this thesis. These solutions can be evaluated if the

position and velocity of the system are known for some

specified time t, and are used in the computer models of

impact dampers in Appendix C.

Position and Velocity

Relations

It is assumed that an impact can be modeled as

being of infinitely short duration. During this kind of

impact, for the system of Figure 24, the position e(t)

of the beam, and x(t) of the impacting mass remain unchanged,
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0
Flex plate

Strain gauge

Laboratory model of
free vibration impact
damper (not to scale).
The top of the flex
plate was attached

Aluminum Beam to a secure mount,
while the rest of
assembly hung
underneath.

% ..

Damper
Assembly

Fig. 22. Model of Impact Damper Used in

Free Vibration Tests
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Damper
Assembly

Accelerometer

The model used to
study the impact

Steel Beam damper in forced
vibration (not to
scale). The mount
clamped onto a pin
that rocked, apply-
ing the angular dis-
placement at the
base.

;.,'- Mount with

Excitation

e(t)

Fig. 23. Laboratory Model of Forced Vibration
Impact Damper
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l-

String supporting.the impacting mass

x coordinate,
fixed in space

y coordinate, moves with beam
centerline

O(y) is the angle between the
tangent to the beam center-
line and the vertical.
At y = ds , the length of
the flex plate, e(y)=O,
the angular displacement
of the primary system.

4, .

g Fig. 24. Coordinates and Angles Used in
Deriving the Equations of Motion of the Free Vibra-

. -"•tion Impact Damper
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. . .

while their velocities are changed instantaneously from
O(t.() and x(t. 1 - to '(ti(+M) and lti While an

actual impact is of finite duration, this time is so small

compared to the periods of the beam and suspended mass

that this assumption is justified. This causes half of

the initial conditions to fall out immediately.

xlt i  ) = x(t i  )

(ti(+M) = e(ti(-)

The remaining two initial conditions can be obtained by

the conservation of angular momentum and the velocity con-

dition:

e(x(ti() e (ti )L) = O(ti )L - x(ti

Conservation of angular momentum requires that in the

absence of external torques the total angular momentum of

a system about a fixed point 0 remains constant. There

are external torques on this system, so the magnitude of

the total angular momentum about point 0 is time dependent,

or:

H = H0 (t)

However, for an impact of infinitely short duration, there

is only a momentum exchange within the total system, so:
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H (t = (t ) (31)0 i 0)

It is convenient to take the fixed point 0 to be the point

about which the beam rotates. This point is approximately

fixed for small angular deflections 0. This will be shown

to be true when the motion of the beam is solved later in

this appendix. Strictly speaking, if the suspended mass

is taken to be a point mass, then the magnitude of its

angular momentum about 0 is:

H0  Om x mVml (32)

where r is the vector from point 0 to the mass, and VOm m
is the vector velocity of the mass. Both rom and Vm vary

with the angular deflection a of the mass, but if a is

kept small, then rom and Vm are approximately perpendicular.

For an infinitely short impact, r will remain constant

in magnitude, so:

H m mVmr (33)
Om m Om

Two further useful substitutions are obtained by noting

that for small c's, the vector V is essentially alignedm

with the x axis, and the value of rm is essentially con-

stant; so, writing:

V = x(t)
m
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and

r L-

rom

the angular momentum of the mass becomes:

HM0m = mx(t)L (34)

The substitution for rm was made to make later equations

more readable.

The magnitude of the angular momentum about point 0

of a beam with moment of inertia I is simply:

H = M(t) (35)

Ob

Conserving angular momentum across impact i results in:

O(ti( + mx(ti )L I((+) + MXti(+l)L

(36)

The velocity relations can be rewritten as:

O(ti)) = l (i) + e[x(ti - (ti-)L]}
1 i

(37)

and

x t 1 1 (ti )L -e[xlt1i '(ti -)L ]

(38)

Using the Equation (37) in Equation (36) and rearranging

gives:
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x tf (t I(- +ex i(+))  _ L [O t 4 ) I l e
I+mL2 1

+ x(t i  )(mL - ] (39)

1 L

Similarly, using Equation (38) in Equation (36) gives:

M(+) 1 2(-)2 [6(t.)(I - mL e)
1- -" I+mL

+ x(ti(-)mL(l+e)] (40)

These relations, along with:

-(ti ) = O(ti ) (41)

x(t.+) = x(ti-) (42)

give the initial conditions for the motion between impacts

i and i+l in terms of the final conditions between i-i and i.

Motion of the Vibrating Beam

The equation of motion for a rigid beam rotating

about a fixed point 0 can be obtained from the relation:

E Moments = IS (43)

The beam in question is suspended by a flex plate of

length d , shown in Figure 25. This spring can be said

to apply a moment of magnitude M at the top of the beam.

This moment can be obtained from an angle 0 from the rest

(undeformed) position of the spring steel using the relation:

78



Cti

41)

CO 44-)

00

0

UJU id 4J

$4 CU

0 14

40
44
tl0

r4J
44
0

0

4-)

79



d2 x d8 _ M(y) (44)
dy 2  dy EI'

where M(y) is the moment of distance y along the spring,

and the x and y coordinates have been reversed from Refer-

ence (26). This equation assumes small angles 8, and so

assumes small deflection in the x direction of the beam.

The free body diagram shown in Figure 25 shows that

the beam moment is approximately independent of y, so inte-

grating Equation (44) once gives:

8(y) my (45)~EI s
S

and integrating once again gives:

X(y) 1 my~- (46)2 EI
S

At y ds, 6(y) is the angular displacement of the primary

system. Evaluating 8 and x at y = d s gives:

Md
O6(ds )  - (47)5 +E l '

ts 

2

L." MdK'-- 1 s 1
x(d s )= 2 -Od (48)5.-2 E1 ' 2 s

If the aluminum beam oscillates about a fixed point 0 a

distance r from the top of the beam, then for small values

of 8:

I8
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1 (9
rs 0a rsin 0) = x(d) = 4d

so rs =ld2 and the beam rotates about a point located at

the center cf the spring's undeformed position.

The moment M applied to the beam by the spring iss

opposite in sign to the moment at the end of the spring.

Using Equation (47), this gives:

EI '0(ds ) EI '0s s s
M d = -= (50)

S d d
s s

6 = O(d) is the deflection from vertical of the beam.
5

Gravity also causes a moment M
g

M g WT rc.g. sin -W T r c.g (51)

where WT is the tot 1. weight of the primary system, and

r is the distance from the center of gravity of the

primary system to the rotation point 0. Also, there is a

moment due to damping that resists the motion of the sys-

tem. This damping moment Md is assumed to be proportional

to the angular velocity, so it can be defined as:

M =ca (52)

d

The equation of motion of the system then becomes:

• .EI '0
10 = - cO - WT r 0 - (53)c.g d

s
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or:

I8 + ce + ke - 0 (54)

where

k W T rc.g. - (55)
s

By Reference (27), the solution to 0(t) can be written:

c t
6(t) = e 21 t) (A sin qt + B cos qt)

where A and B are constants depending on initial condi-

tions, and:

k c 2q= k (56)

Since we are interested in the motion of the system between

impact i at time ti and impact i+l at time ti+1 , the solu-

tion is more conveniently-written in terms of time t=t+At

where At ranges fron 0 to ti+l -t. In this case:

c t)
8(At) = e 21-t (A sin qAt + B cos qAt) (57)

If the angular position and velocity of the primary system

and the velocity of the impacting mass are known immedi-

ately before impact i at time t. , then 0(til) and

q(ti M) are given by Equations (40) and (41).

Using these, the constants A and B can be solved,

and the position and velocity of the system at time At as

9 At ranges from t. to t is:

1 i2
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(---(t ____ (____C

21-D)[e -)' 1 JY

e (At) 2 qt) + 21q sin qAt

+ e(ti(+)) Cos qAt (58)M M

t) (t 6j t )

(At) e + sin qAt•2.1 q 21q

|..A +e - IAt) 6(ti() + 2Icos qAt

21 i2

- qO(t-) sin qAt

(59)

Sf the system is undamped these equations become:

O(At) = q sin qAt + c(ti(+) cos qAt (60)

((At) = O(ti(+)) cos qAt - qO(ti(+) sin qAt (61)

,%, Motion of the Secondary System

The motion of the secondary system, which in the

laboratory was simply a steel sphere suspended by nylon

thread, is most easily obtained by:

E Moments = Im (62)

In this case, the inertia I is simply:

Im M 2 (63)
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[ , .. The only moments are from the a component of gravity:

M = -mgLm sin a- mgLma (64)

and the moment due to damping:

Sd= -C aa (65)

so:

. m~m2""

ML = -C a - mgL a (66)m a m

In order to conveniently go from treating the mass

as a damped pendulum to treating the mass as being free

from all forces except the impacts, it is helpful to note

that:

x = L sin La (67)

x= aL m cos aL aLm  (68)

xaL Cos a - a2L sin a L (69)• m m

This implies that for small values of a, little accuracy

is lost by assuming all motion is in the x direction, so

Equation (66) can be written:

mLm x = - C -mgx

or

mx + CmX + kx = 0 (70)

84

. °

a -" a



* where:
c 1711

Cm = L (71)

m

km =mg (72)L
m

As was done for the primary system, x can be

solved for according to Reference (27), giving:

c
-M.At)

x(t) = e (Am sin qmt + Bm cos q mt)

where

km C 2

q m =  - (M) (73)
m

and, writing this in terms of At, which ranges from time t.

to time ti+l:

cm
-2 At)

x(At) = e 2m Am sin qmAt + B cos q mAt)

(74)

Am and Bm can be solved here using Equations (39) and (42)

the same way A and B were solved earlier for the beam.

Doing this, the position and velocity of the impacting

i, mass becomes:
C m M( M+ ti+

- At) X(ti X(t) )c

x(At) = e q + + 2mq sin qmAt

+ x(ti(M) cos qmAt (75)
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c 
W

.. 2m I- (ti ) x(ti +)c m
x(At) = -- e qm + x m" sin qmAt

2m qm 2mq m

+ x(ti(+)) cos qmAt]

C
c1m At) [ 1+ + l Mt )cm

m (ti m + 2m cos qmAtj

- x(ti(+))q m sin qmAt (76)

In the undamped case these equations become:1 1
x(At) =  qm sin qmAt + x(ti() cos qmAt

(77)

x(At) = x(ti ) cos q mAt - x(ti(+)) qm sin q mAt
(78)

and if the motion of the mass depends only upon the impacts,

i.e., no gravity or damping forces:

x(At) = x(ti + x(t+)At (79)

;( x(t ) = constant (80)
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Appendix B

Laboratory Models

introduction

This appendix describes in detail the laboratory

* model1s and equipment used. The conversions from measured

* quantities to actual displacements are developed, as well

as the methods used to indirectly measure some of the sys-

tems parameters.

Free Vibration Model

The model used for the free vibration experiments

is depicted in Figure 22 with the important dimensions,I. masses, and properties given in Figure 26. The 1/8" x 1"

x4- 1/2" steel beam used as a flex-plate (note that only 3"

of its length was free to bend as a spring) was attachedI by screws to a support depicted in Figure 27. This sup-

port was bolted onto a 1-1/2"1 x 40" x 42" steel plate which

was itself bolted to 12" x 12" I-beams which extended up

from the building's foundation.

6 .2
Using Equation (50), with E = 28 x 10 lb - in

and I1 1/6144 in 4, the moment applied by the spring onto

the aluminum beam was calculated as 15198 lb - in. The

moment of inertia of the beam and damper assembly was cal-

culated by modeling the damper assembly as a point mass
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24

5,,

Beam= 0.0765 slug

Damper Assembly =
0.0140 slug

• 3" 1/8 "

'I

. -Fig. 26. Free Vibration Impact Damper Used
.. '. in Laboratory with Important Parameters
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26" from the assumed rotation point; this gave I = 0.1882

slug - ft . The moment of inertia was then measured by

hanging the beam and damper assembly, minus the steel

spring, from 1.5" of nylon fishing line and timing it

through a number of cycles as it swung as a pendulum.

Neglecting any damping, the equation of motion of this

system is:

I + rMTg8 = 0 (81)

where r is the distance from the rotation point to the

center of gravity of the assembly, and M is the total

mass of the assembly. From this, the natural frequency of

the system is:

0n= 182I

Wn was measured as 4.45 rad/sec and M is 0.08983 slug, r

was calculated to be 15.4545", and g was taken as 32.174

* 2
ft/sec 2 . I can then be solved for using:

rM~g
2 (83)

Wn

This gave 1= 0.1880 slug * ft2. This value of I was used

in all calculations.

Using wn = AkI, Equation (55), and r = 15.7648,n C.g.

the natural frequency of the beam, was calculated to be

. 90
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26.34 rad/sec. When using a damping factor c 0.02,

which will be justified later in this appendix, the damped

frequency was essentially the same. The actual frequency

observed was measured as 25.9 rad/sec. The difference was

assumed to be the result of small inaccuracies in the mea-

sured quantities. For the purpose of the computer simula-

tion, the measured values of inertia and frequency were

used.

The damper assembly consisted of an aluminum bar,

1/4" x 1" x 6", attached to the bottom of the 1" x 1" x 24"

aluminum beam. The stops were made of steel and could be

attached anywhere along the aluminum bar, and were mounted

as shown in Figure 28. The steel balls used as impacting

0 masses were hung by nylon fishing lines attached to points

84" above the damper assembly, with one attachment 46"

to the right of the damper assembly and the other 50" to

the left. The mass was hung as a pendulum to minimize

forces other than impact.

The motion of the beam was measured with two SR-4

Type AD-7, Lot #B-32, strain gages attached to the steel

spring, centered on either side. These strain gages had a

L. gage factor of 1.96 ± 2 percent. The strain gages were

connected to a Q-amp, serial number 002578 which was

installed in a Type 535A oscilloscope. The oscilloscope

trace was photographed using an oscilloscope camera C-12.

The peak-to-peak amplitudes on the photograph were then

1/ " 91
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measured in inches by a traveling microscope. These mea-

surements were divided by the measured division size on the

photograph to give the amplitudes in scope divisions. The

number of scope divisions was multiplied by the Q-amp

setting to give the total strain of the two strain gages

had they had a gage factor of two. Since the gage factor

was 1.96, and only the strain on one side of the stel

spring was desired, this measured strain e was co rtedm

to the actual strain e using:

1, 2 0 F (84)S= Ly S €

This strain can be converted into radians of displacement

using:

= Mu (85).. EI s

from Reference (26), where u = 1/16" is the distance from

the neutral surface of the spring, and M is the moment

calculated as 15196 lb - in. This gives

= 0.02083e

= (20,830 u"/")O (86)

So, for an c given by Equation (86), the angular displace-

ment 6 of the beam would be:
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* -r . -. * -•.-

2 - = (4.80 x E: ) (87)i 20,830

where E is given in micro-inches/inch, and 0 is in radians.

Measurements were made by manually deflecting the

beam, or primary system, until the oscilloscope trace was

at the desired-position on the screen. The oscilloscope

' was then set to make only one sweep when triggered. The

sweep rate for most measurements was 0.5 sec/div or 0.2

sec/div. The oscilloscope camera was then fastened into

position and the lens opened. In rapid succession the

primary system was released and the oscilloscope was

triggered, so the camera photographed one oscilloscope

trace. The amplitude of the photographed cycles was mea-

C sured in inches using a traveling microFcope. These

amplitudes were converted to scope divisions by dividing

by the measured division width, then converted to strain

by multiplying by the Q-amp strain setting. Equation (82)

was then used to get the maximum angular displacement per

cycle. s was obtained from these displacements using a

linear least squares fit.

The natural damping of the beam assembly was mea-

sured by deflecting the beam a desired amount and allowing

it to vibrate freely with no impacting mass in place. The

photographed oscilloscope trace was then used to measure

its damping using the log decrement method. From this,

the damping factor c of Equation (54) was calculated using:

94
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c 2t w(88)

where

= (89)
V(-;()2 +

and

1- in Al(90)

While the value of c obtained this way was always small,

it was not constant. on a given day, appeared to be a

linear function of the initial displacement, but this

linear function changed from day to day. This is illus-

trated in Figure 29. For this reason, = 0.002 was taken

* as giving a good average value for the amplitude at which

* most measurements were taken with the impact damper opera-

ting. This gave c 0.02 lb -ft sec. This value of

* c was used in the computer simulation of the laboratory

model.

In order to measure both the damping on the impact-

ing mass, and the coefficient of restitution e between the

mass and the stops, the position of the impacting mass had

to be measured without interfering with its motion. This

.4 was done by mounting two pieces of white poster board 8"

to the right of the beam assembly, facing the beam assembly.

Horizontal and vertical lines were drawn at 1" intervals
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across the poster board. Twenty-six feet to the left of

the beam assembly, a lamp was pointed towards the assembly.

With all other room lights dimmed, the impacting mass cast

a sharp shadow upon the poster board. The impacting mass

was removed from between the stops, and one of the stops

was placed on the end of the damper beam, facing out. By

watching the impacting mass's shadow on the poster board,

the mass could be released from a known position and strike

the stop at a known position. Assuming negligible damping,

the velocity of the mass before impact can be calculated

using:

mgAh = -my (91)2

where Ah is the difference between the mass' s height at

release and its height at impact. The distance that the

beam travels due to the impact can be determined from the

oscilloscope trace, this maximum angular deflection times

the natural frequency of the beam gave its maximum angular

velocity, which occurred immediately after the impact.

The velocity of the impacting mass after impact was calcu-

lated by using conservation of momentum, Equation (36).

The coefficient of restitution, then, becomes:

e L V (92)
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where 1+) implies immediately after the impact, 1- implies

immediately before the impact, L is the distance from the

rotation point of the beam to the impact height, and

- 0. Using this method the coefficient of restitu-

tion for the steel balls striking the steel stop was found

to be between 0.40 and 0.50, as is seen in Table 2.

TABLE 2

QUANTITIES FOR CALCULATION OF COEFFICIENT
OF RESTITUTION

M Ah 0m (+) V(+  e

0.000481 11-3/4 7.94 100 0.00254 0.0657 -3.80 0.50

0.00149 11-1/2 7.85 280 0.00711 0.1841 -2.77 0.40

0.00503 11-3/8 7.81 900 0.0228 0.592 -2.31 0.46

Data from which coefficient of restitution e is

calculated. m is in slugs, Ah is in inches, V (- ) and V (

are in feet/sec, E is in micro-inches/inch, em is in radians,

and '0+  = mWn is in radians/sec.

The same lamp and poster board arrangement was used

to measure the damping factor on the impacting mass, but

without the beam assembly in place. The mass was dis-

placed to a known position and released. After a known

number of oscillations, its maximum amplitude was noted and

its damping c was solved using:

.- 2w n (93)
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where:

W if (94)

and L =84" is the difference in height from where the mass

is at rest and the points from which it is suspended. The

damping measured in this way had an amplitude dependence;

C increased with amplitude. The values of c were calcu-

lated for low amplitudes to get the best correlation with

U' the position of the mass when it was used for impact damp-

ing. The data and resulting values of c obtained are

shown in Table 3.

TABLE 3

QUANTITIES FOR CALCULATION OF VISCOUS
DAMPING FACTOR

m A../A. jy 6 c
11 m

0.00481 4 22 0.0660 0.0105 0.0000217

0.00149 4 61 0.0231 0.00368 0.0000235

0.00503 4 179 0.00779 0.00124 0.0000267

Data from which the viscous damping coefficient of
the impacting mass is calculated. m is in slugs, and cm is
in lb. sec/ft.
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Forced Vibration Model

The model used for the forced vibration experi-

ments is depicted in Figure 30 with the important dimen-

sions, masses, and properties given in Figure 31. The

first resonant frequency was calculated according to Refer-

ence (25), where the motion of a beam in free vibration

with one end clamped and a point mass at the other end was

solved. The beam was mounted upon a block clamped upon the

pin of a pin-tree beam test apparatus. This test apparatus

2 could rotate +240 to -240 at a frequency range of 0 to

83.3 Hz (0 to 5000 RPM) . For computational purposes the

beam was treated as if its end extended to the center of

the pin, where a known sinusoidal angular displacement was

appledThe damper assembly was simply an aluminum bar,

1/4" x 1" x 5" mounted on top of the vibrating beam, with

the stops mounted as shown in Figure 28. The stops were

made of steel and could be attached anywhere on the alumi-

num bar. The steel ball used as the impacting mass was sus-

pended by two pieces of fishing line attached to points

93" above and 74" to one side and 90" above and 75" to the

other side of the damper assembly. The impacting mass was

suspended in order to minimize friction forces on it, so

its motion could be treated as resulting entirely from its

impacts with the stops. When the mass was between the

damper stops it could displace from its rest position a
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study the impact
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Damper Assembly

*51

1N0

Beam =0.001099

slug/in

1/811

Fig. 31. Laboratory Model of Forced Vibra-
tion Impact Damper with Important Parameters
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few inches at best, so its velocity due to its pendulum

motion was very small compared to the velocity imparted

to it by the impacts.

An accelerometer, Model MB 303, serial # 149235,

was mounted on the beam 1" below the bottom of the damper

assembly. The acclerometer signal was amplified using a

model 2614B amplifier powered by an Endevco Model 2621

power supply. High frequency noise was filtered out

using the low-pass filter of Figure 32, and the signal was

-. then recorded using a Honeywell visicorder oscillograph

Model 2106 with an M-1000 galvanometer. The output was

also used with a universal counter timer, Model 726C, to
I accurately determine the frequency of the system. The

resulting visicorder output for the forced vibration

model without and with the impacting mass is shown in

Figures 33 and 34, respectively.

.
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Signal 150 MFT 120Q Visicorder
Voltage

Fig. 32. LOw-Pass Filter Used to Filter
the Amplified Accelerometer Output Before Inputting
it Into the Visicorder
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Appendix C

Computer Simulations

The following pages contain two FORTRAN 77 computer

programs which solve for the motion of both the primary

* system and the impacting mass for an impact damper in free

vibration. The first program is the ideal case, in which

the primary system is undamped except for the impact damp-

ing, and the motion of the impacting mass is due entirely

to the impacts. The second program assumes a lightly

damped impacting mass hanging as a pendulum. Though both

programs were written with the laboratory model in mind,

they are applicable to any one degree of freedom system

in free vibration using a one degree of freedom impact

damper.

While comments explaining the programs are inserted

in appropriate places, a few additional words are in order.

The position of the primary system was put in the form of:

U1 (At) =a sin ()At) + b cos (wAt)

and
c A

Q 2 (At) =e 21 [a sin (wAt) + b cos (wAt) j

for the first and second programs, respectively. The

numbers associated with parameters in these programs
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were assigned with units of feet, seconds, and slugs

intended.

The only sources of error in the program are the

computer round-off errors, and the errors in defining an

impact as occurring whenever the impacting mass and a stop

were less than 10 -6 ft from each other. This leads to

small errors in position and velocity of the system in

impact. In order to judge the seriousness of these errors,

as well as to insure the equations and solution approach

are correct, the errors in velocities and momentum were

calculated after each impact, using Equations (31) and (36).

The only other serious source of errors lies in the approxi-

mations and assumptions made in the derivation of equations

* of Appendix A. While the programs will generate output

for any magnitude of 0, this output will be reasonably

correct only if the assumption of small angles is not

violated.
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program IDEAL

* THIS ri 'oOGAM FOLLOWS THE SYSTEM THROUGH A SERIES OF IMPACTS
IN THE "IDEAL" CASE. I.E. WIITH NO VISCOUS DAMPING OR
G RAVIIY AFFECTS.

intei' 1,r I , min, c .n .jI irnporr
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i,r ~t ma s I c,l 1 1dd ,qone. qtw.o.

* dr-1Itt.II I lr x(0:n) ,1(b : ) ,d .thcam (': n) *res Id,
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*~~.j rurl., i. red.(.S"'.
ktA~'~ L iSr. 1

*Th,2 fim.rtirvi nas Is give~n an Initial po'-Iticon ne- t to the !-top
0j pr1-PC dI I ri di t n '1 L Il, r I 1+1-il I ~ e! C II I I: t r n
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prInt',
pr int'
print*.
pr int*, 'massu' mass
print', 'effective da',d
del tat"Zf.j I

S °print*, 'e.o
print*, 'x0) ',x(Z)

print*'.
print'.
print',

- The loop to line 900 solves for the motion of the system through
* n impacts.
*

do 900 Il,n,1
Inct=9.B1
deltat*IJ.01

* Here the motion of the system is solved for after the known time

* of Impact.

a(i-l)ntdotv(if-)/qone
b(i-1)-thetav(i-1)

aa'(velv(i-l))
bbox(1-1)

The loop to line SOO iterates to the time of the next Impact using

* ' the requiremeont th ,t the impacting miass must remain between the stop$.
An fopzct iti considered to have ocurred whenevcr the Impacting mass

' coracs within 0.Q2Ujff1 feet of either stop.

do M5 c=1,50ri,!
. tln,.,(I)=ttnc(i-I)+deltat

thet.J l)=(a(1-1)* sn(qone*deltat)+b(I-I)*cos(qone*deltat)).. " X( )=(za*delIt1-,t)+bb

".°.ir= Il d

If (ab-(x(I)-il) .LE. 0.0 l9001) then
goto GUI

elscif (abs(x(i)-Ir) .LE. 0.O gl000 ) then
-oto GUI

ei c'f ((x(i)-11) .LE. 0.0) thenInc L=Q .' Inct
" " dolt~t=dcltat-inct

elsoif (((I)-ir) .GE. 0.0) then
in,:t=k'.5*fnctdeltaLvdeltat-inct

.. " goto 51U

else
dultat=deltat+inct

go5001
endi f

59 continue
6o continue

C1 contInur
If (c .qe. 52Z) then
goto 9.13

endIf
If (,: .L . 2) then
goto EJb
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end If
Sao continue

* The conditions immediately before the time of Impact just Iterated
* to are solved for.

thatav( I)-thetas'.t )
vfeiS(i)-velv(i-1)

tdot% (1 ).( 1 .iInort~-ras*1*1 ) )( (tdots(i )*( inert-mass*1*1ao)
+vels Is 1~iz~> 1*( 1 H.+e)))

velv( I)=(I/( 1, rt+majsi*lal I)'(tdots( i)
I ainert*(1.O+e)+

980 continue
goto 994

993 continue
print (a,13)'.'the time Iteration did not converge for l-',i

994 cont Inue

a Here tho ii-otion of the system is given for the first 15 impacts.

print *,'Impact time deltat thetas x tdotv xdot

th'-mdthr-an'
prif i. 'C i7.fO.'S.f8.,1'.4,f9.G~f9.4,f9.4f7.4,f9.4P1,j,

S so0 Coll L I inuu
print'.
pririt*,
print*,

oThe errors In position and velocity across the first 1S Impacts are
a given below.

do 973T Ju115,1
errmci,,m=iner-t*(tdotv(j)-tdots(j))+m.,ssal*(velv(j)-vels(j))
errvc~le'(vols(1)-tclots(J)*l1)-(tdotv~j)*l-volIvCj))
print*, 'iipact='.J.'errinoii'erruiioi,errvel-',orrvel

970 continue
print*,
print*,
print*.
prireta. 'Impact thetam time dthetam dtime'

-~ lthiLa-0.1

tt~o.0O
tts--IY.0

mits :0.0
atI -. 00
tat-J.0

znc.n(AJLU.

d t (A,) -k) .0

a In the loop to line 90 the maxvimumn positive amplitude the reaches
* during t'-ch cycle is obtaiined from the mn..,tlc~n of the system already
a obt, rc-j. Information n,-ddtod least squ,~c to those



'amp1Itud, s Is also obtained. The loop also looks 2head to see* whon the systeo~ -JOC5 thruuah a cycle without an Impar~t on the
* assumption that this when the dzwpor bocom:.-s inioperative.-' The loop Is exited before the dtamper becomets Inoperative.

do 900 Pln-1,1
if (b(j) .eq. 0.0) then
gcoto 91.11
end if

If (dvltzat .1c. . 13) thceii

end if
if Ubj)'cos(qone'doltat)) .1e. 0.0) then
goto 979

els.-if ((tlme(J+12)-tinio(j+11)) .go. 0.25) then
gcoto 931

endir
If ((titno-(J)+deltat) Ila. trne(J+1)) then
if (,1.*lt gej. 0i.01) then

% t:ti.1 (jl+dI.tat(J

res1dnJ

iipt~m-
rinrpt (him) St

A . t tat +t thvtam( j)
error (m)-thetain( jI

enid I f
and IIF

979 continue

980r continue
981 continue

m =111 - I
if (tt, .eq. 0.0) than
pi.I (m the0)he

* A lc-Ft cjares approvyinztIon is fit to the maximuim amplitudes

j 11 M.1
.~ i Mt,c1r~) go Ier)te

r*-rr r j

* t.~ / (1*112i



and If
varii-varI~error(j)*t-rror(j)

982 continue

print*, 'up to the&,m,'poak the least squares fit to the
* *~~ peaks Is thcetilq+5't with ' '.,ids-',5, 'with max arrorn',

tmaxerr. 'at peak'. *impcrr. 'and vir ianco-',vari
98 continue

print*,
print*,
print*.

* If (resid .9e. n) then
* got'- [8112

end if
If (resid+25 .9e. n) then
cjoto 19Ual

en-d if
print*.

Hera th - conditions at thn Impacts beginning where the damper was
as:umtn3 t,,c:c. ineff~.ALive are giv.i. lhiS gives the rosidual

* amplitude'. Aftir that the first 15 cycles of thu Ineffectivaly damped
portion of the system aru tyivc-n.

print *,'Impaict time deltat thetas X tdotv xdot
tht-t n;. dthc-tim'

do 1 550 J-resid~resid.25,1
pritit ( i7.fdij,f8.6,fUJ.4,f9.6,fg.4,f9.4,f7.4,f9.4) ''a,

I t i il..(J.1) t I iai'( J) -t I Me I j- 1 ,theta sIJ ) , x J ) ,tdotvCj ) ,ve lv C ).
15 cotianueJ),hta~(3)tio~(31

1951 continue

print*,
priltt* 'Impact thetam time dthatam dtime'

It I me-d .0

dutat 0 .

- ' ttzf.0

mtt s-. U

.%or r -.

.2% zett: tJJ. A)

j t (if) =-. .

*err-r g)O I
do I:.,t J-rr.f Id, n, 1

ifCiAJ) .ccj. 0U.0) then
~~v19 r I

efid I f

If ((b,(.)*co~i(qonc'dc-ltat)) .1e. .0.0) then
C'otoi 1979

cr1l f
if fiInio(J)+dcltait) .le. tIme(j+1) then
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.7

S if (deltat .ge. 8.0) then

p " int '( %3.f9.4,f9.4,f9.4,f9.4)',J,thtamfj),t,
t dihtn dt( jI

It I Illl -t
i 'r t (mi) at
m nit 1. C nirn) t

f rror (mi) sthetam( j

I f (mI .ge . 1) then
goto 19J1

end if
1979 continue
198Z continue
19381 continue

Msa-
if (ttg .eq. 0.0) then

ot.19J83
elseif (m eq. 5) then

e1i.cif (tts .eq. tt*tt) then
goto 1983
end If

maxcrrLYV.JJ
var f -0.03
do 198i2 J1I.m,1
error Ij )er-ror Ii)-q-( s~impt( jI I
if (a.s(error(j)) .ge. niaxerr) then

wox., r r 'er r or(

end if
v~i I =Vnr i+orror C ) 'rror(j I

1982 prtlut* 'up to the'.m.'teak the leirt squares fit to the
p .II. ~* vi tI 2  i+t\1 61 9- a~ tuid s' ,s. 'wift h ma x or ror'

1 1- in- V r 'aL pu.ik'',imlperr,'and varlance-',varl
193l3 continue
999 continuo
IJ02 continue
I U112 continue
100 D1 cont I nufJ

end
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Initial phase anglew .OODBDCfr'jr -+90
initial :iiui def Iect Ion~ A.1MUMMYOIe+ID
naitural frequency- 2j(1Oj4j the startino time= .i(jIOO e0015e2

.4 omt(.nt of' inor..la of the prilijg-y m.;S. .1C9720Udjlu&I
magnitude of the secondary mas .2I'jo~ length of the pr imary systems

2.23fh0ijJO2 th..- coefficient of restitution- .Oi00+T
%seconda~ry w~asz-.:s initial velocity-

.h~~)JJ1~O)eJWtha gazp settlngj- 2 .2D00ODO +.04)
desired numibor of Ii.1.acts.- 54b

Masse .299VZ0W09e-02
effective d= .254.YJAJ0ffe*00

x."- -. 900%iJ49e-01

deltat ."999999970e-82

the time iteration did not converge for in 45
Impact tin'o deltat thetas x tdotv xdot thetam dthotam

1 BG87G9 .0676.07 .b121 -.D918000 2.2958 7.8866 .0l926 -.8074
2 .122;17 .fJ5-13l3 V9U23 .330095 .4363 -2.763G .0940 .LJ1113
3 .107GG .06S5'5 .i0110 .149614 - 2. 'S1.0 -6 . 2"09 .09,07 - .00A33
4 .26345 kY75'/U' -. rU&v9 -. 323185. .21101 4.0D9(7 U1093 -. 0ujJ14
5 .41144 .14 79% .1-7V19 .2uL;31 1 - -1.1169 - G.W3 I 1.00111 -04!5
6 *5!. kJ9Aj, 6 -. iL,3 I -. 3lj37j - .4 4j3 1 .774J .0050 .DO112
7 .5bL43 .04C'.I5 -. 1.45 3 -.225916 1.72'j4 4.9UG9 .D025 -.JDJU26
3 .66214 .103j71 3 7.G .291290 -. G468 -4.9173 .07G9 -. ftk3S
9 .7V.197 .119824 -.07/5 -. 297913 - .17GO 3.2G23 .0779 -. 0011

1r -.2iY143 1.5448 .36 .0002

11 .n 9phas .7jge14 .'19' .235 1S -1.2 3 -6.2G'4 ..07 89

13 1.7296 0 tI ?I: J - f, :.140 u.243 4 1.3o- 4.1010 0It7j)7 -. 00?4
14 1. 107ra G re qu 4GJc G . ! f.O 11 fO .2.5435 -. 7959 -4.9939 .0662 -. 0046
15 1.293iU .IC5511 -.8G62 -. 272560 -. 17oU5 2.1134 .0665 .00154

impact- 1 errmom f t 4 - errvol- .2nl,18579,- JDG
Imlpact= 2 arr,icn .o imD,.f i errg-uIl - . 2184 113b79,-063
Imacni t- 3 errr.,o sr' rn. I,= . -c.r'<l = - .' l t fh743 1 se-s6
i .ni.ct 4 t h;r r co ficint ofi*v .4*- 1:n371 .n,-OIeG
Ilni'..c' it ; r - I' U F'j e h ) G. o
I•nit 6 crr ww;; 13 rrv Q I = 2e se1 U.nu r 79 e -5
Iinac L- 7 (i.'jr, '4 -u7 -rIv:1 = Y -i, J 4 44 ,-6
Iml.,-t= s .99t-9r I.... I,= * .)*i )", 2!rl .1U 5 7li-1G
I np.t Le 9 er r id no c e r te 13 C 7 Ie -JG

rI Fpa c t 1 1 .r r ir,'...,w 2JU 3 2 - Y c. er r. v 2 4 1 l:', _"9 0- if 6
In .C t~ 12 rr.., -. 1I 176&,'I-07 er r v- I,1 1:;4 10!,7 1) 0 6

-I (.,p. L. 1 4 .. c r -m- . 1 I I' 75' , -,5 * *. -1 , r I.. I '3 (56
I nip..ct L Ib . .r ,rn . .AJAWI'k..+tl111t #r rvu .'L j3 15 i-16

Impact thetam tltm dthetam dtdmt
2 .4 7 .1r97'- .1121 -Gil .1 95

4 . 31 .1333 . 3 5 07 -23
7 .2345 .645 - .i16 - .2592

1 5 . ? L . )I14 9 -. .L7fIj 2 94
13 . 7407 1 1 -. 03 - 99 .21.3

Copy aaiable to D C -n1

permit fuJIV~-o .
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° --. . . . . . -.

16 .0644 1.4238 -.0063 .2599
19 .8594 1.G831 -.M SJ .2601
22 .8526 1.9427 -.069 .2596
26 .0410 2.4622 -.0115 .5196
up to the 9E. peak the least squares fit to the peaks Is thetam=q+s't with qu
.97564160P-01 and s- -.229617860e-91 with max error- .8401162929-03 at peak-

4 and variance= .21472435be-05

Impact thetam time dthetam dtime
26 .0418 2.4622 -.0590 2.4622
28 .9354 2.7238 -.0056 .2616
30 .0298 2.9863 -. 0057 .2625
32 .0239 3.2495 -.0058 .2632
34 .0180 3.5136 - .0J59 .2641
36 .0117 3.7778 -. ijA63 .2642
38 .ISG 4.029, -.Du;I1 .2521
39 .055 4.2669 -.201 .2370
40 .;044 4.5122 -.D11 .2453
42 .O025 5.2522 -.0119 .74080
43 .0024 5.7657 -.8901 .5135
up to the 11
peak tho least squares fit to the peaks is thetam-q+s*t with q-
.643291843c-gl and sa -. 123949796e-01 with max error- .957503542e-22 at peak-

11 and variance- .354233722e-03

1

I° ~

.
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program LABSIM

* THIS PROGRAM ATTEM4PTS TO SIMULATE THF CONDITIO'NS EXPERIENCED IN
THE LABIORATORLY WI1LE FOLLOWING THE IMPACT *rHROUGH A SERILS OF
IMPACTS.

Integrr i~m.n.j.p. Imperr~mm.y.u
parameter (n-SJO)

reaI phi(&T:n) ,thctas(Iin),thotav(O:n),tdotsil :n),tdotv(Btn),p * ~~~~t imE,(ij: n I *vel (l: n).v e lv(it: ri) ,cotic!.cctwo *a I 1: n ) ,b (0:n ),
* nort~imas.1,e.l1 .dd.qune,qt%,o.nitts. inpt(l:n),
3in.;t(l1:n) .tt.tts.at~iat~errorAJ-n) *s~q,

deltat.. ir.x(0:n).v&.-(:n),d,thetam(0:n).
* errrom.errvel,dia,resid
print.*,
print*,
print*.

a The same parameters varied in the laboratory are varied here. Note
* that tha diameter of the impacting ina~s is subractcd from the actual
agap to give an effcctivc- gap. Also note that the samne damping constant

Is not used for each mass.

do 1001C p- 1 , 3 .1
if (p tL(. 1) then

ctwcif.0W42 17

el~tuif (p .eq. 2) then

ctwVo 0. 0110,L235
&I n-J.6075/12.00 else
masr-8.00503
ctwo=AJ. .U000d267

end if

d-d-d (a
e0.5

* Previous values of the system position's and velocities are set to zar,..
do 101 .J-l.n.1
th.atas(J)=0.9
thatav(j)-8.0

tdotv(j)-0.0
t ime Cj )=1.0
vels( J)aO.z
velv( J .2.8
x( j ).0
thatam(3)-f.0

1e1 continue
print*.
print".
print*.

aThe remainder of the system's parameters are defined.

data phi(g), thentav(0).tiine(0),qone~inert.l.
I vc 1 v (0) , ii, tdotv (ii) , cone. I1I
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pY

O.B.-0.10,0.8.25.9,0.199 ,2.21,

print*,11nitlal phase anglew', phl(ft),'fnItlal
3 maximum deflection-', thatav(0),

I the starting tlme-',timo(ff),'moment of Inertia of the
* primary mas3'.Inert.'mnzqnItude of the secondary mass-',
mass,lcength of the primary systei-',the coefficient

* of restltution',e.2sccondary masses
initial velocity,',vel(.3).'the gap settlng-',d.'desired

*number of Iii,.pacts',n
qone=2S .9
qtwosqrt((32.174/11lh(ctwo/2.'mass))*(ctwo/(2.0*mass)))
print*,
print*,
print*,

* The Initial position of the impacting mass Is placed against the stop
opposite to the initial deflection.

Fr lnL, *fi-sL25' ,maas
print*. 'effective dm',d

pr intA , UY=,()

print'*. 'cz',c
print*. 'qone-',qole

* * The loop to line* 9JJO solves for the series of Impacts.

do 9L0 1i1,n,1

' The motion is solved for after a known time of impact.

a(1-1)=(tdotv(i-1)/qone+thetav(i-1)*cone/(2.J*inert*qone))

aa(-1)'tetav w+cto~(11/(.i-1)~qwo

bb-x( i-1

' Thr! lojop to line CGiD Iterates to the next time of Impact. This
ite riticn ures the rcquirciac-nt that the Impacting mass remain

' betwocen th stops. An inwzpct I!, d'.fined as ocurri122 whenever
LIhu Impa.tiny ii i.i within 0Y.UDJZJ1 foot of either stop.

do Uff] c-1.5.00.1

tiw. I i'i( i-)+d-ltit)bcoqtodla)

If(ab .(xMiil) .E. (5.030DD1) then
got, tL1
olvi (abrUx(i)-Ir) *LE. 0Y.OZM991~) then

soto 6k1
el.f((x(i)-il) I.E. Z.0) then
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elseif ((x(I)-tr) .GE. 0.0) then
Inctuff.S5 inct

goto 500
else
de)tatudeltat* met
goto 500
endif

So continue
600 continue
651 continue

if (c .ge. 500) then
goto 993

end if
If (c .E. 2) then
goto 8.0

end if

cont 
Inua

* The conditions Immecdiately before the time of impa~ct just Iterated
tc are solved.

tdots(i)o-(cone/(2.O*inort))a(expc((cone/(2.fl*inert)*deltat))n*
4t

* e;p( ( core/ ?.k* nrt)*de Itat)) )"qone*
(a( P.1) *co!3 qoneadeltat)-bi- 1V*sinC qofleadeltat))

thetav( i)-thetas( I)

(e.pCC(cLwo/(2.Aj*mass)*deltaL)))*qtwo*

tdotvC )a(1l.1YI( nert~snrass*1 Al) )*( Ctdots( )*( 1Rert-massa*l**e)
* 4velI-A I Ianr~a* 1 d+e)

*Incrt*(i.(I+e)+
* velsM*(a~ssal-(fnert1I!e/l)))

4955 continuu
goto 994

993 continue
print '(a,13)',the time Iteration did not converge fori'i

994 continue
5000 contiwse

* Here the system's condition at the first 15 Impacts is given.

prtt *,' irnpz(:t timh'3 deltat theta3s x tdotv xdot

do IjlJY1 J-'1.1u,l

cont Irfue
prfisAt.
pr I t,

k The errors in thn imomentum 'rid vezlclcty icr-os the f ir-; 1'. impacts
a 3 1 ivr. iley .ru Id L'c: ss;. 1 1 ircnuwi* tj Ic as:.ur~ic'd niLJ ILo.

do 37U J-1,i',,1
errioM=Ine-t^a( dotv( J) -tdotc( J) I iil( vor iv( j I ,J))
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U crrvele*(vcls(j)-tdots(j)*l)-(tdotvCj)*l1vclv(j))
print*, 'Impzct ~',J'errnioin'.errmon, errvO1'-'.errvel

970 continlue
print'.
print".
print*,
print'. impact thctzam time dthetani dtimol'
I th,,ta -z. 1

NIt Ime=f

K tat=0.0
mtt-U .0
mtts0.JD
error Uf)ug. 1
dt( t) Iij.0
mmz; 1

'The followini loop takes the series of positions and solves for
' the per-!- JI t i, ni.p Iil. udc-. It alt~o lcook ahcid to ',ee whe-n the
'system i througih a cc'.iplcte cycle without an ipz~ct to nn the that

this is witcn the damper becomnes ineffective. Information needed

to r.~rfornt a lezt FLju.,res fit to these pIaks I-- al.,,o- obtained.

do 930 J-2,n-2,14 ~if (a(j) .cq. ii1.0) then
* yoto 9Us
* end if

phi ,i )=atan~b( j)/a j) )

if (de~ltat .1e. £1.0U) then

end If
if ((b(j)*cos(qone'deltat)) .le. 0.0) thenI goto 979
ei.,oif ((tIme(J+2)-tlnie(J+I)) .9e. 0.25) then

end if
if ((tlrn(_-J)+dcltnt) .1e. tlmc(j+1)) then

ii iJ~itt 0.ui1) then

t dLlieta~dt(j)

1t A I L )

I. -i t .,

M , + I

Irf
9719 Coili nue
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900 continue
981 continue

rn-rn-i
if (tts .eq. 0.0) then
got,-) *:,s

(~~i m .e.0) then
egoo eq..

elst-if (tts ecq. tt*tt) then
got) 9813

OrldI if

* The following equations solve for the least squares fit to
* maximum amplitude of the cycles just obtained. The maximum
* departure fromn this least squares approximation and the variance
* is also obtained.

q=(.t-(~j))(1.*n
max--i r=-2.0
var I".f
do VU3 J=1,m,1
error~j)-error(J)-q-(s*Impt(J))
if CaiAerror(j)) .9e. maxerr) then
mz-x-rrscrror(J)

Iwor r j
end if
var i var i+errorCJ ) *error(CJ)

982 cont Inue
print*. 'up to the',m,';)eak the least squares fit to the

tPeaks Is thL-tamzq+s*t with q'l,q,'and s-'.s.'with max errors',
: maxc-rr, at peak=',Irperr,'and variance-',vart

print*.

prir~t*,

print*.
2913S continue
9133c n iu

if (rcsId .go. n) then

Q:--I.+25 .ge. n) then

Crid I f
print*,

Her,:! tl--- ronditions at th Impacts broqinninq wh, r' the' dampe'r was

r1 pt II Af L'-r ti t A~~ i r.;t 15 cyc,1oT ol01 t h,- lj,o(%1 .'ct ivol y d.-mped
pcrlion u.' the -5y-3t iut ;!e given.

prirnt * 'mim~ct time deltit thctas x tdotv xdot

do 1950 juresid.resid+25,1
* -print '(17.f8.5,f8.6,f8.4.f9.6,f9.4,fI 4.f7.4,f9.4)',J,

a time(j).time(j)-time(J-1 ),thetas(j),<' ).tdotv(J).velv(J),
a thetam(J),thetam(J)-thetam(J-1)

1955 continue
1951 continue

print*.
print*. 'Impact thetam time dthetam dtIme'
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tat*9 .0
1 the t a -0. I

deltat=ff.g

tt=0.0

tt s mi.0j
mtt su =0
ntts-0.0

zetatiJ .0
tzeta0 .0-
dt~g)-0U.9
mm* 1
error(0)g. 1
do 198Pf J-reSid,n.1
if (aij) .eq. 0.0) then
goto 1980

end.if
phI ( J)=atan(b( j)/a( J)

if (dcltat .1e. 0.0) then

end if
it ((b(j)*cos(qonedc~tat)) .1c. 8.0) then
goto 1979

enidIf
if ((tline-(J)+Oeltit) .. tie(j+l)) then
If' (Ldc It.it .9c,. UJ.%) then
Othet 3i=tl.Ct IIAj ) -1I thlCta

.13)*t - I t ie
rrt .1 i3,fl.4,f.4f9.4,f9.4)',J,thetam(3),

dtheta .dt( j)

I t I w:=
I wp ( in ) t

tA t -' L Uwtant.

r ~r ii) i.t16) then

Wto JIA

endif

1979 continue

19Ju1 contLI nue
.= - I

if itt';. eq. Z.0O) then
'L.1, 19133

ci;..I III .eq. 0) then

ci I f ILi eq. tt*Lt) then

e nd i r

qi(LL-( sltt) M/ I ~jJ~ii)
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maxcrri3.0
var I=Of
do 19.i-2 J-',m,1
error-(Ji=erro-(Jh-q-(swimpt(j))
If (abbAcerror(j)) .9e. m~axerr) then
maxerr-errorJ

end if
varlari+crror(J)*error(j)

1982 continue
print*, 'up to tho' .m,'pazPk the leart squares fit to the

Tpeakf I~ sht,+ wi th q' ,q I'and s- I . s 'with max errorm
: maxerr,'at pkaL',Imperr,'and variance=',vari

1983 continue
999 continue
I lJLf2 continue

1J0 continue
1001 cc-ntinue

end
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Initial phase angle= .9rZ000000e+Zf
Initial maximum deflection- -. lBZZZ20001e+8Z
the startIno time- DZ0 0 ZDe+U2
mone-nt of inertiai of the primary mass- .107999994e+0
magr. Itudo of the s.-acondvry nas-i= .4£199t--.jleth oF tho primary system-

4.2'101k1f04 tii coufficient of restitutlun- .JUl£e
se,'_.ndary masses initial velocity-

.O~3O'J~flc'lLthe gap settino= .21IC91G668e+2.u
desired numiber of Imipacts- 5u0Z

mass- .480999995e-2G3
efftuctive d- .2l11l668e+Dg

del tat.-.9'iJ~7~-J

qone- . 2 ;L.,j9&e+02
qtwo- '.14377C42

the time Itcration did not converge for i1516
impb~ct t1M.i. doltat th,.tzs x tdotv xdot thetam dthetam

1 .05, - 2 .u 1 2 - .u .4 1 - .114616 2.5324 0.4316 . G9 79 -.0J2 I
2 IU.? *j E, 94 D 'j." .311323 3.0 r, -1.5U81 .11933 .0004

3 . ~. W. 21 O~ 2 ..0 ;',J -5.96G, 9 7 JO7 - .D10f
4 .2 1iM'j .19 1642 -. j J.2 -3 15 J1)5 .3935 4 .3204 .09G4 0028~1
5 . 3;4;1 7 13 113 D.Ijl.'- .28270U7 -1 .2931i -G .5124 .L)944 *- .0
6 . 4 ~.8 klsi9J!)13 -. i9 12 -. 3J7;J01 .622'1 1.2261 .. J 4 4 .000
7 .51/42' .113U3741 k-.bL13 -. 2L;0617 I . 63ull 4 . G002 .0937 -. DUJI)7

8 .5~~~X7 i .i3~3 .jUoG C-.1186497 2.41L.7 5rUA .93 -01
9 .632.277 A) G'9L4 1 .0681; .3AID210J -.7131 -5.1892 ij923 -. 0 1 1

lAY 1 .73913 .1163G2 - .QJ -.30G5007 .3 1 3.0C4.G1 .0914 -0130o9
11 ..03JTs37 Of, A 2 "' .022 1 - .05GiG52 2.2773 5.G191 . B9.07 -. 0M2U7
12 . 8,0(31 .116 29 47 .2 6 2 .295993 - .6490J -5.Bil17 .11897 10OiI
13 .9iliil1149 -. U872 -. 290257 .4319 3.974a3 .00888 -. 202)19
14 1.11431 .1391W14 .01697 .2595U8 -1.3413 -6.4926 ./0068 -.0020
15 1.22832 VL8UAJ7 -. 281I8 -. 286139 -. 7575 .7G55 .0069 .0091

Impact= 1 orrrnom- -. 40.(4158707e-.07 errvela .1192IY929fte-OS
Impact- 2 o rifmm= - 3 20 JU1G4 4 F- -B7 e rr v e 1 .715255737e-06G

impct-3 crlI)'. .JuGulle-D7 errve1- -. 716255737e-OG
Impact- 4 er ria= - 3/Th229,V30co-j13 ei-rvel= .4"b:3371lbe-f06
Imna c t = 5 c-ri 1 149111 I 6 -h7 or rv k: .A~i~~~'~+lA
Impact- G er r n;cm 9 3 1 ?'2 So-Ji9 or r vc I -. 2'U4l8579e-j6
i inp .1c t =7 c r r ic,, - 2 !".1 263L)V-o7 otr rve 1 .230.1 10579o-013
I mp act -8 c r r rnom - Yf30 1 OL.U,---k) 7 errvel- .953674316o-OG
I wpa c t- 9 or rgium- .2 2'b17 4 le-07 errvel- -. 47U;U371U3e-Z6
I 111pa Ct - 10 vi r i;C'11 C .. i 9;Y ' 9 err vel fl. WI£ bhI .0Oe+AJ2J
i mrzc t - 11 ter rm'in= ~.4 1 . ::A ASJJ c r rvelI= 1 .', Lt/16cI(_Q-0 6
I mpjC t , 12 -1~ i . ( I 1 ,Lil. !,-- ,1 .?r r VC1 - . bA 4 1 U Y 9c-06I
Impact- 13 er rwii -. I L,4 I, Pjf.-f "1..:r r v a1 .2'; 1,4 1 1 79e-O6G
Impact- 14 t:r .9-' 1~h £8 crve 1 - - .47G8371 Ste-06
1imp-ict- 15 er r iom- I 11V92 1128o-07 cri-vel -. 7lS559,37e-DG

Impact thetan time dthetam dtime
2 .983 .1221 -. 00117 .1221

4 I.2.)b'! .3 G I - kjj1 19 .2437
8 .9 33 (61.111 - .213 1 .2443 C available to DTI-

permit~1 ~pciL
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1. ,

11 .G907 .8544 -. 002G .2443
13 .L.u 1 .,L -. ' t 13 .2444
17 k;SC 1.,421 - .O2.K9 .2443
20 .1; 34 1 .S L - i, 3 i .2443

. 23 :8I1 1.8311) LI o23 .2444-6 .- ,,3 .2445

23 .0769 2.32"u -. JAIl9 .2444
31 .0744 2.51C 1 - .11,25 .2444
34 .i 721 2. u Ju9 u - . JJ24 .2445
36 .0702 3.0541 -.11113 .2445
39 .0677 2.2t:.u, -.iW,' .2444
41 G6611 3.5431 - .0 17 .2445
44 RG35 3.7875 -. 11025 .2444
46 OG19 4.0321 -. 14116 .2446
49 .0593 4.2763 -. V.Ji6 .2443
51 .0578 4.521i - .111G .2446
54 .0553 4.7653 -..1125 .2443
56 0539 5 .11.U - .U 15 .2447
59 k, 515 5.2542 - .O'24 .2442
62 .0495 5.4907 - .110241 .2446
65 .Y477 5.7434 -.OIC .2446
68 b45C 5.91370 -1:r IO .2445
72 .0423 6.4766 -. 111,135 .4088
74 .114b 6.7213 - . l18 .2446
76 .9360U U.9659 - .017 .2447
78 .i 371 Y .2117 - .fl17 .2448
.l.i V.1354 7.4 r)5 -. 00117 .2448
82 .ki337 7. 7A;.,I - u17 .2449
84 .k 3 21 7.9.1 . 4 - .:P1 .2450
-G . g. jI 'J., - OitG .2451
80 .112J' .; 4 G - V:! I; .24tiI
90 .LY 272 6.6132 -27.>1G .2452

~~J2 Gi5 I. 926 1 2- .iBI .22
94 . 24 2 9 .1714 -- '. I, 24 53
9G .1:27 ".4167 -. J!5 2454
9S .,2 12 9 G(;12 1 .2454

iU . .L , 1 I i .' 1 ' 1 . i5 . 455

1B .1 L.' bIs I L'I .2455104 .9;14 ; v I6 .2455
• ~ ~ l~ L 5: I=6 I 1 .'16 2.4 5S

1 " lfr .1, L l :. 1 46 P. 16 .2451

112 . 113 1 11 37'j1 - .'. 16 .2445
114 C J i.,( II G223 - .21 16 2432

ur. to .l,, 17
," . il th. 1 . rqu.irrs fit to tho pe.'k Is thetam=q+.*t with q=

J. ,. . . ,, - . / L' ,1l--.-r with max er ror 41/QG359,f c-D2 nt peaks
2 ar, d v.,r I gl,,- . 6'.,C,; u -J I -l

i. Impact tir-- d(,ltat th,-tis Y tdotv ×dot th, tam dthetam

I 111 7" ; 1 . 134*. ,1 .' 41 -. 00b3 7 3  .1562 1 - 6 SG .J.i?73 -.1 J5)6
11711 / 71/4 14( C -A C, .JiJ23a -. 03467 - 797 1 .U71 -. 130 2

G .. ' 2  .9 . C.u - 12151lS .0 37, G171 .uu71 -. 1) 02
ls ; ' . 4111 1 J9 "117523 -. 1672 - U . -.Ut i 4

.. ' i, . 67 -1 17 - 1.l12U3 - . 6.41 - 14 . -1 . o1.
-"12112 5. 2Th9 - - 11 41 .flul52 ,,tJ 7 .B( ,

1 ;;/ 59'.,9 ,4, 1J 41.1. 7 i 1. if -,O jlhl ,3
i .,,. ; , .614:;u9 - .,.." -,11,14m ..m7"22 .tI 4. .m;L'CP, -. fJx.toj

I . 14. E';.':; .464141 -. -",[ .3P92) mJ G -. uWJ5,2 - 9 .G 0 8 - .0B02
I-2 .I, 5.41. ./4 ./' 1" -I . , 2 . 11 ,61 - I.1 - 1' .I ,,, -..:),

S - i 1 .1 0 !,
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1271C. 15 157 .33^Y05r -. Ml 13 1-.J 12 4 1 1 C5 .7 D 5 J73~4 8 - gftffr4
12016.47ki;8 .3 1(4CC,- *ih; 47 - 1 15J54 e.1l.24 i. 1,l~ 4 -. kJki.I
12917. 10G68 .6 3' 5b2 -.m7 3C r 1 1351 1 .J C,7 9 r; A., ". 5. -

131 17 . gbj I kjPLU:3b .jjAi 42 .1 1 U.; U -. UU .I SU .1-'j4 4 Ujj;AJAJ
13217.74f047 ..04 1 L60 PV!I I .17/9 1 -109 2 -27.'9 *21i43 *lifix
13318.37LG1 .G"0 134 A .01;3 -. 101J411I3 W1U7  .4 211/07 gAOA1 -~3
13418013J2 .4i1351G - ifjj'2 .PJjLW .31~ 1 55 5. J 41J A .JAMO
1351C.97399 I ~G~lIGG -. '3 .11DG75 - .09G7 -3i12 G. 1J3 9 -. 001YI
13619.56527 .59 1 !P6 -.D 3 -1J)6,U3 7 .jj9 .. .4 6 1 .1 W7 -.iu3
13719.975aO .4IfJu12fl - Lj'3 2 .096A1 -. D",4.0 -. '499 .0hl~ 15~ '1
1 E V L. 5 1 lj3 .542,'1 5 - G I S I C. 1~7 4 .JJ7 j1 .4i I bu.U) 3 jkJ
1 9 '2. .9 7719 .415:;1 G 4 -. Fli, Z9 JUii 1 ) .9 *f4 (. V .. 9 a .U32 .l2AiiY

14022 .23tW3 I. 25f; 192 1) ;.f1 105".209 .D7G7 .2575 .00i30u L.O'j 3
14122.893G .650272 -L L:23 Z:0J99267 -. 01I2Z4 -1724 W3 z 8 -0 OV1

Impact thotam time' dthetamr dtimo
116 ..UI07 11 .8626 - .0927 1 1.0626
119 09JA70 12 .34 70 -.0AUG23 .4044
121 .0065 13 .87 U - .0 fjS .7287
123 .f, Q C J 14 .2').)! -. s 1 .2147
1-25 .1ju j 5 1 b. .5u.A0 -. 1W2, 1 .2126
127 .M048 16.2 3;j,' -. kWi37 .7274
128 .0047 16.474L -. 01 .2444
129 .oH4 5 17 .2030 -. 0J;2 .7288
130 .bD44 17.60UG - .1ALjilJ .4851
133 ZU~41 18.41G2 -. 000~k3 .727G
134 .Z040 I P .90JI9 DfrfL'If .4G47
136 .t, 337 19.62IC6 .L'0j4 .7277
138 .0933 2u. 590 1 -.000JJ4 .9694
139 P10 3 2 2 1.0 020J k) b )0 .4839
140 .00J3 0 2 2. 2 9.5 -.01a13 1 .2129

up to the 15
re,.:a tie( leist squa2res fit to the peaks Is thetamnq+s't with qn

.1>J31o-I1arid su -.4l2S293998o-ff3 with max errors .3905U08?73e-83 at peaks
15 ariJ soarrh.nc.. .617 017 Z9vte-U0

Initial phase anglt.= . jCOP ((ro +iY
i i aI a I m~~umi d'ef Iect Ion= U3100911 o00

io;tiint oi iiiirtict of ..h.. p r Im.1ry i.s q .107999994e+00
mana~titude of the s.oiIjary i~ . 14tU.i' D)5-A length of the pr imary system-

2.21.0iljJff4 thec co. %-fficiunt :;f rc- .~Lttiojn=.PDJIJIJC0
S' .. n ;r y rr)., .. S iti al veloclI yn

.1U~k2jikh+ t~ thu gaip sett inqi= . 1 l7f.0132Ue+00A
djsi r e6 iiuwber of in'a~cts= 5110

mass- .49f.:0Uflh5e-jD2

off-ctive I:. . 19271,0328e400
x A . 12 1 i.! .I, ~2 /C +lb

delta. .11 .0 J )A.P ki"L:Z

qone- Z.ljj9'.~i5Ge+Z2
q twIo- 2. 1 4'li'LIL I

the time itcrd..tlci did not converge for is 71
Impact tim:.- 'jaitat thetas x tdotv xdot thetam dthetam

1 .0!,f!.!*,r'15 -.1YA .12'701 2. 4215 C.1C03 A" " 2 - fir:3
2 . 1Ih J)6 i . 0 ;:k; ,0 .U86 1 .;_'Lkill4 L .UG 771 - . G . 4iJ 09JC.G4 .0j)2 2
3 .15101 ..044(S1 .0733 .25045P1 -1.5406 -4.8520 .0944 -. 0020
4 1 1)*/',,, vi4 .. 7 - .0i200 .2ubuL -2.3144 -b.2392 0 9 9 - .000AJ5
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7- 711

m4
b i 1 . .',Il . 13

1 x' 73t I I I -

9 . ... . . ." - ... . +l £5 - I ' ' - - - 'b ' .-"- .
"  

. . ..U

,lo -.73 . "ei. . .. , _ - .:'. , - ,n " 2 .. .. ../ I L. 11. ... .. 9 .1 +, , +5J

1 .LI,> U .. J 3 i, UO /IJ - 24A- 3,. -1: 4 3 ', 1..;' - AU 14

12 *7 9 a'9 .J2 U1 1 - .01 79 - 13.)K4 9 !i 4 6 .j 6 1 -.003
13 .U 7U 0617 1p . /' - 7 70 2G b'.u -2.k! :1 , - "4 J ,'9G .1'7 ,b -. Vr'27
14 1 1.5 L . 1 . J -5.2 7, 1 - . 2-G4-CU I 1t.r L , -. ,. -x,7, j7
1 1 .'13J U 13 1 .J 'SG i 23L-, 4 1- I '.J L -3 b l . .474 1 -,.£s3 7

Im-act- I errmom =  .27939G772c-07 errvol -*.71555737e-JG
I npa ct- 2 er rnioni

=  .111 7 Jer-IJ7 er v l- - u. 4, -j7 1 8e-a.o6
i ni pz, c ts 3 errioii - .745 J i.0GJ;e-Ji'8 rrrveG . ;,. 7,; u - 6
iupac . 4 erriii.m - .3 

2 7 3
U4 c -b

7  c.rrv e .iJJ:Ii1Jk!0Ue+ V£

I mp a ctA 5 er rno m .22:51741.,e-037 errvei- . J J 3k£ e +Jj
I mparct 6 r r. r n, - . 37 529 J . J,2 -1) e rrve i. ,00ii .:..Oi +J

I mp.ict- 7 err'lcil
r- -. 2321.;i£ , 4.t1-Al f) Iv.J .ve7 WJ e- lG

imp;ict. 9 r .i,.ui, .-. 74W 't d l I' 1 .C. 0 ,, 1' ,iLJ 0 i J

Sin P act= 8 r lh "  
.i 1 1 -vl. c.

* I ,,<t 11 ci L t i-'m .931 G / .- 5J 7 rrvl. - -. 11 UJ2iJ2'J'UW -hj6
I nipac L 12 -rl1 . 112 77-
I nir,.c t - 13 oi-rr,-,ioa= -. I P 41'G4f 4 5, 1 . orrvel- .23U,.UbY9 - f6
I mp rc .- 14 r ra-. = ., /: 29c ,A -. U orrvel .kJJJJkJl.J.'5.'h+AJM
Imp act- 15 errmoin -. 167638P G3o-J7 orrvel -. 23U41U'79e-06

impact thetam tino dthetani dtlmc
2 .D964 13 11 - .; £3~ . 1238
5 5 .91IL .3G99 - .0iJV9 .2462
8 .'372 .6177 -.0 43 .2470

12 D 3J I't5 at U.. G - juj)r .2479
14 .8777 1 .1 137 - 1039 .2481
17 .ki727 1.3617 -. A'O .2401
28 .684 I 6 f9U - O43 .2480

23 .U640 1 .U O2 - .0J0 44 .2484
26 .k;59.1 2.1066 - JDU46 G 2484

28 . £56 2.3L.53 -.. 0 132 .2487
31 .h.j i 2 2.6JJ3.U - .a) JS"5J .2482
33 .048 .85..5 -. 41)32 .2490
36 .k 434 3. 1 V4.) I -. J49 .2476
39 .'391 3. 34,9 -. 0139 .2480
43 .f315 3.;9 -. 0 UIJ,[; 4 9 '
45 .Q :'a 4.099 -. 0037 .2501
47 .1242 4.3463 - .1'3G .2505
49 o.? F 4 .5973 -. UP',G 2509

'-*51 .i170 4 0 4, 7 -. U AJ36 .2514

53 . 133 IMiI5 -. 0 37 .2518
55 k);194 5.3519 -. 0 39 2514
57 .x)56 .5972 -.IJ 39 .2453
up to th. 22
peal thite ltt,.:t squires fit to the peaks Is thetam~q+s*t with qu
.9741UG Gc-l'i and s -. 16417,I1354e-01 with max orror= .2723711U1e-2 at peak-

I a;d variance= .372.083668e-014

impact time doltat thetas x tdotv xdot thetam dthetam

12
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59 . 8442 .199719 .0009 -.094315 -.1293 .0390 .0051 OZZG
£0 7. 126.271.Z4'%5 4 -. 1A2v4 .09D9G3 -. 03981 -..';.G4 . 004 5 -.ZBL(G
61 7.62555 .501UZ73 .10,03G -. 1014315 -. 0693 -. W649 .kWU4 5 000li
62 7.66kG2 .035.070 -. 0174 3 -. 10594? .0280 .1148 .0045 .0011
63 7.67SG9 .9 191563 -1M123 3 -. 193u(.6 .0376C .1933 .13044 .Olifi
64 7.69195 .0122G6 -. AJ1L 2 -. 101259 .0 9 9 .22139 .0044 ML10oil
65 7.702Z70 .01YU 7 50 -.21.13 -.099239 .1090 .2451 IJIJ44 W5s11J
66 7. 7 ) L C21 ID; I:1 -. i 14 -. 091233 .11 361 .2519 . IJf04 4 0.0110
67 8.33u0O3 .62CLL17 -. Ujjj19 .11921 11 -. OCj3 -.4279 .00 - .0006U
68 8.73245 .395G16 W0137 -. 038246 .0 9 0 .2r-01 .00 37 -. 0 ~2
C9 9. 32F.74 . 59'.29il J i..2 . 1139 22 9 03"31 1 -U 114 24o . 4 - .0022J
7 f 9. 9564:3 . 6 3 12:t .11132 -. 06U924P - .?69 .1114 S .1034 -lf

7114. 951 Ally00i -.. 11 13~~~? .1113 I)'i'I.111 - .034

73 . ... .. W. . . . .I I.. • i. . . 0,0 W)0 . 04 U

74 b J U0 .Su'l 1 IJ 1 ky VI 20' 01)1 J~i -M 0 1 l0 IM
75 0.1 IJ A; (;,,tW' .jk_-,A . d UiJWJJ .JJ J J .2111 2.A if 2011%!~j

77 Dif-1 W0 00~ Ar J. X ;,.1 .LA"J r * 0U1jo .ui )ot A) . , AiiJ A) AM (3
78 0 1 jj . tj .k.. 1:Jv Il .1120 .00.1,Ji0 A) I,) I.,{ P k1'i' j .JJlf) if11101

40 ,. A .iil£9 5.1.. .4. .lI99719i .'8 9 -. JJ94315. -,ji293 .t39o .3115! .1.1,OJ6
6 1 7.12%27! .24'i . . .('U .124 l 1 .9flU63'-. u9. - 3624U , JjJ45 -,0A£j

L-',E'3 L 6A ..2 5 l.g,f7 -. LfG -. 31 .l98 -l)4 , 4

b 4 . I2 7.. . XG .fv.0 -.-fi4 .1 JJl9ju. .014 .If5 000 .b o

""•37.67LJI9 .U19,ii.i3 -AI.U33 -. U213JII .LOj7k .19331 .11044 .OoisOJ

Impact thctam time dthetain dtfine
66 7. 3 i -. us; 4 . 33 . .1 7./79

Go .03* 8.73G4 Hki.0b1./ .9635
up to tho 2
p..ak tie least squares fit to the peaks Is thetamwq+s~t with q-

.- 9 93r74~ -1 .and 5-= -.73013.,43e-03 with max error- .139690860-88 at peaks
1 7nd .aranc .21G0403434e-17

Initial phase angles.01003e0
Initial mlaximum.II deflection* -.10000001e+08
the starting times .000DODLhe+fj
niocl'ilC'1 of tinertia of tile primary mass= .187999994e+00
maijitudIo of the secondary mass- .5i.JJ200lY1e-sJ2 length of the primary systems

2.2'-."7 .;JZ4 th . cocff.cient of reottutlon* . SOOIJA CfIJ4 O+1J0
secondary ita..c's initial velocitya

O0o- •the gap setting- .I64f13332e+A
do-a I reJ nuitibtr of, iini..ccts- 51211

mass- .000Y2-1
effcctlvc: d= .1,041183332c+02

delta'

qonc- . 26 9 6la+ JD2
qtwo. 2.14:;J9324

the tiin" it* It-:.tin did not converge for io 41

1 .AJ, 5.t'9 .1,,,J4 -. 138135 2 .0666 7.3171 .0838 -. 0162
"j .,! I, .Y9 41? .240J' 5 }Il I. 4UG G.USGI .11919 .JJJ.%32

3 .141/6 u.39L42 AJULI 2 7 ,:Ou - I.54 -2.6I . J09 .. O9i -. 025
4 .1 G,'t .02102 fjr0U . 797 -1.616 -4.1..33 fJCGO -.. n12 6
5 1. 1 4 7.' I72 j - .b:i Jt . , G9;/ -2..44 -4.772G A)065 - DO 14
C, 1 .1 .K7 . Pnd I I W=-.,13 .7971 -2.ZJ9 -4.9217 -Uzi I -8 aI 4
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ii •
" I%-

7 .26MT6 .OG9740 -.ZC21 -.263509 .0693 3.?036 .0822 -.0029
8 3C11.0 .0G67 04 QI •fl .1J46792 1.973 5.A326 j?79 -.I1143
9 3S5'38 .D59i!'5 .0765 .251994 IL63 -2.6491 .09766 -. Db13

10 .45261 .D2::28 .0111 .084533 -1.U,162 -4.9173 .Z713 -. 0 53
11 .51u27 .!,GC'2.$5 -.D716 -.23UW}27 -. 2)J7/ 2.221 .711 -. JJ02
12 .57799 .U59125 -. JJ98 -. 1J3b3 1. G[;1 4.5869 .J656 -.HJ55
13 6 4:71 .L71722 .DG47 22.'J 1' . 1 GU -2.1762 .)G51 -. Mo4;S
14 71 ': .7 . G:6,1I. 4 .PPII LU4.491 -1.5622 -4.1 U74 .AJGAj3 -. J0 4 7
15 784.j6 .07J409 -.0514 -.211164 -.0235 2.4422 .0504 -. oill9

Impacts I errmom- -. r2154ZGA2e-0W7 errvel- .95-674316e-0jG
Impacts 2 errmom- . PiJW0JJJLjJ ee+ errvel- .2:6410579e-D6
Impacts 3 errnom= .745AJS80JG.Ue-J3 errveI- -. 119:0929ife-e6
Impact- 4 errmom =  .7415lSU5IJOe-h8 errvel- .119209290a-86
Impact- 5 errmom= .26542 6 93,1e-i07 errvel- -. 715255737e-06
Impa ct= 6 errm.,I.- -. 5-7D43 '/ 7Lu-00 errv-1 - -. 23U8418579e-0G
SImpz ct 7 err-,,;.ii, - . '74 . 8,31( o ,e-JU t rv .l - -. 22d4 I 579e-h6
Impa ct 8 f:. r -'i . L 13 !3t 1. / orrv'..1 - .1 %a19 tUo - JuG
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Imiact- 12 yrrilL, hw -. L; L 2 6 b Q - I cfrr e .02,4651 7 -06
Impact= 13 c rIIlmum- . 7 454Cb.,Gj),-0i8 e--rvel= .JjULvkjS.W!ize+00
Impact- 14 errmoin- .IUG24r01.-407 errvel- -. 476337158e-96
I pact 15 crrn,oi= .O JOJJe404 errvel- .1D9iAJAMOOOe+00

Impact thetam time dthetam dtlme
2 .0919 .120G -.0081 .1286
8 .0779 .3037 -.0141 .2551
9 766 .3925 -.0013 .0088
•12 2 0656 .6444 -. 374 wh II .2519

13 .065 1 G6535 - .8005 .01091
19 M048Z 1.1667 -.0171 .5132
22 ..0382 1.4297 -.8098 .2G30

pa te d ltqasft tthe pek Ist xo thetam t withetam

31 2.43332 .183959 V.0II -.079687 .0&306 .8660 .0933 -. 0941
32 2.609;6 .176336 -.ZC32 .07495 .0010 -. 2373 .0145 .0012
33 3.1 6!bf6 .552939 .LA.30 -.074203 .J349 .2674 .0030 -.0.097
34 3.70670 .544179 .LJuI5 .085272 -.0529 -.3393 .30025 -.0013
35 4.14ZUU .437Y99 .kWX 3 -.0760GO -.0129 .1G75 .2024 -.0801
36 4.91273 .760057 .J07 .5a36Z5 -.0349 -. 2150 .0515 -. 0009
37 5.55119 .6374G1 .XD,£5 -.001025 .0127 .1773 .8007 -.0008
38 6.2;252 .737.-4 .IJL.:. ., 247 ..02u9 -. 0294 00 19 .0O003
39 7.53L ;3.244704 .J;Uuj -.%6.i&,47 -. 0DO13 .'.:U4 J) u9 -. J0O1.4 4D E;. E;2'1.32" 9J9 -.0. .JUL 104 . ;J0 -.0 Iu .1 l5Oj -.D0 1
4113.862325.000029 .2015 -.017012 .2000 .008O .5008 -.B008
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* .51 .~ JL . .. 1t,' Ajfd kirj 1 .10POW,~ .001A'i0 1F .j 01313W1 D I

53 2 . , .1 k). u. k! .u..5 '.' vfhj bLill JUi ..0ka ." .J0001)

53. 54 , * ):jVJ *(S v d k.L );j IXJA3JI~ijIjv ) A)) J . A) W~ .sAji . Aj o
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Impact thatarn tirnc dthetan dtime
31 .0033 2.4812 -.0067 Z.4812
32 _00T45 2.7011 .0012 .2199
33 .. 0028 3.17GG -. 00)07 .4755
37 .C521A)7 5.5CO17 -.1)sY3l 2.4)351
38 .1-1 22 .02 .7435
40 .Lso0Z 6.98213 - .0411)21 2.6571
up to the 6

pekthe 1cst squares f it to the peknste~mmq~s*t with q-
.510447~-01 nds -.5C9925U18e-Z3 with inax error- C4013911ge-0)3 at peaks

6 and variance- .3CO157439e-96
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