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Preface

The potential usefulness of the impact damper for
space applications was first proposed by Dr. Peter Torvik,
who suggested a study of it as a thesis topic. This topic
was of interest to me not only as an exercise in basic
dynamics and mechanics and as an opportunity to acquire
laboratory experience, but also as an opportunity to do
basic research in a promising field of vibration control
that is not common knowledge.

& would iike to thank Dr. Torvik both for the
freedom he allowed me in this projec;, and for his knowl-
edgeable advice, which helped me overcome many frustrating
stumbling blocks. Thanks are also due to Captain Wesley
Cox, for his assistance with the laboratory equipment, and
to Captain Patricia Lawlis, who helped me through the
tedious process of learning the UNIX computer operating
system. Last, I would like to thank Linda Stoddart of the
AFIT Library, who did an outstanding job of obtaining |
reference material spanning fifty years, often from private

laboratories or journals published in Europe, Russia, and

Japan.
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Nomenclature

c -- Viscous damping coefficient for 6 of the pri-
mary system.

Ch == Viscous damping coefficient for x of the impact-
ing mass. .

cp -- Specific heat.

Cs -- Constant factor in the equation relating s to

‘ the system parameters.

c -~ Viscous damping coefficient for o of the impact-

o ing mass; ¢ = c_L.
o m

Ce -~ Constant factor in the equation relating em
to the system parameters. r

d -~ Total horizontal distance the impacting mass
can travel; referred to as the effective gap.

a_ -- Length of the flex plate.

e -~ Coefficient of restitution.

E -~ Modulus of elasticity of steel.

AE -- Change in total energy.

g -~ Acceleration of gravity.

Ah -- Change in height.

Ho -~ Magnitude of the total angular momentum about
point 0 of both the primary system and the
impacting mass.

Ho -- Magnitude of the angular momentum of the primary

b system about point 0.

Ho -- Magnitude of the angular momentum of the impact-

m ing mass about point O.
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i -- Number of impacts.

I -- Moment of inertia of the primary system about
its rotation point.

I’ -- Moment of inertia of the cross-sectional area.

I -- Moment of inertia of the impacting mass about

m the rotation point of the primary system.

I'B -- Moment of inertia of the cross-sectional area
of the beam in the forced vibration labor- ‘ory
model.

I's -- Moment of inertia of the cross-sectional 1a

of the flex plate used in the free vibrat 1
laboratory model.

k -- Stiffness constant resisting the angular u.s-
placement of the primary system.
km -- Stiffness constant resisting an x displacement

of the impacting mass.

L -- Magnitude of the moment arm used to calculate
the angular momentum changes (for the primary
system and the impacting mass) due to an impact.

Lb -- Length of the beam used in the forced vibration
laboratory model.
Lm -- Distance from the rotation point of the impact-

ing mass to the impacting mass.

-- Mass of the secondary, or impacting, mass.

=
1
[

Moment in a beam.

Moment applied to the primary system by the
flex plate.

== Total mass of the primary system.
Point about which the primary system rotates.

-~ Damped frequency of the primary system.

g 0 O

-- Damped frequency of the impacting mass.
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r -- Maximum amplitude of the primary system at time

zero.

Lom -- Distance from the point 0 to the center of mass
of the impacting mass.

;Om -- Vector from the point 0 to the center of mass
of the impacting mass.

ry -- Distance from the point 0 to the point where
the flex plate is attached to support the pri-
mary system in the free vibration laboratory
model.

s -- Constant time rate of change of 8 referred to
as the damper efficiency. j

t -- Time.

ti -- Time of the ith impact.

ti(+) -- Time immediately after the ith impact.

ti(-) -- Time immediately before the ith impact.

- t. -- Time during the jth cycle when the maximum
o J amplitude is reached.

At -- Time since the last impact, At = t - ti.

AT® -- Change in temperature.

ATmax -- Change in the maximum kinetic energy.

u -- Distance from the center of the flex plate to
the surface.

v -- Velocity.

Vm -- Velocity of the impacting mass.

Vm -- Vector velocity «f the impacting mass.

WT -- Total weight of the primary system.

x -- Time dependent horizontal position of the impact-
ing mass.

X -- Time rate of change of x.

.~ Y -- Coordinate along the length of the flex plate.
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Greek Characters

Angle between the strings suspending the impact-
ing mass and the vertical. See Figure 24.

Logarithmic decrement.

Strain on the surface of the flex plate.
Measured strain on the surface of the flex plate.
Viscous damping factor.

The angular displacement of the centerline of
the flex plate from the vertical. Along the
flex plate 6 is a function of y. At y = d

8- is the angular displacement of the primary

system from the vertical. See Figure 24.

Maximum amplitude of the primary system during
cycle j.

Initial maximum amplitude of the primary system.
Amplitude of the primary system at which the
impact damper becomes ineffective, referred to
as the residual amplitude.

Derivative of 6 with respect to time.

Final maximum angular velocity of the primary
system.

Initial maximum angular velocity of the primary
system.

Mass per unit length of the beam in the forced
vibration laboratory model.

Frequency at which the forced vibration labora-
tory model is excited.

Natural frequency of the primary system.

xi
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E Abstract
!
ELThe usefulness of the impact damper in eliminating
vibrations is studied analytically and experimentally.
Laboratory models of vibrating systems are constructed to
evaluate the performance of the impact damper in reducing
or eliminating forced and free vibrations. A computer simu-
lation of a single degree-of-freedom primary system in free
vibration employing an impact damper is constructed for the
same purpose. Laboratory free vibration results are com-
pared to the computer simulation in order to judge its
accuracy.

The computer simulation is employed to determine
the impact damper's performance in free vibration as the
system's parameters are varied. Two significant measures
of the damper's effectiveness are obtained as approximate
functions of the system's parameters.

Observations regarding reduction in amplitude and
steady state motion were made for the impact damper in

forced vibration. _
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THE USEFULNESS OF IMPACT DAMPERS FOR

SPACE APPLICATIONS

I. Introduction

An impact damper, also referred to in the litera-
ture as a rattle damper or an acceleration damper, is a
simple, passive damping device. It operates by allowing a
vibrating primary mass to go through a series of collisions
with a secondary mass carried in or on the primary mass.
’Figure 1 shows one of the simplest models of an impact
daﬁper, with a primary mass M free to travel in one dimen-
sion only, acted upon by a forcing function F(t), a secon-
dary mass m, a spring of stiffness k, and a dashpot with a
damping constant c.

In the simplest case, the motion of the secondary,
or impacting, mass m is assumed to be a result of colli-

sions with the primary mass alone, so the impacting mass

has a constant velocity between impacts. If F(t) is sihu-
- soidal, then the momentum exchange and the energy dissipa-
tion resulting from the impacts usually results in a
decrease in the amplitude of motion of the primary mass.
If the primary mass is in free vibration (F(t) = 0), then

the impacts cause a more rapid decay in the amplitude of the
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motion of the primary mass through energy dissipation and
momentum exchange.

This simple damper could be of practical use for
space applications in eliminating tﬁe unwanted vibrations
of antennas, telescopes, or any other flexible structure
which tends to-oscillate about its intended orientation.
In the near vacuum of space, external damping forces are
essentially zero. Thus, such structures must have internal
damping designed into them. If the impact damper provides
sufficient, reliable damping without adding prohibitive
mass to the total payload, it could be a solution to some
oscillation problems.

An extensive literature search turned up much work

' on the effectiveness of the impact damper in reducing forced
vibrations. Contradictory conclusions were identified.
Paget (Ref 1) probably did the earliest writing on the
impact damper, but the first serious analytical work
appears to be that of Lieber and Jenson (Ref 2). In their
paper, work and energy considerations were used to solve
for the one degree of freedom motion of a primary mass
undergoing perfegtly inelastic collisions with a secondary
mass. These results were used to calculate a damping fac-
tor which was verified experimentally through comparison
with the damping observed in the free vibration of a beam
with an impact damper attached. Their solution predicted

the impact damper would be most efficient (do the most work

3
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per cycle) if two impacts per cycle occurred with impacts
equally spaced in time.

Grubin and Lieber (Ref 3) gave a more straightfor-
ward solution of the motion of the system for collisions
ranging from perfectly inelastic to perfectly elastic. 1In
Reference (4), it is shown that solutions are possible
when stable and symmetric motion is assumed; i.e., that
two impacts occur at equal time intervals during the cycle.
This is referred to as symmetric, two impact per cycle
motion. Such motion has often been assumed, and in Refer-
ence (5) was reported to occur when an impact damper was'
attached to a cantilever beam in forced vibration. Grubin
and Lieber (Ref 6) went on to do a stability analysis on
this symmetric, two impact per cycle motion. Lieber and
Duffy (Ref 7) modeled a cantilevér beam with an impact
damper as a system composed of four lumped masses and used
an electric analog model of this system to study the effects
of parametric changes on the dampers' performance.

Feygin (Ref 8) solved and did a stability analy-
sis for the motion of an impact damper similar to that
shown in Figure 1, but with the motion of the impacting
mass between impacts subjected to dry friction. Masri
(Ref 9) started with the assumption of symmetric, two
impact per cycle operation and solved for the motion of
the system under sinusoidal excitation. He also did a

stability analysis to show this motion did exist for a

4
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wide range of system parameters, and verified his results
experimentally and with both digital and analog computer
simulations. '

Masri (Ref 10) solved for the motion of a fcrced
system with any number of impacts per cycle. Sadek (Ref 11)
assumed two impacts per cycle and used a Fourier series
representation of the impacting forces to come to the con-
clusion that, in general, symmetric impacts do not occur,
especially for system parameters leading to the maximum
reduction in amplitude of the primary system. He used a
laboratory model to verify his results.

Sadek and Mills (Ref 12) solved for the motion of
the system in forced vibration with the impéct damper
affected by gravity, while Sadek and Williams (Ref 13)
then provided a stability analysis on these results. Sadek
and Thomas (Ref 14) solved for the motion of a system in
forced vibration and with the secondary mass attached to a
spring and influenced by gravity.

Masri and Sadek have both published several papers
on impact dampers with carefully solved equations of motion
and stability analyses. The only significant difference in
their approach is that Masri, and many other authors,
modeled the impacts as being of infinitely short duration,
thereby causing a discontinuous change in the velocities,
but not the positions, of the two masses. Sadek uses a

Fourier series representation of the impact force and

5
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treats impacts as being of short, but finite duration.
Masri's (Ref 9) solution for the sinusoidally forced system
shows symmetric, two impact per cycle motion to be pos-
sible for a wide range of system parameters, and that this
kind of system gives the maximum reduction in the primary
system's amplitude. Sadek's (Ref 11) solution is for a
system at a specified r2 io of secondary mass to primary
mass and at a specified forcing frequency. This solution
gives only one value for the gap in which the secondary
mass travels which will give symmetry, and this gap does
not give maximum reduction in amplitude. Masri (Ref 10)
also predicts that the amplitude decreases with an increase
in the ratio of the secondary mass to the primary mass,

while Sadek (Ref 11) says that there is an optimum value

for this ratio, and that increasing it beyond this point
“l 3
‘\* increases the system's amplitude.

Roy, Rocke, and Foster (Ref 15) did an analytical

f&. and experimen~tal study of the impact damper in the center
Eg? of a beam in bena.ng vibration, using both a simply sup-
o ported beam and a beam with both ends clamped. They used
Eﬁg both a closed form solution for the motion of the beam

ng? between impacts and a discrete mass model of the system to

do numerical calculations of the motion of the beam.

P

28 |

,.
N

These numerical solutions were verified with experimental

R

results. All previous researchers did the analytical work

b S
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assuming a rigid bodied, single degree of freedom primary

system.

Dokainish and Elmaraghy (Ref 16) did a computer
#imulation of an impact damper and produced a series of
curves from which damper performance can be predicted for a |
given set of system parameters. Yamada (Ref 17) solved for
the motion of a sinusoidally excited impact damper similar
to Figure 1, but with a piecewise linear spring. Other
solutions to the forced motion of different impact dampers
can be found in References (18), (19), (20), (21), and (22).

- Yasuda and Toyoda (Ref 23), considered the useful-
ness of an impact damper in reducing the free vibration of
a lightly damped system. They used experimental results
to obtain parametric relations which could be used to
solve for the damping.

The purpose of this thesis is to examine the use-
fulness of the impact damper in reducing both forced and
free vibrations. A laboratory model and a computer model
of a freely vibrating system with an impact damper were con-
structed. These models were used to determine damper per-
formance as coefficient of restitution e, mass of impacting
mass m, distance between impacting surfaces d, and other
parameters were varied. The forced vibration case was
examined using a laboratory model consisting of an upright
flexible beam with an impact damper on top and a sinusoidal

angular displacement applied to the bottom.

7
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II. Analytical Studies

The motion of the free vibration and forced vibra-
tion impact damper is considered in this chapter. The
analysis is for the types of impact dampers depicted in
Figures 2 and 3, which are the types used in the laboratory
studies. The motion of the free vibration impact damper of
Figure 2 can be followed analytically through any number of
impacts. The solution to the motion of the forced vibra-
tion impact damper of Figure 3 is not completely described
in this thesis, but some useful information is obtained.
The equations given in this chapter are derived in detail

in Appendix A.

Free Vibration Impact Damper

The primary system of the free vibration impact
damper of Figure 2 is theAdamper assembly, which provides
the impacting surfaces, and the beam. The impacting mass
is not considered part of the primary system. The angular

displacement 6 of the primary system can be described as a

rotation about an axis perpendicular to the plane of
Figure 2 and containing point 0, called the rotation point.

Between impacts, the primary system is acted upon by the

Ln
N
L
-
[
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L
e
s

flex plate, gravity, and viscous damping. The eguation

P P
P Do bt ol a’e "6 & o o o a




K T e Bl YA e A® A " SR A AR S e

YV IIDDD

Flex-plate.
Assumed rotation pt.

- ey o ow ouy e of -~

[« ]

{
N

Beam

Damper i . .
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Fig. 2. Free Vibration Impact Damper
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v
- ' (::) Damper
. Assembly

[‘.’- o Impacting

Beam

F@ y coordinate, moves
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beam :

UrLH\V’ x coordinate,

— fixed in space
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point.
A time dependent
angular displacement,
0(t), is applied here

Fig. 3. Forced Vibration Model

10

Y s

«
AT e, A LN T ..'A..'.‘. T e e
P S R L IR IPRL I T I e P N S ) ) .. . N N PRI . .
. IR R DR R S T . L T R I s - N -t
EL_-‘JL__L PR PRV C VT VAL ARG VAL Y A ST U W VAT WP P AP R WA VI DS VAT W VRRD VA DU AP RN IS S G R SO PR




of motion of the primary system between impacts is, for

small values of 96:

.';. ,. ". /- "- "- .‘-
A D e

EI'

.- . s )
16 + cb + wTrOm + ds I 8 =0 (1)

moment of inertia of the primary system about 0,
with units of mass - lengthz;

viscous damping constant, with units of force -
length - time;

total weight of the primary system;

distance from 0 to the center of mass of the
primary system;

modulus of elasticity of the flex plate
material; '

moment of inertia of the cross-sectional area
of the flex plate, with units of length4; and

length of the flex plate.

This is more conveniently used in the form:

10 + cé + k8 =0 (2)

and k has units of force - length. The motion of the pri-

mary system between impacts is described by Equation (1)

if the rotation point 0 is stationary. This is shown to

be approximately true in Appendix A, where point 0 is shown

-\.‘.
WS
o
*
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to be located where the center of the flex plate is when

it is undeformed.
Solving Equation (2) for 6 between impacts i and
i+l gives:

o(at) = e 2T + | sin gt

q 21q

(+)

+ e(ti ) cos th] (3)

where At is the time since impact i, e(ti(+)) and e(ti(+))

are the angular position and angular velocity after impact

i, and

t: - E_(L)Z
2 q I 21

If there is no viscous damping (c=0) then:

o (e, )
= i . (+)
0 (At) = —q sin gAt + e(ti ) cos gAt (4)

and

q=

a1t

The equation of motion for the suspended impacting
mass between collisions is:

2" _
mL “a + c o + mgL o = 0 (5)

m




m = mass of impacting mass;

L_ = distance of the impacting mass from its rota-
tion point;

o = angular displacement of the strings suspending
the impacting mass from the vertical;

c_. = viscous damping constant, with units of force -
length - time; and

g = acceleration of gravity.

For small values of a, this motion is almost entirely in
the horizontal direction or x direction. Therefore, Equa-

tion (3) can be approximated as:

m§ +cxXx+kx=0 (6)
m m
where:

Xx =L a;

m
—3 2.
Cn ca/Lm ; and
km = mg/Lm.

Cn has units of force . time/length and km has units of

force/length.

Solving Equation (6) for x between impacts i and

i+l gives:

c L]

--2at) Fxee. )y ke, e
_ 2m i 1 m .

x(At) = e [( a + > ) sin qut

m

+ x(ti(+)) cos qut} (7)

13
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where x(ti(+)) and x(ti(+)) are the position and velocity

immediately after impact i, and:

km cm 2
Ay = = - Zn

If there is no viscous damping, then:

x(At) = —q—m— sin qut + X(ti

(+)) cos qut (8)

and:

-]

Finally, if there is no viscous damping or gravity effects,
the impacting mass has constant velocity between impacts,

SO

(+)

x(at) = x(t; 7)) + é(ti(+))At (9)

The initial conditions used in the solutions to
Equations (2) and (6) for 6 and x during the motion between
impact i and impact i+l are 6, 6, x, and x evaluated at

(+)

time ti (immediately after impact i). If impacts are
assumed to be of infinitely short duration (during which

6 and x remain unchanged, and é and ; change discontinuously),
then the initial conditions can be obtained in terms of

(=)

6, 6, x, and x evaluated at time ti (immediately berore

14
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impact i). The positions are given by:

(+) (-)
8t Bt " ") (10)

(+), _ (-)
x(ti ) = x(ti ) (11)

Angular momentum is conserved across the impact, so:

Ié(ti"’) + mi(ti(‘))L = Ié(ti‘+’) + mé(ti‘+))L

Also, the velocities across an impact are related by:

(_)) o .

elx(t; ot oy = oqe, W - xie )

where e is the coefficient of restitution. These two

v relations give:
x(e, ™) = I+;L2 (6(t; 7)) 1(1+e)
+x(e 7)) o - 28y (12)
o(e, ™) = I+;L2 [é(ti(‘))(x—mLze)
+ x(t, N ymL(14e) ] (13)

Using Equations (10) to (13), the position and

velocity of both the beam and impacting mass are obtained

(+)

at time ti (immediately after the ith impact) in terms

15
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of the positions and velocities at time ti(_) (immediately

i- before the ith impact). If the overall system is started

with known initial conditions at time t0=0, and if the times

of impacts tl’ t2, t3... are known, the exact solutions
up to time tl(_) can be solved in terms of the initial con-

l(+) can then

().
l 4

initial conditions can be used to solve for the exact solu-

(+) (-)
1l 2 *
solutions can then be obtained from time t

ditions at t The initial conditions at t

0..

- be solved in terms of the final conditions at t these

Initial conditions and exact

(+)
2

and this process can be continued for as many impacts as

tions from t to t

to t3(-),

is desired.
This process assumes that all impact times t, are

v known. Actually, impact time ti must be found by itera-

(+)
i~-1

requirement that the suspended mass must remain between the

tion, using the known solutions after time t and the

,‘"v‘_ [

s,

two stops. The time ti is then defined as the time when

the impacting mass first comes in contact with either stop

: (+)
X after time ti1e

XK

ad

This solution technique was used in the two com-

puter programs of Appendix C. The first program, IDEAL,

RRAER

uses Equations (4) and (9) to trace the motion of the pri-
mary system and impacting mass in an environment with no
viscous damping or gravity. The second program, LABSIM,
uses equations (3) and (7) to include viscous damping and

gravity effects on the system. Included in Appendix C

- 16
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are the results obtained by running programs IDEAL and
LABSIM.

Program IDEAL was run for a variety of values for M,
L, e, q, and 4, where d is the distance between the impact-
ing surfaces. The results of one of these runs is given
in Figure 4. Whenever m, L, and q are greater than zero,
e is positive and less than one, and 4 is positive and less

than 2 emaxL (d < 269 xL is necessary for impacts to occur),

ma
the impact damper will initially bring about a rapid reduc-
tion in amplitude. After the maximum amplitude attained
by the primary system during each cycle declines to a
certain value, the impact damper becomes much less effec-
tive, with a much slower reduction in amplitude of the pri-
mary system. In the region where the damper is effective,
the maximum amplitude attained is observed to decrease
approximately linearly with time, and a linear function
is fit to the peaks using a least squares method. The de-
cline in maximum amplitude with time is denoted by s, and is
a measure of the impact damper's performance. The maximum
amplitude attained when the impact damper becomes almost
ineffective is denoted em » and is also a measure of
damper performance. :

It is important to determine if s and Om are depen-
dent upon parameters other than M, L, e, q, and g. All of
the computer simulations of the impact damper began with

the primary system displaced in the negative direction 0.1

17
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fnitfial phase angle=
Inftial

P‘ natural frequency=

o~ moment of tnerila of the

't magnitude of the secondary mass=
Ol 2.23045802 the coevficient

o secondzry masses

LLICOEBRBe+0U the gap setting=
desired number of

A
et
LTI

mass= ,20000000%e-82
effective d= .250050000e+0F7
e= 500080000+ 00

x(@8)= -.,9840430049%9e-01

=y W e

P - LA

LLE00090350+08
maximum deflection= -, 100800001 e+00
.2500080800e+02 the starting time=

impacts= 50

&

1

LOCUOCHCe+d0
primary mass= .18930uidle+00
L2G00PROS%e~-L2 1ength of the primary systems
of restitution= ,500000000e+00
initial velocitys=
256080800 a+00

deltat=s .993999978e-02
the time iteration did not converge for {1a 4§
impact tima deltat thetas X tdotv xdot thetam dthetam
1 .06769 ,.#676(87 LH121 ~-.098000 2.2558 7.8866 .0326 -.0074
2 .12237 .954383 JH923  .330895 .4363 =-2.7636 .0949 L0313
3 .18766 .@6559% 119 149614 -2.2519  -6.2363  .Q947 -. 0033
4 26345 975782 -.0C39 -.323185 L2118 4.0967 .0093 -.0U14
S .41144 ,147998 LLP709  ,283116 -1.1169 =~6.0511 .9338 ~.905%
6 .50952 .99¢Pey ~.L0B831 -.314375 -.4493 1.7278 .8858 .P012
7 .55843 .940905 -.4453 -,225918 1.7234 4.9869 .£225 -.0026
8 .66214 .103713 L0746  .291298 -.6468 -4.,9173 .3789 -.9835
9 .78197 .11982 -.077% -,297915 .1768 3.2623 .9779 -.0011
18 .86711 .985146 470 ~-.020143 1.5448 3.5436 .0776 -. 0202
P o 11 .93917 .972054 .p494 ,235183 -1.2663 -6.2654 .0708 -.8069
IR 12 1.92067 .981592 =-.0675 -,275461 -. 7937 .9683 .0731 .B023
' 13 1.97296 .052289 -.0448 -.224004 1.3695 4.1812 .9797 -. 0024
14 1.18756 .114646 .P580 .254357 ~-.7959 -4,9939 .0662 -. 0046
15 1.29348 .185511 -~,0662 -.272560 -.1785 2.1134 .8665 0084
impact=2 1 errmom= .106264515e-87 errvels ,223418579¢-96
impact= 2 errmom= .745058008¢-93 errvels -,233418579e-06
tmpact= 3 errnom= .745650900c¢-00 errvel= =,9536743162-06
tmpact= 4 errmom= JHULULCLUTe+O orrvel=  ,47¢837158e-06
fmpact= 5 errmom= =.1117583703e-07 errvel= -,233418579e-46
fmpact= 6 errmom= ~,27252900Je-08 errvel= ,238418579e-06
fmpact= 7 errmom= ,290L23224e-07 errvel= =-.590046448e-06
impact= 8 crrrom= -.745458B057e-98 errvel=s -,23341857%e-~06
fmpact® 9 errmom= .37252902Je~-08 errvel= ,2364185%79e-06
impact= 198 errmom= .1G6473910c¢-07 errvel= -.119249290c~06
fmpact= 11 errmom= =-.298023224¢-07 errvel= ,220413%79c-06
fmpact= 12 errmom= -.1!1175C70U%¢-07 errvel= ,23841857%9e-006
impact= 13 errmom= -,558793L45¢-78 errvel= ,238410579¢-06
impact= 14 errmom= -.1117587H9¢-97 errvel=s =-,23541857%e~-06
fmpact= 15 errmom=s .QO0UCQLNHINe+08 errvel= ,476837158e-96
tmpact thetam time dthetam dtime
3 .ﬁggﬂ .lggg -.ggﬁg .1298 Maximum amplitude (thetam)
P :gazg :2“5 - 9068 :gggg and time it is a;talned for
19 08776 L9039 -, @443 .2594 each cycle of primary system
13 8787 1.1632 -.0069 .2593
Fig. 4. Output from Program IDEAL
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' 16 = .0644 1.4238 -.2263 .2598
N~ 19 .8594 1.6831 -.80590 .2601
) 22 0526 1.9427 -.6L69 .2596
< 26 2419 2.4622 ~-. 91158 .5196
AN up to the 9
peak the least squares fit to the peaks 1Is thetam=q+s*t with g=
.9756416082~81 and s= -.229617860e~-f1 with max error= .B840116292e-93 at peaks=
4 and variance= .214724355e-45
ifmpact thetam time dthetam dtime
26 L4180 2.4622 -.g59¢ 2.4622
28 B354 2.7238 -.9456 .2616
39 .09298 2.96863 -.0057 .2625
32 0239 3.2495 -.9083 .2632.
34 g180 3.5136 -.0959 2641
36 H117 3.7778 -.0063 .2642
38 8256 4.9299 -.9961 .2521
39 . 9055 4.2669 -. 0651 .2378
49 044 4.5122 -. 0011 .2453
42 8925 5.2522 -.0819 L7400
43 0924 5.76%7 -. 08001 .5135
up to the 11
peak the least squares fit to the : peaks s thetam=q+5%t with g=
.643201843c~01 and s= -.12394979€e~-01 with max error= .957593542e~02 at peak=
11 and varfance= .354233722e-83
Fig. 4--Continued
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radians, and with the impacting mass in contact with the
positive stop. In order to determine how important these
initial conditions were, both the initial position and
velocity of the impacting mass was varied. Varying the ini-
tial position cof the impacting mass through a range of +1"
to -1" from the center of the gaps, and giving it a velocity
ranging from +2 ft/sec to -2 ft/sec led to a #4% variation
of s from its average value. Doubling the initial ampli-
tude of the system from emo = 0.08 radians to emo = 0.16
radians increased s by 20 percent. None of these changes
significantly affected em . These results were for

r
0.1893 slug - ftz, impact mass = 0.001 slug, L = 2.23°',

I

d = 3", and w = 25 rad/sec.

Initial conditions obviously have an effect on
the damper efficiency s. This effect does not justify
complicating the analysis of s by considering initial condi-
tions, especially if s is evaluated while keeping 6
constant. However, the variation of s with initial ampli-
tude emo suggests that the system's decline in amplitude
is not perfectly linear, only approximately so.

An important energy consideration for space opera-
tions is that the only energy dissipation will be due to
the impacts.' Whatever kinetic or potential energy is lost
due to these impacts will be converted to heat, which will
be distributed between the primary system and the impacting

mass. This heat can only be dissipated through radiation,

20
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which is a very slow process. Consider a primary system
with inertia I about its rotation point and a natural fre-
quency w . If this system's only energy loss is due to
impact damping, which reduces the system's amplitude from
0 to em , then the change in total energy equals the

m
0 r
change in maximum kinetic energy, so:

1 2 ) 2
AE = AT = ZI(6 )© - FI(6 ) (14)
max 2 0max 2 fmax
where eo is the initial maximum angular velocity, and
. max
60 is the final maximum angular velocity. From this it
max
is easy to obtain:
_1 2 2 _ 2
AE = 2Iwn (emo Gmr ) (15)

This AE is the energy converted to heat.

A worst case example is worked out for the labora-
tory model's values of m, I and W, assuming all of the
heat goes to raise the temperature of the impacting mass.

For the smallest mass used, m = 0.000481 slug (about 1/4

ounce), I = 0.188 slug - ftz, wn = 25.9 radians per second,
and © and Gm are chosen to be 0.10 radians and zero,
r

respectively. This gives:

21
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AE = %(0.188) (25.9)2(0.10) 2

= 0.631 1b - ft

8.103 x 10~4 BTU

The temperature of the impacting mass will then be raised

by:

_ AE
AT = = (16)
P

where cp is the specific heat of the material. If cp =
0.109 BTU/(lb -« °F) (the value for nickel steel at room

temperature according to Reference 24), then
AT° = 0.048 °F

While this temperature increase is of no significance, the
fact that the impacts convert kinetic energy to heat should
be remembered when designing an impact damper, especially
if a very small mass is expected to absorb a great deal of

energy.

Forced Vibration

The forced vibration impact damper depicted in
Figure 3 consists of an upright slender beam with a damper
assembly on top and an impacting mass free to move between
the stops of the damper assembly. A time dependent angular

displacement is applied as a boundary condition to the

22

......
Bal ol oBal Bl b olonnsas = mm A e et o . L. L L4 ata e e




bottom of the beam. The motion of the primary system, con-
sisting of the beam and damper assembly, was not obtained.
However, the motion of a similar system in free vibration,
shown in Figure 5, was obtained in Reference (25). From
this solution, the natural frequencies can be found.

The undamped, free vibration of the system depicted

in Figure 5 is, according to Reference (25):

int
x(y,t) = X(yle (17)
where:
X{y) = Cl sin (By) + C2 cos (By)
+ C3 sinh (Ry) + C4 cosh (By) (18)
and:
4 szp
B = T (19)
EI B
sin BL + sinh BL
C,=-C, =C b b
2 4 lcos RL + cosh RL
b b
€3 =
cl is determined by the initial conditions, while B is

solved for using:

1
(cos BLb)(cosh BLb)

M
1+ + BE (tanh BLb - tan BLb) =0

(20)
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y=L

- 7}__ ——— Mass, modeled as

Beam, with
mass/unit
length = p

y coordinate, moves
with center line
of beam

coordin-

%///// 7777 P ‘fixed in

space

Fig. 5. Model of Free Vibration Problem
Solved in Reference 25
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p is the mass per unit length along the flexible beam, M
is the total mass of the damper assembly at the top of the

beam, and w_, is the natural frequency of this system. Once

F
B is obtained from Equation (20), wp can be found using

Equation (19).
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II1. Laboratory Mcdels

Two impact damping model: were designed and con-
structed to experimentally study the performance of the
damper in forced and free vibration. The equations c¢°€
Chapter II were derived to apply to the models depicted in
Figures 6 and 7. The free vibration model of Figure 6 was
used to verify the analysis of Chapter II. The forced
vibration model of Figure 7 was used to take measurements
and make observations on its motion. Details on both of
these models, the measurement equipment and techniques, and
the conversion of the measurements to actual displacements

are given in Appendix B.

Free Vibration Model

The laboratory model of Figure 6 consisted of an
aluminum beam suspended by a short, flexible piece of steel
acting as a flex plate, with the damper assembly mounted on
the bottom. The impacting mass is suspended from a point
above the entire system to minimize friction forces. The
quantities needed to evaluate the motion using Equations

(3) and (7) are:

2

(]
]

0.188 slug - ft

0.02 1b ft - sec
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Flex plate

Strain gauge []

e

Alumirum Beam

Damper
Assembly

The model used to
study the impact
damper in free vibra-
tion (not to scale).
The top of the flex
plate was attached to
a secure mount, while
the rest of assembly
hung underneath.

Fig. 6. Laboratory Model of Free Vibration

Impact Damper
27
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Damper
Assembly

Accelerometer

Steel
Beam

Mount with
Excitation

o(t)

rig. 7.
Vibration Impact

WP AP WO G U S T R .

The model used to
study the impact
damper in forced
vibration (not to
scale). The mount
clamped onto a pin
that rocked, apply-
ing the angular dis-
placement at the
base.

Laboratory Model of Forced
Damper
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. _ s
_ k = wT rOm + d
S
" = 1565 1b - in
) Wy = 2.91 1b
roq = 15.765
E = 28 x 10° 1b - in?
v - . 4
I'_ = 1/6144 in
= '
a_ = 0.25

2
q=\/§-(%)

= 26.34 rad/sec

0.000481 slug, 0.00149 slug, 0.00503 slug

@

Cn =0.0000217, 0.000023%, 0.0000267 1b * sec/ft
km = mg/Lm
= 0.00221, 0.00685, 0.0231 1b/ft
- g = 32.174 ft/sec2
. o
. L 7
; ‘\/km ch 2
N G = o - G

2.14 rad/sec
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Quantities needed to obtain the initial conditions after

each impact using Equations (10) through (13) are:

2.21"'

t
n

e =0.4 -0.5

The measurement of these quantities is discussed
in Appendix B, but some comments are in order here. The

r d, 1

values of I, W, om’ %s s?

TI
weighed, and calculated to an acceptable degree of accuracy

m, Lm and L were measured,

with little uncertainty. E was obtained from Reference 26.
¢ and c, were obtained by measuring the reduction in ampli-
tude of the freely oscillating primary system and impact-
ing mass after a known number of cycles; ¢ and Ch could then
be calculated by the logarithmic decrement method. The
value of ¢ obtained in this manner varied from 0.01 to 0.04
lbs - sec/ft, ¢ = 0.02 was taken as the approximate value.
The value obtained for Cn did not vary significantly for
different tests, but the impacting mass was traveling much
slower when these measurements were made than when it was
used in the impact damper. Since damping forces are not
always directly proportional to velocity, as Equation (6)
treats them, this could be a source of error. e was obtained
by allowing each of the impacting masses to swing as a pen-
dulum a known distance and strike the impacting surface of
the primary system, and then measuring the recoil of the

primary system and the impacting mass. These known

30
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quantities and measurements were converted into velocities
for the primary system and impacting mass both before and
after the impact, from which e was determined. 0.4 and 0.5
are the upper and lower values of e obtained. Finally,
while g = 26.34 rad/sec was the calculated value for the
damped frequency of the system, the actual frequency of
the system was measured as 25.9 rad/sec.

The motion of the system was measured using two
SR-4 type AD-7 strain gages, centered on opposite sides
of the flex plate. These gages were connected to a Q-amp
in a Type 535A oscilloscope. The strain e obtained in
this manner could be converted to radians of displacement

of the primary system using:

6 = 4.80 x 10 °¢c (21)

where € is measured in micro inches per inch. This rela-

tion is obtained in Appendix B, and is only valid for small

values of 6, where the relation between € and 6 is linear.
Photographs of the oscilloscope trace were made to

obtain the beam deflection as a function of time. Some

. of these photographs are shown in Figure 8. The actual
distance between the impacting surfaces was 3" in this
!! figure, but the actual distance the impacting mass could
. travel between the impacting surfaces was 3" minus the
;E diameter of the impacting mass. The diameter of the

;! o 0.000481 slug mass was 15/32", the 0.00149 slug mass was
| 31
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11/16", and the 0.00503 slug mass was 1-1/32". d is the
actual horizontal distance between impacting surfaces that
the impacting mass can travel.

It can be seen from Figure 8 that when the impact
damper is operating, the maximum angular displacement

reached by the primary system decreases linearly with time.

Ty ~——

This is not the constant damping of an exponentially decay-
ing system. The usual measures of damping, such as log-
arithmic decrement, will not be independent of the ampli-
tude of the system. It is also apparent that the impact

damper ceases to be effective after the maximum amplitude

obtained during a cycle decreases to a certain value.

[ This value is denoted em , and is referred to as the
. ‘ r
residual amplitude. When the damper is effective, em >

Bm , where em is the maximum amplitude attained by the

r J

primary system during cycle j. This implies that the
maximum angular displacement attained during the jth cycle

can be given by:
G =r - stj (22)
where Bm is the maximum angular deflection attained during

cycle j; tj is the time at which the system reaches maxi-

mum amplitude during cycle j; r would be the amplitude em

0
of the system if it were started with zero velocity at
tj = t0 = 0; and s is the rate at which the
33




system's maximum amplitude decreases with time, which will

El be referred to as the damper efficiency.

Forced Vibration Model

The laboratory model of a continuous system in
forced vibration, depicted in Figure 7, consisted of a

flexible, upright steel beam, with a time dependent angular

displacement applied to the base, and a damper assembly on
top. The quantities needed to obtain the natural frequency

from equations (16) and (17) are:

18.5"

Ly
M = 0.01382 slug

= 0,00110 slug/in

K SREEEAN
Q:

o E =28 x 10° 1b + in?

4

I'B = Efiz in
For these values, Equation (17) gives tho first two values
of BL being 1.345 and 4.071. Using this, Equation (16)
gives the first two natural frequencies as being 37.28
and 341.7 rad/sec.
A model MB 303 accelerometer was mounted 1" below

the damper assembly. The accelerometer signal was ampli-

fied using a model 2614B amplifier powered by an Endevco

Mode 2621 power supply; this signal was then recorded using

N T ATttt
. o - e
NERE RN Pttt o T
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a Honeywell Model 2106 visicorder. High frequency noise
required sending the amplified signal through a simple
low pass filter before it reached the visicorder. Details

of this filter are given in Appendix C.
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IV. Correlation of Analytical and

Laboratory Results

This chapter compares the computed motion of the
free vibration impact damper to the motion measured in the
laboratory. Possible sources of errors in both laboratory
measurements and in the attempt to preduct the motion of a
real system using LABSIM and the equations of Chapter IIT
are discussed.

The program LABSIM, explained in Chapter II, was
used with the measured physical quantities of the labora-
tory free vibration model, given in Chapter III. Table 1
compares values of s and em obtained from LABSIM for
e = 0.4 and 0.5 with the megsured laboratory values of s
and Bm for the different gap settings and impacting masses.
0.4 ang 0.5 were the minimum and maximum values measured
for the coefficient of restitution e. As can be seen the
measured value of damper efficiency s is never more than
14 percent greater than the largest value of s computed,
or 5 percent less than the smallest value computed. How-
ever, the measured s is not consistent in falling between,
above, or below the computed values of s. The measured
value of em may be more than twice the nearest computed

r

value. The rest of this chapter considers possible reasons

for these imperfect correlations.
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TABLE 1

COMPARISON OF COMPUTER SIMULATION AND LABORATORY
RESULTS FOR s and Om

r
Computer Laboratory
mss _ -
(slugs) e =0.4 e =0.5
d [ em ] 6m s em
r r X
0.000481 |3.53" 0.0115 0.0102 0.0107 | 0.0113 0.010
0.00149 1.312" | 0.0134 0.0040 | 0.0110 0.0032 § 0.0152 0.0082
2.312" | 0.0199 0.0071 | 0.0176 0.0048 | 0.021 0.0137
3.312" | 0.027 0.0105 | 0.023 0.0075 | 0.028 0.0184
0.00503 0.969" | 0.029 0.025 0.0016 | 0.024 0.0042
1.969" | 0.043 0.0033 |} 0.037 0.0033 | 0.038 0.0063 !
2.969" 0.061 0.0057 | 0.052 0.0026 | 0.056 0.0130
Notes

s measured in radians/sec.

em measured in radians.
r
The actual distances between impacting surfaces in
the laboratory were set at 2", 3", and 4"; the values given
here for the gap d are these distances minus the impacting
mass's diameter.
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Sources of errors in obtaining the laboratory

a results fall into two categories: (l) errors in measuring
the physical parameters of the system, and (2) errors in
measuring the resulting output. Of the physical parameters
h measured, c¢ and Ch are the most uncertain, for the reasons
discussed in Chapter III. 1In measuring the mass of the

impacting masses, the 0.00005 slug mass of the line support-

ing them was neglected. This certainly increased the effec-

tive mass of the impacting masses by some small amount.

Measured lengths under six inches could have up to 1/32"

error in them, measured lengths over six feet could have
up to one inch error in them. 1In calculating I, the dis- g
tributed mass of the damper assembly was modeled as a
point mass 26" from the rotation point. These are only
some of th:2 error sources, most of which can be assumed
to be small. With the exception of c, Co? and e, a quali-
tative estimate of the errors in the values of the physical
parameters given in Chapter III would be that errors are
t5 percent of the quantities given, or less.

Some of the error sources involved in measuring
the results of a laboratory test are simple: the strain
gage used was accurate to within +2 percent, while the
traveling microscope used in measuring the photographed
oscilloscope trace had a small amount of play in the
adjustment, causing errors of approximately 0.1 percent
or less. Human judgement prbvided another error source;
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in particular, in measuring the photographed oscilloscope

trace one had to decide where to take a measurement from on

Ap ik
R

an often fuzzy trace edge. A qualitative estimate of the

errors in measuring s and em is that the smallest values of

s and em may be in error byras much as +20%, with most

values o§ s and em being accurate to within #5% or less.
The comput;r model of the impact damper, LABSIM,

e Jundaen ) T O
. . et e

C

gives the correct values for s and em for the numbers it
r
is given and the operations it performs. Errors caused

e

by limitations in the accuracy of single precision FORTRAN

would be insignificant (less than 1 percent error) for the
numbers and operations employed. The only reason LABSIM
would not give the motion of the laboratory model of the
free vibration impact damper would be if the equations of
motion, or their solutions, for this system are in error.
The equations of motion of the primary system
(Equation 2) and the impacting mass (Equation 6) employed
in LABSIM are based upon the assumption that restoring
moments and forces (k6 and kmg) are proportional to dis-
placement, and damping moments and forces (cé and cmé)
are proportional to velocities. It is commonly accepted
that spring forces on a body and gravity forces on a pendu-

lum restricted to small displacements are both approxi-

mately proportional to displacement. Damping forces are
not as well understood, and resistance to motion is often

assumed to be independent of all but the direction of

39




motion (dry friction) or to be proportional to velocitw

squared {(aerodynamic drag). Thus, the assumed damping
forces in Equations (2) and (6) may differ from the actual
damping of the laboratory model.

A certain source of error in the attempt to model
a real system using LABSIM lies in the small angle approxi-
mations made in the derivation of Equations (2) and (6).
Other differences between the LABSIM model and reality are
the assumption that impacts are of infinitely short dura-
tion, or that an impact occurs whenever an iteration puts
the impacting mass within 0.000001 feet of a stop. Finally,
it is unlikely that Equations (2) and (6) take into
account all of the forces acting upon the primary system
and the impacting mass. It would be very difficult to
quantify all of these sources of error, or to say if these
errors add up or cancel out over many cycles.

In view of the errors mentioned, the agreement
between the computed and measured valiues of s seems accept-
able. Which of these errors causes the differences between
the computed and measured values of em is unknown. While
LABSIM does a poor job of predicting 6; , it is reasonable

r
to assume that the errors in LABSIM do not significantly

favor one set of system parameters over another. There-
fore, for an impact damper with equations of motion similar

to Equations (2) and (6), LABSIM should be able to predict

b 40
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how changes in system parameters will affect s and em ’
r
even if it does not reach a correct actual value of

6 _ .
m
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V. Results and Discussion

Free Vibration

All of the results discussed here were obtained
by using the computer model of the impact damper IDEAL,
the model with no gravity or viscous damping. The system

modeled had the parameters:

emo = initial amplitude = 0.10 radian;
I = moment of inertia = 0.1893 slug - ftz;
L = impact moment arm = 2.23 ft;
d = gap setting = 0.25 ft;
m = impact mass = 0.001 slug;

e = coefficient of restitution = 0.5; and

w, = natural frequency = 25 radians/sec.

The parameters em and I were kept constant, as was the

0
flex - plate stiffness; all of the other parameters were

varied one at a time. The effect that changes in the last
five parameters had on the damper efficiency, s, and the
residual amplitude,emr are shown graphically.

Figure 9, which plots damper efficiency s for dif-
ferent impact moment arms L, was made by varying L from
1 ft to 3-1/4 ft, in quarter foot increments, while holding

all other parameters at the values given in the preceding

paragraph. Figure 10, which gives s versus d, was obtained
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similarly, by varying the gap setting d from 1 inch to

4 inches in quarter inch increments, while all other
parameters were held constant. The same technique was

used in obtaining Figure 11, s versus coefficient of restitu-
tion e, and Figure 12, s versus the natural frequency W

The data for Figure 13 was obtained in the same manner as

for the parameters of Figures 9 to 12, but the plot was

made a little different. It was found that the damper effi-

ciency s is approximately proportional to the quantity:

The data for Figure 13 was obtained by varying m from 0.001
slug to 0.005 slug in increments of 0.005 slug. The impact
moment arm L was kept at 2.23 ft and the moment of inertia
I was kept at 0.1893 slug - ft2.

The approximate linearity of Figures 9, 10, 12, and
13 and the linearity of Fiqure 1l for e > 0.3 make the
analysis of s a simple matter. Since s appears to be
directly proportional to the impact moment arm L, the gap,
d, one minus the coefficient of restitution, 1 - e (for
e greater than or equal to 0.3), the natural frequency Y
and the mass over the total inertia, m/(I+mL2), the follow-

ing relation can be written for e greater than or equal to

0.3:

mLd(l-e)
s =¢C —_ W (23)
S [ I+mL2 J n
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It is interesting to point out that the damper
efficiency improves as the coefficient of restitution e
decreases, even for e less than 0.3, as Figure 11 shows.
This is not surprising, since low coefficients of restitu-
tion result in a greater energy loss. However, according
to References (7), (8), (10), (16), and (20), for an impact
damper used in forced vibration, optimal damper efficiency
results by choosing e as'close to unity as possible. The
difference between the two systems is that for the forced
vibration in steady state motion, the forcing function
must provide a constant energy input equal to the energy
loss, through impact or any other mechanism. In free
vibration, the system starts with a certain total energy
and any energy lost is not restored. This reduces the pos-
sible motion. This illustrates the fact that parameters
given in the literature which optimize the impact damper's
performance in forced vibration do not, in general, opti-
mize the impact damper's performance in free vibration.

A useful feature of Equation (23) is that the term
in brackets is dimensionless. This requires that Cq be
dimensionless. If both s and w, are measured in radians
per second, the solution of Equation (23) for Cgr taken as
the average solution for cg over the full range of param-

eter variations, is:
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s(I+mL2)

0.33 = mLd (1-e)w_

(24)
Stated another way, the damper efficiency s is related to

its parameters by the relation:

de(l--e)u)n

I+mL2

s =0.33 (25)

This relation is only good for e > 0.3, and may not apply
for parameters outside the range of those used here to
obtain Equation (25). Within these constraints, Equation
(25) should allow one to choose a damper efficiency s.

Figures 14 through 18 are plots of em versus L, 4,
e, wyr and m/(I+mL2), obtained in the same mainer as Figures
5 through 9. These graphs illustrate that the relationship
of the residual amplitude Sm to the parameters varied is
complicated. Attempts were ;ade to solve for em as a func-
tion of L/d, but these results were considerablyrmore
erratic than those of Figure 14, where L is varied and d
kept constant; and Figure 15, where d is varied and L kept
constant.

By plotting the results given in Figure 14 on
logarithmic graph paper (also called log-log graph paper),
the graph of Figure 19 was obtained. This graph implies

that Om can be approximated as:
r
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Fig. 19. Residual amplitude for Different Values
of the Impact Moment Arm on a Base 10 Logarithmic Scale.
m=0.001 slug, I = 0.1893 slug - ft2, d = 3", e = 0.5,
and w, = 25 rad/sec .
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where L, measured in feet, is divided by one foot to non-
dimensionalize it. 1If we assume that as L approaches
infinity, em approaches zero, or some negligible value,

r .
this relation becomes:

-1.35
) (26)

6 =0.022 |7 ¢
=00 [T
r

It is emphasized here that this is an approximation to a
function that is not well understood, and this approxima-
tion is obviously invalid for small values of L.

Figure 15 shows that, with the exception of one
data point, Gm is almost exactly linear in the gap 4.
This one bad dita point can easily be explained. The
amplitude where the impact damper ceases to function was
not always precisely defined in the computer simulation.
In many cases there was a sharp transition from where the
amplitude declined iinearly to where the damping action
ceased. However, in some cases the damper transition from
effective to ineffective operation took place over one or
two cycles, making the determination of em something of a
judgement call. For this reason, occasiongl variations
from what appears to be an otherwise well-defined trend can
be expected. 1In the case of em versus d, it can be

r
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= o stated with confidence that b is linear in d.
e . r
Figure 16, which is a graph of residual amplitude

em versus coefficient of restitution e, clearly shows that
r
a high value of e is useful in minimizing em . Unfortun-
r
ately, a low value of e is desired to maximize damper

efficiency s. A quadratic function was fit to the points
of Figure 16, using the least squares method to minimize

errors. This quadratic function is:

2

Bm (e) = 0.02679 - 0.05132e + 0.0248e (27)

r
This curve comes very close to all of the points plotted,
but it is only an approximation to an unknown function
relating emr to e.

The plot of Gmr versus natural frequency Wy s shown
in Figure 17, shows em to be unaffected by Wy - By
examining the equationg of Appendix A upon which the com-
puter simulation is based, it is seen that an increase in
w, causes a proportional increase in the rate at which the
system operates, but does not otherwise affect how it
operates. Therefore, it is logical that damper efficiency
s would be proportional to W, but that Gm would be
unaffected by Wy i

In evaliating Figure 18, the plot of Om versus
m/(I+mL2), it is difficult to envision what occirs as m

becomes very large, driving m/(I+mL2) to the value of l/L2.
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In the range of masses varied em does not change as dra-
/ r
matically as it did when L, d and e were varied. Also,

Figure 18 does not suggest a function with which to approxi-

mate the em dependence on m/(I+mL2). For these reasons,
r
it is noted that there is some dependence of em upon
r
m/(I+mL2), but no approximate relationship is given.

Putting together the results of Equations (26) and
(27) , and using the linearity of em in d, the residual

r
amplitude can be related to these parameters with:

6 <o [Q-1.914e + 0.925¢%)d
m_ 8 1.35
r (L/1 £t)

(28)

For Equation (28) to be in radians, Ce must have the dimen-

sion of 1/ft. This relation is approximate, and totally

neglects em 's dependence upon m. Solving for Ce for a
r
variety of values of e, d, and L, with L and d measured in

feet, the average value of C, is Cqg = 0.33 /ft. This given

0
value varied by - 25percent to +15 percent when calculating

it for varied L. This emphasizes that the following rela-

tionship gives a very approximate value for em :
r

2
6 - 0.33[(1 - 1.914e + 0.925¢%)d (29)

m, ft (L/1 ft)l'35

Equation (29) is only approximately valid for the range of
L, d, and e varied, with m = 0.001 slug. The approxi-
mation becomes more uncertain as m is varied, and using a
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different value for m probably warrants a recalculation
of Ce. C6 is also only correct if L and d are measured
in feet, though it could easily be recalculated for other

units.

Forced Vibration

The motion of the beam in forced vibration was mea-
sured with an acclerometer mounted just below the damper
assembly. The output of the accelerometer had to have high
frequency noise filtered out before the visicorder trace
of this output would become readable. This noise was seri-
ous encugh to drown out the sinusoidal signal expected when
the beam was excited without the impact damper. The noise
problem was even more serious when the impact damper was in
place. Presumably, the accelerometer was picking up the
high frequency beam vibrations that caused acoustical noise.

A hand tracing of the filtered accelerometer output
is shown in Figure 20, for the motion without the impacting
mass, and in Figure 21, for the motion with a 0.00149 slug
impacting mass and a total gap of two inches. The actual
visicorder traces are given in Appendix B. Figure 21 sug-
gests that there is no simple steady-state motion present.
This suspicion was confirmed by the sound of the irrequ-
larly occurring impacts. Other than this, the visicorder
traces were of little use in a quantitative analysis of the

forced system.
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Simply observing and listening to the forced sys-
tem with the damper operating gave some valuable informa-
tion. The motion of the system was not enough to initiate
and sustain impacts unless the system was forced near its
first resonant frequency, or unless the gap setting was
very small. Higher resonant frequencies caused very low
amplitude vibrations. No attempt was made to judge the
damper's effectiveness at these resonant frequencies.

At frequencies near the first resonance and gaps
greater than one inch the 0.00149 slug mass did reduce the
amplitude of the system by a factor of at least two, but it
did not approach any detectable steady state operation.

For very small gap settings there was a possible steady
state reached, but no detectable reduction in amplitude.
Using the 0.00503 slug mass at any gap large enough for it
to affect the motion of the system led to a very erratic
motion of the system with no evident steady state operating

state, and no significant sustained reduction in amplitude.
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VI. Conclusions and Recommendations

The impact damper shows considerable potential in
reducing the free vibration of long, lightly damped struc-
tures. It is especially promising for long structures
since the effectiveness of the damper increases, and the
amplitude at which the damper becomes ineffective decreases,
as the damper is moved farther from the rotation point.

For a coefficient of restitution of 0.3 or greater, Equa-
tion (24) gives a good estimate of the rate at which the
oscillations will be reduced, while Equation (29) gives an
estimate of the amplitude where the damper becomes ineffec-
tive. Even in the ineffective region, where impacts occur
sporadically, each impact converts some of the kinetic
energy of the system to heat, so only after all impacts
cease does the damper become totally ineffective.

A problem with the impact damper is the impacting
mass's need for room to travel and stops to impact against.
If this cannot be designed into or added onto the structure,
without an unacceptable gain in weight or loss of struc-
tural strength, the impact damper should not be used. If
structural strengta is a problem, using a damper with a
very low coefficient of restitution might be a solution.

While Equation (6) does not hold for e less than 0.3,
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Figure 11 indicates that damper efficiency would still be
higher than for any e greater than 0.3. However, Figure 16
indicates that the residual amplitude also will be high.

The residual amplitude of the damper can be elimi-
nated using other damping techniques, or, to generalize an
idea proposed in Reference (23), by putting two dampers in
parallel. One damper would be designed to quickly reduce
large amplitude oscillations, while the other would con-
tinue to reduce oscillations to a smaller value at a slower
rate after the fast damper became ineffective. Another pos-
sibility is a system which reduces the gap as the ampli-
tude of the primary system decreases. Maximum damper
efficiency could be obtained keeping the gap as large as
possible without the damper becoming inefﬁective; i.e.,
keep the gap just small enough so impacts are sustained.

Another potentially useful variation on the basic
design of the impact damper would be to let the impacting
mass travel in two or three dimensions, impacting against
a ring or sphere enclosing it. This could be of use in
damping out oscillations about more than one axis. This
same problem could be attacked by orienting one-dimensional
impact dampers along all possible rotation planes, but this
could get into weight problems.

Other variations on the impact damper in free vibra-
tion would be to replace the impacting mass with many
masses or a liquid. Or, the hard stops could be replaced
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by springs or dashpots. Many of these variations have been
studied for the impact damper in forced vibration, but, as
has been noted, what maximizes the efficiency of the forced
damper does not necessarily maximize the efficiency of the
free damper. The basic system studied here shows enough
potential to warrant further study.

With the exception of Reference (5), all references
on the subject agreed that the impact damper shows great
promise in eliminating forced vibrations. (Reference (5)
studied impact dampers solely for the purpose of elimi-
nating vibrations in ship's hulls.) The results of this
study shows that the impact damper can provide some damping
of structures in forced vibration near resonance. However,
this'damping was sensitive to system parameters, and no
steady-state motion was found.

The forced motion of the impact damper needs
further study, not only to resolve differences in theories,
but also in the laboratory. Laboratory models should be
designed not only with the objective of simulating struc-
tures of interest, but also with knowledge of the limits
of measuring equipment. Many instruments are poorly
equipped to handle vibrations of 30 to 35 radians per
second.

In summary, the impact damper did not show itself
to be effective or predictable in reducing or eliminating

force vibrations. However, the impact damper was both
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effective and predictable in reducing the free vibration of
a structure to a certain value. A comparatively small mass
can greatly reduce the amplitude of a much larger vibrating
structure, in many cases only taking a few cycles to do so.
The impact damper's results in reducing free vibrations not
only warrants further study, but also warrants careful,
cautious consideration for use in current, applicable vibra-

tion problems.
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Appendix A

Derivation of Egquations

Introduction

The equations of motion and their solutions for the
free vibration of a simple one degree of freedom system are
well known. The laboratory model, depicted in Figure 22,
used to study the affect of the impact damper on free vibra-
tion is described by, for the period between impacts, .he
equations of motion solved for later in this appendix. The
model depicted in Figure 23 is a continuous system equiva-
lent to a flexible beam with a lumped mass attached to one

ﬁ end. The free vibration of this type of structure was
solved in Reference (25), and is given in Chapter II of
this thesis. These solutions can be evaluated if the
position and velocity of the system are known for some
specified time t, and are used in the computer models of
impact dampers in Appendix C.

Position and Velocity
Relations

It is assumed that an impact can be modeled as
being of infinitely short duration. During this kind of
impact, for the system of Figure 24, the position 6(t)

of the beam, and x(t) of the impacting mass remain unchanged,
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Flex plate o

Strain gauge []

C

Laboratory model of

. . . free vibration impact
-, : damper (not to scale).
The top of the flex
plate was attached
Aluminum Beam to a secure mount,
while the rest of

» assembly hung

N underneath.

Dampef
Assembly

Fig. 22. Model of Impact Damper Used in
Free Vibration Tests ’

72

PR PN I T RS S W U PG W S Y G S Yy W IR S G - SR SRS, S _A.'A'A'_J




....... L LR T SR TSy sy e—wrew “'v"‘""-"'w

Damper
Assembly
Accelerometer
The model used to
study the impact
Steel Beam damper in forced
vibration (not to
scale). The mount
clamped onto a pin
that rocked, apply-
ing the angular dis-
placement at the
base.
' o
Mount with o
Excitation o
e(t)

Fig. 23. Laboratory Model of Forced Vibration
Impact Damper
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String supporting the impacting mass

X coordinate,
fixed in space

coordinate, moves with beam
centerline

6 (y) is the angle between the
tangent to the beam center-
line and the vertical.

At y = dg, the length of
the flex plate, 6(y)=6,

the angular displacement

of the primary system.

. \ ‘
Fig. 24. Coordinates and Angles Used in
Deriving the Equations of Motion of the Free Vibra-
tion Impact Damper
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while their velocities are changed instantaneously from

o(t. (7)) ana x(t. 7 too(t. ™y ana x(t. ). while an

i i i i

actual impact is of finite duration, this time is so small
compared to the periods of the beam and suspended mass
that this assumption is justified. This causes half of

the initial conditions to fall out immediately.

x(ti = x(ti )

(+), _ (-)
Q(ti ) =6(t, 0 7)

The remaining two initial conditions can be obtained by
the conservation of angular momentum and the velocity con-
dition:

ex(t, () = o0ty = o, M - xe, M)
(30)
Conservation of angular momentum requires that in the
absence of external torques the total angular momentum of
a system about a fixed point 0 remains constant. There
are external torques on this system, so the magnitude of
the total angular momentum about point 0 is time dependent,

or:

Ho = Ho(t)

However, for an impact of infinitely short duration, there

is only a momentum exchange within the total system, so:
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(=), _
Ho(t, ) = Hylt,

(+)

) (31)

It is convenient to take the fixed point 0 to be the point
about which the beam rotates. This point is approximately
fixed for small angular deflections 6. This will be shown
to be true when the motion of the beam is solved later in
this appendix. Strictly speaking, if the suspended mass
is taken to be a point mass, then the magnitude of its

angular momentum about 0 is:

H =

om |rOm X meI (32)

where r, is the vector from point 0 to the mass, and Vm

Om

is the vector velocity of the mass. Both ;Om and Vm vary

with the angular deflection o of the mass, but if a is

kept small, then r and Vm are approximately perpendicular.

Om

For an infinitely short impact, EOm will remain constant

in magnitude, so:

H = mvV_r (33)

Om m Om

Two further useful substitutions are obtained by noting
that for small a's, the vector Vm is essentially aligned
with the x axis, and the value of om is essentially con-
stant; so, writing:

vrn = ;c(t)
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and

the angular momentum of the mass becomes:

HOm = mx(t)L (34)

The substitution for Lom Was made to make later equations

more readable.

The magnitude of the angular momentum about point 0

of a beam with moment of inertia I is simply:

H.. = I6(t) (35)

0b
Conserving angular momentum across impact i results in:

(-) (=) . (+)

. . _ (+) .
Ie(ti ) + mx(ti )L = Ie(ti ) + mx(ti )L
(36)

The velocity relations can be rewritten as:

o(t, ") = 2ie, ™) 4 erxee, Y

e, ()
) - 8t )L}
(37)

and

: (+), _ &4 (+) _ ¥ =), _ 4 (-)

x(t, " 7)) =06(t;" L - elx(t;” 7) 6(t," ")L]
(38)

Using the Equation (37) in Equation (36) and rearranging

gives:
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L
) 2
I+mL

(+) (-)

x(ti [G(ti YI(1l+e)

Ie)

. (-)
+ x(ti ) (mL - L

(39)

Similarly, using Equation (38) in Equation (36) gives:

(+) 1 .
) = [6(t,
: I+mL? 1

(—))(I - mn2e)

0 (t,

+ x(ti(‘))mL(1+e)] (40)
These relations, along with:
(+), _ (-)
e(ti ) = 8(ti ) (41)

(+))

(-)
x(ti x(ti ) (42)

give the initial conditions for the motion between impacts

i and i+l in terms of the final conditions between i-1 and i.

Motion of the Vibrating Beam

The equation of motion for a rigid beam rotating

about a fixed point 0 can be obtained from the relation:
L Moments = 16 (43)

The beam in question is suspended by a flex plate of
length ds, shown in Figure 25. This spring can be said
to apply a moment of magnitude M at the top of the beam.
This moment can be obtained from an angle 6 from the rest

(undeformed) position of the spring steel using the relation:
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d°x _ d6 _ M(y)
dy2 T dy EI' (44)

where M(y) is the moment of distance y along the spring,
and the x and y coordinates have been reversed from Refer-
ence (26). This equation assumes small angles 6, and so
assumes small deflection in the x direction of the beam.
The free body diagram shown in Figure 25 shows that
the beam moment is approximately independent of y, so inte-

grating Equation (44) once gives:

_ M
oly) = —Y—EIS, (45)

and integrating once again gives:

x(y) = = My~ (46)

At y = ds' 6 (y) is the angular displacement of the primary

system. Evaluating 6 and x at y = dS gives:

Mds
e(ds)-‘- E—I——, (47)
S
2
Md
x(ds)— 5 EIS. 5 eds (48)

If the aluminum beam oscillates about a fixed point 0 a
distance T from the top of the beam, then for small values

of 6:
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ry 0= rs(51n g) = x(ds) =3 eds (49)
so r = %dq, and the beam rotates about a point located at

the center cf the spring's undeformed position.

The moment Ms applied to the beam by the spring is
opposite in sign to the moment at the end of the spring.
Using Equation (47), this gives:

] ]
. EIS 6(ds)_ _ EIs 0

[ ds ds

(50)

6 = e(ds) is the deflection from vertical of the beam.

Gravity also causes a moment Mg:

Mg = - WT rc.g. sin 6 = - wT rc.ge (51)
where WT is the tor I weight of the primary system, and
r is the distance from the center of gravity of the

c.g
primary system to the rotation point 0. Also, there is a

moment due to damping that resists the motion of the sys-
tem. This damping moment Md is assumed to be proportional

to the angular velocity, so it can be defined as:
- . M, = cb - (52)

The equation of motion of the system then becomes:

. . - EIS'G
I0 = - ¢c6 - W_ r 6 -

T "c.g d (53)

S
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or:
I8 + ¢c6 + k6 =0 (54)
where

k =W_r + 2 (55)

By Reference (27), the solution to 6(t) can be written:

_ (= 5= t) :
f(t) = e 21 (A sin gt + B cos gt)

where A and B are constants depending on initial condi-

tions, and:

)
q = \/}% - (37 (56)

Since we are interested in the motion of the system between

impact i at time ti and impact i+l at time ti the solu-

+1'

tion is more conveniently written in terms of time t=t +At

where At ranges fron 0 to ti -ti. In this case:

+1
( C

o(At) = e'” 27 4Y)

(A sin gAt + B cos gAt) (57)

If the angular position and velocity ©f th>: primary system

and the velocity of the impacting mass are known immedi-

(=)

, then e(ti(+)

ately before impact i at time ti ) and

(+)) are given by Equaticns (40) and (41).

B(ti

Using these, the constants A and B can ke solved,
and the position and velocity of the system at time At as
is:

At ranges from ti to ti+l
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X (+) (+)
e(ti ) e(ti )c

_ (- = At) .

0 (At) = e 21 ( q + 31q J sin gAt
+ G(ti(+)) cos gAt (58)
i (- S a0, ™) eqe, e
B (at) = (- e 21 ( ; + ;Iq ) sin gAt
+ e(ti(+)) cos gAt
_ (+)
. 8(t. )c
(- = At) (B(t.(+)) + —=——— | cos qgAt
+ e 2I i 21

- qe(ti(-)) sin qAt
(59)
‘If the system is undamped these equations become:

(+)
8(t;," "}

q

8 (At) sin qAt + e(ti‘+’) cos gAt  (60)

8(at) = 6(t;, ) cos qat - qo(t; ) sin qat (61)

Motion of the Secondary System

The motion of the secondary system, which in the
laboratory was simply a steel sphere suspended by nylon

thread, is most easily obtained by:
L Moments = Ima (62)
In this case, the inertia Im is simply:

I = mL (63)
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The only moments are from the a component of gravity:

Mg = -mng sin o & - mngg (64)

and the moment due to damping:

Md = - caa (65)
SO:
mL_ 20 = - ¢ o - mgL_o (66)
m o m

In order to conveniently go from treating the mass
as a damped pendulum to treating the mass as being free

from all forces except the impacts, it is helpful to note

that:
x =L sina = Lo ' (67)
x = &Lm cos o= &Lm (68)
; = ;Lm cos a -~ & L sina = ;Lm (69)

This implies that for small values of a, little accuracy
is lost by assuming all motion is in the x direction, so

Equation (66) can be written:

. X
mme = S Lm mgx

or

mx + me + kmx = 0 (70)
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where:

Ca )
Lm
k =X (72)
m- L

As was done for the primary system, x can be
solved for according to Reference (27), giving:

[
(- =2 At)

_ 2m .
x(t) = e (Am sin qmt + B cos qmt)

where

Vo
9 = ™ Eﬁ) (73)

‘I’ and, writing this in terms of At, which ranges from time ti

to time ti+l=

C

- moe)
x(At) = e (Am sin qut + B cos qut)

(74)
Am and B, can be solved here using Equations (39) and (42)
the same way A and B were solved earlier for the beam.
Doing this, the position and velocity of the impacting

mass becomes:

c
. (+) (+)
(- =2 at) [, x(t, ) x(t, )c
2m i i m .
x(At) = e + sin g _At
9 2mqm m
+ x(ti(+)) cos qut (75)
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+

- 53 at) (i(ti(+’) x(t, e
q, 2mq

m .
) sin qut

m

1
(+)
+ x(ti ) cos qut

J
C

(=2 ae) [f. x(t. e T
2m i m
—m J cos qu tJ

+ e : ' x(ti(+)) +
- x(ti(+))qm sin q At (76)

In the undamped case these equations become:

x(At) q

sin qut + x(ti(+)) cos qut
m
(77)

. (+) - (+) ;
= x(ti ) cos qut x(ti ) q, sin qut
. (78)
and if the motion of the mass depends only upon the impacts,
i.e., no gravity or damping forces:

x(At) x(ti(+)) + x(ti(+))At

(+))

x(At) x(t = constant




Appendix B
Laboratory Models

Introduction

This appendix describes in detail the laboratory
models and equipment used. The conversions from measured
quantities to actual displacements are developed, as well
as the method§ used to indirectly measure some of the sys-

tems parameters.

Free Vibration Model

The model used for the free vibration experiments
is deéicted in Figure 22 with the important dimensions,
masses, and properties given in Figure 26. The 1/8" x 1"

x 4-1/2" steel beam used as a flex-plate (note that only 3"
of its length was free to bend aé a spring) was attached
by screws to a support depicted in Figure 27. This sup-
port was bolted onto a 1-1/2" x 40" x 42" steel plate which
was itself bolted to 12" x 12" I-beams which extended up
from the building's foundation.

Using Equation (50), with E = 28 x 10% 1b . in

4

2

and I = 1/6144 in", the moment applied by the spring onto

the aluminum beam was calculated as 15198 1lb + in. The

moment of inertia of the beam and damper assembly was cal-

culated by modeling the damper assembly as a point mass
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26" from the assumed rotation point; this gave I = 0.1882
slug - ftz. The moment of inertia was then measured by
hanging the beam and damper assembly, minus the steel
spring, from 1.5" of nylon fishing line and timing it
through a number of cycles as it swung as a pendulum.

Neglecting any damping, the equation of motion of this

system is:
I6 + rMTge =0 (81)

where r is the distance from the rotation point to the
center of gravity of the assembly, and MT is the total
mass of the assembly. From this, the natural frequency of

the system is:

w_ = (82)

Wy was measured as 4.45 rad/sec and M is 0.08983 slug, r

was calculated to be 15.4545", and g was taken as 32.174
ft/secz. I can then be solved for using:
rMTg

I=— (83)

“n

This gave I = 0.1880 slug ° ft2. This value of I was used

in all calculations.
Using w, = vk/I, Equation (55), and r, g. = 15.7648,

the natural frequency of the beam, was calculated to be

90
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26.34 rad/sec. When using a damping factor ¢ = 0.02,

which will be justified later in this appendix, the damped
frequency was essentially the same. The actual frequency
observed was measured as 25.9 rad/sec. The difference was
assumed to be the result of small inaccuracies in the mea-
sured quantities. For the purpose of the computer simula-
tion, the measured values of inertia and frequency were
used.

The damper assembly consisted of an aluminum bar,
1/4" x 1" x 6", attached to the bottom of the 1" x 1" x 24"
alﬁminum beam. The stops were made of steel and could be '

attached anywhere along the aluminum bar, and were mounted

~as shown in Figure 28. The steel balls used as impacting

masses were hung by nylon fishing lines attached to points
84" above the damper assembly, with one attachment 46"
to the right of the damper assembly and the other 50" to
the left. The mass was hung as a pendulum to minimize
forces other than impact.

The motion of the beam was measured with two SR-4
Type AD-7, Lot #B-32, strain gages attached to the steel
spring, centered on either side. These strain gages had a
gage factor of 1.96 + 2 percent. The strain gages were
connected to a Q-amp, serial number 002578 which was
installed in a Type 535A oscilloscbpe. The oscilloscope
trace was photographed using an oscilloscope camera C-12.

The peak-to-peak amplitudes on the photograph were then
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measured in inches by a traveling microscope. These mea-
surements were divided by the measured division size on the
photograph to give the amplitudes in scope divisions. The
number of scope divisions was multiplied by the Q-amp
setting to give the total strain of the two strain gages
had they had a gage factor of two. Since the gage factor
was 1.96, and only the strain on one side of the steel
spring was desired, this measured strain €, Was co arted

to the actual strain ¢ using:

1
e = 35(19¢) € (84)
This strain can be converted into radians of displacement
using:

- - Mu
€ = BI_ (85)

from Reference (26), where u = 1/16" is the distance from
the neutral surface of the spring, and M is the moment

calculated as 15198 1b * in. This gives

0.020836

™
]

€ = (20,830 u"/")eo (86)

So, for an € given by Equation (86), the angular displace-

ment 6 of the beam would be:
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£

= m = (4.80 x 165)8 {(87)

where € is given in micro-inches/inch, and 6 is in radians.

Measurements were made by manually deflecting the
beam, or primary system, until the oscilloscope trace was
at the desired-position on the screen. The oscilloscope
was then set to make only one sweep when triggered. The
sweep rate for most measurements was 0.5 sec/div or 0.2
sec/div. The oscilloscope camera was then fastened into
position and the lens opened. 1In rapid succession the
primary system was released and the oscilloscope was
triggered, so the camera photographed one oscilloscope
tface. The amplitude of the photographed cycles was mea-
sured in inches using a traveling microscope. These
amplitudes were converted to scope divisions by dividing
by the measured division width, then converted to strain
by multiplying by the Q-amp strain setting. Equation (82)
was then used to get the maximum angular displacement per
cycle. s was obtained from these displacements using a
linear least squares fit.

The natural damping of the beam assembly was mea-
sured by deflecting the beam a desired amount and allowing
it to vibrate freely with no impacting mass in place. The
photographed oscilloscope trace was then used to measure
its damping using the log decrement method. From this,

the damping factor c of Equation (54) was caiculated using:
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%: 2Cwn (88)
where
r = o — (89)
V o (2r)2 + 52
and
A
§ = _jfl 1n (A—l-) (90)
3

While the value of ¢ obtained this way was always small,
it was not constant. On a given day, [ appeared to be a
linear function of the initial displacement, but this
linear function changed from day to day. This is illus-
trated in Figure 29. For this reason, g = 0.002 was taken
as giving a good average value for the amplitude at which
most-measurements were taken with the impact damper opera-
ting. This g gave ¢ = 0.02 1b * ft * sec. This value of
c was used in the computer simulation of the laboratory
model.

In order to measure both the damping on the impact-
ing mass, and the coefficient of restitution e between the
mass and the stops, the position of the impacting mass had
to be measured without interfering with its motion. This
was done by mounting two pieces of white poster board 8"
to the right of the beam assembly, facing the beam assembly.

Horizontal and vertical lines were drawn at 1" intervals
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across the poster board. Twenty-six feet to the left of
the beam assembly, a lamp was pointed towards the assembly.
With all other room lights dimmed, the impacting mass cast
a sharp shadow upon the poster board. The impacting mass
was removed from between the stops, and one of the stops
was placed on the end of the damper beam, facing out. By
watching the impacting mass's shadow on the poster board,
the mass could be released from a known position and strike
the stop at a known position. Assuming negligible damping,
the velocity of the mass before impact can be calculated

using:
mgAh = SmV (91)

where Ah is the difference between the mass's height at
release and its height at impact. The distance that the
beam travels due to the impact can be determined from the
oscilloscope trace, this maximum angular deflection times
the natural frequency of the beam gave its maximum angular
velocity, which occurred immediately after the impact.

The velocity of the impacting mass after impact was calcu-
lated by using conservation of momentum, Equation (36).

The coefficient of restitution, then, becomes:

) oM - vt (92)
e = (=) _ vi)
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where (+) implies immediately after the impact, (-) implies
immediately before the impact, L is the distance from the
rotation point of the beam to the impact height, and

o) - o. Using this method the coefficient of restitu-
tion for the steel balls striking the steel stop was found

to be between 0.40 and 0.50, as is seen in Table 2.

TABLE 2

QUANTITIES FOR CALCULATION OF COEFFICIENT
OF RESTITUTION

(+)

(=) v e

M Ah v € 0
m

é(+)

0.000481 11-3/4 7.94 100 0.00254 0.0657 -3.80 0.50
0.00149 11-1/2 7.85 280 0.00711 0.1841 -2.77 0.40

0.00503 11-3/8 7.81 900 0.0228 0.592 -2.31 0.46

Data from which coefficient of restitution e is

calculated. m is in slugs, Ah is in inches, V(-) and V(+)

are in feet/sec, € is in micro-inches/inch, em is in radians,

o (+)

and 0 = emwn is in radians/sec.

The same lamp and poster board arrangement was used
to measure the damping factor on the impacting mass, but
without the beam assembly in place. The mass was dis-
placed to a known position and released. After a known
number cof oscillations, its maximum amplitude was noted and

its damping ¢ was solved using:

= 2§mn (93)

30
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EST where:

& w =2 (94)

and L = 84" is the difference in height from where the mass

is at rest and the points from which it is suspended. The

0

damping measured in this way had an amplitude dependence;

e .
:: L increased with amplitude. The values of c were calcu-
R
ﬂ lated for low amplitudes to get the best correlation with
Y 'I, the position of the mass when it was used for impact damp-
f, ing. The data and resulting values of ¢ obtained are
:i shown in Table 3.
.-;,
N TABLE 3
f: QUANTITIES FOR CALCULATION OF VISCOUS
DAMP ING FACTOR
s .
- m Al/Aj j Y $ n
o)
e 0.00481 4 22 0.0660 0.0105 0.0000217
5 0.00149 4 61 0.0231 0.00368 0.0000235
\;.
> 0.00503 4 179 0.00779 0.00124 0.0000267
<
= Data from which the viscous damping coefficient of
‘ . the impacting mass is calculated. m is in slugs, and Ch is
- o in 1b - sec/ft.
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Forced Vibration Model

The model used for the forced vibration experi-
ments is depicted in Figqure 30 with ﬁhe important dimen-
sions, masses, and properties given in Figure 31. The
first resonant frequency was calculated according to Refer-
ence (25), where the motion of a beam in free vibration
with one end clamped and a point mass at the other end was
solved. The beam was mounted upon a block clamped upon the
pin of a pin-tree beam test apparatus. This test apparatus
could rotate +24° to -24° at a frequency range of 0 to
83.3 Hz (0 to 5000 RPM). For computational purposes the
beam was treated as if its end extended to the center of
the pin, where a known sinusoidal angular displacement was
applied.

The damper assembly was simply an aluminum bar,
1/4" x 1" x 5" mounted on top of the vibrating beam, with
the stops mounted as shown in Figure 28. The stops were
made of steel and could be attached anywhere on the alumi-
num bar. The steel ball used as the impacting mass was sus-
pended by two pieces of fishing line attached to points
93" above and 74" to one side and 90" above and 75" to the
other“side of the damper assembly. The impacting mass was
suspended in order to minimize friction forces on it, so
its motion could be treated as resulting entirely from its
impacts with the stops. When the mass was between the
damper stops it could displace from its rest position a

100
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‘ Fig. 31. Laboratory Model of Forced Vibra-
B o ' tion Impact Damper with Important Parameters
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few inches at best, so its velocity due to its pendulum
motion was very small compared to the velocity imparted
to it by the impacts.

An accelerometer, Model MB 303, serial # 149235,
was mounted on the beam 1" below the bottom of the damper
assembly. The acclerometer signal was amplified using a
model 2614B amplifier powered by an Endevco Model 2621
power supply. High frequency noise was filtered out
using the low-pass filter of Figure 32, and the signal was
then recorded using a Honeywell visicorder oscillograph
Model 2106 with an M-1000 galvanometer. The output was
also used with a universal counter timer, Model 726C, to
accurately determine the frequency of the system. The
resulting visicorder output for the forced vibration

model without and with the impacting mass is shown in

Figures 33 and 34, respectively.
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Fig. 32. Low-Pass Filter Used to Filter
the Amplified Accelerometer Output Before Inputting
it Into the Visicorder
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Appendix C

Computer Simulations

The following pages contain two FORTRAN 77 computer
programs which solve for the motion of both the primary
system and the impacting mass for an impact damper in free
vibraticn. The first program is the ideal case, in which
the primary system is undamped except for the impact damp-
ing, and the motion of the impacting mass is due entirely
to the impacts. The second program assumes a lightly
damped impacting mass hanging as a pendulum. Though both
programs were written with the laboratory model in mind,
they are applicable to any one degree of freedom system
in free vibration using a one degree of freedom impact
damper.

While comments explaining the programs are inserted
in appropriate places, a few additional words are in order.

The position of the primary system was put in the form of:

ul(At) = a sin (wAt) + b cos (wAt)

and

|
o}

ﬁ Hz(At) [a sin (wAt) + b cos (wAt)]

- for the first and second programs, respectively. The

numbers associated with parameters in these programs
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were assigned with units of feet, seconds, and slugs
intended.

The only sources of error in the program are the
computer round-off errors, and the errors in defining an
impact as occurring whenever the impacting mass and a stop

6

- were less than 10 ° ft from each other. This leads to
2

small errors in position and velocity of the system in

ii impact. In order to judge the seriousness of these errors,
- as well as (o insure the equations and solution approach

Ny

:ﬁj are correct, the errors in velocities and momentum were

E% calculated after each impact, using Equations (31) and (36).

The only other serious source of errors lies in the approxi-

mations and assumptions made in the derivation of equations
of Appendix A. While the programs will generate output

for any magnitude of Om' this output will be reasonably
correct only if the assumption of small angles is not

violated.
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] ’ prﬁgram IDEAL

by »

.- * THIS P{OGFrAM FOLLOWS THL SYSTEM THROUGH A SERIES OF IMPACTS
fo * IN THE “IDCAL" CASC, l1.E. WITH NO VISCOUS DAMPING OR
S - GRAVIIY AFFECTS.

z N

:' intea~r Y,m,min,c,n,J, tinparr

% % % B

»

191
*

* = % 3

paraui ter (n=5%7)

real phi(f:n).thotas{l:n),thetavif:n),tdnts(1:n),tdotv{B:n),

H timriLind,velstlins,velvtd:in),cone,ctwo,afd:n),b(din),
: av,bb,dtheta,ltheta,fnct,time,t,tt,tts,at,tat,q,s,

. crror{d:n),maxcrr,vart,impti{lin),

: inerd,mass,l,c,11.dd,qone.qtwvo,

: deltat, t1.tr  x{0:n) ,vol{d:n) , d.thetam(J:n) ,resid,

: errmom,errvel ,bnass,dt{g:n) ,mtt , mtis,mimpt{l:n)

The parametors varied are defined below. Only onc set of
parawi .ot are variced here. In practice, "do looups" were
used to whtain a large cowbination of parameters.

mass={. 012
a=i5.25
c=4.5
qone=I5.8
1=2.23
Conditons from any previous run set to zero in the
do 100 J-l.on.d
trot. . {(fr=y. A
thet (v )r=45.
tdot U=l
tdeTel i) ol
time L)S.8
welL sy
v dvig)y .y
x gyl
tht-r{j)=8.0
cenb it
Tue remiining paramaters are defined.
Jota rhilgy, thetav(f), time(0),
: R S BN W VS VR L
CAL =l WL, 1893,
PN A Y

inert,

prante, 0
peinte, *°
prints, 0
frine Linltisl pkase anglas=*', phi(g),initial
H moasariues de (ectton= L LhetavOny taatursl frequency=’, qone,
' Yehe  Ltartineg Lm0 Ut tnowmenl o3 dines Lra of the
H privoars mes s -0 cdnerh T agnitude of the secondary wassa’,
mas S iength o0 the primary cystems ', the cuctTiaient
of e chtu ven e ot Ny b
P e wer e sit st o S, tuhie g settings !t d, "Aendired

nuiek o1 O dapcts=E

two=1 . J

loop to line 181,

The fmpracting mass s given an Initfal positicn next to the stop
opposit the: dive-wtion v Lhe Initinl doeflecttion oy Lthe wysten.,
x{O)=tt -tovi* e (d/2, )
Reproduced from
. - — . — best available copy.
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print*, * °*
print*, * °
. print>, * °
’ print®, ‘'mass=’',mass
print*, ‘effective d=',d
deltate=g.g1l
print*, ‘e=',0
print*, 'x{(0)a',x(9)
print*, ‘daltat=’' ,deltat
print*, * °
print*, * °
print=, ' °
-
* The loop to line 908 solves for the motfon of the system through
: n impacts.
do 9940 is],n,l
fnct=9g.061
o deltat=g0.91
» Here the motion of the system Is solved for after the known time
: of impact.
al{i-1l)=tdotvii=-1)/qone
b{i-1)=thetav(i-1)
thetam({i-1)=sqrt(ali-1)*a{i=1)+b{1~-1)*b(1-1))
aa={velvii~1))
bbax{1~1)
» .
» The loop to line 500 itcrates to the time of the next impact using
bl the requircment thut the impacting mass wust rewain between the stops.
- An fupact is counsidered to have ocurred whenever the ifmpacting mass
: cones within J.020001 fect of efther stop.
do LA ¢=1,500,1
ttine{()=timeli-1)+decltat
thetasit)=(ali-1)*sin({qone*deltat)+b(i-1)*cos{qone*deltat))
x(i)={(na*decltat)+bb
fil=thetas(i)*1-(d/2)
ir=41+d
1f (abs(x(1)-11) .LE, J.0008801) then
goto LUl
elscif (abs{x(i)~1r) .LE. £.000081) then
aoto 641
elsoaf ((x1)=-11) .LE. 4.8) then
ftnct=0.5%*1nct
deltut=delitat-inct
noto 564
elseif ((x(1)-1r) .GE. 9.9) then
tne.t=L.5*%1nct
‘ dcltat=deltat-inct
T goto SUN
o elsc
R dultat=deltat+inct
RO golo 588
ot endif
o 509 continue
Ol 608 continue
!! co1 continua
~ if (¢ .qc. 508) then
T goto 943 |
. end!f |
e if (¢ LC. 2) then
N goto 6.
1
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e . 110 '
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m endif

P EBB continue
o * The conditions immediately before the time of impact Just iterated
- . to are solved for.
]
tdots{i)=qone*{a(i-})*cos{qone”deltat)-b{(i-1)*sin(qone*deltat))
thetuv(fl=thetast{ )
vels{i)svelv(i-1)
tdotv(t)=(1l.6/{inert+macs*1*1))*((tdots{1)®(Tnert-mass*i*]%e)
3 *velstid*mac*1*(1.0+e)))
velvit)=s(1/{inert+mass*1*1))*(tdots( 1)
: *incrt*(1.0+e)+
: vels{1)*(mass*1-(1nert%e/1)))
999 cont inue
goto 9Y4
993 continue
print '(a,i3)','the time iteration did not converge for {=',|{ B
994 continue
-
* Here the motion of the system is given for the first 15 Impacts.
]
print *,’'impact time deltat thetas x tdotv xdot
: thetam dthetam’
do 9LyU J=1,15,1
print '(17.f3.5,Ff8.6.73.4,79.6,7f9.4,7f9.4,f7.4,Ff9.4)",,
t vty o tine{dr=-time(J-1),thetas(J),x(J),tdotvij),velviy),
[ th Cuaelj),thetam( 3)-thectam( y-1) .
174 cone tnue
print*, '
print*, *
print*, '
* ‘e
hd The ¢rrore In position and velocity across the first 15 impacts are
: given balow.
do 977 3y=1,15,1
errmom=inert*{tdotv{ J)-tdots( J))+mass*1*(velv(J)-vals(J))
errvelret{vels{f)-tdots(J)*1)=-{tdotvi J)1*1-velv(J))}
print*, "tmpact=’',J.’errmon=',errmom, 'errvel="' crrvel
378 cont inue
prints, * °
print*, * °
print*, ' °
print®, 'impact thetam time dthetam dtime’
Tthota=0.1 :
1ttme=u. 8
deltat=0.9
- ' m=al
tt=0.0
tts=0.0 :
B mti-J.0 "
. mits 6. 8
- ] at=p. g
" tat=J.4 s
s errcr{p)=gf.1
’ zeto L=y, 0
g tzeta={.0
dt{si)=p.
. mm= 1
-
. " In the loop to 1ine 987 the maximum positive amplitude the reaches
. o during rach cycle is olbtained from the molicon of the system already
»

obtaineu. Information nceded to do a lecast squares to these
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amplitudas is also obtained. The loop also looks 2head to sce
whcn the systen goes throuuah a cycle without an impact on the
assumption that this when the dawper becomes tnoperative,
The loop Is exited before the damper becomes lnoparatlive.

do 920 J-1,n-1,1
tf (blj) .eq. U.0) then
goto Y41
endif
deltat=(atan{z2(J)/b(J)))/3qone
1f (Jdeltat JYe. U.9) then
deltat=deltat+(3.1415927/qons)
endift

ff ((b{j)*cosi{qone*deltat)) .le. 0.0) then

guto 979

elc:if ((time(J+12)~-timel(J+11)) .qge. 0.25) then
goto 931

endif

v ({timel(J)+deltat) .le. time(3+1)) then
if (celtat Jage. 0.0) then
drhetasthotum{ Jr-1thetla
t=timeljl+deltat
diijr=t-1tine
print “(43,79.4,19.4,79.4,F9.4)",3,thetam(J),t,

t diheta,dud )
resid=j
1theta=thetam( §)
Ttime=t
impt{m)=t
mimpt{mm)=¢t
ttati+t
Ltis=tLts+t*t
at=.t+thetam{j)
tat=tat+t*thetam( )
error(m)sthetam(J)
m=m+1

endif
endif
contlnue

contlnue
cont inue
m=m-1
If (tts .eq. 0.0) then
gots 923
els1f (m .eq. #) then
goto 963
els if (tts .eq. tt*tt) then
goin 963
endif

A leaet cauares approvimation is fit to the maximum amplfitudes
beluw. Thee ma ciwam devition from this apprusimation

ocbratn:d, as well as tne variance.,

se{ ({1, P m)rtat)-tat=et) )/ ( (1. 0"mi*tts)-(tttt) Y
glot=toret /Ll tw)
mae . relf g
var 1=T.8
du DU J=l.m.l
cricorfijr=crrort
1f (aboterror()
mascrrscrror{
Imoorr 2§

JY-gq={(s™impt(J))
})) .ge. maxerr) then
)




982

983

L 2 BN N B 3B 2% )

1958
1951

end(f
variavari+error{ §)}*ecrror( )
continue
print*, ‘up to the'.m, ' 'peak the least squares fit to the
t peaks is thetam=q+s™t with g=',q,'and s=',35,'with max crrors"®,
t maxerr,’at peak=',impcrr,'and variances',vari
cont inue
print*, °* °
print™, *
print*, * °*

if (resid .ge. n}) then
gotn 18082
endif
1f (resi1d+25 .ge. n) then
goto 1941
endif
print*, * °

Herc the rconditions at tho impacts beqginning where the damper was
ascumed to becone ineffective are given. This gives the residual
amp | {tude. After that the T1irst 10 cycles of the tneffectivaly damped
portion of the system are given.

print *,'impact time deltat thetas X tdotv xdot
thet2i dthztam’
do 1%50 J=resid.resid+25,1
print “(17,13.5,f8.6,10.4,f9.6,f9.4,7f9.4,€¢7.4,¢9.4)" .3, N
' timel J) , timc(Jr-time(jg-1),thetas{J),x(J),tdotvi(j),velv(y),
t thetam( §),thetam( J)-tiietumi j-1)
continue
continue
prints, *' °*
print*, 'impact thetam <time dthetam dtime’
tat=0.0
Tthota=g8.1
Itime=y.0
deltat=g.9
n=]
te=5.0
tte=y, 0
at=8.g
mtt=9.90
mtts=U. 0
erro: (J)=0.1
zetit=U0. 4
tzeta20,0
Jt{yS)=y. 4
mm=1
errcr(0)=#4,1
do luui J=resid,n,l
if (Lig) .cq. 8.8) then
qalo 1901
endif
deltat=(atan(a(J)/blJ)))/qone

{f {(¢d.ltat . le. 4.0 Lhen

orlt tadeltair(3.141.927/qone)

end .

If ({Lb{jJ)*cos{qonerdcitat)) .le. 0.0) then
noto 14979

e o f

1o ttiimntj)+deltat) .le. time(J+1)) then

Sete 4 St} 1 e W et o ey P Trmmete - s g Pemmm iyt mis s et e cem ome o e
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1f (deltat .ge. 5.8) then
gthetas=thimtan{ jl-ltheta
t=tinme(j)rdoltat
dt(j)=t-1ttme
print *(13,19.4,¢9.4,f9.4,¢9.4)',J,thetamt ), t,
1 dihcta,det )
lthetasthoetam(J)
Ttime =t
jmptin)=t
mimpLt{inm)=t
ti=z=tt+t
tis=tts+t*t
al=atrthetam( )
tat=tat+t’ vhetam(j§)
error{m)=thetam(j)
mam+l
if (m .ge . 16) then
jgoto 1981
endif
endif
endi{f
1979 continue
1984 cont inue
1981 continue
m=wm=-1
1f (ttes .eq. #.6) then
goto 1983
elselif (m .eq. &) then .
f‘flt") 183
elscif (tis .eq. tt*tt) then
goto 1983
endif .
s={{(1.0m)*tat)~tat*tt))/(((1.9*m)*tts)-(tt*et))
qe{at-(s*tt))/(1.8*m) .
maxerr=0 .4
varti=0.U
do 1382 J=t,m,1
error{j)=error
1f (abs{error(
waxerraerror
tmperr=j
endif
vari=vari+error{J)¥*error(y)
1982 cont fnuc
print*, 'up to the'.m,’'reak the least cquares fit to the \
o opoabs 10 thet e gee™L wWih g, y, 'and $=2°,35, 'with max errors’,
3 maxerr,'al peskz’,imperr,and varlance="',vari
1933 continue

J=gq-ls*impt($))
)} .ge. maxerr) then
)

t
J
J

999 continue

10412 cont lnue

160y continue

1901 cont 1 nue

end
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inftial phasc anglexs .00080000Gh+00

initial toadmum deflection=

navural frequency= 25000500..-1082 the starting time= .UUUCI0000e+d0

mowent of tfnercta of the primary mass=s L 1093000u e+l

magnitude of the sccondary mass= L 2UN BU0U%e-42 Yength of the primary system=

=. 108800001 c+00

2.238304082 th. coefficlent of raestitution= .S00000000e+00
secondary masccs : fnitial velocity=
L0008 e+ U tha qap setting= L 2LU00000080e+00
desired number of fmpacts= 54
masse L 20P00650%e-082
effective d= 250000 000e+00
e= _S0U0RYRI0c+00
x{(0)= =-,98000n049¢-A1
deltat= ,999999978e-02
the time 1teration did not converge for s 45
fmpact time deltat thetas % tdotv xdot thetam dthetam
1 .B07069 .867607 .Ll12y -,098000 2.2958 7.8866 .0926 -. 8374
2 12247 .0%4383 L0923 .330895 .4363 =~2.7636 .0940 JOU13
3 .1876C 065515 11O L144614  «2.2510  -6.2289 L0907 -.0033
4 .206345 .H75H782 = 41809 ~,323185 L2119 4.0967 .4093 ~-.Bui4
S .41134 ,14794% H7U9 0 L2031100 ~1.1169 -6.0511 .0028 =005
6 LOUC LY WYLl =L 0021 -, 31W37% -, 4403 1.7274 L858 D12
7 55643 .H40.05 -,064%2 ~,225910 1.72354 4.9869 .002S s.0026
3 .66214 ,1043713 L0745 ,2912990 -.6408 =4,9173 .97¢9 -. 0039
9 ,7€197 .11¢824 -,077% =-.297915- L1760 3.2623 .0779 -.0011
160 .£0711 .UL 146 HATY - 020143 1.5448 3.5436 .0776 -.0002
11 L92917 w7204 Ld3a 235130 =1,2663 -6.20L4 .07908 -. 0869
12 1.625%7 AL1GIZ = Liv7h =,275461 -. 7037 L9683 L0731 823
13 1.07296 0527285 =.0A4403 ~.224004 1.3695 4.1018 .g707 ~.0024
14 1.1875C .114606 sLeo  ,2%43%7 ~.7959 =-4,9939 .0(62 -.0046
15 1.293x8 .1£5511 =.00662 ~.272560 -.1705 2.1134 .Q665 Ty
impact= 1 errmom= .1C0626451%0~-07 errveol= ,2304185790-06
impact= 2 erruoms= L2ALO%6L0He=nd errvelas - ,238418579%-06
fmpact= 3 errnomz 74508000008 errvels —.Hb:b7431he -06
fmpLct= 4 errnom= IO I TR FRF TR IS B Y MY DAVEDN ) 7. u37188e-06
Tmpact= & crrom= -~ 111700 /000 0/ orrvels -.L-HAIUJ/QL U6
fmpact=s 6 crrivons -.'.2?’35.'.")! e nd orrvels 250418579 -06
fmpaci= 7 crortoms DU 2607 crprvelEs = 5060464480 ~86
fmpact= 8 orevw. s -./ﬂ'l‘u;wa'UU vrevels = 2004105729 e~-06
fmpaci= 9 eriuoms L3709 e Y Lrprvela 2004 16L7%e~006
Tapact= 10 crirmoms .1Lhn/JilJ~~U7 crrvels - 1192092900-U6
fmpact= 11 crrmams =, 22008250220 =97 errvel=a “uu41’57q0‘us
fepact=s 12 (rri.ows - lll Su/do-H7 errvels THA1ELT790-06
fmpact= 12 crrocms = LLL7Y0UAS =06 arcvel= .":,: flauy79C-106
fp it 14 Crevoms - 111/-\'4"! bo-d7 creeweYs = 0 11UL/Se-U6
fmpoect= 1S wrrwoems SOUSTGL L L ) crrvel® JAYLud71%8e~-Ub
1mpact thetan time dthetam dtime
2 AR . 12945 Ry oY L1196
4 LT3 HAPR ~-.0u47 L2598
7 MBS 6444 -. 063 .2592
18 L77C .OHSS -, 4043 L2904
13 707 1.1022 -. 0969 2593
Copy available to DIIC <*” no
permit fully 1‘,_-0»1}3‘;0 P GRedon
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16 .B644  1.4238 -.8063 2598
5, 19 .8594  1.6831 -.8J5.s L2601
™, 22 .#526  1.9427  -.80C9 .2596
i 26 L0410 2.4622 -.8115 .5196

a2 ‘.l ’._"

A 4

up to the 9

peak the least squares fit to the
.9756416988e~81 and s=
4 and varilances=

-.2729617860e-81 with max errors

.21472435%e-05

peaks (s thetam=q+3s™t with q=
.8401162922-93 at peaks=

e e o 4

impact thetam time dthetam dtime
2 0418 2.4622 - 059y 2.4622
2 0354 2.7238 -.0056 .2616
k] .B298 2.9863 -. 0457 .2625
32 ©.0239 3.2495 -.00658 .2632.
34 0180 3.5136 -.49159 .2641
36 B117 3.7778 ~.BV63 2642
38 LHP56 4.6299 -.0pul .2521
39 L0585 4.2G669 -.g081 .2370
48 i34 s 4.5122 -. Ul .2453
42 .BB25 5.2522 -.9819 .74098
H 43 L824 5.7657 -. 0001 .5138
up to the i1
peak the least squares fit to the peaks is thetam=q+s*t with q=
.643201843c-L1 and s= -.123949796e~01 with max error= ,957593542e-82 at peak=
11 and vartances .354233722¢-43 . .
|
|
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program LABSIM

THIS PROGRAM ATTEMPTS TO SIMULATE THE CONDITIONS EXPERIENCED IN
THE LABORATGRY WHILE FOLLOWING TYHE [MPACT THKCUGH A SERIES OF
IMPACTS.

LA

-

-

Sl -
. -

i -

s
~
o

. -8

integer {,m,c,n,J,p.imperr,mm,y.u
paramcter (n=5J0)

real phi{(@:n),thetas{l:n),thetavif:n),tdots{l:n), tdotvi(B:n),
: “timety:n),vels{l:n),velviit:n), cone,ctwo,atd:n),b(Of:n),
H aa.bb,dtheta, ltheta,inct,1tima,t,
: fnert,mass.l,e,11,dd,qone,qtvo,.mtts, impt{l:n),
3 tnpt(l:n),tt, tts,at,tat,error{(d:n),s,q,
: maszerr,varfi,dt(l:n) . mimpt{l:n},
: deltat, t1,4r . x{(@:n),vel(l:n),d,thetam{O:n),
: errnom,errvel ,dfa,resid
print*, * °
print=, * *
print*, * °*

The samc paramcters varied in the laboratory are varied here. Note
that the diameter of the impacting mass 1s subracted from the actual
gap to glve an effcctive gap. Also note that the same damping constant
ts not used for each mass.

do 190£1 p=1,3,1

If (p .vq. 1) then
mass=J.0JJ4G61
ctweo=U. . gNou217 *
dla=J.469/12.0

elseif (p .eq. 2) then
masc=1,£0149
ctwo=0. 000235
HMarl.6875/12.0

else
mase=0,£A503
ctwo=4 . yPviB267
dia=1.031/12.8

end!f

d=3.0%(1.8/12.8)
d=d-dta
e=g.5

» 3 8 % 28

Previous values of the system position's and velocities are set to zaro.
do 1£1 J=1,n,l
thetas(J)=90.8
thetav(j)=0.0
tdots{j)=4.0
tdotv(j)=0.90
time( J)=0.9
vels(3)=0.08
velv(j)=g.90
x(jI=g.@
thetam( 3)»9.9

191 continue

print*, * °

print*, ' °

prints, * °

The remainder of the system's parameters are defined.

data phi1(8), thetav(0).time(P),qone, inert,1,
[ velvi(®) ,m,tdotvil),cone,11/
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3 g.8,-2.18,0.8,25.9,9.188 ,2.21,
9.8,1,8.9,0.82,7.9/ )

print*,'initial phase angle=', phi(g),'{nitial

maximum deflection="', thetav(g),

‘the starting time="' timo(0), ‘moment of tnertia of the

primary mass=',inert,'magnitude of Lhe secondary mass=',

mass,'length of the primary systew=',1, 'the coefficient

of restitution=',e, 'secondary masses

fnitial velocity=',vel(d),'the gap setting=',d,’ 'desired

numter of fwmpacts=',n
qone=¢25.9

e e s s ss se se

qtwo=sqrt((32.174/11)-(ctwo/(2.0*mass) ) *{ctwo/{(2.8*mass)))
print*, " °
print*, ' °
print=, ' °*

The initial position of the impacting mass is placed against the stop
oprosite to the tnitfal deflection.

»(U)=thetav{g)*1+(d/2.2)
print®, ‘mass=',mass
print*, 'effective d=',d
deltat=0.u1

print* ‘x(f)r="  x{D)

print*, ‘deltat=',deltat

print*, 'ec=’',c

print*, 'qone=',qone

print*, 'qtwo=',qtwo .

The loop to line 900 solves for the series of impacts.

do 900 3=1,n,1
inct=0.41
deltat=0.01

The motion is solved for after a known time of impact.

ali-1)={tdotv(t-1)/qone+thetav{(i-1)*cone/(2.8%inert*qone))
bit=-1)=thctav(i-1)
theton(i=1)=cqrt(ali=-1)*a(1-1)+b{1-1)*b(1=~-1))
aax(velvit-l)/qtwot{ctwox(1-1)/(2.4"mass"qtwo)))
bb=x(i-1)

The loop to line CHO fterates to the next time of {impact. This
fteration uses the requircuent that the impacting mass remain
boetwaeen L. stops. An tmpact fs dufined as ocurring whenever
the tmpacting mass 135 within F.00000]1 feet of efther stop.

do 6f'f) c=1,500,1
timettr=timcli~-1)+deltat
thet i s(1)=(cxpli=-{conc)/ (2. 0"fnert)*daltat)))*
: (oti~-1)*sin{gyenc*deltat)+bi{i-1)*cos{qone*deltat))
x{{)slespl{-tctwol /(2. U mauss ) ) *deltal))*
: taa*sin{gtwo*deltut)+bb*cos{gqtwo*deltat))
fl=thetas(i)*1-(d/2)
ir=i1+d
1f (abo{x{1)=-41) .LE. 9.008001) then
goto LUl
alseif (abs{x({)=-1r) .LE. 9.900001) then
gqoto 6M1
eloscif ((x(1)-11) ,LE. Z.8) then
tnel .57 Inct
deloesi=deltat-inct
Q'DLI‘J LU
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ealseif ((x(i)=-1ir) .GE. £.9) then
fnct=0.5%inct .
deltat=deltat-inct

goto 540
else
deltat=deltat+inct
goto S84
. endif
S0g continue
(31 continue
681 continue
1f (¢ .ge. 520) then
goto 943
endif
if (¢ .LE. 2) then
goto 8089
endif
800 continue
-
* The conditions immcdlately before the time of impact Just iterated
- tc are solved.
-
tdots(t)e-(cone/(2.0%inert))*{expl{-cone/(2.0"tnert)*deltat)))»
1 t (a{1-1)*sin{qone*deltat)+b(i-1)"cos{qone*deltat)+
: {e-plti-conc/{2.4*1nert)®deltat) ) )"qone*
! : (att1-1)*cos{qona*deltat)-bl(i-1)*sin{qone*deltat))
]
thetavi{{)=thetas(1)
l vels(t)=~{(ctwo/(I.0"mass) ) *{exp{(-ctwo/{(2.8*mass)*deltat)))»
H taa"sinlgtwo*deltat) +bb*cos(qtwo*deltat) )+
3 ‘ (expl{{-ciwo/(2.£*mass)*deltat}})*qtwo*
: (aa*coz(qtwordeltat)~Lb*sin(gtwo*deltat))
tdotvi{1)=(1.0/(tnert+mass*1*1))*{(tdots(i)*(1Rert-mass*1*]*e)
o H +vels{i)*mass*1*(1.0+e)))
velv(il={(1/{Inert+mass*1*)}))}*{tdots{!)
t *inort*(1l.0+e)+
s vels{i)*(mass*1~{{nertve/1)))
1 Sge cont inuc
goto 994
993 continue
) print ‘(a,i13)','the time 1teration did not converge for i=' 1}
994 continue
50008 continue
LY
. Here the system’s condition at the first 15 i{mpacts s given.
» .
print *,*impcct tima deltat thetas X tdotv xdot
H Lthetam dthelam®
do YL J=1,14,1
priae "Li7.78.5,¢8.6,F8.4,Ff9,.6,F9.4,79.4,f7.4,.f9.4)",J,
tia-tgr, L Ui~ g-1) ,thetas( ) . xUj),tdoetv ), velvil g,
thelow gy thoetan( g thetamd §-1)
by 4 cont ipue
941 cont fnue
print*, ’
printe, v
print*, '
»
- The errors In the momentum ~nd velocity across the first 10 {mpacts
* s given.  They should be seizll cnousgh to be asLuncd neqglibla.
.t L ]
.o do 970 j=1,10,1
i' errmom=inartritdotviji-tdotz(§))+masa71*{velvig)-valsiy))
[
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errvel=e*{vels(jl-tdots{J)*1)-{tdotv{JI*l-velvi{}))
print™, *{mpact="',J, 'errmom=" ,errmom, 'errvels’ errvel
continue
print*, ' °
print*, * °
print*, * ° )
print®, 'impact thetam timo
Ttheta=8,1
time=0.9
deltat=0.0
m=]
tt=g.0
tts=0.0
at=y.g
tat=9¢.8
mtt=0.80
mtts=0.0
error{()=@.1
dtiu)=v.Q
mm:: ]

dthetam dtime’

The Tfollowing lcop takes the sartes of positions and solves for

the pest pusitive awplitudes, 1t also loelh: ahcad to see when the
system zo: thirough a cruplete cycle without an ifmpuact to on the that
this is whzn the domper becomes fncffeciive., Information needed

to perfeorm a least squares fit to these peaks is also obtaincd.
do 938 3=2,n-2,1 .
1If (ali) .cq. #.8) then
goto U8
endif

phitid=atan(b( §)¥/al}))
deltat=(atan{(2.8*incrt*qone/conel-phi(Jj))/qone

1f (deltat .le. ¥.0) then
deltat=deltat+(3.141%927/qone)

endif
T 4f ((b{J)*coslqone*deltat)) .le. 0.9) then
goto 979
elsctf ({time(j+2)-time(J+1)) .ge. 0.25) then
auteo 981
endif
if ({(time(Jr+decltat) .le. time(j+1)) then
$97 tdeltat Lae. .7) then

ctheta=thevanmi J)-1theta

L=t (i)rd Ttat

Jdedyr=t-1tine

peint TCi3,19.4,719,4,F9.4,f9.4)°,§,thetam(J),t,
¢ diLheta,dt{ j)

resid=j+2

Tthet:=thetam( J)

Ttime -t

tptim)=t
mimptinn)et

ti=ti+t

T ttoet ™t

aL- Lrth thind )

Lot tat v*thetand§)

e orortmysthetam{ §)
no=m+l

rtendif

en . if

cunt tnue
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988 cont fnue
981 conttnue
mam-1
1f (tts .eq. #.0) then
goto YB3
elsctf (m ,eq. B) then
goto 9063
elseif (Lts .¢q. tt*tt) then
goto 983
endif
»
* The following equations solve for the least squares fit to
* maximum anplitude of the cycles just obtatned. The maximum
- departure from this least squares approximation and the variance
- is also obtained.
»
s=({(]l.€*m)*tat)-(at*tt))/(((1.g*m)*tts)-(tt™tt))
g=lot-{s*tt) )/ (1.0%*m)
max.rr=g.,0
vari=.0
do ¢82 J=1,m,1
error{j)=error{J)-q-{s™impt(J3))
1f (absterror(j)) .ge. maxerr) then
maxzcrr=error{})
fuperresy
endif
vari=variterror{Jj)*error(J)
982 continue *
print*, ‘up to the’',m,'peak the least squares fit to the
s peakhs s thetam=q+s*t with q=',q,'and s=',s,'with max errors’,
t maxcrr,'at peak=’,{mperr,’'and variance=’,varf{
print*, ' °
print*, * °
print*, °* '
298% continue .
983 cont.inue
if (resid .gn. n) then
aoto 152
[=}] i
te 1re~¥td+25 .ge. n) then
G 1€51
endif
print*, * °
»
* Her>» tt= conditions at tho impacts beqinning whers the damper was
* atcumed to Lecoae incirfoeccive ave glvan. Tnts atves the residuad
* arplitude. Af Lo that the first 18 cycles of the tneffectively Jdomped
* pertion of the systam ire glven.
-
print *,’1mpact time deltat thetas x tdotv xdot
H thecrn  Jbhoian’
do 1950 Jj=resid.resid+25,1
print *(17,f8.5,f8.6,f8.4,f9.6,f9.4,Ff 4,f7.4,f9.4)',J,
' time( ), time(J)-timelj-1),thetast(J), -« ), tdotv()),velviy),
' thetam( }),thetam{j)-thetam(§-1)
19589 continue
1951 cont inue
print*, ' °
print®, 'impact thetam ¢time dthetam dtime’
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1979
1258

191

tat=90.98

1theta=0.1

Ttime=u. 0

deltat=0.8

m=1

tt=0.9

tts=0.0

at=04.9

mtt=0.0

mtts=Q0.9

error{g)=0.1

zetat=y.gd

tzetaz=g.g

dtig)=0.9

mms 1

error(g)=g.,1

do 198( j=resid,n,l
if (a(J) .eq. O0.0) then
goto 198¢

encif
phi(j)=atan(b(3)/a(J))
deltat=(atan(2.0*incrt*qone/cone)-phi{(j))/qone

{f (dcltat .le. 9.4) then
drltat=deltai+(3.1415927/30ne)

endif

1{ ((b(J)*cos{gqone*deltat)) .le. B.9) then
goto 1979

endif

if ((timel{j)+tceltat) .le., time(j+1)) then
if (deltal .qc¢. V.H1) then
dthetasthaetan(J)-1theta
t-tincl{jirtdsitat
Gelgrt=t-ittme
print "(i3,749.4,f2.4,f9.4,F9.4)',§,thetam{3),t,
dtheota,dt( )
lTtheta=thetanl !}
Ttime=t
fupel{m)=t
wirig-LCmm) =t
tL=tt+t
Livlte+tAt
at=-t+thctam(J)
Lt ctat et “Lhetamd §)
cerord{m)~thetamt J)
mamel
i tm o.ne o 16}
goto 1yil
end!f
eindir
end!f
cont inue
Conr fnue
continue
m=r-1
1f (tts .eq,
acta 1933
el iy {m .eq.
anto 1933
(=2 BT I L O VR U
guto 1443
endifl
s={i (). Lrmirtat)={at*tt) )/ (( (1.0 m)*tts)-({tt™tt))
qalcl-(s*te) )/ (1. 0*m)

tihen

g.0) then
) then
tt*tt)

.eq. then
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1080
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maxerr=8.0
vari=0.4
do 1942 J=1,m,1
error{Ji=error(J)-q-(s*impt(J))
if (absterror(J}) .ge. maxerr) then
maxerr=errori{j)
tnperrs§
endif
var i=vari+orror{j)*error(j)
continue
print»*,
peaks is thetawsy+s™t with g=',q, 'and
maxerr,‘at peak=',imperr,’and varfance=',vari
continue
cont inue
continue
continue
ccntinue
end
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‘up to the',m,'peak the least squares fit to the
ga',35,'with max errors’®,
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Andat S sudiite. —

A initfal phase angle= .008000000e+0d

inttial may imum deflectfon= -.100000001e+LQ
the starting time= .QJ0000000e+00
momeat of inertia of the primary mass= ,107999994e+00
magr.itude of the szcondery mass= .4069999%Ce~-s 2 JTenpth of the primary systems
C1BUMIF4 the coefficient of restitution= SEOupLibe+Qy
seruondary masses inftial velocity=
OLB30ILY00c OL the gap setting=  ,210916668e+1y
desired nuuber of jmpactss 508
1 mass= 48399999 e-03
effuctive d= 21U2%16668e+00 -
x{g)= -.1155410&70#35
deltats L999399$978e-02
es= [T 8. S IRV RO N VY
qones L2589994u96e+02
qtwos 2.14377C42
the time fteration did not cenverge for iw=l56g
impact tim: deltat thetas X tdotv xdot thetam dthetam
1 LB L0L92122 -l .114616 2.0324 8.4316 U979 -. 0021
2 L1Uu72 L5594 LU ,31132 .8851 -1.5881 .4933 S04
3 L1580l L1895 HHT2 .23 ldﬁb =2.0503  =5,90602 L8972 -. 00Ul
4 L2545% L021642  -.05L2 -.315396 L3935 4.3204 .09G4 -. gy
) L3017 ,137L13 S L282787  -1.2935% -0.0L124 0944 v~ DOU280
6 .47u38 LHYEH13 -, 0912 -,3074581 -.622 1.22601 'MEY.] A0
7 .51742 .p38741 ~.H0Y3 -,2L0617 1.6300 4.8082 .v937 -.0087
8 .50212 .L3L743 LG - H86497 2.4007 5.5604 .0933 - 9063
9 .62277 .W6UC4) .HCUI 390218 -.7131 -5.1892 .g9e3 -.0011
19 .72912 .116362 G¥3 -,305U87 . 3631 3.8401 w914 -.9u09
G 11 .8u337 .00423¢ ﬂg I -.856652 2.2773 5.6191 .0947 - 0RH7
12 .85631 .£62u47 LHBG2 S L295993 -.6490 -5.0017 .0897 . 0019
13 .90481 116496 =-.w872 -.290257 4319 3.9748 .00868 -.8N09
14 1.12431 .139504 JA1697 0 ,259508  -1.3413 -6.4926  .p368 -. 0020
15 1.20832 .0UB4007 -.0818 -.,286139 -.7575 .7655 .9069 0001
fmpact= 1 errmom= -,400468707e¢-07 errvel= ,119209290e-05
fmpact= 2 errmom= -,237024644e-07 errvela  ,715255737e-06
tmpact= 3 crruwon=  L2933ub60lle~07 errvel= =,714%256737e-006
fmpacte 4 errmow=s ~,372529,3¢-83 errvel= 763371LCe-06
fmpact= 5 erthom= 14901107 2e-47 errvels UUU»UUUUUe*Uﬂ
fmpact= 6 errmom= =,931222575%c~4i9 orrvel=s =,230418%7%e-6
fmpact= 7 crrowmom= -.2b5ﬂ2bjﬂ4c—u7 errvels .;udllb 79¢-006
tmpact= 8 errmom= -~ . 4L4L3010LL2-W7 errvel= .953G674316e-06
fmpact= 9 errioms 2L"517/X:L—ﬂ7 errveale -.476U37153e-96
fupacts 10 vrrimom= .B C19821 7008 errvels 00000+ D
impiact= 11 crrmom= =, 47140800 030-87 cerrvel= 9L00715160-06
fmpact= 12 crraoas LU STAL L= srrvels = 20BALUL7YC~00
fmpact= 13 crrnom= =, 1062640 15e=-U8 crrvels . 25L4183%79¢-06
impact= 14 urrnivas LYz l'Jl 7He-U8 errvel=s - A476U37158e-0b
tmpacta 1% errmom= LU921128e0-087 errvels -,71525Lb737e-06
L .
F!. fmpact thetam time dthetam dtime
L 2 0983 1221 - Hu17 .1221
- 4 NI L30L8 =Ly .2437 1 no!l
] L8933 G191 - we3l ,2443 ailable to DTIC d=2¢s T .
- Copy av cduction !
L 1l leglola 10 Ppic i
L . permit fully :




11
13
17
20
23
26
23
31
34
36
39
41
44
46
49
51
54
56
59
62
65
68
72
74
76
78
8o
gz
84
4G
8¢
aC
ez
94
96
9%
10C
lo2
U4
1€
1083
g
11z
114
up
P

-, L aam o oo auen orar setn S Al N SR AT A i et et S PN W e e e
"
e e e men s a8 0D ecas Sabivh A . et . b bman Pt e erma b G am e 4 e emm e e - ,,-4
5907 .86544 -. 0026 L2443
L8ty 1.o90u LR ULE ] 2444
LLBES 1.242 -.0ul9 2443
LHL34 1.5874% Y URE s2443
.B811 1.8319 -.0u23 2444
.B7838 2.0763 - a3 . 2445
0769 2.3246 -~.0U19 .2444
0744 2.560u P (Fheg ) .2444
U720 2.8090 - 0J24 .2445
0782 3.05041 ~. Ul .2445
.0677 2.29CL - Y 2444
066y 3.5431 -.n017 .2445
.B63% 3.787% - 0Uls 2444
.8619 4,.8321 -.8016 .2446
L8593 4.2763 -, 0026 2443
L8578 4.5214 ~. L0016 L2446
. U553 4.7053 - 0024 .2443
0539 S.O10U -.Bulbh .2447
LEB518 5.2542 - 024 .c442
0485 5.4937 - 0020 .2446
8477 5.7434 -.001¢E .2446
0458 5.9678 -, 018 .2445
23 6.47G66 -. 038 .4088
LBA0Y 6.7213 -.118 .2446
K308 £.9659 -.0uUl7 L2447
K371 7.2187 -.01117 .2448
K354 7.455% -. 0017 .2448
w337 7.7604 -7 .2449
£321 7.9454 -.0016 .2450 . .
S O G.1%un -.ammlg L2451
OB 6.43550 LS TSR B 2451
o273 LI YR o £ -6 L2452
200 G.0201 ERPUTE L2a%2
242 Y.1714 “Savelbh L2453
5227 9, 4167 -yl L2444
212 9.6621 Ly L2454
U195 Y.9076 - ANy L2455
aolud .10 ~.UJ18 L2455
LC1eS 1203980 Sy UYA Y . 2455
SR R 1. 6441 -. U116 L2455
L1054 140,509, T AN Y L2454
.011L 1:.134¢ - nlo 2451
UL 11.3721 LR I ) L2445
Luanc 11.6223 SR UL .2432
to Lhoe 47
Al the 1e .31 squares 71t Lo the peaks 1s thetam=q+5*t with q=
AN LT he sl and uE = /et B o= with wax error= L A470035%0e-02 at peaks=
and vartance- AN Y 708 I AVATE S ic} .
nact tir-~ deltat thetas » tdotv xdot thntam dthetam
Hlell. uu 2 134001 LOedl =, 8967373 .1562 1.2056 . uu73 - 0I6
117211.97174 140009 —-..00 0 094228 - JA67 -.7971 w7 - WU2
11812,00 734 .2675549 = 0000 -, 120500 376 U171 LUO7Y ~. D592
19100000 4111488 L0859 L197523 -, 1672 -, uddd JAULL -~ HNIT4
Prpsle S wu Luhatn?  =.val?2 =, 109203 -.1641 -, a4 UGG LGl
121120870 o o0 72569 =050 =, 11vudi LYY BERETS BT T ~ Ml
prele.ny 7 L590Li9 BRSNS L1EeG27 =, 0406 eV IV L62 -, 0un2
PSS IR E HYAS TR ) - SCT 70 B A AL EEVRORRE IS N VA B ¥ 1 U LAldd L oual - .03
17414.6505355 .464141 =, s 0 LHYTOH6 -.ygnz ~-.235d9 LO0L8 - 002
1201, 4100 VAT P PR RTINS BRI B IR F | R A2 L05y ~.Juud
LIPS 79 R | AR TV ¥V AVT o Ao SRR IR (FVIR V) B { B HI ST U B | ~. 1w -.6Uvwd  LugL? ~. 08003




AT At AT AL ol 410 A SR T T T T T T T T T Y Y W T T TN i |
c
- I
2 : - -
: > B
[ - —m. . A% At ietmh b a o A ar samd ames e s a e Adecahn W em e C e - I e e e e i e e 4. aw e w b e e et
~ B
" 12716.15927 .332205  ~.0013 -.103324 L1195 L7005 L3048 - 30004
E 12816.47058 3110609 ALT37 0 L 115854 JYInd -, 347%  Lubd? ~ gl
12917.10638 .€3%%u2 =-.0136 -,113011 679 L3780 LWpaS -~ 0np2
o 12017.61C46 %1198 -, puild JLTE5T70 U N TR VRV S LN LTS
13117.69641 .BGCL3S Aud2 L 1l4uds -.J2uu -, 15083  Udud4a VTS
13217.74047 041050 U B L137791 -. 10492 -. 2729 U433 L0000
13318.37661 .630134 TV U JVE B Rt Lu72 LASUY el ~.0uk3
13418.81332 .435215 =-.4nl6 LHVOOUG L0010 .B55% Y Uy
13918.97399 .1651G6G6 =-.aut3  L162675 -.0967 -.3126 .9029 -.8001
13619. 56527 591286 -,060.43 =, 106037 NS ERY L4650 L OWU37 -. 00603
13719.975% LALOG20 =032 LB93201 -. 03240 -.2499 L4035 - B0l
13¢20. 519!’ L542120 0 - HGLs - e /74 AI7L LALLHB w3 -.0p02
139246.97719 455164 -.00L29  L,WYUILD LHZAL ~. 8968 .MU32 LBoRY
14¢22.235381.256192 OGN -, 15269 B767 .257% LON3Y ~. L3
14122.89206 .653272 -.8L28 099267 -. 0124 -.1724 0028 -. 0001
fmpact thetam time dthetam dtime
116 .B073 11.8626 -.0927 11.8626
118 BE78  12.3478 -. 0063 .4044
121 .g865 13.874LC -.0eus .7287
123 LOCO 14,2904 EI TI M 1.2147
125 HILL5S 1L, 5000 - By 1.2126
127 L0048 16.2304 - 00p7 7274
128 HOA7 16,4740 -.Bp01 .2444
129 LOPOAS  17.20306 -.0Oy2 .7288
139 .bP44 17.68UC - WOl .4851
133 U4l 18.41G62 - 0UP3 .7276
134 L0940 17.94,9 Qe L4047
136 N3I3T 19,6200 EYULr! 7277
138 LMU33 28,5931 ~ HIB4 .9694 *
139 P32 21.9000 iy .4839
149 LON3 22.29L0 -. 0043 1.2129
up to the 15
pueak the least squares fit to the peaks 1s thetam=q+3*t with q=
L10533150e-41 and s= -.422593998e~03 with max error= .3908500273e-83 at peaks=
15 and vartance=s 61701729 e-04% :
tnitial phase anglc= ..COOO0O0Lc+dD
initial s fmum deflection= -, 1900808010+ 00
the starting times L SOU00IUCSer 00
mowcnt oi fnertia of tng primary mass=  .107999994e+00
magnitude of Lhe sceondary masss 149 ug0L5e~Ue length of the primary systemw=
2.21000J04 the cocificient cf restitotion=  JS5uNyUNUde+OU
Secndry maLses inltial veloctityns
N dNu e L the gap setting=s L 1927883282+40
desireu number of impacts= 549
mass= 14900 065e-D02
effective 4= ,192713328e+98
x(U)a = 12102000 7e+bd
deltat= % 50989745 ¢-02
[ LMY ot s
qonas L 2584994%0e+H2
qtwvow  2.147nwpN0 ]
the time fteraticn did not converge for (= 71
impact tim: dJeltat thetas X tdotv xdot thetam dthetam
1 .8505°! NN 1h =t -, 122767 2.42175 €.1C53 042 -. 9563
2 PG LT LG JLEGY R DR CY R | L.ug77? -.6s40 H904 03522
3 151073 .H44€8) L8733 .25B450 -1.5436 =-4.8528 .0944 -.8020
4 L197738 J0ALTLT -.2y8 Oizbur =2.3144 -5.2392 0939 - 005
L ] e e = - . ]
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[ FECORPE I i v o AW Lo LRSI TR -.Uuls
70 JALULSL LEBLTE s =D S2L00nd =500 -.uu17 j
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