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The use of graphical methods for diagnostic purposes has an honorable tradition which is

rooted in the pioneering work of Anscombc and "rukcv and hts been dex k'pcd b% Wilk.

Gnanadesikan. and a host of others associated with Bell Laboratcries. T.: ¢ . c- t,

l Landwehr. Pregibon, and Shoemaker (subsequently referred to as I Pl) attempts to modify and

extend graphical diagnostic displays that have been developed for ordinary regression to be of

use for assessing logistic regression models for binary data. The:. propose displays for each of

the three key components of regression diagnostics: goodness of fit. ou:lier detection, and
model specification. Theirs is a pioneering effort and many useful ideas have emerged from

it. VL congratulate the authors on the substantial progress they have made to date.

,. Somewhat fuzzy analogies to linear regression are not sufficicnt to mnotnatc for us the
: .,. ,,$ ,J"

approaches adopted by LPS. Thus .W have attempted to examine critically LPS's diagnostic
.jge P

displays to see if we could determine why in each instance the ,'iethod works or fails. LPS

" suggest that the major obstacle in carrying linear regression diagnostics o'cr to the logistic

regression setting is the discreteness of binary data. While discretcness may well be a serious

problem. ,wf note additional ones, Although our esamination is far from complete, %%c hope it

will be a useful supplement to the present paper.

We deal separately with each diagnostic display.

I. LOCAL MEAN DEVIANCE PLOTS

The key idea behind this plot is to focus not on a global mcasurc of goodness-of-fit but

rather on local contributions !o the fit. The approach is bascd on an ai:mlog. with the lincar

regression problem with replicated observations where we can partition the sun of squared

residuals (SS) into a pure-error SS and a lack-of-fit SS. LPS claim that for the logistic

- regress on setting that. "if there are exact replicates in the data. the pure-error component of

* the deviance is easily obtained." This is true in a sense, but it is somewhat decepti'e.

As in the case of the linear regression problem, when we have exact replicates in an

* obscr'ational study the definition of pure error depends on two assumptions: (i) independence
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of observations, and (ii) a correct choice of the explanatory variables for inclusion in the

model (but not necessarily the functional form). Indcpcndencc is a major problem in many

applications although it does seem reasonable in LPS's major example. The specification of

• relevant explanatory variables is more serious but we have no advice for dealing with it except

to proceed conditionally, which is in effect what LPS do with their example. Thus despite our

*note of caution, we find the idea of using a pure error component appealing.

Now, LPS are dealing with the case where there arc not necessarily exact replicates, and they

do not really attempt to partition the deviance. What then are they doing? Through the use

of their clustering algorithm, in effect they are partitioning the factor space (i.e. the m

dimensional space of explanatory variables) into K distinct regions. Then they attempt to

- check whether the logistic regression in each region is the same as the global logistic regression

by fitting the model

logit (p) = ZY + X,8. (1.1)

where Z = 1 or 0 according to whether the ith observation is or is not in the kth region.

We wish to determine if the model is the same in all regions, i.e. y = 0 or

logit (p) = X,8, (1.2)

and we can test for this directly using a conditional likelihood ratio test of model (1.2) versus

model (1.1). If N is large relative to K such a test, and if the regions were preformed. the

conditions of Haberman (1974) would seem to be satisfied and a k2 reference distribution with
K-i degrees of freedom would be appropriate. (Tsiatis, 1980, proposes a similar test but uses a

Wald-like quadratic form statistic.) LPS eschew a formal test, and approach the issue

graphically by examining the contributions to such a conditional test statistic by region of the

factor spgce, in a cumulative form. This seems reasonable if we don't have preformed groups

of data points, and if we have relied on a clustering algorithm of the sort suggested by LPS.

How well does the LPS graphir-al approach work? We can explore the answer to this

* question best in the case where each cluster or region of the factor space consists of exact

replicates. As Jennings (1982) notes, under the null hypothesis of model (1.2). the expectation

'I
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of the local mean square deviance for the kth group. El/(N -1). should bc approximately the

same as the expectation of the global mean deviance. D Jennings has carried out calculations

for some simple examples that suggest that the local mean deviance overestimates the global

mean deviance for p near 0.5 and underestimates it for p near 0 or 1. Thus the order in

which the groups are added to LPS's running estimate of local mean deviance may have a

substantial impact on what we see in the graphical display. As a consequence we are unable to

share LPS's enthusiasm for this display.

A simple alternative to the LPS approach, and onc we have found successful in practice, is

suggested by the preceding discussion. Convert each of the m explanatory variables into sets

of categories, and restructure the data in the form of an (m+l)-dimcnsional contingency table

with an m-dimensional fixed margin (Bishop. Fienberg and Holland, 1975: Fienberg, 1980).

Now examine the fit of the logistic regression model using, say, the means of the explanatory

variables in each cell. To examine local variation we can use the generalized residual approach

of Haberman (1976). This contingency table structuring can also be used to explore directly

nonlinear effects of the explanatory variables and interactions.

2. EMPIRICAL PROBABILITY PLOTS

Both this plot and the next one involve the adaptation of the linear regression notion of

standardized residuals. Here. LPS begin by arguing for the use of the deviance contribution.

d = d(p ;y), standardized by its approximate standard error. We see little justification
a a I

considering the use of a A reference distribution in this setting given that. for extreme values

of p. d2 -ends to a 2-point distribution and Haberman's (1974) conditions are not met (e.g. see

the discussion in Jennings, 1982).

LPS's alternative is to use the residuals y, - and a simulation procedure. The procedure

here is evocative of one proposed by Atkinson (1981. 1982). in which he presents half normal

plots of jackknife residuals and a modified version of Cook's distance statistic, using 19

samples simulated with random normal y's and a matrix of explanatory variables the same as
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that of the data. Because both statistics that Atkinson uses are functions of least squares

residuals divided by an estimate of scale, the values of the parameters of the linear model in

the simulation do not matter. This is not the case in LPS's simulation for their empirical

probability ploL Even if they had standardized their residuals the values of the parameters in

the logistic regression model. ,8. do matter. LPS attempt to finesse this problem by using p

in place of p for the simulated Bernoulli variates, but this simply disguises the dependence of

the simulation on the p. Thus we are skeptical about attaching the usual interpretation to the

confidence coefficients used throughout Section 4 of LPS.

in the concluding discussion, LPS mention that the simulations for the empirical probability

plots are in the same spirit as the bootstrap. In fact the simulations used to get the

distribution of the ordered residuals are a form of bootstrap. We illustrate the bootstrap

. argument using LPS's Example 3. We assume that (X,Y). (X 00Y 100) are independent and

*' identically distributed (iid) from some distribution F. where F specifies that Y X is Bernoulli

with probability of success P(X) such that logit P(X) = X f8. Then we form the residuals Y

- V where logit V = X ,. If we knew F. we could in principle simulate to get the

distribution of the ordered residuals under the assumed model F. Not knowing F. we substitute

an estimate. The appropriate estimate here is F which specifies that the probability of success

is Y. We comment further on the use of the bootstrap in the next section.

3. PARTIAL RESIDUAL PLOTS

In the case of ordinary linear regression. collinearity in the design space can hide a sought-

after relationship from partial residuals. More specifically, if the underlying model is

E(Y) = X f8 + g(z). (3.1)

then partial residuals fail to detect the part of g(z) which is in the column space of X. We

expect similar problems to hold in the logistic regression case.

LPS motivate their definition of partial residuals by considering an analogy to ordinary linear

regression. Here, we first give a simple calculation to show why partial residuals sometimes

,J - . . . - . . . . . . .. . . . . ... .

.. .. ' = .. . , ,,: = f - ,.==. , .' :. .' ,' ,'.',.' , -,- ..- ,' - , ..' . -.' .- .- . .-.- .. . ,, ,. " ...
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work. and then we give an example to show when partial residuals can fail.

Suppose Y is Bernoulli with probability of success P(z) such that

logit P(z) = a + g(z). (3.2)

where z is real. We fit the logistic model

logit PI(z) = - + Y z. (3.3)

Linear logistic regression estimates P in (3.3) when what we are after is P in (3.2). Suppose

we define the residual logit

P 1- P

r logit P- logit P = log I). (3.4)j rj, .,n_ I - P P )

Using the first order Taylor approximation for the logarithm, we have

r = iogit P - logit P

:-'.P 1 - P

I - P P

P-P
4 - I

9. IP (1 -P)

4Z P (3.5)
P( Q P)

The approximations hold if the ratios

P 1-P
- % 1, r4,' 1. (3.6)°P 1-P

Solving for g(z) in (3.2) and (3.3), we get

p-p
g(z)= r +Y PZ-p-(P) YZ. (3.7)

If we define

Y-p
G(z) P+ y z. (3.8)

P (1-P)I I

-bW 9 *"0"-,7 ',,.€, ... .'',,.:.. '-.. .'.:' ".'." "'." ""..".' .""" .. .... ". -"
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then

_E(G(z): z) 'g(z). (3.9)

Substituting estimates for P and y in (3.8) gives r as defined by LPS. This simple

calculation shows that when (3.6) holds, the conditional expectation of r given z is
prr

approximately g(z). When z is discrete and the number of observations at each possible value

of z is large, we can average the partial residuals at each value of z to get an estimate of

g(z). When z is continuous, we cannot take averages at each possible value of z. but we can

smooth.

We now give a counterexample in which LPS's partial residual display fails. Suppose logit

P(z) = log(1+z) where the possible values of z are

0. 2. 4, 6, 8, 10, 20, 30, 40, 50.

It turns out that

logit P a + y Z,

where a = 0.85 and y 0.10. Figure 1 shows a scatterplot of G(z). For each z, G(z) can

take two possible values depending on whether Y=1 or Y=0. At these two values, the number

of dashes reflect the true proportions of successes P(z) and failures 1-P(z). We may think of

Figure 1 as the partial residual plot gotten by looking at an infinite number of observations at

each z. Comparing E(G(z)'z) and g(z) = log(l+z) - a. we see that partial residuals fail when z

exceeds 30. In Figure 2, we calculate

P 1-P
- and .
P 1-P

for z = 30. 40. 50, and we see that for these values of z, the approximation (3.6) simply does

not hold.

Our final comment on partial residuals is one on assessment. In the breast cancer example,

LPS examine numerous partial residual plots to obtain a rather complicated model involving 7

parametems. Assessing the fit of this model is a difficult but important problem. There are
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two questions we might ask. if new patients were observed, would the model afford a good

rule for predicting their outcome? If the experiment were performed again with a new sample

of 306 patients, would LPS conclude the same model? If we could automate the thought

processes that produce say. the conclusion that LPS's Figure 8 shows a cubic dependence, we

could use the bootstrap to help answer these questions. (See Gong 1982a. 1982b for the use of

the bootstrap in assessing another complicated prediction rule.)

We include here just an idea of how the bootstrap can help. Look at LPS's Figure 8. If

we repeated the experiment, observing a new sample of 306 patients, would we get a picture

similar to their Figure 8, and would LPS arrive at the same conclusion of a cubic dependence?

Suppose the data (X ,Y ). (X .Y ) were iid with distribution F. If we knew F. we couldI 1 306 30t,

in principle generate a new sample of patients. Since we don't know F, substitute an estimate,

the empirical distribution F which puts mass 1/306 at each observation. The resulting sample

is a bootstrap sample. Our Figure 3 shows the partial residual smooths of 10 bootstrap

samples. (Performing 25 bootstraps gives similar results but a more confusing picture.) How do

we interpret this picture? The smooth based on the original sample is our estimator of the

nonlinear relation of logit P on age. The smooths based on the bootstrap samples tell us about

the variability of that estimator. Since the shape of the bootstrap smooths all tend to be

similar, we have some confidence in the original sample smooth as an estimator for the shape

of the nonlinear relation of logit P on age.

Figure 4 shows the partial residual smooths of 10 bootstraps for the second covariate, the

year of surgery. The shape of these smooths are also very similar, indicating that the partial

residual smooth of the original sample, also givcn in Figure *, is a good estimator for the

nonlinear dependence of iogit P oa year of burgery. There is an interesting decrease in

survival for surgery during 1%5.

Figure 5 shows the smooths of 10 bootstraps for the third covariate. the number of nodes.

The shape of the smooths for small number of nodes remains constant throughout the



bootstraps, while the shape for large number of nodes is highly variable. If logit P does

depend on number of nodes through -log(1+z). we have a situation similar to our

counterexample. For z large. the difference between G(z.Y=I) and G(z.Y=O) is astronomical.

so that observing a few more Y=1's can pull the smooth way up. while observing a few more

Y=O's can pull the smooth down. The high variability in shape is ultimately tied to the fact

that there are just not very many patients with large number of nodes.

4. ADDITIONAL COMMENTS

Although the amount of calculation required to produce the graphical displays proposed by

] LPS seems at first blush immense, the plots can in fact be generated with relative ease using a

statistical software package such as Bell Laboratories' "S". This is a major virtue, and argues

for further efforts to build up on LPS's pioneering work. Variants on and alternatives to their

three graphical displays can be explored with the same ease as can the original displays.

In future work in this area we would argue for somewhat less reliance on fuzzy analogies to

linear regression techniques, and we would focus more directly on the theory that underlies the

* problem at hand. Of potential importance for the logistic regression setting is Jennings' (1982)

-, measure of inference adequacy. a measure closely related to the curvature measures of Bates

and Watts (1980). His approach has implications both for model specification and for the

form of paramctrization of the logistic regression model to achieve computational efficiency

and inferential stability.

The use of kernel-based density estimation in the development of grapical displays for binary

response models also bears scrutiny (e.g. see Tittcrington, 1980. and Titterington et al.. 1981).

Although such an approach has been advocated as "non-parametric" (e.g. see Copas, 1983) we

see its major strengths as (a) the smoothness of the resulting probabilities, and (b) the checks

it might provide for the examination of model adequacy and local variation.

Developing useful graphical displays is, in general, a difficult task. LPS have demonstrated

how ideas for diagnostic displays from ordinary linear regression can be adapted to the binary

"p

"S
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response setting. In our examination of their work we have pointed out both strengths and

weaknesses in their methodology. LPS have opened the gates on a research field that has yet

to fully bloom. Much work still needs to be done before we can reap a harvest of useful

methodology.

4
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Figure 1. The Partial Residual Plot for the Counterexample.

The dashes form a scatterplot of GU). The cur'e through this scattcrplot is E(G(z)!z) which

estimates the true function g'7) indicated by the triangles.

Figure 2. Understanding the Failure of Partial Residuals

Condition (3.f' fails to hold for z = 30. 40, 50 in the counterexample.

z P P P/P (1-P )/(1-P)
- - - - -- - - - - - - - - - - - -1 - - - - - - - -- - - - - - - - - -

.4 30 .969 .980 .99 .65

40 .976 .993 .98 .29

50 .981 .997 .98 .16

' Figure 3. Bootstraps for Age

The partial residual smooths of 10 bootstrap samples together with that of the original sample

of the covariate x = age.

Figure 4. Bootstraps for Year

The partial residual smooths of 10 bootstrap samples together with that of the original sample

of the covariate x, = year of surgery.

Figure 5. Bootstraps for Nodes

The partial residual smooths of 10 bootstrap samples together with that of the original sample

4 of the covariate x = number of nodes..; 3

: *
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