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:-:. ,) The usc of graphical mcthods for diagnostic purposecs has an honorable tradition which 1s
*- rooted in the pioncering work of Anscombe and Tukey and has been developed by Wilk,
; - Gnanadesikan, and a host of others associated wilh\Béﬁ/l.aboramrics. :F”L’“::'t"—“’ pancr kv
{ Landwehr, Pregibon, and Shocmaker (subscquently referred 1o as 1PS) altempts to modify and
extend graphical diagnostic displays that have been developed for ordinary regression to be of
y use for assessing logistic regression models for binary data. They propose displays for cach of
? the threc key componcents of regression diagnostics: goodness of fit, outlier dctection. and
* model specification. Thcirs is a pioneering effort and many uscful idezs ha\';: emerged from
it.) We congratulate lh;: authors on the substantial progress they have made to date.
4 \— Somewhat fuzzy analogics 1o lincar regression are not sufficicat to motvate for us the
3 pe Tt o P s
approaches adoplcd}::); LPS. Thus wc¢ have attempted to examine critically LPS's diagnostic
‘ displays to scc if w€ could dctcrmine why in cach instance the mcthod works or fails. LPS
suggest that the major obstacle in carrving linecar regression diagnostics over o the logistic
R regression setling is the discreteness of bi}::xlry' data. While discreteness mzv well be a serious
r. AL,
& problcm, we€ notc additional OHCS,“JT‘\IlhOUgh our cvamination is far from complete, we hope it
) will be a uscful supplement to the present paper.
"
We dcal separately with each diagnostic display.
1. LOCAL MEAN DEVIANCE PLOTS |
: The key idea behind this plot is to focus not on a global mecasure of goodness-of-fil but !
rather on local contsibutions to the fit. The approach is based on an analogy with the lincar
‘: regression problem with replicated obscrvations where we can partition the sum of squared
::: residuals (SS) into a pure-crror SS and a lack-of-fit SS. LPS claim that for the logistic
: regress on sctting that, "if there are cxact replicates in the data, the purc—crror component of
': the deviance is casily obtained.” This is truc in a sense. but it is somewhat deceptive.
5.
As in the case of the lincar regression problem, when we have exact replicates in an
5 observational study the dcfinition of pure crror depends on two assumpiions: (i) independence
-
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of observations, and (ii) a correct choice of the explanatory variables for inclusion in the

model (but not necessarily the functional form). Indeperdence is a major problem in many
applications although it does scem recasonable in LPS's major cxample. The specification of
relevant explanatory variables is more serious but we have no advice for dealing with it except
to proceed conditionally, which is in cffect what LPS do with their example. Thus despitc our

note of caution, we find the idea of using a pure error component appealing.

Now, LPS are dealing with the case where there arc not nccessarily exact replicates, and they
do not really attempt to partition the deviance. What then are they doing? Through the use
of their clustering algorithm, in effect they are partitioning the factor space (i.e. the m
dimensional space of explanatory variables) into K distinct regions. Then they atiempt 1o
check whether the logistic regression in each region is the same as the global lbgislic regression

by fitting the model

logit (p) = Zy + X4, (1.1)
where Zik = 1 or 0 according to whether the ith observation is or is not in the kth region.

We wish to determinc if the model is the same in all regions, ie. y = 0 or

logit (p) = X2, 1.2)
and we can test for this directly using a conditional likelihood ratio test of model (1.2) versus
model (1.1). If N is large relative to K such a test, and if the regions were preformed. the
conditions of Haberman (1974) would seem to be satisfied and a X’ reference distribution with
K-1 degrees of freedom would be appropriate. (Tsiatis, 1980, proposes a similar test but uses a
Wald-like quadratic form statistic) LPS eschew a formal test, and approach the issuc
graphically by examining thc contributions 1o such a conditional test statistic by region of the
factor spgce, in a cumulative form. This secems rcasonable if we don't have preformed groups

of data points, and if we have relied on a clustcring algorithm of the sort suggested by LPS.

How well does the LPS graphiral approach work? We can explore the answer to this
question best in the case where each cluster or region of the factor space consists of exact

replicates. As Jennings (1982) notes, under the null hypothesis of model (1.2). the expectation
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= 3
,_'éa “of the local mean square deviance for the kih group, l—jk/(NL-l). should be approximaicly the
same as the expectation of the global mean deviance. D Jennings has carried out calculations
§ for some simple examples that suggest that the local mean deviance overestimates the global
T mean deviance for p ncar 0.5 and underestimates it for p near 0 or 1. Thus the order in
N2 which the groups arc added to LPS's running cstimate of local mecan deviance may have a
R * " substantial impact on what we see in the graphical display. As a consequence we are unable to
2 share LPS's enthusiasm for this display.
Ged
B A simple alternative to the LPS approach, and onc we have found successful in praclice, is
_" suggested by the preceding discussion. Convert cach of the m explanatory variables into scts
_*:. of categories, and restructure the data in the form of an (m+1)-dimensional contingency table
/‘ with an m-dimensional fixed margin (Bishop, Fienberg and Holland, 1975; Fienberg, 1980).
";- Now examine the fit of the logistic regression model using, say, the mecans of the explanatory
%‘:; variables in each cell. To examine local variation we can usc the generalized residual approach
. of Haberman (1976). This contingency lable structuring can also be uscd 1o cxplore directly
-3:: nonlinear effects of the explanatory variables and interactions.
J,ZE:
; 2. EMPIRICAL PROBABILITY PLOTS
1 Both this plot and the next one involve the adaplation of the linear regression notion of
?2 standardized residuals. Here, LPS begin by arguing for the use of the deviance contribution,
dl = d(ﬁi;yi). standardized by its approximate standard error. We sec little justification
' considering the use of a Xf reference distribution in this sctting given that. for extrcme valucs
'S of P. df tends to a 2-point distribution and Haberman's (1974) conditions are not met (e.g. see
_I ' the discussion in Jennings, 1982).
:j LPS's alternative is to use the residuals y - 13| and a simulation procedure. The procedure
E; here is e;ocative of one proposed by Atkinson (1981, 1982), in which he presents half normal
s plots of ‘jackknifc residuals and a modified version of Cook’s distance statistic, using 19
"-..’ samples simulated with random normal y's and a matrix of cxplanatory variables the same as
:
L ad
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that of the data. Because both statistics that Atkinson uses are functions of least squares
residuals divided by an estimate of scale, the values of the parameters of the linear model in
the simulation do not matter. This is not the case in LPS's simulation for their empirical
probability plot. Even if they had standardized their residuals the values of the parameters in
the logistic regression model, B4, do matter. LPS attempt to fincsse this problem by using ﬁ.
in place of ﬁi for the simulated Bernoulli variates, but this simply disguises the dependence of
the simulation on the P. Thus we are skeptical about attaching the usual interpretation to the

confidence coefficients used throughout Section 4 of LPS.

in the concluding discussion, LPS mention that the simulations for the cmpirical probability
plots are in the samc spirit as the bootstrap. In fact the simulations used to get the
distribution of the ordered residuals are a form of bootstrap. We illustrate the bootstrap
argumem/'using LPS's Example 3. We assume that (X‘.Yl). (Xwo.Yloo) are independent and
identically distributed (iid) from some distribution F, where F specifies that Y!X is Bernoulli
with probability of success P(X) such that logit P(X) = X 4. Then we form the residuals Y
- ¥ where logit v=x ;i If we knew F, we could in principle simulate to get the
distribution of the ordered residuals under the assumed model F. Not knowing F, we substitute

an estimate. The appropriate estimate here is F which specifies that the probability of success

is Y. We comment further on the use of the bootstrap in the next section.

3. PARTIAL RESIDUAL PLOTS
In the case of ordinary linear regression. collinearity in the design space can hide a sought-
after relationship from partial residuals. More specifically, if the underlying model is
E(Y) = X g + gl2), (3.1)
then partial residuals fail to detect the part of g(z) which is in the column space of X. We

expect similar problems to hold in the logistic rcgression case.

LPS motivate their definition of partial residuals by considering an analogy to ordinary linear

regression. Here, we first give a simple calculation to show why partial residuals sometimes
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work, and then we give an example to show when partial residuals can fail.

Suppose Y is Bernoulli with probability of success P(z) such that

logit P(z) = o + g(2),
where z is real. We fit the logistic model
logit Pl(z) =c 4y

Linear logistic regression estimates PI in (3.3) when what we are after is P in (3.2).

we define the residual logit

P . 1- Pl )
1-P Pl
Using the first order Taylor approximation for the logarithm, we have

T = logit P - logit PI = log (

Jorn

r = logit P - logit P‘

Jopat

The approximations hold if the ratios

P 1-P
. S T |
P’| 1-P
Solving for g(z) in (3.2) and (3.3), we get
@ P-PI
= *yzZ= b4 .
R P a-pP) :

If we define

(3.2)

(3.3)

Suppose

(3.4)

(3.5)

(3.6)

3.7

(3.8)
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then

E(G(2)i2) ~ g(2). (3.9)
Substituting estimates for P| and y in (3.8) gives rpnr as defined by LPS. This simple
calculation shows that when (3.6) holds, the conditional expectation of L given z is
approximately g(z). When z is discrete and the number of observations at each possible value
of z is larée. we can average the partial residuals at each value of z to get an estimate of

g(z). When z is continuous, we cannot take averages at each possible value of z, but we can

smooth.

We now give a counterexample in which LPS's partial residual display fails. Suppose logit

P(z) = log(1+z) where the possible values of z are

0, 2, 4, 6, 8, 10, 20, 30, 40, 50.
It turns out that
logit P = a + y 2

where ¢ = 0.85 and y = 0.10. Figure 1 shows a scatterplot of G(z). For cach z, G(z) can
take two possible values depending on whether Y=1 or Y=0. Al these two values, the number
of dashes reflect the true proportions of successes P(z) and failures 1-P(z). We may think of
Figure 1 as the partial residual plot gotten by looking at an infinite number of observations at
each z. Comparing E(G(z)!z) and g(z) = log(1+z) - e. we sce that partial residuals fail when z

exceeds 30. In Figure 2, we calculate

P 1-P
— and — |
Pl 1-P
for z = 30, 40, 50, and we sec that for these values of z, the approximation (3.6) simply does

not hold.

Our final comment on partial residuals is one on asscssment. In the breast cancer example,
LPS examine numerous partial residual plots to obtain a rather complicated mode! involving 7

parameters. Assessing the fit of this model is a difficult but important problem. There are

P
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two questions we might ask. If new patients were observed, would the model afford a good
rule for predictirig their outcome? If the experiment were performed again with a new sample
of 306 patients, would LPS conclude the same model? If we could automate the thought
processes that produce say, the conclusion that LPS's Figure 8 shows a cubic dcpendence, we
could use the bootstrap to help answer these questions. (See Gong 1982a. 1982b for the use of

the bootstrap in assessing another complicaied prediction rule.)

We include here just an idea of how the bootstrap can help. Look at LPS's Figure 8. If
we repeated the experiment. observing a new sample of 306 patients, would we gel a picture
similar to their Figure 8, and would LPS arrive at the same conclusion of a cubic dependence?
Suppose the data (Xl.Yl). (me.Ym) were iid with distribution F. If we knew F, we could
in principle gencrate a new sample of paticnts. Since we don't know F, substitule an estimate,
the empirical distribution F which puts mass 1/306 at each observation. The resulling sample
is a bootsirap sample. Qur Figure 3 shows the partial residual smooths of 10 bootstrap
samples. (Performing 25 bootstraps gives similar results but a more confusing picture.) How do
we interpret this picture? The smooth based on the original sample is our estimator of the
nonlinear relation of logit P on age. The smooths based on the bootstrap samples tell us about

the variability of that estimator. Since the shape of the bootsirap smooths all tend to be

similar, we have some confidence in the original sample smooth as an estimator for the shape 1

of the nonlinear relation of logit P on age. |

Figure 4 shows the partial residual smooths of 10 bootstraps for the sccond covariate, the N
year of surgery. The shape of these smooths are also very similar. indicating that the partial
residual smooth of the original sample, also given in Figure -+ is a good estimator for the

nonlinear dependence of iogit P on year of surgery. There is an intcresting decrease in

survival for surgery during 1963.

Figure 5 shows the smooths of 10 bootstraps for the third covariate, the number of nodes.

The shape of the smooths for small number of nodes remains constant throughout the
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bootstraps, while the shape for large number of nodes is highly variable. If logit P does
depend on number of nodes through -log(1+z), we have a situation similar to our
counterexample. For z large. the difference between G(z,Y=1) and G(z.Y=0) is astronomical,
so that observing a few more Y=1's can pull the smooth way up. while observing a few more
Y=0's can pull the smooth down. The high variability in shape is ultimately tied to the fact

that there are just not very many patients with large number of nodes.

4. ADDITIONAL COMMENTS

Although the amount of calculation required to produce the graphical displays proposed by
LPS seems at first blush immense, the plots can in fact be generated with relative ease using a
statistical software package such as Bell Laboratories’ "S". This is a major virtue, and argues
for further efforts to build up on LPS’s pioneering work. Variants on and alternatives to their

three graphical displays can be explored with the same ease as can the original displays.

In future work in this area we would argue for somewhat less rcliance on fuzzy analogies to
linear regression techniques, and we would focus more directly on the theory that underlics the
problem at hand. Of potential importance for the logistic regression sciting is Jennings' (1982)
measure of inference adequacy. a measure closely related to the curvature measures of Bates
and Watts (1980). His approach has implications both for model specification and for the
form of “paramectrization of the logistic regression model to achieve computational efficiency

and inferential stability.

The use of kernel-based density estimation in the development of grapical displays for binary
response models also bears scrutiny (e.g. see Titterington, 1980, and Titterington et al.. 1981).
Although such an approach has been advocated as "non-paramectric” (c.g. see Copas, 1983) we
see its major strengths as (a) the smoothness of the resulting probabilitics, and (b) the checks

it might provide for the examination of model adequacy and local variation.

Developing usefu/ graphical displays is, in general, a difficult task. LPS have demonstrated

how ideas for diagnostic displays from ordinary lincar regression can be adapted to the binary
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response setting. In our examination of their work we have pointed out both strengths and

sie 4 9,

weaknesses in their methodology. LPS have opened the gates on a rescarch field that has yet
to fully bloom. Much work still nceds to be done before we can reap a harvest of useful

methodology.
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Figure 1. The Partial Residual Plot for the Countcrexample.

The dashes form a scatierplot of G(z). The curve through this scatierplot is E(G(z)iz) which
estimates the true function g'7) indicated by the triangles.
Figure 2. Understanding the Failure of Partial Residuals

Condition (3.€' fails to hold for z = 30, 40, 50 in the counterexample.

z P P, P/P1 (1—91)/(1—9)
30 .969 .980 .99 .65
40 .976 .093 .58 .29
50 .981 .997 .98 .16

e ————————_——— ——————————— —— — = . . o 4 - = = o = ———— s - - ———

Figure 3. Bootstraps for Age

The partial residual smooths of 10 bootstrap samples together with that of the original sample
of the covariate X = age.
Figure 4. Bootstraps for Yecar

The partial residual smooths of 10 bootstrap samples together with that of the original sample
of the covariale x, = year of surgery.
Figure 5. Bootstraps for Nodes

The partial residual smooths of 10 bootstrap samples together with that of the original sample

of the covariate x3 = number of nodes.
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