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SECTION 1 e
INTRODUCTION "

X

1.1 Scope o

The present report gives an account of the progress made during the re-
porting period in four principal subject areas:

)4

(1) Large Space Structure (LSS) system identification. E?.

(2) The effect of actuator dynamics on LSS control. }éj

(3) Modal dashpot/modal spring control design. E;‘

(4) A controlled experiment for ACOSS design. iz

1.2 LSS Identification ji;‘
In Section 2, the basic approaches to LSS identification and the major ';%l

difficulties encountered in the identification are discussed. Subsequently,
attention is focused on the high-resolution identification problem typifying
LSS. A novel procedure for identifying lightly damped, closely spaced modes
is derived. The approach is rooted in the notion of numerical rank of matrices '::
which has bearing upon the spectral estimation problem. Optimizing the sampl- s
ing rate and relaxing the Nyquist rate to construct a "zoomin" procedure are -

utilized in deriving efficient and numerically stable high-resolution spectral
analysis algorithms.

Although the procedures reported here are obtained in the context of LSS §5i

identification, they can also be applied to arbitrary high-resolution spectral S
analysis problems such as radar signal processing. IéA
1.3  Actuator Dynamics e

The common assumption in work on LSS control is the availability of ideal )
sensors and actuators. Namely, the bandwidth and the power of the devices are R
assumed unlimited and structure/actuator interaction is ignored. Section 3 re-
ports our observations .a the effects of incorporating the actuator dynamics in s
the model. The proper way to model conventional actuators is presented first, -

Subsequently, two approaches to the incorporation of the actuator dynamics are
explored.

(1) The structural model is augmented by the actuator model, and the
controller is designed for the augmented plant. It is seen that
the augmented plant has the same dynamic representation as struc- e
tures with optimal actuators. Thus, the conventional LSS control T
design approaches are applicable to the augmented system.
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(2) A controller is designed assuming ideal actuators, and a compensator
is designed around the actuator. The design issues for actuator
compensators are addressed and some solutions are proposed.

1.4 Modal Spring and Modal Dashpot Design

Section 4 is complementary to the second ACOSS 11 semiannual report
{1-1], where various designs to accommodate a broadband disturbance are con-
sidered. In the present section, a procedure for a combined velocity and posi-
tion feedback (dashpot and spring, respectively) are to be designed to augment
damping and move frequencies of the closed-loop plant. A root locus procedure
for assessing the impact on the full order closed-loop eigenvalue behaviour is

also described.

1.5 A Controlled Experiment for ACOSS Design

Our previous efforts to design a control gystem to accommodate a broad-
band disturbance and achieve stringent line-of-sight (LUS) error requirements
({1-1] and Section 3 of this report) have achieved only partial success.
Either the control design has met the LOS error requirement for the design
model, but proved unstable when applied to the full-order LSS (adverse spill-
over effect); or spillover effect has been accommodated, only to fail to meet
LOS error requirements. We attribute lack of success to certain mutual incom—
patibilities in the distinct processes of reduced-order model selection,
sensor/actuator placement, and reduced-order controller design.

In Section 5, an account is given of a procedure we have devised to com
bine the various selection and design steps to simultaneously achieve spillover
accommodation and meet LOS error requirements. We have not reported here on
the progress made on the design itself. This will be discussed when the itera-
tive procedure has converged into an acceptable design.

1.6 Perspective

An attempt is made to document major achievements and observations, even
if they are merely stepping stones towards the design and implementation of
identification and active control of LSS. Such stepping stones might be dis-
carded in the study if they are found to have little merit.

Some work in progress has not been discussed in this report since it has
not matured enough for documentation. In the context of identification for ex~
ample, the procedures for recovering the mode amplitudes at the sensors, how
amplitude informatiun would be used to construct mode shapes, and our work in
input-output characterization from measurement and the subject of input design
have not been reported.

The discussion on actuator-structure dynamic interaction is the first, to
our knowledge, in the ACOSS literature, It is the first step towards the rig-
orous analytic incorporation of actuators into models. More work is being done
to evaluate 1its impact on ACOSS design.
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SECTION 2

STRUCTURE IDENTIFICATION--THE RESOLUTION PROBLEM
AND ITS SOLUTION

2.1 Introduction

The organization of Section 2 ig as follows. Section 2.1 discusses the
background and difficulties encountered in structure identification problems
and their solutions. Section 2.2 gives the background of the role of the sam-
pling rate in system identification and spectral estimation. In Section 2.3,
we discuss the effect of sampling rate on the fast Fourier transform (FFT).

g This is a rather straightforward discussion. Section 2.4 establishes the

! foundation for parametric spectral analysis for a sampled data stochastic pro-
cess. The role of the sampling rate within the classical Nyquist constraints
is discussed in Section 2.5. A zoom—in procedure is described in ‘ction
2.6. Generic examples are brought in Section 2.7. The foregoing :ctions
were devoted to narrowband signals. Section 2.8 describes a deci -ion tech-
nique to enable the analysis of broadband signals.

In applying identification to Draper model simulated data, 7e 80
far demonstrated limited success in the sense that we have succes * .y iden-
tified reduced-order models, where the reduction in order corresponds to a
) failure to resolve closely spaced modes. The decimation procedure and the
; zoom-in algorithm are presently being tested against Draper model structural
. data. Thus, the report of the experiment results is deferred for future
documentation.

N 2.1.1 Background

y One of the first tasks to be undertaken in the quest for large space

' structure (LSS) deployment and application is the establishment of procedures
for modelling such structures. Analytical modelling, although an essential

] step, does not provide sufficient information for practical utilization of
LSS for a few reasons.

(1) Some phenomena, like the damping mechanism, high-frequency behav-
ior, and joint dynamics, are not well understood, and thus cannot
be reliably incorporated ianto aunalytical models.

(2) LSSs are properly modelled by distributed parameter systems (par-
tial differeantial equations). However, such models are often too
difficult to construct, and are usually not amenable to coantrol
design. Furthermore, the state—of-the-art of identifying distri-
buted parameter systems has not matured enough for routine appli-
cations. Hence, the usual models for LSS are of the lumped-
parameter, finite-dimensional type. Such models can be derived
using an approximation of the distributed parameter model, e.g.,
using finite-element techniques, or can be obtained directly from
the physical structure, say, by representing it as a mesh of rigid

N .
v d 2 Zafaia‘a’ i%ata ala’alatalal
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bodies subject to massless elastic constraints., The final wmodel 1is

often represented via the vibration equation

MX + Dx + Kx = f (2-1)

The evaluation of such an approximation and the estimation of the unknown
entities in Eg. (2-1) (e.g., the D matrix) will require the implementation of
a parameter estimation technique, henceforth referred to as identification.

The problem of identification can be philosophically addressed from two
points of view.

(1) Model vValidation-—-Construct an experiment and employ a procedure to
estimate the parameters of a model constructed from physical con-
siderations. For example, estimate the mass and stiffness matrices
in Eq. (2-1). On a more fundamental level, estimate the elastic
properties of the structure, such as Young's moduli.

(2) Engineering Modelling--Estimate input/output characteristics of the
“plant”, i.e., the LSS response to actuator or disturbance forces
as observed via a given set of sensors. Both actuators, sensors,
and their dynamic characteristics and placement on the structure,
might be determined based on control considerations using an ana-
lytical approximation of the plant.

Obviously, the two approaches are not disjoint., Information extracted
from either approach might be utilized beneficially to coastruct the comple-
mentary model.

This section concentrates on the extraction of frequency/damping infor-
mation from LSS measured data. Such information is the basis for constructing
engineering models as discussed in Option 2 above.

2.1.2 Difficulties

There are a few features of LSS which hamper the extraction of fre-
quency/damping information from experimental data.

(1) The "Curse of Dimensionality”--As already discussed, LSSs are
essentially infinite dimensional. Even if attention is restricted
to the bandwidth of the sensors and actuators, the number of modes
to be identified is still large. For example, Figure 2-1 gives the
frequency response of Draper Model #2 to a 15-Hz disturbance. (See
Reference 2-28 for more information.) The identification of a
high-dimensional system has so far not been successfully demon-
strated in the literature.

(2) Closely Spaced Modes—-The signal-processing literature has devoted
a considerable amount of attention to constructing algorithms which
are capable of estimating sinusoids with small frequency separa-
tions (closely spaced modes). As is obvious from Figure 2-1, this
is a fundamental problem for LSS identification.
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(3) Small Damping--The -dentification of poles close the the jw axis

has also been a chal.enge to the signal processor. The difficulty
in estimating small damping is nicely explained in Reference 2-29
using statistical arguments. The damping ratios commonly assumed
in the countext of LSS are of the order of 0.1 to 1 percent.

(4) High Process and Measurement Noise--The present state-of-the-art in
sensor technology in the very low frequency range for LSS applica-
tion suggests that the quality of measurements to be used in the
identification process might require an estimation technique tai-
lored for a high-noise environment.

One or more of the above-mentioned problems appear in a variety of iden-
tification applicatiuns. It is the culmination of all four difficulties which
makes the identification of LSS especially challenging.

Difficulties (2) and (3) can be classified as spectral resolution prob-
lems. In this section, we report a novel approach to the high resolution
spectral analysis problem developed at CSDL. The algorithm developed is espe-
cially suited for handling difficulties (2) and (3). However, it is also
shown to be noise resilient. The modification of the algorithm to handle high
dimensional models is also discussed.

Although we have developed our high resolution spectral analysis tech-
nique in the context of LSS identification, it should be noted that the pro-
cedure is valuable in any signal-processing application, where high resolution
is desirable, as in radar signal processing or geophysical data analysis.

2.2 Spectral Estimation and Sampling

High resolution spectral estimation has been the subject matter of
numerous recent publications in the signal-processing literature. The wide
range of applications and the theoretical interest in the subject are reflect-
ed in the special issue on spectral estimation of the IEEE Proceedings [2-1].

In surveying the literature devoted to spectral estimation, we have
found that the premise of most of the work is the availability of a sequence
of uniformly sampled data points of a continuous (stochastic) process. The
analysis and the subsequently constructed algorithms treat the discrete time
process while ignoring the sampling rate issue.

It is the purpose of this section to demonstrate the crucial dependence
of spectral resolution on the sampling rate. It is shown that by examining
the sampling rate issue we obtain, using a computationally simple algorithm,
spectral resolution as good as with other more complex procedures.

To be more specific in the discussion following, let

[y(t): 0 < t < ¢t t. finite or =

f,];f
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e be the (stochastic) process to be analyzed. Digital spectral analysis 1is per-
- formed on the data

[y(kT): k = 0,1,...,N] ; N finite or =

Intuitively, the information contained in the data is inversely proportional
to T. Furthermore, if the process is band-limited (t§ = «» in this case)

by the Shanon interpolation formula, the data to represent the process if

T < TN = 1/BW, where Nyq abbreviates Nyquist, and BW = bandwidth (in rad/s).

Since zf is usually finite, aliasing can be veduced only by choosing T to be
as small as possible., We believe that these mathematically sound and intui-
tively appealing statements have hindered the use of T as a parameter in
improving spectral resolution. Specifically, most of the work on spectral
estimation is based on the availability of the sequence [y(k)], i.e., T--the
sampling interval is usually suppressed and subsequently ignored (e.g., Refer-
ence 2-1).

The sampling rate plays a role in nonparametric spectral estimation,
though not as dramatic a role as in the parametric analysis. In Section 2.3,
the role of T when spectral analysis is performed using the conventional dis-
crete Fourier transform (DFT) will be discussed. The discussion is rather
straightforward and probably would not surprise practitioners in the field.
We bring up this result only for the sake of completeness.

The dramatic role of the choice of T is in the domain of parametric
spectral estimation. Assuming tg large enough to enable resolution, say, of
two sinusoids in white noise, then the problem of resolution is fundamentally
a numerical one. Namely, regardless of the sophistication and statistical
soundness of an algorithm employed, if the frequency separation is small
enough, the algorithm will fail. To demonstrate this point consider the fol-
lowing:

Example 1: We have applied covariance least squares* to 128 samples
of

y(t) = sin (wlt) + sin (wzt) + v(t)

with l-percent frequency separation, i.e., € = (w] - wp)/w) = 0.0l. For
v(t) = 0, the frequencies w) and w)y were successfully identified. How-
ever, with v(t) white Gaussian noise with Varf{v(t)] = 10'7, the algorithm
failed.

The reason for this failure is explained in Section 2.5, In Section
2.4, the problem of parametric spectral estimation for sampled data is formu-
lated and some modelling questions are discussed. Section 2.5 is devoted to

*This algorithm has been proposed by Beex and Scharf [2-2] and by Cadzow
{2-3]. It will be further discussed in the following.
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the question of spectral resolution as a function of the sampling rate for

T < Tnyqe In Section 2.6, a zoom~in procedure is described. The procedure
allows 2or a choice, T > Ty q> for the purpose of resolving closely spaced
frequencies. Our ohbservations and algorithms are demonstrated via simulations
in Sections 2.7 and 2.8. Section 2.9 contains concluding remarks.

2.2.1 Historical Perspective

Although we have failed to find articles addressing the impact of sam-
pling rate on spectral resolution, the general problem of sampling rate in
parameter estimation (system identification) has received attention in the
literature.

We have found the most extensive treatment of the problem in the econo-
metric literature. A compendium of results on the subject can be found in
Bergstrom's book [2-4]. The main concern in the econometric work is the ap-
proximation, or the exact representation of continuous stochastic differential
equations by difference equations. Consequently, an effort is made to assess
the quality of the identification of the continuous equation as inferred from
the estimation of the discrete approximation. This evaluation is performed
via bias and variance evaluation for T + 0. However, this work does not pro-
vide us with useful tools in the context of high resolution spectral analysis.

Some work on the sampling rate issue has been done and some practical
experience gained by researchers in the system identification field Notable
is the work by Astrom [2- 5] Goodwin, Pain, and Zarrop [2-7]. AstTom has anal-
yzed a first—order stochastic process, the parameters of which are identified
using maximum likelihood (ML) estimation employing the sampled data. He has
gshown that the error variance is minimized for the choice T * a = 0.797 where
o is the time constant of the process. Goodwin, et al., have addressed the
problem of the experiment design, including sampling rate determination, data
filtering, and optimal input design using measures of the information matrix.
They have shown that with an anti-aliasing filter and a finite number of data
points, the Fisher information matrix is inversely proportional to T, and
thus, is maximized by the choice T = (1 - € )TN q> €~ being an arbitrarily
small value, This result coincides with our observations in Section 2.3.
However, it does uou agree with our observations on parametric spectral esti-
mation (Section 2.5 and 2.6) nor with practical considerations for spectral
resolution.

We should note that practitioners of spectral estimation have often used
good "rules of thumb” for obtaining high resolution, although we could not
find the justification for this practice. For example, Bendat and Pearsol
suggest ([2-8], page 288) T = 0.5 TN “the correlation function has
frequencies near 1/(2TNy )," and T = 8 8 Tnyq “1f power spectra measure-
ments are of prime consideration” (compare these to Sections 2.5 and 2.3,
respectively). 1In the context of identification, Iserman [2-9] recommends
T = (5...15)*Tgg where Tgs5 is the 95-percent settling time of the tran-
sient function. This we found to be impractical for very low damping ratios.
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Finally, an important result, noteworthy and relevant to our problem,
was reported recently by Kay [2-10]: 1In estimating the autocorrelation
function, the sampling rate should be at least twice the Nyquist rate
(T < 0.5 TNyq)» but statistically, there is insignificant gain in sam-
pling faster than that rate. This result coincides with the Bendat-Pearsol
recommendation cited previously and nicely complements our observation in
Section 2.5.

2.3 Nonparametric Spectral Estimation

The most widely used tool in spectral analysis is the discrete Fourier
transform implemented via the FFT algorithm on N samples of a continuous sig-
nal. Typical commercial spectrum analyzers [2-11 to 2-13] are based on
N = 210 = 1024 point FFT. In analyzing the effect of the sampling interval
T on spectral resolution when using the FFT, the following facts should be
noted.

(1) The Fourier transform is represented by N/2 + 1 points spaced at
frequency intervals Aw = 27 /NT. Thus, the relative resolution
around a frequency wg 1is

Aw/wo = 1/n

where n is the number of cycles of a sinusoid with frequency wg.

(2) The width of the main lobe associated with N points sampled with
interval T is

Sw = 4w /NT

Consider the signal of Example (1). The two frequencies are resolvable
in light of the above facts if

w

1
T > T v 4 .
Nyq N » (wl wz)
Thus for N = 1024 and (wj - wp)/wj = 0.01, frequency resolution is
attainable for T > 0.391 TNyq' Note, however, that aliasing the main lobe

with itself is prevented if T < TN . N ; 2
the Nyquist rate. 74

which is 0.2 percent faster than

In the above discussion, we have completely ignored the effects of leak-
age which will require even tighter bounds than presented. From the above
discussion, 0.688TNyq is the sampling rate required to resolve ws from

W, if wz/u)1 = 9/11 and N = 32. The FFTs for T/TNyq = 0.3, 0.35, 0.45, and
0.975 are given in Figure 2-2.
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The preceding discussion is admittedly rather elementary. We have pre-
sented it to illustrate the often overlooked upper bound on the sampling
rate. Furthermore, it demonstrates in the frequency domain our main results
to be derived below in the context of parametric spectral estimation.

It should be noted that the preceding results stem from the practical
constraint on finite N. If N is not limited, T can be chosen arbitrarily
small, However, even for N » » in the context of parametric spectral estima-
tion, T should be carefully chosen.

2.4 Sampled Data Spectral Analysis

In this section, we shall establish the relationship between a contin-
uous time stochastic process and the discrete time representation of its sam-
ples, which is appropriate for spectral estimation. Subsequently, the param-
etric spectral estimation problem is stated. This section is the basis for
assessing the impact of the sampling rate on spectral analysis as presented in
Sections 2.5 and 2.6.

2.4.]1 Continuous and Discrete Models

System identification in general, and spectral estimation in particular,
are usually based on the second-order statistics of the data. Thus, in deter-
mining a suitable discrete time representation of a continuous time process, a
modelling criterion that Perl and Scharf call “"covariance invariance"” [2-14]
plays a fundamental role. Covariance invariant models are discussed first.

It is assumed throughout this section that the discussed processes are
wide sense stationmary (WSS).

We shall use the subscripts "c" and "d" to denote continuous and dis-
crete time entities respectively. Continuous time is denoted by t, teRt
(the positive reals), and the discrete time by k, keIt (the positive inte-
gers). k actually represents the time instant kT where T is the sampling
interval being suppressed if it is not discussed explicitly.

A stochastic (continuous or discrete time) process with a rational spec-
trum can be formally represented in the state space via the state equation

D* x(t) = A x(t) +w(t) ; stn, weR® (2-2)

the output equation
L

y(t) = C x(t) ; yeR (2-3)
and the measurement equation
z(t) = y(t) + v(t) (2-4)
Or, in terms of the impulse response convolJéd with the input w(t)
y(e) = h(e) * w(t) ; z(t) = y(t) + v(t) (2-5)

12
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which corresponds to the transfer function representation

Y(q) = H(q) W(q) ; 2(q) = Y(q) + V(q)
(2-6)

H(q) = C(qI - A)~}

The various entries in Eq. {2-2) to (2-6) are interpreted as follows:

Term Continuous Time Discrete Time
time t T€R+ keI+
D differentiation %E forward shift Z
w, V Wiener processes* uncorrelated white noise
n n

€20 b () =ceT =] a1)erVT h (k) = cA“ = § a(1)a(1)"
h(t)

t<o0 hc(T) = ( hd(k) =0
q s = the Laplace transfer z = the z transform variable

variable

The input noise w and the measurement noise v are assumed to be white
and mutually uncorrelated with covariance matrices

E[m(tl)w(tz)'] = Wé(tl - tz)
E[U(tl)u(tz)'] = VtS(tl - t2)

where 8(t) is the Dirac delta function in the continuous time case, and a
Kronecke delta in the discrete time case.

0f special interest is the output covariance function associated with
Eq. (2-2) and (2-3), i.e., Ryy(r) = E[y(tl)y(t1 + t)']

Ce_ATVCC' 1<0 CA"kvdc' k<0
R(D = ,© Ry = . (2-7)
et ¢ >0 cv, (A C k> 0

(Note that in (2-7) we have replaced the subscript yy by d or c to indicate
discrete or continuous time.)

* We are using here formally and somewhat loosely constructed, the representa-
tion of the continuous stochastic process. More precise treatment can be
found in Reference 2-7.
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V = E[x(t)x(t)'] is the state covariance matrix, satisfying the Liapunov
equation

' - = 1] -
Ach + chc + wa 0 Vd AdVdAd + wa (2-8)

or equivalently

® AcT éT . k k
- = v ' )
Vc £ e wa e dt Vd 8 Adem(Ad) (2-9)

In terms of the impulse response and the transfer function we have

Rc(r) - tZO hc(t)mehc(c + 1)' dt Rd(k) = zzo hd(z)Rmmhd(z + k)
(2-10)
n A () n . o
- ilec(i)e - 121 By (1A (1) ;;g
(2-11) 0
- 5%3 fH_(-5)R K (s)'e"" ds - 5%3 fuGTHR B2 ' az
(2-12)
where the coefficients g(1) satisfy
n
B (1) = -jzl a (R a (/A 1) +2 (D)
a (2-13)
B (1) = jzl ag(R o ()11 = 2 (DA ()]

Definition: (Rephrasing [2-14]). A WSS discrete time stochastic pro-
cess is T-covariance invariant (TCI) with its continuous counterpart if

Rc(kT) = Rd(k) ¥ k (2-14)

In this section we shall not delve into the theory of covariance ianvar-
iance, but rather state a few facts (without proof) which can be derived from )
Eq. (2-3) to (2-14). .
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:i Let zd = (A,, Cd’ Bd) and Zc = (Ac, Cc' Bc) be the triplets characterizing a

. discrete time and a continuous time stochastic process as defined above.
¢ Here, By and B, represent the square root of R, , - the input covariance
matrix for the discrete time and continuous time cases, respectively. We
ignore R,, since its inclusion is straightforward.

4, 88,

Fact A I4 is T covariance invariant with . 1f the following are

.
PRI

satisfied
N . ACT
N Ay = e (necessary condition) (2-15)
o
. ¢, = C, (2-16)
B CVy = C.V, (2-17)

where = means equality up to a similarity transformation. Equations (2-16)
and (2-17) give sufficient conditions. It is not clear that Eq. (2-16) and
(2-17) are necessary.

Fact B Let Eq. (2-15) through (2-17) be satisfied. A necessary condi-
tion for the existence of I4, which 1is covariance invariant with I, is

S, 6, 8, 8, 8,

D(Bd) = o(Cc) (2-18)

where p(A) denotes the rank of A.

O]

o

Fact B follows from stochastic realization theory and from the spectral
factorization theorem [2-7]. This statement imposes a condition on the mini-
mum number of uncorrelated inputs which are required to realize a discrete
g time covariance invariant representation of a continuous WSS stochastic pro-
cess. Note, in particular, that replacing Eq. (2-17) by V. = V4 [2-14]
implies p(B3) = n. Fact B has ramifications beyond the scope of this sec-
tion and will be discussed in a separate publication.

3
s’atse’a

; Fact C Let p(C.) == p(Bg) =1 (Single Output and thus Single Input
b by Fact B). The relative degree of Hd(z'l), which is T covariance invari-
ant with H.(s), is almost always one.

Fact C 18 a crucial observation which is too often overlooked in the .'Au

$ system identification/spectral estimation literature. It implies simply that =
| autoregressive (AR) models, and hence, the Yule-Walker equation and the maxi- 9.4
- mum entropy method as in [2-15], are not appropriate techniques for spectral -]

estimation of sampled data. Any failure of these methods in spectral estima-
tion of "two sinusoids in white noise” should first of all be attributed to -
the wrong formulation of the estimation problem rather than to a deficiency in s

15 ,f.
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these algorithms. Note, however, that an autoregressive moving average

ARMA (n,m) can be approximated by an AR(N) process with N >> n, and thus,

a methodology for spectral estimation developed for AR models can be applied
to ARMA models by considering high order models.

2.4.2 Problem Formulation

With the above background, we are ready to state the parametric spectral
estimation problem.

Main Problem: Assume the sequence [z(kT): k = 0,1,...,N] represents or
can be closely approximated by Eq. (2-2) to (2-3). (See Reference 2-2,)
Estimate I..

The above problem can be broken into two

Subproblem 1: Suppress T. Estimate Zd. Denote the estimate by ic'

Subprobliem 2: Given (ﬁd(T)), evaluate a TCI fc.

Our main concern is usually in estimating the following

(1) The system eigenvalues

@) = —ruld) + 3D 3w = w@i-1) ;1= 1...28

xc(i) = =-g(i) : 1 = zzl + 1...22 ; 221 +52 = n

n being the assumed or estimated order.
(2) The system input output matrices B., C. where BeB.' = Rq.

Note that by a proper transformation to canonical form, C_can be assumed
known. Furthermore, recall that there exists Bc such thaf p(B ) = p(Cc),
which solves the problem at hand. ¢

In the following sections, we shall concentrate on Subproblem 1 and the
role of T in its solution, and on Subproblem 2(1). The problem of estimating
the structure of I, is beyond the scope of this section. We shall only
consider here the problem of spectral estimation under the assumption of a
single input/single output (SISO) system driven by white noise. In this con-
text, the estimation of closely spaced modes and the dependence of the estima-
tion on T is our main concern. This yields the formulation of the problem via
Eq. (2-11), i.e., we assume (like Beexe and Scharf [2-2]) that the covariance
function of the WSS process measured can be represented, or can be closely
approximated, by a finite linear combination of stable exponential functions.
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2.5 The Role of Sampling Rate

oo 1
o

Assuming the covariance sequence to be as defined in Eq. (2-11) for the
S1S0O case, i.e.

‘i

&/

.
i) Ry(k) = ) sd(i)xd(i)'k' k = 0; 1; *2 (2-19)
g i=1
£
we have the recursive relation
- n
R,(2) = J a(i)R, (2 -1i) 2>n (2-20)
" d d =
- i=1
Rewriting Eq. (2-20) L times, i.e., £ = n, n + l...n + L - 1, where
- L > n, we obtain in matrix form
- R (0,n,1) + a(n) = R(n,L) (2-21)
;i where R (j,n,L) is the n x L Toeplitz matrix defined as
) — —
e R(3 +n - 1) R(j +n - 2) ... R(j)
1y
L R(j + n) R(j +n-1) .
a R (j,n,L) & . .
- R(j+n+1L-2) . . . R(jJ +L-1)
~
s - -
v (2-22)
2: and the vectors a(n) and R(n,L) are
:? a(n) = [a(l) ... a(n)}' (2-23)
. R(n,L) = [R(n) .. R(n + L - 1]" (2-24)
;‘; Equations (2-20) to (2-24) are the basis for many parametric spectral
e, estimation techniques [2-2, 2-3, 2-16 through 2-18]. Since Eq. (2-19) is
:- often an approximate relation, and since the covariance sequence is often
:nj obtained from the measurements of a sample pass of the WSS ergodic stochastic
> process, a reasonable approach to the spectral estimation problem is that of
v solving Eq. (2-20) to (2-24) using a large L. By solving the equations, we
- mean solving in the least-squares sense, where one allows for weighting on the
- equations using the weighting matrix W, i.e,
a . t
- a = R (O,n,L)w * R(n,L) (2-25)
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n£ = (RWr) !y (2-26)

T

The following observations can be made.

(1) If the process 1s an AR process (an unlikely event in the case of
sampled data), Eq. (2-20) to (2-24) are valid for all 2. Writing
the equations for ¢ = l...n, and taking advantage of the symmetry
R(1) = R(-1i), yield the celebrated Yule-Walker equations and esti-
mation procedures which are recursive in order.

(2) Assuming an ARMA (n,m) model, {i.e.

n m
y(k) = 7 a(y(k = 1) + § b{) w(k - 1) (2-27)
i=1 i=0

we have Eq. (2-20) to (2-24) satisfied for § > m. Using the in-
strumental variable (IV) approach to system identification [2-19]
with [y(k = 2); £t =m+ 1 ... m + n] as the "instrument”, and as-
suming the approximation

N
RO = £ I s yd+0 5 y@ = 0vj <0 (2-28)
i=]

we have another way of justifying Eq. (2-20) through (2-26). 1In
particular, for the AR case (m = 0) the least-squares procedure

is equivalent to the IV procedure, which is equivalent (with Eq.
(2-28)) to the Yule-Walker equations.

(3) To accommodate the inaccuracies in the values of R(+) used in Eq.
(2-20) through (2-24), one has to solve a structured total least-
squares problem. This subject is addressed in Reference 2-20.

(4) 1t {z()}, rather than {y()}, is used in estimating {R()}, R (1,n,L)
and R(n + 1,L) should be used in Eq. (2-25) and (2-26).

Since our main concern is using the sampling rate to improve reso-
lution, we consider here the case

A ()T
A1) = e ¢ : 1= l...n (2-29)

where

Ac(21 -1) = X;(21) +du, 3 1= 1l...0/2

“hi@y
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X denotes the complex conjugate of A, ¢{ being the ith damping ratio and
w, the ith frequency.*

Assumlng

T < TNyq y (T « W < mvi) (2-30)

we proposed the following criterion for choosing T

Definition: The optimal sampling period T* (T* < TNyq) satisfies

x[ R (3,n,L)(T*)] < k[ R (O,n,L)(T)] VT < TNyq (2-31)

where «[A] is the condition number (CN) of the matrix A. (See References 2-21
through 2-24 for definition and properties of «.)

Note the explicit dependence of R on T induced by the substitution of
Eq. (2-29) into (2-19), and subsequently into R as defined in Eq. (2-22).

Rationale: Although the choice of the optimal sampling rate, T*, as
defined above, and the modification to be discussed in Section 2.6 are based
on a concept from numerical analysis--the condition number--it should be
stressed that the reason for defining T* that way lies in the domain of esti-
mation theory. If the covariance sequence were known exactly, if Eq. (2-20)
through (2-24) were satisfied exactly, and if the computer used to solve the
set of equations, say via Eq. (2-25), was of infinite precision; the solution,
i.e., the vector a and the corresponding set of eigenvalues [A4(i)], could AR
be determined (estimated) with no error. Unfortunately, none of the above B
suppositions are valid, the computer accuracy being the lesser evil. T

The inaccuracy in the representation (Eq. (2-20) through (2-24)) is han- :‘iiﬂ
dled rather routinely by applying the least-squares concept to a large number o
of equations, i.e., taking L large in Eq. (2-20) through (2-24). The most
severe obstacle to the spectral estimation is induced by the inaccuracy of the
entries to the matrix R (0O,n,L) in Eq. (2-22). This inaccuracy stems from
using the estimated covariance sequence, In solving a set of linear equations
like Eq. (2-22), perturbation of the coefficient matrix ( R (0O,n,L)) has a
severe consequence on tiae solution, 1f and only if this perturbation is of the “':
order of the inverse condition number (ICN) of the matrix [2-23]. Closely S
spaced modes are shown in the following to cause the matrix to be numerically o
rank degenerate {2~23] (i.e., to have a small ICN). Hence, our objective as SRR
stated above is to minimize this negative effect. ?l:“

* In the engineering context, the convention is to consider the second-order

equation, Xz + 2zwA + mz = 0, which gives X = —-zw * jw/l - 52, as opposed to 'ffﬂf
the present convention. For ¢ << 1, the above is a close approximation. e .
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The actual procedure for solving Eq. (2-22), say, via Eq. (2-25),
(2-26), or by using a numerical procedure based on the singular value decom-
position (SVD), or the QR factorization (2-22], is of secondary importance.

To demonstrate the preceding discussion and to establish rules for
choosing T*, we analyze the two sinusoid cases, i.e., let

R(1t) = B, cos w

1 1 1

T+ 82 cos W, T 3 81 + 82=1, B.>0
with the corresponding sampled covariance sequence

R(k) = B, cos (mlT k) + 82 cos (sz k) ; wow

1 2771

We thus obtain (n = 4)
3
R (0,4,4) = Ad R (-3,4,4)

where, taking advantage of the symmetry R(-j) = R(j)
R(0) R(1l) R(2) R(3)
. R(1) R RQ1) R(2)
R (-3,4,4) = Rp2) R(1) RO R(1)
R(3) R(2) R(1) R(O)

and Ay is the state transition matrix of the process in companion form

.

L) I
A = -
d 0

EKZT...a(l)

it follows from the definition of the condition number that

A) | k(B
1< omax (SRR SRl ¢ vam) < x(a) - x(B)

Hence, if A is a well-conditioned matrix (x(A) is “"small"), AB is ill-condi-
tioned if and only 1f B is ill-conditioned. Since Ay is a well-conditioned
matrix, it suffices to consider «[ R (-3,4,4)]. We prefer to discuss

R (-3,4,4), since we can derive analytical expressions for its condition

number.

Some algebra, taking advantage of the symmetric Toeplitz structure of
R (-3,4,4), yields the ICN
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1/x[ R (=3,4,4) = min (1} ,},)

0 Ay o= 1+ D ERE)_Lyrpyy - r(3)]? + 4R + R2))H 2
%

- y = 1 - RDERO) Lireay - ren)? + afrn) - ren)? Y

Assuming T < TNyq’ and closely spaced modes (m2 - ml)/m2 << 1, the ICN can be
shown (using standard approximation techniques) to be of the order of
[(w2 - wl)le. Furthermore, if R (-3,4,4) 1is rank degeneration [2-23] for

T = T*, it is seen that the numerical rank of R is two, i.e., only one sinusoid
describes the data. As T » O, tbe numerical rank approaches 1. Note that for

T = 0, the perfect predictor is y[(k + 1)T] = y(kT) which corresponds to rank
one covariance matrix. Plots of the ICN for few values of Wiy Woy Bl’ and

T olE

82 are given in Figures 2-3 through 2-1l. Figure 2-12 gives the value of T*

(normalized by T q) as function of the frequency ratio. We note that as

Ny
wl/w2 approaches one, the dependence of T* on Bl and 82 diminishes. Further-

w, tw
more, it is seen that —J;jr—ié T* = %—for high wllmz. We propose the following

"rule of thumb” for selecting the sampling rate

T = w/(w, +w,) (2-32)

instead of T*, It follows that T satisfies the following properties (see B
Tables 2-1 iarough 2-4) R

(1) T 1s a good approximation of T*, except for wj/wy < 1/3. .1

(2) x[ R {T%)] = ¢[ R (T)], except for small frequency ratio and large - o
By (i.e., large frequency separation and the signal energy
concentrated at the lower frequency).

(3) For w,/w, < 1/3, T poorly approximates T*, but «~1[ R (T)] is
1°72

sufficiently large to enable good estimation of w), wp via Eq.
(2-25) and (2-26).

To summarize, we note that the choice T as in Eq. (2-32) provides good
resolution when Eq. (2-25) and (2-26) are used as ‘‘:e means for spectral esti-
W, — W
mation. In particular, for —E%r———l << 1 we have
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Figure 2-12. T /’I‘Nyq (T /TNyq < 1) as a function of ul/w2
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Table 2-1. 1/x[ R (=3,4,4)(T*)].

3 2
- o /opfi ] 0.2 | 04 | 0.5 | o6 | 0.8
0.1 | 0.068 | 0.132 | 0.159 | 0.185 | 0.221
. 0.2 | 0.224 | 0.414 | 0.502 | 0.575 | 0.383
< 0.4 | 0.358 | 0.678 | 0.778 | 0.731 | 0.387
= 0.6 | 0.162 | 0.270 | 0.293 | 0.288 | 0.191
- 0.8 | 0.037 | 0.057 | 0.060 | 0.059 | 0.040
= 0.9 | 0.009 | 0.013 | 0.014 | 0.013 | 0.009
=
w
N Table 2-2. Optimal sampling rate, T*.
L
2
e’ wl/wz 1 002 0-4 0'5 006 008
0.1 | 0.954 | 0.925 | 0.909 | 0.889 | 0.817
: 0.2 | 0.918 | 0.866 | 0.833 | 0.789 | 0.740
o 0.4 0.675 | 0.694 | 0.714 | 0.734 | 0.743
0.6 | 0.596 | 0.614 | 0.625 | 0.636 | 0.656
. 0.8 | 0.544 | 0.551 | 0.556 | 0.560 | 0.568
: 0.9 0.521 | 0.524 , 0.526 | 0.528 0.532
@
s
)
L
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Table 2-3. «[ R (=3,4,4){T*))/c[ R (-3,4,4)(T)].

wl/w2 1 0.2 0.4 0.5 0.6 0.8

0.1 0.947 § 0.968 | 01.00 | 0.693 | 0.292

0.2 0.927 | 0.985 § 01.00 | 0.712 | 0.544

04 0.927 | 0.957 01.00 § 0.885 | 0.855

0.6 0.907 0.962 | 01.00 } 0.901 0.769

0.8 0.934 | 0,979 | 01.00 | 0.952 | 0.8/J

0.9 0.942 | 0.992 | 01.00 } 0.986 | 0.918

Table 2-4. Left-hand slope/right-hand slope at T*,

2
w /o, B 0.2 0.4 0.5 0.6 0.8
0.1 |0.105 0.170 0.187 0.187 0.088
-2.83 -3.32 -3.25 -3.02 -1.89
0.2 |[0.218 0.252 0.179 0.002 1.60
-4.70 -4.99 -4.53 -3.62 -1.59
2.41 5.57 5.84 4.18 1.91
0.4
-U.681 -1.44 -2.17 -3.20 -1.86
0.6 |1.85 2.87 2.93 2.68 (.53
-0.51"; -0.971 -1.15 -1.25 -0.991 .
0.8 |0.468 0.693 0.721 0.683 0.439 L
-0.159 -0.264 -0.289 -0.291 -0.212 -
0.9 |0.112 0.166 0.173 0.165 0.109 ;;~J
-0.042 ~0.066 -0.070 -0.069 ~0.048 B
e
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* ~ T = ~ = -
T T ﬂ/(w1 + wz) O.Sn/(mz) O.STNyq (2-33)

It is appropriate at this point to recall Kay's result for estimating a
covariance function [2-10]. Kay shows that T = Tyyq/2 is a necessary and
sufficient sampling interval for obtaining estimates of the covariance
function with small error variance. This result is a nice complement to

\
1
]
L
4
Eq. (2-33). L;f%
2.6 Zooming In

2.6.1 Phasor Representation

AMIG  Jn swimia g 53 el e i
[}
®

Returning now to Eq. (2~11), we may rewrite Eq. (2-19) as

Ac(i)T
1 8. (1)(e

k
R, (k) R (kT) = )

he~s

i

v k
izl B, (1) 1 (1) (2-34)

Equation (2-34) 1is valid for any T, namely, it is not restricted to T < TNyq

Thus, one may employ Eq. (2-20) through (2-24) to estimate a(T) using Egs.
(2-25) and (2-26), and then solve uniquely for {kd(i)}. In this section we
shall explore the benefits attainable by abolishing the constraint T < TNyq
and assess the impact of this operation on the estimation of {Ac(i)}.

We assume here that the covariance sequence {Rd(k) = Rc(kT); k =0, l...}

is available or has been estimated. Note that in the latter case, we abide by
the Nyquist rate constraint for sampling the process, or preferably, abide by

Kay's recommendation for obtaining good estimates of the covariance sequence,

i.e,, the process is sampled at least twice the Nyquist rate.

A figurative representation of Eq. (2-34) is via the concept of phasors
as follows. Define the ith phasor

Ac(i)T Cle @) + jul)T
F(1) = e = e (2-35)

where 1 < n, with n even and w(2i) = -w(2i-1) > 0, 1 = 1,2,...,n/2. Namely,
the ith phasor rotates (as T varies over RY) at an angular velocity, w(i),

around a spiral which collapses at a rate of e—C(i)Z" per revolution., The as-
sumption of w(2i) = -w(2i-1) is practical, but not essential for the following
discussion. Actually, the clockwise/counterclockwise rotation adds complexity
to the solution described below. The phasor interpretation of kq. (2-34)

suggests the choice of T such that the n phasors will be evenly distributed )
angle~wise, as long as the damping effect does not dominate, {i.e., 'F(i)' is : ]

sufficiently la:ge,
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2.6.2 Procedure

Since our objective is the estimation [A.(i1)}, we can formally write

1
(1) = 1 2(F(1)] (2-36)

where Eq. (2-35) should be interpreted as

Tw e{|27k * /F(1) |5 k = 0,1,2, ... [T/TNyql} (2-37)
= -1 -
TS (|F(1)|) (2-38)

IF(1)| and /F(i) denote the magnitude and angle of F(i), respectively,

and [x] is the integer value of x, The ambiguity (nonuniqueness) in Eq.
(2-36), as reflected in Eq. (2-37), and thus Eq. (2-38), in the case that

T > TNyq’ is another way of stating the Nyquist rate constraint., Neverthe-
less, we propose to use T > Ty to achieve high spectral resolution. The
procedure that we propose is outlined in the following steps, which we call
“zooming in.”

Assume the process consists of a single cluster of n/2 closely spaced
lightly damped modes (i.e., gy << 1 w(2i)=-w(2i - 1) 1 = 1...n/2). The
set of modes is resolved as follows:

Step 1: 1Identify the center frequency of the cluster. This step can be
accomplished by one of the following two procedures:

(1) Plot the FFT of either the data sampled with period T; < TNyq
or of the sequence [Rd(k) = Rc(le)].

(2) Solve Eq. (2-25) and (2-26) in conjunction with Eq. (2-35) using
the sequence [R.(kT;)] and a; such that R (0,n],L)(T;) is
well conditioned,

Preferable choice of T; is such that
T, w = %- (2-39)
where w. 1s roughly the center frequency of the cluster.

If nj = n, namely the matrix R (0,n,L) is well-conditioned, then the
n/2 modes are spaced sufficiently apart to enable their resolution, and thus,
Step 1 completes the spectral analysis. If n; < n, or no prior knowledge is
available regarding the number of modes which characterize the signal, proceed
to Step 2.
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Step 2: Choose Ty = g - T*, where £ 1s an odd integer larger than
one, and T* satisfies Eq. (2-39). Repeat Step 1l using the sequence {R (kTZ)}.
1f the parametric method is used, i.e., Eq. (2-25), (2-26), and (2-36)%to
(2-38) are solved, repeat this step, gradually increasing 2 and determining
n = n(2) to be the largest integer for which R (0,n,L)(T3) has full
numerical rank (i.e., is well conditioned).

Stop when n(%) does not increase for £ > 2], or if n(2])/2 is the
expected number of modes.

Step 3: Resolve the ambiguity introduced by Eq. (2-36) and (2-37) by
selecting the set of modes residing near the center frequency identified in
Step 1., Alternatively, use a conventional identification technique for
T < Tnyq Where the set of identified parameters is the finite set corre-
sponding to the different solutions of these equations. (See also Reference
2-27 for a selection procedure.)

We have earlier stated that R (0,n,L)(T) is least singular if the pha-
sors are evenly distributed. This statement, although correct, should not
mislead the reader to believe that Ty should be so chosen. To achieve even

w
distribution of the phasors we need T, /T ~ —t when we consider two
2" "Nyq 2(w1 - mz)
sinusoids. Thus for a 1% frequency separation, a choice of Ty ~ 100 Ty
gives least singularity, but at the same time, one has to select among 580
possible frequencies in Step 3 of the procedure.

A practical solution to this dilemma is to choose Ty as small as pos-
sible, while rendering R (0,n,L)(T7) well~conditioned. This recommendation
is further justified when considering "intermingling"” as discussed in the fol-
lowing.

The behavior of the ICN for R (0,n,n) and R (-n+l,n,n) (symmetric covar-
iance matrix) for two sinusoids as function of T is illustrated in Figures
2-13 through 2-16,

The above discussion focused on the resolution of a single cluster of
modes. 1In the case of multiclusters, these ideas can be applied using one of
the following options,

Option A: Increase Ty while preventing cluster "intermingling.” The
problem of intermingling is most simply explained by considering the phasors
rotation as in Figure 2-17., The shaded sections A and B represent the two
clusters of modes for a given T < Tyyq. Thi ‘.asors in the sectors labelled
1 rotate clockwise and those labelled 2 rotate counterclockwise with T.
Intermingling occurs when two shaded sections overlap. Using the information
from Step [, picking Ty, which gives an intermingling-free phasor distribu-
tion, is a simple algebraic exercise. Note that for a large enough T;,
intermingling can also occur with a single cluster; aliasing being an example
of such an occurrence.

Option B: Use frequency decimation to comstruct two signals, each rep-
resenting one cluster [2-13, 2-15]. Spectrum analyze each signal separately
and recombine.
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Figure 2-17, 1Illustration of two-cluster distribution.

2.6.3 Over Parameterization

In the quest for a high spectral resolution algorithm, Cadzow [2-3] and
Beex and Scharf [2-2] have proposed over parameterization as one tool for
improving algorithms; namely, they have proposed the use of large n in the
representation Eq. (2-19) to (2-24). For example, in Reference 2-2, n = 7 is
used for two sinusoids in white noise (fourth-order system). In Reference
2-3, reasonable success is reported in resolving two sinusoids with a 0 dB
signal-to-noise ratio and 7-percent frequency separation using n = 20,
Actually, the use of over parameterization is quite common in the literature
(e.g., [2-18], [2-27], and references therein); however, it has not received
sufficient justification.

Let Eq. (2-34) be a correct representation of the covariance sequence
and consider the over parameterization via the recursion

L .__fj
R (kT) = J a(i)R [(k - 1 T] k > L (2-40)
c 1=1 c - .

e b,
L.

-
e
adndoeatondnaduniadiiite.

where T < TNyqs and L is an integer larger than n, e.g., L = 5 x n. Then,

the solution for the vector a = [a(l), ..., a(L)]' via Eq. (2-25) and (2-26)
involves the matrix

R(5n - 1) ... R(1) R(0) | ]
o
R [0,5n,5n](T) = . . . (50 x 5n) S
. . . i 3
R(10n - 2) ... R -1 E
(10n ) R(5n) (5n ) :;.3
41 .
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On the other hand, considering Step 2 in our zooming-in procedure with
T, = 5T, we have to solve n linear equations with the coefficient matrix

P

R[5(a - 1)]... R(S) R(0)
R [(0,n,n](5T) = . . {n x n)

R[10(n - 1)]... R[5(n + 1)] R[5(n - 1)]

b —

that is, R [0,n,n](5T) is obtained from R [0,5n,5n](T) by retaining only every
fifth column and fifth row. 1If the representation (Eq. (2-34)) is merely an
approximation {2-2], it would be advisable to retain every fifth column

of R [0,5n,5n] and use the covarailnce least squares as in Eq. (2-25) and
(2-26). Now, since the process has order n by assumption, the numerical rank
of R [0,5n,50](T) is n, provided the numerical rank of R [0,n,n](ST) is n.
Thus, in effect, over parameterization is equivalent to spreading the phasors
to increase the numerical rank of the covariance matrix., Using sound
numerical procedure in solving a(5n) yields a solution which corresponds to n
dominant modes and (5-1)n superfluous modes. This is exactly Beex's and
Tuft's observation [2-2, 2-27].

The advantages of our zooming-in procedure are rather obvious. We avoid
solving a very high-dimensional ill-conditioned set of equations, thus elimi-
nating the need to use a procedure such as the singular value decomposition
(SVD) used by Tufts [2-18] and Cadzow [2-3]. More important, we have to solve
only an nth order well-conditioned polynomial for the eigenvalues compared
to an Lth order polynomial. The penalty paid for these advantages is Step 3
of our procedure.

Finally, we note that using £ + 1 parallel processors, Step 1 and (Step
2) % times can be performed simultaneously, Step 3, recombining the results of
the parallel processors. The architecture of such a parallel numerical anal-
yzer is beyond the scope of this section.

2.7 Simulation Results

The effect of sampling within and beyond the Nyquist rate has been
extensively tested in simulation. A few examples of the simulation results
are given here.

The signals assessed are of the type

n/2

y(k) = ) A) exp[—c(i)w(i)Tl(k)] cos [w(i)le + o(1)] + v(k)  (2-41)
i=]
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The frequencies are 'chosen to generate a closely spaced cluster. We specify

for each cluster the frequency separation (FS) (in percent) which is defined
as

mi-wj
FS = umin |2 Gy 7 ay) .+ 100 i,j =1l...n 1% j (2-42)

{u(k)} is a zero mean white Gaussian noise with covariance, V, as specified
for each example., We use the equation (see Eq. (2-25) and (2-26))
R (0,i,n,)(T2) - a(T2) = R(n,n)(Ty) (2-43)

to estimate a(Ty). Subsequently, the characteristic polynomial

(1, -a'j - | . = 0 (2-44)

is solved to find {2g(1)(Ty); i=l...n} and Eq. (2-36) to (2-38) are used
to estimate {z(1), w(i)}. As entries to the matrices R and R, we use the
estimated covariances

L

1
R(LT)) = T kzl y(sz)y[(k + 2)T2] ; 2 = 0...2n-1 (2-45)

where L is fixed and Ty is chosen such that Ty/T] is an integer. The

values of L, T}, and T) are specified for each run. Note that Eq. (2-45)
gives the biased estimate of the covariance (see Reference 2-26 for justifica-
tion). In the tabulated results, we give the estimated frequencies, w(i). If
lxd(i) £ 1, we also give the estimated damping ratios; otherwise, we speci-

y the estimate of |A4(1)|. A * in the tables denotes a failure in estimat-
ing the corresponding value. T1f the estimation failed for T2 < TN , the

q
optimal order and the corresponding estimated system is given in tze discus-
sion.

Example 1: Two-sinusoid case.

w(l) = 1.5 rad/s w(2) = 1.57 rad/s FS = 4.56%
g(l) = O t(2) = 0
A(l) = 1.0 A(2) = 1.0
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(1) v=10"7 ; Ty < Tyyq

The results of the simulations are tabulated in Table 2-6.
Here reasonable estimates are obtained for the range

= T%
O.STNyq < T2 < O.STNyq. In case (1), the optimality of T T

is obvious. In case (2), w(l) is best estimated for T, = T*; how-
ever, a somewhat better estimate of w(2) is obtained for Ty = 1.3.

- The estimated values are given in Table 2-5., This example demon- 1
al gstrates our observations in Section 2.2. The estimates are reason- -
98 ably good for the range 0.5Tyyq < T < 0.9Tyyq. The optimal o |
~ St
ﬁy sampling rate i1s (see Figure 2-11) T; = 0,55 TNyq = 1.1. -
(2) V=107 ; Ty < Tyyq :“ﬁi

» |

Both examples consisted of undamped sinusoids, and the error in the
estimates of kd(i) did not exceed 6 percent, and was usually

considerably smaller. However, attempts to estimate the damping
ratios for z > 0 have failed for T2 < TN . In the following two

examples, we extend the range of Tp and demonstrate success in
estimating the damping ratios and considerable improvement in the
estimation of the frequencies compared to the case Ty < TNyq°

(3) The data is the same as in case (2) except for the damping ratios
z{1) = 0.0l z(2) = 0.01
(Note that 1 percent is the order of magnitude of material damping--
an entity of interest in elasticity and structure engineering.) The
results of the simulations are summarized in Table 2~7.

(4) Same as (3) with damping ratios

g(l) = 0.05 z(2) = 0.05
Results are given in Table 2-8.

Example ] demonstrates the value of selecting the sampling rate judi-
ciously within the Nyquist rate as well as the improvement that might be gained
by zooming in. However, the frequency separation and the noise level in
Example 1 are not extreme enough to cause failure of the estimation except for

the very poor choice of Ty. 1In the following we consider wore severe cases.

Example 2

w(l) = 1.5543 rad/s w(2) = 1.57 rad/s FS = 1% 5%
g(l1) = 0 g(2) = 0 SN
A(l) = 1 AC2) = 1 ]
vV = 1074 ) 4
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3 Table 2-9 summarizes the simulation results. Only one frequency has been
{dentified successfully with T2 < Tqu, where the optimal order of the recur-

} sion is two. The estimation of a second-order recursion yields the estimates .
h‘ w = 1,562 and ¢ = 0.12E-2. We see‘increasing benefits with larger Ty;. For °
- Ty = 35T* perfect estimates of the frequencles are observed,

b

p

Example 3: Three sinusoids.

w(l) = 1.5543 w(2) = 1.57 w{(3) = 1.5857 FS = 17 : :
z(1) = 0.001 r(2)y = 0.001 ¢(3) = 0.00! ". b
A(l) = 1 AC2) = 1 A(3) = 1 !
v = 1074 i
T
Y
Results are summarized in Table 2-10., We have observed failure for 3
———ied
T; < 3TNyq° .
The optimal order of the recursion is n = 2, with the estimates w = 1.57 IR
and ¢ = 0.6E-2 when using T, = T, = 1. For T = 25T*, success is registered
in estimating the damping ratios and the frequencies.
We have conducted experiments similar to the previous examples for clus- i@ i
ters of up to five frequeucies with l-percent frequency separation and similar o
signal-to-noise ratio. The results were qualitatively identical to those dis-
cussed.
We bring as a final example the case studied by Cadzow [2-3] and others.

This example culminates a few difficulties. Although the frequency separation
(FS = 6.5 percent) is larger than considered in the previous examples, estima-
tion is hampered here by the disparity in the modal amplitudes and by a high
noise level (0-dB signal-to-noise ratio),

Example 4

w(1) = 0.47 rad/s w(2) = 0.4267 rad/s FS = 6.5%

r(l) = 0 z(2) = 0

A(l) = 4.47 A(2) = 1.414

V= 1-0 4

The results of the simulations are given in Table 2-11. For T} = 1 the
optimal order is n = 3 with estimates w = 1.266, ¢ = 0.3E~2, and the discrete
eigenvalue, 34 = -0.09, which does not have a continuous interpretation.
Examination of the table reveais the importance of choosing Ty such that
Tp = (22 + 1)T* for some £ (see Step 2). Note that using the estimate,
w = 1.266, T* can be approximated as n/2w = 1.24, The choice (T} = 1.0; 'y

y
.
AN

Ty = 5) does not satisfy the recommended values and yields poor estimates. .
T} = 1.2 with Tp = 6 or Tp = 18 approximates this requirement and gives ]
correspondingly good estimates, The choice Ty =1 and Tp = 16 = 13 x 1.24 ]
also satisfies the recommendation of Step 2 of the zoom-in procedure. )
..
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2.8 Generai Comments

The benefits of a judicial choice of the sampling rate, as well as our
proposed zoom-in procedure, have clearly been demonstrated. Zooming in can be
mechanized in various ways. Our approach was to select the group of frequen-
cles closest to the center frequency identified with Ty < Tyyq-

To demonstrate the selection procedure for resolving the ambiguity in the
case T » TNyq (Step 3 of the zonow-in procedure), consider Example 2 with
Ty = 35T*. The estimation for Ty < TNyq has failed, but estimating the
fourth-order data using a secoand-order model gave the following estimates:
frequency estimate = 1.562, damping ratio estimate = 0,26E-2., In Table 2-12,
a subset of the 70 frequencies around 1.562 and the damping ratios generated
in Step 3 for Ty, = 35T}, T} = 1 are given. The frequencies marked with *
are the closest to 1.562 and are the obvious choice., Note that the estimated
frequencies in this case are the exact values (see Table 2-9). This example is
the most ambiguous one. In other examples tested, the selection among the dif-
ferent solutions of Eq. (2~35) was even clearer.

2.9 Concluding Remarks

We have established analytically and experimentally in this section the
role of the sampling rate in high resolution spectral analysis. Presenting the
problem of resolution as a numerical one enabled us to establish desirable sam-
pling rates for high resolution, Moreover, via the phasor interpretation of
the covariance function we derived a zoom-in procedure, which is a powerful
spectral analysis tool., Although we have concentrated on two procedures for
spectral analysis, the FFT and the parametric regression on the covariance
sequence, the results of the studies have ramifications to other techniques.
The symmetric covariance matrix can be interpreted under certain conditions as
the Fisher information matrix [2-6]. The inverse condition number of this ma-
trix is thus an information measure which we have selected for numerical rea-
sons. Maximizing the ICN as a function of the sampling rate thus has ramifica-
tions for any statistical estimator.

Although the emphasis of this study was the sampling rate for continu-
ous signals, the results subsume the case of purely discrete time data. 1In
the discrete case, T; should be suppressed, say in Eq. (2-41); and thus,
w(i) « T) should be replaced by w(i)e(0,n). Correspondingly, T, should be
replaced in all the expressions by the integer, T/T;, and the correspond-
ing results follow trivially.

We believe that the algorithm we propose is numerically superior and com-
putationally more efficient than other algorithms proposed recently for im-
proved spectral resolution, OQur success can be attributed to the fact that we
have addressed the source of the difficulty. Our analysis also extends to
other algorithms as discussed in Section 2.6.3.

The simulation results reported in Section 2.7 support our claims.
It should be noted that the zoom—in procedure proposed in Section 2.6 is

only applicable for narrow-band signals, If a signal spectrum consists of a
set of narrow band signals, frequency decimation and modulation can be employed
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before applying the proposed procedure, Wide band signals with no distinct
T clusters of energy cannot be analyzed via our zoom-in procedure, though our
- recommendations in Section 2,5 are still valid.

Finally, we would like to give an intuitive, though somewhat ad hoc ex-
planation, of the main features of the high resolution spectral analysis pre-
sented in this section. Replacing a very narrow band signal with center fre-
quency we by sin(wct), we observe that sampling the signal at intervals

T*, satisfying Eq. (2-39), generates the sequence {sin(% « k)}. This is the
sequence with the wmaximum variation that can be generatéd from the sinusoidal
function. Since spectral estimation and particularly parametric spectral esti-
mation is concerned vith the dynamics of the signal, observing the maximum
variation is most beneficial for its estimation. The prism is a classical de-
vice for splitting closely spaced colors. Desampling the covariance function
while maintaining maximum variation of the signal as in the zoom-in procedure
con be viewed as a digital prism in light of the phasor representation.
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Table 2-12. .

]

Frequency Damping Frequency Damping 1
1.0315 0.28E~4 1.0158 0.36E-4
1.1123 0.28E-4 1.1385 0.36E-4
1.2110 0.24E-4 1.1195 0.31E-4
1.3023 0.24E-4 1.3180 0.31E-4
1.3905 0.21E-4 1.3748 0.27E-4
1.4818 0.21E-4 1.4975 0.27E-4

* | 1.5700 0.19E-4 1.5543 0.24E-4  |* :

1.6613 0.19E-4 1.6770 | 0.24E-4

1.7495 0.17E-4 1.7338 0.22E-4 .

1.8409 0.17E-4 1.8566 0.22E-4
1.9291 0.15E-4 1.9134 0.20E-4

Subset of estimated frequencies and damping ratios R

we = 1.562, Ty = 35, T} = 1. oz
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.
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SECTION 3

CONTROL OF LARGE SPACE STRUCTURES
USING ELECTROMECHANLCAL ACTUATORS

3.1 Introduction

The published literature on vibration control of large space structures
1s mainly concerned with the theoretical issues associated with the design of
control laws or control strategies. Numerous suggestions have been made re-
garding the form of suitable control laws and the selection of control law
parameters. Such investigations have generally based the design and analysis
of control laws solely on the properties of the flexible structure to be con-
trolled and on the vibration control objectives. The important effects of
physical transducers, namely actuators and sensors, in achicving the vibration
control objectives have generally been ignored. Of course, research has con-
tinued on the development of transducer hardware suitable for use in large
space structure applications [3-6, 3-7]. The objective of this section is to
reconcile the work on vibration control of large space structures (where
transducer effects have generally been ignored) with the work on transducers
(where application to the particular vibration control objectives have gen-
erally been ignored). Although our development will focus solely on the role
of actuator transducers, a similar development likely holds with regard to the
role of sensors. Thus, our main emphasis in this work 1s consideration of the
role of actuators as an important and necessary part of the problem of vibra-
tion control of large space structures. Some recent work [3-2, 3-3] has
examined the question of proper placement of actuators, ignoring all effects
of actuator dynamics. In this section, the effects of actuator dynamics are
examined, while the placement of actuators is assumed fixed.

The overall plan of Section 3 is as follows. In Section 3.2, the
important issue of modelling the actuators and large space structure is
examined. Section 3.3 takes a specific viewpoint towards the vibration con-
trol problem--use of the centralized controller, where both the structural
motion and the actuator motions are used for feedback to the actuator inputs,
is suggested. An aiternative using a decentralized controller consisting of a
force controller and actuator controllers, one for each actuator, is con-
sidered in Section 3.4, Several examples are presented in Section 3.5. An
indication of possible (xtensions and a summary are given in Section 3.6.
Throughout this section there is a dual development for each of two distinct
classes of electromechanical actuators mentioned in Section 3.2. 1In each sec-
tion, use of a single actuator is initially studied in some detail, and the
results are subsequently extended to the case of multiple actuators.

In order for our conclusions to be as general as possible, the detailed
nature of actuator hardware 1is not considered. Rather our interest is in the
dynamic effect that the actuators have on the large space structure with res-
pect to the vibration control objectives. Thus the content of the following
sections 1is primarily concerned with the mathematical characterization of the
actuators, the large space structure, and the feedback controller. This
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generality allows us to develop qualitative insight into the role of actuators
in vibration control of large space structures for a wide variety of physical
actuator hardware.

3.2 Modelling
3.2.1 Actuators

Actuators are considered to represent the physical devices whereby
forces and moments are actually applied to a large space structure. They can
also be considered as energy transducers since they transform electrical
energy into mechanical energy. Actuators can also be viewed as power ampli-
fiers since they typically require low (electrical) power input while they
generate higher (mechanical) power output. Actuator hardware is a necessary
ingredient in any actively controlled system [3-8].

An actuator can be characterized in terms of the physical nature of its
input and output signals. Throughout, an actuator input will be considered to
be a voltage signal. The nature of the actuator output depends on the way in
which the actuator is physically connected with the space structure. Although
large space structures may consist of plate and shell segments, many large
space structures will be truss connections of structural members. In such a
case, an actuator may be configured to provide a longitudinal force at a joint
connection of several members, an axial force along a member, a moment at a
joint, or a bending moment on a member. Since the mathematical characteriza-
tions of all of these different physical actuator configurations are equiva-
lent, it suffices in the sequel to consider the output of an actuator to be a
suitably defined generalized force applied to the structure.

All electromechanical actuators consist of an electrical subsystem and a
mechanical subsystem with some electromechanical interaction. The electrical
subsystem is assumed to be of a simple resistive form so that its associated
dynamics can be ignored. The mechanical subsystem is assumed to consist of an )
actuator mass and spring combination which are significant in defining the ;iif
actuator dynamics. The electromechanical interaction provides a force on the ’
actuator mass of electrical origin. These features are typical of electro-
mechanical actuators where the electromechanical interaction is of magnetic
field origin, of electric field origin, or of piezoelectric origin [3-9]. -

..

had

Various devices have been mentioned in the published literature as feas- @
ible actuators for vibration control of large space structures: reaction U
wheels, proof mass actuators, piezoelectric actuators, electronic dampers,
voice coil actuators, cable spool actuators, and tendon cable actuators. Each
of these electromechanical devices falls within the framework of our subse- )
quent development. Our development does not explicitly include the case of C
mass expulsion type actuators, control moment gyros, or hydraulic or pneumatic
actuators. However, our development may, with some modification, be extended B
to such cases,

7y
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3.2.2 Modelling Assumptions

In this section, the basic assumptions which hold throughout Section 3
are stated. In add.tion, two classes of actuators are described for detailed
examination in the subsequent sections.

Although a large space structure can often be described by a distributed
mass model using partial differential equations, our development will make use
of a lumped model for a large space structure. Such a model can often be ob-
tained by finite-element methods, even for complex large space structures.
Thus the second-order vector differential equation

Mx + Dx + Kx = Bf (3-1)

is chosen to represent the model for structural dynamics. Here x denotes the
n-vector of generalized structural displacements, so that x and x are struc-
tural velocity and acceleration vectors. The n x n mass matrix M is assumed
to be symmetric and positive definite. The n x n structural stiffness matrix
K 1s assumed to be symmetric. Since our interest 1s in vibration motion rath-
er than rigid body motion, K is assumed to be positive definite. The n x n
damping matrix D 1s often rather arbitrarily chosen since there 1s sparse
theory for structural damping available for guidance. 1In this work, the damp-
ing matrix D 1s assumed to be symmetric and nonnegative definite; the common
choice D = 0 is allowed. The right-hand side of Eq. (3~1) characterizes the
influence of the actuator forces on the structure; the m—vector f denotes the
generalized actuator force vector, while B is an n x m dimensionless influence
matrix. The specific form of the actuator force vector 1s examined in con-
siderable detail in the following sections.

There are numerous mathematical models that could be used to describe
electromechanical actuator dynamics; the literature on actuator dynamics 1s

abundant. Unfortunately, there seems to be no single, tractable model for
electromechanical actuator dynamics which 1s general enough to characterize
all of the physical actuators mentioned in the previous section. However, it
seems to be the case that each of the physical actuators mentioned does fit
into one of two distinct classes of actuators. Hence, our subsequent theory
1s developed along two separate but parallel lines, corresponding to the two
classes of electromechanical actuators considered.

The two electromechanical actuator classes are reaction types and trans-

mission types. Physically, an actuator is a reaction type if the resultant
force on the structure is an inertial reaction force; an actuator is a trans-
mission type 1f the resultant force on the structure is transmitted through a
flexible connection. More formally, an actuator is either a reaction type or
a transmission type according to the specific form of its mathematical model.
In the subsequent sections, detailed mathematical models are developed for
each of these two classes of actuators.

Specifically, reaction wheels and proof mass actuators are examples of
reaction type actuators, while piezoelectric actuators, electronic dampers,
volice coll actuators, cable spool actuators, and tendon cable actuators are
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e examples of transmission type actuators. Although the literature 1s vast,

References 3-10 through 3-12 examinc various examples of reaction type actu-

ators for use 1in control of elastic systems. References 3-13 through 3-15

examine various examples of transmission type actuators for use in control of -
elastic systems. This classification of actuators seems natural and 1s cer-

tainly convenient; however, the specific terminology has been chosen by the

author and has not been used elsewhere. There is no claim that the classifi-

cation of electromechanical actuators 1s exhaustive, but many examples of
electromechanical actuators known to the author do seem to fit nicely into one

of the two classes. Thus, the classification is suggested as a practical »
matter whereby mathematically tractable actuator models are obtained.

Py U

i a

v .

The structural dynamics, as defined by Eq. (3~1), are defined in terms ' ]

of a linear differential equation. 1In the actuator models developed in the o

next sectlion, the linearity assumption 1s maintained. But the present work .
- D

could serve as a framework for development of nonlinear actuator models. 'Y

For clarity in the presentation, a mathematical model of a large space
structure controlled by a single reaction type actuator is first developed.
Next, a mathematical model of a large space structure controlled by a single
transmission type actuator 1is developed. Then the general case where multiple
actuators are used to control a large space structure is easily handled.

3.2.3 Single Reaction Type Actuator

In this section, a mathematical model is developed for a large space
structure, as described by Eq. (3-1), controlled by a single reaction type
actuator.

The basis fur our development in this section is the schematic diagram
in Figure 3-1. The large space structure 1s represented by a lumped mass
model of which a single mass element is shown. The dynamics of the electro-
mechanical actuator are characterized by an actuator mass, m_, connected to
the structure by a spring and damper 1in parallel. A reaction type actuator

has the property that the electromechanical interaction force, f,, appears
as a reaction pair as shown in this figure. 1t is claimed that the simple
schematic represents the general case of a structure controlled by a single
reaction type actuator.
Based on Figure 3-1, equations of motion can be developed using a lLa- )
grangian approach. Iatroduce the notation .
1
9
X = n - vector of generalized structural displacuments R
T Y
B x = scalar gencralized displacement of the structure at the actuator -4
locaton ! 1
z = scalar yeacranizaed tisplacement of the actuator mass relitive to
the ~tro vy
[
3
K
6} !
-y
A
<Y
2
1
R R N N P 1
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Figure 3-1. Single reaction type actuator.

LSS

The actuator/structure Lagrangian is given by

_ oT o . Tey2 1 T 1
L = x Mx + m, 'z + B x 5 X Kx 7 ka’zl (3-2)

N —

1
2

where M and K are n x n matrices as in Eq. (3-1), B is actuator influences
vector, and my > 0, k; > 0 define the actuator mass and stiffness. From
Lagrange's equations obtain

MX + m_B (BTX +2) + Kx = Q, (3-3)
B +%) +kz = (3-4)
Ma * a QZ
The generalized forces are

Dy (3-5)

o
—
]

and
Q2 = cz + f (3-6)

where f, represents the electromechanical interaction force given by

fa = bau (3-7)

Here, u is actuator input voltage, and by > 0 is actuator servo constant;

c, > 0 represents actuator damping coefficient. The choice of coordinates
with z defined as a relative displacement results in Q) depending explicitly
on the reaction force f,, while Q) does not.

In summary, the actuator/structure model obtained is

MK+ DR FKx = B (4 BL%) (3-8)
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& m(z +Bx)+c¢cz+kz = bu (3-9) :

L a a a a :

bi‘ These equations are itnherently coupled through the actuator 1nertial term. » )

A The effective actuator [« (e on the structure 1s given by 4

.- A

.- I i

o X oo {

f = -m (z + B X) (3-10) 'y

a =

n

which can be viewed as a force 1n reaction to the acceleration of the actuator i 1

4

4

mass. Lt 1s this view that motivates the designation of the actuator as belng
a reaction type. Note that Eq. (3-8), (3-9), and (3-10) have a transmission
zero at s = 0. Thus, a reaction type actuator cannot be used to control rigid
body motion; the actuator cannot excite the rigid body motion.

There are two approximations that are commonly made, since the actuator/
structure dynamics are considerably simplified. The approximation is based on
the '"no loading assumption' that the acceleration of the structure at the
actuator location 1s negligible compared with the acceleration of the actuator

mass, 1.e.

T.. LR
‘B x[ K lz‘ (3-11)
The result 1s
Approximation Model 1
MX + Dx + Kx = -B mZ (3-12)
mzZ+cz+kz = bu (3-13)
a a a a
This approximation essentially decouples the actuator motion from the struc-
tural motion. A further simplification that 1s often made 1s to assume that
"actuator inertial terms are dominant'" in that
[k z| << |m 7] (3-14) R
a a L
b The result 1s
L
Y Approximation Model II
S
L . hd .o ’
..; Mx + Dx + Kx = -Bm z (3-15) ~—3
b
y e .
s mz+cz = au (3-16)
r} a a 4 .
- Approximation Model 11 is often employed to characterize reaction wheel dynam- X
p ics, since 1n that case, k_ = 0. -
- a
y
o 62 4
BN 1
a 1
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The preceding approximation models should be recognized as specific as-
sumed simplifications of the general model described by Eq. (3-8) and (3-9).
There is often no a priori reason for accepting the "no loading assumption”;
thus, in the subsequent developments, the exact equations (3-8) and (3-9) are
used., Of course, all our subsequent results are substantially simplified if
one of the above approximations is employed.

3.2.4 Single Transmission Type Actuator

A mathematical model for a large space structure controlled by a single
transmission type actuator is now developed.

The basis for the development in this section is the schematic diagram
in Figure 3-2, As before, the large space structure is represented by a
lumped mass model, of which a single mass element is shown, The dynamics of
the electromechanical actuator are characterized by an actuator mass, my,
connected to the structure by a spring with a damper. A transmission type
actuator has the property that the electromechanical interaction force, fg,,
acts only on the actuator mass as shown in this figure. It is claimed that
the simple schematic of Figure 3-2 represents the general case of a structure
controlled by a single transmission type actuator.

Z .
222 Ca kg
7 T e O

NN

N\

A/ /s

Figure 3-2., Single transmission type actuator.

Based on Figure 3-2, equations of motion can be developed using a La-
grangian approach, Intrnduce the notation

X = n - vector of generalized structural displacements
T . .
B'x = scalar generalized displacement of the structure at the actuator
location
z = scalar generalized displacement of the actuator mass

The actuator/structure Lagrangian is given by

T

ol eTe 1 g2 1 1 T g2 _
L = 5 X Mx + 5 mal ' 5 X Kx 5 ka lz B x' (3-17)
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7] .
:I where M and K are n x n matrices as in Eq. (3-1), B is an actuator 1influence -]
vector, and mgy > 0, ky > 0 define the actuator mass and stiffness. From
Lagrange's equations obtain
- B
M+ Kx - Bk (z - B0 = Q (3-18) ® |
nZ +k (z - BTx) = Q (3-19) :
a a 2 3
The generalized forces are b 1
Q = -Dx (3-20) :
and
Q2 = "¢,z + fa (3-21)

where f, represents the electromechanical interaction force given by

£ = bau (3-22)

Here u is actuator input voltage, by > O is the actuator servo constant, and
cg > 0 is the actuator damping coefficient.

In summary, the actuator/structure model obtained is

MK +Dx + Kx = B ka(z - BTx) (3-23)

LX) . T -
m 2 + c 2z + ka(z - B'x) = bau (3-24)

These equations are inherently coupled through the actuator flexibility term.
The effective actuator force on the structure is given by

£ o= Kk (z - B x) (3-25)

which can be viewed as a force transmitted from the actuator mass to the
structure. It is this view that motivates the designation of the actuator as
being a transmission type,

Two approximations of the preceding equations are now mentioned; the
resulting actuator/structure dynamics are considerably simplified. The first

f‘ approximation is based on the “"no loading assumption,” that the displacement
L of the structure at the actuator location is negligible compared with the dis-
- placement of the actuator mass, i.e.
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‘BTX’ SE (3-26)
The result is

Approximation Model III

Mx + Dx + Kx = B k2 (3-27)
mz+cz+kz = bu (3-28)
a a a a

This approximation essentially decouples the actuator motion from the struc-
tural motion. A further approximation that is often made is to assume that
“actuator flexibility terms are dominant™ so that

lmaz‘ <« ‘kaz‘ (3-29)
The result is

Approximation Model IV

Mx + Dx + Kx

L}

B kaz (3-30)

cz+kz = bu (3-31)
a a a

The above approximation models should be recognized as specific assumed
simpli{ications of the general model described by Eq. (3-23) and (3-24),
There is ~“t<. no a priori reason for accepting the "no loading assumption”;
thus, in .« -‘ubsequent developments, the exact equations (3-23) and (3-24)
are used. Al' of our subsequent results are substantially simplified if one
of the above approximations is employed.

3.2.5 Multiple Actuators

In this section, a mathematical model for a large space structure
controlled by multiple actuators is developed. It is assumed that there are a
total of m actuators, ordered so that the first p actuators are reaction type
and the last m - p actuators are transmission type. The notation used in the

previous sections is maintained, so that the actuators/structure Lagrangian is
given by

_ 10T0 1 i . Toe 2
L = 7 X Mx + 2 7 m ’zi + Bix
iel
1
I 1 4+ 42 1 T
+ 2 E‘ma 'Zi' ——Z-XKX
ieI2
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€

1 Z SR Bix|2 (3-32)

i 2 1
I ka 'zi' ) el
1 2
where

I = {1, «eey P}

12 = {p + 1, ooy m}

The parameters m: > 0, k: > 0 represent the 1th actuator mass and stiffness

values, and Bj represents the 1th actuator influence vector, i1 =1,...,m.

From Lagrange's equations obtain

i T i T
Mx + Kx + B, m (zi + Bx) - Y Bk (z, - Bjx) = Q (3-33)
iel iel
1 2
i T i i
o (Bix + zi) + kazi = Q , 1611 (3-34)
i T i
m 2z, + ka(zi Bix) = Q , 1612 (3-35)
The generalized forces are
Q = -Dx (3-36)
i i. i
Q = _Cazi + fa > i-= 1, seey M (3-37)
where
L= blu, , =1, wu,m (3-38)
In summary the actuators/structure model obtained is
. i T i T
Mx + Dx + Kx = ] Bym(z, +Bx)+ ] B k(z, -Bx) (3-39)
iel iel
1 2
i i . i i T i
mz, + c, %4 + ka z, = Bix + ba ug ieI1 (3-40)
i a - i 1 T i
m oz + ¢y 2y + ka z, = ka th + bau1 , ieIZ
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These coupled equations provide the basic model for the actuators/structure.
It is observed that Eq. (3-39) takes on the form of Eq. (3~1) where the
actuator force vector f = (fl, «es, f) is given by

i T .
fi = o (Zi + Bix) , 1511
i T
fi = ka (zi - Bix) s ieI2 (3-42)

B = (B, , oo, Bm) (3-43)

1
is n x m influence matrix.

Actuator approximations, as indicated in the previous sections, can be
made. The resulting simplifications are straightforward.

N 3.3 Centralized Control Design Viewpoint

In Sections 3.3 and 3.4, two viewpoints toward control design for an
actuators/structure interconnection are expressed and developed. In this sec-
) tion, the viewpoint of a centralized controller is examined, where feedback of
. both the structural motion and the actuator motion is possible, with no a
priori restriction on the controller form. A certain decentralized control
design viewpoint is taken in Section 3.4, where only local feedback of the
actuator motion is allowed. This leads to a natural partition of the control-
ler into a force controller which depends on the feedback of the structural
motion and actuator servo controllers, one for each actuator, which depend on
feedback of the local actuator motion only. This latter control design view-
point is natural in the case where a force controller is developed by com-
pletely ignoring all actuator effects, and internal compensation for each
actuator is used to justify that assumption.

Although these two viewpoints have not been explicitly stated in the
published literature, they have been implicitly followed in two cases where
actuator dynamics have been examined. In Reference 3-16, the actuator dynam-
ics were included as part of the plant for purposes of controller design; this
is characteristic of the cantralized control design viewpoint. In Reference
3-17 a controller is developed, ignoring actuator dynamics, and the effects of
actuator dynamics on the closed loop is evaluated; this is characteristic of
the decentralized control design viewpoint.

Consideration of the two control design viewpoints does seem useful
since, depending on the context, the role of the actuators in the two cases
does differ. These two viewpoints are conceptual., A given controller for an
actuator/structure cannot be classified as necessarily having been developed
. using a particular viewpoint; however, the different viewpoints do lead
- naturally to certain controller configurations that are discussed in this
section and in Section 3.4.
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3.3.1 Approach

- A large space structure with associated actuators can be viewed as a

i single plant. This is a natural viewpoint since the mathematical equations
T which describe the actuators and structure, e.g., Eq. (3-39), (3-40), and

: (3-41), are inherently coupled. Since there is no reason to distinguish
between the actuators and structure in defining the plant, a centralized
controller is based on feedback of both the actuator motion and the structural

JCUR IR

, .
’
' . e et N M
LUt '
N
J‘;_.x__.;.a.b..ﬁ-k_'- ‘ae i T

3 motion. A schematic of a closed loop, incorporating a centralized controller, -
ﬁ is shown in Figure 3-3. The actuators and structure are indicated separately ;
;}_ for conceptual reasons. The centralized control design viewpoint is defined "
N by the feedback system in Figure 3-3.
b
U1 f1 x g
s ACTUATOR p—————p - :
A CENTRALIZED . ‘—a
- CONTROLLER . LSS &
::, .
= Um fm

+————{ ACTUATOR |————

L L

) Figure 3-3, Centralized control representation.

o 3.3.2 Single Reaction Type Actuator

CHZ Centralized control using the scheme shown in Figure 3-3 is applied to a
large space structure controlled by a single reaction type actuator. The
development is based on Eq. (3-8) and (3~9) for the actuator/structure

combination. They can be written in compact form as :g
M3+ Dq+ Kq = Bu (3-44)

P where q = (x,2z) and M, D, K, B are partitioned matrices r4;
e

M o+ maBBI“ m_B -

M = (3-45) o

T AR

m B m Y

a a <

L - b4
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(3-46)

(3-47)

(3-48)

It is important to recognize that the mathematical form of the augmented
Eq. (3-44) is the same as the mathematical form of the large space structure
Eq. (3-1) alone, in the sense that the (n + 1) x (n + 1) matrices, M, D, K,
are symmetric with M, K positive definite, and D nonnegative definite. The
practical implications of this observation are great: all control design pro-
cedures developed explicitly for large space structure equations are formally
applicable to the actuator/structure combination. Thus, there is a wide range
of design and analysis procedures which are directly applicable to Eq. (3-
44), A few simple results are mentioned.

To illustrate the centralized control design viewpoint consider the use
of direct velocity feedback.

In the most general case, both the actuator velocity and the structural
velocity can be used for feedback control. In this case, the controller is
given by

o‘|n
L)
a

(3-49)

Ne
+
U‘l @]
e

a

'Y

In this case, the second term in Eq. (3-49) is assumed to have a positive
coefficient in order to characterize positive damping. The constant scalar,
cf, and vector, Cyq, represent the feedback gains. 1In this case, the

closed loop is described by equations

u'q'+nc<';+xq =0 (3-50)

where

D = (3-51)
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= D = (3-46)

. 0 c

El a

L4 0|
K = 0 K (3-47)

a

and
B = b (3-48)
a

It is important to recognize that the mathematical form of the augmented
Eq. (3-44) is the same as the mathematical form of the large space structure
Eq. (3-1) alone, in the sense that the (n + 1) x (n + 1) matrices, M, D, K,
are symmetric with M, K positive definite, and D nonnegative definite. The
practical implications of this observation are great: all control design pro-
cedures developed explicitly for large space structure equations are formally
applicable to the actuator/structure combination. Thus, there is a wide range
of design and analysis procedures which are directly applicable to Eq. (3-
44), A few simple results are mentioned.

To illustrate the centralized control design viewpoint consider the use
of direct velocity feedback.

In the most general case, both the actuator velocity and the structural
velocity can be used for feedback control. 1n this case the controller 1is

given by
c CT
wos - e S (3-49)
a a

In this case, the second cerm in Eq. (3-49) is assumed to have a positive
coefficient in order to characterize positive damping. The constant scalar,
cg¢, and vector, Cy, represent the feedback gains. In this case, the

closed loop 1is described by equations

MT+Dq+Kq = 0 (3-50)

where

D = (3-51)
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) .
with ¢ = ¢+ e In this case, the matrix D 1s not symmetric, in fact, "Zﬁ
C “
the skew-symmetric part of D represents the usual gyroscopic type terms :
¢ B
[3-18]. The closed-luop system (Eq. (3-50)) is stable if and only if each ’ i
eigenvalue of Eq. (3-50) has negative real part. A simple sufficient condi- O

tion for the stability of Eq. (3-50), based on results in Reference 3-18, is
the following. Any choice of feedback gains for which the symmetric matrix i
D + D 1s positive definite guarantees that the closed loop defined by Eq. _ }
(3-50) is stable. Suppose D is positive definite; the closed loop can be ..g
stabilized for any actuator velocity gain cg¢ > 0 if the structural velocity ]
gain, Cy, is sufficierrly small. -
One special case of Eq. (3-49) of particular interest is }}l
ce 4
u = -z (3-52) ;1}
a y
where only actuator velocity is used for feedback. 1In this case, the closed ) :
loop can be viewed as the feedback connection of the positive real transfer —_
function I&i
T 2 -1 .
s B[ Ms +Ds+K] B (3-53) .,

‘¢
and the feedback gain, — Hence, based on the results of Reference 3-19,
®a

the closed-loop system, Eq. (3-50), with C,_ = 0, is stable if ¢_ > 0. More~ :tf&
a L LR
over, as shown in Reference 3-19, the closed loop has certain desirable O
robustness properties. o
Vv
Even the simplest case of Eq. (3-49), corresponding to open-loop control 1

u = 0 (3-54)

may be a feasible control strategy. The closed loop system (Eq. (3-50)) with
¢_=0, C =0, is stable if D is positive definite and ¢ > 0. This simple D

) S d . N a . . -
control configuration corresponds to the case where the reaction actuator is
used as a passive damper [3-20].

The above example control strategies are only illustrative of the
ceantralized design approach applied to a large space structure with a single
reaction type actuator, »

. - P

L B
o 2
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Direct velocity feedback 1s again used to illustrate the centralized
control design viewpolnt 1n this case.
2 Assuming both actuator velocity and structural velocity are used for
. feedback, consider the controller given by
- T
} TN Cd . o
u = - —z - — X (3-60) -
< b b -
L} a a -]
. 1
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3.3.3 Single Transmission Type Actuator

Consider Eq. (3-24) and (3-25) developed previously to describe the ,
dynamics for a large space structure controlled by a single transmission type o 4
actuator. Those equations can be written in the augmented form

M H +Dgqg+Kgq = Bu (3-55)

where q = (x,2z) and M, D, K, B are partitioned matrices

o —
M = 0 o (3-56)
a
D 0 |
D = 0 c (3-57)
a
K + kaBBT -kaB
K = T (3-58)
-k B k
a a
and
0
B = b (3-59)
a

In this case, it 1s recognized that the mathematical form of the augmen-
ted Eq. (3-55) is the same as the mathematical form of the large space struc-
ture Eq. (3-1) alone, in the sense that the (n + 1) x (n + 1) matrices M, D,

K are symmetric with M, K positive, and D nonnegative definite. The practical
implication of this observation is that any control design procedure developed
for large space structure equations is directly applicable to the actuator/
structure combination. Thus, there are many design and analysis procedures
that can be applied to Eq. (3-55). A few such results are now mentioned.




AR LA

where cf and Cy are feedback gains. The closed loop is described by
equation

u?;'+DCEl+Kq = 0 (3-61)

where

D = T (3-62)
d

with ¢ = ¢4 + cg. Comparing Eq. (3-60) through (3-62) to Eq. (3-49)
through (3-51), the discussion following Eq. (3-51) applies here verbatim.

3.3.4 Multiple Actuators

In this section, centralized control of a large space structure con-
trolled by multiple actuators is considered; the assumptions made in Section
3.2.5 are continued so that the actuators/structure are described by Eq.
(3-39), (3-40), and (3-41). The augmented variables z = (z],...,2g),

q = (x,z), and u = (u],...,up) are introduced so that Eq. (3-40), (3-41),
and (3-42) can be written as

Mq+Dq+Kq = Bu (3-63)

where M, D, K, B are defined by the (n + m) x (n + m) partitioned matrices

11 HIZ 0
—— T —
M = M, M,, 0 (3-64)
0 0 H33
where
M. = M+ J nB B (3-65)
11 ai’i
iel
1
- 1 p -
le = [maBI’ ey maBp] (3-66)
M. = diag (m' Py (3-67)
22 E MMy veen My
- p+l m -
H33 = diag (ma s eess ma) (3-68)
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and
D = 0 D (3-69)
a
where
. 1 m
D = diag (¢, ..., ¢_) (3-70)
a a a
and
T E
K = 0 Kzz 0 (3-71)
Kj3 0 Ky
where
. 1 T
K, = K+ ) k. B.B. (3-72)
11 1 a 11
iel,
_ ptl P
K3 = [k, Boyps oo TRy B) (3-73)
‘ 1 p
Kyp = diag (k_, , ka) (3-74)
_ p+l m
K33 ~ diag (k_ , - ka) (3-75)
and
- 0 -
B = [}5:] (3-76)
a
where
_ 1 m
B = diag (b_, ..., b ) (3-77)
a a a
74
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In this general case, the mathematical form of the augmented Eq. (3-63)
1s the same as the mathematical form of the structure of Eq. (3-1) alone in
the sense that the (n + m) x (n + m) matrices M, D, K are symmetric with M, K
positive definite, and D nonnegative definite. Again, the i1mplication of this
observation is that all control design procedures developed for large space
structure equations are directly applicable to the actuators/structure
combination.

Obviously, there are innumerable possible control configurations 1in the
case of multiple actuators. A few cases are considered using feedback of the
actuator velocities and the structural velocities.

Consider the feedback controller

l L] L]
u = -B_ (sz + Cdx) (3-78)
where Cg 1s m x m galn matrix and Cq 1s m x n galn matrix,

The closed loop is described by

[
o

Mq + Dci + K q (3-79)

where

D = (3-80)

(o]

(@}
(=)
+
(@}

The nonsymmetric matrix tincludes gyroscopic terms as before. The closed-loop
system, Eq. (3-79), 1s stable if and only if each eigenvalue of Eq. (3-79) has
a negative real part. A simple sufficient condition, based on results in Ref-
erence 3-18 1s that: any choice of feedback gains for which the symmetric

matrix D + DT is poeitive definite guarantees that the closed loop defined by

by Eq. (3-79) is stable. Suppose D is positive definite. The closed loop can
be stabilized for any symmetric, positive definite actuator velocity gain
matrix, Cf, 1f the structuvcal velocity gain matrix, Cd’ 1s sufficiently

small.

One special case of the control Eq. (3-78) is

u = -B C. .2 (3-81)

where feedback control depends ounly on the actuator velocities. In this case,
the closed loop can be viewed as the feedback connection of the positive real
transfer function matrix
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,._ﬁﬁu,”,
ol

i -1 -1 :
and the feedback gain matrix Ba C Ba . Herce, based on results 1n Reference o 4

f
3~19, the closed-loop, Eq. (3-63), with C =0, is stable 1f C_ 1s symmetric
d £

and positive definite. Moreover, as shown in Reference 3-19, the closed loop
has certain desirable robustness properties.

Y S

The case where all actuators are used as passive dampers corresponds to ®

u = 0

a

The closed loop, Eq. (3-63), with C_ =0, C =0, is stable if D is positive
3 r

definite and C* >0, i =1, ..., m.

a —_

These constant gain velocity feedback strategies are illustrative of the
centralized design approach applied to a large space structure controlled by
multiple electromechanical actuators.

3.3.5 Comments

The centralized control design approach 1s to impose no a priori con-
straints on the controller configuration. This approach is natural when the
ac.uators and structure are viewed as a "plant" and there is no necessary dis-
tinction between feedback of the actuators motion and the stiructural motion.

The advantage of this control design viewpolnt 1s 1ts generality. Since
no a priorl control constraints are imposed, selection of a particular control
configuration can be made with freedom. Furthermore, any particular control-
ler design obtained on the basis of the augmented model, e.g., Eq. (3-63), has
explicitly obtained closed-loop properties. 1in other words, Eq. (3-€3) repre-
sents a complete model of the actuators and structure.

The disadvantage of designing a controller on the basis of Eq. (3~63)
lies in the fact that it contains n + m modes, 1.e., 2(n + m) state vari-
ables. This :ncrease in model order, due to inclusion of the actuator dynam-
ics, may increase the computational difficulty 1in achieving a good control
design. Model order reduction methods have peen commonly employed as a way of
achieving a reduced-order large space structure modei of tractable order {3-4,
3-5]. Our suggestion 1s that it 1s preferable tou perform any model order re-
duction on the basis of Eq. (3-63), which includes the actuator dynamics,
rather than performing order reduction on the large space structure model

alone and subsequently 1ncorporating the actuator dynamics. _J
;0
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3.4 Decentralized Control Design Viewpolnt

3.4.1 Approach

A natural approach to the design of a controller 1s to develop a con-
troller for the large space structure alone, 1ignoring all actuator dynamics.
It 1s then necessary to provide local compensation for each actuator as a
means of justifying the original assumption. The controller is thus separated
into two parts: a force controller, typically based on the structural dynam-
ics only, and an actuator servo coantroller for each actuator. This a priori
assumed controller configuration is referred to here as a decentralized con-
troller. A schematic of a closed loop, incorporating a decentralized control-
ler, 1s shown in Figu:.. 3-4,

o f eruron 11T cruaron |- o
FORCE ¢
CONTROLLER i LSS
fd u f
m m
|4 eruron L] crusron |

| T

Figure 3-4. Decentralized control representation.

Our objective 1s to consider a general class of procedures for designing
such decentralized contro! schemes. Since much attention has been focused on
the design of force controllers, this 1ssue is generally ignored here. For
purposes of 1llustration, a force controller which depends on structural vel-
ocity feedback only i1s subsequently employed. Our main attention is focused
on design of the actuator controllers.

This decentralized coatrol design approach 1s conceptually appealing.
However, the equations which describe the large space structure and actuators,
e.g., Eq. (3-40), (3-41), and (3-42), are inherently coupled. This inability
to completely separate structural dynamics from actuator dynamics makes the
design of a decentralized controller with guaranteed closed-loop properties
difficult. Hence, some zttention is given to methods for evaluating closed-
loop stability, where the loop 1s closed using a decentralized controller.
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3.4.2 Single Reaction Type Actuator

In this section, a decentralized control scheme as shown 1in Figure 3-4
1s developed for the case of a large space structure controlled by a single
reaction type actuator.

Let f, denote the output force of the force controller. The special
force controller form

f = -¢,Bx (3-83)

i1s assumed, where BTx represents the structural velocity feedback and cq 1%
the feedback gain. Development of the actuator controller characteristics do
not strongly depend on the force controller, so subsequent results can easily
be generalized if a different force controller form 1s assumed.

Our objective now 1s to develop insight into methods for choosing a
sultable actuator controller. Since the actuator dynamics cannot be separated
from the structural dynamics, care must be taken. The first task 1s to
determine the transfer function from u to f, based on Eq. (3-8) and (3-9),
where the actuator force, f, on the structure 1s given by Eq. (3-10). To this
end, define the scalar transfer function

T, 2 -1
G.(s) = B (Ms® + Ds + K) "B (3-84)

. ) , T
which represents the influence of the force, f, on the displacement, B x, of
the structure at the location of the actuator. It can be shown that

F(s) -t
s = 3 = a -
o) Ga(s) N ” (3-85)
] + ———— + G (c s + k)
2 s a a
m s

a

Thus G_{(s) represents the effective actuator transfer function, where the
structural loading effects on *he actuator are taken 1nto account. An actua-
tor controller can be developed using this actuator transfer function, Eq.
(3-85).

The actuator controller 1s supposed to servo the actuator so that the
actuator force, f, tracks the desired force, fd‘ This 1s achieved through
actuator velocity feedback plus a suitable dynamic interface between f4 and
the actuator 1nput voltage, u. Formally, the actuator controller should be
realizable and, as closely as 1s possible, represent the system inverse of
Ga(s). It is also desirable for the actuator controller not to depend ex-
plicitly on properties of the structure. 'Such constraints are severe.
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One form for the actuator controller, which represents a realizable ap-
proximation to the actuator inverse, is given by

C

f
U(s) = - +— (1 + ;Zz)Fd(s) "5 0 Z(s) (3-86)

L
b
a

where ¢ = ¢; + c¢. This actuator controller depends on actuator velocity

feedback plus dynamic {(integral) forward compensation. The resulting transfer
function from f4y to f is

g—(% = G(s) = 12 (3-87)
d k +ms (es + k )G
a a a S
m 52+CS
a

1 +

where G¢(s) represents the effective actuator controller transfer function.
This dimensionless transfer function characterizes the total effect of the
actuator and actuator controller dynamics on the structure.

The actuator controller, Eq. (3-86), is a reasonable choice, but other
actuator controller forms could be selected. 1In Eq. (3-86), the actuator con-
troller output voltage, u, depends on feedback of the velocity of the actuator
mass; it is also proportional to fy4 and to its integral. Clearly, the actu-
ator controller described by Eq. (3-86) is realizable. In the case that fg
is given by Eq. (3-83), the actuator controller output, u, can be expressed
directly in terms of the structural displacement and velocity, thereby avoid-
ing need for explicit integration.

The effective actuator transfer function, Gg(s), can be represented as
a feedback connection of

m_s{cs + Kk
a( a)

2
ms +c¢s + k
a a
and

sG
s

Each of these transfer functions is positive real, with the former strictly
positive real if ¢ > 0. Using the result in Reference 3-19, the actuator/
actuator controller system defined by Eq. (3-87) is stable if ¢ > 0. Thus, a
reaction type actuator cannot be destabilized when connected to any elastic
structure in an open-loop configuration.

The closed-loop configuration of Figure 3-4 is now examined, where the
force controller is given by Eq. (3-83), the actuator controller is given by
Eq. (3-86), and the actuato:/large space structure is described by Eq. (3-8)
and (3-9). The closed-loop system is defined by

79

N . S - - A ’ - - : o . = S . - N PR
P SRS IR WP YR TSP NP O IR e PR SV U Y W SUL . VY ~ PO WY WL I TG gr- GO G e P We U I I DR TPt DV I




Mq+Dq+Kq = 0 (3-88)

where q = (x,2z) and M, D, K are defined by the partitioned matrices

T

M+ maBB maB
M = T (3-89)
m B m
a a
D 0
D = T (3-90)
-B ¢ c
d
K = K 0 (3-91)
s gT.
m “d a
a

This set of closed-loop equations does not have the symmetric properties of
the structural Eq. (3-1); the matrices D and K are not generally symmetric.
But Eq. (3-88) could form the basis for analysis of the closed loop.

An alternative description of the closed loop can be given in terms of
transfer functions. The return difference function is given by

1 +6_(s) G (s) (3-92)
£ P

where the controller/structure transfer function

Gp(s) = cdsBT(Msz + Ds + K)_lB (3-93)

Stability of the closed loop 1s critical. The following conditions are
well known. The closed loop, defined by Eq. (3-88), is stable 1f and only 1f
each eigenvalue of Eq. (3-88) has a negative real part. Equivalently, the
closed loop 1s stable 1f and only if each zero of Eq. (3-92) has a negative
real part. Such necessary and sufficient conditions for closed-loop stability
give little i1nsight i1nto the effect of the actuator dynamics.

From the viewpoint of decentralized control, the key issue is whether
the effective actuator dynamics, defined by Eq. (3-87), destabilize the closed
loop. Recently developed tests [3-17, 3-22] are particularly suitable in this
case since they characterize the robustness of the closed loop explicitly in
terms of the effective actuator dynamics. The conditions are sufficient for
stability of the closed loop. In the present context the following 1s ob-
tained.
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Suppose that each zero of

1+ Gp(s) (3-94)

gy has a negative real part. 1If

= — -1, )
G (Gw) = 1] < |1+ G, (jw) (3-95)

holds for all w > 0, the closed loop is stable.

The hypothesis of Eq. (3-94) is that the closed loop, ignoring actuator
dynamics, 1s stable; tt ‘s hypothesis 1s satisfied in the particular case, Eq.
o (3-93), if ¢4 > 0 [3-'8, 3-19]}. The frequency condition, Eq. (3-95), has a
. simple interpretation: the left-hand side represents the frequency reponse
v magnitude of the actuator error, while the right-hand side is the frequency
AR response magnitude of the nominal inverse return difference. The inequality
Eq. (3-95) can easily be checked using graphical procedures. Use of this
robustness test 1s 1llustrated in a subsequernt example in Section 3.5.

In this case, as a partial justification for the decentralized control
design approach, consider the following property. Suppose a force controller
K is chosen so that the closed loop, ignoring actuator dynamics, 1s stable.

S There are actuator parameters, m > 0, ¢ > 0, k > 0, such that the closed
;3 a

}; loop, including actuator dynamics, is stable. 1In other words, it is always
‘ possible to determine an actuator and actuator controller of the form of Eq.
(3-86) so that the closed loop is stable.

- A few general remarks can be made regarding selection of the actuator
o parameters for a reaction type actuator. The actuator mass parameter, m.,
should be selected so that the 1nertial effects of the actuator are dominant
" over the frequency range of interest. The actuator stiffness parameter, kg,
should be chosen as small as possible.

3.4.3 Single Transmission Type Actuator

S Decentralized cuatrol of a large space structure as shown 1n Figure 3-4
1s now examined where the structure is controlled by a single transmission
type actuator.

A force controller given by

Te
fd = ey B x (3-96)

is once again assumed for simplicity, where cy 1s the feedback gain con-
stant.
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A basis for choosing an actuator controller 1s now developed. The 1
transfer function for the actuator relates the actuator voltage, u, to the
actuator force, f. Using the structural transfer function, Gs’ defined by j
T 2 -1 i .
G, = B (Ms" +Ds +K) B (3-97) -

.

and Eq. (3-23) and (3-24) for a transmission type actuator, the actuator input
voltage, u, and actuator force, f, defined by Eq. (3-25) can be related by

F(s) b
5. = ¢ (s) = a (3-98)
U(s a 2
mas + cas 2
l + ——— 4+ G (ms™ + ¢ s)
ka s a a

Here, Ga(s) represents the effective actuator transfer function, where the
structural loading effects on the actuator are taken into account. An actua-
tor controller can be developed using this actuator transfer function.

As mentioned previously, the actuator controller should be chosen to
represent a realizable approximation to the actuator inverse. One suiltable

form for the actuator controller, in this case, 1s given by

C
1 f
UGs) = + (1 + —is) Fy(s) = ¢ s 2(s) (3-99)
a a a

where ¢ = ¢_, + c.. This actuator controller depends on actuator velocity
feedback plus dynamic (derivative) forward compensation. The resulting trans-
fer function from f, to f 1s

F(s) - 1

; (3-100)
Fd(b)

m s2 + (m 52 + ¢cs)k G
a a a's

1 +
cs + k
a

where Gf(s) represents the effective actuator and actuator controller trans-
fer function.

The actuator controller form Eq. (3-99) is one choice, where the actua-
tor controller output, u, depends on feedback of the velocity of the actuator

mass and 1t is proportional to f,; and its derivative. 1n the case that f£q
is given by Eq. (3-96), the actuator controller output, u, can be expressed
directly in terms of the structural velocity and acceleration, thereby
avoiding need for explicit differentiation,

The effective actuator transfer function, Gf(s), can be represented as
a feedback connection of
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k (ms + ¢)
a a

ms + c¢cs + k
a a

and
sG (s)
s

Each of these transfer functions is positive real, with the former strictly
positive real if ¢ > 0. Using results from Reference 3-19, the actuator/
actuator controller system defined by Eq. (3-100) is stable if ¢ > 0. Conse-
quently, a transmission type actuator can not be destabilized when connected
to any elastic structure in an open-loop configuration.

The closed-loop configuration of Figure 3-4 is now examined, where the
force controller is given by Eq. (3-96), the actuator controller is given by

Eq. (3-99), and the actuator/large space structure is given by Eq. (3-23) and
(3-24). The closed~loop system can be described by

Mqg+Dq+Kgq = 0 (3-101)

where q¢ = (x,z) and M, D, K are defined by the partitioned matrices

M = 0 (3-102)
E—-BTc
k d a
a
D = 2 (3-103)
-B cd c
K + kaBBT -kaB
K = T (3-104)
-k B k
a a

The set of closed-loop equations (Eq. (3-101)) does not have the symmetry
properties of the structural equation (Eq. (3-1)); the matrices M, D are not
generally symmetric. But Eq. (3-101) could form the basis for analysis of the
closed loop.

Another description of the closed loop can be given using transfer
functions. The return difference function is given by

1 + G, (s) G (s) (3-105)
£ P
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where the controller/structure transfer function

T 2 -1
Gp(s) = cdsB [Ms + Ds + K] B (3-106)
Stability of the closed loop is easily determined as follows. The
closed loop, defined by Eq. (3-101), is stable if and only if each eigenvalue

of Eq. (3-101) has a negative real part. Equivalently, the closed loop is
stable if and only if each zero of Eq. (3-105) has a negative real part.
Simpler conditions wvhich give explicit insight into the effect of actuator
dynamics are also avajlable using the robustness tests of References 3-17 and
3-22.

Suppose that each zero of

1 + Gp(s) (3-107)

has a negative real part, If

Cf(jm) - 1| < |1 + G;l(jw) (3-108)

holds for all w > 0, the closed loop is stable.

As stated previously, the general hypothesis of Eq. (3-107) is that the
closed loop, ignoring the actuator dynamics, is stable; the hypothesis is sat-
isfied in the special case, Eq. (3-106), if cq > 0 [3-18, 3-19]. The fre-
quency condition, Eq. (3-108), has a simple interpretation and can be easily
checked graphically. Use of these robustness tests is illustrated by a subse-~
quent example in Section 3.5.

As a partial justification for the decentralized control design ap-
proach, in this case, consider the following property. Suppose a force con-
troller is chosen so that the closed loop, ignoriung actuator dynamics, is

stable. There are actuator parameters, m > O, ¢ > 0, k > 0, such that the
a a

closed loop, includi.g actuator dynamics, is stable. In other words, it is
always possible tn determine an actuator and actuator controller of the form
of Eq. (3-99) so tuat the closed loop 1s stable.

A few remarks can pe made regarding selection of the actuator parameters
for a transmission type actuator. The actuator stiffness parameter, ka’
should be selected so that flexibility effects of the actuator are dominant
over the frequency range of interest. The actuator mass parameter, mg,
should be chosen as small as possible.

3.4.4 Multiple Actuators

In this section, decentralized control of a large space structure con-
trolled by multiple actuators is considered; the assumptions made in Section
3.2.5 are continued so that the actuators/structure are described by Eq.

(3-40), (3-41), and (3-42).
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A force controller 1s assumed to be of the form

Te
fd = -CBx (3-109)

where

1 m
£, o= (£ -oos £)) (3-110)

and Cy is m x m feedback gain matrix,

Actuator controllers for each actuator are used as in the previous
sections., On the basis of the previous developments, the actuator controllers
are assumed to be given by

1
_ 1 i i Cf .
U(s) = -— (1 +—]F_(s) -— sZ.(s), iel (3-111)
1 i i d L 1 1
b m_s b
a a a
) 1
1 Ci%, i Cf .
U.(s) = — (1 + ——] F (s) - —= s2.(s), iel (3-112)
1 1 1 d i 1 2
b k b
a a a
1 1
where ¢, T e, v 1S 1, ..., m. Each actuator controller depends on actua-

tor velocity feedback plus dynamic forward compensation. The resultiag m xm
effective actuator and actuator controller transfer function matrix Gf(s)

defined by
F(s) = ;) F (s -11
(s) Gf(b) d(s) (3-113)
15 glven by
-1
G.(s) = (1 +q(s)+q,(s) G (s)) (3-114)
f 1 2 s
where
1
ki mf_::+ 52
QI(S) = diag (—i—if__——_- s T e (3-115)
ms + ¢ s c s + k
1 p+l a S
o4
=
85
e




mlsz(c s + kl) ka(mp”s2 c_..8)
Q,(s) = diag (2——t—2 S Al )
2 mlsz . ) i H L ) C S . kp+1 3
€1° p+l a
(3-116)
and
T 2 -1

G,(s) = B (Ms” + Ds + K} 'B (3-117)

This actuator/a *uator coantroller transfer function, Gf(s), 1s not 1in
general diagonal due to the presence of the general nondiagonal structural
transfer function, Gs(s), in Eq. (3-114). In the case where multiple
actuators are used to control a large space structure, the effective actuator
dynamics 1nvolve crossfeed between the actuation channels, where the cross
feed effects are explicitly due to structural loading of the actuators.

The effective actuator transfer function, Gf(s), can be represented as
a feedback connection of

QZ(S)

(1 +q )17

and

sG (s)
S

Each of these transfer function matrices are positive real, with the former

strictly positive real if ¢. >0, i =1, ..., m. From the results in Refer-
ences 3-18 and 3-19, the actuator/actuator controller system defined by Eq.
(3-114) is stable 1f ¢ >0, 1 =1, ..., m. Consequently, multiple actuators

1
of the reaction and transmission types cannot be destabilized when connected

to any elastic structure 1n an open-loop configuration.

The closed-loop configuration of Figure 3-4 1s now examined, where the
force controller is given by Eq. (3-109), the actuator controllers are given
by Eq. (3-111) and (3-11" and the actuator/large space structure is
described by Eq. (3-40), (3-41), and (3-42). The closed-loop system can be
described by

Mq+Dq+Kgq = 0 (3-118)

where g = (x, Zpy see zm) and M, D, K arc defined by (n + m) x (n + m)
partitioned matrices
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(3-119)

(3-120)

= P -
M, = (ma Bls eoes maBp) (3-121)
. 1 P
M,, = diag (ma, cees ma) (3-122)
_ ptl m
M, = diag (ma y eeas ma) (3-123)
Cp+l . ptl ‘a . m
= (P _m -
u-il;l (kp'f-l BCG s +evs — BC4) (3-124)
k
a a
and the feedback gain matrix
= [ct ch 3
Cq = [Cqr «oes C4] (3-125)
and
D11 0 0
D = D21 D22 0 (3-126)
D3y 0 Dy
where
D11 = D (3-127)
D = di s seey C -
22 ag (c1 p) (3-128)
= i con -
D33 diag (cp+l’ . cm) (3-129)
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p,, = (-BCy ..., -BC}] (3-130) . j
3 o
Td T p*l m - o
g D, (Bcy s , BC,) (3-131) er;
o C
. '*1
s and . *i
K 00 Ky3 ° i
K = Ky, Ky, 0 (3-132) .
T
| K13 O K33 :
., F
where ,._1
. &
1 T ]
K, = K+ ) kB.B. (3-133) 5
11 . a1l :
1el 5
2 2
K, = diag (k. k") (3-134)
22 g a, e e ey a
_ . p+l m
K,y = diag (Ka s e, ka) (3-135)
N _ ptl o
K, = [k Bowps o kB, ] (3-136)
T C1 1 C
= .2 - _P pcP -
K, T BCy oo, 5 BCd] (3-137)
m m
a a

This set of clused-loop equations does not have the symmetry properties of the
structural equation (Eq. (3-1)), but Eq. (3-118) could form the basis for

analysis of the closed loop.

An alteranative svclption of the closed loop can be given in terms of
transfer functions. The return difference function is given by

det [1 + Gf(s) Gp(s)] (3-138)

where the controller/structure transfer function

T, 2 -1

Gp(s) = CysB (Ms™ + Ds + k] B (3-139)
E
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Stability of the closed 'oop 1s an essential pruperty and can be charac-
terized as follows. The closed loop, defined by Eq. (3-118), 1s stable if and
only if each eigenvalue of Eq. (3-118) has a negative real part. Equivalent-
ly, the closed loop 1s stable if and only 1f each zero of Eq. (3-138) has a
negative real part. Cuch necessary and sufficient conditions for closed-loop
stability are so cumplicated that little insight 1ato the effect of the actua-
tor dynamics is obtain-d.

Simpler conditions, which do give explicit insight 1nto the effect of
actuator dynamics on closed-loc stability, can be developed using the results
of References 3-17 and 3-22. Suppose that each zero of

det(l + Gp(s)] (3-140)

has a negative rea. part. 1f

Elcf(jw) - 1] < ol1 + G;l(jw)] (3-141)

holds for all w > 0 the closed loop 1s stable. Here 5lG] and olG] denote the
maximum and minimum singular values of a matrix G, respectively.

The general hypothesis of Eq. (3-140) is that the closed loop, ignoring
all actuator dynamics, 1s stable; the hypothesis is satisfied 1in the special
case in Eq. (3-139) 1f Cj 1s symmetric and positive definite (Eq. [3-18]).
The frequency condition, Ey. (3-141), has a simple interpretation aand can be
checked graph-cally.

In the case where multiple actuators are used to control a large space
structure, 1t can be shown that 1t 1s always possible to determine actuators
and actuator controllers of the form of Eq. (3~111) and (3~-1i2) so that the
closed loop 1is stable. Suppose a force controller is chosen so that the
closed loop, 1gnoring actuator dynamics, 1s stable. There are actuator param-

1 1
eters, m_ > 0, <, >0, k_>0,1=1, ..., m such that the closed loop, 1n-

cluding actuator dynamics, 1s stable. &xplicit guidelines for selection of
the actuator parameters are difficult to obtain. As 1in the previous sectiouns,

i , 1 1 )
it appears desirable 10 chouse large n > 0 and small ka >0, 1 =1, ..., p for
, 1 1 :
the reaction actuator parameters and small m_ > 0 and large k_ > 0, i = p + I,
a a
., m fur the transmission actuator paraneter<. Substantial trial and crror

may be required o select the actuator paranccers effectively 1n a particular
case.

3.4.5 Comments
The decentralized control design approach 1s to 1mpose the a priori con-
straint that the controller consists of a force controller and a set of actua-

tor controllers, one for each actuator, as shown 1n Figure 3-4. This approa.n
is natural when the structure is viewed as the "plant" and the actuato
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h dynamics are ignored; a controller obtained on the basis of this assumption is
o essentially a force controller. The actuator controllers can be subsequently
) developed.

The main advantage of this control design viewpoint is that, since all

~ actuator dynamics are ignored in developing a force controller, there is a

N reduction in dimensionzlity and hence complexity of the control design prob-
= lem, Such an order of reduction is often desirable as a means of obtaining a
~ computationally tractable control design problem. Specifically, this decen-

tralized approach depends on obtaining a force controller based on n struc-

tural modes, plus m single-loop actuator controllers, as opposed to the use of

n + m modes, i.e., 2(n + m) state variables if the centralized control design
N approach is taken.

The major disadvantage with this approach is that there can be no guar-
antee of specific closed-loop properties, e.g., stability. As shown in Refer-
\ ence 3-23 and elsewhere, there is the possibility that a closed-loop system
with controllers chosen to stabilize the closed loop, ignoring actuator dyn-
amics, may, in fact, be destabilized by actuator dynamics. Thus closed-loop
- characteristics, where the controller is obtained using the decentralized
N design approach, should always be carefully analyzed. As indicated, a com-

. plete eigenvalue analysis of the closed loop can be performed using, for

; example, Eq. (3-118). An alternative that often gives insight into the spe-
g cific importance of the actuator parameters is to make use of the robustness
test as discussed.

A 3.5 Examples

3.5.1 Control of Single-Mode Structure Using Single Reaction Type Actuator

e Our objective here is to illustrate the theory developed for .reaction
type actuators by examining in some detail the simplest case of a single-mode
structure controlled by a single reaction type actuator.

From Eq. (3-8) and (3-9), the mathematical model for the structure/
actuator is

L T R R Y 4

Mx + Dx + Kx = -ma(;z +%) (3-142)
ma(z + x) + c 2z + kaz = bau (3-143)

where M > 0, D > 0, and K > 0O are structural mass, damping, and stiffness
parameters, and my > 0, ¢4 > 0, k3 > 0, and b; > O are actuator mass,
damping, stiffness, and input parameters; x denotes the scalar displacement
of the structure,
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1t is convenient to introduce the parameters

m k
= .8 = K = D 2 - _a -
o g Y D 27 w M Y a (3-144)

in the analysis to follow. Several differeat control laws are now examined.

First, consider feedback control using only actuator velocity feedback
as given by

u = _Big (3-145)
a
1f the definition
(:a + (:f
anwa = —'—m:——- {(3-146)

is used, the closed-loop characteristic equation can be written as

2
anmas {1 + p)s + 2 U tw

—
N N

7 = 0 (3-147)
(s + 2; w.s + W )(s + wa) *oesw,

1t is easily shown that the closed-loop system defined by Eq. (3-142),

(3-143), and (3-144), is always stable for any g, > 0, ¢4 2 0. Thus, the
structure can be stablllzed by using only actuator veloc1ty feedback or by
using the actuator as a passive damper. A root locus plot for Eq. (3-147) for
the indicated parameter values is shown in Figure 3-5; dependence of the
closed-loop poles on the actuator damping parameter, g, 1s indicated. Al-
though the structure is stabilized by the actuator, there is a modest amount
of closed~loop damping that can be achieved using the feedback control Eq.
(3-145). The maximum damping ratio for the dominant pole pair is 0.12, cor-
responding to the selection of g, = 0.68,

Consequently, the centralized control viewpoint suggests use of the
controller

‘f. Cc.
u = —-S—Z"'b—a-x (3-148)

where both the actuator velocity and the structural velocity are fed back. If
the definition

2§cw8 = M (3-149)

is used, the closed-loop characteristic equation can be written as
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’ g

} A
- .~_:.-4:.-\
N (2 g ws) 52 Tl
N c's Dt

: L+ TR — T —5 = 0
! (8" + 2t ws +w2)(s™ + 20 ws +w ) + 0 8°(2z 08 w,) Ry ;%‘
: (3-150) 390

The closed-loop system, defined by Eq. (3-142), (3-143), and (3-148), is
stable for any 55 > 0 and for f., not exceeding some bound. A root locus

plot for Eq. (3-15M) for the particular value {, = 0.68 obtained in Figure

3-5 is shown in Figure 3-6; dependence of the closed-loop poles on the struc-
! tural damping parameter, Z., is indicated. In this case, significant ad-

i ditional damping cav pe obtained by using the feedback control Eq. (3-148).
Note that Figure 3-o indicates that there is a limit to the closed-loop damp-
ing that can be achieved; the maximum damping ratio for the dominant pole pair
is 0.25 corresponding to the choice g, = 0.19. If the structural velocity
feedback gain is too large so that % > 1.0, the closed loop is unstable.

P g

v v

The decentralized control viewpoint suggests use of the force controller

f, = -c,x (3-151)

together with the actuator controller defined by

Cc
Ue) = - (1 + =5 () ~ o sz(s) (3-152)
a a a

where ¢ = ¢4 5% cf..v As mentioned previously, these expressions can be com-
bined to obtain the expression

c c cc
f . d . d

U = -z - X + X (3-153)
a a a

which can be compared with Eq. (3-145) and (3-148); an extra displacement

N feedback term appears in Eq. (3-153). Hence, the actuator controller Eq.
(3-152) in conjunction with structural velocity feedback for the force con-
troller is equivalent to the controller Eq. (3-153)., The effective actuator
transfer function using Eq. (3-87) is

(sz + Z;amas)(s2 + 2,08 + wz)

G.(g8) =
£
(92 + Z;Swss + wz)(sz + 2006 + mg) + psz(anwas + wi)

(3-154)
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Using the control Eq. (3-153), if the definitions

i
chws " W (3-155)
and
2z w 8
d s
Gp(s) - (3-156)

2
+
8 chwhs + Wg
are introduced, the ~losed-loop characteristic equation can be written as

1+ Gf(s) Gp(s) = 0 (3-157)

The closed-loop system defined by Eq. (3-142), (3-143), (3-151), and (3-152)
is stable for all values g, > 0 and g4 > 0. A root locus plot of Eq.
3-157), for the particular value of g, = 0.68 obtained in Figure 3-5, is
shown in Figure 3~7. Dependence of the closed-loop poles on the structural
damping parameter, PP is indicated. 1In this case, significant additional
damping can be obtained by using the force controller Eq. (3-151) and the
actuator controller Eq. (3-152). Figure 3-7 indicates that there is a limit
to the closed-loop damping that can be achieved. For example, if Lq = 0.25,
the damping ratios for the two pole pairs are 0.47 and 0.48.

As an alternative to a direct analysis of the closed-loop poles, the
robustness test of Eq. (3-95) can be used. One procedure would be to plot the
frequency response of the actuator error, Gf(jw) - ll, which does not de-

pend on the force controller. Then the force controller could be adjusted to
guarantee satisfaction of the robustness inequality Eq. (3-95). In this par-
ticular example, the frequency response for the actuator error function,
,Gf(Jw) -1}, is indicated in Figure 3-8; and for any {4 > 0, the robust-

ness inequality Eq. (3-95) is satisfied. To illustrate the procedure, the

-1
frequency response for the inverse return difference function, ll + Gp (jw)l.

is indicated in Figure 3-8 for the value g4 = 0.25. Certain conclusions can
be drawn from the figure based on the robustness test, Eq. (3-95). First, it
is clear that for g4 = .25, and in fact for any g4 > O, the actuator dy-
namics do not destagillze the closed loop using the force controller Eq.

-1
(3-151). Second, since the separation between |l + Gp (jm)l and le(jw) - ll

i8 an indication of the stability margin, Figure 3-8 can be used to assess
qualitative characteristics of the closed loop. In particular, the closed
loop would be most sensitive to disturbances at a frequency near 2.0 rad/s,
where the "loading peak” for the actuator error occurs. Further, the high
frequency margins are large since the actuator error is small. At low fre-
quencies, the actuator errors are relatively large, but good margin is main-
tained due to the force controller characteristic. These qualitative conclu-
sions should be typical of a large space structure controlled by a single
reaction type actuator, using a properly chosenr force controller.
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.5. Experience has indicated that the magnitude of the loading peak for the actu- -
RO ator error is strongly affected by the assumption regarding open-loop struc- )
{{; tural damping. In particular, the robustness inequality of Eq. (3-95) may not
o be satisfied if the open-loop structural damping is assumed too low.
{
_ﬁa 3.5.2 Control of a Single-Mode Structure Using Single Transmission Type
N Actuator
ATy
v: The previously developed theory is now illustrated by examining in some
3 detail the simplest case of a single-mode structure coatrolled by a single
X transmission type actuator.
i The mathematicz] model for the actuator/structure is based on Eq.
(3-23) and (3-24), w! ch in this case can be written as
MX + Dx + Kx = ka(z - x) (3-158)
::; mz+cz+k(z=-x) = bu (3-159) N
iy a a a a .:?
N .
;;’ where M > 0, D > 0, and K > 0 are structural mass, damping, and stiffness o
. parameters and m, > 0, ¢, > O, k, > 0, and b, > 0 are actuator mass, igi
'2? damping, stiffness, and 1nput parameters; and x denotes the scalar displace- )
-5 ment of the structure. RS
o o
-?i It is convenient to introduce the parameters 'ff
. . o
N _.a 2 _ K _D 2 _ _a _ |
-ﬁ" Pox Y% M’ chms M “a m (3-160) ]
-*‘- a Lt
‘. S~
. in this case. Several different control laws, each based on some form of R
L velocity feedback, are now examined. ;:
b
= First, consider feedback control using only actuator velocity feedback e
s as given by -
,:::. -.'_-
:.": cf . 'j .
u = - —z (3-161) i
b
- a L2
o Define thc actuator damping parameter g, from oy
ik: €a * °f ‘
- 20w = —— (3-162)
\ 7 a a a1}
- a .
:5 The closed-loop characteristic equation can be written as
‘:'_: "

98

g
:




5 1%

.
a
)

vy
»
»

-

2 2
- 2z, 0 s [s” + 2 08 + a+ p)ws]

Py
- 8

7 = 0 (3-163)

(sz + 21;8(.)88 + wz)(sz + mi) + p s2 ms

F} Using this characteristic equation, it is easily shown that the closed-loop
F:: system defined by Eq. (3-158), (3-159), and (3-161) is always stable for any
[

Ta > 0. The structure can always be stabilized by using only actuator vel-
ocity feedback or by using the actuator as a passive damper. A root locus
plot for Eq. (3-163) for a particular case is shown in Figure 3-9; dependence
of the closed-loop poles on the actuator damping parameter, z,, is indicat-

ATMS

* .
et

0% ed. The structure can be stabilized in this manner, but only modest damping
gﬁ of the closed loop can be achieved using feedback of the actuator velocity
. only. The maximum damping ratio for the dominant pole pair is 0.12, corres-
N ponding to the selection of gz = 0.78.

In order to achieve additional structural damping, the centralized con-
. trol viewpoint suggests feedback of both actuator and structural velocity as
. given by the controller

i I 4
u = b
a

z - (3-164)

o| 0
[ e
He

Define the structural damping parameter, %, from
e
Z;Cws * W (3-165)
the closed-loop characteristic equation can be written as
2
(2ccws) w_

1 + = 0
2 2 2 2, 2
(s° + 2z ws + mz](s + 2z ws + wy) + pu(s” + 2¢ u,s)

(3-166)

The closed-loop system, defined by Eq. (3-158), (3-159), and (3-~164), is

stable for any gz > 0 ».d for g, not exceeding some bound. A root locus

plot for Eq. (3-166) for the particular value {5 = 0.78 obtained in Figure _—
N 3-9 is shown in Figure 3-10; dependence of the closed-loop poles on the struc- S
= tural damping parameter g, is indicated. It is clear from Figure 3-10 that g
' substantial additional closed-loop damping can be achieved by feedback of both ]
actuator and structural velocities. In particular, a maximum damping ratio of —
0.2]1 can be achieved for the dominant pole pair, corresponding to z. = 0.21. .fﬁ
If the structural velocity feedback gain is too large so that ¢, > 1.3, the
closed loop is unstabie.
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The decentralized control viewpolnt suggests use of the force controller ”!}%
£ - (3-167) i

¢ - T .

M{j

together with the actuator controller defined by ff;
~-‘1

C .1

f -4

U(s) = +- 1+ 2 F (s) - = s2(s) (3-168) 3o

ba v ka d ba ;;;%

[

where ¢ = ¢; + ¢g. The force controller and the actuator controller can
be combined to obtain *he equivalent control expression

Aad. bl

c c cc T
_ _ £ _d. d .. _ S
u = 5% " § ¥ k (3-169) g

a a a !P:j

which can be compared with Eq. (3-161) and (3-164); this form for the controi-
ler involves an extra acceleration feedback term. The effective actuator
transfer function based on Eq. (3-100) is given by

(2z w s + wz)(sz + 2t ws + wz]
C.(s) = a a a s's s
£ (s + 20 w.s + wz)(sz + 2 ws + w2) + pwz(s2 + 2z w_8)
N S 8 s’/ a a a "] aa

(3-170)
For the control Eq. (3-169), define the structural damping parameter, g4, by

[od

d
2§dws = ¥ (3-171)
and define
2z .w_ s
G (s) = ———O8 5 (3-172)
P s + 2t ws tw
s s s

The closed-loop characteristic equation is

1 + Gf(s) Gp(s) = 0 (3-173)

The closed-loop system, defined by Eq. (3-158), (3~159), (3-167), and (3-168),
is stable for any 5, > O and any g4 > 0. A root locus plot of Eq. (3-173)

for the particular value of g, = 0.78 obtained in Figure 3-9 is shown in

Figure 3-11; dependence of the closed-loop poles on the structural damping
parameter ;4 is indicated. It is clear that significant damping can be ob-
tained using the force control Eq. (3-167) and the actuator control Eq. (3-168).
As seen from Figure 3-11, there is a limit to the closed-loop damping that can
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Closed-loop root locus

Type: transmission actuator
Feedback: decentralized
Parameter: L4
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be achieved. 1If 74 = 6.32, the damping ratios for the two pole pairs are ;.;A
0.50 and 0.58. L

Instead of a direct analysis of the closed-loop poles, an analysis of ;;;:
the closed loop using the robustmess test, Eq. (3-108), can be used. In this o

particular example, the frequency response for the actuator error function,

lcf(jm) - 1{, is indicated in Figure 3-12; for any g4 > O the robustness
nequality of Eq. (3-108) is satisfied. As an illustration, the frequency

response for the inverse return difference function, 'l - G-l(jw) , 1s also

indicated in Figure 3-12 for the value gq = 0.32. Certain conclusions can

be drawn from Figure 3-12, based on the robustness test in Eq. (3-108).
First, for the specif® ' case where 74 = 0.32 as shown in Figure 3-12, aund,

in fact, for any g4 > 0, the actuator dynamics do not destabilize the closed
loop using the force controller Eq. (3-167). Also, the closed loop is most
sensitive to disturbances with a frequency near 1.0 rad/s, where the "loading
peak” for the actuator error occurs. The low-frequency margins are large
since the actuator error is small. At high frequencies, the actuator errors
are relatively large but a good margin is maintained due to the force control-
ler characteristic. These qualitative conclusions should be typical of a
large space structure controlled by a single transmission type actuator using
a properly chosen force controller. Experience has indicated that the magni-
tude of the loading peak for the actuator error is strongly affected by the
assumption regarding open-~loop structural damping; the robustness inequality
of Eq. (3-108) may not be satisfied if the open-loop structural damping is
assumed too low.

3.5.3 Comments

The two simplest possible examples have been considered, where the large
space structure can be described by a single vibration mode. Caution must be
exercised in making general conclusions on the basis of two examples but the
following comments are suggested by the examples.

It is possible to add damping to a structure by operating an electro-
mechanical actuator as a passive damper, or by using actuator velocity feed-
back only. 1t appears that this control approach can add only a modest amount
of damping to a structure, however. In order to increase the closed-loop
damping, controls developed using the centralized and decentralized viewpoint
have been developed and arilyzed. A centralized controller, where both actu-
ator and structural veloc ities are fed back, can substantially increase the
system damping. The feedback gains must be carefully selected so that the
closed loop is stable with good response characteristics. A decentralized
controller with tue force controller based on structural velocity feedback can
also substantially increase the system damping.

k.. Our analysis of the closed-loop characteristics has been based on direct
. evaluation of the closed-loop poles. Such a direct approach is generally dif-
ficult to use as a method for design or modification of a force controller.

In the case of decentralized control, use of a robustness test has been demon-
strated as a way of evaluating the effects of the actuator dynamics on the
closed loop. This robustness condition may prove effective as a basis for
design or modification of a force controller.
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Although the two examples do not demonstrate it, in more complicated
cases, there 1s the possibility for closed-loop instability unless the force
controller and actuator controller are carefully selected. The robustness
demonstrated in the two examples is a consequence of the use of a force con-
troller defined in terms of constant gain structural velocity feedback.

3.6 Conclusions
3.6.1 Extensions

A rather detailed theory has been developed for large space structures
controlled by certain classes of electromechanical actuators. This theory has
been based on rather < ecific assumptions about the actuator characteristics
and the assumed contr.ller forms. The specifics of these assumptions are not
critical and extensions in several directions can be indicated.

Our development has been based on specific assumptions about reaction
type actuators and transmission type actuators, as characterized by the schem-
atics in Figures 3-1 and 3-2. Although it appears that many physical actua-
tors do fall within one of these two classes, there is no doubt that a paral-
lel theory could be developed for electromechanical actuators where slightly
different assumptions are required. It should be clear that the qualitative
system theoretic characteristics of reaction type actuators and transmission
type actuators are similar; their characteristics differ only in detail.

Hence our development can be viewed as indicating qualitative system charac-
teristics of any electromechanical actuator.

Development of the material in Section 3.3 on centralized control was
illustrated solely through the use of a constant gain actuator and structural
velocity feedback. Such a simple control form is natural where the objective
is augmentation of system damping. However, in many cases other variables,
e.g., displacements and accelerations, may be available for feedback, Fur-
ther, control laws based on use of optimal linear-quadratic-Gaussian theory
may be desired, where a filter or observer is incorporated as part of the con-
troller, Each of these cases represents a viable procedure for developing a
centralized control law. The key idea is that, no matter what control design
procedures are used, the design model is assumed to include both structural
and actuator dynamics.

Extension of the material in Section 3.4 on decentralized control is
possible, in the sense t .ac modifications to the developed forms for both
force controller and actuator controllers can be made. The development was
illustrated by considering a force controller defined in terms of constant
gain structural velocity feedback. The form of the actuator controllers sug-
gested is consistent with that class of force controllers. However, other
classes of force controllers could be used, including other output feedback
forms or control based on optimal linear-quadratic-Gaussian theory. In prin-
ciple, the actuator controllers specified in Section 3.4 could be used in con-
junction with any force controller; the only limitation arises from the fact
that the force controller and actuator controllers must be realizable. Thus
there are many extensions to the developments in Section 3.4 that could be
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made. The key idea is that the force controller be chosen to suitably control
the structure, ignoring actuator dynamics, and the actuator controllers be
chosen to suitably suppress the actuator dynamics.

3.6.2 Summary

There has becn substantial research into the problems of active control
of large space structures. Many 1issues have been carefully addressed and a
coherent theory is evolving.

With few exceptions, the effects of actuator dynamics as part of the
closed~loop control scheme have been ignored. 1t is the premise of this work
that actuator dynam 5 may play an important role in the feedback control of
large space structvres. Specifically, 1f actuator dynamics are ignored in the
control design process, their presence in an actual closed-loop system may
tend to be destabilizing due to neglected actuator phase shifts. Such an un-
desirable possibility is thought to be more likely precisely in the class of
control problems considered, namely where a lightly damped elastic structure
is coupled to actuators with damped oscillatory dynamics. There is also the
possibility that actuator dynamics play a desirable role in the closed loop.
Their filtering effect provides gain roll-off at low frequencies and at high
frequencies; thus, electromechanical actuators tend to suppress coupling with
low-frequency rigid body modes and with high-frequency unmodelled modes. In
any event, the presence of actuators in the closed loop should be carefully
taken into account.

Our objective has been to develop a framework for the control design
process where effects of actuator dynamics are not completely ignored. Two
different viewpoints have been suggested. It is impossible to select either
the centralized design viewpoint or the decentralized design viewpoint as pre~
ferable; each approach should have sufficient flexibility to allow development
of suitable control strategies for a large space structure with multiple elec-
tromechanical actuators.

A detailed examination has been made of the control problems, associated
with each of these design viewpoints. 1t is hoped that this work will serve
to focus additional attention on the role of actuators and other instrumenta-
tion as a critical part of closed-loop control of large space structures.
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SECTION 4

MODAL-SPRING PLUS MODAL-DASHPOT DESIGN
OF OUTPUT FEEDBACK VIBRATION CONTROLLERS

A modal-spring plus modal-dashpot design of displacement and velocity
output feedback vibration controllers was performed for the 20-mode VCOSS
example model. Only the 10 primary modes (those modes which contribute the
most to the RMS line-of-sight errors) we.e considered in the design process,
but all 20 modes wece used in the evaluation. The 20-mode closed-loop system
is as stable as expected (see Reference 4-1), and each of the 20 modes has an
increase in frequency or damping ratio or both.

The purpose of the design was to increase the frequency of some primary
modes by "modal springs” and the damping ratio of some other primary modes by
"modal dashpots™. In other words, it was desired to have some closed-loop
poles with larger imaginary parts, and some others to have more negative real
parts. As in the preceding sections, the nine collocated actuator/sensor pairs
were used. The rows of the 10 x 9 modal actuator influence matrix (and equiva-
lently, the columns of the 9 x 10 modal sensor influence matrices) were very
dependent on each other. Since it had been observed that high feedback gains
would result in large spillover, one design criterion was to restrain them from
extremely high gains. Feedback gains for both displacement and velocity feed-
back can be greatly reduced by requiring the rows of the modal actuator influ-
ence matrix (and the columns of the modal sensor influence matrices) to have a
high degree of linear independence. A sequential “Gramian test” was then
developed and implemented in PL/I which would choose the most linearly inde-
pendent rows (or columns). The Gramian test indicated that only 5 to 6 of the
10 primary modes should be used in the design, since their modal actuator/
sensor influences were most independent,

The displacement and velocity feedback gain matrices, G and GV’ re-
spectively, were computed using the pseudoinverses that were initially consid-
ered by Canavin for modal dashpots. Damping was added to modes 9, 14, 22,

23, 33, and 34, while frequency increases were applied to modes 7, 9, 12, 22,
and 23. The desired damping ratio, iq® and the desired frequency, wige

for these modes are shown in Table 4-1, The resulting gain matrices, Gp and
Gy, are shown in Tables 4-2 .and 4-3, respectively.

These two feedbaclk gain matrices were simultaneously put into the 20-mode
model and the closed-loop poles were evaluated. Table 4-4 lists the real and
imaginary parts of the puvles, their frequencies, and damping ratios. Recall
that all 20 modes cre assumed to have an inherent damping ratio 7;45 = 0.00l.
The corresponding open—-loop modes are also indicated in the table. Linking the
closed-loop modes to the open-loop modes was accomplished by tracing the root
locus when the gain matrices were gradually scaled down. Specifically, the
gain matrices, G and G, were first replaced by yG, and Gy, respec-
tively; the closed-loop poles were then computed for discrete samples of y
between 0 and 1. When y = 1, the poles correspond to the closed-loop modes,
and when y = 0, they correspond to the open-loop modes. Figure 4-1 shows such
a portion of the root locus.
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Table 4-1. Desired damping ratios and frequencies.

Mode Zid wid

7 -—- 3.3
9 0.103 3.3
12 --- 4.36
14 0.261 ---
22 0.707 14.77
23 0.707 35.59
33 0.036 -—-

34 0.026 -—-
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Table 4-4. Closed-loop poles.
Corresponding
Real Part Imaginary Part Frequency Damping Ratio | Open-Loop Mode
-0.54D + 06 0.0 45
-0.44D + 03 0.66D + 04 0.66D + 04 0.67D - 0! 62
-0.44D + 03 ~0.66D + 04 0.66D + 04 0.67% - 0l
-0.16D + 04 0.00 47
-0.48D + 01 0.72D + 03 0.72D + 03 0.66D - 02 56
-0.48D + 0} -© 72D + 03 0.72D + 03 0.66D - 02
-0.29D + 0l u.13D + 03 0.13D + 03 0.23p - 0l 48
-0.29D0 + 0! -0.13D + 03 0.13D + 03 0.23D - 0!
-0.17D + 0l 0.10D + 03 0.10D + 03 0.16D - 0l 40
-0.17D + 01l -0.10D + 03 0.10D + 03 0.16D - 0!
-0.32D + 00 0.78D + 02 0.78D + 02 0.41D - 02 34
-0.32D + 00 -0.78D + 02 0.78D + 02 0.41D - 02
-0.11D0 + Q1 0.58D + 02 0.58D + 02 0.19D - 0! 37
-0.11D + 0Ol -0.58D + 02 0.58D + 02 0.19D - 01
-0.36D + 0l 0.42D + 02 0.43D + 02 0.85D - 0l 33
-0.36D + 0! -0.42D + 02 0.43D + 02 0.85D - 0l
-0.65D + 01 0.39D + 02 0.39D + 02 0.17D + 00 15
~0.65D + 0l -0.39D + 02 0.39D + 02 0.17D + 00
-0.17D + 0! 0.29D + 02 0.29D + 02 0.59D0 - 0l 24
-0.17D + 0! -0.29D + 02 0.29D + 02 0.59D - 0!
-0.13D + 02 0.00 47
-0.13D + 00 0.13D + 02 0.13D + 02 0.97D - 02 23
-0.13D + 00 -0.13D + 02 0.13D + 02 0.97D - 02
-0.81D -~ 02 0.73D + 01 0.73D + 0l 0.11D - 02 22
-0.81D - 02 -0.73D + 0l 0.73D + 0l 0.11D - 02
-0.74D - 03 0.72D + 00 0.72D + 00 0.10D - 02 7
-0.74D - 03 -0.72D + 00 0.72D + 00 0.10D - 02
-0.26D - 01 0.00 45
-0.12D - 0! 0.41D + 01 0.41D + 0l 0.29D - 02 16
-0.12Dp - ol -0.41D + 01 0.41D + 0l 0.29D - 02
-0.13D - 01 0.¢-u + 0l 0.41D + 0l 0.33D - 02 14
-0.13D - ol -0.41!D + 01 0.41D + 01 0.33D - 02
-0.47D - 0! 0.38D + 0! 0.38D + 0l 0.12D - 0l 13
-0.47D - ol -0.38D + 0! 0.38D + 0l 0.12D - 0!
-0.53D - 02 0.36D + 01 0.36D + 0l 0.15D - 02 12
-0.53D - 02 -0.36D + 0! 0.36D + Ol 0.15D - 02
-0.43D - 02 0.33D + 0l 0.33D + 0l 0.13D - 02 10
-0.43D - 02 -0.33D + 0l 0.33D + 0l 0.13D - 02
-0.29D + 00 0.32p + 0l 0.32D + 0l 0.89D - 0! 9
-0.29D + 00 -0.32D + 0! 0.32D + 01 0.89Dp - 0!
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Figure 4-1. The root locus (0 <y < 1).
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It should be noted even though many poles other than those used in design )
also moved due to spillover, the closed-loop system is stable. The reduced-
order design of modal-spring/modal-dashpot type of output feedback controllers
can guarantee full-order closed-loop stability, as was proved analytically and ;
demonstrated numerically by a simple free-free beam in Reference 4-1. This re- A
sult iLs agaln demonstrated numerically by this rather complicated example.
o
’
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SECTION 5

A CONTROLLED EXPERIMENT FOR ACOSS DESIGN

5.1 Motivation

Attempts to synthesize an active control strategy for ACOSS Model No. 2
that is stable, that accommodates the effects of a broadband disturbance, and
that meets stringent specifications on the error in line-of-sight (LOS) rota-
tion have so far becn unsuccessful. Early synthesis efforts using several
different, but complementary, approaches to the controller design appeared
promising at the leve) of a 10-mode design model [5-1]. Subsequent evaluation
of these designs on a 20-mode evaluation model proved disappointing, exhibit-
ing spillover-induced instability. Further attempts to modify the designs so
as to (btain the desired stability, disturbance accommodation, and LOS per-
formance were similarly unsuccessful. Except in isolated instances in which
unrealistic assumptions were invoked, the various designs either failed to
meet LOS performance specifications at the design model level, or proved un-
stable in evaluation. It 18 not our intent to give the details of these at-
tempted designs here. Rather, the purpose of the present section is to out-
line a new approach to the process of synthesizing active controllers that
holds high promise for success in the sense described above.

At least two reasonable alternatives come to mind at this point. One is
to try to answer the question: "What went wrong?” That is, to focus on dis~
covering why the synthesis attempts so far have not succeeded, employing
available analysis tools to suggest ways of improving and reapplying the ap-
proaches already tried. Another is to try to answer the question: "What is
going on?” That is, to reexamine carefully and systematically all the princi-
pal steps in the synthesis process, not just the controller design itself, and
allowing what is observed to suggest new approaches to the synthesis process.

There is a growing conviction that the latter alternative is the course
that should be followed, principally because it is the more fundamental one.
Since it subsumes the former, it is certain to take longer, but can be ex-
pected to provide a much deeper understanding of the synthesis process, and
suggest answers to questions that perhaps have not arisen yet. This
conviction has been reaffirmed through a recent editorial by a well-known
expert in the field of cortrol, who has proposed a major and intentional
effort in "experimental .oucrol science™ [5-2].

5.2 Preliminary Observations

In order to set the stage properly for the approach to be presented, a
few preliminary observations are needed.

There are at least four principal elements that make up the complete
process of synthesizing an active control strategy for a complicated structure
such as ACOSS Model No. 2. First is the selection of a basic structural de-
sign to work with. 1In the case of Model No. 2, the original design has been
substantially revised several times. In the present discussion, the reasons
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for, or the detalls of, these revisions are not as important as the recoganl-
tion that most of them have substantial influence upon the control syanthesis

process. Second is the selection of two or more distinct mathematical models ]

of the structure, one for design, and one or more for evaluation of the de- ¥ ) {
I sign. Essentially, this may reduce to a (nontrivial) decision as to which o
- modes of the original (finite element) structural model to retain for the var- S
i ious purposes., Third is a selection of active devices (sensors and actuators) . %?
" to implement the control and observation strategies. Fourth is a selection of -
: an algorithm for determining the feedback structure of the coatroller. ﬁ:t”
- ®
l It is importint to note in passing that, whereas each of these elemeats ‘

when viewed separately is quite amenable to sophisticated mathematical analy-
sls, the entire synthesis process that incorporates the interactions between
these elements 1s nc. nearly so amenable, if at all. This fact represents a
substantial obstacle to obtalning a satisfactory synthesis.

ANl S AR N

In the designs attempted to date, attention has focused overwhelmingly
on the fourth element: algorithms for determining the controller feedback
structure. Selections of the first two elements (structural design and
reduced-order model selection) have been made with a certain arbitrariness,
principally for simplicity and convenience, and the third element (active
\ devices) has been selected with certain somewhat arbitrary restrictions (e.g.,
no nodal actuators). These three selections have remained fixed through all

-y v v
I

2 of the attempts at determining an appropriate controller feedback structure.

- The results suggest that in so doing, the overall synthesis problem has been

- overconstrained. Either a solution does not exist, or the process of finding
- it has an unacceptably low probability of success. 1In particular, there

appears to be a strong possibility that the reduced-order models (design and
evaluation) and the active device selections are mutually incompatible.

We propose to approach this impasse by conducting a "controlled experi- :
ment” in which each principal element in the overall synthesis process 1is sys-
tematically examined. Essential features of the experiment are that: #

(1) Experiment "variables” are adjusted only one at a time. .‘

(2) The effect of adjusting any experiment “variable” is assessed by ’1ffé
conducting a complete end-to-end synthesis attempt.

(3) Results of each synthesis attempt are analyzed and, as appropriate, z{k;i

taken into r.count in subsequent stages of the experiment. .

5.3 Definition of a "Controlled Experiment” :

“Variables” of the controlled experiment identify important features of .

each of the principal elements in the complete synthesis process. They are: @

a: The basic structural design. .

b= (b, by, b3): Reduced-order models. :

b;: The criterion for ranking of structural modes. ':Q:,‘;I
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by: The basis for retaining modes in the design model.
b3: The basis for retaining modes in an evaluation model.
c = (c], ¢y, c3): Active devices (sensors and actuators). Q
c1: The types of active devices to be allowed (e.g., axial o
only). Lol
cp: The criterion for selecting locations of active devices. N
o .
c3: The class of reduced-order models to be considered in
sele “ing active devices.
d: The algorithm for determining controller feedback structure. :
To clarify these variable definitions, we note that the following assignment ."J
of initial values to these variables describes the design process with ACOSS S
Model No. 2 as it has developed to date AN
v
a « al0) , b « b(0) , c « c(0) (5-1) s
where m
a(o) -] Revision 3 of ACOSS Model No. 2, incorporating details of the
interaction between certain rigid components and the associated
flexible supports, and lightweighting of nodal connecting ele-
ments
bio) & the root-mean-square (RMS) LOS-error induced by the deflection
of a mode (ignoring interactions with other modes) in response
to the broadband disturbance (Reference 5-1, Section 5.2.1)
bgo) g the first 10 modes, ranked according to criterion bio)
bgo) & the first 20 modes, ranked according to criterion b§0)
(0) a
< = only node-connecting elements (e.g., wmember-dampers, axial-
motion sensors)
(0) a
c = a best approximation (in the least-squares sense) to each

h. component of the modal representation (or modal coefficlent) of
the LOS-rotation vector by linear combinations of node shapes

corresponding to a candidate selection of active devices

- (Reference 5-1, Section 3)

> e
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the modal representation of the LOS-rotation vector in crite-

(0)

2 reflects only those modes included in design model

KON

rion ¢
(0)
by

Variable "d” has assumed a number of values in the various design attempts,
including

0)

>

d( basic disturbance rejection control (DRC) design in which
complete knowledge of the disturbance statistics 1is assumed

(Reference 5-1, Section 4)

4D

ne>

linez. quadratic optimal control design, in which no explicit
knowiedge of the disturbance statistics is assumed (Reference
5-1, Section 5)

2)

ue>

algorithm d(l) augmented by the incorporation of measures to
alleviate spillover (Reference 5-1, Section 6)

¢

among others.

In the initial phase of the experiment, we propose to fix the values of
variables "a"” and “"d", and focus on the effects of changes in variables "b"
and "c"--particularly the interaction between them. The fixed values chosen

"

for variables "a" and “"d" are

a « a(OO) ’ d « d(o)
where
(00) &
a = Revision 1 of ACOSS Model No. 2, a stiffer structural design
which does not contain the lightweighting feature of design
a

A pictorial representation of the overall synthesis process is shown in Figure
5-1. A most significant feature of this process is the interaction of vari-
ables "b” and "c”, which has not been given sufficient attention in previous
design attempts.

Specific classes of values for variables "b" and "c” that appear to be
of interest include those listed below. These listings are most conveniently
expressed as funciions of other experiment variables and of additional vari-
ables nc, ng that may be considered parameters of the experiment.

(1) a
b) =

criterion bio) augmented by specific a priori informa-
tion on physical or modal deformations
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{b)

1

ACTIVE DEVICE
SELECTION
{c)

FEEDBACK STRUCTURE
SELECTION
{d)

Figure 5-1.

i

Process for active control synthesis.
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5 ®
i a
: (1) 3 R
- b2 (nc,bl) = the first n_, modes, ranked according to criterion b1 k
. (i.e., the value being defined for by is a function 3
of whatever value has been selected for variable b)) -‘]
(2) A (1 N
b2 (nc,bl) = the modes selected by criterion b2 (nc,bl) augmented o
by all modes whose natural frequencies lie in the range ffjf
asgociated with those selections (i.e., not allowing an S
interlacing of controlled and residual nodes) PR
° |
b(l)(n sb.) 4 the first n_ modes (n_, > n_.), ranked according to cri- SR
3 R?71 R c R
terion b) RS
8 (n,b.) 4 the mod lected by criterion bi'’(n,b d
3 (ng,b; e modes selected by criterion ngs 1) augmente
by all modes whose natural frequencies lie in the range
associated with those selections
(1) A (0)
N = devices ) together with devices located at nodes and
capable of translational action only
. c(z) s devices c(l) a ted with ional i bil
: 1 1 ugmented w a rotational action capa -
b
, ity at nodes
L cél) s criterion céo) augmented by specific a priori informa-
; tion on physical or modal deformations
. cgl)(cz,bz) 4 the modal representation of the LOS rotation vector in
b criterion ¢y reflects all modes included in design
model b
cgz)(cz,bJ) 4 the modal representation of the LOS rotation vector in

criterion cp reflects all modes included in evaluation
model bj

A pictorial repre-..ntation of typical stages of the experiment in terms
of experiment variables is shown in Table 5-1. Each column represents an
end-to-end attempt of the entire synthesis process., The succession from one
column to the next (from left to right) involves changing only one variable.

5.4 Expected OQutcome

It is expected that the conduct of this experiment will lead to a deeper
understanding of the complete process of active control synthesis. It is
especially important to understand more clearly the essential elements of
selecting appropriate reduced-order models, selecting active devices for
actuation and sensing, and the nature of the relationship between them. In
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e particular, it is expected that the results of the experiment will generate a
process by which a reduced-order design model and a set of active devices
which are mutually compatible can be found. Such mitual compatibility is the
key to successful synthesis for active control.

L d
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