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SECTION I

INTRODUCTION

1.1 Scope

The present report gives an account of the progress made during the re-

porting period in four principal subject areas:

(1) Large Space Structure (LSS) system identification.

(2) The effect of actuator dynamics on LSS control.

(3) Modal dashpot/modal spring control design. F-'

(4) A controlled experiment for ACOSS design.

1.2 LSS Identification

In Section 2, the basic approaches to LSS identification and the major

difficulties encountered in the identification are discussed. Subsequently,

attention is focused on the high-resolution identification problem typifying
LSS. A novel procedure for identifying lightly damped, closely spaced modes
is derived. The approach is rooted in the notion of numerical rank of matrices

which has bearing upon the spectral estimation problem. Optimizing the sampl-
ing rate and relaxing the Nyquist rate to construct a "zoom-in" procedure are

utilized in deriving efficient and numerically stable high-resolution spectral

analysis algorithms.

Although the procedures reported here are obtained in the context of LSS

identification, they can also be applied to arbitrary high-resolution spectral

analysis problems such as radar signal processing.

1.3 Actuator Dynamics

The common assumption in work on LSS control is the availability of ideal
sensors and actuators. Namely, the bandwidth and the power of the devices are
assumed unlimited and structure/actuator interaction is ignored. Section 3 re-
ports our observations .,a the effects of incorporating the actuator dynamics in

the model. The proper way to model conventional actuators is presented first.
Subsequently, two approaches to the incorporation of the actuator dynamics are
explored.

(1) The structural model is augmented by the actuator model, and the

controller is designed for the augmented plant. It is seen that

* the augmented plant has the same dynamic representation as struc-

tures with optimal actuators. Thus, the conventional LSS control

design approaches are applicable to the augmented system. . -

A
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*, (2) A controller is designed assuming ideal actuators, and a compensator
is designed around the actuator. The design issues for actuator
compensators are addressed and some solutions are proposed.

1.4 Modal Spring and Modal Dashpot Design

Section 4 is complementary to the second ACOSS 11 semiannual report
A[1-1, where various designs to accommodate a broadband disturbance are con-

sidered. In the present section, a procedure for a combined velocity and posi-
tion feedback (dashpot and spring, respectively) are to be designed to augment
damping and move frequencies of the closed-loop plant. A root locus procedure
for assessing the impact on the full order closed-loop eigenvalue behaviour is
also described.

1.5 A Controlled Experiment for ACOSS Design

Our previous efforts to design a control system to accommodate a broad-
band disturbance and achieve stringent line-of-sight (LOS) error requirements
([1-1J and Section 3 of this report) have achieved only partial success.
Either the control design has met the LOS error requirement for the design
model, but proved unstable when applied to the full-order LSS (adverse spill-
over effect); or spillover effect has been accommodated, only to fail to meet
LOS error requirements. We attribute lack of success to certain mutual incom-
patibilities in the distinct processes of reduced-order model selection,
sensor/actuator placement, and reduced-order controller design.

In Section 5, an account is given of a procedure we have devised to com-
bine the various selection and design steps to simultaneously achieve spillover
accommodation and meet LOS error requirements. We have not reported here on
the progress made on the design itself. This will be discussed when the itera-
tive procedure has converged into an acceptable design.

1.6 Perspective

An attempt is made to document major achievements and observations, even
if they are merely stepping stones towards the design and implementation of

V" identification and active control of LSS. Such stepping stones might be dis-
aX- carded in the study if they are found to have little merit.

Some work in progress has not been discussed in this report since it has
not matured enough for documentation. In the context of identification for ex-
ample, the procedures for recovering the mode amplitudes at the sensors, how
amplitude information would be used to construct mode shapes, and our work in
input-output characterization from measurement and the subject of input design
have not been reported.

The discussion on actuator-structure dynamic interaction is the first, to
our knowledge, in the ACOSS literature. It is the first step towards the rig-
orous analytic incorporation of actuators into models. More work is being done

*: to evaluate its impact on ACOSS design.
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SECTION 2

STRUCTURE IDENTIFICATION--THE RESOLUTION PROBLEM
AND ITS SOLUTION

2.1 Introduction

The organization of Section 2 is as follows. Section 2.1 discusses the
background and difficulties encountered in structure identification problems
and their solutions. Section 2.2 gives the background of the role of the sam-
pling rate in system identification and spectral estimation. In Section 2.3,
we discuss the effect of sampling rate on the fast Fourier transform (FFT).

This is a rather straightforward discussion. Section 2.4 establishes the

foundation for parametric spectral analysis for a sampled data stochastic pro-
cess. The role of the sampling rate within the classical Nyquist constraints
is discussed in Section 2.5. A zoom-in procedure is described in ction

2.6. Generic examples are brought in Section 2.7. The foregoiLn !ctions
were devoted to narrowband signals. Section 2.8 describes a decl *ion tech-
nique to enable the analysis of broadband signals.

In applying identification to Draper model simulated data, re so
far demonstrated limited success in the sense that we have succes .y iden-
tified reduced-order models, where the reduction in order corresponds to a

failure to resolve closely spaced modes. The decimation procedure and the
zoom-in algorithm are presently being tested against Draper model structural
data. Thus, the report of the experiment results is deferred for future

documentation.

2.1.1 Background

One of the first tasks to be undertaken in the quest for large space
structure (LSS) deployment and application is the establishment of procedures
for modelling such structures. Analytical modelling, although an essential

step, does not provide sufficient information for practical utilization of

LSS for a few reasons.

(1) Some phenomena, like the damping mechanism, high-frequency behav-

ior, and joint dynamics, are not well understood, and thus cannot
be reliably incorporated into analytical models.

(2) LSSs are properly modelled by distributed parameter systems (par-

tial differential equations). However, such models are often too
difficult to construct, and are usually not amenable to control
design. Furthermore, the state-of-the-art of identifying distri-
buted parameter systems has not matured enough for routine appli-
cations. Hence, the usual models for LSS are of the lumped-
parameter, finite-dimensional type. Such models can be derived

using an approximation of the distributed parameter model, e.g.,
using finite-element techniques, or can be obtained directly from
the physical structure, say, by representing it as a mesh of rigid

4
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bodies subject to massless elastic constraints. The final model is
often represented via the vibration equation

Mx +Dx + Kx = f (2-1)

The evaluation of such an approximation and the estimation of the unknown
entities in Eq. (2-I) (e.g., the D matrix) will require the implementation of
a parameter estimation technique, henceforth referred to as identification.

The problem of identification can be philosophically addressed from two
points of view.

(1) Model Validation--Construct an experiment and employ a procedure to
estimate the parameters of a model constructed from physical con-
siderations. For example, estimate the mass and stiffness matrices
in Eq. (2-1). On a more fundamental level, estimate the elastic
properties of the structure, such as Young's moduli.

(2) Engineering Modelling--Estimate input/output characteristics of the
"plant", i.e., the LSS response to actuator or disturbance forces
as observed via a given set of sensors. Both actuators, sensors,
and their dynamic characteristics and placement on the structure,
might be determined based on control considerations using an ana-
lytical approximation of the plant.

Obviously, the two approaches are not disjoint. Information extracted
from either approach might be utilized beneficially to construct the comple-
mentary model.

This section concentrates on the extraction of frequency/damping infor-
mation from LSS measured data. Such information ij the basis for constructing
engineering models as discussed in Option 2 above.

2.1.2 Difficulties .

There are a few features of LSS which hamper the extraction of fre-
quency/damping information from experimental data.

(1) The "Curse of Dimensionality"--As already discussed, LSSs are
essentially infinite dimensional. Even if attention is restricted
to the bandwidth of the sensors and actuators, the number of modes
to be identified is still large. For example, Figure 2-1 gives the
frequency response of Draper Model #2 to a 15-Hz disturbance. (See
Reference 2-28 for more information.) The identification of a
high-dimensional system has so far not been successfully demon-
strated in the literature.

(2) Closely Spaced Modes--The signal-processing literature has devoted
a considerable amount of attention to constructing algorithms which -7-,
are capable of estimating sinusoids with small frequency separa-
tions (closely spaced modes). As is obvious from Figure 2-1, this
is a fundamental problem for LSS identification.

5
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(3) Small Damping--The i-entification of poles close the the jw axis
has also been a challenge to the signal processor. The difficulty
in estimating small damping is nicely explained in Reference 2-29
using statistical arguments. The damping ratios commonly assumed
in the context of LSS are of the order of 0.1 to 1 percent.

(4) High Process and Measurement Noise--The present state-of-the-art in
sensor technology in the very low frequency range for LSS applica-
tion suggests that the quality of measurements to be used in the
identification process might require an estimation technique tai-
lored for a high-noise environment.

- One or more of the above-mentioned problems appear in a variety of iden-
tification applications. It is the culmination of all four difficulties which
makes the identification of LSS especially challenging.

Difficulties (2) and (3) can be classified as spectral resolution prob-
lems. In this section, we report a novel approach to the high resolution
spectral analysis problem developed at CSDL. The algorithm developed is espe-
cially suited for handling difficulties (2) and (3). However, it is also
shown to be noise resilient. The modification of the algorithm to handle high
dimensional models is also discussed.

* IIAlthough we have developed our high resolution spectral analysis tech-
nique in the context of LSS identification, it should be noted that the pro- --

cedure is valuable in any signal-processing application, where high resolution
is desirable, as in radar signal processing or geophysical data analysis.

2.2 Spectral Estimation and Sampling

High resolution spectral estimation has been the subject matter of
* numerous recent publications in the signal-processing literature. The wide

range of applications and the theoretical interest in the subject are reflect-
ed in the special issue on spectral estimation of the IEEE Proceedings [2-11. U

In surveying the literature devoted to spectral estimation, we have
found that the premise of most of the work is the availability of a sequence
of uniformly sampled data points of a continuous (stochastic) process. The
analysis and the subsequently constructed algorithms treat the discrete time
process while ignoring the sampling rate issue. P

It is the purpose of this section to demonstrate the crucial dependence
of spectral resolution on the sampling rate. It is shown that by examining
the sampling rate issue we obtain, using a computationally simple algorithm,
spectral resolution as good as with other more complex procedures.

To be more specific in the discussion following, let

[y(t): 0 < t < tf ; tf finite or -

7



be the (stochastic) process to be analyzed. Digital spectral analysis is per-
formed on the data

[y(kT): k - 0,1,...,N] ; N finite or - p

Intuitively, the information contained in the data is inversely proportional
to T. Furthermore, if the process is band-limited (tf - in this case)
by the Shanon interpolation formula, the data to represent the process if
T < TNyq M i/BW, where Nyq abbreviates Nyquist, and BW = bandwidth (in rad/s).

Since tf is usually finite, aliasing can be reduced only by choosing T to be
as small as possible. We believe that these mathematically sound and intui-
tively appealing statements have hindered the use of T as a parameter in
improving spectral resolution. Specifically, most of the work on spectral
estimation is based on the availability of the sequence Jy(k)], i.e., T--the
sampling interval is usually suppressed and subsequently ignored (e.g., Refer-
ence 2-1).

The sampling rate plays a role in nonparametric spectral estimation,
though not as dramatic a role as in the parametric analysis. In Section 2.3,
the role of T when spectral analysis is performed using the conventional dis-
crete Fourier transform (DFT) will be discussed. The discussion is rather
straightforward and probably would not surprise practitioners in the field.
We bring up this result only for the sake of completeness.

The dramatic role of the choice of T is in the domain of parametric
spectral estimation. Assuming tf large enough to enable resolution, say, of
two sinusoids in white noise, then the problem of resolution is fundamentally
a numerical one. Namely, regardless of the sophistication and statistical
soundness of an algorithm employed, if the frequency separation is small
enough, the algorithm will fail. To demonstrate this point consider the fol-
lowing:

Example 1: We have applied covariance least squares* to 128 samples
of

y(t) = sin (w t) + sin (w2 t) + v(t)

with 1-percent frequency separation, i.e., e - (wl - w2)/wl = 0.01. For
v(t) =0 , the frequencies wl and w2 were successfully identified. How-
ever, with v(t) white Gaussian noise with Variv(t)] = 10- 7 , the algorithm

' i  failed.

The reason for this failure is explained in Section 2.5. In Section
2.4, the problem of parametric spectral estimation for sampled data is formu-
lated and some modelling questions are discussed. Section 2.5 is devoted to

*This algorithm has been proposed by Beex and Scharf [2-21 and by Cadzow

[2-31. It will be further discussed in the following.

8
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the question of spectral resolution as a function of the sampling rate for
T < TNyq. In Section 2.6, a zoom-in procedure is described. The procedure
allows for a choice, T > TNyq, for the purpose of resolving closely spaced
frequencies. Our observations and algorithms are demonstrated via simulations
in Sections 2.7 and 2.8. Section 2.9 contains concluding remarks.

2.2.1 Historical Perspective

Although we have failed to find articles addressing the impact of sam-
pling rate on spectral resolution, the general problem of sampling rate in
parameter estimation (system identification) has received attention in the
literature.

We have found the most extensive treatment of the problem in the econo-

metric literature. A compendium of results on the subject can be found in
Bergstrom's book [2-41. The main concern in the econometric work is the ap-
proximation, or the exact representation of continuous stochastic differential

equations by difference equations. Consequently, an effort is made to assess
the quality of the identification of the continuous equation as inferred from
the estimation of the discrete approximation. This evaluation is performed

*_ via bias and variance evaluation for T + 0. However, this work does not pro-
vide us with useful tools in the context of high resolution spectral analysis.

Some work on the sampling rate issue has been done and some practical
experience gained by researchers in the system identification field. Notable
is the work by Astrom [2-5] Goodwin, Pain, and Zarrop [2-7]. Ast'rom has anal-

yzed a first-order stochastic process, the parameters of which are identified
using maximum likelihood (ML) estimation employing the sampled data. He has

.* shown that the error variance is minimized for the choice T * a = 0.797 where
a is the time constant of the process. Goodwin, et al., have addressed the
problem of the experiment design, including sampling rate determination, data
filtering, and optimal input design using measures of the information matrix.

They have shown that with an anti-aliasing filter and a finite number of data
points, the Fisher information matrix is inversely proportional to T, and "
thus, is maximized by the choice T - (I - c)TNvq , e- being an arbitrarily
small value. This result coincides with our observations in Section 2.3.
However, it does noc agree with our observations on parametric spectral esti-
mation (Section 2.5 and 2.6) nor with practical considerations for spectral

resolution.

We should note that practitioners of spectral estimation have often used
* good "rules of thumb" for obtaining high resolution, although we could not

find the justification for this practice. For example, Bendat and Pearsol
suggest ([2-81, page 288) T = 0.5 TNyq if "the correlation function has
frequencies near 1/(2TNya)," and T 0.8 TNyq "if power spectra measure-
ments are of prime consideration" (compare these to Sections 2.5 and 2.3,
respectively). In the context of identification, Iserman [2-91 recommends
T - (5...15)*T 9 5 where T9 5 is the 95-percent settling time of the tran-
sient function. This we found to be impractical for very low damping ratios.

9
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Finally, an important result, noteworthy and relevant to our problem,
was reported recently by Kay 12-101: In estimating the autocorrelation
function, the sampling rate should be at least twice the Nyquist rate
(T < 0.5 TNyq), but statistically, there is insignificant gain in sam- (9
pling faster than that rate. This result coincides with the Bendat-Pearsol
recommendation cited previously and nicely complements our observation in
Section 2.5.

2.3 Nonparametric Spectral Estimation

The most widely used tool in spectral analysis is the discrete Fourier
transform implemented via the FFT algorithm on N samples of a continuous sig-
nal. Typical commercial spectrum analyzers [2-11 to 2-131 are based on
N = 210 = 1024 point FFT. In analyzing the effect of the sampling interval
T on spectral resolution when using the FFT, the following facts should be
noted.

(1) The Fourier transform is represented by N/2 + I points spaced at
frequency intervals Aw = 27/NT. Thus, the relative resolution
around a frequency w0 is

= 1/n
mo 0

where n is the number of cycles of a sinusoid with frequency w0.

(2) The width of the main lobe associated with N points sampled with
-' interval T is

6w = 4ir/NT

Consider the signal of Example (1). The two frequencies are resolvable
*" in light of the above facts if

W
T > T .4.Nyq N" (w - 2 )"

Thus for N = 1024 and (wl - w2)/wl f 0.01, frequency resolution is

attainable for T > 0.391 TNyq. Note, however, that aliasing the main lobe

" with itself is prevented if T < T •. 2 which is 0.2 percent faster than
"- the Nyquist rate. -y-

In the above discussion, we have completely ignored the effects of leak-
*age which will require even tighter bounds than presented. From the above

discussion, 0.6 88TNyq is the sampling rate required to resolve W2 from p
W1 if W2 /Wi . 9/11 and N = 32. The FFTs for T/T = 0.3, 0.35, 0.45, and

0.975 are given in Figure 2-2. Nyq

10 - . .. .".°.
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The preceding discussion is admittedly rather elementary. We have pre-
sented it to illustrate the often overlooked upper bound on the sampling
rate. Furthermore, it demonstrates in the frequency domain our main results
to be derived below in the context of parametric spectral estimation.

It should be noted that the preceding results stem from the practical
constraint on finite N. If N is not limited, T can be chosen arbitrarily
small. However, even for N + - in the context of parametric spectral estima-
tion, T should be carefully chosen.

2.4 Sampled Data Spectral Analysis

In this section, we shall establish the relationship between a contin-
uous time stochastic process and the discrete time representation of its sam-
ples, which is appropriate for spectral estimation. Subsequently, the param-
etric spectral estimation problem is stated. This section is the basis for
assessing the impact of the sampling rate on spectral analysis as presented in
Sections 2.5 and 2.6.

2.4.1 Continuous and Discrete Models

System identification in general, and spectral estimation in particular,
are usually based on the second-order statistics of the data. Thus, in deter-
mining a suitable discrete time representation of a continuous time process, a
modelling criterion that Perl and Scharf call "covariance invariance" [2-14.
plays a fundamental role. Covariance invariant models are discussed first.

It is assumed throughout this section that the discussed processes are
wide sense stationary (WSS).

We shall use the subscripts "c" and "d" to denote continuous and dis-
crete time entities respectively. Continuous time is denoted by T, eR-

* (the positive reals), and the discrete time by k, keI+ (the positive inte-
gers). k actually represents the time instant kT where T is the sampling

*' interval being suppressed if it is not discussed explicitly.

A stochastic (continuous or discrete time) process with a rational spec-
trum can be formally represented in the state space via the state equation

D* x(t) - A x(t) + w(t) ; xeR n , weR (2-2)

the output equation

y(t) - C x(t) ; yERX (2-3)

and the measurement equation

Z(t) - y(t) + v(t) (2-4)

*' Or, in terms of the impulse response convolved with the input w(t)

y(t) - h(t) * w(t) ; z(t) - y(t) + v(t) (2-5)

12
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which corresponds to the transfer function representation

Y(q) - H(q) W(q) ; Z(q) - Y(q) + V(q)
(2-6)

H(q) - C(qI - A) 1

The various entries in Eq. (2-2) to (2-6) are interpreted as follows:

Term Continuous Time Discrete Time

time t TeR+ kel+

D differentiation d forward shift Zdt fowrrhf -

W, v Wiener processes* uncorrelated white noise

n nAT X(i)= k k
t >0 h (T) - Ce = a(e hd(k) CA - a(i)X(i-i)

h(t)
t < 0 h (-)f0 hd(k) 0

c d

q s - the Laplace transfer z the z transform variable
variable

The input noise w and the measurement noise u are assumed to be white
and mutually uncorrelated with covariance matrices

"E[(tl)(t2),]  W6(t I - t2)

E[(tl)u(t 2 )'] - V6(tl - t 2 )

where 6(t) is the Dirac delta function in the continuous time case, and a
Kronecke delta in the discrete time case.

Of special interest is the output covariance function associated with
Eq. (2-2) and (2-3), i.e., R yy(T) - E[y(t )Y(t I + t)'J

-AT-k
Ce VcC' T < 0 CAkV C '  k < 0

c dRc A' R(k) (2-7)RCV e C' T > 0 CVd(A)kC' k > 0
;i c

(Note that in (2-7) we have replaced the subscript yy by d or c to indicate
discrete or continuous time.)

*We are using here formally and somewhat loosely constructed, the representa-

tion of the continuous stochastic process. More precise treatment can be
found in Reference 2-7.
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V = E[x(t)x(t)'I is the state covariance matrix, satisfying the Liapunov
equation

A V + V A' + R - 0 V AdVdA' + R (2-8) ,
cc cc WW d dd W

or equivalently

00 o A A'T 0o "

V f e cR e C dr V V VA kR (A) k(29c ddk (2-9) 
0 0

In terms of the impulse response and the transfer function we have

R c(T) f h hc(t)R WWhc(t + r)' dt Rd(k) I d)R hd(I + k)'P'

(2-10)

S Me c = n 8d~i)Ad(i)k

(2-11)

. 1 JHc(-s)R H (S),eST 1 f (Z-1 )R H(z),zk-I dZ

(2-12)

where the coefficients 8(i) satisfy

n
"-" Bc~(i) a - .a(i)R ac(J)'/[X (i) + Xc(D) l  2"

J-1

n (2-13)

d(i) - ad(i)R Wwad(J)'/[1 - Xd(i)Xd(j)"

Definition: (Rephrasing [2-141). A WSS discrete time stochastic pro-
cess is T-covariance invariant (TCI) with its continuous counterpart if

Rc (kT) = Rd(k) -V- k (2-14)

In this section we shall not delve into the theory of covariance invar-
iance, but rather state a few facts (without proof) which can be derived from
Eq. (2-3) to (2-14).

14
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- Let Ed - (Ad, Cd, Bd) and Ec. (Ar, C, B ) be the triplets characterizing a

* discrete time and a continuous time stochastic process as defined above.
Here, Bd and Bc represent the square root of Rww - the input covariance p
matrix for the discrete time and continuous time cases, respectively. We

ignore R~v since its inclusion is straightforward.

Fact A Ed is T covariance invariant with Ec if the following are

satisfied

A T
"* c

A e (necessary condition) (2-15)
d

Cd -C (2-16)

CdV d  C V (2-17)

" where - means equality up to a similarity transformation. Equations (2-16)

and (2-17) give sufficient conditions. It is not clear that Eq. (2-16) and p
., (2-17) are necessary.

Fact B Let Eq. (2-15) through (2-17) be satisfied. A necessary condi-

tion for the existence of Ed, which is covariance invariant with Ec, is

p(Bd) = p(Cc ) (2-18)
dc

where p(A) denotes the rank of A.

Fact B follows from stochastic realization theory and from the spectral

". factorization theorem [2-7]. This statement imposes a condition on the mini-

mum number of uncorrelated inputs which are required to realize a discrete

time covariance invariant representation of a continuous WSS stochastic pro-

cess. Note, in particular, that replacing Eq. (2-17) by Vc = Vd [2-14]

implies p(Bd) l n. Fact B has ramifications beyond the scope of this sec-

tion and will be discussed in a separate publication.

Fact C Let p(C' !- p(Bd) - I (Single Output and thus Single Input

* by Fact B). The relative degree of Hd(z-), which is T covariance invari-
ant with Hc(s), is almost always one.

Fact C is a crucial observation which is too often overlooked in the

system identification/spectral estimation literature. It implies simply that

autoregressive (AR) models, and hence, the Yule-Walker equation and the maxi-

mum entropy method as in [2-151, are not appropriate techniques for spectral

estimation of sampled data. Any failure of these methods in spectral estima-
-. tion of "two sinusoids in white noise" should first of all be attributed to
" the wrong formulation of the estimation problem rather than to a deficiency in

15



these algorithms. Note, however, that an autoregressive moving average
ARMA (n,m) can be approximated by an AR(N) process with N >> n, and thus,
a methodology for spectral estimation developed for AR models can be applied
to ARMA models by considering high order models. ..

2.4.2 Problem Formulation

With the above background, we are ready to state the parametric spectral
estimation problem.

Main Problem: Assume the sequence [z(kT): k O,1,...,NJ represents or
* ican be closely approximated by Eq. (2-2) to (2-3). (See Reference 2-2.)
*. Estimate Zc.

The above problem can be broken into two

Subproblem 1: Suppress T. Estimate Zd" Denote the estimate by £ . lp

Subprobiem 2: Given (Ed(T)), evaluate a TCI . -

Our main concern is usually in estimating the following

(1) The system eigenvalues

(i) = -C(i)w(i) + j(-1) w(i) ; w(2i) = w(2i - 1) : i = 2 1

X M -a(i) :i =2X + I...£ 2 ; 1 + C2 n
•c 1= 2 2Ci

n being the assumed or estimated order.

(2) The system input output matrices Bc, Cc where BCBC' Rc.

Note that by a proper transformation to canonical form, C can be assumed P
known. Furthermore, recall that there exists B such thaF p(Bc) - p(C ),

- which solves the problem at hand. C C c

In the following sections, we shall concentrate on Subproblem I and the
role of T in its solution, and on Subproblem 2(l). The problem of estimating
the structure of Zc is beyond the scope of this section. We shall only
consider here the problem of spectral estimation under the assumption of a
single input/single output (SISO) system driven by white noise. In this con-
text, the estimation of closely spaced modes and the dependence of the estima-
tion on T is our main concern. This yields the formulation of the problem via
Eq. (2-11), i.e., we assume (like Beexe and Scharf 12-21) that the covariance

* function of the WSS process measured can be represented, or can be closely
approximated, by a finite linear combination of stable exponential functions.

16
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2.5 The Role of Sampling Rate

Assuming the covariance sequence to be as defined in Eq. (2-11) for the
SISO case, i.e.

n .-
Rd(k) a d 8d(i)Xd(i) k = 0; ±1; ±2 (2-19)

we have the recursive relation

n
Rd(X) = [ a(i)Rd(X - i) 2 > n (2-20)

i=1

Rewriting Eq. (2-20) L times, i.e., 2 X n, n + 1...n + L - 1, where
L > n, we obtain in matrix form

R (0,n,L) . a(n) = R(n,L) (2-21)

where R (J,n,L) is the n x L Toeplitz matrix defined as

R(j + n- 1) R(j + n -2) R(J)

R(j + n) R(j + n -1)

It (J,n,L) A • .

R(j+ n + L -2) . . . R(j+L- 1)

(2-22)

and the vectors a(n) and R(n,L) are

a(n) - [a(1) ... a(n)J' (2-23)

R(n,L) - [R(n) ... R(n + L - I]' (2-24)

Equations (2-20) to (2-24) are the basis for many parametric spectral
' estimation techniques [2-2, 2-3, 2-16 through 2-18]. Since Eq. (2-19) is

often an approxiaate relation, and since the covariance sequence is often
* obtained from the measurements of a sample pass of the WSS ergodic stochastic

process, a reasonable approach to the spectral estimation problem is that of
solving Eq. (2-20) to (2-24) using a large L. By solving the equations, we
mean solving in the least-squares sense, where one allows for weighting on the
equations using the weighting matrix W, i.e.

t
a = R (0,n,L) R(n,L) (2-25)-I'
- -w

17
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where

I t = (RW R -1 RTW (2-26)
w

The following observations can be made.

(1) If the process is an AR process (an unlikely event in the case of
sampled data), Eq. (2-20) to (2-24) are valid for all X. Writing
the equations for I = I... n, and taking advantage of the symmetry
R(i) - R(-i), yield the celebrated Yule-Walker equations and esti-
mation procedures which are recursive in order.

(2) Assuming an ARMA (n,m) model, i.e.

n m n

y(k) = . a(i)y(k - i) + b(i) w(k - i) (2-27)
i= O...

we have Eq. (2-20) to (2-24) satisfied for 2 > m. Using the in-
strumental variable (IV) approach to system identification [2-19]
with [y(k - X); 2 = m + 1 ... m + n] as the "instrument", and as-
suming the approximation

R(k) . y(i) y(i + k) ; y(j) = V j < 0 (2-28)
i--i

we have another way of justifying Eq. (2-20) through (2-26). In
particular, for the AR case (m = 0) the least-squares procedure
is equivalent to the IV procedure, which is equivalent (with Eq.
(2-28)) to the Yule-Walker equations.

(3) To accommodate the inaccuracies in the values of R(.) used in Eq.
(2-20) through (2-24), one has to solve a structured total least-
squares problem. This subject is addressed in Reference 2-20.

(4) It {z(}, rather than {yO, is used in estimating {R(}, R (1,n,L)
and R(n + 1,L) should be used in Eq. (2-25) and (2-26).

Since our main concern is using the sampling rate to improve reso-
lution, we consider here the case

X C (i)T
X d(i) = e i I 1...n (2-29)

*; where

X (21- 1) = (2i) - + ; i 1...n/2
c c

18
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" denotes the complex conjugate of X, Ci being the ith damping ratio and
" i the ith frequency.*

Assuming

T < T , (T w < r V i) (2-30)

Nyq i

we proposed the following criterion for choosing T .

Definition: The optimal sampling period T* (T* < TNyq) satisfies

K[ R (0,n,L)(T*)] < K[ R (0,n,l.)(T)] V T < TNy q  (2-31)

Nyqv

where K[A] is the condition number (CN) of the matrix A. (See References 2-21
through 2-24 for definition and properties of K.)

Note the explicit dependence of R on T induced by the substitution of
Eq. (2-29) into (2-19), and subsequently into R as defined in Eq. (2-22).

Rationale: Although the choice of the optimal sampling rate, T*, as
defined above, and the modification to be discussed in Section 2.6 are based
on a concept from numerical analysis--the condition number--it should be
stressed that the reason for defining T* that way lies in the domain of esti-
mation theory. If the covariance sequence were known exactly, if Eq. (2-20)
through (2-24) were satisfied exactly, and if the computer used to solve the
set of equations, say via Eq. (2-25), was of infinite precision; the solution,
i.e., the vector a and the corresponding set of eigenvalues Id(i)J, could
be determined (estimated) with no error. Unfortunately, none of the above
suppositions are valid, the computer accuracy being the lesser evil.

The inaccuracy in the representation (Eq. (2-20) through (2-24)) is han-
dled rather routinely by applying the least-squares concept to a large number
of equations, i.e., taking L large in Eq. (2-20) through (2-24). The most

severe obstacle to the spectral estimation is induced by the inaccuracy of the
entries to the matrix R (0,n,L) in Eq. (2-22). This inaccuracy stems from
using the estimated covariance sequence. In solving a set of linear equations "'
like Eq. (2-22), perturbation of the coefficient matrix ( R (0,n,L)) has a
severe consequence on tie solution, if and only if this perturbation is of the
order of the inverse condition number (ICN) of the matrix [2-231. Closely
spaced modes are shown in the following to cause the matrix to be numerically
rank degenerate 12-23] (i.e., to have a small ICN). Hence, our objective as
stated above is to minimize this negative effect.

*In the engineering context, the convention is to consider the second-order
equation, 2 + 2CWX + 0, which gives A -Cw ± jw 2

equaton,-A, as opposed to

the present convention. For C << 1, the above is a close approximation.

19
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The actual procedure for solving Eq. (2-22), say, via Eq. (2-25),
(2-26), or by using a numerical procedure based on the singular value decom-
position (SVD), or the QR factorization [2-22], is of secondary importance.

To demonstrate the preceding discussion and to establish rules for
choosing T*, we analyze the two sinusoid cases, i.e., let

R(T) cos W T + a2 cos 2 + B2 1, 8l>0

with the corresponding sampled covariance sequence

R(k) = cos (WIT k) + a2 cos (2Tk) ; 2>WI

We thus obtain (n = 4)

R (0,4,4) Ad R (-3,4,4)

where, taking advantage of the symmetry R(-j) = R(j)

R(0) R(I) R(2) R(3)
"-3 ) R(1) R(O) R(1) R(2)""." RI (-3,4,4) =.

R(2) R(1) R(0) R(1)
R(3) R(2) R(I) R(Q)

and Ad is the state transition matrix of the process in companion form

0

* I;A d

a(4) ..a(.

it follows from the definition of the condition number that

1 ( ax K(A) ;K(B)] c(AB)< cA*'""i<max < A K((B) (B
.. LK, ,T(B) ; (A)1  < (

Hence, if A is a well-conditioned matrix (K(A) is "small"), AB is ill-condi-
tioned if and only if B is ill-conditioned. Since Ad is a well-conditioned
matrix, it suffices to consider K[ R (-3,4,4)]. We prefer to discuss
1 (-3,4,4), since we can derive analytical expressions for its condition
number.

Some algebra, taking advantage of the symmetric Toeplitz structure of
- R (-3,4,4), yields the ICN

20

*1



1/K[ R (-3,4,4) min (1,,2)

A = 1 + R(1) + R(3) 1 ]2 ]21/2.
1. 2 - {[R(1) R(3)] + 4[R(l) + R(2)]

X 2 1 1 - R(1) + R(3) 1[R(1) - R(3)]2 + 4[R(1) - R(2)]2}'/2

Assuming T < TNyq' and closely spaced modes (w2 - WI)/W 2 << 1, the ICN can

shown (using standard approximation techniques) to be of the order of
" )T]2

- [(W2 - W )TJ . Furthermore, if R (-3,4,4) is rank degeneration [2-23] for
T - T*, it is seen that the numerical rank of R is two, i.e., only one sinusoid

- describes the data. As T + 0, the numerical rank approaches 1. Note that for

T - 0, the perfect predictor is y[(k + 1)TJ - y(kT) which corresponds to rank
one covariance matrix. Plots of the ICN for few values of wI, W2, B1 and

are given in Figures 2-3 through 2-11. Figure 2-12 gives the value of T*

(normalized by Tyq) as function of the frequency ratio. We note that as

1I/2 approaches one, the dependence of T* on a1 and 82 diminishes. Further-
- I~ + W2"""

w1 + 2more, it is seen that 2 T* for high w /W2 . We propose the following

rule of thumb" for selecting the sampling rate

T = W/(WI + W2 ) (2-32) for

_ instead of T*. It follows that T satisfies the following properties (see
Tables 2-1 Lirough 2-4)

(1) T is a good approximation of T*, except for wl/w 2 < 1/3. e

(2) K[ R (')j = K[ R (T)J, except for small frequency ratio and large
81 (i.e., large frequency separation and the signal energy
concentrated at the lower frequency).

(3) For w 2 < 1/3, T poorly approximates T*, but K-I[ R (T)] is

sufficiently large to enable good estimation of wl, w2 via Eq.
(2-25) and (2-26).

To summarize, we note that the choice T as in Eq. (2-32) provides good
resolution when Eq. (2-25) and (2-26) are used as 1'%e means for spectral esti-

W 2 - 1I
mation. In particular, for W2  << I we have
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Table 2-1. 1/K[ R (-3,4,4)(T*)].

w >w 2\'A& 1 0.2 0.4 0.5 0.6 0.8

0.1 0.068 0.132 0.159 0.185 0.221

,i~~ -| I -I I I

0.2 0.224 0.414 0.502 0.575 0.383

0.4 0.358 0.678 0.778 0.731 0.387

0.6 0.162 0.270 0.293 0.288 0.191

0.8 0.037 0.057 0.060 0.059 0.040

0.9 0.009 0.013 0.014 0.013 0.009

Table 2-2. Optimal sampling rate, T*.

*w 1/ 2 ~ 0.2 0.4 0.5 0.6 0.8

0.1 0.954 0.925 0.909 0.889 0.817

0.2 0.918 0.866 0.833 0.789 0.740

0.4 0.675 0.694 0.714 0.734 0.743

0.6 0.596 0.614 0.625 0.636 0.656

0.8 0.544 0.551 0.556 0.560 0.568

0.9 0.521 0.524 0.526 0.528 0.532
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1/w 0.2 0.4 0.5 0.6 0.8

0.1 0.947 0.968 01.00 0.693 0.292

0.2 0.927 0.985 01.00 0.712 0.544

(14 0.927 0.957 01.00 0.885 0.855

0.6 0.907 0.962 01.00 0.901 0.769

0.8 0.934 0.979 01.00 0.952 0.8/J

09 0.942 0.992 01.00 0.986 0.918

Table 2-4. Left-hand slope/right-hand slope at T*. p.

w 1/w21 0.2 0.4 0.5 0.6 0.8

0.1 0.105 0.170 0.187 0.187 0.088
-2.83 -3.32 -3.25 -3.02 -1.89

0.2 0.218 0.252 0.179 0.002 1.60
-4.70 -4.99 -4.53 -3.62 -1.59

2.41 5.57 5.84 4.18 1.91
0.4

-u.681 -1.44 -2.17 -3.20 -1.86

0.6 1.85 2.87 2.93 2.68 i.53
-0.51f -0.971 -1.15 -1.25 -0.991

0.8 0.468 0.693 0.721 0.683 0.439
-0.159 -0.264 -0.289 -0.291 -0.212

(0.9 0.112 0.166 0.173 0.165 0.109
-0.042 -0.066 -0.070 -0.069 -0.048
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T* T = I/(wl + W2) 0.5/(w2) = 0.5TNyq (2-33)

It is appropriate at this point to recall Kay's result for estimating a
covariance function [2-101. Kay shows that T = TNyq/2 is a necessary and
sufficient sampling interval for obtaining estimates of the covariance
function with small error variance. This result is a nice complement to
Eq. (2-33).

2.6 Zooming In

2.6.1 Phasor Representation

Returning now to Eq. (2-11), we may rewrite Eq. (2-19) as

n X c(i)T kR(k)= Rc(kT) = n (i) e  .)k

i=l

nk
n dk XP) (2-34)

[ i=l

- Equation (2-34) is valid for any T, namely, it is not restricted to T < T
Nyq'

Thus, one may employ Eq. (2-20) through (2-24) to estimate a(T) using Eqs.
(2-25) and (2-26), and then solve uniquely for lXd(i)I. In this section we
shall explore the benefits attainable by abolishing the constraint T < TNyq

* and assess the impact of this operation on the estimation of {xc(i)l.

We assume here that the covariance sequence {Rd(k) = R c(kT); k = 0, 1..

is available or has been estimated. Note that in the latter case, we abide by
the Nyquist rate constraint for sampling the process, or preferably, abide by
Kay's recommendation for obtaining good estimates of the covariance sequence,
i.e., the process is sampled at least twice the Nyquist rate.

A figurative representation of Eq. (2-34) is via the concept of phasors
as follows. Define the ith phasor

X (i)T (-kC(i)w(i)I + jw(i)TC" -

F(i) = e = e (2-35)

where i < n, with n even and w(2i) = -w(2i-1) > 0, i = 1,2,...,n/2. Namely,

the ith phasor rotates (as T varies over R+) at an angular velocity, w(i),

around a spiral which collapses at a rate of e -(i)2 per revolution. The as-
sumption of w(2i) = -w(2i-1) is practical, but not essential for the following
discussion. Actually, the clockwise/counterclockwise rotation adds complexity
to the solution described below. The phasor interpretation of Eq. (2-34)
suggests the choice of T such that the n phasors will be evenly distributed
angle-wise, as long as the damping effect does not dominate, i.e., iF(i)I is
sufficiently la-ge.

34



i0

2.6.2 Procedure

Since our objective is the esti'iation [Xc(i)j, we can formally write

Xc = tn[F(i)] (2-36)

where Eq. (2-35) should be interpreted as

Twic'121rk ± F(i) 1;k 0,1,2, .. [T/TNJ (2-37)

- F(i) (2-38)

IF(i)J and /F(i) denote the magnitude and angle of F(i), respectively,

and [x] is the integer value of x. The ambiguity (nonuniqueness) in Eq.
(2-36), as reflected in Eq. (2-37), and thus Eq. (2-38), in the case that
T > TNyq, is another way of stating the Nyquist rate constraint. Neverthe-
less, we propose to use T > TNyq to achieve high spectral resolution. The
procedure that we propose is outlined in the following steps, which we call
zooming in."

Assume the process consists of a single cluster of n/2 closely spaced
. lightly damped modes (i.e., Ci << 1 w(2i)--w(2i - 1) i = 1...n/2). The

set of modes is resolved as follows:

Step 1: Identify the center frequency of the cluster. This step can be
accomplished by one of the following two procedures:

(1) Plot the FFT of either the data sampled with period T, < TNyq
or of the sequence [Rd(k) = Rc (kT)].

(2) Solve Eq. (2-25) and (2-26) in conjunction with Eq. (2-35) using
the sequence [Rc(kTI)I and n1 such that R (O,nI,L)(T I) is
well conditioned.

Preferable choice of TI is such that

TI W (2-39)
I c 2

where wc is roughly the center frequency of the cluster.

If n1 = n, namely the matrix R (0,n,L) is well-conditioned, then the
n/2 modes are spaced sufficiently apart to enable their resolution, and thus,
Step I completes the spectral analysis. If n1 < n, or no prior knowledge is
available regarding the number of modes which characterize the signal, proceed
to Step 2.
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Step 2: Choose T2  £ T*, where t is an odd integer larger than
one, and T* satisfies Eq. (2-39). Repeat Step 1 using the sequence JR (kT)}.
If the parametric method is used, i.e., Eq. (2-25), (2-26), and (2-36) to

(2-38) are solved, repeat this step, gradually increasing I and determining
n = n(t) to be the largest integer for which R (O,n,L)(T 2 ) has full
numerical rank (i.e., is well conditioned).

Stop when n(t) does not increase for X > X1, or if n(91 )/2 is the
expected number of modes.

Step 3: Resolve the ambiguity introduced by Eq. (2-36) and (2-37) by
selecting the set of modes residing near the center frequency identified in
Step 1. Alternatively, use a conventional identification technique for
T < TNyq where the set of identified parameters is the finite set corre-
sponding to the different solutions of these equations. (See also Reference
2-27 for a selection procedure.)

We have earlier stated that R (0,n,L)(T) is least singular if the pha-

sors are evenly distributed. This statement, although correct, should not
mislead the reader to believe that T2 should be so chosen. To achieve even

distribution of the phasors we need T /T 2 _ when we consider two
2 Nyq 2(w1 -W 2 we ecnie w. - ..

sinusoids. Thus for a 1% frequency separation, a choice of T2 = 100 TNy q

gives least singularity, but at the same time, one has to select among 0O
possible frequencies in Step 3 of the procedure.

A practical solution to this dilemma is to choose T2 as small as pos-

sible, while rendering R (0,n,L)(T 2 ) well-conditioned. This recommendation
is further justified when considering "intermingling" as discussed in the fol-

lowing.

The behavior of the ICN for R (O,n,n) and R (-n+l,n,n) (symmetric covar-
iance matrix) for two sinusoids as function of T is illustrated in Figures

2-13 through 2-16.

The above discussion focused on the resolution of a single cluster of

modes. In the case of multiclusters, these ideas can be applied using one of
the following options.

Option A: Increase T2 while preventing cluster "intermingling." The
problem of intermingling is most simply explained by considering the phasors
rotation as in Figure 2-17. The shaded sections A and B represent the two
clusters of modes for a given T < TNyq. Tht ,,asors in the sectors labelled
1 rotate clockwise and those labelled 2 rotate counterclockwise with T.
Intermingling occurs when two shaded sections overlap. Using the information

-~ from Step 1, picking T2 , which gives an intermingling-free phasor distribu-

. tion, is a simple algebraic exercise. Note that for a large enough T2 ,
, •intermingling can also occur with a single cluster; aliasing being an example

of such an occurrence.

Option B: Use frequency decimation to construct two signals, each rep-
resenting one cluster [2-13, 2-151. Spectrum analyze each signal separately
and recombine.
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Figure 2-17. Illustration of two-cluster distribution.

2.6.3 Over Parameterization

In the quest for a high spectral resolution algorithm, Cadzow [2-3] and
Beex and Scharf [2-2] have proposed over parameterization as one tool for
improving algorithms; namely, they have proposed the use of large n in the
representation Eq. (2-19) to (2-24). For example, in Reference 2-2, n - 7 is
used for two sinusoids in white noise (fourth-order system). In Reference
2-3, reasonable success is reported in resolving two sinusoids with a 0 dB
signal-to-noise ratio and 7-percent frequency separation using n - 20.
Actually, the use of over parameterization is quite common in the literature
(e.g., [2-181, [2-27], and references therein); however, it has not received . - -.

sufficient justification.

Let Eq. (2-34) be a correct representation of the covariance sequence 0
and consider the over parameterization via the recursion

L
R (kT) - a(i)Rc[(k - iT1 k > L (2-40)cc i-1i- L

where T < TNyq, and L is an integer larger than n, e.g., L = 5 x n. Then,

the solution for the vector a - [a(1), ..., a(L)I' via Eq. (2-25) and (2-26)
involves the matrix

R(5n- 1) ... R(1) R(0)

R [0,5n,5n](T) . . • (n x 5n)

R(10n - 2) ... R(5n) R(5n - 1)
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On the other hand, considering Step 2 in our zooming-in procedure with

T2 - 5T, we have to solve n linear equations with the coefficient matrix

R[5(n - 1)]... R(5) R(0) •

R [O,n,n](5T) . . (n x n)

R[1O(n - 1)1... R[5(n + )1 R[5(n - 1)J -

that is, R [O,n,n](5T) is obtained from R [0,5n,5n](T) by retaining only every
fifth column and fifth row. If the representation (Eq. (2-34)) is merely an
approximation [2-21, it would be advisable to retain every fifth column
of R [0,5n,5n] and use the covaraince least squares as in Eq. (2-25) and
(2-26). Now, since the process has order n by assumption, the numerical rank

v of R [0,5n,5n](T) is n, provided the numerical rank of R [O,n,n](5T) is n.
Thus, in effect, over parameterization is equivalent to spreading the phasors
to increase the numerical rank of the covariance matrix. Using sound
numerical procedure in solving a(5n) yields a solution which corresponds to n
dominant modes and (5-1)n superfluous modes. This is exactly Beex's and
Tuft's observation [2-2, 2-271.

The advantages of our zooming-in procedure are rather obvious. We avoid
solving a very high-dimensional ill-conditioned set of equations, thus elimi-
nating the need to use a procedure such as the singular value decomposition 9
(SVD) used by Tufts [2-181 and Cadzow [2-3]. More important, we have to solve
only an nth order well-conditioned polynomial for the eigenvalues compared
to an Lth order polynomial. The penalty paid for these advantages is Step 3
of our procedure.

Finally, we note that using Z + 1 parallel processors, Step 1 and (Step
2) X times can be performed simultaneously, Step 3, recombining the results of
the parallel processors. The architecture of such a parallel numerical anal-

*" yzer is beyond the scope of this section.

2.7 Simulation Results

The effect of sampling within and beyond the Nyquist rate has been
extensively tested in simulation. A few examples of the simulation results

- are given here.

The signals assessed are of the type

n/2

y(k) = ) A(i) exp[- (i)w(i)T(k)] cos [w(i)Tlk + $(i)] + u(k) (2-41)
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The frequencies are -chosen to generate a closely spaced cluster. We specify
for each cluster the frequency separation (FS) (in percent) which is defined
as

FS m in L i+w)*100 i,j 1 1... n i * j (2-42)

{ u~k) is a zero mean white Gaussian noise with covariance, V, as specified
for each example. We use the equation (see Eq. (2-25) and (2-26))

I (0,..,n,)(T2) .a(T 2.) =R(n,n)(T 2) (2-43)

to estimate a(T2). Subsequently, the characteristic polynomial

n

[1, -a'] * . =0 (2-44)

0
d_4

is solved to find Nd.T2; i=1... n and Eq. (2-36) to (2-38) are used
to estimate c(i), wi)h . As entries to the matrices R and R, we use the
estimated covariances

R(LT) IS y(kT )y[(k + 1)T . ...2n-1 (2-45)
k-i

where L is fixed and T2 is chosen such that T2/T l is an integer. The
values of L, T1, and T2 are specified for each run. Note that Eq. (2-45)
gives the biased estimate of the covariance (see Reference 2-26 for justifica-
tion). In the tabulated results, we give the estimated frequencies, w(i). If

IXd(i)jI < 1, we also gtva the estimated damping ratios; otherwise, we speci-
ly the estimate of ~X~). A * in the tables denotes a failure in estimat-

* ing the corresponding value. If the estimation failed for T < TN the

*optimal order and the corresponding estimated system is given in tediscus-
sion.

Example 1: Two-sinusoid case.

WO) 1.5 rad/s w(2) 1.57 rad/s FS 4.56%
;(1) =0 t(2) =0

A(1) [1.0 A(2) • 1.0
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-"(1) V 1l - 7  ;T 2 < TNy q

The estimated values are given in Table 2-5. This example demon-
strates our observations in Section 2.2. The estimates are reason-
ably good for the range 0.STNyq < T2 < 0.

9TNyq. The optimal

sampling rate is (see Figure 2-11) T2  0.55 T 1.1.
2 Nyq

(2) V= i0 -  ; T2 < TNyq

The results of the simulations are tabulated in Table 2-6.

Here reasonable estimates are obtained for the range
0.5T < T < 0.8Ty. In case (1), the optimality of T2 =T*

Nyq 2 Nyq'
is obvious. In case (2), w(1) is best estimated for T2 = T*; how-
ever, a somewhat better estimate of w(2) is obtained for T2 = 1.3.

Both examples consisted of undamped sinusoids, and the error in the
estimates of lXd(i)I did not exceed 6 percent, and was usually

considerably smaller. However, attempts to estimate the damping
ratios for C > 0 have failed for T < T . In the following two

2 Nyq
examples, we extend the range of T2 and demonstrate success in ,
estimating the damping ratios and considerable improvement in the
estimation of the frequencies compared to the case T2 < TNyq.

(3) The data is the same as in case (2) except for the damping ratios

-(l) 0.01 (2) = 0.01

(Note that I percent is the order of magnitude of material damping--

an entity of interest in elasticity and structure engineering.) The
results of the simulations are summarized in Table 2-7.

(4) Same as (3) with damping ratios p

.(I) = 0.05 C(2) = 0.05

Results are given in Table 2-8.

Example I demonstrates the value of selecting the sampling rate judi- p.

ciously within the Nyquist rate as well as the improvement that might be gained
by zooming in. However, the frequency separation and the noise level in
Example 1 are not extreme enough to cause failure of the estimation except for
the very poor choice of T2 . In the following we consider more severe cases.

UExample 2

w(1) 1.5543 rad/s w(2) 1.57 rad/s FS 1%
(I)= 0 ) 0 0

A(1) = 1 A(2) = 1

. V = I0- 4
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Table 2-9 summarizes the simulation results. Only one frequency has been

identified successfully with T 2 < T , where the optimal order of the recur-2Nyq

sion is two. The estimation of a second-order recursion yields the estimates

P = 1.562 and = 0.12E-2. We see-increasing benefits with larger T2 . For
T 2 = 35T* perfect estimates of the frequencies are observed.

Example 3: Three sinusoids.

w(1) = 1.5543 CO(2) = 1.57 w(3) = 1.5857 FS = 1%
r(1) = 0.001 ,(2) = 0.001 ((3) = 0.001
A(1) = I A(2) = I A(3) = I

V = 10
- 4

Results are summarized in Table 2-10. We have observed failure for

T2 < 3TNyq"

The optimal order of the recursion is n = 2, with the estimates w = 1.57

and = 0.6E-2 when using TI = T2 
= 1. For T = 25T*, success is registered

in estimating the damping ratios and the frequencies.

We have conducted experiments similar to the previous examples for clus- 0
ters of up to five frequencies with 1-percent frequency separation and similar

. signal-to-noise ratio. The results were qualitatively identical to those dis-
cussed.

We bring as a final example the case studied by Cadzow 12-31 and others.

This example culminates a few difficulties. Although the frequency separation
(FS = 6.5 percent) is larger than considered in the previous examples, estima-
tion is hampered here by the disparity in the modal amplitudes and by a high

noise level (0-dB signal-to-noise ratio).

Example 4

w(1) 0.47 rad/s w(2) = 0.4267 rad/s FS = 6.5%
(M) = 0 (2) = 0

A(I) = 4.47 A(2) = 1.414

V = 1.0 V=[.0

The results of the simulations are given in Table 2-11. For T1 = I the

optimal order is n = 3 with estimates w = 1.266, r = 0.3E-2, and the discrete
eigenvalue, Xd = -0.09, which does not have a continuous interpretation.
Examination of the table reveais the importance of choosing T2 such that

T 2  (2k + 1)T* for some Z (see Step 2). Note that using the estimate,
w= 1.266, T* can be approximated as 7/2w = 1.24. The choice (TI = 1.0;
T 2 = 5) does not satisfy the recommended values and yields poor estimates.

T= 1.2 with T2 = 6 or T2 = 18 approximates this requirement and gives
correspondingly good estimates. The choice Tt = I and T2 = 16 13 x 1.24
also satisfies the recommendation of Step 2 of the zoom-in procedure.
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2.8 General Comments

The benefits of a judicial choice of the sampling rate, as well as our
proposed zoom-in procedure, have clearly been demonstrated. Zooming in can be

- mechanized in various ways. Our approach was to select the group of frequen-
- cies closest to the center frequency identified with T2 < TNyq.

To demonstrate the selection procedure for resolving the ambiguity in the
case T2 2 TNyq (Step 3 of the zoom-in procedure), consider Example 2 with
T2 = 35T*. The estimation for T2 < TNyq has failed, but estimating the
fourth-order data using a second-order model gave the following estimates:

-. frequency estimate = 1.562, damping ratio estimate = 0.26E-2. In Table 2-12,
* a subset of the 70 frequencies around 1.562 and the damping ratios generated

in Step 3 for T2 = 35T1 , T1 = I are given. The frequencies marked with *
* are the closest to 1.562 and are the obvious choice. Note that the estimated

frequencies in this case are the exact values (see Table 2-9). This example is
the most ambiguous one. In other examples tested, the selection among the dif- "
ferent solutions of Eq. (2-35) was even clearer.

2.9 Concluding Remarks

We have established analytically and experimentally in this section the
role of the sampling rate in high resolution spectral analysis. Presenting the
problem of resolution as a numerical one enabled us to establish desirable sam-
pling rates for high resolution. Moreover, via the phasor interpretation of
the covariance function we derived a zoom-in procedure, which is a powerful
spectral analysis tool. Although we have concentrated on two procedures for
spectral analysis, the FFT and the parametric regression on the covariance

* sequence, the results of the studies have ramifications to other techniques. .
The symmetric covariance matrix can be interpreted under certain conditions as
the Fisher information matrix [2-61. The inverse condition number of this ma-
trix is thus an information measure which we have selected for numerical rea-

* sons. Maximizing the ICN as a function of the sampling rate thus has ramifica-
tions for any statistical estimator.

Although the emphasis of this study was the sampling rate for continu-
ous signals, the results subsume the case of purely discrete time data. In
the discrete case, T1 should be suppressed, say in Eq. (2-41); and thus,
w(i) • Tl should be replaced by w(i)c(0,7). Correspondingly, T2 should be
replaced in all the expressions by the integer, T2/Tl, and the correspond-
ing results follow trivially. P;

We believe that the algorithm we propose is numerically superior and com-
putationally more efficient than other algorithms proposed recently for im-
proved spectral resolution. Our success can be attributed to the fact that we
have addressed the source of the difficulty. Our analysis also extends to

' other algorithms as discussed in Section 2.6.3.

The simulation results reported in Section 2.7 support our claims.Li It should be noted that the zoom-in procedure proposed in Section 2.6 is
only applicable for narrow-band signals. If a signal spectrum consists of a
set of narrow band signals, frequency decimation and modulation can be employed
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before applying the proposed procedure. Wide band signals with no distinct
clusters of energy cannot be analyzed via our zoom-in procedure, though our
recommendations in Section 2.5 are still valid.

Finally, we would like to give an intuitive, though somewhat ad hoc ex-
planation, of the main features of the high resolution spectral analysis pre-
sented in this section. Replacing a very narrow band signal with center fre- "
quency wc by sin(wct), we observe that sampling the signal at intervals

T*, satisfying Eq. (2-39), generates the sequence {sin( 2- k)}. This is the
sequence with the raaximum variation that can be generated from the sinusoidal
function. Since spectral estimation and particularly parametric spectral esti-

i* mation is concerned O.-th the dynamics of the signal, observing the maximum
. variation is most beneficial for its estimation. The prism is a classical de-

vice for splitting closely spaced colors. Desampling the covariance function
while maintaining maximum variation of the signal as in the zoom-in procedure I
c- en be viewed as a digital prism in light of the phasor representation.
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Table 2-12.

Frequency Damping Frequency Damping

1.0315 0.28E-4 1.0158 0.36E-4

1.1123 0.28E-4 1.1385 0.36E-4

1.2110 0.24E-4 1.1195 0.31E-4

1.3023 0.24E-4 1.3180 0.31E-4

1.3905 0.21E-4 1.3748 0.27E-4

1.4818 0.21E-4 1.4975 0.27E-4

1.5700 0.19E-4 1.5543 0.24E-4 *

1.6613 0.19E-4 1.6770 0.24E-4

1.7495 0.17E-4 1.7338 0.22E-4

1.8409 0.17E-4 1.8566 0.22E-4

1.9291 0.15E-4 1.9134 0.20E-4

Subset of estimated frequencies and damping ratios
wc = 1.562, T2 = 35, T I = 1.

19
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SECTION 3

CONTROL OF LARGE SPACE STRUCTURES I.
USING ELECTROMECHANICAL ACTUATORS

3.1 Introduction

The published literature on vibration control of large space structures
is mainly concerned with the theoretical issues associated with the design of
control laws or control strategies. Numerous suggestions have been made re-
garding the form of suitable control laws and the selection of control law
parameters. Such investigations have generally based the design and analysis

. of control laws solely on the properties of the flexible structure to be con-
trolled and on the vibration control objectives. The important effects of I'
physical transducers, namely actuators and sensors, in achicving the vibration
control objectives have generally been ignored. Of course, research has con-
tinued on the development of transducer hardware suitable for use in large
space structure applications [3-6, 3-71. The objective of this section is to
reconcile the work on vibration control of large space structures (where
transducer effects have generally been ignored) with the work on transducers
(where application to the particular vibration control objectives have gen-
erally been ignored). Although our development will focus solely on the role
of actuator transducers, a similar development likely holds with regard to the %

role of sensors. Thus, our main emphasis in this work is consideration of the " "
role of actuators as an important and necessary part of the problem of vibra-
tion control of large space structures. Some recent work [3-2, 3-31 has
examined the question of proper placement of actuators, ignoring all effects
of actuator dynamics. In this section, the effects of actuator dynamics are
examined, while the placement of actuators is assumed fixed.

The overall plan of Section 3 is as follows. In Section 3.2, the
important issue of modelling the actuators and large space structure is
examined. Section 3.3 takes a specific viewpoint towards the vibration con-
trol problem--use of the centralized controller, where both the structural

motion and the actuator motions are used for feedback to the actuator inputs,
is suggested. An diternative using a decentralized controller consisting of a
force controller and actuator controllers, one for each actuator, is con-
sidered in Section 3.4. Several examples are presented in Section 3.5. An
indication of possible (xtensions and a summary are given in Section 3.6.
Throughout this section there is a dual development for each of two distinct
classes of electromechanical actuators mentioned in Section 3.2. In each sec-
tion, use of a single actuator is initially studied in some detail, and the
results are subsequently extended to the case of multiple actuators.

In order for our conclusions to be as general as possible, the detailed
nature of actuator hardware is not considered. Rather our interest is in the
dynamic effect that the actuators have on the large space structure with res-

pect to the vibration control objectives. Thus the content of the following
sections is primarily concerned with the mathematical characterization of the
actuators, the large space structure, and the feedback controller. This

'4 57

, . . * - - * ... •



j

generality allows us to develop qualitative insight into the role of actuators
in vibration control of large space structures for a wide variety of physical
actuator hardware.

3.2 Modelling .

3.2.1 Actuators

Actuators are considered to represent the physical devices whereby
forces and moments are actually applied to a large space structure. They can
also be considered as energy transducers since they transform electrical

energy into mechanical energy. Actuators can also be viewed as power ampli- --

fiers since they typically require low (electrical) power input while they
*. generate higher (mechanical) power output. Actuator hardware is a necessary
* ingredient in any actively controlled system [3-81.

An actuator can be characterized in terms of the physical nature of its

input and output signals. Throughout, an actuator input will be considered to
be a voltage signal. The nature of the actuator output depends on the way in
which the actuator is physically connected with the space structure. Although
large space structures may consist of plate and shell segments, many large
space structurc' will be truss connections of structural members. In such a
case, an actuator may be configured to provide a longitudinal force at a joint
connection of several members, an axial force along a member, a moment at a

*. joint, or a bending moment on a member. Since the mathematical characteriza-
tions of all of these different physical actuator configurations are equiva-
lent, it suffices in the sequel to consider the output of an actuator to be a
suitably defined generalized force applied to the structure.

All electromechanical actuators consist of an electrical subsystem and a
mechanical subsystem with some electromechanical interaction. The electrical
subsystem is assumed to be of a simple resistive form so that its associated

* dynamics can be ignored. The mechanical subsystem is assumed to consist of an
actuator mass and spring combination which are significant in defining the

* actuator dynamics. The electromechanical interaction provides a force on the
actuator mass of electrical origin. These features are typical of electro-
mechanical actuators where the electromechanical interaction is of magnetic

field origin, of electric field origin, or of piezoelectric origin [3-91.

Various devices have been mentioned in the published literature as feas-
ible actuators for vibration control of large space structures: reaction
wheels, proof mass actuators, piezoelectric actuators, electronic dampers,

* voice coil actuators, cable spool actuators, and tendon cable actuators. Each
of these electromechanical devices falls within the framework of our subse-

* quent development. Our development does not explicitly include the case of
mass expulsion type actuators, control moment gyros, or hydraulic or pneumatic
actuators. However, our development may, with some modification, be extended
to such cases.
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3.2.2 Modelling Assumptions

In this section, the basic assumptions which hold throughout Section 3 -

are stated. In addition, two clagses of actuators are described for detailed 0
examination in the subsequent sections.

Although a large space structure can often be described by a distributed
* mass model using partial differential equations, our development will make use

of a lumped model for a large space structure. Such a model can often be ob-
tained by finite-element methods, even for complex large space structures.
Thus the second-order vector differential equation

Mx + Dx + Kx = Bf (3-1)

is chosen to represent the model for structural dynamics. Here x denotes the
n-vector of generalized structural displacements, so that x and x are struc-
tural velocity and acceleration vectors. The n x n mass matrix M is assumed
to be symmetric and positive definite. The n x n structural stiffness matrix
K is assumed to be symmetric. Since our interest is in vibration motion rath-

*er than rigid body motion, K is assumed to be positive definite. The n x n
damping matrix D is often rather arbitrarily chosen since there is sparse
theory for structural damping available for guidance. In this work, the damp-
ing matrix D is assumed to be symmetric and nonnegative definite; the common
choice D = 0 is allowed. The right-hand side of Eq. (3-1) characterizes the
influence of the actuator forces on the structure; the m-vector f denotes the
generalized actuator force vector, while B is an n x m dimensionless influence
matrix. The specific form of the actuator force vector is examined in con-

*• siderable detail in the following sections.

There are numerous mathematical models that could be used to describe
electromechanical actuator dynamics; the literature on actuator dynamics is
abundant. Unfortunately, there seems to be no single, tractable model for
electromechanical actuator dynamics which is general enough to characterize
all of the physical actuators mentioned in the previous section. However, it
seems to be the case that each of the physical actuators mentioned does fit
into one of two distinct classes of actuators. Hence, our subsequent theory -

is developed along two separate but parallel lines, corresponding to the two
classes of electromechanical actuators considered. "*-

The two electromechanical actuator classes are reaction types and trans-

mission types. Physically, an actuator is a reaction type if the resultant
force on the structure is an inertial reaction force; an actuator is a trans-
mission type if the resultant force on the structure is transmitted through a
flexible connection. More formally, an actuator is either a reaction type or
a transmission type according to the specific form of its mathematical model.
In the subsequent sections, detailed mathematical models are developed for
each of these two classes of actuators.

Specifically, reaction wheels and proof mass actuators are examples of
reaction type actuators, while piezoelectric actuators, electronic dampers,
voice coil actuators, cable spool actuators, and tendon cable actuators are _t
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examples of transmission type actuators. Although the literature is vast,
References 3-10 through 3-12 examine various examples of reaction type actu-
ators for use in control of elastic systems. References 3-13 through 3-15
examine various examples of transmission type actuators for use in control of

elastic systems. This classification of actuators seems natural and is cer-
tainly convenient; however, the specific terminology has been chosen by the

author and has not been used elsewhere. There is no claim that the classifi-

cation of electromechanical actuators is exhaustive, but many examples of
electromechanical actuators known to the author do seem to fit nicely into one
of the two classes. Thus, the classification is suggested as a practical
matter whereby mathematically tractable actuator models are obtained.

* -The structural dynamics, as defined by Eq. (3-1), are defined in terms
of a linear differential equation. In the actuator models developed in the
next section, the linearity assumption is maintained. But the present work

could serve as a framework for development of nonlinear actuator models.

For clarity in the presentation, a mathematical model of a large space
structure controlled by a single reaction type actuator is first developed.
Next, a mathematical model of a large space structure controlled by a single
transmission type actuator is developed. Then the general case where multiple
actuators are used to control a large space structure is easily handled.

3.2.3 Single Reaction Type Actuator

In this section, a mathematical model is developed for a large space

structure, as described by Eq. (3-1), controlled by a single reaction type
actuator.

The basis fur our development in this section is the schematic diagram
in Figure 3-1. The large space structure is represented by a lumped mass

model of which a single mass element is shown. The dynamics of the electro-
mechanical actuator are characterized by an actuator mass, ma, connected to

the structure by a spring and damper in parallel. A reaction type actuator
has the property that the electromechanical interaction force, fa' appears

as a reaction pair as shown in this figure. It is claimed that the simple
schematic represents the general case of a structure controlled by a singtli

reaction type actuator.

Based on Figure 3-1, equations of motion can be developced using a La-
* grangian approach. Introduce the notation

" x n - Vctlor of gkenralized structural displackeme-nts

T
B x = alar tJM ral iz, d (I p Lpacetmint of the structure at tht actuator

10( At 1,11

z = , I i plaLem.nt of the actuator mass relitive to

h)O
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Fgure 3-1. Single reaction type actuator.

The actuator/structure Lagrangian is given by

L = + 1 ma z + 2 2 x Kx k (3-2)
2 2 2 2 a

where M and K are n x n matrices as in Eq. (3-1), B is actuator influence

vector, and ma > 0, ka > 0 define the actuator mass and stiffness. From

Lagrange's equations obtain

Sx + z) + Kx = (3-3)

T..
m (B x + 7) + k Z = 2 (3-4)

The generalized forces are

Q = -Dx (3-5)

and

2= c az + f a (3-6)

where fa represents the electromechanical interaction force given by

f = b u (3-7)
a a

Here, u is actuator input voltage, and ba > 0 is actuator servo constant;

ca > 0 represents actuator damping coefficient. The choice of coordinates
with z defined as a relative displacement results in Q2 depending explicitly -

on the reaction force fa' while Q1 does not.

In summary, the actuator/structure model obtained is

Mx" + Dx + Kx = -B m (z+ BTx) (3-8)
a p -
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m z+Bx)+ c z+ k z b u (3-9)
a a a a

These equations ar_- inhur-nLv coupled through thc actuator inertial term.
The effect ive actuatot f-t l the structure is givt-n by

T.. 4

f -m (7 + B ) 3-10)
a

which can be viewed as a force in reaction to the acceleration of the actuator
mass. It is this view that motivates the designation of the actuator as being
a reaction type. Note that Eq. (3-8), (3-9), and (3-10) have a transmission

. zero at s = 0. Thus, a reaction type actuator cannot be used to control rigid
body motion; the actuator cannot excite the rigid body motion.

There are two approximations that are commonly made, since the actuator/

structure dynamics are considerably simplified. The approximation is based on
the "no loading assumption" that the acceleration of the structure at the

*. actuator location is negligible compared with the acceleration of the actuator
mass, i.e.

The result is

Approximation Model I

+ Dx+ Kx = -B mz (3-12)
a

m z + c z + k z = b u (3-13)
a a a a

This approximation essentially decouples the actuator motion from the struc- p
tural motion. A further simplification that is often made is to assume that
'actuator inertial terms are dominant'' in that

k kzj <<K .,;1 (3-14)
aL

The result is

Approximation Model II

*O Mx + Dx + Kx = -B m z (3-15)

a

mz + C z = u (3-16)) j.a a At

Approximation Model It is often employed to characterize reaction wheel dynam-
ics, since in that case, ka 0. I.-
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The preceding approximation models should be recognized as specific as-
sumed simplifications of the general model described by Eq. (3-8) and (3-9).
There is often no a priori reason for accepting the "no loading assumption";
thus, in the subsequent developments, the exact equations (3-8) and (3-9) are
used. Of course, all our subsequent results are substantially simplified if
one of the above approximations is employed.

3.2.4 Single Transmission Type Actuator

A mathematical model for a large space structure controlled by a single
transmission type actuator is now developed.

The basis for .he development in this section is the schematic diagram
in Figure 3-2. As before, the large space structure is represented by a
lumped mass model, of which a single mass element is shown. The dynamics of
the electromechanical actuator are characterized by an actuator mass, ma,
connected to the structure by a spring with a damper. A transmission type

* " actuator has the property that the electromechanical interaction force, fa,
acts only on the actuator mass as shown in this figure. It is claimed that

. the simple schematic of Figure 3-2 represents the general case of a structure
controlled by a single transmission type actuator.

2" /c a  ka
/ACTUATOR S

/MASS

Figure 3-2. Single transmission type actuator.

Based on Figure 3-2, equations of motion can be developed using a La-
grangian approach. Intr-duce the notation ,

x = n -vector of generalized structural displacements

T
B x"= scalar generalized displacement of the structure at the actuator

location

z = scalar generalized displacement of the actuator mass

The actuator/structure Lagrangian is given by

JM +T 1*;2 1IxT Kx IkTx2-2x Mx +- m a  , -- x Kx - i a z - (3-17) |
L 2 2 al 2 2 Iz B(17
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where M and K are n x n matrices as in Eq. (3-1), B is an actuator influence
vector, and ma > 0, ka > 0 define the actuator mass and stiffness. From
Lagrange's equations obtain

M " + Kx - B ka(z - B x) =QI (3-18)•
a

T
m + k (z -Bx) = Q (3-19)

The generalized forces are 0

= -Dx (3-20)

and

Q2 = Ca + fa (3-21)

where f. represents the electromechanical interaction force given by

f b u (3-22)
a a

Here u is actuator input voltage, ba > 0 is the actuator servo constant, and
*i Ca > 0 is the actuator damping coefficient.

In summary, the actuator/structure model obtained is

BT)

+ Dx + Kx = B k (z - x) (3-23)

Tm z + C a + k (z -B x) b u (3-24)a a a a

* These equations are inherently coupled through the actuator flexibility term.
. The effective actuator force on the structure is given by

f = k (z - B Tx) (3-25)

* which can be viewed as a force transmitted from the actuator mass to the
structure. It is this view that motivates the designation of the actuator as
being a transmission type.

q Two approximations of the preceding equations are now mentioned; the
resulting actuator/structure dynamics are considerably simplified. The first
approximation is based on the "no loading assumption," that the displacement
of the structure at the actuator location is negligible compared with the dis-

placement of the actuator mass, i.e.
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S" << (3-26)

The result is

Approximation Model III

Mx + Dx + Kx B k z (3-27)

a

m z + cz + k z = b u (3-28)
""a a a a .

This approximation essentially decouples the actuator motion from the struc-
tural motion. A further approximation that is often made is to assume that

actuator flexibility terms are dominant" so that

I a << kz (3-29)

The result is

Approximation Model IV

Mx + Dx + Kx = B k z (3-30)a,-

c aZ + kaZ = bau (3-31)

The above approximation models should be recognized as specific assumed

. simplii-cations of the general model described by Eq. (3-23) and (3-24).

There is - no a priori reason for accepting the "no loading assumption";

thus, in , ubsequent developments, the exact equations (3-23) and (3-24)

are used. All of our subsequent results are substantially simplified if one

.. of the above approximations is employed.

3.2.5 Multiple Actuators

In this section, a mathematical model for a large space structure j

controlled by multiple actuators is developed. It is assumed that there are a

total of m actuators, ordered so that the first p actuators are reaction type

and the last m - p actuators are transmission type. The notation used in the
previous sections is maintained, so that the actuators/structure Lagrangian is

given by

I xTM + 1 mi [ + T. 2 -:

L = 2 2a B i

+ 1 mi iy 2  I T "
i 2 2 ma 2i, 2
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I 1 ki Tz a z -B tx (3-32)
t e" I a T i ! a i1 id

0,

whe re

, - I ji{]., ... , P1

12 {p + I, ... m

The parameters ma > 0, ki > 0 represent the ith actuator mass and stiffness
a a

th
values, and Bt represents the it  actuator influence vector, i

From Lagrange's equations obtain

- T i T
Mx +Kx + B Bima (zi + B tx) B i Bk a(z - B ix) Q (3-33)

1  ti

mi (BTx + z + kaZ = Q i 1 (3-34)

t i T i
mz + k Bz ) Q , 2(3-35)

The generalized forces are

Q1 -Dx (3-36)

t:Q i. ft

f CZa + fa = , ... , m (3-37)

where

i if bu , =1 , ...,m (3-38)
a a t

In summary the actuators/structure model obtained is

• .s-."-Mx +Dx +Kx B m B T) + B kt(zt B x) (3-39)

t 1  t12

i i i I T i
mz + c +k z = -m Bx + au t 61 (3-40)":m a t a ia ix a i'

t ak I B T +bt E (
x c t e 2  (-41)
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These coupled equations provide the basic model for the actuators/structure.
It is observed that Eq. (3-39) takes on the form of Eq. (3-1) where the

actuator force vector f = (fl.... , fm) is given by

i T
f = -Mn (z + B x) iFl 1i a i i

i T
f k (z -B x) , 6l (3-42)

i a I. ii: 2 0

and

B = (B 1 , ... , B ) (3-43)

--n

is n x m influence matrix.

Actuator approximations, as indicated in the previous sections, can be

made. The resulting simplifications are straightforward.

3.3 Centralized Control Design Viewpoint

In Sections 3.3 and 3.4, two viewpoints toward control design for an

actuators/structure interconnection are expressed and developed. In this sec-
' tion, the viewpoint of a centralized controller is examined, where feedback of

" both the structural motion and the actuator motion is possible, with no a
priori restriction on the controller form. A certain decentralized control . -

design viewpoint is taken in Section 3.4, where only local feedback of the

actuator motion is allowed. This leads to a natural partition of the control-
ler into a force controller which depends on the feedback of the structural

motion and actuator servo controllers, one for each actuator, which depend on

feedback of the local actuator motion only. This latter control design view-
point is natural in the case where a force controller is developed by com-
pletely ignoring all actuator effects, and internal compensation for each

actuator is used to justify that assumption.

* Although these two viewpoints have not been explicitly stated in the

* published literature. they have been implicitly followed in two cases where

* actuator dynamics have been examined. In Reference 3-16, the actuator dynam-

- ics were included as part of the plant for purposes of controller design; this
is characteristic of the c'ntralized control design viewpoint. In Reference S
3-17 a controller is developed, ignoring actuator dynamics, and the effects of

actuator dynamics on the closed loop is evaluated; this is characteristic of

- the decentralized control design viewpoint.

Consideration of the two control design viewpoints does seem useful

since, depending on the context, the role of the actuators in the two cases -
does differ. These two viewpoints are conceptual. A given controller for an
actuator/structure cannot be classified as necessarily having been developed

using a particular viewpoint; however, the different viewpoints do lead
naturally to certain controller configurations that are discussed in this

section and in Section 3.4.
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3.3.1 Approach

A large space structure with associated actuators can be viewed as a
single plant. This is a natural viewpoint since the mathematical equations
which describe the actuators and structure, e.g., Eq. (3-39), (3-40), and
(3-41), are inherently coupled. Since there is no reason to distinguish
between the actuators and structure in defining the plant, a centralized
controller is based on feedback of both the actuator motion and the structural
motion. A schematic of a closed loop, incorporating a centralized controller, •-
is shown in Figure 3-3. The actuators and structure are indicated separately
for conceptual reasons. The centralized control design viewpoint is defined
by the feedback system in Figure 3-3.

ACTUATOR

.CENTRALIZED ."LSS
CONTROLLER

SACUTR

Figure 3-3. Centralized control representation. I.

3.3.2 Single Reaction Type Actuator

Centralized control using the scheme shown in Figure 3-3 is applied to a
large space structure controlled by a single reaction type actuator. The
development is based on Eq. (3-8) and (3-9) for the actuator/structure
combination. They can be written in compact form as

M q + D + K q B u (3-44)

where q (x,z) and M, D, K, B are partitioned matrices

• " + maBBT m B

= (3-45)
m Bm

aa
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p ?(3-46)

i~i K K 0347

0 kL i0 (3-47)

and

B (3-48)

La]

It is important to recognize that the mathematical form of the augmented
Eq. (3-44) is the same as the mathematical form of the large space structure
Eq. (3-1) alone, in the sense that the (n + 1) x (n + 1) matrices, M, D, K,
are symmetric with M, K positive definite, and D nonnegative definite. The
practical implications of this observation are great: all control design pro-
cedures developed explicitly for large space structure equations are formally . -

applicable to the actuator/structure combination. Thus, there is a wide range
of design and analysis procedures which are directly applicable to Eq. (3-
44). A few simple results are mentioned.

To illustrate the centralized control design viewpoint consider the use
of direct velocity feedback.

In the most general case, both the actuator velocity and the structural
velocity can be used for feedback control. In this case, the controller is
given by

cT
cf Cd.

u - + x (3-49)
b b
a a

In this case, the second term in Eq. (3-49) is assumed to have a positive
coefficient in order to characterize positive damping. The constant scalar,
cf, and vector, Cd, represent the feedback gains. In this case, the
closed loop is described by equations

M + Dq + K q = 0 (3-50) -0
C

where

D (3-51)
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j " (3-46)

[ k] (3-47)

aS

and

B = (3-48)

It is important to recognize that the mathematical form of the augmented
Eq. (3-44) is the same as the mathematical form of the large space structure
Eq. (3-1) alone, in the sense that the (n + 1) x (n + 1) matrices, M, D, K,
are symmetric with M, K positive definite, and D nonnegative definite. The lob
practical implications of this observation are great: all control design pro-
cedures developed explicitly for large space structure equations are formally
applicable to the actuator/structure combination. Thus, there is a wide range
of design and analysis procedures which are directly applicable to Eq. (3-
44). A few simple results are mentioned.

• To illustrate the centralized control design viewpoint consider the use
- of direct velocity feedback.

In the most general case, both the actuator velocity and the structural
velocity can be used for feedback control. In this case the controller is
given by "

T
cf Cd

z + - x (3-49)
b b
a a

In this case, the second cerm in Eq. (3-49) is assumed to have a positive
coefficient in order to characterize positive damping. The constant scalar,
cf, and vector, Cd, represent the feedback gains. In this case, the
closed loop is described by equations

M + Dq + K q = 0 (3-50)

where

D = (3-51)|

c d -,
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with c c + cf. In this case, the matrix D is not symmetric, in fact,
a fc

the skew-symmetric part of D represents the usual gyroscopic type terms
c

[3-181. The closed-luop system (Eq. (3-50)) is stable if and only if each

eigenvalue of Eq. (3-50) has negative real part. A simple sufficient condi-
tion for the stability of Eq. (3-50), based on results in Reference 3-18, is
the following. Any choice of feedback gains for which the symmetric matrix

T"
D + D is positive definite guarantees that the closed loop defined by Eq.

(3-50) is stable. Suppose D is positive definite; the closed loop can be

stabilized for any actuator velocity gain cf > 0 if the structural velocity

gain, Cd, is sufficiep'-ly small.

One special case of Eq. (3-49) of particular interest is
hc

u z (3-52)ba

where only actuator velocity is used for feedback. In this case, the closed
loop can be viewed as the feedback connection oF the positive real transfer

funct ion P

T 2 -5
s B H s + D s + K B (3-53)

cf
and the feedback gain, - . Hence, based on the results of Reference 3-19,

b2a
the closed-loop system, Eq. (3-50), with C = 0, is stable if c > 0. More-

over, as shown in Reference 3-19, the closed loop has certain desirable

robustness properties.

Even the simplest case of Eq. (3-49), corresponding to open-loop control V

u =0 (3-54)

may be a feasible control strategy. The closed loop system (Eq. (3-50)) with
c 0, C = 0, is stable if D is positive definite and c > 0. This simple

" control configuration coiresponds to the case where the reaction actuator is
used as a passive damper [3-20].

The above example control strategies are only illustrative of the

centralized design approach applied to a large space structure with a single
reaction type actuator.
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3.3.3 Single Transmission Type Actuator

Consider Eq. (3-24) and (3-25) developed previously to describe the
dynamics for a large space structure controlled by a single transmission type

- actuator. Those equations can be written in the augmented form

M q + D q + K q = B u (3-55)

where q (x,z) and M, D, K, B are partitioned matrices

H=F i(3-56)

Di 0

. D(3-57)

T _

+ kBB -k B

K = ~(3-58)-kaBT k il:.

a and

anda"" rba b (3-59).".

In this case, it is recognized that the mathematical form of the augmen-
ted Eq. (3-55) is the same as the mathematical form of the large space struc-
ture Eq. (3-1) alone, in the sense that the (n + 1) x (n + 1) matrices M, D,
K are symmetric with M, K positive, and D nonnegative definite. The practical
implication of this observation is that any control design procedure developed
for large space structure equations is directly applicable to the actuator/

structure combination. Thus, there are many design and analysis procedures
that can be applied to Eq. (3-55). A few such results are now mentioned.

Direct velocity feedback is again used to illustrate the centralized
* control design viewpoint in this case.

Assuming both actuator velocity and structural velocity are used for
feedback, consider the controller given by

T:" f c dcf x (3-60)

a a
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where cf and Cd are feedback gains. The closed loop is described by
equation

K q + Dcq + K q = 0 (3-61) 0

where

D = (3-62)
c LT1

with c = ca + cf. Comparing Eq. (3-60) through (3-62) to Eq. (3-49)
through (3-51), the discussion following Eq. (3-51) applies here verbatim.

3.3.4 Multiple Actuators

In this section, centralized control of a large space structure con-
trolled by multiple actuators is considered; the assumptions made in Section
3.2.5 are continued so that the actuators/structure are described by Eq.
(3-39), (3-40), and (3-41). The augmented variables z = (zl,...,Zm),
q = (x,z), and u = (ul,... ,um) are introduced so that Eq. (3-40), (3-41),
and (3-42) can be written as %

M + D q+ K q = B u (3-63)

where M, D, K, B are defined by the (n + m) x (n + m) partitioned matrices

11 M12 0

M= 2 T (3-64)

La2  022 0~.0 0 M 3i ":

where

= BiB i  (3-65) S

N = [m Bit m B (3-66)
12 a' a ap

N = diag (m1 ... ,mp) (3-67)
22 a' a

M3 3  = diag (m , ... m (3-68)
33a a
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* and

D rO D a](3-69)

where

D ig(C m) (3-70)
a ig( a ca

and

VKI 0 K1 ~
K 0 K 2  03  (3-71)

where

I T (3-72)
K K + k aBIB.

K nk+lIB+- m B(3-73)

13a a

K =diag (k~~ k)
33a a

and

B PB ai (3-76)

* where

B ig b m*,b (3-77)
Ba da(ba ba
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In this general case, the mathematical form of the augmented Eq. (3-63)
is the same as the mathematical form of the structure of Eq. (3-1) alone in

the sense that the (n + m) x (n + m) matrices M, D, K are symmetric with M, K

positive definite, and D nonnegative definite. Again, the implication of this
observation is that all control design procedures developed for large space
structure equations are directly applicable to the actuators/structure
combination.

Obviously, there are innumerable possible control configurations in the
case of multiple actuators. A few cases are considered using feedback of the

- actuator velocities and the structural velocities.

Consider the feedback controller

u = -B (Cz + CX) (3-78)u=-a Cf d

where Cf is m x m gain matrix and Cd is m x n gain matrix.

The closed loop is described by

M q+ Dq + K q = 0 (3-79)

where

04

D = (3-80)

c Fd +Cj

The nonsymmetric matrix includes gyroscopic terms as before. The closed-loop
system, Eq. (3-79), is stable if and only if each eigenvalue of Eq. (3-79) has m
a negative real part. A simple sufficient condition, based on results in Ref-

erence 3-18 is that: any choice of feedback gains for which the symmetric
T

matrix D + D is pocitive definite guarantees that the closed loop defined by

* by Eq. (3-79) is stable. Suppose D is positive definite. The closed loop can

be stabilized for any symmetric, positive definite actuator velocity gain

matrix, Cf, if the struct.t al velocity gain matrix, Cd, is sufficiently

sma ll.

One special case of the control Eq. (3-78) is

u = -B C fz (3-81)

* where feedback control depends only on the actuator velocities. In this case,
the closed loop can be viewed as the feedback connection of the positive real

transfer function matrix
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s B M s2 + D s + K B (3-82)

-1 -l
and the feedback gain matrix Ba C fB a * erce, based on rusults in Referencea fa

3-19, the closed-loop, Eq. (3-63), with C = 0, is stable if C is symmetric
df

and positive definite. Moreover, as shown in Reference 3-19, the closed loop
has certain desirable robustness properties.

The case where all actuators are used as passive dampers corresponds to

u = 0

The closed loop, Eq. (3-63), with C = 0, C = 0, is stable if D is positive

definite and C > , i =  1, ... , m.a- ',

These constant gain velocity feedback strategies are illustrative of the

centralized design approach applied to a large space structure controlled by
multiple electromechanical actuators.

3.3.5 Comments .4

The centralized control design approach is to impose no a priori con-
sLraints on the controller configuration. This approach is natural when the
acbuators and structure are viewed as a "plant" and there is no necessary dis-
tinction between feedback of the actuators motion and the structural motion.

The advantage of this control design viewpoint is its generality. Sinc e
no a priori control constraints are imposed, selection of a particular control

configuration can be made with freedom. Furthermore, any parti:ular control-
ler design obtained on the basis of the augmented model, e.g., Eq. (3-63), has

* explicitly obtained closed-loop properties. in other words, Eq. (3-63) repre-
sents a complete model of the actuators and structure.

The disadvantage of designing a controlle- on the basis of Eq. (3-63)
* lies in the fact that it contains n + m modes, i.e., 2(n + m) state vari-

ables. This -ncrease in model order, due to inclusion of the actuator dynam-
ics, may increase the computational difficUlty in achieving a good control
design. Model order reduction methods have been commonly employed as a way of .

achieving a reduced-order large space structure modei of tractable order [3-4,
3-5]. Our suggestion is that it is preferable to perform any model order re-

duction on the basis of Eq. (3-63), which includes the actuator dynamics,
rather than performing order reduction on the large spac(e structure model
alone and subsequently incorporating the actuator dynamik:s.
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3.4 Decentralized Control Design Viewpoint

3.4.1 Approach

A natural approach to the design of a controller is to develop a con-
*" troller for the large space structure alone, ignoring all actuator dynamics.

It is then necessary to provide local compensation for each actuator as a

means of justifying the original assumption. The controller is thus separated
* into two parts: a force controller, typically based on the structural dynam-

ics only, and an actuator servo controller for each actuator. This a priori 0
assumed controller configuration is referred to here as a decentralized con-
troller. A schematic of a closed loop, incorporating a decentralized control-
ler, is shown in Figu- 3-4.

fd ACTUATOR U

CONTROLLERFORC ACUAO Uf

ACCTUATOR
-CONTROLLER" ATAO .=

Figure 3-4. Decentralized control representation.

Our objective is to consider a general class of procedures for designing
such decentralized control schemes. Since much attention has been focused on -
the design of force controllers, this issue is generally ignored here. For
purposes of illustration, a force controller which depends on structural vel-
ocity feedback only is subsequently employed. Our main attention is focused

on design of the actuator controllers.

This decentralized control design approach is conceptually appealing. O
However, the equations which describe the large space structure and actuators,

e.g., Eq. (3-40), (3-41), and (3-42), are inherently coupled. This inability
to completely separate structural dynamics from actuator dynamics makes the

design of a decentralized controller with guaranteed closed-loop properties
difficult. Hence, some attention is given to methods for evaluating closed-

loop stability, where the loop is closed using a decentralized controller. -
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3.4.2 Single Reaction Type Actuator

In this section, a decentralized control scheme as shown in Figure 3-4
is developed for the case of a large space structure controlled by a single
reaction type actuator.

Let fd denote the output force of the force controller. The special
force controller form

T.
fd = -CdB x (3-83)

T-
is assumed, where B x represents the structural velocity feedback and cd is
the feedback gain. Development of the actuator controller characteristics do
not strongly depend on the force controller, so subsequent results can easily
be generalized if a different force controller form is assumed.

Our objective now is to develop insight into methods for choosing a
suitable actuator controller. Since the actuator dynamics cqnnot be separated

from the structural dynamics, care must be taken. The first task is to
determine the transfer function from u to f, based on Eq. (3-8) and (3-9),
where the actuator force, f, on the structure is given by Eq. (3-10). To this
end, define the scalar transfer function

T 2 -1
G (s) B (Ms + Ds + K) B (3-84)
5

T
which represents the influence of the force, f, on the displacement, B x, of
the structure at the location of the actuator. It can be shown that

-b
F(s)s) = a (3-85)
U(s) a c s + k-.- "'1I+ a + G(cs +k )

2 s a a
ms
a

Thus Ga (s) represents the effective actuator transfer function, where the

structural loading effects on the actuator are taken into account. An actua-
tor controller can be developed using this actuator transfer function, Eq.
(3-85).

The actuator controller is supposed to servo the actuator so that the
actuator force, f, tracks the desired force, fd' This is achieved through

actuator velocity feedback plus a suitable dynamic interface between fd and

. the actuator input voltage, u. Formally, the actuator controller should be
realizable and, as closely as is possible, represent the system inverse of

-Ga(s). It is also desirable for the actuator controller not to depend ex-

plicitly on properties of the structure. 'Such constraints are severe.
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One form for the actuator controller, which represents a realizable ap-
proximation to the actuator inverse, is given by

cf
1(I + c-)F(S) f (3-86) "

U(S) s m~ds Z(S)
a a a

where c = ca + cf. This actuator controller depends on actuator velocity

feedback plus dynamic (integral) forward compensation. The resulting transfer
function from fd to f is

F(s) I
*.[ Fd(S) f G(S)+2 (3-87)

+ a + ma (cs + ka )Gs
2+ c• -55mm ms + cs ..ja .

where Gf(s) represents the effective actuator controller transfer function.

This dimensionless transfer function characterizes the total effect of the

actuator and actuator controller dynamics on the structure.

The actuator controller, Eq. (3-86), is a reasonable choice, but other .

'. actuator controller forms could be selected. In Eq. (3-86), the actuator con-
troller output voltage, u, depends on feedback of the velocity of the actuator
mass; it is also proportional to fd and to its integral. Clearly, the actu-

ator controller described by Eq. (3-86) is realizable. In the case that fd
is given by Eq. (3-83), the actuator controller output, u, can be expressed

directly in terms of the structural displacement and velocity, thereby avoid-

ing need for explicit integration.

The effective actuator transfer function, Gf(s), can be represented as

a feedback connection of

m s(cs + K )
a a

2
m s + cs + k

a a

* and

sa

Each of these transfer functions is positive real, with the former strictly

positive real if c > 0. Using the result in Reference 3-19, the actuator/
- actuator controller system defined by Eq. (3-87) is stable if c > 0. Thus, a

reaction type actuator cannot be destabilized when connected to any elastic -
structure in an open-loop configuration.

The closed-loop configuration of Figure 3-4 is now examined, where the
force controller is given by Eq. (3-83), the actuator controller is given by

*" Eq. (3-86), and the actuator/large space structure is described by Eq. (3-8)

and (3-9). The closed-loop system is defined by P

N --
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M + D q+ K q 0 (3-88)

where q = (x,z) and M, D, K are defined by the partitioned matrices

T
-mBB mB"-mM= BT '~1(3-89)

a a

DS

D = T (3-90)

L 0
aB Cdk

This set of closed-loop equations does not have the symmetric properties of
the structural Eq. (3-1); the matrices D and K are not generally symmetric.

But Eq. (3-88) could form the basis for analysis of the closed loop.

An alternative description of the closed loop can be given in terms of
transfer functions. The return difference function is given by

i + G (s) G (s) (3-92)
f p

where the controller/structure transfer function

G (s) C sBT(Ms 2 + Ds + ) -lB (3-93)
p d

Stability of the closed loop is critical. The f,'Alowing conditions are
well known. The closed loop, defined by Eq. (3-88), is stable if and only if

each eigenvalue of Eq. (3-88) has a negative real part. Equivalently, the
closed loop is stable if and only if each zero of Eq. (3-92) has a negative

. real part. Such necessary and sufficient conditions for closed-loop stability

give little insight into the effect of the actuator dynamics.

From the viewpoint of decentralized control, the key issue is whether
* •the effective actuator dynamics, defined by Eq. (3-87), destabilize the closed

* loop. Recently developed tests [3-17, 3-22] are particularly suitable in this

case since they characterize the robustness of the closed loop explicitly in
terms of the effective actuator dynamics. The conditions are sufficient for

stability of the closed loop. In the present context the following is ob-
tained.

80

• °.



Suppose that each zero of

I + G (s) (3-94)
p

has a negative real part. If

Gf(jw) - < 11 + G(jW) (3-95)'V." p

holds for all w > 0, the closed loop is stable. .

The hypothesis of Eq. (3-94) is that the closed loop, ignoring actuator
dynamics, is stable; t;s hypothesis is satisfied in the particular case, Eq.

(3-93), if cd > 0 [3-18, 3-19]. The frequency condition, Eq. (3-95), has a
simple interpretation: the left-hand side represents the frequency reponse
magnitude of the actuator error, while the right-hand side is the frequency p
response magnitude of the nominal inverse return difference. The inequality
Eq. (3-95) can easily be checked using graphical procedures. Use of this
robustness test is illustrated in a subsequent example in Section 3.5.

In this case, as a partial justification for the decentralized control
design approach, consider the following property. Suppose a force controller
is chosen so that the closed loop, ignoring actuator dynamics, is stable.

There are actuator parameters, m > 0, c > 0, k > 0, such that the closed
a a.

loop, including actuator dynamics, is stable. In other words, it is always

possible to determine an actuator and actuator controller of the form of Eq.
(3-86) so that the closed loop is stable.

A few general remarks can be made regarding selection of the actuator
parameters for a reaction type actuator. The actuator mass parameter, ma,
should be selected so that the inertial effects of the actuator are dominant
over the frequency range of interest. The actuator stiffness parameter, kav
should be chosen as small as possible. I

3.4.3 Single Transmission Type Actuator

Decentralized cuntrol of a large space structure as shown in Figure 3-4
is now examined where the structure is controlled by a single transmission

type actuator.

A force controller given by

T.
f d cd B x (3-96)

is once again assumed for simplicity, where cd is the feedback gain con- -

stant.
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A basis for choosing an actuator controller is now developed. The
transfer function for the actuator relates the actuator voltage, u, to the

, actuator force, f. Using the structural transfer function, G s, defined by

T 2 -10
G B (Ms + Ds + K)- B (3-97)
s

and Eq. (3-23) and (3-24) for a transmission type actuator, the actuator input
voltage, u, and actuator force, f, defined by Eq. (3-25) can be related by

b
F(s) aa.j G(S) =2(3-98)

ms +cs 2
1+ a a + G (m s + c s)

k s a a

Here, Ga(s) represents the effective actuator transfer function, where the
structural loading effects on the actuator are taken into account. An actua-
tor controller can be developed using this actuator transfer function.

As mentioned previously, the actuator controller should be chosen to
represent a realizable approximation to the actuator inverse. One suitable
form for the actuator controller, in this case, is given by

c
U(s) (I + F (S) S Vs) (3-99)b ~ k Fd~s b~sZ

a a a

where c = ca + cf. This actuator controller depends on actuator velocity
feedback plus dynamic (derivative) forward compensation. The resulting trans-

' fer function from fd to f is

F(s) _
F(s) 

(3-100)F()2 2

d m s + (m s + cs)kG1+ a a as

cs + k
a

where Gf(s) represents the effective actuator and actuator controller trans-
fer function.

The actuator controller form Eq. (3-99) is one choice, where the actua-
tor controller output, u, depends on feedback of the velocity of the actuator
mass and it is proportional to fd and its derivative. In the case that f

is given by Eq. (3-96), the actuator controller output, u, can be expressed
directly in terms of the structural velocity and acceleration, thereby
avoiding need for explicit differentiation.

The effective actuator transfer function, Gf(s), can be represented as
- a feedback connection of
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k (m s + c)
a a
2

m s + Cs + ka a

and

sG (s) (
S

Each of these transfer functions is positive real, with the former strictly
positive real if c > 0. Using results from Reference 3-19, the actuator/
actuator controller system defined by Eq. (3-100) is stable if c > 0. Conse-
quently, a transmission type actuator can not be destabilized when connected
to any elastic structure in an open-loop configuration.

The closed-loop configuration of Figure 3-4 is now examined, where the
force controller is given by Eq. (3-96), the actuator controller is given by S

. Eq. (3-99), and the actuator/large space structure is given by Eq. (3-23) and
(3-24). The closed-loop system can be described by

M q+ D q+ K q = 0 (3-101)

where q = (x,z) and M, D, K are defined by the partitioned matrices

M = 0B1 (3-102)

BSk cd ma

D = D (3-103)

"- = L a ( 3- 104 ) ''.-,

-- T  ".,

,,K +- k B-k B-.,

" The set of closed-loop equations (Eq. (3-101)) does not have the symmetry
- properties of the structural equation (Eq. (3-1)); the matrices M, D are not

generally symmetric. But Eq. (3-101) could form the basis for analysis of the
closed loop.

Another description of the closed loop can be given using transfer
functions. The return difference functiog is given by

1 + G (s) G (s) (3-105)
f p
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where the controller/structure transfer function

T 2 -1
k (s) =c sB [Ms + Ds + K] B (3-106)p d

Stability of the closed loop is easily determined as follows. The

closed loop, defined by Eq. (3-101), is stable if and only if each eigenvalue
of Eq. (3-101) has a negative real part. Equivalently, the closed loop is
stable if and only if each zero of Eq. (3-105) has a negative real part.
Simpler conditions which give explicit insight into the effect of actuator

dynamics are also available using the robustness tests of References 3-17 and

3-22.

Suppose that each zero of

1 + G (s) (3-107)
p

has a negative real part. If

Gf(OW)- I < 1I + G (W) (3-108)

holds for all w > 0, the closed loop is stable.

As stated previously, the general hypothesis of Eq. (3-107) is that the

closed loop, ignoring the actuator dynamics, is stable; the hypothesis is sat-
isfied in the special case, Eq. (3-106), if cd > 0 [3-18, 3-19]. The fre-

quency condition, Eq. (3-108), has a simple interpretation and can be easily
checked graphically. Use of these robustness tests is illustrated by a subse-
quent example in Section 3.5.

As a partial justification for the decentralized control design ap-
proach, in this case, consider the following property. Suppose a force con-

troller is chosen so that the closed loop, ignoring actuator dynamics, is S
. stable. There are actuator parameters, m > 0, c > 0, k > 0, such that the

a-a -
closed loop, inclv.i, g actuator dynamics, is stable. In other words, it is

always possible tn determine an actuator and actuator controller of the form
of Eq. (3-99) so tthdt the closed loop is stable.

A few remarks can oe made regarding selection of the actuator parameters
for a transmission type actuator. The actuator stiffness parameter, kat

should be selected so that flexibility effects of the actuator are dominant

over the frequency range of interest. The actuator mass parameter, ma,

should be chosen as small as possible.

3.4.4 Multiple Actuators

In this section, decentralized control of a large space structure con-

trolled by multiple actuators is considered; the assumptions made in Section

3.2.5 are continued so that the actuators/structure are described by Eq.

(3-40), (3-41), and (3-42).
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A force controller is assumed to be of the form

i.-

f = -CdB x (3-109) S
d d

where

f = - d f"' (3-110)

B= (B, . B

* and Cd is m x m feedback gain matrix.

Actuator controllers for each actuator are used as in the previous O
sections. On the basis of the previous developments, the actuator controllers
are assumed to be given by

-C. cf(1
"" ' (I + I) F(s) - sZ.(s), i I  (3-1)I Lts - bm Fd b t  i O

b ins b
a a a

i 
..

fcis i cf
U (s) i (1 + F d (s) -- sz (s) iT 2  (3-112)

S*b i  k Fd b i  i ' 2

a a a 5

i 1
where c. = c a+, .., m. Each actuator controller depends on actua-

tor velocity feedback plus dynamic forward compensation. The resulting m x m
effective actuator and actuator controller transfer function matrix Gf(s)

defined by

F(s) = G (s) F (S) (3-113)
f d

is given by

G (s) = + Q + Q G (3-114)

where

kI mP4l 2i-
k m p+ 2a a -

Q1 (s) = diag ( 1 2 a.a 1 ' 
" '' 

*(3-115)

m s + cls Cs + k +
•

a I p+I~ a

85-
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1" 2 k I  2~ .I 2

m as (c s + k ) kPa (m as + c s)
Q2 (s) diag pa a a_ as_+_ Cp__ S)_

, i 2 ... , 'p. ..Q2MI s 2+ cS sCp s + k p+ I

a I +

(3-116)

and "

T 2 --
Gs(s) B (MS + Ds + K) B (3-117)

This actuator/P 'uator controller transfer function, G(s), is not in
* general diagonal due to the presence of the general nondiagonal structural

transfer function, G (s), in Eq. (3-114). In the case where multiple
actuators are used to control a large space structure, the effective actuator
dynamics involve crossfeed between the actuation channels, where the cross .'

feed effects are explicitly due to structural loading of the actuators.

The effective actuator transfer function, Gf(s), can be represented as
a feedback connection of

[I + Q - ( 2()
1 s

°and

sG (s)

Each of these transfer function matrices are positive real, with the former
strictly positive real if ci > 0, i = 1, ..., m. From the results in Refer-
ences 3-18 and 3-19, the actuator/actuator controller system defined by Eq.

(3-114) is stable if c. > 0, i = 1, ... , m. Consequently, multiple actuators

of the reaction and transmission types cannot be destabilized when connected

to any elastic structure in an open-Loop configuration.

The closed-toop configuration of Figure 3-4 is now examined, where the
force controller is given by Eq. (3-109), the actuator controllers are given
by Eq. (3-111) and (3-11- and the actuator/large space structure is

described by Eq. (3-40), (3-41), and (3-42). The closed-loop system can be
. described by

M q + D q + K q = 0 (3-118)

where q (x, z1, ... z) and N, D, K are defined by (n + m) x (n + m) _

partitioned matrices
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M M 0

11 12

N = M T K 0 (3-119)12 22

M 0 M
31 33

whe re

i T
N M + m aB B 1(3-120)

1

12 (m Bit .... maBp (3-121)

1 p
12 2= diag (M a' ... a (3-122)

p+1 m

1133 =diag (M a ... a) (3-123)

-P *l BCP+I, Cm BC~ (3-124)
kPld k m d

a a

and the feedback gain matrix

= [C, .... C] (3-125)

and

D D j (3-126) -

* where

D 11 D (3-127)

D diag (c , .,C )(3-128)
22 1p

D =3 diag (c , *..,c) (3-129)
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(-B~, ... , -u~p(3-130)

.1
21 d  d

ST P+1 m

DBC ,(BC, BCed (3-131) 0

and

11-KI 0 K 13--

L K 0 (3-132),.. = 21 K22

TS
v: K3 133

where

1T
KlI = K + j ka BiB (3-133)

22 = diag (k , " ' k pJ (3-134) .

3 Kdiag pK k (3-135)

K = [-kP+l B -k B (3-136)
13 a p+l' m-

C C
T - - I I %p1K = - BC P BCP] (3-137)

21 1 d' p d
m m

a a

" This set of clsed-loop equations does not have the symmetry properties of the
structural equaLion (Eq. (3-1)), but Eq. (3-118) could form the basis for

' analysis of the closed loop.

An alternative .lciption of the closed loop can be given in terms of
transfer functions. The return difference function is given by

det [I + G (s) G (s)] (3-138)
f p

* where the controLler/structure transfer function
T2 --' '.T s 2

G (s) CdsB (Ms + Ds + k) B (3-139)
p
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Stability of the ctosed 'oop is an essential propcty and can be charac-
terized as follows. The closed loop, defined by Eq. (3-118), is stable if and

*J only if each eigenvalue of Eq. (3-118) has a negative real part. Equivalent-

"" ly, the closed loop is ,table if and only if each zero of Eq. (3-138) has a
negative real part. Such necessary and sufficient conditions for closed-loop

-.stability are so complicated that little insight into the effect of the actua-

tor dynamics is obtain'd.

Simpler conditions, which do give explicit insight into the effect of
actuator dynamics on closed-lf,. stability, can be developed using the results
of References 3-17 and 3-22. Suppose that each zero of

det[l + G (s)] (3-140)

p

* has a negative rea, part. If

o[Gf (ju) - ] < o[l + G (jw ) ]  (3-141)
i- f p

holds for all w > 0 the closed loop is stable. Here o[G] and o[G] denoLe the
maximum and minimum singular values of a matrix G. respectively.

The general hypothesis of Eq. (3-140) is that the closed loop, ignoring
all actuator dynamics, is stable; the hypothesis is satisfied in the special
case in Eq. (3-139) if Cd is symmetric and positive definite (Eq. [3-18]).

'." The frequency condition, Eq. (3-141), has a simple interpretation and can be
checked graph'cally.

In the case where multiple actuators are used to control a large space
structure, it can be shown that it is always possible to determine actuators
and actuator controllers of the form of Eq. (3-111) and (3-112) so that the

* closed loop is stable. Suppose a force controller is chosen so that the
closed loop, ignoring actuator dynamics, is stable. There are actuator param-

i i
eters, m > 0, c i > 0, k > 0, i = 1, ... , m, such that the closed loop, in-

cluding actuator dynamics, is stable. Explicit guidelines for selection of
the actuator parameters are difficult to obtain. As in the previous sections,

' "i i.
it appears desirable 3o choose large in > 0 and small k > 0, i =1, ... , p fora a O5

i i
- the reaction actuator parameters and small ma > 0 and large k > 0, i = p + 1,a a'

... , m fur the transmission actuator parametcr,:. Substantil trial and error
may be required to select the actuator para,i.cers effectively in a particular

case.

3.4.5 Comments

The decentralizei control design approach is to impose the a priori Con-

straint that the controller consists of a force controllkr and a sUt of a, -

tor controllers, one for each actuator, as shown in Figure 3-4. This app .,,
is natural when the structure: is viewtd as the "plant" and tht, attat oi
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dynamics are ignored; a controller obtained on the basis of this assumption is
essentially a force controller. The actuator controllers can be subsequently
developed.

The main advantage of this control design viewpoint is that, since all 0O.
actuator dynamics are ignored in developing a force controller, there is a
reduction in dimensionelity and hence complexity of the control design prob-
lem. Such an order of reduction is often desirable as a means of obtaining a
computationally tractable control design problem. Specifically, this decen- - -

tralized approach depends on obtaining a force controller based on n struc-
tural modes, plus m single-loop actuator controllers, as opposed to the use of
n + m modes, i.e., 2(n + m) state variables if the centralized control design
approach is taken.

The major disadvantage with this approach is that there can be no guar- ...
antee of specific closed-loop properties, e.g., stability. As shown in Refer-
ence 3-23 and elsewhere, there is the possibility that a closed-loop system
with controllers chosen to stabilize the closed loop, ignoring actuator dyn-
amics, may, in fact, be destabilized by actuator dynamics. Thus closed-loop
characteristics, where the controller is obtained using the decentralized
design approach, should always be carefully analyzed. As indicated, a com-
plete eigenvalue analysis of the closed loop can be performed using, for
example, Eq. (3-118). An alternative that often gives insight into the spe-
cific importance of the actuator parameters is to make use of the robustness
test as discussed.

3.5 Examples

3.5.1 Control of Single-Mode Structure Using Single Reaction Type Actuator

Our objective here is to illustrate the theory developed for reaction
. type actuators by examining in some detail the simplest case of a single-mode
". structure controlled by a single reaction type actuator.

From Eq. (3-8) and (3-9), the mathematical model for the structure/
actuator is

Mx + Dx + Kx f-m ( + *Z) (3-142)

a (= + + c + k z b u (3-143)
a a a a

where M > 0, D > 0, and K > 0 are structural mass, damping, and stiffness
* parameters, and ma > 0, ca > 0, ka > 0, and ba > 0 are actuator mass,

damping, stiffness, and input parameters; x denotes the scalar displacement
* of the structure.
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It is convenient to introduce the parameters

aK2 a

f Ws 21 W - (3-144)
Ms M a s 'a m

:I a

in the analysis to follow. Several different control laws are now examined.

First, consider feedback control using only actuator velocity feedback

as given by

.0 C f -

u -(3-145)
a

If the definition

C + C2iw = a f (3-146) "-.4'aa m
2C a w0 (3-146) 5

a

is used, the closed-loop characteristic equation can be written as

2 2
S2 a S ( + P)s + 2 sw s + W-:

I + aa 2  s+ + =s0 (3-147)
(2 + 2; W s + 2)(2 +2 2s: s a a

It is easily shown that the closed-loop system defined by Eq. (3-142),
(3-143), and (3-144), is always stable for any Ca > 0, > 0. Thus, the
structure can be stabilized by using only actuator velocity feedback or by
using the actuator as a passive damper. A root locus plot for Eq. (3-147) for
the indicated parameter values is shown in Figure 3-5; dependence of the
closed-loop poles on the actuator damping parameter, Ca' is indicated. Al-
though the structure is stabilized by the actuator, there is a modest amount
of closed-loop damping that can be achieved using the feedback control Eq.
(3-145). The maximum damping ratio for the dominant pole pair is 0.12, cor- -
responding to the selection of Ca = 0.68.

Consequently, the centralized control viewpoint suggests use of the
controller

SC f C

u + -z E x (3-148);.b b -- " '
b a a

where both the actuator velocity and the structural velocity are fed back. if
the definition

c

2 w Mc (3-149)

is used, the closed-loop characteristic equation can be written as
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Figure 3-5. Closed-loop root locus.
Type: Reaction Actuator
Feedback: Actuator only
Parameter:
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-7o- 7 7 7- 7.0

(2 wss) s1+ 2 202 2 2"
2s + 2Cw s +w2)(8 2 + 2C w s+ w2 )+ (2C Ws + W)

8 . .a a,

(3-150) -.

The closed-loop system, defined by Eq. (3-142), (3-143), and (3-148), is

stable for any Ca > 0 and for Cc, not exceeding some bound. A root locus
plot for Eq. (3-150) for the particular value Ca - 0.68 obtained in Figure
3-5 is shown in Figure 3-6; dependence of the closed-loop poles on the struc- *.

tural damping parameter, Cc, is indicated. In this case, significant ad-
ditional damping cati De obtained by using the feedback control Eq. (3-148). -.
Note that Figure 3-o indicates that there is a limit to the closed-loop damp-
ing that can be achieved; the maximum damping ratio for the dominant pole pair
is 0.25 corresponding to the choice Cc - 0.19. If the structural velocity
feedback gain is too large so that C > 1.0, the closed loop is unstable.

C
The decentralized control viewpoint suggests use of the force controller

f -cx (3-151)
d d

together with the actuator controller defined by

U(s) - L F SZ(s) (3-152)
a a a

where c da:c- f '  As mentioned previously, these expressions can be 6om-
bined to obtain the expression

cf cd + ccd
u - -- z -- x+g x (3-153) - .-

a a a

which can be compared with Eq. (3-145) and (3-148); an extra displacement
feedback term appears in Eq. (3-153). Hence, the actuator controller Eq. _.
(3-152) in conjunction wth structural velocity feedback for the force con-
troller is equivalent to the controller Eq. (3-153). The effective actuator
transfer function using Eq. (3-87) is

(s2+ 2Ca Was)(s2 + 2Cs sws + w2)
Gf() s2 + 2CWs + W2)( 2 + 2C w s + s2ws + sa) . .

(s aa a a a 2

(3-154)
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Using the control Eq. (3-153), if the definitions

2C C (3-155)

d8 8S

Gp(S) d a 2 (3-156) ,.

I + G (s) G (s) - 0 (3-157)
f p

The closed-loop system defined by Eq. (3-142), (3-143), (3-151), and (3-152)
is stable for all values a > 0 and 4d > 0. A root locus plot of Eq.
3-157), for the particular value of 4a - 0.68 obtained in Figure 3-5, is
shown in Figure 3-7. Dependence of the closed-loop poles on the structural
damping parameter, id' is indicated. In this case, significant additional
damping can be obtained by using the force controller Eq. (3-151) and the
actuator controller Eq. (3-152). Figure 3-7 indicates that there is a limit
to the closed-loop damping that can be achieved. For example, if 4d - 0.25,
the damping ratios for the two pole pairs are 0.47 and 0.48.

As an alternative to a direct analysis of the closed-loop poles, the
robustness test of Eq. (3-95) can be used. One procedure would be to plot the
frequency response of the actuator error, IGf(Jw) - If, which does not de-
pend on the force controller. Then the force controller could be adjusted to
guarantee satisfaction of the robustness inequality Eq. (3-95). In this par-
ticular example, the frequency response for the actuator error function,
IGf(Jw) -1, is indicated in Figure 3-8; and for any 4d > 0, the robust-

ness inequality Eq. (3-95) is satisfied. To illustrate the procedure, the

frequency response for the inverse return difference function, I + G-I(jw) ,

is indicated in Figure 3-8 for the value ;d 0.25. Certain conclusions can
be drawn from the figure based on the robustness test, Eq. (3-95). First, it
is clear that for P = f.25, and in fact for any Cd > 0, the actuator dy-
namics do not desta ilize the closed loop using the force controller Eq.

2 (3-151). Second, since the separation between i + Gp (jw)j and Gf(iW) I

is an indication of the stability margin, Figure 3-8 can be used to assess
qualitative characteristics of the closed loop. In particular, the closed
loop would be most sensitive to disturbances at a frequency near 2.0 rad/s,
where the "loading peak" for the actuator error occurs. Further, the high
frequency margins are large since the actuator error is small. At low fre-
quencies, the actuator errors are relatively large, but good margin is main-
tained due to the force controller characteristic. These qualitative conclu-
sions should be typical of a large space structure controlled by a single
reaction type actuator, using a properly chosen force controller.
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Experience has indicated that the magnitude of the loading peak for the actu-

ator error is strongly affected by the assumption regarding open-loop struc-

tural damping. In particular, the robustness inequality of Eq. (3-95) may not

be satisfied if the open-loop structural damping is assumed too low.

3.5.2 Control of a Single-Mode Structure Using Single Transmission Type
Actuator

The previously developed theory is now illustrated by examining in some

detail the simplest case of a single-mode structure controlled by a single

transmission type actuator.

The mathematical model for the actuator/structure is based on Eq.
(3-23) and (3-24), wl cn in this case can be written as

Mx + Dx + Kx k (z -x) (3-158)

m z + c z + k (z - x) = b u (3-159)
a a a a

where M > 0, D > 0, and K > 0 are structural mass, damping, and stiffness

parameters and ma > 0, c > 0, ka > 0, and ba > 0 are actuator mass,

damping, stiffness, and input parameters; and x denotes the scalar displace-

ment of the structure.

It is convenient to introduce the parameters

k k
P a W2 K D w R 2 a(310K'; s g M a m a.'"= M ' 2 s s ' - - (3-160)

Jd-' in this case. Several different control laws, each based on some form of

velocity feedback, are now examined.

First, consider feedback control using only actuator velocity feedback

as given by

cf.
u- z (3-161)

a

Define the actuator damping parameter a from

c + c
% a (3-162)

~a

The closed-loop characteristic equation can be written as

98
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2 ~ 21
2Cw +s 2C w s+ (I + )
aa sa s = 0 (3-163)r- 2 2 2 2 2 2

(s2 + 2Csws + s)(s  + a) + P s s

Using this characteristic equation, it is easily shown that the closed-loop
system defined by Eq. (3-158), (3-159), and (3-161) is always stable for any

Ca > 0. The structure can always be stabilized by using only actuator vel-
ocity feedback or by using the actuator as a passive damper. A root locus
plot for Eq. (3-163) for a particular case is shown in Figure 3-9; dependence
of the closed-loop poles on the actuator damping parameter, Ca, is indicat-
ed. The structure can be stabilized in this manner, but only modest damping -.

of the closed loop ran be achieved using feedback of the actuator velocity
only. The maximum damping ratio for the dominant pole pair is 0.12, corres-
ponding to the selection of Ca f 0.78.

In order to achieve additional structural damping, the centralized con-
trol viewpoint suggests feedback of both actuator and structural velocity as
given by the controller

cf cC
U c (3-164)

a a

Define the structural damping parameter, c, from

c
2 w (3-165)
cs = -

the closed-loop characteristic equation can be written as

2
(2 cw) ,W'a"'lIl + afi 0 '

(s 2 + 2Csws + 2 s2 + 2 a a + 2) + P2(s2 + 2 a aS)
s )s aa a °1a

(3-166)

The closed-loop system, defined by Eq. (3-158), (3-159), and (3-164), is
stable for any Ca > 0 ; ,d for Cc not exceeding some bound. A root locus
plot for Eq. (3-166) for the particular value Ca = 0.78 obtained in Figure
3-9 is shown in Figure 3-10; dependence of the closed-loop poles on the struc-

tural damping parameter Cc is indicated. It is clear from Figure 3-10 that
substantial additional closed-loop damping can be achieved by feedback of both
actuator and structural velocities. In particular, a maximum damping ratio of

0.21 can be achieved for the dominant pole pair, corresponding to Cc = 0.21.
"- If the structural velocity feedback gain is too large so that Cc > 1.3, the

closed loop is unstabie.
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Type: transmission actuator
Feedback: centralized
Parameter:

Data: p 2 0.2, w a ., 1.0, = 0.05, a 0.78
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The decentralized control viewpoint suggests use of the force controller

f - -C x (3-167)d d

* together with the actuator controller defined by

-cf

U s) - I + (S) _ sZ(s) (3-168)
b k- d b
a a a

where c = ca + cf. Thc force controller and the actuator controller can
be combined to obtain he equivalent control expression

-' cf cd  c cd  '
c Z Cd. cdx (3-169)

a a a 97

which can be compared with Eq. (3-161) and (3-164); this form for the control-
ler involves an extra acceleration feedback term. The effective actuator
transfer function based on Eq. (3-100) is given by

.Gf(s) awaas + w a)(s + 2C s +S

(S2 + 2 w s + w)(s2 + 2  a w s + + pwa(s 2 + 2 a wS)

(3-170)

For the control Eq. (3-169), define the structural damping parameter, d, by

2d = (3-171)

and define

G (s) = (3-172)p s2 2 .2
Ss + 2 s ss + w 

-
The closed-loop characteristic equation is

I + Ge(s) G (s) = 0 (3-173)
f- p

The closed-loop system, defined by Eq. (3-158), (3-159), (3-167), and (3-168),
'- is stable for any Ca > 0 and any ;d > 0. A root locus plot of Eq. (3-173)
," for the particular value of ;a = 0.78 obtained in Figure 3-9 is shown in

*Figure 3-11; dependence of the closed-loop poles on the structural damping
.. parameter d is indicated. It is clear that significant damping can be ob-

tained using the force control Eq. (3-167) and the actuator control Eq. (3-168).
As seen from Figure 3-11, there is a limit to the closed-loop damping that can
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be achieved. If Cd 0.32, the damping ratios for the two pole pairs are
0.50 and 0.58.

Instead of a direct analysis of the closed-loop poles, an analysis of
the closed loop using the robustness test, Eq. (3-108), can be used. In this ,0 .

particular example, the frequency response for the actuator error function,

Gf(jw) - 11, is indicated in Figure 3-12; for any td > 0 the robustness

nequality of Eq. (3-108) is satisfied. As an illustration, the frequency

response for the inverse return difference function, I - G ( is also

indicated in Figure 3-12 for the value Cd = 0.32. Certain conclusions can 0
be drawn from Figure 3-12, based on the robustness test in Eq. (3-108).
First, for the specif4 " case where d 0.32 as shown in Figure 3-12, and,
in fact, for any d ' 0, the actuator dynamics do not destabilize the closed
loop using the force controller Eq. (3-167). Also, the closed loop is most
sensitive to disturbances with a frequency near 1.0 rad/s, where the "loading
peak" for the actuator error occurs. The low-frequency margins are large
since the actuator error is small. At high frequencies, the actuator errors
are relatively large but a good margin is maintained due to the force control-
ler characteristic. These qualitative conclusions should be typical of a

. large space structure controlled by a single transmission type actuator using
a properly chosen force controller. Experience has indicated that the magni-
tude of the loading peak for the actuator error is strongly affected by the
assumption regarding open-loop structural damping; the robustness inequality
of Eq. (3-108) may not be satisfied if the open-loop structural damping is

* assumed too low.

3.5.3 Comments

The two simplest possible examples have been considered, where the large
space structure can be described by a single vibration mode. Caution must be
exercised in making general conclusions on the basis of two examples but the
following comments are suggested by the examples.

It is possible to add damping to a structure by operating an electro-
. mechanical actuator as a passive damper, or by using actuator velocity feed-

back only. It appearn that this control approach can add only a modest amount
of damping to a structure, however. In order to increase the closed-loop

* damping, controls developed using the centralized and decentralized viewpoint
have been developed and arilyzed. A centralized controller, where both actu-
ator and structural velo ities are fed back, can substantially increase the
system damping. The feedback gains must be carefully selected so that the
closed loop is stable with good response characteristics. A decentralized - '

W. controller with the force controller based on structural velocity feedback can
also substantially increase the system damping.

Our analysis of the closed-loop characteristics has been based on direct -
evaluation of the closed-loop poles. Such a direct approach is generally dif-
ficult to use as a method for design or modification of a force controller.
In the case of decentralized control, use of a robustness test has been demon-
strated as a way of evaluating the effects of the actuator dynamics on the
closed loop. This robustness condition may prove effective as a basis for
design or modification of a force controller.
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Although the two examples do not demonstrate it, in more complicated
cases, there is the possibility for closed-loop instability unless the force
controller and actuator controller are carefully selected. The robustness
demonstrated in the two examples is a consequence of the use of a force con-
troller defined in terms of constant gain structural velocity feedback. .4

3.6 Conclusions

3.6.1 Extensions

A rather detailed theory has been developed for large space structures
controlled by certain classes of electromechanical actuators. This theory has
been based on rather -,ecific assumptions about the actuator characteristics
and the assumed controller forms. The specifics of these assumptions are not
critical and extensions in several directions can be indicated.

Our development has been based on specific assumptions about reaction ,
type actuators and transmission type actuators, as characterized by the schem-
atics in Figures 3-1 and 3-2. Although it appears that many physical actua-
tors do fall within one of these two classes, there is no doubt that a paral-
lel theory could be developed for electromechanical actuators where slightly
different assumptions are required. It should be clear that the qualitative
system theoretic characteristics of reaction type actuators and transmission
type actuators are similar; their characteristics differ only in detail.
Hence our development can be viewed as indicating qualitative system charac-
teristics of any electromechanical actuator.

Development of the material in Section 3.3 on centralized control was
- - illustrated solely through the use of a constant gain actuator and structural

velocity feedback. Such a simple control form is natural where the objective
is augmentation of system damping. However, in many cases other variables,
e.g., displacements and accelerations, may be available for feedback. Fur-

ther, control laws based on use of optimal linear-quadratic-Gaussian theory
may be desired, where a filter or observer is incorporated as part of the con-

* troller. Each of these cases represents a viable procedure for developing a "
.. . centralized control law. The key idea is that, no matter what control design

procedures are used, the design model is assumed to include both structural
. and actuator dynamics.

Extension of the material in Section 3.4 on decentralized control is
- possible, in the sense t.c. modifications to the developed forms for both

force controller and actuator controllers can be made. The development was
illustrated by considering a force controller defined in terms of constant
gain structural velocity feedback. The form of the actuator controllers sug-

%- gested is consistent with that class of force controllers. However, other
classes of force controllers could be used, including other output feedback
forms or control based on optimal linear-quadratic-Gaussian theory. In prin-
ciple, the actuator controllers specified in Section 3.4 could be used in con-
junction with any force controller; the only limitation arises from the fact
that the force controller and actuator controllers must be realizable. Thus

.. there are many extensions to the developments in Section 3.4 that could be
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made. The key idea is that the force controller be chosen to suitably control
the structure, ignoring actuator dynamics, and the actuator controllers be

4 chosen to suitably suppress the actuator dynamics.

3.6.2 Summary

There has been substantial research into the problems of active control
of large space structures. Many issues have been carefully addressed and a

'4 coherent theory is evolving.

With few exceptions, the effects of actuator dynamics as part of the

closed-loop control scheme have been ignored. It is the premise of this work
that actuator dynam: 3 may play an important role in the feedback control of
large space struct,''res. Specifically, if actuator dynamics are ignored in the
control design process, their presence in an actual closed-loop system may
tend to be destabilizing due to neglected actuator phase shifts. Such an un-
desirable possibility is thought to be more likely precisely in the class of
control problems considered, namely where a lightly damped elastic structure
is coupled to actuators with damped oscillatory dynamics. There is also thepossibility that actuator dynamics play a desirable role in the closed loop.

Their filtering effect provides gain roll-off at low frequencies and at high
frequencies; thus, electromechanical actuators tend to suppress coupling with
low-frequency rigid body modes and with high-frequency unmodelled modes. In
any event, the presence of actuators in the closed loop should be carefully
taken into account.

Our objective has been to develop a framework for the control design
process where effects of actuator dynamics are not completely ignored. Two
different viewpoints have been suggested. It is impossible to select either
the centralized design viewpoint or the decentralized design viewpoint as pre-
ferable; each approach should have sufficient flexibility to allow development
of suitable control strategies for a large space structure with multiple elec-
tromechanical actuators.

A detailed examination has been made of the control problems, associated
with each of these design viewpoints. It is hoped that this work will serve -

to focus additional attention on the role of actuators and other instrumenta-
tion as a critical part of closed-loop control of large space structures. .'-
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SECTION 4

MODAL-SPRING PLUS MODAL-DASHPOT DESIGN
OF OUTPUT FEEDBACK VIBRATION CONTROLLERS

A modal-spring plus modal-dashpot design of displacement and velocity
output feedback vibration controllers was performed for the 20-mode VCOSS
example model. Only the 10 primary modes (those modes which contribute the - "
most to the RMS line-of-sight errors) were considered in the design process,

but all 20 modes were used in the evaluation. The 20-mode closed-loop system
is as stable as expected (see Reference 4-1), and each of the 20 modes has an

increase in frequency ir damping ratio or both.

The purpose of the design was to increase the frequency of some primary
* modes by "modal springs" and the damping ratio of some other primary modes by

"modal dashpots". In other words, it was desired to have some closed-loop
poles with larger imaginary parts, and some others to have more negative real
parts. As in the preceding sections, the nine collocated actuator/sensor pairs
were used. The rows of the 10 x 9 modal actuator influence matrix (and equiva-
lently, the columns of the 9 x 10 modal sensor influence matrices) were very
dependent on each other. Since it had been observed that high feedback gains

would result in large spillover, one design criterion was to restrain them from
extremely high gains. Feedback gains for both displacement and velocity feed-

back can be greatly reduced by requiring the rows of the modal actuator influ-
ence matrix (and the columns of the modal sensor influence matrices) to have a
high degree of linear independence. A sequential "Gramian test" was then
developed and implemented in PL/I which would choose the most linearly inde-

* pendent rows (or columns). The Gramian test indicated that only 5 to 6 of the
- 10 primary modes should be used in the design, since their modal actuator/

sensor influences were most independent.

* The displacement and velocity feedback gain matrices, GD and GV, re-

spectively, were computed using the pseudoinverses that were initially consid-
ered by Canavin for modal dashpots. Damping was added to modes 9, 14, 22,

23, 33, and 34, while frequency increases were applied to modes 7, 9, 12, 22,
and 23. The desired damping ratio, id, and the desired frequency, wids
for these modes are shown in Table 4-1. The resulting gain matrices, GD and

GV, are shown in Tables 4-2 and 4-3, respectively.

These two feedbact gain matrices were simultaneously put into the 20-mode
model and the closed-loop poles were evaluated. Table 4-4 lists the real and
imaginary parts of the poles, their frequencies, and damping ratios. Recall

that all 20 modes are assumed to have an inherent damping ratio 0= 0.001.
.'* The corresponding open-loop modes are also indicated in the table. Linking the

closed-loop modes to the open-loop modes was accomplished by tracing the root
locus when the gain matrices were gradually scaled down. Specifically, the
gain matrices, GD and GV, were first replaced by yGD and YGv, respec-

tively; the closed-loop poles were then computed for discrete samples of Y
between 0 and 1. When y - 1, the poles correspond to the closed-loop modes,
and when y - 0, they correspond to the open-loop modes. Figure 4-1 shows such

a portion of the root locus.
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Table 4-1. Desired damping ratios and frequencies.

Mode Cid wid

7 3.3

9 0.103 3.3

12 4.36

14 0.261

22 0.707 14.77

23 0.707 35.59

33 0.036--

34 0.026
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Table 4-4. Closed-loop poles.j

Corresponding
Real Part imaginary Part Frequency Damping Ratio Open-Loop Mode

-0.54D + 06 0.0 45
-0.44D + 03 0.66D + 04 0.66D + 04 0.67D - 01 62
-0.44D + 03 -0.66D + 04 0.66D + 04 0.671. - 01
-0.16D + 04 0.00 47
-0.48D + 01 0.72D + 03 0.72D + 03 0.66D - 02 56

-0.48D + 01 -. 72D + 03 0.72D + 03 0..66D - 02
-0.29D + 01 o. 13D + 03 0.13D + 03 0.23D - 01 48
-0.29D + 01 -0.13D + 03 0.13D + 03 0.23D - 01
-0.17D + 01 0.IOD + 03 0.IOD + 03 0.16D - 01 40
-0.17D + 01 -0.100 + 03 0.100 + 03 0.16D - 01

-0.32D + 00 0.78D + 02 0.780 + 02 0.41D - 02 34
-0.32D +00 -0.78D + 02 0.78D + 02 0.41D - 02
-0.IID + 01 0.58D + 02 0.58D + 02 0.19D - 01 37
-0.110 + 01 -0.58D + 02 0.58D + 02 0.19D - 01
-0.36D + 01 0.42D + 02 0.43D + 02 0.850 - 01 33

-0.36D + 01 -0.42D + 02 0.43D + 02 0.85D - 01
-0.65D + 01 0.39D + 02 0.39D + 02 0.17D + 00 15
-0.65D + 01 -0.39D + 02 0.39D + 02 0.17D + 00
-0.17D + 01 0.29D + 02 0.29D + 02 0.59D - 01 24
-0.17D + 01 -0.29D + 02 0.29D + 02 0.59D - 01

-0.13D + 02 0.00 47
-0.13D + 00 0.13D + 02 0.13D + 02 0.97D - 02 23
-0.13D + 00 -0.13D + 02 0.13D + 02 0.97D - 02
-0.81D - 02 0.73D + 01 0.73D + 01 0.IID - 02 22
-0.81D - 02 -0.73D + 01 0.73D + 01 0.11D - 02

-0.7D - 3 072D 00 0.72 + 0 O.OD -02
-0.74D - 03 0.72D + 00 0.720 + 00 0.10D - 027

-0.26D - 01 0.00 45
-0.12D - 01 0.41D + 01 0.41D + 01 0.29D -02 16
-0.12D - 01 -0.41D + 01 0.41D + 01 0.29D -02

-0.13D - 01 0.~ z + 01 0.41D + 01 0.33D - 02 14
-0.13D - 01 -0.41D + 01 0.41D + 01 0.33D - 02
-0.47D - 01 0.38D + 01 0.38D + 01 0.12D - 01 13
-0.47D - 01 -0.38D + 01 0.38D + 01 0.12D -01

-0.53D 02 0.36D0 01 0.36D + 01 0.15D 02 12

-0.53D 02 -0.36D + 01 0.36D + 01 0.15D -02

-0.43D 02 0.33D + 01 0.33D + 01 0.13D -02 10
-0.43D 02 -0.33D + 01 0.33D + 01 0.13D - 02
-0.29D + 00 0.32L) + 01 0.32D + 01 0.89D - 01 9
-0.29D + 00 -0.320 + 01 0.32D + 01 0.89D - 01
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It should be noted even though many poles other than those used in design

also moved due to spillover, the closed-loop system is stable. The reduced-
order design of modal-spring/modal-dashpot type of output feedback controllers
can guarantee full-order closed-loop stability, as was proved analytically and

demonstrated numerically by a simple free-free beam in Reference 4-1. This re-

suit is again demonstrated numerically by this rather complicated example.
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SECTION 5

A CONTROLLED EXPERIMENT FOR ACOSS DESIGN

5.1 Motivation..

Attempts to synthesize an active control strategy for ACOSS Model No. 2
that is stable, that accommodates the effects of a broadband disturbance, and
that meets stringent specifications on the error in line-of-sight (LOS) rota-
tion have so far beLn unsuccessful. Early synthesis efforts using several
different, but complementary, approaches to the controller design appeared

*> promising at the level of a 10-mode design model [5-11. Subsequent evaluation
* of these designs on a 20-mode evaluation model proved disappointing, exhibit-

ing spillover-induced instability. Further attempts to modify the designs so _..
as to ubtain the desired stability, disturbance accommodation, and LOS per-
formance were similarly unsuccessful. Except in isolated instances in which
unrealistic assumptions were invoked, the various designs either failed to
meet LOS performance specifications at the design model level, or proved un-

*i~ stable in evaluation. It is not our intent to give the details of these at-
tempted designs here. Rather, the purpose of the present section is to out-
line a new approach to the process of synthesizing active controllers that
holds high promise for success in the sense described above. Ol

At least two reasonable alternatives come to mind at this point. One is
to try to answer the question: "What went wrong?" That is, to focus on dis-
covering why the synthesis attempts so far have not succeeded, employing
available analysis tools to suggest ways of improving and reapplying the ap-
proaches already tried. Another is to try to answer the question: "What is
going on?" That is, to reexamine carefully and systematically all the princi-

* pal steps in the synthesis process, not just the controller design itself, and
,' allowing what is observed to suggest new approaches to the synthesis process.

There is a growing conviction that the latter alternative is the course
that should be followed, principally because it is the more fundamental one.
Since it subsumes the former, it is certain to take longer, but can be ex-
pected to provide a much deeper understanding of the synthesis process, and
suggest answers to questions that perhaps have not arisen yet. This
conviction has been reaffirmed through a recent editorial by a well-known
expert in the field of cortrol, who has proposed a major and intentional

*: effort in "experimental .3ncrol science" [5-21. S

5.2 Preliminary Observations

In order to set the stage properly for the approach to be presented, a
few preliminary observations are needed.

There are at least four principal elements that make up the complete
process of synthesizing an active control strategy for a complicated structure
such as ACOSS Model No. 2. First is the selection of a basic structural de-
sign to work with. In the case of Model No. 2, the original design has been
substantially revised several times. In the present discussion, the reasons
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for, or the details of, these revisions are not as important as the recogni-
tion that most of them have substantial influence upon the control synthesis
process. Second is the selection of two or more distinct mathematical models
of the structure, one for design, and one or more for evaluation of the de-
sign. Essentially, this may reduce to a (nontrivial) decision as to which
modes of the original (finite element) structural model to retain for the var-
ious purposes. Third is a selection of active devices (sensors and actuators)
to implement the control and observation strategies. Fourth is a selection of
an algorithm for determining the feedback structure of the controller.

It is importAnt to note in passing that, whereas each of these elements
when viewed separately is quite amenable to sophisticated mathematical analy-
sis, the entire syntl'esis process that incorporates the interactions between
these elements is nGL nearly so amenable, if at all. This fact represents a
substantial obstacle to obtaining a satisfactory synthesis.

In the designs attempted to date, attention has focused overwhelmingly
on the fourth element: algorithms for determining the controller feedback
structure. Selections of the first two elements (structural design and
reduced-order model selection) have been made with a certain arbitrariness,
principally for simplicity and convenience, and the third element (active
devices) has been selected with certain somewhat arbitrary restrictions (e.g., w
no nodal actuators). These three selections have remained fixed through all
of the attempts at determining an appropriate controller feedback structure.
The results suggest that in so doing, the overall synthesis problem has been
overconstrained. Either a solution does not exist, or the process of finding
it hes an unacceptably low probability of success. In particular, there
appears to be a strong possibility that the reduced-order models (design and
evaluation) and the active device selections are mutually incompatible.

We propose to approach this impasse by conducting a "controlled experi-
ment" in which each principal element in the overall synthesis process is sys-
tematically examined. Essential features of the experiment are that:

(1) Experiment "variables" are adjusted only one at a time.

(2) The effect of adjusting any experiment "variable" is assessed by
conducting a complete end-to-end synthesis attempt.

(3) Results of earh synthesis attempt are analyzed and, as appropriate,
taken into r-count in subsequent stages of the experiment.

w" -1

5.3 Definition of a "Controlled Experiment"

"Variables" of the controlled experiment identify important features of
each of the principal elements in the complete synthesis process. They are: -

a: The basic structural design.

b (bl, b2 , b3): Reduced-order models.

bi: The criterion for ranking of structural modes. -ft
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b2: The basis for retaining modes in the design model.

b3: The basis for retaining modes in an evaluation model.

c (c1 , C2 , c3): Active devices (sensors and actuators).

cl: The types of active devices to be allowed (e.g., axial
only).

c2 : The criterion for selecting locations of active devices.

c3 : The class of reduced-order models to be considered in
sele 'ing active devices.

d: The algorithm for determining controller feedback structure.

To clarify these variable definitions, we note that the following assignment "
of initial values to these variables describes the design process with ACOSS
Model No. 2 as it has developed to date

a a( 0 ) b b( 0 ) c C(O) (5-I)

where

(0) A
a Revision 3 of ACOSS Model No. 2, incorporating details of the

interaction between certain rigid components and the associated
flexible supports, and lightweighting of nodal connecting ele-
ments

(0) Ab O the root-mean-square (RMS) LOS-error induced by the deflection
of a mode (ignoring interactions with other modes) in response

to the broadband disturbance (Reference 5-1, Section 5.2.1)

b (0) A the first 10 modes, ranked according to criterion b O)
2 1

b 3 the first 20 modes, ranked according to criterion3 1

C(O )  only node-connecting elements (e.g., member-dampers, axial- -
motion sensors)

(0) A
c a best approximation (in the least-squares sense) to each
2 component of the modal representation (or modal coefficient) of

the LOS-rotation vector by linear combinations of node shapes _
corresponding to a candidate selection of active devices
(Reference 5-1, Section 3)
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(0) the modal representation of the LOS-rotation vector in crite-

(0)rion c2  reflects only those modes included in design model

2 2

Variable "d" has assumed a number of values in the various design attempts,
" including

includ ( )  basic disturbance rejection control (DRC) design in which

complete knowledge of the disturbance statistics is assumed .
(Reierence 5-1, Section 4)

d(l)  linea. quadratic optimal control design, in which no explicit
knowiedge of the disturbance statistics is assumed (Reference
5-1, Section 5)

d algorithm dP1 ) augmented by the incorporation of measures to

alleviate spillover (Reference 5-1, Section 6)

- among others.

In the initial phase of the experiment, we propose to fix the values of
variables "a" and "d", and focus on the effects of changes in variables "b"

. and "c"--particularly the interaction between them. The fixed values chosen
" for variables "a" and "d" are

a" a(00) d d(0)

where

a(00) Revision 1 of ACOSS Model No. 2, a stiffer structural design
which does not contain the lightweighting feature of design
a(O)

A pictorial representation of the overall synthesis process is shown in Figure
5-1. A most significant feature of this process is the interaction of vari-
ables "b" and "c", which has not been given sufficient attention in previous
design attempts.

Specific classes of values for variables "b" and "c" that appear to be
". of interest include those listed below. These listings are most conveniently

expressed as functions of other experiment variables and of additional vari-
ables nC, nR that may be considered parameters of the experiment.

(1) (0)b criterion b augmented by specific a priori informa- : !
tion on physical or modal deformations
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REDUCED-ORDER MODELI
I SELECTIONS

(b)I

ACTIVE DEVICE

FEEDACSTRUCTU RE
SELECTION_______I (d)

Figure 5-1. Process for active control synthesis.
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b M)(nc,bi) = the first nC modes, ranked according to criterion b

(i.e., the value being defined for b2 is a function
of whatever value has been selected for variable b1)

(2)
Sb 2  (nb) I the modes selected by criterion b 2)(nc,bI) augmented

by all modes whose natural frequencies lie in the range
associated with those selections (i.e., not allowing an
interlacing of controlled and residual nodes)

b (n b the first nR modes (n > n ranked according to cri-
3 terion bR e a

(2)

b23 (nR,bl) A the modes selected by criterion bl3 (nR,bl) augmented

by all modes whose natural frequencies lie in the range
associated with those selections

Sc(1) devices c(0) together with devices located at nodes and

capable of translational action only

(2)
c2) devices c l) augmented with a rotational action capabil-

ity at nodes

c(1) A criterion c(0) augmented by specific a priori informa-

tion on physical or modal deformations

c (c 2 ,b 2 ) the modal representation of the LOS rotation vector in
criterion c2 reflects all modes included in design
model b2

(2) -•c (c2 b the modal representation of the LOS rotation vector in
criterion c2 reflects all modes included in evaluation
model b3

A pictorial repre- .rtation of typical stages of the experiment in terms
of experiment variables is shown in Table 5-1. Each column represents an
end-to-end attempt of the entire synthesis process. The succession from one
column to the next (from left to right) involves changing only one variable.

5.4 Expected Outcome

It is expected that the conduct of this experiment will lead to a deeper
understanding of the complete process of active control synthesis. It is
especially important to understand more clearly the essential elements of J
selecting appropriate reduced-order models, selecting active devices for
actuation and sensing, and the nature of the relationship between them. In
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particular, it is expected that the results of the experiment will generate a
process by which a reduced-order design model and a set of active devices
which are mtually compatible can be found. Such mutual compatibility is the
key to successful synthesis for active control.
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