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SUMMARY

A procedure is described which enables images to be digitally zoomed,

smoothed and differentiated. It uses a least squares polynomial fitting technique.
This method reduces to the convolution of an array of samples from the picture
with a corresponding array of integers. Several such integer arrays are calculated

for a variety of array sizes and polynomial degree.
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1 INTRODUCTION

Current interest in image processing depends largely on the fact that an
image can be represented as a two dimensional array of samples. This matrix
can then be easily processed by a digital computer. A significant amount of
processing can be performed by making an estimate of the shape of the energy
surface from which the samples are derived. The surface can be used, for
example, to smooth or differentiate the image or to interpolate between the
samples from which the surface has been estimated. A magnified image can be
produced by displaying both the original picture points and regularly inter-
polated points at the spacing of the samples.

In general, any linear operator acting on a set of samples can be evaluated
at a particular point by operating on a polynomial approximation to the function
which produced the samples. This method of evaluation is a well established
technique in numerical analysis. The evaluation is designed to consist of
finding the sum of products of a set of coefficients with the set of samples.
The process can additionally use the values of the nth order differential
coefficients at the sample points if these are known. Usually in image pro-
cessing they are not. The advantage of this general method is that the values
of the coefficients are determined only by the number of samples. the degree of
the approximating polynomial and the point at which evaluation is required.
Once they have been calculated they can be used for any set of sample values.
There is no need to find the equation of the approximating polynomial. The
problem therefore reduces to finding the values of these coefficients.

A variety of methods is available for finding the coefficients. Provided
that the same criterion of goodness of fit of the approximating polynomial is
used in each method, the values of the coefficients are unchanged. One criterion
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is that the polynomial should fit the samples exactly. The main criticism of
this is that any real system introduces noise into the samples. This will appear
in the coefficients. A popular alternative method is that of least squares
fitting. However, it should be remembered that it is merely a postulate that
minimising the sum of the squares of the deviations actually produces a better
fit than alternative methods.

The application of this technique to image processing only involves the
extension of the method to an approximating polynomial surface rather than a line.
The set of coefficients can then be conveniently represented as a two dimensional
matrix. By the use of a suitable divisor the matrix can be made to hold only
integers. This matrix is convolved with a corresponding set of samples from the
image in order to find the value of the operator at some point within the area
covered by the sample set. This is usually the centre point though in the case
of interpolation the operator may be evaluated at interstitial points other than
the centre if, for example, the centre point is already known.

Several such masks of coefficients have been published. These generally
apply to smoothing or differentiation using a quadratic approximating polynomial
and a 3 x 3 matrix of samples. This report describes our examination of the
technique particularly as a method of interpolation. Coefficient masks have
been evaluated for various sizes up to 7 x 7, for polynomials up to 3rd degree
and for several interstitial positions. The extent to which the coefficients
can be approximated without the introduction of significant error has also been
investigated.

2 THEORY

Assume that a two dimensional image I can be expressed exactly as an
infinite series. G

E E aJK

K=O J-0
If we consider a small region of that image I~x,y) covered by a mask of side L
centred on x - y - 0, figure 1, then two dimensional surface fitting can be used
to obtain a best fit polynomial approximation of some chosen order m,n in x,y
to that region. Provided that (m+l).(n+l)<L2, the samples covered by the mask
then the polynomial will only approximately fit the samples so that a smoothed
image will be generated. The fitted surface can be readily differentiated to
provide gradient data and, as shown below, it can be used to interpolate inter-
mediate points thus providing image magnification. Various criteria can be
adopted to optimise the surface, but a least squares approach (either normal
equations or orthogonal polynomials) is straightforward and is applicable to
situations where the noise is additive. The samples comprising the image are
assumed to be equispaced. In general the polynomial degrees in x and y will be
equal (n) and relatively low (n Z 6) and the mask size will also be small (L < 9).
Thus the problem should be suitable for a normal equations approach and should not
be ill-conditioned. The processed image point Zxy corresponding to the observed
image point z at x,y is given by

zx K00+ K 0 1 y+ K0 2 y + K On yn+ K 1 0 x,+K1 1 yx.

+ K
nO N NJ(2)

3-0 K-O
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The problem is to determine the vector of polynomial coefficients KJ in
a form KjK - IHI x Z where JHJ is a matrix whose coefficients are z inde-

pendent and the vector Z(LL elements) is comprised of the pixel intensity values
of the image covered by the mask (of side L). The smoothed value zoo at the
centre of the mask x - y - 0 is given by Ko0 . In this case the matrix [HI
reduces to a vector H comprised (after suitable normalisation) of a set of
integers. Thus lOO Ts given by a discrete convolution of H with the image and
the elements of H are termed "convolute integers". The least square polynomial
filtering of two dimensional images in this way has been suggested by Jannson
(1972) and implemented by Edwards (1979). This approach is analogous to the well
known use of convolute integers as digital smoothing (low pass) filters for one
dimensional data streams. It is worth noting however, that the technique is
one of several which are aimed at evaluating linear operators operating on a
range of functions. In addition to samples of the function, which in this case
form the image I, various derivatives may also be used.

To fit a surface by least squares using the normal equations method the

sum of squares of residuals S is minimised.

-2S - (z-z) (3)

I: ( .E E JK C R' CRC R J-0 K-0

The summations over rows and columns covers the mask, running from

-(L-1)/2 to +(L-I)/2 in each direction. The partial derivatives S/OKJK with

respect to each polynomial coefficient are set to zero to yield the normal
equations

2

Ko L + K nX Y*e*n Z CR 0

(4)

on + l Kol yn + __ R

K0 ~ +K ***KnE S'S 2  
-C ' =

or in matrix notation

IAI K - B .N+(

JAI is a symfetric matrix of dimension (M x M) where M =: A is the number

of polynomial coefficients (6 for a quadratic, 10 for a cubic etc), and K and

B are column matrices of dimension (M, 1).
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E E ZCRYR K0

M
nE FaZ CR xC

The mask points are evenly spaced and if the mask is centralised on (0,0) the
structure of the synmetric matrix IAI is very sparse since all elements con-
taining odd powers in each axis are zero. Premultiplying by the inverse of A!
gives, provided A is not singular,

K = IAI- I B (7)

Examination of the column matrix B shows that it can be regarded as a matrix
product

B = Ic! z (8)

where IC! has dimensions (M x L 2) and Z (dimension L2 x 1) is the column matrix
of the observed pixel intensities under the mask

L2

ICI . x-(L-I)/2 y -(L-I)/2 . ....... , x (L-1)/2 y (L-1)/2

M 1 o
x -(L-l)/2 Y -(L-1)/2

"n 0 n 0
x (L-)/2 Y -(L-)/2 x (L-1)/2 Y (L-I)/2

Thus we can now write, as was our original objective,

K - IAI-' IcI - IHI Z (9)
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Recalling equation 2 we see that the scalar value Zxy is given by the product

z -E K (10)
xy - -

where E is a row matrix whose elements are derived from the values of the
variables x, y associated with the polynomial coefficients for any desired
position under the mask.

The row matrix E can be differentiated with respect to x or y to obtain
any desired higher order derivative of the least squares surface at any position
under the mask. Examples of E' are

a) Cubic, 0, 0 derivative at x, y

2 3 2 2 2 3

E =1 y, y , y , x, xy, xy , x , x y, x

b) Cubic, 1, 0 derivative (/3x) at x, y
22

E' = 0, 0, 0, 0, 1, y, y , 2x, 2xy, 3x
2

Note that for the trivial case of a smoothed value or derivative at the centre
of the mask (x=y- 0) all terms but one in E disappear. Thus we may write for
the value of z at x, y

= E IA-1 ICI Z = F Z (ll)xy -xy

or more generally for a derivative of order £, m in x and y

--km km
z F Z (12)xy -xy

The row matrix F has dimension 1 x LL and can bt normalised by multiplic:a-
tion by an integer N to contain only integral values. F can then be redimensioned
to give an L x L array which can be convolved with the image to give the
desired smoothed value or derivative.

-- Zm FRC 4-C
NC R (13)

xy R C

The array F consists of a set of integers F' k , specific to the polynomial
degree N, the mask size L, the x, y position and the desired derivative. Once

this array has been determined convolution of the array with any image results
in least squares image filtering in accordance with the above constraints. The
extension of the convolute integer technique given above to calculate non-central
smoothed values allows end effects to be minimised and allows the generation of
intermediate points.

3 CALCULATION OF MASKS

The convolute integer masks FRC have been computed using a Hewlett
Packard 9825B desktop computer. The calculation, for a given input surface degree
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and mask size, proceeds by constructing the matrix A (Eqn 6) and its inverse.
The matrix C is then formed and the product A-1C calculated. The row matrix E
is calculated for input x,y position and Z,in derivative order. The co-ordinate
system used is shown in Figure 1. the mask elements run from (-(L-1)/2, -(L-1)/2)
in the top left hand corner. The convolution matrix F is then calculated and all
the elements are rendered into integer form by finding the lowest cormmon integer
multiplier K, due regard being taken of the significant digit range of the com-
puter. Since only a limited number of masks are required little effort has been
expended towards reducing the computation time which can be high (- 2 hrs for
large, high order, off axis masks). Since the mask points are assumed to be
equispaced and symmetric about the origin the matrix A is sparse and some
factorisation could be undertaken. However the major time factor is in the
computation of the multiplier K which may be very large (K - 10).

4 SMOOTHING MASKS

Central point smoothing convolute integers have been calculated for 3 x 3.
5 x 5 and 7 x 7 mazks, and are presented in Table 1. The masks for n and n + 1
degree (n -0, 2, 4 etc) are identical. There is a high (8-fold) degree of
symmetry in these masks and for the 7 x 7 mask only one octant is presented.
The case of n - 0 (fitting a plane to the data) corresponds to direct unweighted
neighbourhood averaging. For a given mask size the sets of integers represent
low pass filters with cut off frequencies increasing with increasing polynomial
degree. The masks have been tested against artificial surfaces of given degree.
In Figure 2 a quartic surface, is evaluated. Discrete convolution of this
surface with a 5 x 5 quartic smoothing mask yields the correct central value.
The least squares fit is exact since the data is noise free; a quartic poly-
nomial is being fitted to a quartic surface. Smoothing a quartic surface with
a lower order polynomial results in this case with a poor fit.

5 ROUNDING ERRORS

Some of the values in the higher degree masks can be quite large. It is
relevant, therefore, to examine the extent to which they can be approximated.
The test of figure 2 can be used to gain such an indication for both coefficients
and samples.

The chosen quartic gives values in the range -680 to 988. Rounding one
decimal place gives a range from -680 to 990. Assume that this corresponds to
a picture with grey values in. the range 0 - 255. The centre point of the
sample mask which has the value 10 becomes equal to a picture point of bright-
ness 105.36. Then, using the smoothing mask b iii) of table 1

-68 -10 1 16 99

-53 - 8 1 10 71

1 x4-36 - 5 1 7 53 x Stndr 10.22
T22 5 -22 - 5 2 10 47 m s

-716 - 8 5 24 61 L

This represents an error of approximately 2% in the centre value but gives a
centre point brightness of 105.39. It is evident that this is an insignificant
error.
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Rounding up each entry in the standard mask by one digit in addition to
rounding up the samples gives a centre point value of 10.20. This will again
lead to an insignificant change in the centre point brightness.

6 INTERSTITIAL POINT GENERATING MASKS

In order to magnify (zoom) a picture it is necessary to generate inter-
stitial points. Figure 2 shows the points required for true 2 and 3 times
magnification for odd and even sided masks. 1he interstitial point generating
convolute integers required for a two times magnification have been calculated
for 2 x 2, 3 x 3, 4 x 4 and 5 x 5 maks for various degree and are presented in
Table 3. The masks for the 0, -0.5 position are obtained by rotation of the
-0.5, 0 masks. Several of the masks required for single pass three and four
times magnification are also included.

Stepwise convolution of a digital image with a set of masks of chosen poly-
nomial degree will produce a smoothed magnified image whose pixel values lie
on the least squares fitted surface. To generate the three new points required
for a two times magnified image it is necessary to carry out three convolution
operations for each original picture point. This will yield a picture com-
prised of 75% new smoothed picture point and 25% original unaltered points.
The smoothed values of the original points (0, 0 for an odd-sided mask and -0.5,
-0.5 for an even-sided mask) may also be calculated and a comparison of the
original and smoothed values provides a method of statistically assessing the
goodness of fit of the surface.

Centre points for all mask positions have been calculated for six pictures
using 3 x 3 and 5 x 5 masks and up to 5th degree polynomial surfaces. The
results are shown in Table 4. This gives the standard deviation of all calcula-
ted centre points from the actual centre point value. As might be expected, the
higher the degree of the approximating surface the lower the standard deviation.
In only one picture does a second degree polynomial produce a standard deviation
in excess of five grey levels. If the picture is quantised to 256 levels this
implies that in approximately 60% of the mask positions the differences between
the actual grey value and the calculated value would not be visible.

Masks such as these have been used to process pictures derived from a TV
compatible thermal imager. Processing is performed by moving a window equal to
the mask size across and down the picture, one picture point at a time so that
all mask size groups of adjacent picture points are eventually covered. For
each window position the interstitial points are calculated. The original
samples and the interpolated points are displayed using a TVframe store. The
processing produces a final image with typically a minimum of x2 magnification
though other degrees of magnification could be generated in one step by
different masks. Higher magnification can also be obtained by repeated applica-
tion of the x2 procedure. Figure 4 shows two pictures of a light aircraft. The
first shows only the original ifnage data while the second is a x2 digital
magnifiction of the first. A 4 x 4 mask was used in order to balance out any
mismatch between the two fields of the TV picture. The magnified picture shows
clearly the defects in the image generated by the imager while producing a
visually acceptable result.

7 CONCLUSIONS AND FUTURE WORK

This memo describes the theory behind the use of convolution techniques

for integrating and differentiating digital images and for interpolating between
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picture points. In particular it describes the application of the technique to
the production of a magnified version of an original image. It demonstrates that,
computationally, the processing involved is very simple. However. in terms of
processing speed the load when processing TV rate data will be very large.
Future work should therefore be aimed at developing the technique to use for
example, spline functions. This would then allow non-overlapping windows to be
used and the computational load to be reduced.

The problem of designing suitable hardware to implement the process in real
time at TV rates has not been examined. It seems likely that such a system would
offer useful facilities in both military ana civil environments. Future work
should therefore be aimed at defining and building a demonstration system and
at examining the impact of VLSI on such a design.
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TABLE I

SMOOTHING MASKS

a) 3x3
Degree Mask Normaliser

i) 0, 1 1 1 9

1 1 1

1 1 1

ii) 2, 3 -1 2 -1 17

2 5 2

-1 2 -1

b) 5x5

0,1 1 1 1 1 1 25

i) 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

2, 3 -13 2 7 2 -13 175

2 17 22 17 2

ii) 7 22 27 22 7

2 17 22 17 2

-13 2 7 2 -13

4, 5 51 -99 96 -99 51 1225

-99 -24 246 -24 -99

96 246 541 246 96

iii) -99 -24 246 -24 -99

51 -99 96 -99 51

c) 7x7

0, 1 1 1 1 1 49

i) 1 1 1

1 1

1

2, 3 -7 -2 1 2 147

3 6 7

9 10

11
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TABLE 1 (Contd)

SMNu0iHING MASKS

Degree Mask Normaliser

4, 5 206 -174 -24 89 4851

iii) -279 36 204

450 651

863

6, 7 -94 216 -228 212 4851

iv) -99 -228 342

54 924

1895
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TABLE 2

DERIVATIVE MASKS (Central Position)

a) 3x 3

Degree Derivative Mask Normaliser

1, 2 - -1 0 1 6

-1 0 1

-1 0 1

1, 2 1 -i 1 6

1 1 1

a222 1 -2 1 3
1 -2 1

1 -2 1

2 a2  1 0-1 4ax C'Y
0 0 0

-1 0 1

b) 5x 5

33

3 31 -44 0 44 -31 420

ax - 5 -62 0 62 5

-17 -68 0 68 17

- 5 -62 0 62 5

31 -44 0 44 -31
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TABLE 3

INTERSTITIAL POINT GENERATORS

a) 2x2
Degree Position Mask Normaliser

0 all 1 1 4
1 1

0,0 1 1 4
I 1

-0.5, -0.5 3 1 4
1 -i

-0.5, 0 2 0 4
2 0

-0.25,0 3 1 8
3 1

-0.25,-0.25 2 1 4
1 0

-0.5, -0.25 5 1 8
3 -1

0.33, 0.33 1 3 12

3 7

0.33,-0.5 2 4 6
-1 1

b) 3x 3

0 all 1 1 1 9
1 1 1

1 1 1

0, 0 1 1 1 9
1 1 1
1 1 1

-0.5,-0.5 10 7 4 36
7 4 1
4 1 -2

-0.5, 0 7 4 1 36
7 4 1
7 4 1

0, -0.5 7 7 7 36
4 4 4
1 1 1

2 0, 0 -1 2 -1 9

2 5 2
-1 2 -1

-0.5,-0.5 29 38 -13 144
38 56 14

-13 14 -19

-0.5, 0 1 10 -11 72

25 34 13

1 10 -11
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TABLE 3 Contd

c) 4x 4
Degree Position Mask Normaliser

0 all 1 1 1 1 16

1 1 1 1
1 1 1 1
1 1 1 1

0, 0 As DegreeO

-0.5, -0.5 11 9 7 5 80

9 7 5 3
7 5 3 1
5 3 1 -1

-0.5, 0 4 3 2 1 40
4 3 2 1
4 3 2 1
4 3 2 1

2 0, 0 -3 2 2 -3 32

2 7 7 2
2 7 7 2

-3 2 2 -3

-0.5, -0.5 7 24 16 -17 200
24 43 37 6

16 37 33 4
-12 6 4 -33

-0.5, 0 -13 19 11 -37 320
37 69 61 13
37 69 61 13

-13 19 11 -37

3 0, 0 As Degree 2

-0.5, -0.5 -23 44 -4 -17 200
44 93 37 26
-4 37 -17 -16
-17 26 -16 7

-0.5, 0 -4 5 -2 -1 32
4 11 2 1
4 11 2 1

-4 -5 -2 -1

-0.25, -0.25 -412 466 64 -293 3200
466 1162 673 324
64 673 192 -54

-293 324 -54 -102

-0.5, -0.25 -1641 2323 -593 -781 12,800
2363 5311 1699 1127
677 3369 -179 -367

-1399 1797 -927 29

-0.25, 0 -59 61 -1 -33 512
45 149 71 23

45 149 71 23
-59 61 -1 -33
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TABLE 3 Contd

c) Contd
Mask Normaliser

Degree Position

0.35, 0.35 -587 -2614 7274 -5823 64,800

-2614 567 13203 394

7274 13203 26127 11146

-5823 394 11146 -8467

-0.35, -0.5 -8153 12939 1821 -6607 64,800

12484 28158 15312 8846

-2519 9897 -2517 -4861

-4562 6756 -3066 872

d) 5x5

a 0, 0 See Table lb

-0.5, -0.5 -90 61 47 -27 -56 800

61 184 152 70 43

47 152 112 32 17

-27 70 32 -36 -29

-56 43 17 -29 10

-0.5, 0 -571 314 184 -226 -181 5600

149 914 664 134 59

389 1114 824 254 139

149 914 664 134 59

-571 -314 184 -226 -181
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TABLE 4

PICTURE SMOOTHING RESULTS

Image Mask Degree 

1 3 x 3 0, 1 6.14
2, 3 1.01

5 x 5 0, 1 8.10
2, 3 5.12
4, 5 1.33

2 3 x 3 0, 1 5.77
2, 3 1.25

5 x 5 0, 1 7.55
2, 3 4.88
4, 5 1.66

3 3 x 3 0, 1 3.43
2, 3 0.79

5 x 5 0, 1 4.78
4, 5 0.99

4 3 x 3 0, 1 4.4
2, 3 1.18

5 3 x 3 0, 1 5.6
2, 3 0.89

6 3 x 3 0, 1 4.8
2, 3 1.25
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FIGURE 2

TEST OF 5 x 5 SMOOTHING MASKS

Quartic Surface

Z - 1O + 5x + 6y + 12xy -5x 2 + 2y2  222y + 21xy 2

+ 54x 3 + y + 6x4 _ 21x 3 y + 5x2y2 4xy 3 + Y

- 2 -- x - + 2

-2 -680 -98 14 160 988

-526 -75 6 95 714

y -356 -48 10 70 528 S

-224 -47 20 103 472

+2 - 160 -78 54 236 612

Smooth with 4th, 5th degree convolution mask (Table Ib, iii))

1225 -24 246 = 10 at x = y =0

541

Smooth with 2nd, 3rd degreeconvolution mask (Table lb, ii))

1 [S * -13 2 7
175 17 22 -24.4 at x = y =0

27

Actual Value at x y - 0 is 10.
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