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WEDNESDAY, JANUARY 12, 1983

RUBICON ROOM

8:30 AM OPENING REMARKS
William T. Rhodes, Presider

SESSION 1: EXTRAPOLATION AND RESTGRATION |
William T. Rhodes, Presider

8:45 AM  WA1

Retrieval and Synthesis Problems in Optics—An Over-
view, H.P. Baltes, LGZ Landis & Gyr 2ug AG,
Switzerland. A synopsis of various deterministic and
stochastic inverse optical problems in science and
engineering is attempted. Two types of grating profile
reconstruction problems are discussed as examples.
{Invited Paper)

915 AM WA2

Four Models tor the Baridlimited Signal Extrapolation
Problem, Thomas S. Huang and Jorge L. C. Sanz, Uni
versity of lllinois at Urbana-Champaign. We present four
basic models for bandlimited signal extrapolation that
are useful in understanding the relationships between
the continuous and the discrete extrapolation
problems.

9:30 AM  WA3

Practical Interpolation of 2-D Surfaces using the
Gerchberg Algorithm, Mark J. Carlotto and Victor T.
Tom, The Analytic Sciences Corporation. The interpola-
tion of 2.D wind and hydrographic surfaces is accomp-
lished using the Gerchberg algorithm. Special emphasis
is given to algorithm implementation on an array
processof.

9:45 AM  WA4

On Some Explicit Deconvolution Formulas, C. A.
Berenstein, University of Maryland, B. A, Taylor, Univer-
sity of Michigan, and A. Yger, Centre de Mathematiques
de I'Ecole Polytechnique, France. Given several measur-
ing devices (convolution operators of compact support)
we give explicit formulas to reconstruct exactly the
original signal using again convolutors of compact
support.

10:00 AM WAS

Speciral Extrapolation of Constrained Signals, R. J.
Mammone, Rutgers University. A new method of spec-
tral extrapolation based on a novel approach to linear
programming is demonstrated. The method provides a
distinct computational advantage over previous LP
methods.

WEDNESDAY, JANUARY 12, 1883—Continued

10:15 AM  WAEG

Iterative image Restoration From Data Available in
Multiple Restricted Regions, Yoshiki Yamakoshi and
Takuso Sato, Tokyo Institute of Technology, Japan.
Convergence properties of iterative image restoration
procedure when data are available in restricted multiple
regions is examined, and optimum design of observa-
tion system is discussed.

LOWER LEVEL LOBBY
10:30 AM  COFFEE BREAK

RUBICON ROOM

SESSION 2: EXTRAPOLATION AND RESTORATION 1!
A. A. Sawchuk, Presider

10:50 AM  WA7

Matched Image Formation and Restoration System, W.
Thomas Cathey, University of Colorado at Denver, B.
Roy Frieden, University of Arizona, William T. Rhodes,
Georgia Institute of Technology. and Craig K.
Rushforth, University of Utah. Given that image spectral
extrapolation or interpolation is to be done, the image
gathering and restoration systems can be matched to
improve the resuits.

11:05 AM  WAS8

Image Restoration by the Method of Projections onto
Convex Sets, H. Stark and i. M. Sezam, Rensselaer
Polytechnic Institute. The method of projections onto
convex sets is used to restore an image from incom-
plete data and the a priori known properties of the
image.

11:20 AM WAS

Stable, Noniterative, Object Reconstruction from in-
complete Data using Prior Knowledge, A. M. Darling, T.
J. Hall, and M. A Fiddy, Queen Elizabeth Coliege,
England, J. Abbiss, Royal Aircraft Establishment,
England. Object reconstruction in weighted Hilbert
space is related to Mtler regularization theory. Ex-
perimental results illustrating the power of the method
are presented.

11:35 AM WA10

Frequency-Domain Optimal inverse Convolution Filter-
ing of Noisy Data, C. B. Chittineni, Conoco. Inc.
Frequency-domain optimal inverse filtering algorithms
are developed and are applied for seismic deconvolu-
tion. A blind restoration technique is formulated, and
the simulation results are presented.




WEDNESDAY, JANUARY 12, 1983—Continued

11:50 AM  WAT11

Optimal Iterative Iimage Reconstruction with In-
complete and Approximate Data, J. Gabmann, Max-
Planck-Institut fur Plasmaphysik, West Germany.
Reconstruction is decomposed into a two-fold filtering
process. The effect of a priori information and con-
straints on the reconstruction is evaluated with respect
to missing, inaccurate data.

1205 PM  LUNCH

PROSPECTOR ROOM

SESSION 3: EXTRAPOLATION AND RESTORATION Il
C. Rushforth, Presider

200 PM  WA12

Detection of Line Spectra and Point Sources, A
Papoulis, Polytechnic Institute of New York. A modifica-
tion of Levinson's algorithm leads to a method for de-
tecting line spectra in terms of correlation estimates.
The method leads to a simple derivation of Wold's de-
compositic-. theorem. (Invited Paper)

230 PM  WA13

Reconstruction of Objects from Coded Images by Sim-
ulated Annealing, Warren E. Smith, Harrison H. Barrett,
and Richard G. Paxman, University of Arizona. An op-
timization process related to the annealing of a meit to
torm an ordered crystal is applied to the reconstruction
of objects from their coded images.

245 PM  WA14

Signal Deconvolution using Frequency and Time-
Domain Magnitude Constraints, H. J. Trussell and P. N.
Sura, North Carolina State University. The effect of ap-
plying magnitude constraints in the frequency and time
domain using interative restoration methods are stud-
ied. The characteristics of the signals that are most aid-
ed by these constraints are discussed.

3:00 PM WA15

Model-Based Restoration Procedure for Small, Low-
Resolution Optical Images, John A. Saghri and Andrew
G. Tescher, The Aerospace Corporation. A deterministic
model-based restoration procedure is presented. The
algorithm is effective for the restoration of small,
coarsely sampled images degraded by diffraction and
noise. The method has been tested with a double delta
function model through digital simulations.

315 PM WA1S

Spectrum Extrapolation on a Finite Band, F. Gori,
Universita di Roma, ltaly, S. Wabnitz, California Institute
of Technology. Starting from the image of a coherent
finite object formed through a low-pass pupil we obtain
the image pertaining to a larger pupil.

WEDNESDAY, JANUARY 12, 1983—Continued

3:30 PM WAT1T

On an Iterative Algorithm for Stabilized Object Restora-
tion from Limited Spectral Data, J. B. Abbiss and H. S.
Dhadwal, Royal Aircraft Establishment, England, C. De
Mol, Université Libre de Bruxelles, Belgium. We
describe a regularized iterative procedure for object
restoration from a noisy diffraction-limited image and
analyze its performance to obtain explicit error bounds.

RUBICON ROOM
3:45 PM COFFEE BREAK

PROSPECTOR ROOM

SESSION 4: SPECTRAL ESTIMATION AND OTHER
APPLICATIONS
C. Rushforth, Presider

4:05 PM WA18

Estimation of Two Closely Spaced Frequencies Buried
in White Noise using Linear Programming, Jarosiav
Keybl and George Eichmann, The City University of New
York. Linear programming is used to estimate two
closely spaced frequencies of sinusoidai signals buried
in deep white Gaussian noise.

420 PM  WA19

A Novel Hankel Approximation Method for ARMA Pole-
Zero Estimation from Noisy Covariance Data, S. Y. Kung
and K. S. Arun, University of Southern California. This
paper presents a new covariance approximation
method for estimating the parameters of AR, ARMA,
and sinusoidal processes by a principal component an-
alysis on the Hankel matrix formed from the covariance
data.

4:35 PM  WA20

Some Signal Processing issues in Radar Target Identi-
fication, E. K. Miiler, Lawrence Livermore National
Laboratory. Three issues in radar target identification
are discussed: (1) Prony-processing for EM features;
(2) several EM examples; and (3) some resuits for target
identification using poles.

450 PM WA21

Restoration of Multichannel Microwave Imagery to Es-
timate Rainfall Rates in Huiricanes, R. T. Chin, C. L.
Yeh, W. S. Olson, and J. A. Weinman, University of
Wisconsin-Madison. Eight synthetic multichannel
microwave images, each having difterent spatial resolu-
tion, were restored to a common optimal resolution to
estimate rainfall. The restoration utilizes a constrained
iterative technique.




WEDNESDAY, JANUARY 12, 1983—Continued

5:05 PM  WA22

Electromagnetic image Reconstruction Toehnlquu In
inhomogeneous Media Satistying the Bom-Rytov Ap-
proximation, Wolfgang-M. Boerner, University of lilinois
at Chicago. Projection tomography can be extended to
vector diffraction tomography assuming that the media
are weakly diffracting so that the Born and Rytov ap-
proximations are valid,

e

¢ RUBICON ROOM
6:00 - 8:00 PM DINNER

8:00-10:00 PM INFORMAL CONTRIBUTED SLIDE
SHOW

This session will include informal presentations of
outstanding slides and observations of unusual phe-
nomena, unexplained optical effects, beautiful photo-
graphs and other relevant and stimulating topics. All at-
tendees are welcome to contribute. Please sign up at
the OSA registration desk.
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THURSDAY, JANUARY 13, 1883

PROSPECTOR ROOM
SESSION 5: RECONSTRUCTION FROM INTENSITY |
J. R. Fienup, Presider

8:30 AM  ThA1

Phase Problem in Object Reconstruction and Interfer-
ometry—An Overview, H. A. Ferwerda, State University
at Groningen, The Netherlands. Methods for phase
retrieval from modulus data in one and two dimensions
are reviewed in the context of object reconstruction, in-
terferometry (including speckle). (Invited Paper)

9:00 AM  ThA2

Phase Retrieval from intensity Data Degraded by Shot
Noise, C. H. Slump and H. A. Ferwerda, State University
at Groningen, The Netherlands. Qbject reconstruction is
discussed by taking shot noise into account (low-
intensity imaging). The case of weak objects is treated
in detail.

9:15 AM  ThA3

Phase Retrieval for Functions with Sufticiently Discon-
nected Support, T. R. Crimmins and J. R. Fienup, En-
vironmental Research Institute of Michigan. It is shown
that the phase retrieval problem almost always has a
solution unique among functions with disconnected
supports satisfying a certain common separation
condition.

9:30 AM  ThA4

Mathematical Results of the Phase Retrieval Problem
for Bandlimited Functions of Several Variables, Wayne
M. Lawton, Jet Propulsion Laboratory. Techniques from
the theory of several compiex variables are used to der-
ive several new results that characterize bandlimited
functions of several variables from their moduli.

9:45 AM ThA5

Maximum Entropy Image Reconstruction from Phase-
less Fourler Data, John Skilling, Cambridge University,
England. The maximum entropy technique is used to re-
construct two-dimensional positive images of realistic
size from incomplete and noisy Fourier amplitudes
without any phase information,

10:00 AM ThAé

Speckle Interferometry: One-Dimensional image Re-
construction from Zeros of Complex Spectrum, Yuri M.
Bruck and Leonid G. Sodin, Academy of Sciences of the
Ukrainian SSA, USSR. A method is put forward for
unique reconstruction of one dimensional images, al-
fected by scattering in a turbulent medium, from
minima of their average spectra in the complex plane.
The effect of additive noise and type of scattering is
discussed.

o i AR atmmtn
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THURSDAY, JANUARY 13, 1983—Continued

10:15 AM  ThA?7

Phase-Retrieval Technique in Pupil Synthesis, Piotr
Kiedron, The Ohmart Corporation. The uniqueness of
the ditfraction-limited system is discussed. The idea of
cemplete compensation of aberration with nonnegative
apodizer is presented. Several selected open problems
are formulated.

RUBICON ROOM
10:30 AM COFFEE BREAK

PROSPECTOR ROOM

SESSION 6: RECONSTRUCTION FROM INTENSITY Il
H. Ferwerda, Presider

10:50 AM ThAs

Phase Retrieval in Astronomy, J. R. Fienup, En-
vironmental Research Institute of Michigan. Methods
used for phase retrieval (object reconstruction) in op-
tical astronomy are reviewed, with emphasis on iter-
ative reconstruction from Fourier modulus data (/nvited
Paper).

11:20 AM  ThAS

Frequency Sampling of the Short-Time Fourier Trans-
form Maghnitude, Thomas F. Quatieri, S. Hamid Nawab,
and Jae S. Lim, Massachusetts Institute of Technology.
Under mild restrictions, a sequence x(n) is uniquely
specified by its short-time Fourier transform magnitude
at one or two frequencies for each n.

11:35 AM  ThA10

Averaging the Fourier Phase Information in a Signal
Ensemble without Calculating Phase, Herbert W. Swan
and Joseph W. Goodman, Stanford University. This
paper shows how the average Fourier phase informa-
tion ot an ensemble of complex signals may be re-
covered without actually calculating unwrapped phase.

11:50 AM  ThA11{

Sufficient Condition for Phase Retrieval in Two Dimen-
sions, M. A. Fiddy, Queen Elizabeth College, England,
B J. Brames and J. C. Dainty, The University of
Rochester Eisenstein's criterion for irreducibility is
used to modify an object function, thus ensuring
uniqueness of phase retrieval in two dimensions.

1205 PM  LUNCH

THURSDAY, JANUARY 13, 1983— Continued

PROSPECTOR ROOM

SESSION 7: SYNTHESIS AND RECONSTRUCTION
M. H. Hayes, Presider

2:00 PM  ThAt2

Signal Reconstruction From Partial Fourier Domain in.
formation, Alan V. Oppenheim and Jae S. Lim.
Massachusetts Institute of Technology. A number of
results have been developed recently in the Digitat
Signal Processing Group at M.L.T, on signal reconstruc-
tion from Fourier transform phase or magnitude. This
talk summarizes this work, including exact reconstruc-
tion from Fourier transform amplitude and exact recon-
struction from the magnitude ot the short-time (shding)
Fourier transform. (/nvited Paper)

2:30 AM  ThA13

Speckle Interferometry Image Reconstruction Tech:
niques Proceeding from the Phase of the Fourier Trans-
form, Yuri M. Bruck and Leonid G. Sodin, Academy of
Sciences of the Ukrainian SSR, USSR. Several methods
of image reconstruction are suggested for speckle in-
terferometry applications, proceeding from noisy data
on the spectrum phase, with lacking information on the
position and size of the image. The uriqueness and ac-
curacy of the reconstruction techniques are discussed.

2:45 PM ThA14

Dependent and Independent Constraints for a Multiple
Objective Iiterative Algorithm, Joseph N. Mait and
William T. Rhodes, Georgia Institute of Technology. Ex-
amples of dependent and independent constraints for
the synthesies of complementary pupit functions for
bipolar incoherent spatial filtering through constrained
iterative algorithms are described

3:00 PM ThA1S

Signal Reconstruction From Fourier Transform Amp-
litude, Patrick L. Van Hove, Jae S. Lim, and Alan V. Op-
penheim. Massachusetts Institute of Technology New
results on the reconstruction of a one-dimensional or
multidimensional sequence trom its Fourier transform
amplitude (magnitude and one bit of phase information)
are summarized in this paper.

RUBICON ROOM
3:15 PM  COFFEE BREAK

SESSION 8: PROBLEMS AND METHODS |
N. C. Gallagher. Presider

3:35 PM  ThA16
Reconstruction in Electron Microscopy, W Q. Saxton,
Cavendish Laboratory, England. (Invited Paper)
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THURSDAY, JANUARY 13, 1983—Continued

405 PM  ThA1?

Analysis of Time-Sequential Sampling with Spatially
Hexagonal Lattice, Robert M. Cramblitt and Jan P.
Allebach, University of Delaware. The susceptibility of
2-D hexagonal sampling patterns to frequency domain
aliasing is analyzed under the constraint that the sam-
pling be time sequential.

420 PM ThA18

Image Registration: The Undersampled Case, P. E.
Barry, M. Kiop, and J. D. Hulsmann, Grumman Aero-
space Corporation. Image sequence registration is
shown to be possible for the undersampled case even
though the determination of image-to-image displace-
ment is not.

4:35 PM  ThA19

Partial Shape Recognition using Fourier-Meilin Trans-
form Methods, Timothy A. Grogan and O. Robert
Mitchell, Purdue University. A partial shape recognition
method is introduced that uses a globa! Fourier-Mellin
transform tor normalization of the curvature function
prior to library comparison.

4:50 PM ThA20

Singular Value Analyses of Inversion of Laplace and
Optical Iimaging Transtorms, M. Bertero, Istituto di
Scienze Fisiche dell Universita and Instituto Nazionale
di Fisica Nucleare, Italy and E. R. Pike, Royal Signals
and Radar Establishment, England. When “object” and
“image’ domains differ in size the eigenvalue approach
to inversion tails and a singular value analysis is re-
quired. Superresolution is then achieved.

5:05 PM ThA2t

A technique for the calculation of the global extremum
of a function of several variables, C. H. Slump and B. J.
Hoenders, State University at Groningen, The Nether-
lands. The global extremum of a function is obtained by
calculating an integral which equals the exact number
of stationary points in the domain of interest.

RUBICON ROOM
5:30 PM REFRESHMENTS

FRIDAY, JANUARY 14, 1983

PROSPECTOR ROOM

SESSION 9: INTERPOLATION AND TOMOGRAPHY |
N. Hurt, Presider

9:00 AM FA1

Algorithm tor incomplete Range of Views Reconstruc-
tion, Heang K. Tuy. Hospital of the University of Penn-
sylvania. An algorithm for incomplete range of views
reconstruction that makes use of a priori information I1s
given with some experimental results

9:15 AM  FA2

Geometric Deconvolution of Artifacts in Limited-View
Computed Tomography, Rangaraj M. Rangayyan and
Richard Gordon, University of Manitoba Limited-view
image reconstruction and compu'ed tomography suffer
from a systematic geometric uistortion. We present
here results of Fourier deconvolution techniques to cor-
rect the artifacts.

9:30 AM  FA3

Localization from Projections od on Detection and
Estimation of Objects, David -=si, Schiumberger
Doll Research, and Alan S. W v, Massachusetts In-
stitute of Technology. An © sased probabilistic
model is used in reconstruc - feld from limited
noisy projection measureme ' performance of
maximum likelihood object “n  estimation s

characterized.

9:45 AM  FA4

Tomographic Imaging with Limited-View Angle using an
Expansion on a Set of Eigenfunctions Adapted to
Space-Limited Objects, Line Garnero, Universite de
Paris, France, and Jean Brunol, C.G.R. Medecine
Nucleaire, France. In tomographic imaging. recon-
struction of an object of known finite spatial extent is
performed from an angularly restricted number of pro-
jections by a matrix multiplication.

10:00 AM FAS5

Linear Estimation with a Size Constraint, M. J. Lahart.
Naval Research Laboratory. Correlation coefficients
between spectral components of a space-limited image
are calculated and used to estimate missing compo-
nents. The technique is used for bandwidth extra-
polation and recovery of missing views in computed
tomography.

10:15 AM  FA6

Bayesian Approach to Limited-Angle CT Reconstruc-
tion, Kenneth M. Hanson and George W. Wecksung,
Los Alamos National Laboratory. Artifact reduction in
limited-angle CT reconstruction is demonstrated by use
of the Bayesian approach, which estimates an appro-
priate null-space contribution to the reconstruction.

RUBICON ROOM

10:30 AM COFFEE BREAK

onth e




FRIDAY, JANUARY 14, 1983—Continued

PROSPECTOR RCUM

SESSION 10: INTERPOLATION AND TOMOGRAPHY I
J C. Dainty, Presider

10:50 AM FA?

Use of A Priori Intormation in Image Reconstruction
from Limited Data, B. P. Medoff, W. R. Brody, and A.
Macoviski, Stanford University. We show how partial
knowledge of the underlying density can be used in an
nerative image reconstruction algorithm. Examples us-
ing real x-ray data are presented.

11:05 AM  FA8

Incorporation of Prior Constraints in Tomographic
Reconstructions from Coded Images, Richard G. Pax-
man and Harrison H. Barrett, University of Arizona, and
Gene R. Gindi, Yale University. The iterative Jacobi
method is used to reconstruct 2-dimensional functions
trom 1-dimensional coded image data sets. The folding
of prior constraints into the iterations improves the
reconstructions.

11:20 AM  FA9

Inverse Scattering Reconstructions From incomplete
Fourier Space Data, N. H. Farhat, University of Penn-
sylvania. We show that 3-D tomographic inverse scatter-
ing reconstruction of a scattering object is obtainable
from data lying on a curved surface, rather than within a
volume, of its accessed Fourier space as would ordin-
anly be required.

11:35 AM FA10

Deblurring and Three-Dimensional Reconstruction from
Multiple Linear-Motion Tomograms, Satoshi Kawata,
Osaka University, Japan, Jack Sklansky, University of
Cahtorma at lrvine. A constrained iterative matrix inver-
sion aigorithm reconstructs a three-dimensional at-
tenuation tunction from a few conventional linear x-ray
tomograms, leading to deblurred tomograms.

11:50 AM FA11

Two-dimensional Reconstructions from One-
dimensional Data by Maximum Entropy, Sibusiso Sibisi,
Unwversity cf Cambridge, England. Maximum entropy is
used to obtain two-dimensional positive reconstruc-
tions trom one-dimensional data. A time series is
analyzed in both frequency and decay simultaneously.

12:056 PM  LUNCH

FRIDAY, JANUARY 14, 1983—Continued

PROSPECTOR ROOM

SESSION 11: PROBLEMS AND METHODS I
J. A. Neff, Presider

2:00 PM  FA12

Phase Problem of X-Ray Crystallography from the View-
point of Signal Recovery, Gerard Bricogne, Columbia
University. The statistical theory of the X-ray ptrase
probiem will be reviewed, and recent work relating 1t to
Jaynes’'s maximum-entropy formalism  will be
presented. (Invited Paper)

2:30 PM  FA13

Image Reconstruction and Partial Deconvolution with
Support Constraint: Separation Angle and Least
Squares Interpolation Procedures, A. Lannes, Lab-
oratoire d'Optique Electronique, France. The concept of
separation angle plays an essential part in image
reconstruction from projections and in partial decon-
volution with support constraint. The corresponding
analysts is illustrated geometrically.

245 PM  FA14

LBl Image Recovery using Sharpness Maximization,
D. G. Steer, M. R. Ito, and P. E. Dewdney, Uriversity of
British Columbia, Dominion Radio Astrophysical Obser-
vatory. Simulation experiments are described for LBI
image recovery by adjusting the antenna phase delays
according to the phase closure constraint to give the
maximum image sharpness.

3:00 PM FAt5

Phase Synchronization of Distorted Imaging Antenna
Amrays, Bernard D. Steinberg, University of Penn-
sylvania. Det. action-limited performance is achieved in
a distorted apc iture by a wave-front compensator con-
trolied by a radiation field derived from a source of
known properties.

3:15 FFM4 SUMMARIZING DISCUSSION
J. R. Fienup, Presider

4:00 PM  ADJOURNMENT
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SESSION 1

EXTRAPOLATION AND RESTORATION I

W. T. Rhodes, Presider




WAl-1

RETRIEVAL AND SYNTHESIS PROBLEMS IN OPTICS - AN OVERVIEW

H. P. Baltes
LGZ Landis & Gyr Zug AG
CH - 6301 Zug, Switzerland

Motivations for studying inverse optical problems in the Central
Laboratory of the Landis & Gy. Clorporation are the encoding of
information in diffracting or scattering structures tailored to
purpose, the reading of such information using optical sources
and detectors, and the retrieval of structural information in the
presence of random scatterers (such as a rough surface), with
emphasis on the automatic optical checking of identity or
authenticity. One example of a product based on such procedures
is the PHONOCARD currently being manufactured by Sodeco-Saia, a
company of the Landis & Gyr group. The PHONOCARD is a pay
telephone operated by pre-paid cards (see Fig. 1) with optically
stored value units, whose authenticity is checked by an optical
reading system.

What distinguishes the "inverse" or "indirect" problem in optical
physics from the "direct” or "normal"? The diiect problem is to
predict the emission or propagation of radiation on the basis of
a known arrangement of sources or scatterers. Given the source
distribution or the incident radiation field and the structure of
the scatterer, one seeks to calculate properties of the scattered
radiation field, such as the angular distribution of radiated
energy or the resulting photon counting statistics. The {nvexse
problem is to deduce features of radiation sources or scatterers
from detectable properties of the emitted or scattered field.
Given, for example, some far-field data (usually up to some error
and noise), the aim is to infer properties of the source or the
scatterer.

There are many different inverse problems in optical physics,
each with its own subtleties. It is perhaps useful to distinguish

between the "scientist's inverse problems" - the retrieval from
measured data of features characterising particular scatterers
or sources - and the "engineer's inverse problems" - to design an

object with a structure that yields certain wanted scattering
properties. Another useful classification can be based on the
statistical character of the radiation field and the information
to be retrieved. Deterministic problems involve coherent
radiation with a well-defined (complex) amplitude, and scatterers
with a well-defined structure; statistical problems deal with
partially coherent radiation fields and stochastic scatterers
such as rough surfaces or fluctuating media.

In the first part of my presentation I attempt a synopsis of the
large variety of inverse problems in optical physics [1,2] with
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emphasis on the underlying questions of uniqueness, stability and
prion knowledge . In the second part, two specific examples are
presented. One is a deterministic problem on the level of
electromagnetic invernse scatternding , namely the design of grating
profiles tailored to yield certain desired diffraction
efficiencies. The other is a problem of statistical optics, namely
the question how a phase grating "hidden" behind a diffuser can

be retrieved by observing the degree of coherence of the scattered
light.

With respect to the first problem, Fig. 2 shows the result of a
non-unique profile reconstruction obtained from a reconstruction
procedure devised recently [3]. A theoretical result for the
second problem is presented in Fig. 3. It shows the far-zone
degree of coherence of scattered radiation emanating from a
grating hidden behind a diffuser in a situation where the
diffuser would prevent the detection of the grating by far-zone
intensity measurements.

[1] H. P. Baltes, ed., Invense Source Problems 4in Optics, Springer-
Verlag, New York, 1978

[2] H. P. Baltes, ed., Inverse Scattering Problems in Optics, Springer-
Verlag, New York, 1980

[3] A. M. J. Huiser, A. Quattropani, H. P. Baltes, Optics
Communs. 41 (1982) 149

[4] A. s. Glass, Optica Acta 29 (1982) 575
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Fig. 1 PHONOCARD station and cards
N {(by courtesy of SODECO=SAIA)
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Fig. 2 A non-unique grating profile reconstruction; curves A
and B are reconstructions of the original profile shown
in the middle (after Ref. 3).
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Fig. 3 Degree of coherence of radiation emanating from a
lamellar phase grating hidden behind a diffuser
(after Ref. 4).
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FOUR MODELS FOR THE BAND-LIMITED

SIGNAL EXTRAPOLATION PROBLEM

Thomas S. Huang Jorge L. C. Sanz

Coordinated Science Laboratory
University of Illimois at Urbana-Champaign
1101 W. Springfield Avenue
Urbana, Illinois 61801

In refs. 2, 4, and 5, two algorithms for solving the .continuous band-limited
extrapolation problem were developed. However, in practical implementation of these
algorithms, discretization is unavoidable. The relationships between the discrete
and the continuous algorithms have never been adequately clarified in the literature.
In the present paper, we attempt to shed some light on this question.

We first state the problem of continuous band-limited extrapolation. Let f be a
finite—-energy signal which satisfies f(w) =0, w ¢ [-9,0], where A denotes continuous
Fourier transform. Since f is analytic, given a piece of f, say g : [~
T,T1—C : g(t) = f(t), t ¢ [-T,T], we can recover f(t), for t ¢ [-T,T). Hence, the
continuous extrapolation problem is (under the conditions stated above): Given f(t),
t ¢ [-T,T); find £(t), t ¢ [-T,T] (see fig. 1(a)). This model will be referred to as
the continuous—continuous model. If we are given a function which is not of finite-
energy (for instance, a periodic signal) the extrapolation problem has to be res-
tated. We will concentrate on the periodic case only. Let f be a P-periodic signal
defined over the real line: f£(t) = f(t+P) for all t, and let f be Q-band-limited.
This means that its distributional Fourier transform f is supported in (-Q,8] ([6]).
In that case it can be proved that f is a linear combination of impulses. The
weights in that linear combination are related to the DFI of samples of f. Now, we
have another model for the band-limited extrapolation problem, which we call
continnous—discrete: given a piece f(t), t ¢ [-T,T], of a OQ-band-limited P-periodic
signal f(t), we want to determine f(t), t ¢ [-T,T] (see fig. 1(b)). The solution for
this extrapolation model is unique since f is analytic. Moreover, f is a linear com-
bination of exponential functioms:

ko .
£(t) = ) a e Zmint/P (1)
n=k
o
where ko = [g%] (see [7))

The two models given in fig. 1(a) and 1(b) are both concerned with the continuous
extrapolation problem; this means that the signals to be extrapolated are comtinuous
in time. Nevertheless, in the first case the Fourier transform is also continuous in
time, while in the second case the Fourier transform is a finite array of impulses.
There is a major difference in solving the extrapolation problems for the two models:
the P-periodic 0-band-limited function is completely determined by 2k +1 samples in
[-T.T]. This assertion is a consequence of (1) ([1]). This is not e case for
model 1(a).

An attempt to solve the extrapolation problem given in model 1(a) is the follow
ing well-known iterative procedure (4],[5]):

fiep = fp *+ sincg ® (g - J -1, 1) f). =a20 (2)
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where I is the identity operator and J[J is the truncation to [-T,T]. Oue way of
(-}

getting a numerical implementation of recursive formula (2) is based on the fol-

lowing discrete recursion:

Yo ) =Y. + A Zr sinco(AG-m) (g(md) - y. (m))) (3)
utl T AmelfT,TI 8 Ta
¥(3) = 0

where A denotes the distance between two consecutive samples and j is any integer

number. Now, it is clear that Yp+1(j) may not be equal to fo410i8) . It is well
known that fn-. f uniformly on the real line. On the other hmd, it was shown in [2]

that the sequence y tends to the minimum norm solution y of the following discrete-
gsontinuous extrapolanon problem of g(mA) = z(m), -[T/AJ<mS[T/A].

Given z(m), m ¢ A (A is a finite set of integer numbers) find a finite—energy
sequence y(m), m e Z:

(i) y is band-limited to (-0,9).
(ii) y(m) = z(m), m ¢ A.

This is the third model sketched in Fig. 1(c). This model appears as a consequence
of the numerical implementation of the recursion (2). However, it is also clear that
the extrapolation problem which the recursive formula (3) approaches is completely
different from the original problem (model 1(a)). In ref. [3] model 1(c) was fully
connected with model 1(a).

Another technique of implementing the recursive relationship (2) is by means of
the DFT. Equation (2) can be written in the following equivalent form:

v
£l = Spul
. _ A
Sal = Jp-g,0) B T T )
where J[—9.9] is the truncation function to [-Q,8], v and A denote inverse and

direct continuous Fourier transform respectively. Replacing v and A by their
corresponding DFT and implementing the frequency cut—off operator in temms of samples
of the frequency space, we get the following recursion

N i
Lo = 3 3 aw Imimi/M § € [-NA]
m ==N
[ o N2 ol >k, =(y
a(m) =
(4b)
)‘f B(j) emiim/i ll <
Chat
[ s, 131 < (]
Bj) =

(4c)

L L . N2 il 2 6
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In formulas (4b) and (4c) A denotes the distance between comsecutive samples, and
M =2N+1 is the length of the DFT. There is no 8 priorji reason for the convergence
of the procedure (4) because fn(j) is not fn(jn). In ref. [1] it was proven that if

k = = 4
o = [T/A] = L then €, converges to the solution of the following discrete-discrete
extrapolation problem

Given the sequence x(n), -L < <L
Find a sequence h{n), -N ( a ( N such that
(i) h(n) is band-limited to [k.%]

(ii) h(a) = x(n), n e [-L,L]

The sequence h(n) can also be computed by means of a non-iterative two—step procedure
([91). Fig. 1(d) sketches this new model for the extrapolation problem. In ref.
(1] it was assumed that the number of non-zero frequencies is the same as the number
of given samples: x(n), n e [-L,L]1. Nevertheless, as i was done for the discrete-
continuous model 1(c), it should no* e difficult to prove that when k_ > [T/A] the
same algorithm (4) converges to the minimum norm sequence h(an) which satisfies (5a)
and (5b). The case k, < [T/A] = L may not yield any solution. It is clear that the
discrete-discrete model is completely different from the continuous-continuous model.
However, it naturally appears from another pumerical implementation of equation (2).
Some relationships between models 1(a) and 1(d) are given in [8], but do not get the
same class of relationships as the connection between models 1(a) and 1(c) ([31).
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Figura 1 Four basic models forthe extrapolation probdleam,
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PRACTICAL INTERPOLATION OF 2-D SURFACES USING THE GERCHBERG ALGORITHM

Mark J. Carlotto and Victor T. Tom
The Analytic Sciences Corporation
One Jacob Way
Reading, MA 01867

Abstract

The interpolation of 2-D wind and hydrographic surfaces is accomplished using the
Gerchberg algorithm. Special emphasis is given to algorithm implementation on an array pro-
cessor.

Introduction

The Gerchberg algorithm has been successfully applied to signal enhancement,
reconstruction and extrapotation prob%ergs where only partial information is available in the
space (time) and frequency domains '“. This algorithm uses an iterative approach and
affords effective utilization of partial information in the space and frequency domains. In
this paper, a brief description is given of how the Gerchberg algorithm is applied to the itera-
tive interpolation of two-dimensional (2-D) surfaces from irregularly spaced data points.
Important implementation issues are discussed which include partitioning large data sets,
adapting the spectral bandwidth of the process to the local data, and performing the Ger-
chberg algorithm on an array processor.

Specific applications presented are: the generation of hydrographic surfaces from
bathymetry data obtained from the hydrographic airborne laser sounder (HALS) and the gen-
eralization of wind-flows from cloud imagery obtained from the Geostationary Operational
Environmental Satellite (GOES). Experimental results obtained using a VAX 11/780 and FPS
120B array processor system are presented.

The organization of this paper is as foliows. The next section describes the formu-
lation of the Gerchberg algorithm for interpolation. Issues concerning the implementation of
the algorithm on an array processor are then presented in the following section. Two applica-
tion areas in which this technique has been successfully applied are described in the last
twa sections.

Interpolation Using the Gerchberg Algorithm

In this section the use of the Gerchberg algorithm to interpolate a 2-D surface to
known data subject to a spatial bandwidth (smoothness) constraint is described. Since the
desired goal is interpolation rather than extrapolation the solution should be well-behaved.
The objective is to interpolate an M x N point surface to a set of data points, d_, located at
(i _.i..) whose domain can be written as |,. By repeatedly substituting the data t?ack into the
egtifr)\ate of the surface and lowpass filtering, the Gerchberg algorithm constructs a solution
which is consistent with both the given data and the spatial frequency constraint. At each
iteration k, the surface estimate is updated according to

S, = sy = BI-Ts, +po{ QB

where | is the identity matrix, T is the replacement matrix for the known data, B is the ideal

lowpass filtering operation defined by the discrete frequency bandwidths Dy and xy. and

M S et M"‘ o
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represents the compoegtg operator. Equation 1 has been shown to be stable since " is a
nonexpansive mapping"’ In addition, if the partial gonstraints determine a unique sofution
then Eq. 1 is guaranteed to converge to that solution™.

Implementation Considerations

This section describes the implementation of an interpolator based on the Ger-
chberg algorithm on a VAX 11/780 and FPS 120B array processor (AP) system. A com-
parison of the Gerchberg algorithm with other interpolation techniques (polynomial fitting,
least-squares approximation, and local area interpolation, e.g., cubic spline) was performed” .
The Gerchberg algorithm was found to be computationally more efficient than polynomial
techniques in terms of the number of operations performed. The regularity of the computa-
tions and the ability to easily change the order of the interpolation, when the known data
was spaced irregularly, were significantly better than local area techniques. In addition, the
memory requirements of the Gerchberg algorithm were lower than least-square techniques
(which require the generation and storage of the orthonormal basis functions). Finally, this
technique can be performed in-place reducing storage requirements still further.

The regularity of the alternating spatial replacement and filtering operations
allowed an efficient implementation of the Gerchberg algorithm on the AP. A program running
in the VAX reads the data files from disk, sections the data set into sub-blocks for process-
ing, and coordinates the operation of the AP. The host supplies a sub-block of data, the
number of iterations to be performed, and the filter bandwidths. The AP returns the maximum
difference between the interpolated surface and the data:

£ = maximum § s(i,j) - dp(i,j) } fori,jc Ip (2)

When the difference in Eq. 2 is less than a predetermined threshold £ the interpolated sur-
face is read out of the AP.

In practice, since the original surface is unknown, the bandwidths must be deter-
mined indirectly. A technique successfully used to interpolate the HALS and GOES data ini-
tializes the filter bandwidths to a low value. After performing a specified number of itera-
tions, if the difference ¢ is greater than the threshold £ the bandwidths are increased by
some predetermined increment. In addition, these differences are an indication of the degree
to which the algorithm has converged and can be used to terminate the iteration automati-
cally.

As stated earlier, the M and N array dimensions are determined by the amount of
data memory available in the AP. In order not to be limited by the AP memory, a scheme for
partitioning large data sets into sub-blocks for processing was developed. Local area tech-
niques have been found to be superioné5 to global interpolation techniques, particularly when
the order of the interpolation is large~. Since the bandwidths of sub-blocks are adjusted
independently, a method of block processing the data which maintains continuity across the
data set was implemented. Continuity was maintained by using the edge row and/or column
data points from previously processed sub-blocks as true boundary information for the sub-
block being processed.

interpolation of Bathymetry Data

This section describes the interpolation of 2-D surfaces from data obtained from
the hydrographic airborne laser sounder (HALS). HALS is a laser bathymetry device for
measuring the depth of coastal waters (up to 50 meters in depth depending on water clar-
ity). The data is collected in a spiral sampling pattern (Fig. 1) traced out by a pulsed blue-
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green laser beam scanned in an eliptical pattern and translated by the motion of the aircraft.
The 256 data points shown in Fig. 1 represents only part of the 4400 depth measurements
made in the 1000 X 100 meter survey area processed. The measured depth is proportional
to the time-delay between the air-water and bottom return pulses.

The survey area was gridded into a 512 X 64 block of data (spaced 2 meters
between samples). The array was partitioned into eight 64 X 64 sub-blocks and was pro-
cessed as described earlier. In each sub-block, 20 iterations were performed at a given
bandwidth. If the peak difference between the data and the interpolated surface was
greater than a threshold (¢ = 3m or 10% of maximum depth), the bandwidth was doubled.
The o, and o bandwidths were initialized to one frequency bin (0.0039 cycles/meter) at
the start of p¥ocessing each sub-block. The resultant surface is shown in Fig. 2. Since the
hydrography was fairly smooth in the outer sub-blocks (0-3 and 6-7), the corresponding
bandwidths were small. In the shoal area (sub-blocks 4-5), higher bandwidths were required
by the interpolator in order to generate a surface of sufficient order to fit to the measure-
ments. The 512 X 64 sample survey area was processed in approximately 5 minutes under
normal system loading.

Generalization of Atmospheric Wind Flows

This section desribes the interpolation of wind vector fields from data obtained from
two consecutive frames of GOES cloud imagery (Fig. 3). An initial wind vector field on a
square grid was first computed by calculating normalized correlation coefficients p for
32x32 sub-blocks and their corresponding search windows. The offsets of the correlation
peaks indicate the cloud displacements in x and y, and the maximum correlation values are
indicative of the goodness of fit between frames. These initial vectors were then edited to
inciude only those vectors that were due to clouds with 2 kilometer base heights. An addi-
tional screening was then performed to retain only those vectors which correspond to high
values of p, thereby mitigating the effects of changing cloud morphology on this procedure.
The remaining vectors (Fig. 3) are then used as the basis for interpolation.

For the present example, the Gerchberg iteration was applied to the x and y com-~
ponents of the wind field separately. For each component, 20 iterations were performed at a
given bandwidth, similiar to the bathymetric processing. The interpolated wind field is shown
in Fig 4. This particular example did not utilize the block processing capability, aithough with
much larger data sets, it would have been necessary.

Summary

The Gerchberg algorithm has been shown to be an effective interpolation tool for
generating smoothly varying surfaces from incomplete data. A description of the algorithm
was presented as well as a discussion of some key issues regarding array processor imple-
mentation. Finally the effectiveness of the procedure was demonstrated by interpolating
examples of bathymetric data and wind field data.

References

[1] Gerchberg, R.W., "Super-Resolution Through Error Energy Reduction”, Optica Acta,
Vol. 21, No. 9, pp 709-720, 1874,

(2] Papoulis, A., "A New Algorithm in Spectral Analysis and Bandlimited Signal Extra-
polation’, /EEE Trans. Circuits Syst., Vol. CAS-22, pp. 735-742, Sept. 1975.




[3] Schafer, R.W., Mersereau, .M., Richards, M.A., « unstrained lterative Restoration
Algorithms ', Proceedings of the IEEE, Vol. 64, No 4, 19381,

[4] Cariotto, M.d., An iterative Technique for HALS Post-Processimg. 1IM-3244-4, The
Analytic Sciences Corporation. Aug. 1982,

[&] Tom, V.T., Quatieri. 1.1, Hayes, MH., Mc lellan, S Convergence of [terative
Nonexpansive Signal Reconstruction Alqorithans  /FEF Trans, Ao oust., Speech, Signal
Processing, Vol ASSP-24, ppr 10562-1068. 19451

[6] Conte, S D.. deBoor. (|, flementary Numers:o i Draiy-os: An Algorithmic Approach,
McGraw Hitl Book ¢ ompany, p 231, 1972

DEPTH SOUNDINGS

YRRV
[ 1'1“

iy,

DIRECTION OF FLIGHT

Figure 1 Spiral Pattern of HALS Data Figure 2 tstimated Surface (s 1= 3.0m)

Figure 3 GOES Image and Fdited Vectors Frqure A Interpoiated Vector ield




WA4-1

On Some Explicit Deconvolution formulas

C. A. Berenstein, Department of Mathematics, University of Maryland,
College Park, MD 20742, USA.

B. A. Taylor, Department of Mathematics, University of Michigan,
Ann Arbor, Mi 48104, USA.

A. Yger, Centre de Mathématiques de 1'Ecole Polytechnique,
91128 Palaiseau Cedex, France.

Given several measuring devices defined by convolution with distributions
of compact support in R} one would like to construct explicitly

o

.41,---,um

Joecrpelitors, i.e. distributions ERERTA also of compact support, such
m

that

(1) vy kg + o0+ VRl T S.

This would allow us to reconstruct exactly an arbitrary signal ¢ € Cm(Rn)
which was measured as gl = My *¢,...,gm = Mo xd by

v

9 P =
(2) v x8 v xg b

We note that the two main requirements are (i) that the v: be of com-
pact support and (ii) that they are explicit. By explicit we mean that

VyseessV be given bv formulas involvine the u..,...,1n_, convolution, differen-
1 m & 1 m

tiation, integration and sums. Furthermore, one requires that this procedure
be stable in the sense that small errors committed in the implementation of

these formulas or even in the construction of the original devices ul,...,um

do not affect toc much the outcome ¢ given by (2). We remark that the fact

that VstV are of compact support should also help with the analysis of

noise accompanying the signal ¢, we plan to come back to this point in
another paper.,

To put the problem into another, maybe more familiar, perspective we
apply the Fourier transform to equation (1) and we get the identity

. . . n
: ( . . = p €
&) vl\z)ul(z) + + vm(z)um(z) 1 for all =z C

>

hence we are looking for solutions Gl,...,ﬁ of what is sometimes called the
m

Fezout problem, these functions must be entire holomorphic functions of n
complex variables and satisfy the Paley-Wiener type estimates

@ (] s A + ]z Bl 2],

Tt is immediate from (3) and (4) that to expect a solution to our problem
one neecs that for some positive constants e, B, N one has:

v —  — e e
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(5) ) |Jj(z)( ceBlIm z|<1+[z|>'N, vz e ¢,

j=1

It is known that this condition is also sufficient for the solvability of
the Bezout problem [1]. The difficulty hinges in two things, first, this is
purely an existence theorem and, second, even if one could write down the func-
tions v, this might not satisfy the stringent conditions required above unless
their Fo&rier inversion were practically immediate. There is one known case
of this situation, when all the 1, have punctual support, then we might as

well assume that the 1, are polynomials in n variables and we look for Oj
also polynomials. 1In one variable, these <O, are found via the Euclidean

algorithm, in several variables using elimination theory or using an integral
expression found by Anderson-Berndtsson [2]. We are interested here in the
case where the uj no longer have punctual support, and indeed, under some

technical conditions on the yu,, 1in addition to (5), we can explicitly con-
struct distributions V3 satisfying (1). The details and its proof appear in
{3}, [4]. We will restrict ourselves here to discuss one example of particular
interest in optics.

Let Hyo be the normalized characteristic functions of planar disks

Ho

of center the origin and radii rl and r2 respectively. As convolution

operators they correspond to difraction by circular lenses. Consider the map

(6) o v up *o, uy %9,

it can be proved that the necessary and sufficient condition for the injec-
tivity of this map is that rl/r2 ¢ E={g/n: Jl(i) = Jl(n) =0 and

g,n # 0}, where J. 1is the Bessel function of first kind and order 1 (see
[5] for references and discussion of this problem.) Noting that

7 SR
R 1 Ji(rpzg tey) . RN
D@ = iy =
mr 2 ibs
1 22 +z2 2 22 +22
1% 112

we see that the condition that rl/r2 is not in the exceptional set FE cor-

| responds exactly to the non-existence of common zeroes of the Fourier trans-
forms of M1 and uz. Here we want to invert the map (6), hence we need the

stronger condition (5). In fact, (5) is equivalent in this case to the follow-
ing arithmetical condition

(8 3 ¢>0, N>0 such that I(rl/rz) - /) 2 ]-aﬁ for all &/n € E.
AN

As a corollary to our theorem one can show that (8) suffices to construct ex-
plicitly deconvolutors vl, Yy The formula we give below corresponds to the
optimal case of N = 2. Though it is possible that if ry/r, is a rational

e o+ e e
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number (obviously #1) or even a quadratic irrational then (8) holds with

N = 2 we only know a slightly weaker result, i.e. that there is an algorithmic
way of deciding whether or not (8) holds. In less than 2 seconds a computer
has shown that all integers in the range from 2 to 200 satisfy (8). By IR v

we denote the distribution supported by the disk {x2 + y2 < RZ} and represented

in the interior of that disk by the function

R R ————
9) IR Y(x,y) = 222 f (J '/RZ _SZ cos y(t -s)ds) 4t .
n R 7.7 t [e2 2.2

When 3 1is a positive zero of the function 2z~ Jl(rlz) we denote
(10)  u (8) = (873, (r,8)J,(r;8)) "t oy = Ju (8
1 172 2071 ’ 1 1 i

where the sum takes place over all the positive zeroes of Jl(rlz). Similarly
if & represents a positive zero of Jl(rqz) we define uz(a),cz. With A

4
denoting the Laplace operator, we are ready now to define the two distributions

\)l) \)2

(1) v, = —szro A3u - 2n2r A4 (Z u, (o)1 ) and
1 12 2 1 2 r,,a'’
Q 2
12) = 2nr 0 %, - 200 AT u (I ) + bnu - 2 1edy
V2 T I A M AT . ! T, .8 My T T M TR
w4 2 2 2, 2
+ E (2!‘1 + 3r1r2 + 21‘2)A Ul.

Thev satisfy the desired identity

My *Vq + Hy * v2 = §.
One can see from (11) and (12) that cutting-off the series gives an error that
can be estimated in terms of a priori bounds on the derivatives of order at
most six of the signal ¢ and, moreover, the finite sum remaining after the
cut-off is fairly insensity to the arithmetical nature of rl/r2 and hence

one uses (8) for theoretical purposes only, i.e. one is allowed errors even
in this quotient or, in other words, in the construction of Hy and Hoe !

Actually, the above example is really a one dimensional problem due to the
radial symmetry of My and Moo but the same kind of analysis can be carried

over to genuinely n~dimensional situations, for instance one can study the case
where Hp» Mg Mg are the characteristic functions of a square and two of its

rotations, if they are chosen correctly to satisfy (3) (a rotation of 36° and
one of 45° would do the trick) f{4].
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Iterative Image Restoration From Data Available In Multiple Restricted
Regions

Yoshiki Yamakoshi and Takuso Sato

Tokyo Institute of Technology, The Graduate School at Nagatsuta,
4259 Nagatsuta, Midori-ku, Yokohama-shi, 227 Japan

{. Introduction

Restoration of the original image from data available in restricted
regions has been the subject of many studies in the field of optical, X-ray
and acoustical imagings. Several concrete means for extrapolating of the
observed data beyond the observed region have been proposed. =3 Among them,
iterative means for the image restoration is considered as one of the most
ceffective methods, because of its stability even under faily noisy observed
data.

In this paper, the iterative image restoration procedure for the case
where the data are available in multiple restricted regions is treated
generally and the convergence properties of this procedure and an optimum
construction of the observation system are examined. Multiple restricted
regions may be considered, for instance, when the obstacles such as the
object holders exist or when the data with high signal to noise ratio can
be obtcined only in restricted regions due to the existence of highly
absorbing parts in the object.

II . Formulation of the iterative image restoration procedure

The observation system under consideration is shown schematically in
Fig.l. Only one Jdimensional cases are considered. In this system, it is
assumed that the data are available in n

. . ; 9(x)
restricted regions in the image plane. Hence, *

the observed image g(x) is given as follows ,/j;'
n ’// ‘//
T L
g(x) = L {PD,k(X) £(x)} ¢)) P S
k=] 1)
where AX AXk ax,| [axp} o 8x,
N, - —— = X = + — ]
p (x) = 1 )\k 2 * Xk 2 Xy Xz Xa *
D.k 0 oterwise
Fig. 1
and 1(x) is the original image to be restored. Available data in the image

plane

As for f(x), we assume that i) it is square
integrable in each region and i) it is band limited within i{ in the
spatial frequency plane. 6

If we consider a set of prolate spheroidal wave functions (PSWF){y }

which are complete in the {-th restricted region, then the expansion L,
coefficients of the observed image are as follows
o n o

a o, ., = X (x) dx = L p (x) f(x) {, ,(x) dx (2)

ering fﬂg( ) by, ) b f_w NG CORTR
Expanding f(x) by using {wk j} for k-th restricted region, we obtain

t]
= (3)

Ay, A A0
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where X
Ilg ,Q = [ Z’g’ R/,O Y aig’ Q, 1 , °°° ] .
a o= [ a 4.0 ° af,R,l , o]
n o
A= kil Yior M Yoo o (¥, )i,j = f_wwk’j(x) by (0 dx ()
Xk = Diag(kk’j)

and {Xk j} are the eigen values of {wk j}' Thus, the desired coefficient

3

vector a. , of the original image is obtained from the observed data by
solving the following linear equation. ratlable ant -

—l - vaiiable (]

= in_lmage plane

'If ’ £ A ‘IE;, [ ('5 ) i, 1,0 3
It can be shown that Eq.(5) is equivalent to
the following revisions. ) ﬂ R
1) Revision in the image plane g.lh — M\Hm.u

n X, [N .Im“‘“;.:‘: I [N I,
hy"(x) = I Py, (x) £ = |

1 k=1 “? [ (7]
n
* 0 B P 0) By () ® ] s
k=1 AN Ty i 3 ot
2) Revision in the spatial frequency plane oA H T B
Hi, @) = Py H ") )
where Aprior! inowledge
in frequency plane
- - -l a o a -
Hi (w) B ;{hi(X)}, hi+l(X) - ; {Hi+1(w)} Band 'ymitatyon
Po(w) = { 1w =@ Fe. 2
0 otherwise Schematic diagram of the iterative

image restoration procedure

Fig.2 shows these procedures.

II. Convergence properties of the iterative revision procedure

For the estimation of the mean square error of the iteratively revised
image, we use eigen functions {¢j(x)} which have the expansion coefficiert

vectors {xj} of the matrix A and the eigen values {Oj}.

Let us consider the mean square error of the i-th revised image. We
assume that the observed image g(x) is written as
n n
g(x) = L PD k(x) f(x) + L P
k=1 7 k=1
where n(x) is the additive noise. This model represents the imaging system
such as X-ray radiorogy, since the fluctuation of the photon counting may
be interpreted as the noise. If we assume that f(x) and n(x) have the band
limited white spectrum within #{,

D,k(x) n(x) (8)

E{f(x)f(x")} = af2 sinQ(x-x")/m(x-x") (9)

E{n(x)n(x")} = 5n2 sinQ(x-x ") /n(x-x") (10)
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then the expectations of the mean square error E{Li} is given by

o . : .2
Ele) = Blf (£ Go=h, ) ax) = o (1-oj)21 ag + SRSEICEEINR i’ an

o0
Here, we will examine Eq.(ll) for the case where the sum of the widths of
the restricted regions is fixed. We only discgss the case where the sum of
the widths of these regions is small so that & AXk << n/u. is satisfied.
Examination for this case seems of great impo%ggnce in practical cases,
since we are considering the problem of the restoration of the original
image from incomplete data and this condition corresponds to the extreme
case of this kind. In this case, the convergence of the iterative procedure
must be slow because the available information about the object is
restricted seriously.

When the iterative procedure is truncated at a small number, the mean
square error is approximated as

Ele,} = & Al -2ia% 4 1i(2i-1) a v %3 B (12)

i 3 f f f n
where ¢« and B are the sum of the eigen values and the sum of the squares
of the eigen values respectively.

When thg sum of the widths of the regions is fixed, o is constant,

-

since = I (/) AX, . Hence, the observation system with smaller £ gives

. k
k=1 , .
the smaller mean square error for the revised image.

1V. Construction of the optimum observation system

Next, we consider the construction of the observation system which
gives small ©, that is, the system which gives small mean square error.
The v is written as follows

n 2 n o n «© )
o= L n \k o+ f PD k(x) dx L f PD k,(n){sim.‘(x—ﬁ)/:'(x—r’))J dn
k=13 <3 k=l —w 7 k=] - =’
(k "$k) (13)

Jhe tirst term of Eq.(13) is the sum of the squares of the eigen values oi
the PSWF, which depends only on the width of each region. On the other
hand, second term presents the cross interaction among these regions which
depends on the widths of the regions and the distances among them.

wWhen the movement of the regions is allowed, b depends only on the ;

second term of Eq.(13). Hence, E{c,} decreases with the decrease of this
cross interacting term and we can sée that this term decreases when the
distances between the neighboring regions are increased.
The evaluation of the system based on p may also interpreted from the
following diffrent point of view. 5

The sum of the squares of the eigen values £ corresponds to the ;ﬂ

variance of the distribution of the eigen values, since the sum of the
eigen values 1 is constant. Hence, if © is large, the distribution of the
eigen values should be something like a step function. 1Thus, eigen values

should take values close to one or close to zero. On the other hand, if ©

is smatl, the eipen values should be distributed between one and zero.
lhese situations are shown in Fig.3. Thus, the observation system with a
small . may be considered tc¢ give information about larger number of the
¢igen tunctions compared to the system with large . The information for
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each eigen function, however, may be degraded in gm“““"”' ]
this case. Hence, if we can use the iterative means .
for the restoration of these degraded information, P e .mmmmL___ ]
it may be said that the system with small 3 is P '
prefered from the point of view of the mean square o . smar 1 ’
error of the image after revisions of a finite o L
number.

Fig. 3

V. Computer simulations Distribution of the

In Fig.4, the properties of B for the case where eigen values

only two regions exist are shown. From the figure, B decreases with the
increase of the distance between two regions, but it remains almost constant
when the distance becomes greater than 7/(. Fig.5 shows the effect of the
number of divisions and the variation of the widths of the regions. It
shows that B decreases with the decrease of the variation of the widths.

It increases with the increase of the number of divisions. Fig.6 shows the
comparison between P and the normalized mean square error of the revised
images. The original image has the band limited white spectrum. The
results show that the optimum construction which gives the minimum mean
square error for the first time with the increase of the distance
corresponds almost exactly to that for the R,

21072 €y

— '°1L L\ :

gﬂ-lo

e . - ar * ta) 16K, 210 (b) LAX %100 0% v =

. 10
— — N + =20
0 g R+0S 0s

a

' ° s a

A2 8K, 20 \ o
T .02

‘\ 01
0 201

———— e DY
o [ 0 19 Dewnce d w 0 » * ° o 5 o
) ney ta)y n 10
Fig.4 Fig.5 Fig.6
Ef fects of the distance between Effects of the number of divisions Comparison of the mean square
the reglons {a)and(b), and the variation of error and R. The width of each
the widths (c)and(d). (s is the tegion is 1.0 and the band width
standard deviation of the widths) is 0.61.

VI. Conclusions

We have examined the properties of the iterative image restoration for
the case where the data are available in multiple restricted regions.
When the sum of the widths of the regions is small, we show a means for
the construction of the optimum system, wich is based on the evaluation
of the sum of the squares of the eigen values of the system.
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In the past, attempts to increase the resolution of images by
modification of the imaging system or by image enhancement techniques
have been two separate fields of endeavor. Research on imaging
systems concentrated on resolution increase by use of such approaches
as special phase masks, the rearrangement of the spatial bandwidth of
a system, and trades of temporal bandwidth for spatial bandwidth [1-7].
The image restoration techniques have concentrated on spectral extrapola-
tion using maximum entropy, Bayes' theorem, Cerchberg's algorithm,or some
other iterative approach [8-12].

The goal of this work is to encourage an integrated approach to the
problem. We present results of analysis of the effect of various
distributions of the spatial bandpass of a system for three problems:
(1) accurate location of a point source, (2) restoration of an irsge in
noise, and (3) restoration of an object having a flat spectrum. We then
discuss two ways of synthesizing an imaging system to gather the data
with the desired spatial bandpass.

First, Tet us consider the simpler case of determining the location
of a one-dimensional point source in the presence of noise. Two cases
are explored. One is an aperture that forms a perfect lowpass spatial
filter. The other is a perfect bandpass filter with the same total
bandwidth. With no noise, it is intuititively clear that an aperture com-
posed of two separated regions, which gives a narrower main lobe, is best if

*This work was supported in part by an Army Research Office Palantir Study.
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there is no ambiguity problem. With noise, we used as our measure of
resolution the variance of the maximum likelihood estimate of the
location. If the S/N is high, we find the variance =, to be

.3
RPN

2

where . is a measure of the S/N, a is the width cf the spatial bandpass,
and b is its center frequency. We see that ¢ decreases monotonically
with b, the limit being set by the probability of the point being located
with a secondary lobe.

A second problem is image restoration when the aperture can be
split into three sub-apertures, one of which is centered. The restoration
procedure used was a least-squares algorithm using singular-value decom-
position. We assumed a known finite spatial extent of the object, but
did not use a positivity constraint on the object [13-14). It was found
that by an appropriate choice of the distribution of the three apertures
(one centered) the mean square error in the restoration of the chosen
image was reduced from 0.355 for a conventional aperture to 0.0182 for the
optimum three-element aperture.

The final analytical problem allowed the use of several properly
phased apertures. It was shown that the optimum distribution of the aperture
depends on the S/N. A “iener-Helstrom filter was used and flat object
and noise spectra were assumed. The general trend is that for a high
S/N, the hest array is one similar to a non-redundant array; and for a low
S/N, the bust approach is to cluster all the arrays to form a normal
aperture, which results in a low-pass spatial filter.

Once a desired spatial frequency transfer function is selected, it
is necessary to synthesize the aperture distribution to obtain that
distribution. Image gathering systems are grouped into those having
multiple receiving apertures and those having a single, fixed receiving
aperture but several transmitting apertures. The former group has been
studied extensively, and. if it is assumed that a phase reference is
available, the apertures used in the three analyses could be synthesized.
de devote our attention to the problem of a single receiving aperture and
muitiple transmitting apertures. Two cases are considered. In the first,
we assume that we can record the amplitude and phase of the received wave,
and in the second case, we record the intensity.

The transfer function for a single transmitter and several coherent
receiving apertures is not the same as the transfer function for a single
receiving aperture and several coherent transmitters, but they are
similar. If the amplitude and phase are recorded, the effect of each
transmitter can be considered separately. Because the angle of illumination
is different for each transmitter, the receiving aperture ccllects
di fferent regions of the angular spectrum of the object. Use of a phase
reference allows each of these reqions to be recorded and recombined.

The result s the building up of the spatial spectrum beyond what would
be possible otherwise.




10.

17.

12.

13.

14.

If the intensity is to be recorded, a high spatial frequency fringe
structure can be projected onto an object by using two sources. The !
source angles can be changed to beat down different bands of spatial high
frequencies. An analogous approach with multiple receiving apertures is
the technique of interferometric imaging.
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IMAGE RESTORATION BY THE METHOD
OF PROJECTIONS ONTO CONVEX SETS
by
H. STARK AND I.M. SEZAN
Department of Electrical, Computer, and Systems Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

SUMMARY
1. INTRODUCTION

In this paper we use the method of projections onto convex sets (POCS)
to restore an image for which only partial knowledge of the Fourier transform
is available. A spectacular improvement over the Gerchberg-Papoulis restor-
ation is observed when the number of iterations is small.

The iterative solution for finding a point in the intersection of
closed convex sets by projection was furnished by Gubin et al in [1]. Youla
[2] extended Gubin's results to image processing and developed additional theory
regarding the properties of compositions of projection operators onto closed
convex sets with non-empty intersections. Lent and Tuy [3] were the first to
apply the method to the extrapolation of bandlimited functions.

2. THEORY OF IMAGE RESTORATION BY THE METHOD OF POCS

Every known property of an unknown image f is viewed as a constraint
that restricts the image to lie in a well-defined closed convex set Ci' Thus

for m properties, tgere are m sets Ci i=1l,...,m and the image must lie in the
intersection CO = (j Ci. The problem is then to find a point of Co’ given
i=1

the sets {Ci} and the operators {Pi} that project onto Ci' Now assume an
arbitrary feH where H is the Hilbert space consisting of the L, , space of square

integrable functions with inner product (geH,heH)

A 0 X
(g,h) = [ [ g(x,y)h(x,y)dxdy S
and norm
2 1/2
Hell® = (g, "". (2)
The projection h 4 Pif of f onto Ci is that element that satisfies
min ||f-y||2 = ||f—h||2. (3)
yL\i
Every point of t; is a fixed point of the operator T 4 P Pm l...Pl. Conversely
m m-

every fixed point of T is a point of (; if (; is not empty. To find a fixed

point of Uo’ the following iterative algorithm can be uced

el = Tk f, is arbitrary, (4)
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wiere fk+l converges weakly (i.e., inner product convergence) to the original
image f€ Co. The same conclusion holds when in Eq. (4) we use,
A
T = Tme_l...Tl where
Ti =1+ Xi(Pi-l) 0 < Ai < 2, (5)

The Xi's are called relaxation parameters and can sometimes be used to improve
the rate of convergence.

The algorithms actually used in the restorations shown in the next
section were cyclic-sequential:

fn+l = Ta(n) fn fo arbitrary, (6)

where a(n) 4 14+n mod m. Equation (6) has exactly the same convergence pro-
perties as Eq. (4). Note that m iterations (one cycle) of Eq. (6) is one
iteration in Eq. (4).

3. EXPERIMENT OF RESULTS

Figure 1 shows the object f consisting of three nested rectangles on a
dark background; the brightness values are 1.0, 0.8, 0.4 in going from
smallest to largest rectangle. Figure 2 shows the discrete Fourier transform
(DFT) of Fig. 1. Figure 3 is the portion of the Fourier data from which the
restoration is attempted. 1In total, we are given the following a priori con-
straints, all of which are convex-set restrictions on £ 1) Pl:f is space-

Limited, 2) P,:||£]]% < 268.5 (||£]{%=267.0), 3) P,:0 < £ < 1, 4) P, : the

Fourier data G given in Fig., 3. The explicit form of the projection operators
are given in [2] and [4].

Figure 4 shows the results after 30 iterations. The original scene is
shown in the upper-left; the restoration using projections Pl, PE, and P4 is

shown in the lower left. Shown in the upper right is the restoration using
T = 1+ 1.9995(Pl-l), T, = 1+ 1.9995(?2-1) and T4 =1+ 1.75(F-1). In the

lower right is shown the Gerchberg-Papoulis result.

Figure 5 is the same as Fig. 4 except that in the lower left is shown

the restoration using Pl’ P2, P3 and P4 while in the upper right is shown the
l=1 + 1.9995(Pl-1), T2=l + 1.9995(P2-l), T3=1 + O.25(P3—1),

T4=1 + 1.925(P4—l). As before the G-P is shown in the lower right.

restoration using T

It is easily seen that the method of POCS furnishes far better restor-
ations than the Gerchberg-Papoulis method. When appropriate relaxation para-
meters are used, the normalized error after 30 iterations is around 17 percent
for POCS and around 39 percent for G-P.

4.
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Fig. 1 - The Scene Fig.

Fig. 3 - The given FT data
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Stable, non-iterative, object reconstruction from incomplete data using
prior knowledge

A.M. Darling, T.J. Hall, M.A. Fiddy
Physics Dept., Queen Elizabeth College (University of London), Campden
Hill Road, London, W8 7AH, U.K.

The non-uniqueness and instability of object reconstruction from incom-
plete data can only be resolved by a priori constraints restricting the
set of admissible solutions. A successful approach is to choose the ob-
ject consistent with the data and of minimum norm in a weighted Hilbert
space [1,2]. The weight is chosen to reflect our prior knowledge of the
solution. The algorithm involves the solution of a set of linear equations
with Toeplitz structure which can be efficiently solved in a finite numkter
of steps by the Levinson recursion [3]. We show the equivalence between
this method and Miller regularisation [4,5) for ill-posed problems. Ex-
perimental results demonstrating the effectiveness of the method are shown
in the presentation [see also ref. 2].

Let f be an element of the Hilbert space F and suppose we have data
consisting of the values Cp of a finite number of bounded linear funct-
tonals Fp(f) defined on F. For example the sampled Fourier transform of

f: T .
{.(-1.\) = i-}\t) exp (it de (1)

may be considered as a bounded linear functional on L2(fN) whose value is
the sample f(xp). By the Riesz representation theorem [6] there exist

unique @, €F such that:
Cr\ = ("il¢n) (2)

By the projection theorem [6] we may always decompose f €F into f=u+v
where ue § , veyll andq,'Q\P.L =F. Let Y = span{@ni then we may
write:

- Zno‘v\¢v\ vV (3)
Substituting Eq. (3) into Eq. (2) we obtain the linear system:
Zw\(¢m,¢n)o\m :C"\ (4)

These equations tell us nothing about v. Noting, however, that (u,v)=0
and so WfW2 = WallZ + Jivli2 then the image f of f formed from Eq. (3)
by setting v=0 minimises W fN and hence is the minimum norm solution con-
sistent with the data. Since the error f-f=v is orthogonal to ¢ and
hence to f, f is also the solution which minimises If-fll subject to
f €Y . Our reconstruction procedure is thus an orthogonal projection onto
Y . (WYL contains all the functions which give rise to zero data.) Let
F=1.{ St;p~1) which has inner product:

= -1 »

) - \ehgr o (5)
where the prior knowledge weight p 1is real and positive. Then taking
Eq. (1) as the data we have corresponding to Eqs. (3) & (4)

2 pIE) Z On kxp-ixXat
=P Zanerp-ix. (6)

3 PEm- L) o » § 1T o
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PLy = § ple)explixtyde (8
N

f will obviouslty have the form of the prior knowledge p  vet the choice
of the coefficients ap  ensures that is consistent with the data and
that W f-TH s minimised. The inverse weighting in Wf-f\ by p is
interesting since if p 1is close to (fl 1t forces the estimate to be
more accurate where  |[£] is small enhancing low contrast features. The
procedure 1s stable against noise if p  is chosen to have a small non-
zero value even in regions where {1 known not to be supported, re-
tlecting our prior knowledge that there will alwavs be out of band noise.
For rerularly sampled data {P(Xp=Xp)lpm  is Hermitian Toeplitz so FEq.
(7) mav be etfficiently solved using the Levinson recursion [3].  When
pitd)=1 t & [-8T B8N ] A< 1, p(t)=0 elsewhere and the samples are at
inteper positions Fgs. (b)-(8) are the same as those solved iteratively
bv the Gerchberpg/Papoulis bandlimited extrapolation procedure [7].

Let  f € F, our object, and g € G, our data, be related by Af+n=g where
A:F —= ¢ Is a lincar continuous operator with non-existent or unbounded
inverse and n is additive noisc. Miller's method [4,5) consists of
scarching for an f  satisfving:

I Ay -l <€ agi, < E (9)

wvhere B:F —H  1s a linear constraint operator densely defined on F
and with bounded inverse. Introducing the functional ‘§(t)= "Af~gnzc+
(€7 E\3||Hf“; 1t is easv to show that anv function satisfving

@(Jﬂ < €~ satisfies Eq. (9) and any function satisfving Eq. (9) satis-
fles § (ry <2 €2, We therefore chose our reconstruction as the funct-
icn £ which minimises i)(f) this is given by:

~

(R*A + (/ef R'R) Y = ﬂ‘g (10)
Taking F=L3(Slzp'1) and A as the sampled Fourier transform operator:

TR SARIREA PR

. . . Y . .
where en  is the natural basis in  G=L<(w) which has inner product
(u,vig= E;wn up v; and wy are real and positive, we then have:

+ E
R CS = Eﬂ (%4tv\\(x ¢r\ (1‘2)
so if B¥B=I (i.e. a constraint on the norm) we conclude apain that f
has the form of Eq. (6) and where the ap  are now given bv:

Em [_P(xm-x,\) e Wit () &,.M]O\M = "S\("n) (13)

When (€/€)2-30 (no noise) the two formuilations arc identical. For
Wy=1 it is easily shown that the term in (€ /€)2 in Eq. (13) is
equivalent to setting the prior knowledge to p+(€/€)2 )t e[-TW,TW]
(for samples at integer positions), solving for the coefficient ap
using p+(€/E)2 in place of p in Eq. (8) and then forming the re-
construction Eq. (6) with p left as it is. That s, the method is
equivalent to letting p take a small non-zero value even where f 1s
not supported and then filtering the noise away from the reconstruction,
Miller's theorv is particularly useful as it can provide us with precise
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Frequency Domain Optimal Inverse

Convolution Filtering of Noisy Data

C. B. Chittineni
Conoco Inc.
P. 0. Box 1267
Ponca City, OK 74603

SUMMARY

In many physical experiments, the observations r(m,n) can be represented as

the convolution of a model p(m,n) with a source function s(m,n) subject to
additive noise e(m,n). The ultimate goal of deconvolution schemesl»2 is to
recover both the model and the source function using observations and all other
available information. Let d(m,n) = p(m,n) * s(m,n). The signal-to-noise
ratio @ is defined as @ = £ £ d2(m,n)/Z L e2(m,n).

Usually, some knowledge about the noise is available. In this paper, it is
assumed that & is known. In practice, & can either be measured or estimated
from the data. Assuming the source function is known, algorithms are developed
in the following for the estimation of the model by taking into account the
signal-to-noise ratio.

A. Signal Extraction Through Constrained Wiener Estimation

An estimate S(m n) of the signal p(m,n) is sought in the form p(m,n) =
h(m,n) * r(m,n), where h(m,n) is the constrained Wiemer filter. Let

d(m n) = p(m,n) * s(m,n) and e(m,n) = r(m,n) - d(m,n). For a particular
p(m n), an estlmate a of the signal-to-noise ratio g can be written as o =
Iz dz(m n)/L L e (mxn) Then the problem is to estimate h{(m,n) such that
g2 = ELZ Z(p(m n) - R(m n)]12) is minimized, subject to the constraint

a L Zel(mn) - £ L d%(m,n) = 0, where E is an expectation operator and
p(m,n) is the desired but unknown signal. The solution in the frequency
domain is given by:

S*(u,v) Pr(u,v) + A a ]R(u,v)l2 S*(u,v)

H(u,v) =
YT R, [D) ¢ Aa - 1D (02 |[R(u,v) |2 [SCuyv) | 2]

wher» Pp(u,v) is the power spectral density of p(m,n) and X is the Lagrang-
ian mu1t1p11er. It is seen that when A = 0, H(u,v) becomes a Wiener fil-
ter.! For a particular A\, let p(l) be the constraint. It can be shown3 :
that the P(X) is a monotonically decreasing function of A and can be ad-

justed very efficiently in the frequency domain by a Newton-Raphson-like

iterative procedure,

B. Signal Extraction Through Constrained Restoration

In the case of seismic data, p(m,n) represents the reflection series and
hence will have some quality of "spikiness." The wavelet s(m,n) will be
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smooth compared to p(m,n). These characteristics can be taken into account
through the measures for spxklness or smoothness. Then the estimation
Rroblem is to find an estimate p(m,n) of p(m,n) by minimizing L Z{c(m,n) *
p(m, n))2 , the criterion of smoothness, subject to a constraint on the
signal-to-noise ratio, where c(m,n) is a smoothing array. The frequency
domain estimate for p(m,n) can be obtained as:3

A a R(u,v) S*(u,v)
MNL eCu,v) |2 + Ao = 1) |S(u,v)|2)

g(u,v) =

where A is a Lagrangian multiplier. The constraint p()) is a monotonically
decreasing function of A, and hence )\ can be adjusted very efficiently in )
the frequency domain.

C. Signal Extraction Through Constrained Mapping

The p(m,n) is estimated as E(m,n) = r(m,n) * h(m,n). The filter h(m,n) is i
determined such that it transforms s(m,n) into a desired signal x(m,n)
(e.g., a Dirac delta function) subjegt to a constraint on the signal-to-
noise ratio of the estimated sjignal p{(m,n). Let y(m,n) = s(m,n) * h(m,n);
£f(myn) = e(m,yn) * h(m,n); and d(m,n) = p(m,n) * x(m,n). Then p(m,n) =
d(m,pn) + f(m,n) The signal-to-noise ratio of p(m n) is given by g =
ZZ d2(myn)/Z £ £2(m,n). 1In the frequency domain, an estimate for the
filter can be obtained as:

S*X + A ag MN R¥ P X

H(u,v) =
(w,v) MN[[s|2 + X ag |R|2]

The constraint p(A) is a monotonically decreasing3 function of A and hence
can be adjusted very efficiently in the frequency domain.

Some experimental results of the techniques described in the paper are
presented below. The data are given in Figure l. The model p(m) and the
source function s(m) are shown in Figures la and lb, respectively. The
trace r{m) with @ = 2 is given in Figure lc. The noise is added omnly for
half of the trace. Figure 1d shows the predictive deconvolution of the
signal in Figure lc.

Figure 2 shows the iterative estimates of s(m) and p(m) obtained in the
following manner. Initial estimate of p(m) is taken as the output of pre- |
dictive deconvolution algorithm. Initial estimate of s(m) is obtained

using constrained restoration technique, with c(m) chosen as (2, -1, -2, i
-1, 2) form=1, 2, ..., 5 and c(i) = 0 for i # m. The estimate of s(m) !
is updated using constrained Wiener restoration algorithm, and the est1mate '
of p(m) is updated using the constrained mapping technique. is(u)l
replaced with IR(u)I2 The procedure is repeated two times. t can be
seen from Figure 2 that reasonably good estimates are obtained for both
s{m) and p(m).
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Figure 1. Plotted in succession are (a) the model p{m) (b) the wavelet s{(m) (c) the trace r(m)
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Optimal Iterative Image Reconstraction wits fucorplers ann Sppromioate Dty

J. Gassmann, Max~Planck-Institut {iir Plasmapbyail, 8046 Gavrcbing, FRG

For the determination and improverent of phases in N-ray analysis g pro-
cedure called "phase correction” or "density moditication' has been de-
1,2) . . . : ) :

veloped It is applicable toa all types ot 1oages when the spectral

density is konove. Lt has boecen aoplica to varions styurture determinations
. \ ) . . . R +

of small moleenies™, resoluocion extension of vacro molecaies , phase

. . . 5) . : . - .. .

Laprovement 16 o virus structure And reduction ol the offeet of missing

projection data 1o clectvon microscopy.,

Mis fteratlve process of structure Jdetermination has been analysed in de-

o, . . . . 6) .
tarl - with rererence to intormation theory and clectron microscopy

e puasing procedure cousisis generally of an iterative weighted filter-

ing In direct and reciprocal spice according to a Wiener—Hopi optimtzation.
fhe phase probabilities have the sencral forn W= II(.\Z)/I (XY, wihere
O
i cd 1, are modified Bessel Turctions., Uriteria tor the moditication
4 i
DrOUCsS ? —> g ot tice 1nuice Jensity g) are density cutott, positivity,
Slnite extension, maximal brightness, swamctry and statistical intor-
ration. Independent of the podification process a residual value
2 P . ¥
R= S(Q—g*) dVrnust be mivinmized, cquivalent to S §> g dV = mox
wore the dmproved imape sty Q*is obtained trom the initial density
. . .o % 3)
ryoapplication of some modirication operator g) = @ .
Fiie eftect of a specitic wadification operator on the phasing process
vari - with the type of and intormation about thce image. The phase pro-
Bobgbities tor the correctness of g nodification are represented by
Sebenting of the filtering proces:.,
Statisiieal intormation iodependent of the image is used in the so-called
v - " ()."\ . 1o . .
soanlnan cntropy approach o thes appreach applied s an dterative
. . - . i
Process isoa ospecial case of Tphase correction”s This additional stati-
“tical dntormation has an ivstenilicaat cttect on the iteration process
cotpared with the ¢ttect of ciber moditivation eperatorsaed is unsuitable
. . o . RIS
Por objects occurring i X=ray cnelvesis and astronemy . :




WAll-2

Different statistical modifications ("minimal entropy') likewise do not
improve appreciably the convergence of the phasing processl3).

Criteria for the convergence of the phasing process are obtained wi h re-
spect to the information content of the image. The objects in X-ray ana-
lysis (molecules) are sparsely distributed in many resolution elements.
Therefore the solution of the phase problem is generally possible by
iterative phase determination in this field. A numerical method of evalu-
ating the necessary initial image information based on the relative im-—
portance of correct phase values against accurate spectral amplitude
values is developed. The necessary amount and accuracy of the starting

information for convergence of the iteration process is deduced from this

calculation.
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Detection of Line Spectra and Point Sources

A. Papoulis
Polytechnic Institute of New York
Route 110
Farmingdale, N, Y. 11735

Summary

The problem of detecting an object consisting of point sources
in a noisy environment in terms of a -ingle sample of a diffraction
limited image is considered. The proposed method in its simplest form
can be phrased as follows:

We assume that the autocorrelation of a process sin, is of

the form

N _
jw;m
(1)

Rim]=A_ami+ Y vy, e

i=1

o

We wish to estimate its parameters )\O,Yi, and w; in terms
of the estimates E{[_m] of Rim] obtained from a single sample of s|n. .

The underlying investigation is based on a theorem by
CaratheodoryLl] used by Pisarenko in the context of the above problem
ip its deterministic form where it is assumed that R[m] is known for
Iml <N. We present here a modified form of the solution as a variation
of Levinson's algorithm and we extend the investigation to the random
case,

As we recall, in the maximum entropy (ME) method of

estimation, it is assumed that

°N

S(w) = m

; (2)
N e—]Nujlz

e
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The parameters all:' are the coefficients of the MS predictor

;;Ln] : .3111\J s{n-1]+tec. t uII: sin-N (3)
and
_ T
ey = Ellsnl-sin] (71 = a7 oy (4)

where AN is the determinant of the correlation matrix.

These parameters can be found recursively:

N-1
©N-L
en.qfy = RINT - z ap " RIN-K]
k-1
N N-1 . N-l ]
% TINAN-k bk <N-1 (5)
N - _ 2
IN TN e, = (I-I0en )

The recursion starts with e, R0},
We establish Caratheodory's result using the following

property of the roots z of the error filter

N -1 N -N
EN(Z) = l-al z - -eee-agz ;

In all cases, ‘zilsl because |I‘.1|_<_1. If

Ay 70 Ay # 0
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then all roots are on the unit circle
N jw.m
_ Gui S i
zZ. = e Rimj}= 2 Y;e (6)
i=1
The above is a limiting form of the ME entropy method but
it is not the ME solution to the problem. In this case, S(w) is not as
in (2) but it consists of lines
N
S(w) = 2m ) v, slw-w) lw] < (7)
i=1
Furthermore, I‘N =1, eN =0, and sinjis predictable.

If # 0, then we form the modified autocorrelation

Nt

R%\m]= RimJ-A_6m] (8)

and we select As such that the corresponding determinant A;Hl is zero.

We then proceed as before,

In the stochasticcase, we estimate R{im] from the given
data and we attempt to determine the statistical properties of the
estimates S‘o , ;’i , and a’i of the unknown parameters, The results
are preliminary.

The approach used leads to a simple derivation of Wold's

decomposition theorem in the context of the Levinson algorithm.
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Reconstruction of Objects from Coded Images

by Simulated Annealing

Warren E. Smith
Harrison H. Barrett

Richard G. Paxman

Optical Sciences Center
University of Arizona
Tucson, Arizona 8572]

and

Radiology Department
Arizona Health Sciences Center
University of Arizona
Tucson, Arizona 85724

Summary :

Coded apertures are useful for imaging sources of x rays and gamma
rays in nuclear medicine, x-ray astronomy, laser fusion studies, and
nuclear reactor safety research. While conventional apertures such as
a pinhole or multibore collimator provide only two-dimensional (2D)
projections of a three-dimensional (3D) source, coded apertures give
some information about the 3D structure of the source. The easiest
way to see this is by considering a point source some finite distance
from the aperture plane. The coded image in this case is merely an

enlarged shadow of the aperture transmission function. This shadow
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contains all the necessary information to fully characterize the source.

The scale of the shadow gives the longitudinal coordinate of the point
(i.e., its distance from the aperture plane), and the lateral position
of the shadow on the detector is simply related to the lateral position
of the point in a plane parallel to the aperture. The strength of the
source is related to the number of recorded photons in the coded image.
Thus the shadow uniquely determines the 3D location of the source and
its strength if we know a priori that it is a point source. Of course,
we are usually interested in more complicated sources, and the central
problem of coded-aperture imaging may be stated as follows: Given one
or myre 2D coded images and possibly some a priori information about
the source, estimate the 3D distribution of the source.

In the absence of a priori information, this problem is clearly
unsolvable. A 2D coded image contains, say, N* independent pixels,
while a 3D object represented digitally at the same resolution as the
coded image has N? independent volume elements (voxels). The problem
is thus equivalent to solving N’ equations in N® unknowns if only one
coded image is available.

Forturately, some very useful a priori information is readily
available. The object distribution is inherently non-negative and
is usually known to be entirely contained in some specified volume,
such as the patients' body in the case of nuclear medicine. However,
it is by no means clear whether this information is sufficient to
guarantee a unique, stable solution. [ndeed, it is possible to
construct counter-examples where several different non-negative objects
of bounded support lead to the same coded image. Nevertheless, some

degree of success has been achieved in solving this problem by means

——
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of iterative, constrained image-processing algorithms. This work is
reported elsewhere at this meeting by Paxman, Gindi, and Barrett.
Recent work by Kirkpatrick et al., at IBM suggests a radically
different approach to this problem, as well as to many other problems
of constrained optimization. These workers have been addressing the
problem of optimal layout of components and connecting wires on an
integrated circuit chip. Building on an idea due to Metropolis in
the 1950's, they have developed an extraordinarily successful method
called "simulated annealing”. The name derives from a close analogy
with statistical mechanics. When a liquid freezes to form a solid,
the lowest-energy state of the solid is often a perfect single crystal.
However, in practice, the actual solid is more or less disordered and
perhaps even completely random as with glasses. To get a good crystal,
the temperature must be lowered slowly and gradually, especially near
the freezing point.
The analogy with optimization problems is that some cost function
plays the role of an energy. In the IBM problem, the cost function
is related to the complexity of connecting wires and number of pins
on the IC chip. In image processing, we are trying to find an estimate
of an object that is consistent with measured data (such as a coded image),
and a natural cost function is the RMS difference between measured and
estimated data. A difficulty with traditional iterative approaches to
this problem is that the object estimate can get stuck in a local
minimum where the RMS error is indeed minimal with respect to small

perturbations of the estimate, but which is quite far from the true

global minimum,
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Simulated annealing avoids this problem by not demanding that all

modifications of the object estimate reduce the cost function. Rather,

some modifications that increase the cost function (“energy") by an

amount AE are accepted with a probability exp(-aE/kT), where kT is a
controllable parameter. Since T is naturally interpreted as a temperature,
several other concepts from statistical mechanics can be exploited. One
can monitor the "specific heat" or "entropy" of the system, thereby
detecting phase transitions wiere the "temperature" should change more
gradually. In this way, an optimum "annealing schedule" can be developed.

We have applied this idea to the coded-aperture problem with striking

results. The geometry simulated used two 10 coded apertures, each
consisting of five pinholes, and oriented orthogonally to each other.
The object was two-dimensional (64 x64 pixels), and the data were two
separate 1D coded images (256 pixels each). Thus we attempted to
reconstruct an object of 4096 points using 512 measured data points.
The algorithm involved randomly adding or subtracting points from the

object estimate in a Monte Carlo fashion. If addition or subtraction

of a point lowered the energy (RMS error of the coded image), that
modification of the object estimate was always accepted. If it raised
the energy by AE, it was accepted with probability exp(-AE/kT). After
some 10" points were either added or subtracted in this manner, very

good object estimates were obtained.
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Introduction

In many signal restoration problems we have very limited
knowledgye about the statistics required for implementation of
the most common restoration techniques, for example, Wiener fil-
tering. We do, however, possess some practical a priori know-
ledge about the nature of the signal we week to estimate. Because
of this a priori knowledge, it may be suboptimal to use methods
which make few assumptions about the nature of the ideal signal,
for example, maximum entropy restoration [l1]. Iterative restoration
methods can L2 easily modified to incorporate such a priori know-
ledge while requiring little statistical information ([2].

A common application of bounding constraints using iterative
methods is in the restoration of non-negative signals [2,3].
Other uses of this type of method have been in applying frequency
domain constraints [4). For example, [5] assumes exact knowledge
of the power spectrum over some limited region of the freguency do-
main and obtains superresolution by applying a finite spatial sup-
port constraint. The work reported here will use some of these
techniques and extend the use of magnitude constraints to both
upper and lower bounds as well as applying finite support constraints
in both the space/time and frequency domains.

Implementation of Constraints

The iterative restoration method used in this study was the
modified Landweber iteration [6)]. The method is designed to re-
store signals degraded by a linear system. Using algebraic nota-
tion

g = Hf+n (1)
where g is degraded signal

f is ideal signal about which we have some a priori
knowledge of its characteristics

H is a degrading function usually representing convolution

is noise with known statistical properties.

=

The iterative method is defined by

f

"k*‘l C[f

£, * Dlg +Hify) ] (2)

| A
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where C is an operator which enforces the constraints. The itera-
tion is said to have converged when

l1g - s Il = |inll (3)
This convergence criterion is discussed in {7,8].
The constraints which were applied fall into three classes:
I. Upper and lower limits on i in the space/time domain;
II. Upper and lower limits on the power spectrum of i;

I1I. Finite regions of support in frequency and space/ftime
domain.

In order to be cffective the constraining boundaries must be
close to the actual limits of the true signal. Nothing is accom-
plished by a constraint which is satisfied by an unconstrained
algorithm,., It is the purpose of this research to determine the usc-
fulness of a priori knowledge of boundary limits. The useful-
ness of such knowledge depends on the characteristics of the origi-
nal signal, f.

Much work has been done applying the nonnegativity constraint
to signal resotration [2-4). The examples are usually signals
which consist of a few nonzero points on a zero (or near zero) back-
ground. It was noted during this earlier work that a small bias
could result in a greatly distorted restoration. This simply con-
firms the statement about the utility of a priori knowledge in the
previous paragraph.

Results

1. Application of Upper and Lower Bounds 1n Space/time Domain,
The signal must have a significant number of points near the
boundary for the constraint to be effective. As mentioned before
the lower bound of zero is very beneficial in the restoration pro-
cess. An upper bound applied to this type of signal is useless

since only a few points would be effected. In practice the problem
is to get a restored estimate with values as high as the true sig- 1
nal.

The signal which benefited the most from the space/time bounds
was one composed of several distinct levels. 1In this case the upper
and lower bounds were known and the restoration produced using the
constraints was obviously superior to unconstrained restoration.

The effect of a small error in the bounds was noticeable indicating
that the exact knowledge is important. Another effect of this
type of error is that the iterative method fails to converge.

A more typical signal was a scan line taken from a two dimen- :
sional image. The line was blurred and noise added. The restoration [
of this signal showed little benefit from the boundary constraints

even though the exact values were used.
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2. Application of Upper and Lower 3ounds in Frequency Domain.,

[t is generally true that most digital signals have more energy
in the lower frequencies than in the hicher frequencies. This is
true in lavrge part because the analog signals from which most digital
signals are derived are sampled well above the Nyquist rate.
Restoration methods may increase the power in the high fregquency
portion of the spectrum beyond what is appropriate for a given sig-
nal. This is true even of the Wicner filter. Because of these
properties it is reasonable to expect a frequency dependent bound
to have positive effects on the restoration.

The bounds used for this study were generated by using a percen-
tage of a smoothed spectral estimate of the original signal. The
smooth signals and the scan line data benefited most from this con-
straint, The signal composed of several distinct levels had more
variation in i*s power spectrum and the restoration was uactually de-
graded by conctraint. Furthermore, the restoration of the smoother
signals was not very sensitive to error in the bounds.

3. Application of Finite Regions of Support.

The constraints of regions of support is mathematically an
adaptive boundary constraint in which the upper and lower bounds
are zero outside the region of support. The determination of the
region of support is usually easier in the space/time domain than
in the frequency domain. In either case, the region of support is
directly etfected by the noise level. Wwhen the noise power is
sufficiently greater than the signal power in a particular region,
the signal may be neglected.

The signals which benefited most from the spatial support con-
straints were the ones whose unconstrained restoration had ringing
bevond the region of support. Both finite level and smooth signals
benefited from this constraint. The finite level signal benefited by a
creater reduction of mean sanare err.or as would have been predicted.,

The effect of enforcing a finite support region in the frequency
domain had predictably different results. The signals which were
smooth have little hig' frequency power and thus benefited most.

The sianals have sharp edge transitions benefit from this type of
constraint only when the signal-to-noise ratio is very low.

4., Application of Combinations of Constraints,

It was found to be very useful to combine several of the con-
straints discussed ecarlier. The results while not additive in any
sense are at least qualitative extensions of the individual con-
straints, For example, the signal with only a few distinct levels
1s benefited more by a combination of upper and lower bounds and
finite support than by either individually. The additional benefit
1s not large but is noticeable,




Cornments on Comparisons ‘

It is always most convenient to compare results by examining
their mean square errors (mse). This method used alone would yield
misleading conclusions in the application of constraints as studied
here. 1In most cases the application of the constraint resulted in
a reduction of mse but also positively affected the subjective quality
of the solution. Several times an inappropriate constraint reduced
the mse but adversely affected the subjective guality.
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A Model-Based Restor
For Small, Low-Resoluti
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Introduction

Compensation of image degradations caused by
1naccuracies in the optics or sensing mecha-
nism, transmission error, or reflection from
spurious objects is commonly referred to as
image restoration. Restoration techniques
require at least limited information about
the degradation phenomenon (e.g., point
spread function, characteristics of the
noise and the sensing mechanism). These
techniques are often based on classical one-

| dimensional signal processing. An efficient
| resteraticon method should use the maximum
amount of a priori information about the
cbject.

Censider the discrete-discrete linear
1irmage model representation in vecteor form,

i
} s Hf + n (1)

ﬂ where s = recorlel 1male 1ntensity
ﬁ £ = Yr-e"t intensity
4 <= point spread fonction or blurring matrix

* nol1se proTess

The classical restoration techniqgues are
maximum posteriori (MAP), maximum entropy
(ME), maximum likelihood (ML), and the least
mean sguare error (LMSE). In the MAP resto-

ratien’', f* 1s found by maximizing the
conditional probability density of the
object, i.e.;
*
= /
fuap maxe F(f/s) (2)

Knowledge of the probability distribution of

the object and thezngise are required. 1In
the ME restoration”’
£ = £T1n £) 3)
g = Maxg(-f 1n (

HE 2

subject to s Wnon
4 . . . *
In ML restoration, the solution is the f
for which the noise probability is maximized.

For additive noise we have
*

fyy, = Maxg P(s/f) = maxg P(s - Hf) (4)
In LMSES f‘ is selected when
£ = min, ¥s - Hfn 2 (5)
LMSE f
For a limited number of image samples (less

the classical techniques may be
inappropriate. For such cases, an analytical
model-based (deterministic) solution via
numerical analys:s can yield good image
restoration.

than 10)

This paper presents a rmodel-based restor-
: ation algorithm,
continuous-discrete case,

The discussion is for the
that is, the

ation Procedure
on Optical Images

drew G. Tescher

Aerospace Corporation
s, California, 9C009

original image to be reconstructed 1s con-
tinuous and the observed image is discrete,
The objective is to estimate the parareter
values of the assumed object rodel basecd o
the sampled observation of a degraded 1iraze.
The technique is similar to the LMSE restor-
ation; however, a deterministic rattier

than a stochastic object model 1s assured,

a doubles
rode ]

Simulation results with
have been promisina. The nroise

additive, zero-mean, unccorrelated Jauss.an
procesg wlth constant variance. Ctlar 1 e
models<:6 wiil be considered irn later s+iuiie-
Problem Statement
Consider the image of an ok-ect be:reo
sensed by a detector array. lLet the vectc

= »
= 1

X [x,y]* represent the spatial cocordirnates
of an object point. The object is assured
to be modeled parametrically,.in terrs ¢ N

parameters P = IP1,P2,...PN]

For a linear incoherent imagina process,
the image intensity at point Xl is civen o

x .
g(X;) = _/’4: £(X, P) - h(X,

where f(X, E)his the parametric imace rodel
and h (X, X.) is the optical system pcint
spread function.

X ) aéx (e
D6

The image plane is sampled by an arrav
of detectors. The response of the i-th
detector, S., is proportional to the surra-
tion of the’radiant eneray over the detect
area. (7)

= X fAJ lf_f:fq,m-mﬁ.ﬁgdil dx, o1

O

S.
]
where A, is the area of the j-th detector,
K is thé known constant of proportionality
and E. is the noise effect associated with
the jdth detector.

The problem is to estimate the set of N

parameters P = [P1,P2,...PN] given M detec-
tor responses (M>N)7
Solution

Two effective technigques to estimate
P are maximum likelihood and least mean
square error restora*tion processes. The
joint probability density of the noise,
P(E,,E,,...E,) is assumed known in the
first glgori@hm. The solution is the
parameter set P for which the noise prob-
ability density is maximized.

The seccrd technique is more practical
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because implementation does not require
complete knowledge of the noise statistics.
The LMSE solution is the parameter set P
for which the expectation of the squared
error between the original object and the
estimated object is minimum.

For the model-based estimation, a method
similar to LMSE is chosen. The restoration
problem is the previously presented continu-
ous-discrete case. The,solution is the
optimum parameter set P , such that the
expectation of the error between the esti-
mated samples of the noise-free image and
the actual detected samples is minimum,

Based on Eguation (1), a system of M non-
linear equations is established relating
each of the M actual detector responses to
its paramtetric value.

Lo
S K (j:/a'c £(X,P)-N(X,X )dX] dx; = E,

(8)

_/ ff(xp “hUX,X )dX] dx = E

M A}

S, thru S, represent the M actual detector
responses.

M

) *
The solution is the parameter set P for
which

M
[ 2; £ is minimized (9)
The solution to this maximization probler
is based on a modification of Levenberg-
arquart algorithm which,eliminates the need
Y

explicit derivatives

Aprlication to a Doublet

This section presents the derivation of
the integral of Equation (6) for the
specific case of a doublet object. Only
sne-dimensional case is considered. Exten-
sion to twe-dimensions i< straight foward.

Consider two pcint sources (Figure 1)
of amplitudes A and B, and separation
distance D. The relative position of the
first point source with respect to the
leading edge of the sampling detector is
referred to as the phase and is denoted by
C. The parametric object model is

F(X,P) = A 8(x-C) +B 8(x~C-0D)

where X = x (10)

-

= [A, B, C, I]°

el

We assume a Gaussian point spread function
fr the svatem

hix) = (1// 2ma) exp (-x2/20%) an

Assuminag shift invariance, the convolution
inteqral of Ecuation (6) becomes

- - o)? - &
. ) (:(l C) Slxy - 0oL
gix ) = A exp ——=——— <+ B exp —
20 20°

2vo (1,

For a detector of widthd and the inter-detcctr

gap of Y (Figure 1) the noise-free value of
the j~th sample is

J(s+y)+s
S; = [ g9ix,)dx,
I{A+y)

y - 5 N
w A erf(dls ¢y} 4 "‘a‘ 8 = C) L pert (¥l o€

o

_Be‘,f‘il:*v)—C-L/
N o

. Berql‘A’ v} ;A -C -DJ

{13

where A
i= oo, =t,0,00, L,

Thus, with a minimum of four samples, the

unknown parameters can be estimated via the

LMSE solution to the nonlinear system of
Equaticn (8).

Simulation Results

The discussed restoration algorithm was

simulated on a digital computer and applied tc

the case of doublet restoraticon in orc-direr-
sion.

Noise-Free Case

The deoublet-~detector configuraticn of
Figure 1 was chosen. Table 1 presents the
selected parameter values for this system.
Note that the blur circle 1s large relative

to the size of the detector. Typically, the
detector width is egual to the diarmeter of
the 90% power circle, i.e., 4= 4.30. Here

= A to ensure that the signal rower spreads
over mere adjacent detectors thereby ypro-
ducingy more nonzero samples. Rasod on
Equation (8) a minimum of four distinct
detector responses are needed to solve tor
the four unknown parameters. When the
doublet is less than one detector wide, thue
large blur circle ensures that this raripur
number of required samples are generated.

Table 1. Selected Values for the System Pararerers
Parameters Relative Vaiue

Detector width A

Detector gap ¢ 0.1 4

PSF Sigma ° 1.04

First Point Source Intensity A 1.0

Second Point Socurce Inte-.sity B 2.0

Phase < [SAS A

Doublet width D 1.5 8

The detector-dcoublet confiaguration of
Figure 1 is actually drawn to scale for the
specific system whose parameter values
appear in Table 1. Ncote that even before
sampling the analog focal plane imaae, al(x!,
does not indicate the assumed doublet source.

Figure 2 illustrates the calculated
response of the detector array for the sieci-
fied parameter values. The algorithr attemp:
to do the calculations in reverse crder, tha'
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is, given the detector responses, it traces
them back to the unknown parameters A, B, C,
and D.

The simulated detector responses were
the inputs to the iterative LMSE procedure.
The initial guess on the unknown parameter
sgt was arbitrarily chosen as zero (i.e.,

P~ = 0). The exact unknown parameter values
for the given system were generated after 19
iterations. Table 2 indicates the estimated
value of the parameters at each iteration.
Other sets of parameter values were then
selected. For each set, the exact solution
was obtained after a certain number of
iterations.

Tai-le 2. Est.mazed Values of the Parameters at Each Iteration
Iteration A B C D
Ini1tial Values €. 000 0.000 0.000 0.000
.821 .821 0.000 0.000
. 819 .819 . 309 .618
1.404 1.404 -.338 3.548
1.388 1.388 -.302 3.454
5 1.336 1.336 -.181 3.135
1.209 1.209 .085 2.398
1.391 1.393 .301 1.249
1.091 1.871 . 148 1.130
1.160 1.773 174 1.176
10 1.268 L.605 . 229 1.229
1.207 1.707 . 306 1.390
1.199 1.772 .315 1.423
1.179 1.817 . 298 1.429
1.017 1.982 .176 1.450
15 1.006 1.991 .143 1.487
1.001 1.998 .128 1.498
1.0¢C0 2.000 L1258 1.500
1.000 2.000 .125 1.500
Final Values 1.000 2.000 . 125 1.500

Fo: decreasing separation ot the two point
sources, the speed of convergence of the
algorithm also decreased. The number of
required iterations increased exponentially
as separation distance D approached zero.
Figure 3 presents the plot of the number of
iterations versus separation distance. For
D = 0, convergence was much faster because
the problem reduced to determining cnly three
parameters, (A + B), C and D.

Note that the rate of convergence can be
kept constant as D decreases by allowing both
the optical system PSF and the detector
width 4 to be proportionally reduced. However,
in practice, if only ¢ is allowed to decrease,
we may experience undersampling in which case
the signal can not be uniquely reconstructed.
For the system of Table 1 where D = 1,54,
undersampling occurs for 0<0,24. For D=0.54
th.s occurs ato <0.64. Because the objec-
tive is to resolve the doublet separation
distance beyond the detector resultion ,
the PSF 0 is chosen to the detector size.

Simulation In The prresence of No.=<~

A Monte <arlo simulation was carried out
to determine the effectiveness of the esti-
mation process in the presence of noise.
The noise is modeled as a white Gaussian
process of known standard deviation. The
SNR was defined as

SNR = ?'-52/}:11?
1=1 i i=1 *

where
M total number of samples
n = the set of noise values

For each SNR the s*tandard deviation of each
estimated parameter was calcilatec.

Figure 4 displays plots of the standard
deviations of the estimated parameters B,
and D versus SNR for the system parameters of
Table 1. The plots reveal the expected
exponential behavior.

In addition to SNR, the precision of the
estimation process highly depends on the
separation distance D. Figure £ presents
plots of normalized sigma versus SNR for
various expected values of doublet separation
D. Normalization is with respect *o the
detector width 4. As seen, the technique
requires a substantially high SNR to resolve
a doublet that falls within one detector.

On the other hand, when the doublet is more
than one detector wide, the procedure can
quite accurately resolve it (to within
fractions of the detector resolutiond) at
even a low SNR. If we place a limit on the
maximum allowed estimation uncertainty o,
then the relationship between the amount of
noise and the resulting resolution d can be
readily derived from the figure.

Conclusion

. It was shown that the model-based approacth
is an effective restoration technigue

applicable to coarsely-sampled cptical

images degraded Py diffraction anrd noise.
Simulation results indicated that the know-
ledge of tne PSF, together with the a

priori information about the object model,
permits object reconstruction from a lirited
number of image samples. The dominant sourcc
of error is the background ncise which 1s
assumed to be a zero-mean, uncorrelated

Gaussian process. The simulation results
indicated that the technique required a hich
SNR to resolve the doublet when its geometric
image is within a single detector cell. On
the other hand, when the doublet is more than
one detector wide, the procedure can accu-
rately resolve it (to within fractions of

the detector resolution) even at a low SNR.

In this paper the restoration procedure
was applied to the specific case of a doub-
let object because it can best describe the
resolution enhancement capability of the
algorithm. 1In general, the procedure can
be applied to any other object mor .
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Spectrum extrapolation on a finite band
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1. Introduction

The iterative method of Gerchberg (GM) for extrapolating
the whole spectrum of a finite support object! has been analyzed
and generalized by several authors 2T In principle, during
each iteration of the GM an infinite band of frequencies should
be handled. AL first signt, it seems that the (obvious) existence
of a cut-off frequency in any practical implementation of
the GM should simply allow the spectrum extrapolation to be
achieved only below such a frequency. This is not the case,
as we shall presently show, in that the extrapolated spectrum
obtained by this method up to the cut-off frequency does not
coincide witn the true spectrum. In this paper we present
& modified version of the GM that allows to obtain a spectrum
extrapolation on a finite band of frequencies. This 1is of
use doth to limit the storage and computation time requirements
and to reduce the sensitivity to high frequency noise.

To simplify the exposition, we shall restrict ourselves
to the one-dimensional case. The extension to the two-dimensional
case is then straightforward.

The following operators are used throughout the paper:
) the band-limiting operator B (j=1,2). It truncates the
“ourier transform of a function f(%X) to the frequency interval
-v ., v.); b) the space-limiting operator T. It truncates a
unc%ioﬁjf(x) to a basic domain (~a,a); c) the identity operator
! which leaves unchanged any function.

(

W

by~

2. The Gerchberg method with finite bandwidth constraint.

Let a coherent object o(x) vanishing outside a finite
interval (-a,a) be imaged through a space-invariant and aberra-
tion-free optical system whose rectangularly ﬁh ned pupil

! extends from - Vv, to v, . The resulting image i " (x) can be

| written (1) '

;‘ L {x) - B To(x), (1) ;
% where the previously defined operators are used and where
' the identity To(x)Zo(x) is exploited. The G for recovering

o(x) is based on the following iterative algorithm 's* r

i ;

o 0 1 (a—nlwo” (x),  (N-1,2,...) (2) |

: - ‘

1 {

with the initial estimate o (x)- 1 )(x). !

1




The previous algorithm is implemented by alternate truncations
in the space and frequency domains. When in the frequency
domain, obvious limitations make § be substituted by a finite
band-l1imiting operator 82. The actual algorithm becomes
ay, ()= i(l)(x)+<32—sl>Tq§_l<x>,
with the initial estimate q (x):i(l (x).
One might be led to concluge that the sequence of g, (x) converge:
t? 2)the image which would be formed through I% , namely
i (x)= 82 To(x). However, this 1is not the case as we shall
presently show.

Let us consider the band-pass operator (B_ -B. )T. This
is easily shown to be a positive definite operator. Denoting
its eigenfunctions by ®k(x), they satisfy the equation
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(30

o . , ) _ A
(B Bl)TQK(x) = ”qu(x> (|x] <a), k=0,1,...) (

2
where are the (strictly positive) eigenvalues. 3carce intforma-
tion is available about the eigenfunctions and the eigenvalues.
For our purpose, however, it 1is sufficient to know that the
eigenfunction set is complete in Lz(-a,a) and that the eigenvaliues
ar?l)less than unity. We now expand the truncated image
Ti ~'(x) into a series of the q‘k(x)

1) - T BT (x) ()
Kk K

By using eqs.(3),(4) and (5) it is easily shown that the truncated
iterates tend to

79 (x). (6

Tg (x)- —_—
0 1—“k K

*© k

N3

wWe wa?g) to show that such an asymptotic expression differs
i (

from x). To this end, let
To(x) = % o T ¢ (x) (7
k=0 K K
be the expansion of the object into ,a,series of i (xY. The
: ‘ . (D) to) 'k
following expressions can be given for i {(x) and i (x)
(1) ) P . \
i (x): B, To(x) = % o B Tg (x), (&
1 k=0 K 1 K
2 v .
i( )(x): B To(x) oo B Td (x). (0
2 weo K K

We now subtract eq.(8) from eq.(9) and use eqg.(41). The result P
is as follows '

1(2)(X)_ i(l)(x) _ :” ”’k“k(:(x). (1o "
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On using egs.{(10) and (5) we obtain

[>s]

(2)
i = I . 11
Ti (x) _ (Bk +ukuk) T¢k(X) (11)
k=0
Let us compare egs.(6) and (11). Were the two series identical,
the following relations should hold

Bk
o = -, (k = 0,1,...) (12)
k 1 —uk

But this would entail (see eq.(7)) Tq_ (x)z To(x), and this
cannot be true unless B_=386.

2
We now give a modi%ied GM that allows i( )(x) to be recovered.

To this aim, consider the following simple identities

(1)

T = i - 1
Bg-o(x) B2T1 (x)+ B2To(x) B2TB1To(x), (13)
(1)
m — 1 - . 4
Blto(x) BlT (x)+ BlTo(x) BlTBlTo(x) (14)
From eg.(13) we obtain the iterative algorithm
(1) .
- 75 _ 1°¢
pN(x) 82 i (x)+ Py_1 BZTrN_l(x), (15)
= 1 = l “: M
where pN(x) BZTON(X) and rN(x) BlTON‘X)' Such an algorithm
i S T . The
requires at each step both B2 oN_l(x) and BlTON—l(X)

latter can be also iteratively obtained (see eq.(14))

rN(x): BlTi(l)(x)+ r‘N_l(x)—BlTr‘N_1
Convergence of the sequences (15) and (16) follows from the
analogous property of the sequence (2) taking into account
the continuity of th 5 ?perators E.T and B_T. In conclusion,
the required 1image 1 (x) is obttained th?ough the combined
use of the sequences (15) and (16). It is apparent that the
computations in the frequency domain involve only data below
the cut-off frequency V2 .

(x). (16)

3. Numerical results

The preceding theory has been numerically tested. A sample
of results is given below. A coherent object consituted by
two gaussian pulses is imaged through a low-pass pupil. The
space—b?n%width product equals one.,The truncated, noise-free
image i 1 (x) as well as the image i (x) obtained by increasing
the pupil width by a factor 1.67 are shown in fig.l. Also
shown are the reconstructions q 54 {(x) and P 500 (x) achieved
with the algorithms of egs.(3) and (1%5). As can be seen the
a}%%rithm of eq.(3) fails to approach the correct image
i (x) whereas this goal is attained by means of the modified
algorithm. The performance of the latter method in the presence
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of noise is illustrated in fig.2. The noisy 1image, say

I 2)

i (x), the (noise-free) image i( (x) relating to the enlarged
pupil and p200(x) are drawn. The recovery is still satisfactory.
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On an iterative algorithm for stabilised object restoration

from limited spectral data

J. B, Abbiss
Royal Aircraft Establishment, Farnborough, Hants, UK

C. De Mol

Dept of Mathematics, Université Libre de Bruxelles, Belgium

H. S. Dhadwal
Royal Aircraft Establishment, Farnborough, Hants, UK

Summary
We analyse the problem of object restoration in the presence of
noise, when the coherent image is formed by a space-invariant system con-
sisting of a one-dimensional clear pupil extending over (-2, ). If the
object distribution f(x) lies between ~X and +X , the noiseless image

g(y) formed by such a system would be given by the equation

X
- _ sin Q(x-y)
gly) = f'—-"—(-x—:—y*j-y—f(x)dx . all y . 1)
-X

In Fourier space, the solution to this equation is equivalent to
infinite extrapolation of the truncated spectrum.

The problem of estimating f(x) when the data g(y) have been con-
taminated in some way, for instance by measurement noise, is ill-posed;
ie the reconstruction will not in general depend continuously on the
datal’z, even if it is unique. In Ref 3 it was shown how the methods of
regularisation theory could be combined with an iterative Fourier trans-

form procedurel"5 to yield a stabilised solution to this problem.
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Let us suppose that the effects of the noise can be described by a
purely additive function r(y) . Then equation (l) becomes, in operational
notation,

g = B +r (2)

where g 1is the no“‘sy image and the operators BQ and Dx are defined by

_ sin Q(x-y)
(Byh) () = [ SRAESD iy, all x,
h(x) , IX‘ <X,
(th)(x) = ;
0 ’ tx| > X .

Since r 1is unknown, equation (2) cannot be solved directly. On the
other hand, the attempt to determine some function ¢ satisfying the

alternative equation

g = ByDy¢

will not in general yield a meaningful solution, and may fail completely.
However, by applying the results of regularisation theory, which makes use
of known object constraints, we are able to reformulate the problem, and
modify equation (2) in such a way that the solution is now constrained to
be 'close to' the true object in some (well-defined) sense and to respond
stably to variations in the noise level. 1In Ref 3 a regularised approxima-
tion to the true object obtained in this way was shown to be the solution

f of the equation

(D,BD, + aox)? = D (3)

B
QX x o8
where a 1is the regularisation parameter, From this equation a procedure

~

for calculating f by iteration can be derived, the Nth estimate being
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l

£, = DBg+ {(1 -a)D, - DXBQDX}fN_l ) )

As in the case of the original unregularised algorithm, the behaviour

of the iterative solution can be analysed by means of the prolate

5,6

spheroidal wave functions We carry out this analysis, and also derive
explicit error bounds for the regularised estimate of the object as a

function of the number of iterations N and of the regularisation

parameter o« .
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Estimation of Two Closecly Spaced Frequencies Furied
in White Noise Using Linear Programming

Jaroslav Keybl and George Fichmann
Department of Electrical Engineering
The City College of the City University of New York
New York, N. Y. 10031

ARCTRACT

Linear pregramming is userd to estimate the spectrum of
two sinusoids signals closely-space? in freguency buried in -eep
white gaussian noise by employing a-priori knowledge of the
spectrum,. The method will he illustrated by s number of
examples,

INTRODUCTICHN

In the calculation of the spectrum of a discrete-time
signal consisting of two sinusoids with closely-space?d
frequencies embedded in white gaussian noice, problems arise i
when only a small portion of the signal i: _.vailable. This is
known as windowing of the data and becomes evident as "leakage"
in the spectral domain, i.e. energy in the main lobe of a
spectral response "leaks” into the sidelobes obscuring other
present spectral responses. There are many methods used to
estimate the spectrum. The periodogram [1] performance is poor
for short data lengths, The Blackmen-Tukey methed (21 is a'so
hampered by spectral distortion. The Burg method (21, a high
frequency-resolution techniquz, even in the absence nf noise,
yields spectral line splitting. The recent algorithm of CTadzow
(4] outperforms the Rurg method In a low noise environment.

In this paper, we estimate the spectrum of two
sinusoicdal signals closely-spaced in frequency by employing
a-priori knowledge of the Fourier spectrum of the siqgnal in the
form of linear ineqgualities. The advantage of imponsing
constraints in spectral restoration process has been pointed out
[S]. In the linear progreamming forrulation, there are many
solutions. Here, we select a solution which minimizes the 1
norm of the Discrete Fourier transform(DFT) of the measured
signal and its estimate,.

CETERMINATION OF THE SPECTRIDV

we assume that the siqgnal estimate s(k) can be
represented by a weighted sum of past siqnals

p . .
s{k) = -7 a(i)s(k - i) + e(k) k =1,2,.. ,m (1)
i=1
where a(i) are unknown wcighting caoefficients an” o(k) is an
error term. This expression is a linear predictor(f}. Py takinng
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the DFT of Eq.(l), we have

S(n) = —%ga(i)exp{-j?nin/N}S(n) + E(n) l<n<g M (?2)
i=1
where S(n) and E(n) are the DFT of s(k) and e(k), respectively.
Because S(n) and E(n) are complex, and using Euler's formula, we
rewrite Eq.(2) as

SR(n) = - :zla(i)[SR(n)cos v + SI(n)sin vl + En(n) (3a)
S;(n) = - iila(i)[sl(n)cos v = Sp(n)sin v] + E (u) (3Db)

where v = 21in/N. We have 2N equations with p unknowns. When the
signal is real, we can reduce it to N equations with p unknowns.
Assuming that two sinusoidal signals are present, it can be
shown, the a(i) coefficients are the pole coefficients of the
z-transform of two sinusoidal signals. Therefore, p = 4 and the
range of the a(i)'s are

-4sa(l)s 4, -2¢ a(2)g 6, a(3) = a(l), a(4) =1 (4)

Eq.(4) adds 5 more equations, to the N equation generated from
Eq.(3), for a total of N + 5 equations used in the linear
programming formulation., From Eq.(3)and (4), we can now solve
for the a(i) coefficients by minimizing the 1] norm of the error
~ E(n).

NUMERICAL RESULTS

To test this method we have used the time series

s{k) = Alcos(2nflk) + A
with 12k sg and w(n) as white Gaussian noise with zero mean and
variance o°. The two sinusoidal frequencies are normalized so
that f = 0.5 corresponds to the Nyquist rate. The individual
sin9soida1 signal-to-noise ratio's (SNR) is given by 20log (2 /

v2o 7)) for k = 1,2, For 211 of our examples, we chose the signal
amplitudes A, = V7, A, = /20 and the signal frequencies fl =
0.2168 and f_ = 0.2242. In two examples we introduced a
forty-five dggree phase difference between the two sinusoids.

In Fig. 1. the variance of of the noise ¢° = .94 and
M= 192. This corresponds to 0,54 db SNR on the weaker signal
and an time-bandwidth product (TBEP) of 1.50. The spectrum
calculated using the periodogram shows random fluctuations and
it resolves both frequencies., Nur method yields peaks at
frequencies f, = 0,2168 and f, = 0,22F5% which shows the ability
to resolve thée frequencies with a small « ror in such a low SNR
environment without fluctuation. Tt should hec pointed out that
the reason both peaks are of equal amplitude is because we are
calculating the poles which make the function blow up. In Fig.
2, we introduce a forty-five degree phase shift between the

7cos(?ﬂf2k +¢ ) + w(k) (5)
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sinusoids. Here the ONR is - 0,24 db., We see that there is no
line splitting as is often the case with other algorithms. The ~
peaks occur at f. = n,2207 and f_, = C.22Ff5, again resolving the :
frequencies in a low SNR environment. Fig. 3 shows the estimated
results when the SNR is - 14.2 db. The freauencies f., = 0,218°
and f_ = 0,230% yield good estimates for a very low éNR. In
Fig.4, we added a forty-five degree phase shift with a SNR - 15
db. We see that the periodogram is unable to resolve the two
fregquencies but our method peaked at £, = €.2188 and f, =
0.2324, Rgain we note that there is no line splitting. In the
next set of experiments,the TBP is reduced. In Fig.%5, the SNR is
0 db and the TBP is 1.00. The periodogram shows peaks while our ‘
method gives the frequency estimates £, = 0.216% and f_ = 00,2305 4
showing that we get good quality estimates even when tge number 3
of samples is reduced. Finally, in Fig.®, we plot the spectrum
for a SNR of - 14.% db. The estimated frequencies are f_ =
0.216% and f, = 0.23A2, The larger frequency error can be
attributed tg the very low SNR and the small TBP environment.

SUMMARY

we have shown a new method for determining the
spectrum of two sinusoidal signals closely-spaced in frequency,
where the weaker signal has a very low SNR., We show that the
method is not affected by spectral line splitting when the two
sinusoids have a phase difference of 45 degres. Computer
generated results of this method have been presented.
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A NOVEL HANKEL APPROXTMATION METHOD
FOR ARMA POLE-ZERO ESTIMATION FROM NOISY COVARIANCE DATA*

§S.Y. "ung and ¥.S. Arun

Dept. of Electrical Engineering-Systems,
Imiv. of Southern California,
Los Angeles, CA 90089-0272

1. Tntroduction

‘'odel based methods have been gaining popularity in high resolution
spectral estimation, and have recently demonstrated a e¢reat deal of success.
Such methode allow us to parameterize the spectrum in terms of a relatively
small number of unknown parameters, and thus reduce the spectral estimation
problem to that of first, selecting the appropriate model, and second,
estimating its parameters. The most popular models used today, are

1) Autoregressive model (AR),
2) Sinusoids plus noise model (S+N) and
3) Autoregressive moving average model (ARMA)

The problem addressed in this paper is that of estimating the parameters
for the above models from a finite length of the covariance sequence of the
stochastic process. Given only the raw data (i.e. the time series itself),
one could first estimate the covariance sequence bhefore estimating the model
parameters. We shall treut covariance estimation errors as perturbations in
the covariance sequence. "here exist other methods that estimate the model
parameters directlv from the time series, without the covariance estimation
step, but in rhis paper, we are only concerned with parameter estimation from
the covariance sequemnce.

The “‘aximum Fntropy Methodl.JPB1 for AR models and Pisarenko's method!PTS}
for S+N models, both work very well when the covariance lags are knowr
exactly. But, ¥FM cannot account for additive noise, and suggested
mod:fications[XAY],[FRT] do not work well when the noise is colored. At the
same time, Pisarenko's method is not meant for colored noise, and it turns out
that both these methods are very sensitive to any perturbations in the
covariance dataflliC].

The only way nut of these rather restrictive limitations appears to lie
in covariance approximation methods [BS],{S¥2). Toeplitz approximation seems
to work very well for the SN model, and many versions have Leen

*This research was supported in part by the Office of Naval Research under
contract no. N00014-81-K-0191and by the Army Research Office under grant no.
NAAG 29~-79-C-N054.,
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proposed[S¥21 ,[CYBI ,[¥T]. Tn this paper, we present a Hankel approximation
method for ARMA models, that is based on a principal component analysis on the
Hankel matrix formed from the covariance sequence. Both the AR and S+N models
are special cases of the ARMA model, hence this new algorithm provides a
general approximation method for all the three models.

Since we are interested only in finding a rational approximation to the
given covariance sequence (not the covariance matrix), it is nof immediately
obvious that we should try to approximate a Toeplitz matrix. Tnstead, why not
use the Hankel matrix? Hankel approximation 1s a popular approach to linear
system model order reductionlAA¥1,S¥11,I¥[1, and the experience gained there
may be put to use in the covariance approximation problem. Tn fact, it can be
shown (c.f. Sect.?) that the rank of the infinite Hankel matrix formed from
the covariance sequence, equals the order of the gene-ating model. Singular
value decomposition is a very good way of examining how close the Hankel 1is to
a low rank matrix. By dropping the smaller singular values, and taking only

‘ the principal components, one gets a low rank approximation to the Hankel. The
f approximant 1itself need not be Hankel, yet one can find a least squares
estimate fS¥1] of the corresponding state space triple (F,g,h) whose order is
equal to the rank of the approximant. The eigenvalues of I are, then, the
poles of the model.

This method can thus be used for identifying the pole locations of both
AR and ARMA models, and is well suited to the frequency estimation of harmonic
processes. Being a covariance approximation technique, omne can expect it to
be robust with respect to covariance perturbations, either due to the presence
of colored noise in the signal, or due to covariance estimation errors. This
method is thus, a robust generalization of the Levinson(™EY) and Pisarenko
methods, and is applicable to colored noise enviromments. Tor ARYA models,
the zeros can be estimated by the use of an algorithm similar to the minimal
stochastic realization algorithm due to TaurrelFRE].

2. Theory and development

The problem at hand is to find a rational covariance sequence that is
closest in some sense, to the given covariance sequence. A covariance sequence
is rational 1if it can be exactly modelled as the covariance of the output of
an AR''A system to white noise input.

Assume that a rational covariance sequence {r(k)} corresponds exactly to
an ARYA model whose transfer function is Hf2z) =b(z)/a(2z). Then, the two sided
z-transform S(z) of {r(k)} will be equal to
b(z) .6z 1)

S(z) = H(2).H(z ) = -
a(z).a(z" ")

But, if we take only the causal part of {r(k)}, and define the one sided
z-transform

1 ;

R(z) = x(2)/y(2) = ‘;r(03-+§:r(k).z-k, I

2 0 |

then, S(z) = R(2) + R(z™)) :
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b(2).blz71)  x(z2).y(z7)) + x(z7N).y(2)

a(z).a(z—l) y(z).y(z—l)
Therefore, a(z) = y(z) and
b(z).b(z 1Y) = x(2).y(z"}) + x(z7)).y(2) (1)

Thus, the causal part of fr(k)} 1is the Impulse response of a modified
ARMA model x(2)/a(z) that has the same poles as the original ARMA model
b(z)/a(z). Since, both models have the same poles, we can find the system
poles by treating the causal part of {r(k)} as a deterministic impulse
response sequence, and using the principal Hankel component (PHC)
algorithmfS¥1]. Xronecker's theorem tells us that the rank of the infinite
Hankel matrix formed from the causal part of the covariance sequence 1is equal
to the order of the system x(z)/a(2z). Thus, if the given covariance sequence
is close to a rational covariance, singular value decomposition on H should
help us break up H 1into principal components and perturbation components.
Selecting only the principal components will lead to a rational approximant,
which need not be Hankel. Now, using the PHC factorization algorithm, one can
obtain the state space parameters (F,g,h) for x(z)/a(z). ™he steps are:

1) Do an SVD on the Hankel matrix H=U.0.V"

2) Select the dominant components only, and factorize H=@.€¢
where #=0.07*° and €=00-2.vT are the observability

and controllability matrices.

3) Now evaluate the state space parameters

F =@.¢

g = 1st column of €

h = lst row of @

#

Since (7,g,h) is the state space triple for x(z)/a(z), the eigenvalues of
F are the poles of x(z)/a(z) and consequently, the desired poles of the ARMA
model b(z)/a(z). Tf the given covariance sequence is exact and truly rational,
the algorithm should give us the system poles exactly. If the covariance
sequence is perturbed, then the approximation step in the PHC algorithm gives
us a rational approximant, that 1s close to the given covariance sequence.
The PHC algorithm 1is relatively insensitive to perturbations in the Hankel,
and so, we obtain a good estimate of (7,g,h) and the poles of the ARMA model.

The zeros of (F,g,h) will give us the roots of x(z), and not the desired
zeros of b(z)/a(z). Yet, equation(l) tells us that x(2) and a(2z) contain
information about b(z) as well, and so, it should be possible to evaluate the
zeros of the ARMA, from (F,g,h). The triple (¥,g,h) now, corresponds to a
rational covariance sequence £(k) = h.F° ' .g, and it has been shownfAVE], fFRF1
that every rational covariance sequence can be written as the covariance of a
time series {y(t)} with the Markovian representation:

x(t+1) = T.x(t) + T.v(t)
y(t) = h.x(t) + v(t)

where v(t) is the drilving white noise input, and there exists column vector g
such that #(k) = h. -1 .8
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Since the PHC algorithm gives us (F,g,h) satisfying these conditions, we
now only need to find T, to obtain the state space parameters (F,T,h,1) of the
ARMA model b(z)/a(z). Faurre's minimal stochastic realization algorithmFR%]
gives us a way of determining T and the {nput noise power p. "his algorithm
requires us to solve the algebralc Riccati equation

P = F.P.ET + (g=F.P.h").(r(0)-h.P.k"y l.(g-¥.P.n")7
to find the state variance P.

, P = r(0) - h.P. h'
T = (g - F.P.h)/ P

Then, the ARMA zeros are the eigenvalues of (F - T.h), since the inverse
system a(z)/b(z) has the state space parameters (F-T.h,T,-h,1).

3. Results

For illustrating the power of this method, simulations were conducted on
two sinusoidal signals in additive colored AR(l) noise at 0dB. The amthtudes
of both sinusoids was set at 1 and the noise had covariance r(k)—C!a s The
sinusoid frequencies were selected to be 0.25[] and 0.30/], while the ™arkov
parameter for the noise was picked to beq=0.8. The size of the Hankel matrix
used was 10x10. The results are summarized below.

Covariance sequence used Estimated poles

True covariance 1.00000exp{ +3j0. 25000}
1.00000exp{+ jO.30000M}
0.8000%exp{ j0.000007%}

True covariance + uniformly 0.99829exp{+ j0.25207M}
distributed zero mean random 0.99813expitj 0.3061 6N}
perturbations of variance 0.0001 0.80116exp{ jO.00000M}

""nbiased covariance estimate 0.99163expl+ j0.24299K}
from 1024 sample data. 0.98841expl+ j0.30467T}

0.76021exp{ j0.000007%}

When the covarlance lags are known exactly, the poles and zeros of the
AR'TA model are identified exactly by the new Hankel approximation method. Tn
the presence of white noise, the stochastic process can be modelled by a new
AR''A model that has the same poles as the original ARMA model. “hus, pole
identification of AR and ARMA models 1s totally unaffected by white noise, and
the method performs excellently for frequency estimation of sinusoids in white
noise.

But the more salient advantage lies in the fact that SVD is a robust and
nunerically stable approximation algorithm, and it makes this method
insensitive to covariance perturbations, including the effects of colored
noise and covariance es:imation errors. Thus, this method provides a robust
way of generalizing both the Levinson and Pisarenko methods to colored noise
and other forms of covariance perturbations, that are not necessarily positive
semi cefinite. 7Tt also provides a way of separating narrow band signals from
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broadband signals, on the basis of the distance of the pole from the unit !
circle. 1

The second step in this method, that uses Faurre's minimal stochastic
realization algorithm for estimating the zeros, contains no aproximation. Tt
appears that covariance approximation is carried out mainly in determining the
pole locations. Hence, we are currently looking into alternate schemes for
computing the zeros in a robust fashion.
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Some Signal Processing Issues in
Radar Target Identification

E. K. Miller
Lawrence Livermore National Laboratory
P. 0. Box 5504, L-156
Livermore, CA 94550

Introduction

When an object (target) is illuminated by an electromagnetic field, the
energy it scatters to a given observation point depends upon its geometry
and material characteristics, the conditions of illuminaticn (angle of
incidence, polarization, frequency(ies), etc.) and the medium through which
the field propagates. It is iatuitively obvious, and demonstrated by
analysis and measurement, that the scattered field {which will also
contain, in general, interference and/or noise energy) has impressed or
encoded on it information about the target which might somehow be extracted
for purposes of: 1) detection (i.e., is there a target?); 2) classification
(cetermine whether the target belongs to a class of interest); 3)
recognition {if in the class of interest, which one of that class is it?)
and 4) imaging or inversion (reconstruct the target's geometry and/or
material properties).*

The quality and amount of target-scattered energy that are available place
1imits on how much information an observer can extract solely from
measurement. Rarely, however, is the observer dependent wholly on the
measurement alone to accomplish the goal of target identification, but can,
in addition, make use of a priori information (e.g., atmospheric noise
data, knowledge that airborne targets are planes or helicopters) and/or
modify the measurement itself (change frequencies, polarizaticn, pulse
shape, etc.). These factors suggest that the observer should process his
data in such a way as to fully utilize all a priori information, and to the
extent possible, adapt the controllable measurement conditions to the
characteristics of the target. 1In both cases, knowledge of at least some
of the characteristics of expected targets is an essential requirement for
improving the signal processing.

Target Characterization

Target characteristics may be recognized to belong to (at least) two
domains. One, the target domain, is that in which the target is a basic
entity having either directly measurable properties (such as mass, volume,
shape) or properties which are obtainable from those measurements (moment
of inertia and higher-order moments, harmonic expansion of the surface
profile), either of which can be used to uniquely describe the target to
some degree of accuracy. The other, which we term the data domain, is that
in which the target exists only indirectly, in terms of its effect upon a
measured observable (a scattered EM field, for example), and from which
various properties may be derived. When these derived, or data domain,

*Unless a specific item from this 1i:t is being discussed, they will be
lumped together in the single term "target identification."”
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properties can be uniquely related to the basic, or target domain,
properties, then it can be said that an inverse problem has been solved.
For many applications, however, classification or recognition alone may
suffice or even be all that is possible to achieve, in which case the
data-domain properties may be all that is needed. In the former
application, the problem is more absolute in nature, i.e., (determine the
target) whereas in the latter, it is more comparative or relative (i.e.,
differentiate between targets). In either case, the way in which
target-domain and data-domain properties are related is crucial to a
successful outcome.

Another key to characterizing a target is the number of independent
properties that are needed either to describe it to some specified degree
of completeness or to separate it from other targets of interest. This
number, which we may call the target rank, can depend on the
characterization being used and availability of a priori information. For
example, if all targets are known to be penetrabTe, homogeneous spheres,
then the only basic properties of concern are radius and composition. We
might also expect that a desirable property of the characterization is that
it be parsimonious, i.e., with minimum rank that it include all independent
properties over some set of measurements. This statement implies that the
characterization in either the target domain or data domain is probably not
unique, and that alternative property sets are available,

Besides the issues of which target or data properties may be best, and what
their associated ranks may be, there is the closely related guestion of the
information content of the measurement. This might be loosely defined to
be the total number of bits required to represent the maximum number of
independent properties (basic or derived) obtainable from the data.
Implicit in this definition is a tradeoff between the number of properties
and their complexity, as we speculate that the total information
represented by the data is fixed. A priori knowledge, however, can greatly
influence how the data are best used, changing the problem from one of
system identification (determining a model for the data) to parameter
estimation (given a model, estimating the model parameters). In other
words, by reducing the number of unknowns via a priori knowledge (a model),
the data can yield either more complete or more accurate information about
the model parameters (the properties).

Some EM Feature Sets

In radar terminology, the €M properties of a target are sometimes called
its features, and the ad hoc nature of the features that have at one time
or other Deen used is demonstrated by some examples which include: the
maximum value of target cross section at a given frequency; the
aspect-averaged cross section over a specified frequency band; and the
ratio of cross sections for two orthogonal polarizations of the incident
field. But target features such as these can vary due to the aspect,
frequency and polarization dependence of its scattering properties. There
is a need for a feature set that is a fundamental property of the target
and is independent of how the target is excited.
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An example of such a feature set is the complex source-free resonances, or
poles, popularized in recent years in connection with the Singularity
Expansion Method. These frequency-domain poles are dependent only on the
target geometry (and impedance, if it is imperfectly conducting) with the
oscillatory or imaginary parts established by the length(s) of propagation
path{(s) on the object, and the damping or real parts associated with energy
Toss (radiative and dissipative) over that path. While significant
analytical questions remain (higher-order layer poles, branch cuts,
singularities at infinity, etc.}, from a pragmatic viewpoint the poles seem
to be unique properties of a target and, therefore, provide an eminently
attractive mechanism for target identification. In some sense, too, they
seem to represent a kind of minimum-parameter target description which has
interesting implications for the inverse problem from an information
theoretic viewpoint. Finally, they may provide useful insight concerning
other feature sets that have been or might be used for target
identification.

Considering the use of frequency-domain poles for target recognition
presumes the availability of wide-band or impulsive scattering data for a
target. An alternate approach is to make the measurement as a function of
angle in a bistatic or monostatic scattering mode at a fixed frequency. In
this case, a different kind of pole (or more properly a singularity) arises
due to the equivalent or actual point sources which give the scattered
field. Such sources can correspond to scattering centers and points of
radiation from the target, and thereby might also serve as a teature set.
To the extent that they are related to the target geometry, these space
singularities could provide a more direct link between the target and data
domains that do the complex fregquency-domain poles. For example, the
maximum physical extent of the target might be obtained directly from
extrema of the space-singularity distribution, bul could onity be inferred
from the wavelength of the smallest-value frequency-domain pole.

Space singularities can also be associated with measurements made as a
function of position (e.g., along a line) or as a function of frequency.

In the former situation, the singularities correspond to the direction
angles of the plane-waves which make up the total field. The result is
that a spatial array can image a distribution of sources located on the
far-field sphere. An analogous situation arises in measuring the field of
a set of poin’ sources as a function of frequency, but at a fixed point in
space, where the singularities then correspond to the source positions. By
making measurements from three orthogonal (or linearly independent)
directions, the possibility arises of imaging a three-dimensional source
distribution, §

Signal Processing for EM Features

The various data types mentioned above have a common exponential form, '
given generically by

X, x [&£],
_ a .
F(x) =L R e 71! F(X) = TR /(X-X,) (1)

o
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where we refer to these as the waveform and spectral representations,
respectively. For the cases discussed above, it follows that:

Representation X = = Xg ~

Time/Frequency t jw Complex resonance.
A

Frequency/Space w/c ik.R Source location

along a line.

Space/Angle X ik cos 8 Direction cosine of
plane wave.

Angle/Space cos © ikd Source position
along a line.

An interesting property of these representations is their close connection
with widely used signal-processing techniques. For example, the
linear-predictor filter implicitly incorporates an exponential model, as
can be demonstrated by applying Prony's Method to a set of uniformly spaced
(in x) samples of f(x). Prony's Method and related techniques provide a
way to estimate values of Xy and Ry from the f(x) samples. Thus,

thure is the possibility of not only obtaining parameters which may be
useful EM feature sets, but also that of processing EM data for target
recognition.

In this paper, we will consider three issues relating to the above
discussion:

1) The performance characteristics of Prony-like signal processing for
estimating EM features, from the viewpoint of an input-output
information transformation;

2) Pole (and singularity) sets of EM features obtained from computed EM
data for several situations;

3) Some initial results of using frequency-domain poles for target
identification.

It will be demonstrated for data similar to that which occurs in sampling
EM fields, that Prony's Method seems to preserve information, that is give
poles values whose accuracy on the average equals the accuracy of the input
data. However, the imaginary (oscillation) components are almost always
found with greater accuracy than the real (decay) components, whose
accuracy seems more closely correlated to that of the predictor
coefficients. The richness of the pole-based representation for EM
problems will be shown by giving sample results from transient data,
linear-array patterns, and plane wave scattering from a half space.
Finally, various target-identification schemes using fregquency-domain poles
will be compared as a function of signal-to-noise level, with the tentative
finding that improved performance seems to occur at the expense of
increased computational effort.
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Restoration of Multichannel Microwave Imagery
To Estimate Rainfall Rates in Hurricanes

R. T. Chin, and C. L. Yeh and W. S. Olson, and J. A. Weinman
Dept. of Elect. and Comp. Engr, Dept. of Meteorology

University of Wisconsin-Madison
Madison, Wisconsin 53706

l. Background

Multichannel microwave radiometers on the Seasat and Nimbus 7 satellites
offer a quantitative method to measure rainfall amounts over the ocean. The
emissivity of the ocean surface is low and varies predictably with wind speed;
it thus provides a good background for observing precipitation. The theory
and initial validation of this concept was given by Wilheit et al. [1]

Recently Olson [2] employed a radiative transfer model to simulate the
polarized brighteness temperatures that a Scanning Multichannel Microwave
kadiometer {SMMR) would measure from hurricanes above sea surfaces at several
frequencies. These brightness temperatures depend upon the rainfall rates,
rain column heights, and the emissivities of the wind roughened sea
surfaces. The information content of each channel is a variable function of
these parameters and their relationships are nonlinear. A piecewise-linear
regression algorithm was then applied to the synthetic data in the manner
discussed by Smith and Woolf [3] to infer rainfall rates. The regression
method employ;s data from eight of the SMMR channels.

Unfortunately, the size of the antenna of the SMMR on Nimbus-7 imposes a
diffraction limit on the angular resolution such that the relative angular
response, [H], of the radiometer is 5

2J1(ka sing)
[H(®) ]= [———-——-—] (1)

ka sing

where a is the antenna radius, 9 is the angular deviation from the antenna
centerline, k = 2n/A is the wave number and J, (®) is the first-order Bessel
function. The various channels of SMMR therefo;e each have a different
footprint size (i.e., the 6.6, 10.7, 18.0, and 37.0 GHz channels with two
polarizations have footprints of 148 x 95, 91 x 59, 55 x 41, and 27 x 18 km
respectively). It is difficult to apply the regression algorithm unambiguously
to real SMMR data because each channel measures radiation from an area which may
contain differing amounts of rain. This study overcomes the diffraction
limitation imposed on spatial resolution by means of image restoratini.

[1. Restoration of Spatial Resolution

The distribution of rain bearing clouds, ?, the observed microwave
image, g, the noise distribution, €, and the point spread function of the
degradation, [H], are related by the following linear equation:

This work was supported in part by the NOAA under Grant MQ-A01-78-00-4320; and by
the University of Wisconsin-Madison WARF Foundation under Grant 135-2028.
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g=[Ht+ 2 (2)

The inverse problem, in which t is derived from the measured 5 in the presence
of noise, requires the inversion of Fredholm integral equations of the first
kind. This linear Inversion requires the ex{stence and uniqueness of an inverse
transformation [H]™*. However, even if [H]™" existg and is unique, it may be
ill-conditioned, so that a trival perturbation in g can produce nontrivial
perturbation in %. Thus, an ill-conditioned problem can produce undesirable

effects such as noise amplification, resulting in grainy images.

This problem can be avoided by using a constrained iterative restoration
algorithm to reconstruct the multichannel images. [t is well established in the
literature that a finite object has an analytic spectrum. Analyticity 1mplies
that knowledge of only part of the spectrum is sufficient to uniquely determine
the remainder of the spectrum. Hence, the complete spectrum may be derived from
the diffraction limited image of a finite object. This remarkable property has
been applied with some success by Gerchberg [4], Papoulis [5], Papoulis and
Chamzas [6], Howard [7], and Rushforth et al., [8] to invert one and two
dimensional signals. This property also provides the theoretical basis for our
method to match the footprints of multichannel microwave images.

The spatial image restoration can be considered as an operator,@, chosen to
estimate the portion of the spectrum of the actual rain field missed by
diffraction limited {maging. The operataor @ can be defined as the two-
dimensional FFT of g within some known extent. The known extent of the
hurricane is determined by the a priori information provided by the 37 GHz
channel (the highest frequency channel of the SMMR with the best spatial
resolution), and possibly visible and infrared images. The additional spectral
components generated by @ when added to the incomplete spectrum of the observed
image, restores the resolution of the image. This process is then iterated to
achieve optimal resolution.

IIl1. Results

We initially utilized the 37 GHz channels to providean apriori estimate of the
spatial extent of the rain cells that is incorporated into the algorithm.
Results of our initial investigation are shown in Fig. 1, A synthetic hurricane
image was created in a 16 x 16 image field. Noise free antenna temperatures of
both the 37 GHz and the 6.6 GHz channels were generated. The 37 GHz image
reginons that have no rain were used as a constraint to extend the resolution of
the 6.6 GHz image data. Fig. la shows the cross sections of the rain cells in a
synthetic image of a hurricane before and after the restoration. The degraded
6.6 GHz image resolution has been enhanced to a large degree after a few
iterations. The synthetic images of the entire model hurricane that would be
measured at 37 GHz, the original degraded 6.6 GHz, and the enhanced 6.6 GHz mode!
hurricane rain cells are shown in Figs. 1b, 1c and 1d, respectively.

Data distorted by noise has rendered it difficult to continue the spectrum
beyond the original diffraction limitation. Additional spatial and spectral
constraints were therefore introduced to restore the noisy images.

The spectral constraints are based on a knowledge of the highest cutoff
frequency (i.e., 37 GHz), and a knowledge of the degradation point spread
function. More precisely, the magnitude and the phase information of a few low-
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frequency components of [H] are derived and they are used to replace the
magnitude and phase of the spectrum of the degraded image.

Spatial constraints are based on the estimated extent of rain areas, derived
from 37 GHz, visible and infrared images, the upper and lower bounds of the
measured brightness temperatures, and some physical attributes of hurricanes.
Wind patterns around a hurricane are approximately axially symmetric with
respect to the hurricane eye and we have incorporated this constraint as a
preprocessing step to smooth out some of the noisy data. It has been
demonstrated in our simulation that by performing a running average of the wind
speeds along a circular sector around the hurricane, substantial noise is
reduced.

The procedure to restore low frequency bandlimited images (i.e., the 6.6,
10.7, and 18.0 GHz) to the optimal resoltution {i.e., the 37 GHz) is summarized in
Fig. 2. This procedure has been applied to a set of noisy images. In one example
additive white noise with an rms value of 4°K was added to both the 37 GHz and
6.6 GHz synthetic images. Within a few iterations, we obtained the restored
image scan as shown in Fig. 3. The 6.6 GHz noisy image is nearly completely
restored to the optimal resolution,

IV. Conclusions

The constrainted iterative restoration procedure has been demonstrated
through computer simulations to be effective in restoring the spatial resolution
of all of the SMMR channels to a 27 x 18 km footprint. An obvious next step is
to apply this procedure to real SMMR data.
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Electromagnetic image reconstruction
techniques in inhomogeneous media
satisfying the Born-Rytov approximation
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Introduction

The basis for developing projection tomographic reconstruction algorithms
has been the assumption of straight-line ray-path propagation. But, in the
case in which propagation occurs within discretely inhomogeneous media at
wavelengths of the order of the size of the scatterer, phenomena such as
refraction, reflection and diffraction can no longer be neglected and a
straight-line projection tomographic approach fails. This is especially
evident when a large difference in refractive index occurs, such as that
encountered with dm-to~-mm-wave propagation in inhomogeneous atmospheric
media, representing hydruneteorite distributions, the marine ocean boundary
layer, the ground surface underburden, or bone and soft layers within soft
tissue. An exact solution for the general vector scattering case which
strictly requires a polarimetric radiative transfer approach is not avail-
able, and in this research, the assumption ts made that the media are
weakly diffracting so that the Born and Rytov approximations are valid.
Based on this assumption, various diffraction imaging methods were developed
most recently, and we are basing our studies on Devaney's back-propagation
tomographic approach which was developed upon the scalar wave theory. 1t is
the main objective of this research to extend this work to the reaim of
electromagnetic vector wave theory for the improved diffraction-corrected
imaging of radar targets embec !ed in clutter within the dm-to-mm-wavelength
region of the electromagnetic spectrum.

The mathematical! theory of Radon Transformations is the basis of modern
imaging techniques in computerized tomography. Hounstield's invention of
the computerized tomography (CT) scanner for bio-medica: imaging started
the avalanche of techniques of imaging in both elecuromagietics and ultra-
sound as described in Hounsfieldl.

Basically, three types of CT imaging methods are in use: The x-ray CT, the
ECT (Emission Computerized Tomography) and more ~ecently in ultrasound CT
as in Brooks and Dichiov?.

There exist two distinct imaging reconstruction methods for the electromag-
netic case:

1) Complete polarimetric image reconstruction from cross-range signatures

as, for example, encountered in Microwave Synthetic Aperture Radar Imagery
in which the final reconstructed image is obtained by incoherentiy super-

imposing the images reconstructed from four (4) independent SAR-images
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extracted from [S,,|2, [Sg,l2, ISABI2 and |Sgg|2, where in the case of a
reciprocal propziation space |SAB|2 = lSBAlz‘

2) Complete polarimetric image reconstruction from slant-range signatures
as, for example, in the case of radar target shape reconstruction using
ramp response echoloting or linear chirp downrange scatterometry in which
the final best-recoverable image is obtained from applications of Radon's
projection theory to Kennaugh's optimal target echo area. This optimal
target echo area needs to be recovered from complete polarimetric rela-
tive phase scattering matrix data, either using the polarization transfor-
mation invariant,

|5, 12 = Span ([S]} = [5,,02 + 205,12 + Is512,

opt
for the reciprocal target sensing case, or utilizing a geometrical recon-
struction method applied directly to the optimal null location chart de-
rived from the Poincare sphere.

If the medium is homogeneous the ray paths are along rectilinear geodesics
and this simplifies the shape reconstruction process using the 'parallel
beam'' projection algorithms. These projection tomographic principles rely
on a g.o. limit description of the imaging process that may be (not neces-
sarily is) adequate at x-ray wavelengths, but that has quite questionable
validity in optical and ultrasonic, and very specifically, in electromag-
netic dm-to-mm-wave applications in which diffractions and scattering

effects do become important as described in Keller3, Bates et al“, Devaney®.

(Also H.P. Baltes!®)

Radon projection theory

The problem of determining the size, shape and electromagnetic properties
of a scatterer, given the incident and scattered electromagnetic fields,

is the electromagnetic inverse problem. The problem of interest here is
the reconstruction of the image of a convex scatterer from knowledge of the
high frequency far field scattered from the object in response to a known
incident field.

The size and shape of an object can be obtained from its area functions,
and the problem can be reduced to the classical Radon problem as shown in
Das and Boerner’. Since the area functions can be estimated from the
scattered field when the incident field is a ramp, the remaining problem

is thus essentially that of reconstruction from projections, as shown in
Kennaugh and CosgriffS, The problem of reconstruction has found wide appli-
cation as of late in computer-assisted tomography.

Born and Rytov approximations

For the case where (nZ - 1) is small in the wave equation

V29 + (n2)/(c®)y =0, n=nly, k), ¥ =¥ (v, k),

it is possible to recover n(y) using the Born-Rytov approximations given
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measurements outside the domain of support at a fixed frequency and for
different angles of plane wave incidence, The Rytov approximation provides
a significant improvement of the Born approximation providing that scatter-
ing is mainly in a forward direction as was shown by Keller3. In a recent
study by Bates et al*, we have extended the Rytov approximation to smooth-
ly varying media with the assumption that refraction predominates over
reflection and its significance for acoustic remote sensing was demonstrat-
ed by Dunlopl® for the case of slight ray bending. Inverse problems making
use of the Rytov approximation are encountered frequently in passive atmos-
pheric sounding, in optical applications and in ultrasonic computerized
tomography. In most cases, measurements of the emitted terrestrial or
refiected solar radiation is carried out as a function of wavelength, look
angle, and atmospheric optical depth using ground-based, air-borne, or
space-borne systems. The data, thus obtained, are inverted to yield the
vertical structure of several atmospheric parameters. Like other inversion
problems, the difficulties are both mathematically and numerically oriented
(it11-posedness, non-linearity) and the ultimate choice of the best method
for a particular application may not be based on accuracy, but is normally
restricted by available resources, quantity of experimental data, and a
priori knowledge.

Most recently, a succinct assessment of this inverse problem was made in
A.J. Devaney®, in which he overlooked our paper that contains, in parts,
identical results, proving that the small wavelength extension of the
Rytov approximation will pave the basis for diffraction tomography in
weakly diffracting media.

Ray path bending problem

The basis for developing projection tomographic reconstruction algorithms
has been the assumption of parallel beam transmitted wave propagation,
whereby, the received signal at the observation point was related to a
particular parameter of the irradiated media strictly along a straight line
path between the receiver and the anticipated location of wave/media inter-
rogation, i.e., rectilinear (forward and/or backward projection tomography).
But, in the case in which waveiengths are of the order of the size of the
scatterer, phenomena such as refraction, reflection and diffraction can no
longer be neglected, and a straight-line projection tomographic approach
fails. This is especially evident when viewing a reconstructed image of a
region within which a large difference in refractive index (or for the case
of x-ray, strong Bragg diffraction) occurs, such as that encountered with
dm-to-mm wave propagation in inhomogeneous atmospheric media representing
hydrometeorite distributions, the marine ocean boundary layer, the ground
surface underburden, or bone and soft layers within living tissue. [n light
of this non-rectilinear projection problem of having to account for the non-
straight path nature of wave propagation, a varied number of different algor-
ithms have been developed in many different disciplines while a synthetic
focusing operative system for reflective tomographic reconstruction has been
developed by Greenleaf, Johnson et al?, the analytical studies by Bates

et al*, and the experimental verification by DunloplS discusses improvements
to the Rytov approach and its applications, where we show that the Rytov
approximation provides a significant improvement on the Born approximation
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provided that the scattering is mainly in a forward direction, which is
consistent with the independent findings of Keller? and Devaney!®.

Vector diffraction tomography

The electromagnetic inverse problem of reconstructing material parameters

(£, u, o) profiles of inhomogeneous distributed regions is applicable to radar
clutter and distributed (underburden) target description, non-destructive
material testing, mine detection, and to microwave sub-acquatic as well as
scalar acoustical media imaging. Due to the fact that electromagnetic waves
are vector in nature, i.e., their complete polarimetric behavior for propaga-
tion in depolarizing inhomogeneous media need to be integrated into profile/
image reconstruction algorithm, requiring Devaney's scalar diffraction tomo-
graphy to be extended into 'Wector Diffraction Tomography''.

Work is presently under progress at the Communications Laboratory, University
of I1linois at Chicago where we use the scalar equations of Devaney's and con-
vert them to the vector ones for the electromagnetic case. We consider a vector
a dyadic Green's function G (&£, n) which is a propagator to map the filtered
relative phases back into the image space. The construction of the dyadic
Green's function involves the use of the invariance of the span of the scatter-
ing matrix. We parallel the work of Devaney to obtain the filtered relative
phases as "

e, m [ de g, (€0 Be -t - 1y
to obtain an estimate on the profile as

-~ ] m
0(_!_’_) = br J d¢o I
-

q>0
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The Phase Problem in Object Reconstruction and Interferometry.

H.A.Ferwerda, Department of Applied Physics, State University of Groningen,
Nijenborgh 18, 9747 AG Groningen, The Netherlands.

1. Introduction. In this contribution I shall review phase problems from dif-
ferent fields of optics which can be handled with similar techniques. In all
cases the problem is to reconstruct the phase of a function from its modulus.

In object reconstruction we have to know the complex image wave function (w.f.)
while the intensity distribution only gives its modulus. In speckle interferome-
try only the autocorrelation of the brightness distribution of the source (or
equivalently the modulus squared of its Fourier transform) is measurable. In
interference microscopy often only the visibility of the interference fringes
formed in a Michelson interferometer can be observed, yielding the absolute va-
lue of the complex degree of temporal coherence. But we also need its phase for
the calculation of the spectral distribution of the source.

Noise will not be taken into account in this review,

2. The phase problem of object reconstruction.

X,Y
XoYo €.
g
——
‘Lo *OP TICS” % optic
_1. axis 2
—p—
| -
ot:ject exit image
Pione pupil plane

Consider an object, coherently illuminated by a quasi-monochromatic plane wave,
described by the wave function exp(ikz) (we assume that the imaging process can
be described in terms of scalar functions). After interaction with the object we
obtain the w.f. wo(xo,yo) in the object plane, which is the plane perpendicular

to the z-axis just touching the object. wo(xo,yo) will be the quantity to be re-

constructed. The specific relation between wo and the object structure is outside

the scope of this contribution. In the exit pupil of the imaging system (in elec-
tron microscopy denoted as diffraction plane) we obtain on the "left-hand" side
of the aperture the w.f.
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¢p,1(5’“) = go Vo (X Y dexp(2mi(x E+y n)ldx dy_ (1)

Due to aberrations of the optical system we have to introduce the wave-aberra-
tion function ¢(£,n) (assuming isoplanatic imaging). This is done by writing
the w.f. on the"right-hand" side of the aperture in the exit pupil as

wp,r(ﬁ,n) = exP[i0(£,n)lwp’l(£,n)- (2)

Finally, the w.f. in the image plane is given by

v; (x,y) = £ vy L (&yn)exp [2ri(Ex+ny)] dedn . (3)
p Ll

X sy, are measured in units A(wavelength), £,n in units F (back focal distance)

and X,y in units MM (M is the lateral magnification). The recorded quantity,the
lmage intensity,is proportional to ]wi(x,y)lz. For the determination of wo(xo,yJ

we need the complex wi. Walther [ 1] has already noticed that there is a relation
between the phase and modulus of wi because wi is a band-limited function, as is

evident from (3). In the following we shall make two important assumpticns:

i) we assume only one transverse spatial dimension. ii) we neglect noise.

The first restriction is expedient because in that case we can draw from the
theory of entire functions of one complex variable. The case of two complex
variables is very hard on physicists! The second assumption will be briefly tou-
ched upon later on.

3. The relation between phase and modulus of a band-limited function.
When wi(x) (from now on we shall drop the subscript "i'") is continued in the

comblex plane we obtain an entire band~limited function (cf. eq.3). Two approa-
ches have been presented: 1) a dispersion relation between argy(x) and |y(x)|
can be derived, provided we know the zeros of ¢(x) in the upper half plane [ 2];
2) ¢(x) 1is essentially specified by its zeros [ 3]. For both approaches it is ne-
cessary to determine the zeros of y(x) in the complex plane.

4. Methods for determining the zeros of y(z). If I(x) denotes the intensity dis-
tribution in the image plane, this quantity can be continued analytically:
I(z) = p(z)p*(z*). (4)

The zeros of 1(z) can be determined by first determining the Fourier transform
(FT) i(£) of I(x). Then

1(z) = [Ti(£)exp(-2ngy)exp(2nitx)dE, (5)

an operation to be performed on a computer [ 4]. The zeros of I(z), occurring in
conjugate pairs,can thus be obtained. If the number of important zeros of y(z)
(which is aﬁproximately the number of degrees of freedom of the image) is N,
there are 2N possibilities for assigning the zeros to y(z).

Several searches for zeros of y(z)'have been put forward to mention by Walker
{5] and Brames & Dainty [ 6]. All these proposals use two measurements. In the
first measurement an,a; are determined. In the second measurement Walker places

an exponential filter with transmission function exp(-2maf) over the exit pupil;
the analytic continuation of the corresponding image intensity distribution yields
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displaced zeros; a',a' . If a_=a_+if , a'=a'+iB’' we have the relationship:
n’“n nn n’‘n n n

aa=an;8&=6n-a. The zeros a, and a; of p and y*,respectively, move in different

directions, enabling us to establish which zeros belong to ¢(z). This method can
be extended to two spatial transverse dimensions simply by keeping one of the co-
ordinates fixed.

This method works well in the case where the stochastic nature of the image may
be ignored. If this is no longer acceptable as e.g. in low-dose electron micros-~
copy or noisy images in general, other approaches may become useful as will be
discussed in the next section.

5. Methods not based on analyticity arguments. The advantage of the approach by
zeros of band-limited functions is that the solution of the problem belongs to

the class of band-limited functions, Noise may spoil that advantage. Other approa-
ches originally proposed by Gerchterg and Saxton [ 2] and Misell [ 2] have been stu-
died in great detail in my group by Huiser and Van Toorn { 2] in order to assess
the significance of the iterative numerical procedures of Gerchberg and Saxton,
and Misell. The Gerchberg-Saxton proposal tries to deduce the phase of the w.f.
from the intensity distributions in image and diffraction plane. In their mathe-
matical analysis Huiser and Van Toorn express i(£+8) in terms of w (E): (we

drop the subscripts p,r in this section)

ie+8) = [Pucenyvrer-e-p)de’. )
£
The phase problem is essentially solved when w(&) is “known. In the Gerchberg—
Saxton approach § has to be solved from (6) using the fact that [ l is known.

Discretisizing the integral in (b) as a Riemann sum yields quadratic equations
for the sampling values of ¢. As each quadratic equation usually has two solu-
tions, we obtain a wealth of possible solutions. Evidently additional informa-
tion (additional constraints) is necessary. A good example of such a case has
been studied in a seminal paper by Fienup [7]. He reconstructs a brightness
distribution from only the modulus of its Fourier transform, exploiting the
constraint that the brightness is non-negative definite and that the support
of the brightness function is finite. In the case of the Misell algorithm ¥ (£)
has to be solved from the two coupled non-linear Volterra~like integral equa-
tions arising from two defocused images:

HEHE gsw(z')w*(&'—&—e)exp[iAj{E'z-(é'-i—B)z}]d&’; j=1,2, )

where Aj is a measure of the amount of defocus of the exposure. Writing (7) as

Riemann sums we get for every sampling value two linear equations in two un-
knowns, leading to a unique solution. Numerical investigations have revealed
that the procedure is rather sensitive to noise which makes a statistical study
imperative, in particular in the case of low intensity illumination. Such a
study is in progress by C.H.Slump of my department [ 8].

The approach described in this section can be extended to two dimensions.

6. Phase problem of coherence theory and interferometry. The complex degree of
temporal coherence y(tr) and the spectral density of a light source g(w) are re-
lated by ({91):

y(1) = [Tglw)exp(-iut)duw, (8)
o

P ———
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where g(w)zo. In interference microscopy Rey(t) is the measured quantity. Be-
cause Rey(t) is often a very rapidly oscillating function we have to content
ourselves with the envelope function of the oscillations in the interference pat-
tern, the visibility curve, yielding |Y(T)i2. For the reconstruction of g(w) we
need the complex y(t). Wolf [ 10] noticed that analyticity properties might yield
the phase, the role of the zeros of y(t) in the complex t-plane being important
but obscure. Nussenzveig [ 9] has studied these zeros in some explicit cases. In-
tensity interferometric arrangements for the determination of the phase of the
coherence functions have been discussed by Gamo [ 11]. Brames and Dainty [ 6] have
independently used the technique of determining the zeros of an entire band-limi-
ted function to solve the phase problem in stellar speckle interferometry.

7. Phase problem in two spatial dimensions. The methods based on analyticity
(zeros of band-limited functions, dispersion relations) cannot straightforwardly
be extended to the case of two lateral spatial dimensions. It is believed [7,12]
that the phase problem in two dimensions is less ambiguous than in one dimension.
Solid mathematical treatment is scarce. Important progress has been made by Bruck
and Sodin [ 12] whose results seem to indicate that uniqueness is the rule rather
than an exception: the criterium for uniqueness is whether a polynomial in two
variables 1is factorizable or not: if the polynomial is factorizable there is am-
biguity, if not the result is unique. Huiser and Van Toorn [ 13] have constructed
examples of ambiguities. The role of ncise remains to be clarified.

Acknowledgement. Part of this research was supported by the Netherlands Organiza-
tion for the Advancement of Pure Research (Z.W.0.).
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Phase Retrieval from Intensity Data degraded by Shot-Noise.

C.H. Slump and H.A. Ferwerda
Department of Applied Physics, State University at Groningen,
Nijenborgh 18, 9747 AG Groningen, The Netherlands.

1. Introduction. In the paper by one of us (H.A.F.) [ 1], the phase problem was
reviewed for circumstances under which the stochastic character of the image
could be ignored. A statistical description becomes imperative for images ob-
tained under low-intensity illumination as occurs e.g. in low-dose electron
microscopy. Under these circumstances the images are heavily degraded by shot-
noise. Often(e.g. [ 2,3])images are described as a signal plus signal-indepen-
dent noise. Such a treatment does not apply to shot-noise, the quanta arriving
in non-overlapping image cells are statistically independent Poisson-distribu-
ted random variables [ 4]. The variances of the data-counts also contain infor-
mation about the signal. In this contribution we discuss the retrieval of the
object wave function (w.f.) from shot-noise degraded images. Due to the sto-
chastic imaging process, the reconstructed object w.f., is also stochastic. The
purpose of this contribution is to establish the statistical characterization
of the object w.f. We assume axial coherent quasi-monochromatic illumination.
The analysis is presented for one lateral dimension only, the extension to two
dimensions is obvious.

2. Statistical description of the image. The image plane is divided into N non-
overlapping cells (pixels) with N the Shannon number (N=482d). The number of
electrons arriving in the k-th cell is denoted by ﬁk where the hat """ denotes

that we deal with a random variable. ﬁk has a Poisson distribution with mean Xk’

where Xk is proportional to the integral of the squared modulus of the image

w.f. over the k~th cell. In our approach this noisy image is the input for the
reconstruction procedure of the object w.f,. We do not smooth or filter by what-
ever method the data to be processed!

3. Reconstruction of the object wave function. The relation between the Fourier

transform (¥.T.) of the image and the w.f. wp(.) in the exit pupil (see [ 1] for
details)is given by:
oy N
T, = AN % v (DX (R-k), k=0,1,... , (1)
Koo e PP
IN-1 i
where 1 =1 i, exp(2mikeN ) . (2)
kT ey

wp(%) stands for wp(i/Zd) and Ao denotes the mean number of quanta incident per

pixel and 2d is the size of the object., The phase problem is essentially solved
when wp(.) ic¢ determined. As ik is a stechastic quantity, the resulting wp(.)

also acquires scochastic properties. From () we derive hat Tk, NEETY () | B
are correlated complex random variables; the autocorrelation tunction is:
JN-1 -
] R(k,k') = E(ikiz,) = E(RIE(E},) + & X, exp(2mit(k=k"IN ), (3)

e=-{N
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the symbol E(.) denotes the mathematical expectation value. The non-linear equa-
tion (1) is not simply solvable and to characterize the obtained solution sta-
tistically is even more difficult. In the next section we shall therefore treat
the more tractable case of weak-object imaging. 1

4. Weak-object reconstruction. In this case the non-linear terms in the squared
modulus of the image w.f. are neglected and Ak depends linearly on the object

w.f.. This allows us to enlarge the pixel area, the signal-to-noise ratio of
the image data is increased. We have now iN pixels. xk is written kk=Ao(l+sk)

where s, is the contrast due to the object (sk<<l). s

k is estimated from ﬁg by:

L

- -1,

S, = Xo (nl Ao) (4) {
Calculating j(.), the F.T. of the new random variables we obtain for the auto- :
correlation function:

iN-1 _ ,
E(5,5%,) = EGOE(*,) + L var(3,)exp(4rit (k-k )N ')
k'k k k L
g==iN ,
-1 i
- %

, iN-1 - :
; with: = I § exp(4mikiN ') (6) i
; L !
| g=~{N j

} In the derivation of (5) we used that the variance of §R is equal to
\;l(1+sl)mkgl. It can be shown that the probability distribution of §2 is in .

. . . . . ~1
good approximation Gaussian with mean s, and variance equal toA . The real and

L
imaginary part of Jk are therefore also Gau331an dlstrlbuted w1th mean the true |

deterministic values and with variances: E (1+s )cos (énklN ) and A E(l+s )x

X sin2(4ﬂk2N l, respectively., The relatlon between ]k and the object w. f is
given by: (see e.g. [S])

jk =2 aksin¢(k)—2 bkcos¢(k), (7

¢ (k) denotes the wave aberrations of the optical system and a, and bk are the

F.T. of a(.) and B(.), respectively. a(.) and B(.) denote the phase and ampli-
tude part of the object w.f.: wo(x0)=l+ia(x0)-6(xo). The aberration function

$(.) depends on the spherical aberration coefficient CS and the defocusing éz

8 (k) =0 (k/2d)=(21/3) [{C (k/24) - 48 (k/2d) * ], (®)

Taking two images with different defocus allows us to calculate ay, and bk from

two equations of the type (7). From (7) we see with (8) that Fourier components
a, for k in the neighborhood of zero do not contribute to the contrast in the

image. Calculating these Fourier components would give rise to a very large
noise-variance in the reconstructed object w.f.. We therefore exclude these
components from the reconstruction procedure; a band-pass filtered

|
]
z
l
]
f
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object phase function a(.) is reconstructed. The reconstruction of 8(.) fol-
lows directly from the two equations of the type (7):

- N
de/28) =Nz B

exp(-anikm") = 8(2/28)+N(o,0§), v (9)
=-}N

k

2 . . . . 2 .
where N(o,os) denotes a zero—mean Gaussian variable with variance 08' This
variance is signal independent and is only a function of the parameters of the
imaging system:

9 -l {N-1 sin2¢2(k)+sin2¢l(k)
og = (8 ) I 5 (10)
k=-iN sin” (9, (k) ~¢, (k))
where the suffixes "1" and "2" symbolise the two different defocusings. The

phase reconstruction proceeds along similar lines:
a(2/28) = 5(1/28) + N(o,0%) , Wi ()
o

were cosz¢2(k)+cos2¢l(k)

z! 3 (12)

1

2 _ -
OE = (BNXO)

were the accent (”,") denotes that values of k in the immediate neighborhood
of zero (specified more precisely in [4 ] ) have been omitted.

5. Discussion. The disadvantage of the present approach is that the low spatial
frequencies of the phase structure of the object are practically beyond retrie-

val, This obstacle is circumvented by illuminating the object from different
directions. The results of this research will soon be reported.

Acknowledgement. One of us (C.H.S.) acknowledges the support from the Nether-
lands Organization for the Advancement of Pure Research (Z.W.0.)
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Phase Retrieval for Functions
with Sufficiently Disconnected Support

T.R. Crimmins and J.R. Fienup

..<__.._.<._._—_._—___

Environmental Research Institute of Michigan
P.0. Box 8618
Ann Arbor, Michigan 48107

1.  INTRODUCTION

The problem of phase retrieval is to reconstruct a function, f(x),from
the modulus, |F(u)|, of its Fourier transform,

© ) |
F(u) = [ £(x) e Y% dx.

This is equivalent to reconstructing the phase of F(u) from [F(u)[ or to re-
constructing f(x) from its autocorrelation function, which is given by the in-
verse Fourier transform of |F(u)|¢. This problem arises in many fields, in-
cluding astronomy, x-ray crystallography, wavefront sensing, pupil function
determination, electron microscopy, and particle scattering. In this paper
the function, f, is assumed to be a square-integrable,one-dimensionai, com-
plex-valued function. If f has disconnected compact support contained in
the union of a sequence of intervals satisfying a certain separation condi-
tion, then it can be shown that f is almost always essentially the only so-
Tution with support contained in the union of those intervals. This holds
no matter how many non-real zeroes F has.

2.  EQUIVALENT SOLUTIONS

Let ¢ be a real number and C be a complex number with |C|=1 and let
g(x) = Cf(x+c) and h(x) = Cf(-x+c), where the overbar denotes corplex con-
jugation. If F, G and H are the Fourier transforms of f, g and h, respec-
tively, then

G{u) = C eicu F(u), and H(u) = C e-icu Flu).
Thus

[G(u)| = |F(u)} = [H(u)].

The solutions f, g and h are called equivalent or, in symbols,

g =f=h,

If all solutions are equivalent to f, then f is said to be essentially
the only solution or the unique solution.
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3. THE THEOREM

Let In=n=1,...,N be a sequence of nonoverlapping closed intervals. De-
fine

Ip-1, = {x-y: xel and yeIn} .
We will assume that the following condition is satisfied.
Separation Condition: (Im-In)(\(Ij-Ik) = ¢ for l<m,n,j,k<N; j#k; and
(m,n)#(j,k), where (,) denotes ordered pair. (Note that m=n is allowed.)

For N=2, this condition is equivalent to the requirement that the lengths
of the two intervals be less than the distance between them.

Returning to the general case, let

A= \J I
n=1

and let f and g be two complex-valued square-integrable functions both of
which are zero outside of A. For n=1,...,N, let

f(x),for xel
£ (x) ={
0, otherwise
and (<)
gix),for xecl
(x) ={ n
0, otherwide.
Then N N
fx) = 2 f40x), and glx) = 21 g, (x).
n= n=

It is assumed that f # 0 li.e., fn(x) is not identically zero], n=1,...,N.

Note that the autocorrelation of f(x) can be expressed as the sum of N2
¢cross-correlation temms,

N N
F(x)F(x) = 2 Z £ OO ()
=] n=]

m

where * denotes convolution and

f(x) = fl-x) .
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The cross correlation term fm(x)*?n(x) has support contained within I -1 .

Of these N2 terms, N of them have m=n and are cer -red at the origin. The
remaining N“-N cross-correlation terms, for whick m#n, are centered else-
where. The separation condition is equivalent to requiring that none of
those NZ-N cross-correlation terms overlap with each other or with the terms
centered at the origin.

Let F, G, Fn’ Gn be the Laplacez transforms of f, g, fn and 9,» re-
spectively. Let Z(F) be the set of non-real zeroes of F and define Z(G),
Z(Fn) and Z(Gn) similarly.

Let N
=) Z(F,).,
n=1
that is, B is the set of non-real zeroes common to all the Fn. Finally,
let w=u+iv be a variable in the complex plane and define
F*(w) = F(W) .
The functions G*, F; and G; are defined similarly.

Theorem: If the supports of f and g satisfy the same separation condi-
tion defined above and f % O,n=1,...,N, and if |F(u)|={G(u)] for all
real numbers u, then there exist a real number ¢, a complex number C
with |C|=1 and a strictly positive integer-valued function a defined

on a set B, C B, such that for Nf2,

a) Gn(w) = C eicw¢(w)Fn(w), n=1,...,N; and for N=2 either a) holds or

b) GHw) = C &' o(w)F,(w) and s3(w) = C eic‘"<p(w)r1(w), where
: y a(z)
d(w) = ]_r - Q
2z

B
€%

The integer a(z) determines how many zeroes at location z are being flipped.
The proof of this theorem is in [1].

If B=¢, i.e., there are no non-real zeroes common to all the Fn, then

$=1 and conclusion a) of the theorem becomes
a') Gn(w) = Ceicw Fn(w), n=1,...,N
and conclusion b) becomes )
b') G?(w) =Ce' ™Y Fz(w) and GE(w) = e1ch](w).
In either case it follows that f=g if B=¢. This proves the following
corollary.
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Corollary: If B=¢ and [F(u){={G(u){ for all real numbers u, then f=x~g.

We note that, since lF(u)l2 and |G(u)|® are analytic functions, the condition
that |F(u)[=|G(u)| for all real u is implied by the condition that this equal-
ity hold for all u in some open interval.

4.  CONCLUSIONS

If f has N>2 separated parts contained within a set A satisfying the
separation condition and f is gotten more or less randomly from the real
world, then the set B will almost always be null. That is, it is unlikely
that the Laplace transforms of the separated parts of f will have non-real
Zerpoes common to all the parts. Thus, we may conclude in this case of func-
tions with sufficiently separated parts that the phase retrieval problem al-
most always has a unique solution among functions having support contained
within A,

Note, however, that our earlier counterexample [2] demonstrates that
even when the separation condition is satisfied for f and B=¢, there can be
non-equivalent solutions having supports not contained in the set A. Only
by specifying a stronger separation condition and requiring f to be real
and non-negative can one insure that f is unique among all non-negative func-
tions of compact support. Specifically, it can be shown [1] for N=2 that if
[-d,d] is the smallest closed interval containing the support of the auto-
correlation of f, which support is also contained within [-d,-d/2]U(-d/3,d/3)
W(d/2,d], and if B=¢, then f is unique among non-negative functions.

It should also be noted that since a two-dimensional analog of the zero-
flipping theorem of Hofstetter and Walther [3] does not presently exist, these
results do not automatically extend to the 2-D case. However, from other con-
siderations, both theoretical [4] and experimental [5], it appears that the
probability of uniqueness is very high for 2-D functions of compact support,
even when the support is not disconnected.
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Mathematical Results of the Phase Retrieval Problem
for Bandlimited Functions of Several Variables

by
Wayne M. Lawton

Jet Propulsion Laboratory, Mail Stop 264-647
4800 Oak Grove Drive, Pasadena, California 91109

The purpose of this paper is to answer the following
questions concerning bandlimited functions F(x) and G(x) of a
vector variable x = (x1,...,xN)f RN,

Question 1. If {F(x)! has rotational symmetry, what properties
of F(x) are implied?

Question 2. If (F(x)} = 1 YeeIN(xy), (separability) wiat
properties of } i are implied?

Question 3. If |F(x)! = !G(x)!, what relationship between "he
supports of the Fourier transforms of F(x) and
G(x) is implied?

Question 4. What is a general condition on F(x) such that if
IF(x)} = |G(x)}! then F(x) = d exp (1 < y, x>)G(x)
or F(x) = d exp (1 <y, x >) G(x) for some |d!} =
1, Y€ RN where <y, x> denotes the inner product of
y and x?

Questions 1-3 were asked in reference [1]. Question 1 is
completely answered by the following results from reference [2].

Answer 1. If [F(x)| has rotational symmetry and N > 2 then F(x)
can be expressed as

F(x) = P(x) exp (271 <y, x >) t [1 _ < xix,_il_} M
1

where yeRN and Ak are the complex roots of F(uw,...,w)
(bandlimited funetions can be extended to be analytic
functions on CN) and P(x) is a polynomial having
either the form (a) if N=2, then

P(X1,x2) = A(x1 + 1x2f“1(x1-1x2f5

for integers m, " my >0 and A€C or(b) 1if N>3, then
P(x) = A(<x, x>) for some integer m > 0 and some

A€C. If N= 1 then no 'symmetry property' for F(x)
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can be implied as demonstrated by the following
example

S
- ie)de o SinT(x=i) PO ST S | SO S P
F(x)f exp(-2ny) exp(-2mixy)dy = A1) = F(o0) ki (1 i+K)(1 i-K)(')
-.5

Answer 2. If [F(x)| = I,(x,) (xy) then F(x) = Fq(xq)u.Fy{xy)
AR EARY . LRSS EALEES ‘AR
where each Fk(xk) is ééngllmited.

The proof of answer 2 like the proof of answer 1 depends on the
result in reference [2] that the complex roots of a bandlimited
function of one variable are determined up to conjugation by its
modulus and the result in reference (4, pages 152-154) that the
complex roots of an analytic function of one variable vary
continuously with the analytic function. By translating F(x) we may
assume F(o0,0,...,0) #0. We prove the result for N=2. Let 'AK(XT) be
the complex roots of the function h(z) = F(x1yz)- Then

Xq X,)

F(x, ,x.) = F(x;,0) exp(x, )—‘ In F(x, oM Coi- ToeT | exp
1°72 1 2, t . .K(.\], _ ,-\K(xl)

Since the \g(x,) are continuous and each dg(xy) is a root of
I{x,) whose set of roots mnust form a discrete sequence, each
)‘K x1) is constant, Lence “K(x1) = \‘K and the factor on the
right is a function Hy(xp) of xp only. A similar expression may be
obtained using H,( x,). Manipulating the resulting functional
equation yields

aS in F(xT,o) =—,\-iLv 1n F(c,0) + dx, for some constant d.
ax A8

2 2
However, since F(x., x2) has exponential growth in both Xy and xp
(when extended to a function on C2) d = o. Therefore, F(x,, X5) =

E'(x1,0) F(o,xe) and we are done.

Answer 3. Let D{F) and D(G) be the smallest closed convex sets
containing the closures of the inverse Fourier
transforms of F and G. Then |F(x)} = !G(x)] implies
D(F) - D(F) = D{(G) - D(G)., However, the following
example proves that it may be the case that D(F) and
D(G) need not have the same shape. Let FI(X) be the
Fourier transform of the characteristic function nf
any triangular region in Re, Let F(x) = Fq(x) F,(x)
and let G(x) = F.(x) F,{x). Then D(F) is a triangulir
region but D{(G) is a Lexagonal region.

The proof of answer 3 for N=1 follows from the result in
reference [5, Theorem 4] which states that if n(r) is the number
of roots ) of a bandlimited function F(x) of one variable such

that

(3)
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A} ¢ r then LMt 0D )

where L = length of the smallest closed interval containing the
support of the inverse Fourier transform of F(x). The answer is
extended for N2 using the Plancherel-Polya theorem in reference
[6, page 353] together with the result in reference [7, page T]
that the support function of a closed convex set uniquely
determines the set. An extensive treatment of the problem of
reconstructing D(F) from D(F) - D(F) is found in reference [8].

Answer 4. If F(x) and G(x) are related as in question 4 then

write F(x) ~ G(x). Let V(F) be the zero set of F(Z)
in ¢N. Then the following condition on V(F) implies
that F(x) ~ G(x) whenever |F(x)}| = 1G(x)]:
1) there exists V,C V(F) such that V, is dense in
V(F) and if Z, weV, then there exits a contjnuous
function g: [0,1] > V(F) with g(o) = 2, g(1) =w and
gradient F(g(t)) 4 (o, 0, ...,0) for every t. In
particular, if

ix
l,0ee,

N
F(x 1,...,XN) = I (Sinc xK) P(e2TT 2ﬂixN)

K=1

where P(Z) is an irreducible polynomial then F(x) is
bandlimited and V(F) satisfies condition 1. Also, the
condition holds if F(x) is the Fourier transform of
any triangular planar region. The proof will be
omitted for lack of space.
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Maximum Entropy Imggg_ﬂeconstruction
from Phaseless Fourier Data

John Skilling

Dept. of Applied Mathematics and Theoretical Physics,
Silver Street, Cambridge, England

We investigate the reconstruction of a real and positive spatial pattern
or "image"

N-t
(1) f; = v F exp(2nijk/N)  , j=0,1,&...,N=1

k=0

from incomplete phaseless Fourier data D, with noise o,
(2) D

The first step is to define the set of "feasible" images, any of which is
consistent with the data. This involves comparing the actual data D, with
the simulated data leI‘which would be observed (apart from noise) from a
trial image f. The simplest comparison measure is chisquared

(3) () = YAF -0 /o,}

Any trial image f for which X' >M4+3.3WM (M = number of data) is rejected
with 99% confidence: the surviving images are feasible and only these need
be considered further. In N-dimensional image-space, the feasible set
forms a 2M-dimensional toroid, projected linearly to infinity in any
unmeasured Fourier planes. Much of the difficulty encountered with

phaseless data stems from the connected topology of this constraint.

Maximum entropy is a formidably powerful and general optimal way of
reconstructing positive images from a wide variety of types of data. It
selects that single feasible image which has greatest entropy

(4) S(f) = -szjlog P; .+ P, =f/%f

This corresponds (Gull & Skilling 1982) to a maximally non-committal
answer to the question "Where would the next photon come from?". In
selecting that image with minimal configurational information I==S, it
confers many advantages. For example (Gull & Daniell 1978), there must be
evidence in the data for any structure which 1is seen. Noise 1is
automatically suppressed in the reconstruction. Instrumental artefacts
such as sidelobes are also suppressed. The resulting image 18 uniquely
easy to comprehend.

%
s
|
;
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An algorithm (Skilling 1982) has been constructed for phaseless data which
reliably maximises the nonlinear entropy function S(f) over the feasible
set for realistic 2-dimensional images. Its results are true local maxima
of S, and appear to be the desired global maxima. Reconstructions of
120x120 images from two simulated datasets are presented here.

One starting image (Fig. 1) was a set of point sources. The other (Fig. 2)
was a diffuse object containing some sharper structure( M87 galaxy).

L ]

Fig. 1. Point sources Fig. 2. Diffuse object (M87)
Each starting image was Fourier transformed to determine its amplitudes.
All the high-frequency amplitudes were discarded and random errors were
added to the remaining ones. Thus each dataset consisted of 3540 surviving
low-frequency amplitudes, subject to noise at a typical level of 1-2%,
together with the total flux If itself, Their phase-zero maps
;= ID,:’exp(2ftijk/N) (Figs 3 and 4) present these data as images.

. ]

Fig. 3. Phase-zero map of Fig. 4 Phase-zero map of
amplitude data from Fig. 1 amplitude data from Fig. 2




The maximum entropy reconstruction from the first dataset 1s shown 1in
Fig. 5. Translated to fit the position of the original image Fig. 1, the
agreement is excellent. All the brighter sources have been recovered 1in
exactly the right places, and the fluxes are correct to about 0.1% of
maximum. The only noticeable difference is that the faintest sources
cannot be seen: there was no evidence for them in the data, so maximum
entropy did not reproduce them. As expected, the reconstruction (Fig. 5)
has an entropy S=z3.227 slightly greater than the entropy S=3.178 of the
original (Fig. 1), which of course also fits the data and is itself a
feasible reconstruction. Since the reconstruction is so close to the
original it seems reasonable to assume that the reconstruction 1is
effectively unique: sparse point sources can be reproduced correctly.

f
t
i
i

Fig. 5. Maximum entropy Fig. €. Maximum entropy
reconstruction of point sources reconstruction of diffuse object

The maximum entropy reconstruction from the second dataset is shown in
Fig. 6. This is not a good reconstruction of the original image (Fig. 2).
The large-scale radial brightness distribution of the background galaxy
is reproduced tolerably well. The bright spots in the jet of the galaxy are
reproduced as such, but in symmetrised locations. Presumably the presence
of high-frequency Fourier amplitudes has sufficed to show that the spots
must be spots, but their low-frequency amplitudes have been confused with
the background galaxy. Accordingly, the spots have been localised in a
maximally non-committal fashion, symmetrised roughly as in the phase-zero
image. Maximum entropy only reproduces sharp structure when there 1s good
evidence for it in the data, and indeed the spots fail to reproduce quite
as sharply as they are present 1n the original. Some of their high-
frequency structure has been carried over into the background galaxy,
giving it the somewhat irregular shape which is otherwise surprising in a
maximum entropy image.
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Nevertheless, the reconstruction (Fig. 6) 1s a true maximum entropy
solution., Its entropy S$:9.233 is greater than the entropy S5=9.189 of the
original. There is no evidence in the data for more structure than in
Fig. 6. In particular, there is no evidence for significant asymmetry.
There are, however, other local maxima. If the algorithm is started near
the original (Fig. 2) instead of near a flat image, it converges to a local
maximum entropy solution very similar to that original with
correspondingly similar entropy.

An algorithm has been constructed which can reliably generate maximum
entropy reconstructions from pure phaseless data, with no approximations
and no prior assumptions. Its operation is undeniably expensive. The
reconstruction Fig. 5 needed 5000 Fourier transforms, whereas the
reconstruction of Fig. 6 needed 470 transforms.

Also, the user may not always be satisfied with the results. Fig. 6, for
example, was suspiciously symmetrical. With experience of phaseless
reconstructions to guide him, the user might well prefer to see an image in
which the spots are distributed asymmetrically. The natural way of
codifying this preference would be to construct a specific numerical model
m;, which could itself be refined by maximum entropy. The generalised
entropy formula (Jaynes 1968)

(4) S = -?pjlog(pj/mj)

can be used for this. Maximising the generalised entropy corresponds to
seeking a maximally non-committal answer to the question "Where would the
next photon come from, given a prior prejudice m; about the radiation
pattern?”., It will produce the feasible positive imzge whose structural
difference from the model 1s least. The algorithm can be generalised

appropriately, and this may be a productive future development.

Another useful development will be the extension to three dimensions for
crystallography (Collins 1982).
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SPECKLE INTERFEROMETRY: ONE-DIMENSIONAL IMAGE
RECONSTRUCTION FROM ZEROS OF COMPLEX SPECTRUM

Yuri M. Bruck and Leonid G. Sodin

Division of Radio Astronomy at the Institute

of Radiophysics and Electronics, Academy of

Sciences of the Ukrainian SSR, Kharkov,
3I0085 USSR

The method suggested by Labeyrie [I] allows reconstruc-~
tion of the Fourier spectrum modulus to be performed for
images scattered by a random atmosphere. Ultimately one is
able to determine the autocorrelation function of the image,
yet not the image itself. The method is based on the rela-

tion Tw) = 0w) $w)+ Nw)

where J(w), Olw!, Sw) and N(w) are, respectively,
Fourier transforms of the speckle image ((x) , brightness
distribution of the object 0(x) , scattering function of
the atmosphere S(x) and additive noise n(x) . We will
further assume that all the functions involved are specified
by discrete sets of sample readings (4, Ok ' S« and N« ,
and go over to a polynomial representation of the spectra by
setting exp(iw)=2, vi2.

I(2)=0(2)SE)+NEZ). (D

Obviously enough, the object of our interest, i.e. O(2)
is completely defined by the complex set of its zeros, Z,. .
Provided the noise level is low, the set of zeros of I(¢2)

(Rik) will contain all the zeros of the object plus those
of the atmosphere polynomialS/2) . If we dispose of a consi-
derable number of speckle-images, then the random zeros Zg
can be eliminated and the effect of noise greatly reduced by
averaging moduli of the corresponding polynomials. In other
words, we can expect the minima of

1@ = 0@S@)+«N@)|* (2)

to rather closely coincide with the object's zeros Zos .
Analysis of the impact of noise has shown that the minima
of II¢2)j2 would be closest to the zeros of 0(2] if the
result of averaging of [/I(2)/* were normalized, with the
normalizing factor <([N(2)[?> (mathematical expectation)
calculated on the assumption that

m-(
Nz)=5 n, z¥
k=0

where /i, are independent, normally distributed values with
the variance g4 . Then




lzlzm~i
\=g% (3)

Thus, the procedure we sugges consists in using the mea-
sured results to determine the coumplex function

_Tel
@)= Zuam

which is, by definition, equal to

4(2)=p(2 2 [S@* N3 ‘ ()
ez ) ¢ INR)IZ) .

The displacement of f(Z) wminima with respect to the zeros
of ((2) is rather small with even high levels of noise.
The restoration accuracy of the Z,, positions depends sub-
stantially on their coordinates in the complex plane. The
farther is |2 from I and the nearer 442 to T , the
greater is the effect of noise. Physically this is quite un-
derstandable as zeros with large or small magnitudes of [Z.|
correspond to images with highly contrasting details where
smaller details can be easily '"masked" by noise. The zeros
with argz2 close to T correspond to images whose de-
tails approach the resolution limit of the telescope, heace
are suppressed by the scattering function S(z).

The numerous model calculations that have been performed
show the technique to provide a satisfactory restoration of

0(2) zeros within the complex sector 0.5=[2(<2,
0sairg2=5m7/6 . Outside this sector the noise levels still
allowing restoration are unrealistic.

The stages of function reconstruction are as follows.

I. The speckle images are covered with a rectangular mesh
whose step size is matched with the resolution; the number
of nodes, m. , corresponds to the size of the scattered
image. .

2. From all the images readings Llx are taken at the mesh
nodes (0sk=m-L ).

3. The polynomials are calculated

m-( . .
I()=2 0,25 =2 Lel2l¥exp(ikarg2).
kz0 K=0

It 1s convenient to specify qqu at equally spaced points
0,"/m, 2r/m, ... etc. taking M=(2+4) m and making use of the
FFT algorithm. 2

4. The values of [I(2)] obtained are averaged over the
individual i es, then the function #(2) 1is calculated ac-
cording to Eq.(4) and employed to restore the Zox zeros.
The multiplicity of a zero can be determined from the deri-
vative of $(2) . The function readings corresponding to the
object sought for are obtained through calculating coeffici-
ents of the [](2-Zowx) polynomial.
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Consider an example where the initial object consisted of
5 readings, viz. I, 2, 4, 4 and 4. The zeros of ((z) are

Z22°TIVZ  and Z34=v2exp(2ti35°) | the sseckle-images
after "scattering in the atmosphere" consisted of up to 32
readings (shown in Fig. £ are two realizations and the doub-
led r.m.s. value of the additive noise). Generated were
three groups of images, each of 200. Application of the above
described procedure to each of the groups yielded the 2=
.5tiv2  zeros practically exactly. As for the 2Z;,,, we
ihad .

I.4T4€Xp (2L 135°; in the first group,
L T.600exp (=t Iés? in the second group,

and I,385 exp (= LI35°) in the third group.
Accordingly, the object. readings obtained were

I; 2.0I; 4.03; 4.02 and 4,I5 in the first group,

I; 2.28; 4.56; 4.52 and 5.I2 in the second group

and I; I.96; 3.92; 3.92 and 3.84 in the third group.

If IT)I* were averaged over all the 600 realizationms,
the object could be reconstructed exactly.

The accuracy of (T(2/[* minimum localization is illust-
rated in Fig. 2 for a two-point object (the zeros are . ).
Shown are two sEeckle-images and |[I(2)[? T"profiles" for
[2(= 1 and arg Z =90°; the noise level is also indicated.
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A more detailed description of the method can be found in
paper [ 2] . It might be worth noting that the technique can
be regarded as a method of {inding the greatest common divi-
sor (GCD) for several realizations of 1I(z) . Note also that
Euolid's algorithm permits restoration of an image from just
two realizations of I(z) , however for very low noise.
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SPECKLE INTERFEROMETRY IMAGE RECONSTRUCTION
TECHNIQUES PROCEEZDING FROM 1'Hk PHASE OF THE
FOURIER THANSFORM

Yuri M. Bruck eand Leonid G. Sodin

Division of Radio Astronomy at the Institute

of Radiophysics and Klectronics, Academy of

Sciences of the Ukrainian SSR, Kharkov,
310085 USSR

The familiar methods of image reconstruction employed in
the speckle interferometry require measurements of both the
transfer function modulus (I] and phase 2] with the ald of a
reference point object. In case the scattering is isotropic,
the phase can be measured with a better accuracy than the mo-
dulus which makes suggestive image reconstruction from the
phase alone. Hayes et al. (3] and Bruck and Sodin[ 41 have
put forward techniques for reconstructing one~ and two-dimen-
sional images from either exact (3] or approximate [ 4] know-
ledge of the phase. In this paper we suggest reconstruction
algorithms for those cases where the spectrum phase is known
to a limited accuracy and no data cxist as to the size and
position of the image. Considered are the uniqueness and ac-
curacy of the reconstruction, and image identification.

Thus, known from the experiment is assumed the spectrum
phase 8(w) on the unit circle which can be written as

8(w)=arg Blw)t Ll +Nlw), 0swsT. (D

(for simplicity's sake we consider a one-dimensional case).
Here argB(«w), 1is the true phase spectrum of the image
sought for, Z is an unknown factor arising from our lack

of knowledge of the image position, and N(w) a random phase
error due to measurement inaccuracies, insufficient averaging
according tol 2] , etec.

Similar as in our earlier work [ 5] , we will assume the
image to be specified by uniformly spaced readings « taken
on a discrete array. The spectrum has been extended to the
entire complex plane as a polynominal B(2Z) . The spectrum
phace is related teLthe readings through the equation

argB(z)= argZﬁK zk with Z=pexplw. (2)
K=0

The problem of image reconstrucyion can be formulated as
that of finding such &« and which would yield the best
approximation of the right-hand side of Eq.(2) to Eq.(I).
Combining the two relations one can obtain a linear set

[3’4] n . .
S b sin(kw-fw))= b, sin O(w). (3)
K=A

Along with these, reconstruction algorithms often make use
of the relations
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n
;ﬁn_‘( sin(Kw-nw 8= b, sin (hw-Ble)]  (a) |

and nfq
2 by sin(kw-6w)) = by sin Bleo) (5)

x:-n/z

which are different from Eq.(3) only in the position of the
initial readin§. Apparently, Eq.(4) corresponds to an image
rotated by I80°. Eqs.(3) and (4) imply a relation n=> M
between the order of the set, n. , and the image size, me(.
The constraint of Eq.(5) is more rigid, viz. m<sn=s 2n.

If 6(w) 1is not known exactly but rather has been speci-
fied at # points, A#>> N , the most expedient technique
is the least-squares fit (4] leading to %ﬁe pseudo-solution

gi: TSé{ :Srg (6)
where .5 is the coefficient matrix of Eqs.(3) to (5), S”

the transposed ,§ matrix and ¥ the right-hand side column
vector. The corresponding estimate error ¢ is

.
$2(351’5) (Sgr"ff’)/lv
The algorithm employs all the initially available data. The
appearance of the matrices STS and Z; allows judging on
the image size without actually solving Eq.(6). The magni-
tude of 9. can serve as a measure of practical realizability
of restoration. The non-uniqueness of reconstruction arises
from the existence of various polynomials B(2) with the same
arg 8(2) .

As has been shown in papers [ 31 and {4#] , Eq.(6) has a

unique solution if the phase 6(w) is known exactly, i.e. if

£=N(s)=0 and the set of zeroes of B(z) does not contain
mutually reciprocal values. Generally, the necessary and suf-
ficient condition for the reconstruction uniqueness is that
the polynomial of either one or two variables should not con-
tain symmetrical factors with linear (or zero) phase.

From that point of view, employing the projection method
for two-dimensional reconstruction (3] would not be a good
choice because of the substantial non-uniqueness. In fact
N(w) 1s always non-zero and f cannot be known in advance,
due to the possibility of symmetrical factors. As a result,
the unique solution of Eq.(6) normally is rather far from the
truec one. Here we have three possibilitjies, The reconstructed
image is closest to reality with some £= f. (where ¢, is
not known!). With £>F, the image obtained through the re-
construction procedure is a convolution of an image close to
the true one and a random, unstable symmetrical image. The
case f<f, 1s the most "dangerous", as the result of recon-
struction is a stable image which can yield a small net esti-
mate error, and the negative sample readings that would ine-
vitably be present might seem to be due to noise. Consider an
illustrating example. Let an image consist of three points
at I; 3.7 and 2.I. The corresponding polynomial, i.e. (I+3Z )
(I« 0.72 ) has one of its zeros inside and the other outside
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the unit circle. Let us,shift the polynomial leftwards by myl-
tiplying it by 2-' ( £=-1). The result is 3(I+0.72 )(I+Z7¥3).
The power Z-' is not allowed by the constraints Eqs.(3) and
(4). However, arg(I+ Z"/B):arg(h Z/3)7! =ar3(1+f(_2/3)k)

Kal
with [2/3|<{ . With n=3 Eq.(6) would yield a "solution"
I+0.372 -0.1222% 4+0.042% characterized by the estimate error
I0Y . As can be seen, the negative reading is small while the
"solution" obtained has nothing in common with the initial
function.

Thus, with Nwl%x0 and 8 unknown each value of £ would
correspond to an image of its own, distinctly different from
all the other . Yet for moderate noise levels algorithms to
provide unique reconstruction of true images are conceivable.
Here we will discuss two of such.

The first is based essentially on Egqs.(3) and (4). Before
all, a linear phase shift is excluded from the phase specified
in the form of Eq.(I),

O () =@lw) - ol - . (7

This is done with the aim of having &(f)=0 . Next, O,(w)=
=@wj+tiw 1is calculated for several values of - and for
every, , = from the range o<l<=n . Using £qs.(3) and (7),
all é«/bo . are calculated. The procedure is i?peated with
Eq.(4) to obtain 8./8. . For all the R and showing

< C.5, closest image pairs are selected either visually or
by means of correlation analysis. The pair of true images is
recognized with the aid of the criterium that /0.(m)/— min and
[l{->min for different /- . Additional criteria for the cor-
rect choice would be the proximity of solutions obtained des-
pite the difference inn .

The other procedure is based on using lq.(5). It can be
shown that with the condition

mel<pn<clm (8)

satisfied, one can always find (n-m+1 )2 pairs éﬁ and FZ
of the linear shift parameter £ tor which the recomnstructed
images would be identical apart from a scale factor and the
shift. One of such pairs would be true, corresponding to
1l,]> max and [f,/» min.. In other words, if Eqs.(5) were
used, true one-~dimensional images would occur in pairs and
two-dimensional in fours. The reconstruction algorithm using

Eqs.(5) is similar to the preceding, with the constraints
set by Eq.(8).

The two reconstruction procedures are illustrated by Fig.I
showi simple images that have been restored according to
Eqs.(?%, (23 and (5) for the case of low noise and different
values of . The reconstruction of one-dimensional speckle
images with different noise-to-signal ratios is shown in
Fig. 2. The phase, ®©('' has been obtained from 200 realiza-
tions with the aid of the method described in papers [2] and

(4] . As can be seen, identification of true images is no
problem in either of these simple cases. The "quality" of
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reconsiruction deteriorates with an increase in the noise
level and for nearly symmefrical images.

we"l

u:FH'l,--I 81@-2 C? ¢ -3 s
7 (13- 42 0 @ o

H.mn__(l,g 078 3 ¢ o0 @ ﬂﬂlk[l

6 o Sl s 39 s .
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1. Introduction

Atmospheric turbulence severely limits the resolution of images from large
earth-bound optical telescopes to about one second of arc or worse, as compared
with the theoretical diffraction-limited resolution of 0.02 seconds of arc for a
5-meter diameter telescope.

Several interferometric methods are capable of providing diffraction-limited
information through atmospheric turbulence [1-3], the most promising of which is
Labeyrie's stellar speckle interferometry [4-6]. These methods provide the |
modulus of the Fourier transform of the object; the phase of the Fourier trans-
form is lost. Unfortunately, except for the very special case in which an un-
resolved star is very near the object of interest [7,8], the Fourier modulus can
be used to directly compute only the autocorrelation of the object but not the
object itself. The autocorrelation is ordinarily useful only for determining
the diameter of the object or the separation of a binary star pair. The problem,
then, is to reconstruct an object from its Fourier modulus (or, equivalently,
from its autocorrelation furction) or. equivalently, reconstruct the Fourier
phase from the Fourier modulus.

This paper briefly reviews a number of proposed methods for reconstructing
2-D objects from stellar interferometry data. Emphasis will be placed on an
iterative algorithm for reconstructing an object from its Fourier modulus, for
which computer-simulation results will be shown. ]

2. Stellar Speckle Interferometry

Labeyrie's stellar speckle interferometry consists of averaging over the
squared modulus of the Fourier transforms of a number of short-exposure images.
Ignoring noise, let a short-exposure (frozen atmosphere) image at time t be

de(x) = Fx) * s5,(x) (1)

where f(x) is the object (x is a 2-D coordinate), s¢(x) is the instantaneous
point-spread function due to atmospheric turbulence and * denotes convolution.
Let D(u), F(u) and S¢(u) be the complex Fourier transforms of d(x), f(x) and
s¢(x), respectively, where F(u) = |F(u)|exp{iv({u)]. Labeyrie‘s averaging

yields
> g2 = ) IR s = 1F) Y Is w12 (2)
t t t

By making measurements on an unresolved star through an atmosphere with the same
statistics or by having an appropriate model for the effects of the atmosphere

[9,10], one can estimate £|St(u)]2 and divide it out from Eq. (2), then tak
the square root, leaving an estimate of the object's Fourier modulus, lF(u)T.

3. Reconstruction Methods Based on Speckle Imaging

If one utilizes all the short exposure images available in stellar speckle
interferometry, then a number of reconstruction methods are possible. By the
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Knox-Thompson method [11-13], one essentially averages over the phase differences
between adjoining points in D{u) to arrive at an estimate of finite differences
(the gradient) of »w(u). Then by averaging over the phase differences one arrives
at an estimate of ¢(u). Eq. (2) is used to determine the Fourier modulus. More
recently log gradients have been used in a similar manner [14]7. In the shift-
and-add method [15,16], one averages over translated versions of di(x), where

the translations are chosen such that the brightest points in all the images are
superimposed. If the object contains within it a very bright point (which must
be present for the method to work) then the shift-and-add method will yield a
diffraction-limited image wi*th a fog-like bias term superimposed. An earlier
version of shift-and-add was used to reconstruct an image of the giant star ;
Betelgeuse [177. !

4. Methods Based on filtering

By detecting intensities both in an image plane and in the plane of a fil-
tered image one can reconstruct the object function. The filtering may simply
be a defocusing of the optical system. Then both the object and the atmospheric
phase function can be reconstructed from a single pair of intensity measurements
using an iterative method imbedded within an iterative method {18]. This un-
fortunately requires a bright object and is computationally burdensome. Another
approach is to perform speckle interferometry in both an image plane and the
plane of an exponentially filtered image [19,207. Then the object can be re-
constructed with an iterative method similar to the one described in Section 6.

5. Methods Based on Fourier Modulus

The image reconstruction methuds described so far depend on processing the
individual short-exposure images, but for other types of interferometry one may
only have access to the Fourier modulus data. Furthermore, even when using the
speckle imaging methods one would expect the estimate of | F(u)| by Eq. (2) to be
obtained with considerably greater signal-to-noise ratio than the reconstructed
phase. For these reasons, methods relying only on | F(u)| are of interest.

For special types of objects the reconstruction can be very simple. If the
object has a companion unresolved star at least an object-width away but still
within the same isoplanatic patch, then the autocorrelation includes a term equa)
to the object that can be separated out {8], analogous to holography [7]. 1If
the object consists of a collection of unresolved stars with nonredundant spac-
ings, then a simple reconstruction method involving the prodict of three trans-
lates of the autocorrelation function can be used [21]. Such objects could also
be reconstructed by an iterative method [22] which was borrowed from the field
of X-ray crystallography.

Some methods are applicable to any object of finite extent but are computa-
tionally difficult. One such method involves the recursive unfolding of the
autocorrelation function, for which the possible solution set expands as addi- '
tional equations are salved [23]. An iterative Newton-Raphson method has been :
shown to work [247, but it involves the inversion of a huge matrix. Another
method relies on the method of tracking the complex zeroes of projections of the
image [25].

A recently proposed method involves the use of "in-between" samples of the
Fourier modulus to reconstruct the phase [26]. Although computationally very
simple, this method remains to be demonstrated on complicated objects. )
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6. Iterative Fourier Transform Approach

Only one method of reconstructing an object from its Fourier modulus has
proven to be practical for the case of general 2-D objects of moderate com-
plexity. The method is related to the Gerchberg-Saxton algorithm [27,28] used
for the phase retrieval problem in electron microscopy, for which cne has a pair
of intensity measurements. For the present problem one has only a single in-
tensity measurement, |[F(u)|¢, but one also has a nonnegativity constraint:

f(x) > 0. In addition, from the knowledge of the autocorrelation function, which
can be computed as the inverse Fourier transform of |F(u)|2, one also has an
upper bound on the diameter of the object [21]. The reconstruction algorithm
[29-31] is depicted in Figure 1. One Fourier transforms back and forth between
the object and Fourier domains, applying the measurements and a priori infor-
mation available in each domain. Actually there are a few families of related
algorithms that can be used. In all of them one Fourier transforms an input
image g(x), replaces the resulting Fourier modulus by the measured modulus,
|F(u)], and inverse Fourier transforms, resulting in an image g'(x). At this
point a number of different algorithms have been used to form a new input based
on how g'(x) violates the object domain's nonnegativity and diameter constraints
[31]. The most obvious one is to set it equal to zero wherever it violates the
constraints. One that works much better is to use

g;(x), x € 0K
gk*](x) = ,
9, (x) ~ Bg (x), x ¢ OK

where k denotes the kth ijteration, 0K denotes the set of points for which
g'k(x) satisfies the object-domain constraints and g is a constant (8 = 0.5 to
1.0 works well),

Figure 2 shows a computer experiment testing this reconstruction method on a
realistic simulation of the Fourier modulus data provided by stellar speckle
interferometry [32]. An undegraded object, shown in Figure 2(a), was convolved
with 156 different point-spread functions to produce 156 different blurred
images. Each point-spread function represented a different realization of the
effects of the turbulent atmosphere. The blurred images were then subjected to
a Poisson noise process to simulate the effects of photon noise. Two of the re-
sulting 156 degraded images are shown in Figures 2(b) and 2(c). The degraded
images were then processed by Labeyrie's method [4], and a photon-noise bias term
[33% was subtracted, to arrive at the noisy Fourier modulus estimate shown in
Figure 2(d). An image reconstructed from this data is shown in Figure 2(e).

For objects of this complexity (in 128 x 128 arrays) for a complete recon-
struction it takes about 100 iterations [31] at about one second per iteration
using a Floating Point Systems AP-120B array processor.

7. Combinations of Methods

Some of the methods described above can be combined to produce a better re-
sult than what can be obtained by any one method alone. In particular, an image
reconstructed with any of the other methods based on speckle interferometry or
using the Fourier modulus information will usually have some negative values and
may exceed half the diameter of the autocorrelation. If one then performs
several iterations of the iterative Fourier transform algorithm, using the re-
constructed images as the initial input, then a truer reconstruction will be ob-
tained. One can either view the iterative Fourier transform algorithm as a post-
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processing step to "clean up" the image reconstructed by another method, or view ’
the other reconstruction method as a means for providing an initial estimate to ;
be used by the iterative Fourier transform algorithm. i

8. Unigqueness

There has been considerable controversy over the question of whether the
solution to this problem is likely to be unique in the 2-D case [34-38]. It
appears that although the 1-D problem is usually not unique {393, the 2-D prob-
lem usually is unique [34]: and this has been borne out by experimental results
using the iterative Fourier transform algorithm [29-32,40].

9. ggnclusions

Both from a theoretical viewpoint and from computer simulation results it
appears that the reconstruction of diffraction-limited images of astronomical
objects should be feasible, despite the turbulent atmosphere, using stellar
speckle interferometry combined with the iterative Fourier transform algorithm.
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Frequency Sampling of the Short-Time
Fourier Transform Magnitude*

by
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Abstract

Under mild restrictions, a sequence x(n) 18 uniquely specified by {its
short-time Fourier transform magnitude at one or two frequencies for each n.

I. Introduction

The short-time Fourier transform (STFT) is a signal representation of
considerable interest in a number of signal processing applications including
speech processing. For a discrete time signal x(n), the STFT is defined 1]
as

Xw(nL,w) = I x(m)w(nL—m)e-jwm 1)

m=-—o

where the subscript w in Xy (nL,w) denotes the analysis window w(n), and
where L denotes the number of samples w(n) is shifted in computing successive
Fourier transforms. We will assume that both x(n) and w(n) are real, and that
w(n) is N points long and non-zero for 0<Kn{N~1l. Note that when L has minimum
value I, adjacent analysis window positions have maximum overlap.
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It has been recently established [2] that under mild conditions x(n) is
uniquely specified by Nl arbitrarily spaced samples of 1its STFT magnitude
;Xw(nL,m) over the frequency 1interval (O,w]. These results are
sufficiently general so that L ranges up to half the analysis window length.
In this paper, we show that for the maximum overlap case, fewer frequency
samples of |Xy(n,w)| are sufficient for unique specification of x(n).

I1I. Theory

For a large class of practically important sequences two frequency
samples of [Xy(n,w)| for each n are sufficient to uniquely represent x(n).
When x(n) 1s further constrained to be non-negative, only one frequency
sample is needed., Specifically, the first more general result can be stated
as:

Let x(n) denote a real, right-sided sequence with no more
than N-2 consecutive zero samples between any two non-zero
samples. The sequence x(n) is uniquely specified within a
sign factor by two appropriately chosen frequency samples
of [Xy(n,w)| in the interval [0,n] for each n.

We outline a demonstration [3] of this statement by developing an
algorithm that reconstructs x(n) from two appropriate frequency samples of
Xyg(n,w) | . Congider the smallest value of n, say n,, such that x(ng) is
non-zero. Then from (1), |X,(ny,0)] =|w(0)||x(ny,)|. Thus, by finding the
smallest n such that [Xy(n,0)] is not zero, n, can be determined. Then we
have

x(n) = 0 for n<n o (2a)

and
X (n_,0)
x(no) = * -'—w—wz—g-)—l # 0 (2b)

Note that w(0)#20 in (2b) since we are constraining w(m) to be nonzero over its
duration. The two solutions for x(n,) represent the sign ambiguity, and
x(ng) can be chosen to be ~ither of the two solutions. Assuming we choose
the correct sign, we out.ine how x(n) can be recursively determined for
mng. Noting that w(n) 1is zero outside O0<n{N-1, with L=1 (1) can be
rewritten as

Xw(n,w) = Y(n,w) + x(n)v‘v(O)e_jmn (3a)

where

n-1 -
Y(n,w) = I x(m)w(n-m)e Jum (3b)
m=n—N+1

|
!
|
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Taking the squared magnitude on both sides of (3a),

x2(n) + b(n,w)x(n) + c(n,w) = 0 (4a)
where
jwn
_ . Rel[Y(n,w)e’ "]
b(n,w) = 2 = C0) (4b)

,Y(n,w),z - 'Xw(n,w){z

c(n,w) (4c)

w?(0)

Note that both b(n,w) and c(n,w) can be determined from x(m} for m<n. When
(4) is solved for x(n), there are two solutions for each value of w. Consider
two distinct values of w, say w; and wp; in the interval [0,n]. Since x(n) is
assumed not to contain more than N-2 consecutive zero samples between the
first and last non-zero samples, it is possible to show [3] that one can
always find an w; and wy for which b(n,w) and c(n,w) in (4) are not the same.
From the properties of quadratic equations, then, the two solutions associated
with w; cannot be the same as the pair of solutions for w,. However, one of
the solutions must be identical and that is the true value of x(n). From the
above, once x(n,) is determined from (2), x(n) can be recursively determined
by solving (4) at two appropriate frequencies for n>ng. This allows us to
determine x{n) for all n. As we continue the above procedure, if we find
x(n)=0 for N~1 consecutive points, x(n)=0 from that point on. If we choose
the wrong sign in (2), the reconstruction procedure ylelds -x(n). Thus we
determine x(n) within a sign factor.

When x(m)w(n-m) in _(3) 1is non-negative, 1t 1is easily seen
that IY(n,O)IZ < [Xw(n,O)[2 so that c(n,0)<0 in (4). Consequently, the two
solutions of (4) for w=0 have different signs (except when | Y(n,0) ]2 =
'Xw(n,O)] 2 where it can be shown that x(n)=0) and =x(n) 1s uniquely
determined from only one frequency sample. With this observation, 1it is
straightforward to derive conditions on x(n) and w(n) to uniquely represent a
non-negative x(n) with in(w,O) j . For example, we can state the
following:

Let x(n) denote a real, non-negative, right-sided
sequence, Assume w(n) is positive for 0<n<{N-1. Then the
sequence x(n) is uniquely specified by K Xy(n,0)

This result <can be alternately demonstrated through a recursive
reconstruction procedure which is linear, and avoids solving (4). As before,
x(ny) 1is solved for usiug (2b). The sign ambiguity 1is resolved since x(n)
is known to be non-negative. To determine x(n) for mny, we evaluate (3) at
w=0 to obtain
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n—-1
X (n,0) = I x(m)w(n-m) + x(n)w(0) (5)
v m=n-N+1

Noting that x(n) is non-negative and w(n) is positive, (5) can be rewritten as

n-1
'X (n,O)‘ - £ x(m) w(n-m)
v m=n—~N+1

x(n) = e (6)

Clearly, this equation can be evaluated recursively to yield x(n) for mwn,.
In our conditions, we have assumed that x(n) is a right—sided sequence.
It should be clear however, that similar statements can be made for a

left-sided sequence.

I1I. Implementation

In practice, the short-time Fourier transform magnitude is often computed
at uniform frequency samples through the discrete Fourler transform (DFT).
Therefore, from the point of view of 1implementing algorithms for signal
recovery, 1t 1s of interest that our thecry remains valid when Xw(n,mﬁ is
replaced by ;Xw(n,Zwr/M)] where M is the DFT length,

In particular, suppose that x(n) 1is a right~sided sequence with no more
than N-2 consecutive zeros over 1its duration. Then in a style similar to our
demonstration in the previous section, we can show that x(n) 1is uniquely
specified within a sign factpr by two qppropriate frequency samples of the
discrete-frequency function  Xg(n,2nr/M). provided that M>2N-2 [3] . That
is, with this condition on M, we can always find two values of 2nt/M which
yield two distinct quadratics in (4).
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Averaging the Fourier Phase Inforimation in a
Signal Ensemble without Calculating Phase

Herbert W, Swant
Joseph W. Goodman

Stanford ISlectronies Laboratory
Information Systems
Stanford, Ca. 94305

1. Introduction A length-M discrete stochastic process, s(k}, and a length-N determint-tic
sequence, h(k). arc convolved to yield the discrete stochastic process, r(k). If we take the
length-L discrete Fourier transform of s(k)., h(k), and z{k), where L is some integer greater than
N4+ M- 2, and pad with zeros as necessary, then

X{(n) = S(n)H(n) {1)

for 0<n <. Here H(n} is deterministic while X' (1) asd S(n) are stochastic. Given an ensem-
ble of the process z(k), and sufficient knowledge of the self-statistics of #(k), we wish to recover
&(k). Problems such as this arise in the fields of geophysics, radar signal processing, and space
object imaging. Although it is easy to estimate the Fourier magnitude of (k) from

1/2

()| = (TR T (2)

estimating the phase of ff{n} can be difficult, due to the phase unwrapping problem|l]. The
difficulty is worsened by observational noise and by extending the problem to 2-dimensional
mages.

2. Cepstral Averaging One method of solving this problem is by averaging the logarithms of
Eq. (1). Then

H(n):-exp{<log.\‘(n)> <|og5(n)>} . (%)

Although this technique is simple in concept, it must be remembered that X(n) and S(n) are
comyplex quantities, and that the phases of X(n) must be properly unwrapped to the correct mui-
tiple of 27. An adaptive algorithm exists to do this{2], but it is cumbersome to extend to two
dimensions, and as we shall see, not really necessary.

The alternative to using 15q. (3) is to use the so-called “ramp cepstrum,” defined by

il . .
C {s(k)) = -LF *{D[.\(nn/.\(n )}. (1)
where F is the discrete Fourier transform and D is a modified differentiation operator satisfying
D {ej’.’tu,’L} — Jﬂt,l’:u/l, (5)
L '

Since an arbitrary length-1, sequence, X(n), can be decomposed into a sum of complex exponen-
tials via the discrete Fourier transform, we may use the linearity property of differentiation to
write that

IThiv work was performied while the first author was with Sandia National Laboratories, Livermore, Ca. The
<erand author ie with Stanford University. The work was :ponsored by the United States Department of Energy, and by
the Air Force Office of Scientific Research.
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I){.Y(rn)}::-f;—[ (WE+ 2220 W 4 (L Oz(l 1)t ”~], (8)
where W, =¢ 7" * 4nd
L
7lk) = %231-\1")"1 “=F {X(n)} (7)
‘s 0

ft is shown in (3] that this differentiation operator satisfies the product rule

D{S(n )} (n)}=D{S(n)}H{n}+ S(n)D{H(n)}, (8)
provided the length of s{k}#h(k} is less than or equal to L. Substitution of Eq. (8) into Eq. (1)
vields

Cpumun:iF'mv" 4+ Dlifn

n l S(n} H(n) (9)
=C {sth)} + C{nth)}.

Conseqguently . we have an exact mapping of convolution nto addition, which was the original
motivation behind the intsoduction of the complex cepstrum{4]. Although the ramp cepstrum has
appeared in the literature previously|2] it has never been applied to this class of problems before,

nor has it been realized that it represents an rract mapping into finite field addition, without the
subsequent integration and phase unwrapping step.

Next, we notice that Eq. (4) may be written in the form

k)@ k) = k 2(k). (10)
where ® denotes circular convolution and 7(k)=C {z(k)}. This may further be written either as
[X.)% = Rx (11a)

or
(Xx = Rkx, (11b)

where [X.]is the L X L circulant representation of z(k); [X,] is the similar representation of z{k),
and x and x are L X1 vector representations of r(k) and z(k), respectively. The first column of
[V.] w x. while the first column of [X] is x. R is the LXL ramp matrix,
R=duag{0,1, ... .L 1} To find the forward ramp cepstrum of x we solve x=[X]'Rx. If [X]
is singular, then X(n)=0 for some n. In this case we instead use X=[X,]' Rx, where {X]|" is
the Moore-Penrose pseudo-inverse. To find the inverse ramp cepstrum of %, we solve for the vece-

tor x which minimizes
vy g) :
X. x
- ] h ‘ (12)
Pixt)® ) )
The required x is an eigenvector corresponding to the minimum cigenvalue of ([X.]-R)*([X.] R).

Note that a ramp cepstrum may be recovered only to within a constant d.c. gain factor. Fast
approxumate and iterative techniques to solve this problem are given in [3].

Eq. (3) now is changed to become

h(k)=C‘{<C(z(k)}> <C{s(kn>}- (13)

<C {z{k)}> may be obtained from the given ensemble of data. <C{s(k)}> in general
depends upon the joint statistics of S(n) and is more diflicult to obtain. However if S(n)is a
circular complex Gaussian r.v. with nonzero variance for all n, then it may be argued|3] that

LTIt I T
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<C {s(k}}> ~ £5D{<|$(n)[ >}/ < S(n)] >. (14)

3. Experimental Results This procedure was applied to a series of l-dimensional data. The
unknown deterministic function, A(k), appears in Figure (a), along with a typical realization for
#{k). designed to simulate a cross section of an atmospheric turbulence point spread function. A
typical realization for z(k), plotted with truncated edges, is shown in Figure (b). Finally, Figure
(c) shows signal recovery after 25, 100 and 1000 averages of Eq. (13). In these simulatins,
<C {#(k})}> was obtained empirically by averaging the cepstra of signals from the same ensem-
ble of #(k). Examples of 2-dimensional signal recovery appear in [5].
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Estimation Using Unwrapped Phase Averaging,” IEEE Trans. Acoust., Speech, Sig-
nal Proc. ASSP-29(3) p. 508 (1981).
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A SUFFICIENT CONDITION FOR PHASE RETRIEVAL IN TWO .

DIMENSIONS

M. A. Fiddy Physics Department, Queen Elizabeth
College, Campden Hill Road, London W8 7AH

B. J. Brames The Institute of Optics, The University

J. C. Dainty of Rochester, Rochester, NY 14627.

Abstract

Eisenstein's criterion for irreducibilit, is used to
modify an object function, thus ensuring uniqueness of
phase retrieval in two dimensions.

INTRODUCTION

Phase recovery methods considered to date include
the two defocus method, the Gerchberg-Saxton algorithm

1,2

and Fienup's algorithm These iterative techniques

have been compared in detail3

, but for their convergence
rather than uniqueness characteristics with real

sampled data. Uniqueness is guaranteed for the two
dimensional phase problem if the observable is an
irreducible entire function. Although it has been

shown4 that the set of reducible polynomial functions

of more than one variable is a set of measure zero,

this does not mean that one can always assume a priori
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that a unique phase exists in two dimensions. To ensure
uniqueness we should restrict ourselves to classes of
objects for which it is known that their Fourier
transforms are irreducible polynomials of degree
determined by the number of data points. We present

a modification to the object distribution which ensures
that its Fourier transform is an irreducible polynomial.

The comparison is then made, using Fienup's algorithm,

of object reconstruction with and without the modification.

The particular modification selected from many which

would ensure irreducibility has similarities to holo-

graphy.

IRREDUCIBLE POLYNOMIALS

A polynomial of total degree N in two variables
will require (N+1)(N+2)/2 coefficients and thus this
number of data pocints to represent it uniquely. If we
have N2 data points, then we can assume that the
maximum degree in each variable is N-1 , and thus
find N2 of the coefficients which are associated with
this polynomial. We wish to ensure irreducibility of
this polynomial. The example given by Bruck and Sodin5
in which a reference point is placed to one side of a

one dimensional object is very restricted.

If tue object support is not known, then the
simplest step is to assume a constraint for irreducibility
outside a simply-shaped region within which the object is
known to be confined. 1If the object support is known, a
more appropriate and specific constraint can be intro-
duced and, in addition, it may be possible to model the
object by a polynomial of higher degree and thus achieve

!
%




higher resolution. The following is a sufficient
condition for irreducibility of F(zl,zz) , z complex :

6 .
EISENSTEIN'S CRITERION - Consider F(z;,z,) as a poly-

nomial in zy i.e.,

N-1
F(zl’ZZ) = aO(ZZ) + a1(22) Zy e aN—l(ZZ) zq
Thus the coefficients are polynomials in 2z, . If

there exists a prime (irreducible) factor p(zz) which
dévides ag, d1s-+- ag_9 but not aN_1 - and if

p (22) does not divide ag, then F(zl,zz) is
irreducible. In ( the only prime is of the form

z, + b , where b 1is complex.

Consider the general form of a polynomial in two
variables having maximum powers J and K in zy and z,

J K .
- : J
F(zl,zz) = g g £(3,k) z1” 2z,

k

The coefficients of the polynomial are samples of the
object. We can construct an irreducible polynomial in,
for example, the following way. Assume the region
containing the object support is a rectangle defined by
0 j<L-1 and 1 g k ¢ M. A reference point at (L,0)
ensures irreducibility provided that the point at (0,1)
is non-zero. The simplest prime, Z,, divides all
coefficients except that of the zlL term, and 222 does
not divide the 210 coefficient.

The reference function introduced can be arbitrarily
close to the object support, provided that the Eisenstein
criterion is satisfied. The method has similarities to
off-axis holography, a holographic reconstruction failing
because of the overlap of the auto- and cross-correlation

terms.

[
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IMPLEMENTATION

It has yet to be proved that, when only one
possible phase function exists, the Fienup method con-
verges to the correct phase. However, we have compared
object reconstructions using this algorithm with and
without the reference using the same initial phase guess.
The results are very encouraging, showing a rapid con-
vergence with the reference when there is no sign of

convergence to the correct solution without it.
CONCLUSIONS

Despite the likelihood of irreducibility for functions
of more than one variable, the lack of consistent success
of phase algorithms suggests that irreducibility should
be guaranteed a priori. The Eisenstein criterion is one
particular sufficient condition for irreducibility. Having
imposed the irreducibility criterion, it was found that
the Fienup algorithm converged quickly to the correct
missing phase.
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SIGNAL RECONSTRUCTION FROM PARTIAL FOURIER DOMAIN INFORMATION *

Alan V. Oppenheim and Jae S. Lim

Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
Research Laboratory of Electronics
Room 36-615
Cambridge, Mass. 02139

I. INTRODUCTION

There are a variety of practical problems in which only the phase or
magnitude of the Fourier transform of a signal is known and it is desired to
reconstruct the signal. In this talk, a number of results developed in the
Digital Signal Processing Group at M.I.T. over the past several years will be
described. The work discussed began initially with an exploration of the
intelligibility of phase-only signals, that is ones for which the correct
Fourier transform phase is combined with a constant or characteristic Fourier
transform magnitude function. Motivated by the importance of Fourier trans-
form phase in relation to Fourier transform magnitude, a theory and associated
algorithms were then developed for the exact reconstruction of finite length
signals from phase information alone.

It is generally recognized that there is an asymmetry in the results for
signal reconstruction from phase alone and from Fourier transform magnitude
alone. In particular, whereas for finite length signals, exact reconstruction
to within a scale factor is possible from phase for one-dimensional or multi=~
dimensional signals, a corresponding result is only true for multi-dimensional
signals for reconstruccion from Fourier transform magnitude. Furthermore, in
the multi~dimensional case, there is considerably more difficulty with robust-
ness and convergence of the algorithms for reconstruction from magnitude than
for reconstruction from phase. Recently, we have developed a theory and asso-
ciated algorithms for exact reconstruction of finite length signals from
Fourier transform "amplitude”" defined as the Fourier transform magnitude
augmented by one bit of phase information. Both the theory and algorithms
parallel very closely those for reconstruction from phase. Furthermore, a
theory and associated algorithms have been developed for the exact reconstruc-
tion of signals from the magnitude of the short-time, or sliding, Fourier
transform. The algorithms for this reconstruction appear to be relatively
robust and a number of applications are currently being pursued.

This work has been supported in part by the National Science Foundation
under Grant ECS80-07102 and in part by the Advanced Research Projects Agency
monitored by ONR under Contract N00014-81-K~-0742 NR-049-506.
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II. REPRESENTATION OF A SIGNAL BY ITS FOURIER TRANSFORM PHASE

Apparently independently, and in a number of different contexts,
including x-ray crystallography, image processing, and acoustical and optical
holography, it has been recognized that many features of a signal are retained
in a phase-only Fourier synthesis, but not in a magnitude-only Fourier synthe-
sis {1]. There have been a variety of {(not totally satisfactory) analytical
attempts at explaining the reason for the intelligibility of phase-only
signals. The explanations more or less center around the fact that edge and
position information irn signals is strongly reflected in the phase and to the
extent that this information is important for intelligibility, as it tends to
be for speech and images, intelligibility can be retained in phase-only
reconstructions.

The reasonably high intelligiblity of phase-only signals demonstrates the
fact that much of the important information resides in the phase and raises
the question as to whether some or perhaps all of the magnitude information
can be extracted or inferred from the phase. Although, in general, a signal
is not uniquely defined by its Fourier transform phase, it may be under cer-
tain conditions or constraints. One well known set of conditions under which a
signal may be uniquely recovered to within a scale factor from its phase is
the minimum phase or maximum phase condition. Under these conditions, the log
magnitude of the Fourier transform is the Hilbert transform of the phase. For
many signals of interest, the minimum phase or maximum phase condition does
not generally apply. There are, however, other sets of conditions unrelated
to the minimum phase or maximum phase conditions under which signal recovery
to within a scale factor is possible from the phase. In particular, for one-
dimensional discrete time signals, it has been shown that if the signal is
finite 1length and has a z-transform with no zeros in conjugate reciprocal
pairs, then phase information alone is sufficient for signal reconstruction
[27. This result has also been extended in a number of ways to multi-
dimensional signals [3,4].

A variety of algorithms have been developed for implementing exact signal
reconstruction from phase. One algorithm consists of solving a set of
simultaneous linear equations. A second, more robust algorithm, is an itera-
tive procedure which alternately imposes the finite length constraint in the
time domain and the known phase information in the frequency domain [5].

I1I. REPRESENTATION OF A SIGNAL BY ITS FOURIER TRANSFORM AMPLITUDE

It is well known that the above conditions for signal reconstruction from
Fourier transform phase do not also apply to reconstruction from Fourier
transform magnitude. While theoretically a two or higher dimensional finite
length signal can be recovered from Fourier transform magnitude [6] the proce-
dure does not appear to be robust and practical algorithms have not been
developed. However, a theory paralleling that in Section II has recently been
developed which demonstrates that for real-valued, causal and finite extent
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signals in either one dimension or higher dimensions, a signal is exactly
represented by and reconstructable from the Fourier transform magnitude
together with the sign of the real part of the Fourier transform,
corresponding to a one-bit representation of phase (7,8]. The Fourier trans-
form magnitude, together with one bit of phase information, has been referred
to as the Fourier amplitude, and although in its present form the theory
requires knowledge of the amplitude at all frequencies, a practical algorithm
has been developed utilizing the discrete Fourier transform. This algorithm
is an iterative algorithm similar to that used for reconstruction from the
Fourier transform phase whereby the time domain and frequency domain
constraints are alternately imposed. While convergence of the algorithm has
not been demonstrated theoretically, it has effectively converged to the
correct answer for all cases on which it has been tried.

IV. REPRESENTATION OF A SIGNAL FROM THE SHORT TIME FOUKIER TRANSFORM
MAGNITUDE

In many application areas, signal processing is carried out on the basis
of a short time Fourier analysis. In speech processing in particular, the
short time Fourier transform is used as the basis for both speech analysis and
speech synthesis in a wide variety of applications. Often it is the Fourier
transform magnitude that is recorded or processed under the assumption that
the associated loss of information associated with discarding the phase is

acceptable. Recently a theory has been developed which demonstrates that
under very mild conditions, the short time Fourier transform magnitude is suf=-
ficient for exact representation of the signal (9,10]. In essence the

requirement is that the analysis window be known and that the short time
Fourier transform magnitude be available at time increments which are less
then one-half of the 1length of the analysis window. Based on these con-
ditions, it has been shown that the original signal can be exactly recovered
to within a multiplication by plus or minus unity. Furthermore, a variety of
algorithms implementing this reconstruction have been developed and imple-~
mented.

The importance of this theory relates not only to reconstruction when the
exact short time Fourier transform magnitude is known but also to applications
in which it has been purposely or inadvertently modified. This arises, for
example, in speed rate changes of speech for which the time scale of the short
time Fourier transform is purposely altered. In such cases, the resulting
function of time and frequency is no longer a valid short time Fourier trans-
form. Nevertheless, reconstruction using the algorithms based on short time
Fourier magnitude alone provide a phase consistency in the reconstructed
signal, which is highly desirable. A similar issue and corrvesponding applica-
tion lies in the use of these results in the context of signal enhancement
based on the short time Fourier transform.

] . I
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o Indinite number of solutions. This fact gives some freedon.
in selecting that solution which has an additional property. In
a paradexical example one can construct an optical system which
s odidrraction-limited (i.e. has no aberrations) if illuminat.d
with incoherent light and on the other hand has aberrations Y

Lirluminated with coherent light.

The pupll function of a diffractior-limited system is ccon-
svint within, and zero outside, the exit pupil. If fhe right-
hand side of eq. (1) 1s a transfer function of the diffraction=-
limited system with either ractangular or circular aperture,
then eg. (1) has only one solution. This can be derived from

es

-
v

ults in [9]) and [10]). The recent work [11] should be help-

LN

ja—

in generalicaticon of this result for an arbitrary convex
pupil,
The ollowins example shows that the case of the exit pupil

consisting of divioint sets is different. Then eq. (1) may have

ot g detine the diffraction-limited system with the pupil

. = et {iCu o+ 1.5) + rect(u-0.5) ()
domoew o cree o x her the Fourler transform

Ly = Lol luy ] (3)
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3, the following function is the solution of ea. (1) with
the rirht-hand side equal to the autocorrelation of (2):

Polu) = FLTTU L p (o (x=2¥)/(x=2) ), (5
where 2 is one of the zeros of p(x) and is o the orm

o o= 0.409064 ~ 0.0608354] (e

One may check that PL(u) 1s not real, i.c., the cystem with
+ pupil function equal to P,(u) has aberrations and works like
the diffraction-limited system under incoherent illumination bo-

cause Py(u) generates the same incoherent transfer function as
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Dependent and Independent Constraints for a Multiple
Objective Iterative Algorithm

Joseph N. Mait and William T. Rhodes
Georgia Institute of Technology
School of Electrical Engineering
Atlanta, Georgia 30332
Constrained iterative algorithms have been applied primarily to single
objective applications,1 where by objective we mean that distribution that is
to be reconstructed from partial information ot synthesized with desired
characteristics, In a recent work by the authors,2 Fienup's error-reduction
algorithm was extended to multiple objectives, as shown in Fig. 1, and was
applied to a specific synthesis problem with two objectives. 1In this paper,
we illustrate an important characteristic of wmultiple objective iterative
algorithms, dependent constraints.
Our problem is the synthesis of two pupil functions Pl(u) and PZ(U)' for
use in the incoherent optical spatial filtering system in Fig. 2, such that a
desired bipolar spatial 1impulse response or point spread function (PSF)
results. The effective pupil function P(u;AI,A2,¢) of the optical system in

Fig. 2 is given by3

. - ¢
P(u,Al,AQ,Q) AlPl(u)e + A2P2(u), (1)
and the corresponding PSF f(x;Al,Az,G) by

2
£(x;A ) ,A,,9) = |p(x;Al,A2,o)|

U}

2 2 2 2 ,
Allpl(X)l + Azlpz(x)l (2)

+

* . je . * -je
A1A2[p1(x)p2(x)eJ + pl(x)pz(x)e 1%

where the pupil function P(u) and the coherent spread function (CSF) p(x) form
a Fourier transform pair. A desired bipoiar PSF f(x) may be synthesized
through control of transmittance factors A1 and A2 a, . phase ¢ .

Lohmann and Rhodes identify two distinct regimes for implementing bipolar

PSFs in this way, pupil interaction and pupil noninteraction.3 The
synthesized PSF fs(x) resulting from pupil noninteraction is given by
2 2 2 2
fs(x) = Allpl(x)| - Azlpz(x)l , (3)
and for pupil interaction by (where ¢(x) = arg {pl(x)z, 1=1,2)
fs(x) = ZAlAzlpl(x)pz(x)l{cos[Qe + Ol(x) - Oz(x)] (4)

- cos[@b + 01(x) - Oz(x)l}
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where Qa and @b are two different, but fixed, values of phase ¢ in Fig. 2.

Since it is the pupil functions P,(u) and P,(u) that describe the system,
they are our objective functicis. From a practical optical standpoint, the
pupil functions must be of finite extent; thus we desire the following of our
system:

1. synthesis of a bipolar PSF

£,(x) = f(x), where £(x) is the desired bipolar PSF.
II. finite extent pupil functions

P, 2(u) = (u) rect (%),vhetew is the extent of the pupil,

1,2
With respect to Egs. (3) and (4), Condition 1 is a dependent, or mutual
constraint, since both pl(x) and pZ(X) must jointly satisfy the constraint.
This 1is in contrast to Condition II, where the constraint on Pl(u) in no way
determines or affects the constraint on P,(u). Understandably, greater
freedom exists, and more ingenuity may be required, to satisfy a dependent
constraint as opposed to an independent constraint because there are no
explicit constraints on the objectives.

By definition of the error-reduction algorithm, a point not satisfying
the domain constraints is replaced by a point that satisfies the constraint

and is a winimum distance from the original point.1

Figure 3 is a vector
diagram depicting the minimum changes necessary to assure Condition 1. It is
assumed that the desired PSF f(x) is dependent equally upon pl(x) and pz(x);
thus modifications to one are equal and opposite to modifications of the other
as long as Condition I is maintained. Condition I 1is therefore satisfied for

the pupil noninteraction regime, assuming Ay = Ay =1, by

2
, lp, GO |7+ lpz(x)[2 + f(x)
lpl(x)l = Wpos| ) !, (5a)
2
. o, 0%+ o002 = £
[p,(x)| =WPOS{ - I, (5b)
2 2
where POS[g(x)}] is a half-wave rectification of g(x). The phase is
undisturbed. For the interaction regime, assuming the modified point 1is

a eJe, 2A1A2 = 1/2, 08 = 0, and Ob = I, Condition I is satisfied by

lp, (x| . ® (x) + 0, (x) + 8

lpl(x)| = QT;;T;YT, 01(x) = 5 , (ba)




ThAl4-3

Ip,(x)] : 0 (x) + 0,(x) - 6

|p2(x)| = GT;;(;TT, 02(x) = 7 . (6b)

Algorithms  implemented using Egs. (5) and (6) were tested

experimentally. With the bandpass filter in Fig. 4 as the desired bipolar
PSF, Figs. 5 and 6 represent pupil noninteractive and pupil interactive
synthesis of the PSF after 100 iterations wusing Eqs. (5) and (6),
respectively. The normalized squared error is 0.0875 for the noninteractive
regime and 0.5137 for the interactive regime.

The high error for the interactive regime may result from the great
amount of freedom the algorithm presents; although the error is reduced with
each iteration, the reduction is slight. For this reason, the algorithm was
modified to force the synthesized point equal to the desired, the addition of
A to fs in Fig. b, as opposed to altering its projection onto the real

2

axis, the addition of A1 . In the limit of a large number of iterations,

Al and A2 should be equal. The results of this algorithm are presented in
Fig. 7. The normalized error is 0.0276.
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Signal Reconstruction From Fourier Transform Amplitude*

e e e

Patrick L. Van Hove, Jae S. Lim, and Alan V. Oppenheim

Massachusetts Institute of Technology
Research Laboratory of Electronics

Department of Electrical Engineering and Computer Science
Cambridge, Massachusetts 02139

. Introduction

in a variety of contexts, it is desirable to reconstruct a sequence from

partial Fourier domain information. As a consequence, considerable attention
has been paid to, and some significant results have been developed in, this
area. For example, it has been established [1,2] that under very mild restric-
tions a finite extent one-dimensional (1-D) or multi-dimensional (M-D)} sequence
is uniquely specified to within a scale factor by its Fourier transform (FT)
phase, and algorithms for implementing the reconstruction have been developed.
ft is well known that in contrast, the FT magnitude does not uniquely specify a
1-D sequence. Even for M-D sequences, the FT magnitude specifies a sequence
only to within a translation and a central symmetry [2], and reconstruction
algorithms developed so far have been successful [2] for only a very restricted
class of M-D sequences.

in this paper we summarize new results on the reconstruction of 1-D and M-D

sequences when the FT magnitude and one bit of phase information is known. in

particular, these results show that under very mild restrictions, this is

sufficient to uniquely specify the sequence.

{t. Theory

Before we present a summary of the theoretical results, we define the nota-
tion that will be used. Let x(n) denote a 1-D sequence which is causal and '
finite extent so that x(n) is zero outside O0<n<b-1. Furthermore, we restrict

x{n} to be real-valued. Let X(z) and X{w) represent the z-transform and

Fourier transform of x{(n), so that

*This work has been supported in part by the Advanced Research Projects Agency

monitored by ONR under contract NUJO14-81-K-0742 NR-049-536 and in part by the
National Science Foundation under Grant ECS30-07102.
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L-1 "
X(z) = Zo x(n)z (1)
n=
L=t -juwn
X(w) = X(2) = Z x{n)e (2)
jw n=0

The FT X(w) can be represented in terms of its magnitude |X(w)| and phase Ox(w)

as follows:

J Gx(w)
X(w) = |X{(w)]e (3)

To ensure that 6x(w) is well defined at all w, we assume that X{z) has no zeros

on the unit circle. The phase function ex(w) in Equation (3) represents the

principal value of the phase so that
-7 < ex(w) <7 (4)

The one-bit FT phase information will be represented by the function Si(w)

defined as

+1 when 0-m < 8 (w) < o
5o (w) = (5)

-1 otherwise

where a is a known constant in the range of O<a<w. Thus, the complex plane
is divided into two regions separated by a straight line passing through the
. . . T /2
origin and at an angle o with the real axis. For example, for a=, Sx {w)
. . ) Q
represents the algebraic sign of the real part of X{w). The function Gx(w)
defined as
a o
Gx(w) = Sx(m) [X (w)] (6)
will be reffered to as the FT amplitude since it contains both magnitude and
sign information.
In our recent research, we have shown [3] the following statement:
Statement |
Let x(n) and y(n) be two real, causal (or anti-causal), and finite extent

sequences, with z-transforms which have no zeros on the unit circle. |If

T n
G:(m)=G$(w) for all w and O<a<w, then x{(n)=y(n). When a=n, if Gx(w)sGy(w) and

[T SO




x(0)=y{(0)=0, then x(n)=y(n). '

Statement | shows that under mild restrictions, a 1-D sequence is uniquely .
specified by its FT amplitude.
Statement ) has been extended to M-D sequences. Let x(g) denote an M-D

sequence x(n),nz,...,nM), and let Gi(g) denote the FT amplitude of x(n), where

; ' “
Gi(ﬁ) represents Gi(wl,w ,w.} and is given by Sx(g)|x(g)l. We define an

20

M-U sequence x(q) to have a one-sided region of support in the M-dimensional

M

space n .,n, if it only has non-zero values for ane polarity on each

FLITER

index n, - For example, for a two-dimensional sequence there are four possible

M

regions of support which are consistent with the sequence being one-sided,
corresponding to the four quadrants. Statement 2, which follows, represents a

generalization of Statement 1 to encompass M-D seguences.

Statement 2

Let x(n) and y{n) be two real, finite extent sequences with one-sided support
and with z-transforms which have no zeros at |z|=). |If Gx(g)=Gy(g) for all w
and O<u<m, then x(n)=y(n). When o=m, if GZ(u_J)=G3(g) and x{0)=y(0)=0, then
x(n)=y (n).

The theoretical result in Statement 2 differs from that of Hayes [2] in
several respects. In Hayes' result, only samples of the FT magnitude are re-
quired, but the sequence is restricted to have a non-factorizable z-transform
and the unique specification of the sequence is only to within a sign, a trans-
lation, and a central symmetry. In Statement 2, the FT amplitude is required,
but the sequence may have a factorizable z-transform and is uniquely specified
in the strict sense.

Itt.  Algorithm
The results in Section (!l show that @ 1-D or M-D sequence which satisfies

certain conditions is uniquely specified by its FT amplitude. To reconstruct

a sequence that satisfies the conditions of Statement 2 from its FT amplitude,
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we nave developed an iterative procedure which is similar in style to other
iterative procedures studied by Gerchberg-Saxton [4] and Fienup [5]. In the
iterative algorithm, the ''time'' domain constraint that x(n) be real and finite
extent with a one-sided region of support, and the frequency domain constraint
that tne FT amplitude of x(q) be given by Gi(g), are imposed separately in each
iteration.

.. To implement the algorithm, the Fourier and inverse Fourier transform opera-

tions are approximated by discrete Fourier transform (DFT) and inverse DFT (IDFT)

operations. Although the uniqueness is not guaranteed in terms of the FT
amplitude samples, we have empirically observed that the algorithm reconstructs
the desired sequence provided that the FT amplitude is densely sampled in the
frequency domain, so tnat the FT magnitude is completely specified and the
discontinuities of Sg(g) are individually resolved by the samples of Si(g)_
This observation is based on both 1-D and 2-D examples derived from speech
signals and images.

When the results shown in this paper are combined with previous work [2] on
the problem of reconstructing a 1-D or M-D sequence from its FT phase, we
obtain a simple general result. Specifically, a 1-D or M-D sequence is
uniquely specified under mild restrictions by its FT phase or its FT amplitude.
In addition, an iterative algorithm which is similar in styie can be used to
reconstruct a 1-D or M-D sequence from its FT phase or amplitude.
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ANALYSIS OF TIME-SEQUENTIAL SAMPLING WITH
A SPATIALLY HEXAGONAL LATTICE |

Robert M. Cramblitt
Jan P. Allebach
Department of Flectrical Engineering
University of Delaware
Newark, Delaware 19711

Hexagonal sampling of 2-D signals has been considered a useful alter-
native to rectangular systems. Mersereau [1] analyzed hexagonal sampling and
showed that when images are circularly or elliptically bandlimited the samp-
ling density can be 13.67 less than that required for a rectangular sampling
system. Murphy and Gallagher (2] studied hexagonal sampling in the context
of optical systems. Here we investigate spatially hexagonal sampling of
spatiotemporal signals, Since obtaining samples at every point in space at
the same time instant is impractical for manv applications, we constrain the
sampling to be time-sequential. We examine the performance cf various samp-
ling patterns as we sample below the temporal Nyquist rate, and we compare
their performance with that of the corresponding rectangular case that was
analyzed previously [3],

Figure 1 shows a typical hexagonal grid and some relevant parameters.
In time-sequential sampling, we take a sample at point (a():X,b(L)-Y) at
time (‘T where T 1is the temporal sampling interval. The ordered pairs
{a(®),b(2)} define a sampling pattern that is repeated from frame to frame.
The sum a(2)4b(%) must be even for hexagonal sampling. )

in order to take a non-deterministic approach, we assume the signal !
g 1is a spatially and temporally wide sense stationary random process with !
zero mean. The power spectral density of the hexagonally sampled signal h
is given by:

M-1 N-1 MN/2-~1 2

S (u,v,fy = )Y ) ¥ la |"s (u-7
hh m=0 n=0 p=0

where anp is the 3-D DFT of the sampling pattern:

a()m + b(L)n + 2pf
M N MN

5 MN/2-1
g s L o0 | - 920¢

Thus, the power spectral density consists of replications of the baseband
spectrum weighted by the DFT of the sampling pattern. Assuming the signal
to be spatially bandlimited to frequency U and temporally limited to W,
we can show the noise power due to alilasing to simply be

M-1 N-1 MN/2-1 2
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wvhere anp is the integral over that part of the replication at (m,n,p)

that overlaps the baseband spectrum.

Nyquist sampling, implying zero noise power, will be attained for any
pattern when:

#

1/2X = M/2A

1/2Y = N/2C,73

it

W< = 1/2B = 1/(MET)

The overall sampling rate is then
— ;—h')_ -
Fos 2 on )t - 1 , A<cC

1f we are going to reduce F, below the Nyquist rate, it is preferable {3] to
increase the time-bandwidth product BW rather thri reduce M or N.

The signal to noise power ratios (SNR's) as BW increases from the
Nvquist value of .5 are shown in Fig. 2 for several sampling patterns. The
rseudorandom case (PSR) is an average over the entire ensemble of possible
sampling patterns and thus represents the performance we might expect if we
picked a pattern at random. Tue lexicographic (LFX) pattern is simply dis-
crete line-by-line scanning, and is seen to perform slightly worse than aver-
age. The bit-reversed pattern (BRV) was generated by repeating a rectangular
bit-reversed pattern on a diagonally shifted grid to obtain a hexagonal
pattern. The rapid degradation in the SNR is an unexpected result since this
pattern is uniformly better than average in rectangular sampling.

Ta order to make comparisons with the rectangular patterns, the SNR's
are plotted in Fig. 3 versus the sampling rate normalized by ACU2W with units
of samples per cycle3. This compensates for differences in M,N and image
size between the rectangular and hexagonal lattices. In both the PSR and
LLEX cases, the hexagonal patterns closely retain their 13.6% advantage in
sampling rate at a given SNR. The hexagonal BRV pattern loses its 13.6%
advartage as BW increases.

The patterns considered so far were chosen primarily because they are
casy to generate; but they are not optimal in the sense of maximizing the
SNR at a given BW. Two methods were used for finding optimal sampling pat-
terns. The first involves mapping the indices a,b, and ! 1into sub-indices
using the Chinese Remainder Theorem. A search is then made for the best
ordering of the sub-indices. The second method produces a closed form ex-~
pression for the sampling pattern. Here we note that the cnergy in any p-
plane is

M-1 N-1 2 1, rectangular sampling,

1anp1 =

m=0 n=0 2, hexagonal sampling.

wWe attempt to concentrate this energy at indices (m,n) where an is small.
For the recotanguiar case, it can be shown that the resulting pa ibrn is
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optimal when BW < = 1. The search and closed form methods generate identi-
cal results, strongly suggesting that both methods produce an optimal pattern
for both the hexagonal and rectangular cases.

Figure 4 shows the SNR's for both the rectangular and hexagonal optimal
patterns. Comparison of these patterns surprisingly reveals that the hex-
agonal optimal pattern does not retain a 13.67 savings in sampling rate. This
is in contrast to the PSR case, also shown in Fig. 4, in which the 13.6%
savirgs is approximately maintained. The SNR's in the figure also demonstrate
that an optimal pattern has the lowest temporal Nyquist rate.

We conclude that certain hexagonal time-sequential patterns are
decidely better than others under conditions of temporal aliasing, and that
patterns that optimize the SNR at a given time-bandwidth product can easily
be found. Some patterns show a 13.6% sampling rate advantage over equivalent
rectangular patterns, but this advantage will not be present when optimal
patterns are used.
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IMAGE REGISTRATION; THE UNDERSAMPLED CASE

P. E. Barry, M. Klop, J. D. Hulsmann
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The registration of a multi-frame sequence of images has been a classic
problem in image processing whose solution has found wide application in such
diverse areas as astronomy, earth resource analysis, electron microscopy,
computed- aided medical imaging, military surveillance and photo-
reconnaissance. In the most general sense, precise image registration allows
such subsequent processina as signal-to-noise improvement, pattern enhancement
and characterization, and the automated detection of spatio-temporally varying
patterns, to be carried out at a Tevel that would be impossible if the image
sequence were not accurately registered.

To date, the vast majority of image registration techniques have depended
upon cross correlation measures to determine the direction and amount of
relative scene displacement. The applicability of this approach rests
squarely on the assumption that the scene sampling is dense compared to the
frequency content of the image. This paper addresses the registration problem
when the 1image is undersampled and the relative displacements are small
f{gctions of the basic pixel size. Under this assumption, the output of the

detector, is given by

0.(t) = ff I(n - x(t), v - y(t))dndy (1)
0 0

where x(t) and y(t) represent the instantaneous detector position and I(x,y),
the spatial scene intensity. A one- dimensional depiction of the displacement
effect is shown in Ffig. 1. For small displacements x(t), the integrated
intens.ry .hinge is linear with respect to x(t) and can be expressed as

0,(t)) = 0,(0) + (I(x+ L) - I(a)) x(t,) (2)
The basic problem with undersampled data is, thgt as seen from the dotted line
in Fig. 1, the integrated intensity on the i h detector can change without
changing the coefficient through which the displacement x(t) effects 0. (t 1)
[t is for this reason that cross-correlation techniques cannot yield re1at1ve
frame displacements in undersampled data sets. For two-dimensional arrays,
equation (2) generalizes to

01(t) = 01(0) + f]. x(t) + giy(t) + ni(t) (3)

with f. and 9; representing the local scene gradients 'seen" by the jth
A

detector, and n (t), the measurement noise at the i detector.

The basic problem then is, q1ven {0 ( 1, veoy N, j =1, «uv nl
(N = number of detectors in array), no knowﬂ%dge of the actual scene [ (x,y),
no knowledge of the random scene displacements x(t) and y(t ), register the
Tmage sequence.
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The image data is arranged in n-vector format as follows:

2, (cy) x(ty) y(ty) n(ey)
Zi(tz) X(tz) y(tz) n(tz)
z; = : = : AT * :
z, (e ) x(t ) y(e s n(t,) 4)
i=1,2, 14
or more concisely, as
| f |
1
. = X y + ﬂl » 1 = 1,2, N, (S)
5 X
b B1 l
where z; (t;) represents the measured output of detector i at time t. It is

clear from ‘equation (5) that, were it not for the measurement noisg vectors

n:, the set of N, n-dimensional measurement vectors {z.}?zl would all lie in

i =3

a two-dimensional subspace determined by the displacement vectors x and y.
The noise vectors n: pull the measurement vectors z, slightly out of the two-
dimensional subspace C; (displacement subspace) as depicted geometrically in

Fiqure 2.
. n-DIM
4 1 SPACE R,
TWO DIM DISP
SUBSPACE C,

Hey ¢ L)

Ha)

DETECTOR POSITION
et=0

\

DETECTOR POSITION
@t-1y ]

n flg‘g'!

Figure 1. One-dimensional example of displacement effect. Figure 2. Geometrical representation of the displacement subspace.

It can be easily shown that the best (in the minimum mean square error
sense) approximation to C; is found by first computing the n x n (n = number
of measurements) matrix Zy 5-% z gig.T . If this matrix is then spectrally

i=1
factored into a set of rank one matrices

1




-

where Aiz and e; are the ordered (Aiz » Ajz, j > 1) eigenvalues and

orthonormal eigenvectors of Zy, then the approximating subspace C is
determined by the span of the vector set (EJ’ e,). The best approximat*on of

the displacement content of each Z; is then obtained by projecting Z; onto the

I

space CJ 7 TeB€ey

—_— ,I‘ —
. 2 N
\\\\\\ data vector
projection operator

best approximation P onto C]
of displacement -
effects vector

This procedure -is represented geometrically in Figure 3, as are the types of
errors which will occur due to measurement noise effects. One portion of the

error (z; - f X '.SiY) is caused by the error between the subspaces C and C
and anotker is caused by the companent of which lies within the subspage
Cye

c, ;

ERROR BETWEEN ESTIMATED AND
ACTUAL DISPLACEMENT EFFECT

Figure 3. Displacement effect estimation technique.

At this point one can conclude that the actual displacements x and y are
impossible to determine as well as are the local! qradients f1 and g; The
hest that can be done is to determine a reasonable approximation to ¥he two
dimensional subspace in which the displacement effect vector is contained.
This, however, is usually very good indeed, since by projecting the data
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vectors (with DC suppressed) onto this subspace one can estimate and remove
(i.e. register) the displacement effect vector from the data with very little
effect on other temporally changing "patterns of interest.”

It can be shown that as the number of detectors and time samples tend
toward infinity perfect registration of the image sequence can be obtained
without any attenuation of other temporally varying "“patterns of interest."
The remarkable aspect 1is that this can be accompiished without ever
determining the actual displacement now with any use of high fidelity scene
information. This is to be contrasted with the classical cross-correlation
techniques in which the displacments are determined and the scenes actually
displaced by that amount.

These techniques were applied to simulated data generated by a staring
space based surveillance system with a 500 m pixel groundprint situated over
the Santa Cruz area of California. The sensor line-of-sight was randomly
jittered with an in-band {1 - 10 Hz) rms value of .l arcsec and image frames
collected every .1 second. Typical results of image sequence registration are
shown in Fig. 4, for a typical detector through which a target aircraft flew
at t = 25 seconds. The event is totally obscured when unregistered data is
examined and easily visible when rePistered data is used. The interested
reader is referred to Klop and Barry® for a more detailed discussion of this
particular application.

SIN - 60001486 412

S/N = 6000/2229 - 2.7

75

5; I
FPOUTPUT. 5. '
KWisr '

UNCOMPENS -

T T e

N .
. b i et |
i . 2 b JET L
75,:0'"‘”' o Tae  me 100 oo 200 om0 300
TIME  sex
{a) Without displacement effects compensation (b} With displacement effects compensation

Figure 4, Performance over Santa Cruz.
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Partial Shape Recognition using Fourier-Mellin Transform Methods

Timothy A. Grogan and O. Robert Mitchell
School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

L. Introduction

In recognizing shapes automatically by computer, a problem often arises when the unk-
nown object is partially obscured or poorly segmented. Most algorithms described in the litera-
ture use syntactic methods. A major problem is describing a proper grammar for several
objects. This problem is even further complicated when each object may be imaged from many
possible aspect angles. The algorithm in this paper avoids this problem. It uses a global
method to normalize scale and starting point, even when part of the contour is missing or
incorrect.

If the range to the object is unknown, the fraction of its contour that corresponds to the
prototype object contour is unknown. The Mellin transform (1] of the Fourier transform mag-
nitude of the curvature function for both contours is calculated. These are multiplied and the
Fourier transform applied yielding a crosscorrelation independent of starting point and scale.
The shift of the peak of this cross correlation is the logarithm of the “best” scaling needed to
match the unknown and prototype curvature functions.

Ounce this information is available, the unknown is scaled and crosscorrelated to determine
the “best” starting point shift. The unknown and prototype curvature functions now have
commeunsurate scales and corresponding starting points and thus, can be directly compared.

II. Curvature Function

The feature processed by the algorithm is the curvature function. The curvature function
is used as the feature because it is invariant to rotation and to scale changes resulting from an
unknown range. Thus, only missing contour segments or additional segments will result in
disparate scales between the unknown and prototype. This assumes that the unknown and the
prototype have the same length. This is insured by the preprocessing [2]. Giver a silhouette of
an object, the contour is traced. Each contour is processed by smoothing it as a function of
arc-length between critical points. Critical points are those points on the contour where the
angle changes by more than 90degree. The points between these critical points are used to per-
form a least-squares polynomial fit. The polynomial approximation is used to over sample the
contour between the critical points. Each contour is then resampled to a standard number of
points. This preprocessing helps to insure that a smoothed representation of the contour is
obtained while preserving important angle information and near uniform tracing of the con-
tour. Let the periodic curvature function be z(t) = x(t} + j y(t). The contour function is then
used to calculate the angle and its derivative, the curvature function. The curvature function
18 c(t)=-d— t,an"m)-.

de x(t)

process to follow.

The curvature function is then smoothed to facilitate the correlation

This research supported by the U. S. Army Research Office.

ke




ThAl9-2

II1. Mellin Transform
The Mellin transform is to be used because of its scale invariance property. The definition
of the Mellin transform is

o0

Mg(ju) = [F(x) x " 'dx
0

If G(x) = F(ax), then Mg(~ju) = a % Mg(-ju) = e *"* Mg(-ju).
Since the signal is discrete, the Direct Mellin Transform (DMT) is calculated at N-1
points [3]. The DMT is defined as

Mp(=it) = T [cos(u; In k) - jsin(u;lnk)] Au/-iu
k

2w .

where A, = f(k) ~ flk+ 1) and v; = "Ig'l, i=1,...,N-1.

IV. Fourier-Mellin Technique

In order to match an unknown curvature function to a prototype, it is necessary to elim-
inate first the unknown shift {or starting point) ambiguity. To do this the magnitude of the
Fourier transform is calculated. That is, we know that if g(t) =f(t—ty), then
F{gt)} = F{f(t)}xe ™. So, |F{g(t)}| = |Ffe)].

Now, using the Mellin transform, a scale estimate is obtained. l.et the unknown have
scale ‘a’ and shift 'ty i.e. let

) = f[atr-1o)
Then
|F{gu}] = |i—F(%)| , where F(w) = F{f(t)}.

Thus, the Mellin transform of the magnitude of the Fourier transform of the scaled version is
related to the Mellin transform of the magnitude of the Fourier transform of the original by

Mo(~ju} = T a"Mp(=ju), where  Mp(=ju) = M{| ()| )

So, if the Fourier transform of My times Mg* is performed, a crosscorrelation is obtained whose
shift is the logarithm of the scale, i.e.

F{Mp MG*}=Cgp(r—1na), where Cpp(r) = F{My(—ju)<Mp*(-ju)}.

V. Experimental Results

An experiment is performed by generating the contour for an F104 airplane using a com-
puter graphics program (see Fig.1a). It is preprocessed as described in Section Il to obtain the
smoothed curvature function in Fig 2a. This curvature function is used as the prototype. The
prototype curvature function is also processed by a program that chops out 10°¢ of the contour
and replaces it with a line segment (see Fig.1b). The smoothed curvature function for this con-
tour is calculated. This smoothed curvature function is the unknown (see Fig.2b). The magni-
tude of the Fourier transform for both curvature functions is calculated using a 256 point FFT
algorithm. After taking the magnitude of the Fourier transform only the positive frequency
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components are needed. Also, the DC component is set to zero. This is necessary because the \
first point in the signal passed to the DMT has an overwhelming effect. Now the DMT of both
are calculated and multiplied as previously described. Instead of calculating the Fourier
transform of the multiplied functions over a large range in shifts, the Fourier transform is cal-
culated in a narrow range about the origin (see Fig. 3). This calculation is justified if the loga-
rithm of the scale is known to be small. The position of the peak of the crosscorrelation gives
the logarithm of the scale. It is used to resample the unknown to a new scale. The scaled ver-
sion of the unknown and the prototype are crosscorrelated (see Fig. 4). The peak in this signal
provides the shift in starting point necessary to properly align the unknown and the prototype.
Now the unkmown and the prototype can be directly compared by taking the difference
between the scaled & shifted unknown and the prototype (see Fig. 5 & Fig. 6). Simply thres-
holding the difference signal will provide the interval over which the unknown and prototype
correspond.

V1. Conclusion

A general method for determining partial matches between an unknown and a prototy pi-
ca) shape has been described. At present the computational complexity is high, but it may
compare favorably with the complex combinatorial methods previously reported. Further
1 study is required to show if it is possible to reduce the required resolution of the Fourier and
Mellin transforms thereby reducing the computational load. Another consideration would be to
research the classes of functions having the same Fourier-Mellin crosscorrelation resulting in an
ambiguity between shapes.

Fig. 1 {a) F104 airplane contour {prototype); (b) partial contour {unknown).

-

j -
tyM»M\,}L B

WM—ITTEE e & & & T3 T 3 &% & & & a

Fig. 2. Curvature functions for the two contours of Fig. 1.
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Fig. 3. Mellin crosscorrelation result. The
offset of the peak corresponds to logarithm
of the scale difference between the matching
portions of the two curvature functions in
Fig. 2. The scale factor is 0.90484.

Cegrossd
£

Lttt

Fig. 5. The scaled and shifted curvature
function of the unknown.

VII. References
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Fig. 4. The crosscorrelation between the
scaled unknown and the prototype curva-
ture functions. The offset of the peak
corresponds to the shift in starting point.
The circular shift is 140 samples.

Fig. 6. The difference signal between Fig.
1(a) and Fig. 5. A 3 point median filter has
been applied to remove impulsive differences
due to subsample shifts.
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SINGULAR VALUE ANALYSES OF INVERSION OF LAPLACE AND OPTICAL
IMAGING TRANSFORMS

M Bertero, Istituto di Scienze Fisiche
dell' Universitd and Istituto Nazionale di Fisica
Nucleare, Genoca, Italy

and

E R Pike, Physics Group
Royal Signals and Radar Establishment
Malvern, UK

The use of the eigenvalues and eigenfunctions of the first order
Fredholm equations describing optical imaging has long been known. The
eigenvalues and eigenfunctions of the first order Fredholm equation of the
Laplace transform have only recently been discovered and similarly used
(McWhirter and Pike 1978). Let us consider for simplicity the one dimen-
sional case with magnification unity. For an eigenfunction to be defined
the linear mapping A:f + g of the "object" f into its "image" g must define

a compact bijective operator A of, say, L2(—1,+1) into itself.

1
(Af) () = fﬂz—(i(%;—)jlf(s)ds le] <1 1
=1

We require the object and image to be defined over identical domains. In a

real optical system the physical image g' will be continued outside this
support, if finite, and technically the linear mapping K:f - g' defines a

compact injective operator K of Lz(-1,+1) into Lz(w,w).

1
* (RE)(e) = f ﬂ%—(%(f—g)—ﬁ f(s)ds o <t < 4o (2)
21

As a consequence when the entire image is considered the eigenvalue analysis

must be supplanted by a singular value analysis (Bertero and Pike 1982).

The eigenfunctions U and eigenvalues Ak of . obey

(3)
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where

w () = x;%k(ct) (%)

and where are the linear prolate spheroidal functions.

1,
"k
The adjoint operator K* obeys

o0

(K*g) (t) = fii—;‘(—ﬁ—(%—;ys—’—gcsms . le] <1 . (5)

Bertero and Pike (1982) show that

K*Kuk = Au (6)

and that we have a singular system obeying the coupled equations

N
Kuk = kak (7
kb = alu (8)
k k 'k
where
vk(t) = wk(C.t) —o <t <o . (9)

Similarly the eigenfun-'tions and eigenvalues of the laplace transform
found by McWhirter and Pike¢ are defined for a mapping from LZ(O,w) into
itself, while for an object defined on finite support the mapping K:f - g

defines the following linear operator from Lz(a,b) into LZ(O,m):

(KE) (p) = f e Ple(yar 0<p<e . (10)

It is easy to show that K is continuous and that Kf = 0 has only the trivial

solution f = 0 and therefore K is injective. The adjoint operator K* is

given by




ThA20-3

@

(K*g) (t) = / e "Pg(p)dp a<t<b (11)
0

and it is a linear compact operator from LZ(O,m) into Lz(a,b). Since K is
injective the range of K* is dense in Lz(a,b). K* is also injective and

therefore the range of K is dense in Lz(O,w). From these properties it

follows that the operator K admits a singular system {uk; U vk}:=0 given
by the solutions of the coupled equations
Ku = o v (12)
* =
K*v, U (13)

Since the null spaces of K and K* contain only the null elcments, the

| must be strictly positive and {uk}k=0 {vk}k=0 are bases,

respectively, in Lz(a,b) and LZ(O,w). As 1s well known the singular func-

singular values a

. . . . . 2
tions U are the eigenfunctions of the operator KK* with eigenvalues oy

2
* = =
KK U @ k 0, 1, 2 ... . (14)

From equations 10 aad 11 one may show that

b
(KK*£) (£) = /i(i)—ds a<t<hb (15)

t +s
a

and therefore KK* is of trace class

@

2 dt 1
* = = Posihnl = —
trace (KK*) E @ f prs 3 log ¥ (16)
0

k=0
where
y = b/a . (17)

The singular values a in fact, depend only on the parameter y. This may

k)
be seen by using equation (1l4) with a transformation to new variables

t = a+ (b - a)x , s = a+ (b - a)y (18)
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!
to find )
} X () 5
J/ Ty G =D dy = uk<k(x) (19)
Q
where
1 t - a
u, (t) = X, — . (20) :
K N kb a i

The effect of noise on inversion using the singular value analysis may
be stown to be less severe than using eigenvalues, as 1Is to be expected
since in the first case more information is used in the full image than in
the image between -1 and +1 and inr the second case the restriction of the
object to finite support serves also to increase the available information

for the inversion.

The true information-theoretic resolution limits for these two situa-
tions have been calculated and significant gains over the conventional
Rayleigh limit and the equivalent McWhirter-Pike limit for the Laplace
transform may be achieved, the more so, the greater the difference between

the image and object domains. W

Numerical simulation has verified these conclusions and they have
Important implications in the fields, for example, of polydispersity
analysis by laser scattering from macromolecular suspensions, where in

tact, they are already in use, and of diffraction limited imaging systems.
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A technique for the calculation of the global extremum of a function of

several variables.

C.H.Slump and B. J. Hoenders, Department of Applied Physics, State University

at Groningen, Nijenborgh 18, 9747 AG Groningen, the Netherlands.

Introduction

The determination ot the global extremum of a function is a notorious nu-
merical problem when there are local extrema present. The numerical algorithm
which has to determine the global extremum iteratively is in this case very
likely to produce a local extremum in the neighborhood of the initial guess
of the solution. Moreover, usually one cannot be sure not to have missed an
extremum, i.e. various procedures together with various initial values might
still overlook the global extremum.

It would therefore be of great value if the total number of stationary
points of a function in a certain domain could be calculated easily and
exactly: This information would tell us whether or not the numerical algo-
rithm had determined all stationary points.

The stationary points of a function f(x) are the zeros of the set of eqgs.
vf(x)=0, and we are therefore looking for a simple procedure determining the
number of zeros of a set of eqs. in a certain domain D in the x-space.

Such a procedure is provided by an integral derived by Picard [1] from
previous work by Kronecker [2]. The integration is over the domain of interest,
whereas the integrand only contains simple algebraic functions (viz.eqs. (1),
(2), (3)). An extensive discussion of this integral is given by Hoenders and
Stump [3].

This so-called Picard-Kronecker integral (P.K.integral) is equal to the
number of zeros of a set of eqs. in a certain domain provided that all these
zeros are simple. The case of multiple zeros will be discussed in a forth-
coming paper. (See also Davidoglou [4] and Tzitzéica [5]).

We will illustrate the use of this elegant formalism with the following
problem: Estimate the position a and width ¢ of a Gaussian wave in a Pois-
sonian pulse train using the maximum likelihood method.

The estimation boils down to the determination of the absolute maximum
of the likelihood function in a certain domain of the two parameter space

x = (a,0) (We neglect the possibility of extreme values occurring at the

boundary which is only an inessential complication).
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The P.K. integral then provides an excellent tool for the calculation of
the total number of stationary points of the likelihood function L(Xx) in a
domain. This number is very useful for the calculation of these points,

We determine to this end with the P.K. integral the total number of roots
of the set of egs. VL(x) = 0 in the domain of interest and subdivide this do-
main (nesting) till only one or no root is located in the domain. The posi-
tion of a stationary point can then eventually be determined with zero lo-

cating numerical procedures, e.g. Powell [6].

Theory

The basic idea of the P.K. integral is the generalisation of the concept
of the solid angle into higher dimensional space. It is then intuitively
clear that the solid angle is a measure for the number of zeros of a set of
functions in a certain domain by the following argument: Suppose that in two
dimensions the transformation: x = x(u,v) and y=y(u,v) admits nzeros in a
certain domain D with boundary S of the uv-plane. One would then expect that
the solid angle connected with the surface 5 is equal to 0,+ 27, + 47,...
+ 27n depending on the orientation of the mapping (x,y)-»(u,v) in the neigh-
borhood of zeros. This idea was put into an exact analytical form by Kron-
ecker [2]. (See for a modern formulation and application of this concept in
algebraic topology and functional analysis Schwartz [7]). The Kronecker inte-
gral is not conclusive for the calculation of the number of zeros as it is
proportional to the number of zeros with positive Jacobian minus the number
of zeros with negative Jacobian.

Picard [1] showed how to use this idea to obtain the exact number of
zeros of a set of eqs. in a certain domain by a very simple extension of
the original set of eqs. He derived that the number n of simple zeros of
the function y = f(x) in the interval asx<b is equal to:

-1 b " WL -1 e\ | P
n = ~(r) ¢ [ L) £ (-7 (%) dx +(n) arctg (ilLil)}l , (1)

f(y) / a

a  £7(x) + e £r(x)}

where « denotes an arbitrary constant.
The number of simple zeros n of the equations: f(x,y)=0; g(x,y)=0 in the
domain D with boundary S and Jacobian J can be shown to be equal to (no
zeros are allowed on S): 3
n = (2n)'1sI(de + Qdy)+e(2m)” L [ R(£7+g?+:737) 4dxdy, (2)
D
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where P = (f 2B - g (52« @) a7 4+ g7 + 2T 3

ax Ix

and Q is obtained from P changing 3 into g—. R is the determinant
9x 3y

J
i(zf,2g,29) evaluated at z = 1.
I(z,x,y)
The r.h.s. of eqs. (1) and (2) can be shown to be independent of ¢,Picard [1].

Example.

In e.g. optical communication practice and in the processing of seismic
signals one encounters the problem how to detect a partially known wave shape
in measurements corrupted by noise. We consider the problem of the estimation
of the position a and (half)-width o of a Gaussian wave shape in a Poissonian
pulse train, (see fig.1).The measurements are assumed to consist of n = (nl,nz,..n )

Poisson - distributed random variables with parameter

_ -1
A (a,0) = a{l + 8(2m) 5 o~ lexp {—(262) (ti-a)2}]+x0, 4)
i

i=1 ...N,AO denotes the dark current of the detector, o and £ are constants

(see fig.1l), a and 0 are estimated by the absolute maximum of the likelihood

function:

n,
1
. exp(-Ati(a,c))Ati(a,O) //ni!. (5)

L= -1

L(n;a,o0) =
i
Applying the method described above to the set of egs. %; 1nL = 0,
)

o Inl= 0 reveals that there are 4 zeros located in the region 50.0<a<80.0;

2.5%0%g 12.5,. Subdividing the domain and applying [6] leads to the stationary

points in table 1.
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fig.l. The simulated
Poissonian pulse train,
(drawn line) and ?
(dotted line),with the
values: o =1.75 $=18.0
a =60.0 o= 8.0
Ag= 4.0 N=100
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An Algorithm for Incomplete Range of Views Reconstruction
Heang K. Tuy

Medical Imaging Section, Dept. of Radiology
Hospital of the University of Pennsylvania
3400 Spruce Street, Philadelphia, PA 19104

I. Introduction., To reconstruct a cross-section of a 3D object, most
algorithms require knowledge of the projection data in a full range of
views {1]. 1In some practical situations [2, 3], reconstruction from an
incomplete range of views is inevitable although it is not desirable from

a mathematical point of view. Objects to be reconstructed are of compact
support. Their Fourier transforms can be extended to an entire function of
exponential growth (band-limited function). Consequently, there is a
unique solution to the incomplete range of views reconstruction problem. On
the other hand, the problem is an ill-posed problem. For example, it has
been indicated [4] that the spectrum of the singular values of the Radon
transform for limited range of views is split up into_.two parts. One part
consists of singular values near one, and the other part consists of
singular values near zero. The recovery of small singular values is
necessary for a process to reconstruct objects with good quality. This,
however, exacerbates instability in the process, i.e., a small error in the
projection data might lead to an undesirable large difference in recon-
structed images. Making use of a priori information on image and projec-
tion data is being examined to reduce this instability,

In the following discussion, we reformulate the problem of recon-
struction from an incomplete range of views using a priori information as
an intersection problem. More precisely, the image solution is shown to
be a point which belongs to the intersection of a finite number of convex
subsets in a Hilbert space. This view allows the derivation of an iterative
algorithm for limited range of views reconstruction problems. 1n the
experimental results reported below, we illustrate the importance of the usc
of qualitative a priori information {5, p. 27] in both parallel and fan-beam
geometry.
11. The algorithm. The derivation of the algorithm is based on the
following theorem [6]:

be a familv of convex subsets in a separable

Theorem Let {C. 1},
i i=l, .. ,m

Hilbert space H. Let fO . H, and *fl} be a scquence in H defined by
1

=4{ +r (P t ) -1
ntl n n( jn+l( n) n
where 0<‘el < r_ <2 - e, “2 for some positive real numbers < and ¢,
-on . J
i I i {(mod m) + 1, and Pﬁ(g) is the orthogonal projection of g onto the
n n
convex set Cj’ tfor j = 1,...,m. Then it the intersection of the Ci'S is not
. ] ™ ’
empty, the sequence {fn} converges weakly to a point { - n C. .
i=1 ]
A geometrical illustration of the theorem corresponding to the case
where the relaxation parameters r; = 1 is given in Fig. 1.
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Suppose H is LZ(R.Z), the space of square integrable functions defined on
R, and the attenuation of a cross-section is represented by a function f in H,
Let p be the projection data in a given range I' (incomplete range of views).
If S represents the shadowgraph operator (the Radon transform R in the case of
parallel beam, and the divergent transform D in the case of fan-beam) then f
belongs to a convex subset C; of H where ¢, = {g | sg = p}. The orthogonal
projection onto Cl is given below:

Propeosition: Let q(¢,0) = p(p,0) if 9 is in the range U, q(r,®) = Sg(p,%)
otherwise. Dennte by R(q) the inverse 2D Fourier transform of q, which is de-
fined in polar coordinates by q(s,8) = Fi( q(n,0) ) (s), the 1D Fourier trans-
torm of q with respect to the first variable p, evaluated at the point s.

If S is the Radon transform R then Pl(g) = R(q). -

Proof. Let g' = R(q). From the projection theorem [1, p. 149), it follows
that g' belongs to €y, and furthermore, for any peint h of C,, the distance
from h (h is 2D Fourier transform of h) to g is at least the distance from g'
to g. Since the Fourier transform is an isometry, g' is indeed the orthogonal
projection of g onto Cl

Note that R is a natural extension of the inverse Radon transform to the
whole space H.

Quantitative a priori information, Sometimes the following information is
available: the attenuation function f to be reconstructed is bounded from be-
low by a function X and bounded from above by a function u. Tn this case the
function f belongs to two other convex subsets C2 and Cg of H, where Cy =
iglg > 9}, and C, = {g | g < ul. The analytic expressions of the orthogonal
projections onto thece two convex subsets are given in [7].

Qualitative a priori information. If we assume further that the function f to
be reconstructed and its shadowgraph Sf are piecewise smooth, then f is an
clement of the following two convex subsets: C4 = {g [g is piecewise smooth?,
and C. = {g} Sg is piecewise smooth}.

Based on the theorem previously stated, an algorithm to reconstruct f{
making use of the above a pricori information can be stated as follows:

Stanting grom an arnbitharny Amage fn, produce a Aequence of <mages ifn!
by successdive orthegonad projections lwith on without relaxation) onte the
cenvex subsets Cl’ C2, C3, CA and CS'
I1I. Experimental results. There is some evidence showing the importance o!
the usc of quantitative a priori information; see for example [8, 9, 10}. In .
this article, the only quantitative a priori information used is the non-
negativity of the attenuation of the object to be reconstructed. Our experi-
mental results show the major role played by qualitative a priori information
in the reconstruction process. Bearing in mind that knowledge of this vype
of a priori information is limited, we shall assume only that the object to be
reconstructed and its shadowgraph are piecewise smooth., Based on the above
algorithm, an analytic expression for the orthogonal projection onto the sub-
set of piecewise smooth functions is required. Such an expression is not
known to the author., However, since practical results are of primary interest,
A selective smoothing operator {1, p, 193] is used instead of the orthogonal
projection operators suggested by the above theoretical work. A schematic
representation of the algorithm used in this experiment is given in fig. 2.
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The phantom (fig. 3a), which was mathematically simulated, represents a
cross~section of a human thorax. Each reconstructed image (and the phantom)
was embedded in a square region of 127%127 square pixels each of area .3% 3cm™,
The proujection data used were mathematically simulated, noiseless, and cqually
spaced in the given range of views. The dimensions of the projection data will
be denoted by (npr, nrays, pinc), where npr is the total number of projections,
nrays the number of rays per projection, and pinc the distance between two con-
secutive rays in a projection.

farallel beam. The range of the projection angles is from -67° to 67°. Data
are missing around the vertical axis. We start off with the projection data
set of dimensions (135, 127, .3). We apply the algorithm where the only u
priori knowledge used is the non-negativity. The starting point is obtained
by applying the convolution algorithm to the projection data filled with zero
in the missing range [11] (fig. 3b). As can be seen in fig. 3¢, there is

some improvement in the quality of reconstructed images up to the 11lth itera-
tion. However, the pictures present some undesirable atifacts. The streak
artifacts cannot be removed by increasing the number of rays in the projection
data set., Fig. 3d shows different streak pattern fur projection of dimensions
(270, 255, .15). However, there is a big improvement if the reconstructed
images are selectively smoothed at each iteration (fig. 4a). A noticeable
improvement is also observed in the case where both the reconstructed images
and the calculated pseudo-projections are selectively smoothed (fig. 4b).

Fan-beam. Since we do not have an analytic expression for the orthogenal pro-

jection on the subset C. in this case, an operation similar to the one used in

the parallel beam case 1s emploved. 1In spite of this, our experimental results
show that the situation in the fan-beam case is rather more tfavorable than the

situation in the parallel beam case, as illustrated in tigs. 4c, 4d. The pro-

jection data set was of dimensions (133, 255, .2). The range of views was {rom
97.5" to 262.5° (Geometry: distance from origin to x-ray source was 78cm, from

origin to detectors was 110.7¢m).

Fig. 5 shows the graph of the Ll—nnrm error between the phantom and each
reconstructed image. The curve 5a is the vrror curve corresponding to the
algorithm producing the image 3d. Similarly, 5b corresponds to 4a, 5¢ to 4b,
and 95d to 4d. Note that the use of more a priori information not only acceler-
ates the convergence of the iterated sequence but also brings reconstructed
image . closer to the true image before the error starts to shoot up.

Acknowledgements. This work is supported by NIH grants RRO1372, HL4664 and
HL284 33,
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GEOMETRIC DECONVOLUTION OF ARTIFACTS IN

LIMITED VIEW COMPUTED TOMOGRAPHY

Dr. Rangaraj M. Rangayyan
Electrical Engineering Department
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and

Dr. Richard Gordon
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Images reconstructed using a 'mited number of projiections
measured over a narrow angle range are characterized by elliptic
distortions along the directions of the r. . used, and poor contrast
at angles not used (anisotropic resolution). Thus, for exanple, n
reconstruction computed usinn a few views measured about the vertical
would have a vertical ellipsoidal distortion and poor resolution alon»
the horizontal. Je are interested in this particular case in
connection with our experimeuts to achieve computed tomoaraphy from 1
few radiographs acquired at different angles wusing an ordinary
overhead or mammographic x-ray unit. The aim is to transmit these
images over telecphone lines to provide inexpensive conmputed tomoeraphy
to peonle living in remote areas. The angular coverage is restricteld
to the range 55-125 degrees. We are also attempting to compute hivh
resolution tomographic {images of the hreast from a few filn

mammoerams. Similar cases arise in industrial non-destructive testine

and electron microscopy of biolonical macromolecules.
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The ordinary reconstruction process introduces a systematic
geometric distortion of the 1image. We have the following problem:
Given a distorted reconstruction, compute a distortion-free
reconstruction of the image. In other words, we wish to deconvolve the
geometric distortion. If we restrict ourselves to linear
reconstruction algorithms (unconstrained multiplicative ART is an
example), the problem comes down to one of estimating the point spread
function of the system for a given set of parameters and estimating
its inverse. A further simplification can be achieved by applying the
projection theorem: we can work on the one dimensional projections

instead of the two dimensional image.

The approach we have taken is as follows: Since the reconstructed
image has satisfied the projection measurements at all angles for
which the projection data have been given (with ART-type algorithms),
the distortions lie at the other aagles. We estimate the inverse of
the one dimensional spread function by deconvolving the projections of
a reconstructed test pattern and the corresponding projections of the
oripinal test pattern, at angles not wused in the reconstruction
procedure. In a real case then, after reconstruction wusing the
available projections, we measure the projections of the reconstructed
image at other angles. These projections are convolved with the
inverse of the spread functiouns at the corresponding angles. The
corrected projections are then used along with the original
projections to reconstruct a better estimate of the unknown image.

Fast Fourier transform techniques are used to perform the

deconvolutinns and convolutions.
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The problems assocliated with this procedure are those with
division of Fourier spectra: nolise amplification and indeterminacy at
the zeros of the two spectra. By proper construction of the point
spread function, and use of spectral constraints based on a priori
knowledge about the projection data, it is possible to get around
these difficulties. Once the inverses are computed for a particular

linear reconstruction algorithm and given sets of geometric

parameters, they should be applicable to any unknown image.

As we carry out our deconvolution on the projections and then use
them for the second reconstruction, the second algorithm itself need
not be linear. This allows us to incorporate nonlinear and object
dependent <constraints and a priori knowledge into the second
reconstruction procedure. Ve demonstrate this by the use of our streak

preventive algorithm SPARTAF for the second reconstruction. e present

initial results obtained in our experiments along these lines.

- — —— e
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Localization From Projections Based on Detection
and Estimation of Objects*

David J. Rossi Alan S. Willsky

schlumberger~Doll Research Massachusetts Institute of Technology
P.0O. Box 307 Room 35-233

Ridgefield, CT 06877 Cambridge, MA 02139

The problem of reconstructing a two-dimensional (2D) function from its 1D
vrojoectlions arises, typically in the context of cross-section~l imaging, in a
diversity of disciplines [1-3]. 1In this problem, a 2D function f(x) is esti-
mated from samples of its Radon transform (line integral measurements)

G(t,8) = | f(x)ds (1)
J
x'e=t
1]
where 9={(cosf sinf). The major emphasis of research and applications in this

arca has been on producing accurate, high-resolution cross-sectional images
{requiring a large number of high signal-to-noise ratic (SNR) measurements
taken over a wide viewing angle [4,5]) which in practice are post-processed,
perhaps by humans, to remove artifacts and extract the information of interest
about the cross-section. For example, in nondestructive testing applications
(3], reconstructed images are post-processed to determine whether flaws or
defects are present within a homogeneous medium; in oceanographic applications,
reconstructed images are post-processed to determine where within the cross-
section an oceanographic cold-core ring is located [2]. Such post-processing
is effectively the utilization of a priori information about the medium being
measured to enhance and extract specific pieces of information.

In this paper, we develop a framework for utilizing a priori information
directly in the solution to the inverse problem. In particular, we consider
using the projection measurements directly (rather than post-processing the
reconstruction) in order to detect, locate and characterize objects contained
within the cross-section. This framework offers the potential for significant
imtrovements in applications where (1) attempts to perform direct inversion
with insufficiont measurement data result in severely degraded reconstruction
and (2) the ultimate goal of the recconstruction process is to obtain a few
spoecific pleces of information about the cross-section.

To illustrate this perspective, we consider the case of a cross-section
containing a single object: let th. cross-scctional density profile f(x)

consist of the sum of a deterministic background field fy (x) and f (x-c ), a
single obhject which is located at some unknown point c €R?Z within %he Cross-
scction, but whose size, shape, orientation and brightness cr crrtrast re-
lative to the background are known (i.e. £ (X) is known). We consider the

sroblem of obtalning a maximum likelihood ?ML) estimate for e location
parameter ¢ from full-view projection measurements (i.o. projcctions avail-
able at all t and 8 values) corrupted by additive white measurement noise.

The case where projection measurements are available over only a limited view-
ing angle or at a discrete set of projection angles may be considered in

this framework 1n a similar way (6], as can the problem of estimating para-
meters that characterize other aspects of the object, such as size, shape

and orientation. It should be noted that the parameters characterizina an
*The research described in this paper was supported by the National Scicne
Foundation under Grant ECS-8012668.
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object's location, size, shape and orientation enter the problem nonlinearly,
and consequently lead to a nonlinear estimation problem of relatively small
dimensionality. This is in contrast to full image reconstruction, in which
a linear estimation problem of high dimensionality is solved.

ML Location Estimation

When the cross-sectional density function f(x) consists of the sum of
a background field f, (x) and the object £ (x-c ) located at some unknown point
. o .0 .
c, in the cross-section, the Radon transférm in (1) is

g(t,8) = J fb(x)ds + J fo(x-co)ds A 9b<t,e) + go(t—gég,e) (2)
x'@=t x'0=t

A shift in the location of the object ¢ is seen to result in a shift in the t
variable of the Radon transform, the amdunt of the shift depending cosihu-~
soidally on 8. At any angle 6, g(t,8) is a 1D projection of f£(x); let the
projection measurement at angle © be given by a noisy observation of the
projection g(t,8) convolved with a 1D measurement aperture function h(t) (see
for example [1])

y{t,B) = g(t,0)*h(t) + w(t,0) = gb(t,e)*h(t) + go(t—gsg,e)*h(t) + w(t,8)
A yb(t,e) + gh(t—cée,s) + w(t,0) (3)

where * denotes 1D convolution in the t variable, and w(t,9) is zero-mean
white Gaussian noise with spectral level N /2.

The location of the object f (x) is eStimated from the noisy projection
measurements in (3) by locating e peak of the log likelihood function [7]

2 (" (% 1 ("7 2
(c) = -—j J_my(t,e)gh(t-g(')@_,e)dtde - ﬁ—L J g; (t-c!6,0)dtds (4)

N
0 ‘0 [o) -00

The first term is the result of a 2D matched filtering operation in the
measurement space (Radon space). Notice that this 2D function is obtained by
a convolution back-projection operation {4] on the measurements, with a con-
volving kernel that is specified in the optimal solution to the object
localization problem, and is generally not 8-independent. The second term in
(4) is the Radon-space energy in the matched filtering template; this term
is c-independent and can be ignored, as can the 2/N_scaling factor. Sub-
stituting (3), where without loss of generality we sSubtract the known
quantity yb(t,G) from the measurements

™ e T poo
= ) - - - !
L(c) I J y(t,e)gh(t g_@_,e)dtde J J gh(t %B,G)gh(t E_S,G)dtde

o ‘- © 7-®
™ o]

+ J [ w(t,B)gh(t-g'g,e)dtde = a(c—co) + n{c) (5)
o =00

The first term in (5) is a 2D deterministic generalized ambiguity function,
which has its peak located at the actual object location c=c . The second
term in (5) is a zero-mean random field with correlation E[nlc)n(3)) =
(NO/Z) - a{c-2c).

EXAMPLE

Congider the case where the object is a weighted indicator function on
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a disk of radius R

£ (x) = ax (x) (6)

D(R)
with contrast d and Radon-space energy €=(16/3)ﬂd2R3. Let the aperture func-
tion correspond to spatial bandlimiting of W cycles per unit distance in the

t direction, i.e. h(t)=(sin2mWt)/27Wt. For this circularly symmetric object,
the ambiguity function in (5) is a(c)=€a*(”c||/R,RW) which is circularly-
symmetric and depends on the spatial bandwidth W only through the radius-
bandwidth product RW (RW is the number of wavelengths at frequency W in the
distance R). Figure 1 illustrates a central section of a*(fﬁﬁ]/R,Rw) for several
values of RW.

Performance Analysis

Suppose that the object is known to be located inside D(T), a disk of
radius T centered at the origin. Let e A Cyp-c , where © L’is the location
of the peak of the log likelihood function L(c)oin (5). Tﬁe ML estimate error
covariance A A E[ee']l may be approximately characterized by dividing D(T) into
M square cells, the jth denoted C. with centroid cj(the actual object is located

at the centroid of C0 for simplicity).

M-1 M-1
he= L [f [. ee' (e|E,)de] ProblE.] A T A.p, (N
j=0 Cj - pelEj | j 37 - 3=0 jpj
where E; is the event that ¢ _ € Cj' By approximating p, as Probl[L(c.) 2IAci),

Vi), approximating A as (c.-C ) (ci:-c )' for j#0, and uszng the Cramef- Rao
bound to characterize A (Eﬂe_eraﬁgr:gao bound may be written in terms of the
second partial derivative of a(c) evaluated at ¢=0, which may be calculated
using frequency-domain techniques), one obtains an approximate expression for
the estimate error covariance. For the disk object in the example, the approxi-
mate error covariance is GZI; Figure 2 is a plot of T2/02 versus R for several
values of the ratio of contrast squared to noise level.

Conclusions

As indicated by Figure 2, the problem of locating an object in a cross-
section from noisy projection measurements is characterized by a definite
threshold behavior -- for given values of contrast and noise level, there
exists a smallest object size that can be located reliably. This type of
error covariance analysis may be performed for other object profiles f,(x),
as well as for limited-view and discrete-view projection measurements [6].
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TOMOGRAPHIC IMAGING WITH LIMITED VIEW ANGLE USING AN EXPANSION

ON A SET OF EIGENFUNCTIONS ADAPTED TO SPACE-LIMITED OBJECTS

* £
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% Institut d'Optique,Université de Paris XI,91406 ORSAY cedex,
France.
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I - INTRODUCTION

In many radiation imaqging applications, such as X-ray
computerized tomography or nuclear medicine, tomographic systems
have been recently developped, which image an object from an i
angulary restricted number of projections. It is well known that .
in such a case, some Fourier components arc missing {1} , and i
thus analytical reconstructions, such as Fourier synthesis can
no longer be used. But, the algebraic methods allow to take
advantage of "a priori" informations on the object, in order to
recover the missing data. Many authors have proposed different
reconstruction techniques, that combine limited projection data
| with a priori object information through iterative revisions in
| both image and transform spaces {2-3}. These methods in general
consume much computer time.

We propose here a new approach of the problem, based
on the fact that generally the imaged organs or objects do not
fill the whole detector field. The knowledge of their boundaries
allows to find, for each class of§ objects of the same extent,

a new set of expansion functions, which are more appropriate
than a Fourier cexpansion. We shall see how the expansion of the
object distribution on this new set of functions allows the
object reconstruction from projection data by a mere operation
of matrix multiplication. As a matter of fact, the terms of the
resulting linear system of equations are the same for each
object of same extent, and so the corresponding matrix inversion
has to be performed only once.

principles, and we describe the numerical realization of the
method, and a reconstruction simulation of an object viewed
i through a limited angle.

In this summary, we present first the mathematical ﬂ

' II - MATHEMATICAL PRINCIPLE
' 2.1. The basis function

Let us take the problem in one dimension first, we
will generalize later f.r the 2.D case.

We consider a detector field x € {-b,+b}, and a number
of samples equal to N, corresponding to the finite detector

eoeed o
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resolution (29). Thus a general object distribution f(x) will
be reduced to the N terms series f(xp), where :

= 2pb - N N
xp N ' P £ [ 5 +1,2
In the following, all the mathematical development will concern

digitized rather than continuous functions.
The N terms Fourier series of f(xp) can be expressed as :

N/2 kx N/2
£(x.) = I £, - exp(-2in—) = I % . exp(-2inEB) (1)
p =-N/2+1 k=~N2+1

Now, we consider the class‘ﬁa of 1-D digitized functions f(x )
equal to zero outside the interval {-a,+a}l , with a < b, i.eP:

X
= =£) .
f(xp) rect(2a) f(xp) (2?
X
where rect (72) =01 ]xp] <a<b
(0} otherwise
The Fourier series of a series f(x ) ‘fa can be expressed as

follows {4},|cf(l) and (2){:

N/2 o
f(x ) = L £, - Xp(x)) (3)
P —n/241 ¢ TP

2imx £
with x,(x ) = rect(—E) cexp (- ————E ).
£'%p 2b
From (2) it can be easily seen that the expansion coefficients
of equations (1) and (3) are the same.

We can expand these functions x (x ) into the Fourier terms
such as :

Xg(xp) = I Yok eXP(—ZinTBE) (4)

and equation (3) now becomes

L

£(x) =% flxzkexp( -2im— -E-) (5)

Lk

Comparing (1) and (5) leads to the relations :

e/ enn

M P -k PR B R
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N/2
a N N N
f. = T X x € [- 5 +1,3
k =-N/2+1 7Lk ! 2 2]'

that can be expressed in a matrix form :
n n

. (£) = (x] (%], (6)
vhere {f]is a N x1column vector of the Fourier components of f (Xp)
and[Y]is a N x N matrix, corresponding to the [-a,+a] truncation
operator. Equation(6) shows that, if f(x )€ [,, then the N Fourier
terms vector f] must be an eigenvector “of matrix [x]associated
with the eigenvalue A= 1. The diagonalization of [¥)leads to
only two degenerated eigenvalues : 0 or 1, and the number of
eigenvectors associated toA=1 is N, with N, = N x a/b < N,

To conclude, the functions f(x,) €L, can be expanded
into a basis of N4 eigenfunctions (we shall note them fK(x ).
K = 1,N_) which corresponds to the eigenvectors of ryl‘ p
associa%ed to the eigenvalue A = 1.

Now, we generalize to the 2~D case : for the recons-
truction, it is useful to deal with the class Iaz of digitized

functions f(xp, yp) equal to zero outside the disk of radius a.
Of course, the basis eigenfunctions could be calculated in the
same way, but the new matrix [Q] will be N2 x N2, and much
computation time and storage required. So we prefer to deduce

the 2-D eigenfunctions from the 1-D ones {fg(x,)} .
Now, we can easily see that the set of the §a’P N, functions

{fK(xp), fx 1 (yp) } where {k, k'€ (1,8, ]} is a complete set of
basis” functions, for any digitized %unction f(xp,y ) which is
nonzero only inside the square region {-a < xp < +a, =a ¢ Yp

& +a}, and a fortiori for the functions belonging to 4.2 .

So, if we consider a 2-D object distribution O(x,y) whose extent
is included in the circle of radius a (with a < b, b radius of
the detector field), its corresponding discrete form O(x ,yp)
can be expanded into this set of N3 X N 2-D eigenfunctibns !

Na N .
(0] = 0 3
(XP:YP) KE]_ K‘)E_—_l KK'fK(‘(p) fK' (YP) (7

Let us now consider the problem of the reconstruction of this
distribution from an incomplete set of projections.

2.2. The reconstruction problem

The available data are the projections P_ (x__) in various
directions of the object. Since O0(x Yp) belongsrpto,laz,
its projections P, (xyp) belongs to lg, agd thus can be expanded
to the set of 1-D eigenfunctions, i.e.

Na
Py (xrp) =L);__1PeL fL(xrp) (8)

Now, "projecting" the two terms of (7) we get :
Na Nj

-~

P

X_) = I o
K=1 K'=1

6( rp KK* pGKK'(xrp) (9)

b T
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where PQKK'(xr ) can be considered as the 8 - projectionsof the
eigenfunction p fx(xp)fxv(y ) , these functions PoKK' (Xrp)

do not belong to J[_, but s?nce Pe(xrp)é.l‘a,the two terms of (9)
can be truncated, thus :

X Ny N, -
= ~XIP =
Pe(x ) rect (2a ) . Pe(x ) z I O

rp P’ ko1 K'=
. K=1 K'=1

where peKK.(xrp) is the truncated projection of the eigenfunctions,
and thus can be expanded as any function belonging to J .
We get then : a

£ ) (11)

too(x_ ) =L (x
Pokk' Y¥*rp L Pokk't *L'*rp
Combining (10) and (11) and identifying the component of f (xy)
in (8) and (10), we get :

~

P..=ZI 10

] p L
6L K K KK 6KK'L
We obtain a linear system, whose unknowns are the N4z x N compo-
nents of the object (cf.(7)). The given data are the M x N values
of PGL' with M the number of observed directions 8 . To resolve
(12),” Mmust be equal to Na. The components Ogk' are obtained by
the inversion of the matrix 59KK"L] , which is the same for all
objects belonging to a same class £52, and imaged through the
same projection directions.

(12)

As an illustration of the above considerations, we shall
present numerical reconstructions of simulated objects whose
support is limited to a quarter of the detector area and viewed
through a total angle of 56°, resulting 32 x 32 images will be
shown.

IIT - CONCLUSION

As a matter of fact, this method uses the relations
existing between the spatial frequencies of every object, which
has a given limited support ; thanks to these relations, all the
long and big calculations need to be done only once, and the
reconstruction itself of an image from the projection data is
rapid.

At this time, we have only done simulations with ideal
data. We have now to study the influence of noisy data on the
reconstruction accuracy, so as to test the validity of the
following intuitive argument : a limited number MxN, of data is
used to reconstruct an object of size NyxN, ; since M has to be
at least equal to Ny, any extrapolation is avoided, and the
sensitivity of the method to noise should be limited.
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Linear Estimation with a Size Constraint

M. J. Lahart
Naval Research Laboratory
Washington, D. C. 20375

Least squares estimation has been used in image processing since Helstrom
showed several years ago that Wiener filters could be used to deblur imagesl,
In its most usual application, the technique uses the image data and the
object and noise autocorrelation functions to compute the object that
corresponds to the minimum of the sum of the squares of the noise values. We
show here how least squares techniques can also be used to estimate spectral
components when the size and shape of an object are known. Examples of
missing components are high frequency Fourier components of an object that has
been subjected to low pass filtering (blurring) and transforms of missing
projections of an object that is to be restored through computed tomography.

.The least squares of estimate of an unknown quantity y is the linear
sum y of measured quantities X = (Xj,eceX{yoee)

y = Myk(Mgx)~1 X (1)

that minimizes the expectation of the square of the actual and estimated
values.2 The matrix MRK is an array of correlation coefficients <xixj>
between the measured quantities Xj and xj, and MUK is an array of correlation
coefficients <x1xj> between measured quantities xi and unknown quantities yj.
Functional relationships among known and unknown quantities, as well as the
statlonarity characteristics of the object, are used to compute these
correlation coefficients. For example, the imaging equation, which describes
the image as the convolution of the object and a point spread function, is
the basis of the Wiener filter. 1In that application the known gquantities are
the measured values of the image and the unknown quantities are the values of
the object. Stationarity characteristics relate the product of two quantities
to a Wiener spectrum or a correlation function. In the Fourier domain,
stationarity implies that spectral components are delta-correlated3, i.e.,

<oo*(w) 0p(w)> = 2700 wi) 8Cwi-wj) (2)

and similarly for noise. Here, Oy,(w) is the Wiener spectrum of the object,
proportional to the Fourier transform of the autocorrelation function, and

5(w1—u5) is a Dirac delta function.

SPATIAL LIMITATION

An object whose spatial extent is known may be represented as the
multiplication of a stationary process by a truncating function that is zero
outside the known boundaries of the object. In the Fourier domain this is
a convolution:
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e Dt s

> 1 +> > > > +
o(ug) = 7 [ tlwoo(ui-w)du + n(w). (3
>
The correlation coefficients between measured spectral components o(wq)
and o(wj) are found by multiplying variations of Eq. 3, taking expecta-
tions, and using Eq. 2 to express spectral components o(wj-w) and o(wj-w)
in terms of a Wiener spectrum.? This leads to

*++ 1 > > > > > > > > !

0™ (wp)o(wy)> = 5 Je*(w) £ (up + wi=w)0o (wi-w) dw + N(w), (4) |
>

where Op(w) is the Wiener spectrum of the untruncated object. The L

expression for the correlation coefficient between measured and unknown }

components are the same, except that the nolse term N(w) is not present. !

In the one~-dimensional restoration problem t(x) is often a rectangle function

and its Fourier transform t(w) is a sinc function.

It is convenient to express Eq. 3 in circular coordinates when esti-
mating spectral components in computed tomography. Here, projections are f
made through the object at several angles and Fourier transforms o(w,¢) of ¥
each of these projections are calculated. We let o,(v,a) represent the
Fourier transform of the untruncated object at frequency (-v sina, v cosa),

(See Fig, 1 for illustration of the coordinate system). If the object is }
limited 1n extent by a circle of radius R, the function o(w,¢) is3

2

o 2m
o(w, ¢) = %ﬂ- [ ] oo(v,a) AR[w2=2w vV cos (a=Vv) + v2]1/2} wdva, (5)
f o O

where A( ) is a besinc function. This is the form of Eq. 3 that is used
to compute correlation coefficients between measured spectral components
in the projections. Products of o(w,9) at different spatial frequencies
and angles, which comprise the matrix Mgy, can be expressed in terms of
the object Wiener spectrum with the aid of Eq. 2, and similar coefficients
are calculated for Mgy. With the measured o(w, ¢) as the data, the o(w,d)
may be estimated for missing views and used to provide better reconstruc-
tions than could be made by reconstructing from the data alone.

; We should note a similarity between Wiener spectrum estimation and

' estimation using knowledge of spatial extent. It exists in the sense that
Eq. 3 - the equation on which the computation of correlation coefficients
is based - is a convolution, as is the imaging equation, which is the basis
of the Wiener filter. The two problems are not duals, however, because the
stationarity condition of Eq. 2 is applied in the Fourier domain {n both
cases.

Unlike the Wiener spectrum problem, the matrix MKK that is computed in
the spatial limitation problem is not easily diagonalized, and must be
inverted laborously. This is practical only if it has a small number of
elements. For most ptoblems the convolution kernal t{(w) is large when w
is small, and is relatively small when w is larger, so that only a few
correlation coefficients are significantly different from zero. We have

v . -
P SR
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estimated each spectral comgonent separately, using only that data which
strongly influence it, and have constructed Mgy only from coefficients
that relate this data. These separate computations for each estimation
have allowed the size of Mgy to be manageable.

COMPUTATIONS

Figure 2 is an example of a one-dimensional restoration based on band-
width extrapolation by least squares methods. Part (B) is a low pass filtered
version of part (A) and part (C) is a reconstruction which uses estimated
spectral components.

Figure 3 is a tomographic reconstruction of an object from 15 equally
spaced parallel beam projections, using the filtered back projection method.
The original object consists of a circle of radius 32 pixels inside of which
were smaller holes of radii 6,4,3,2 and 1. The object is binary, that is,
the large circle is white and the holes and surrounding areas 1s black. The
entire frame 1s 128 x 128 pixels.

Figure 4 is a similar reconstruction from 60 equally spaced projectiors
that have been estimated from 15 data projections. The object has signifi-
cantly higher contrast and fewer artifacts.

In order to use Eq. 2, we must have an estimate of Og(w), the Wiener
spectrum of the untruncated object. Because this quantity appears as a part
of an integrand, it need not be exact, but we have found empirically that
some improbable forms of O,(w) produce poor restorations. For the tomographic

reconstruction we took O,(w) as the average of the sum of the real and
imaginary parts of the spectral components of all measured views,

1 ¢
Oolw) = = %1 , lor2 (v, ¢) + 012 (v, )] . (6)
a

The reconstructions presented here use noiseless data. Restorations
have also been made with noise whose standard derivation is a few percent
of that of the signal. There is some loss of image quality in the recon-
structions, but the imagery is still significantly better than the unrestored
imagery. Examples of one- and two-dimensional restorations with noise are in
the references 3,4.
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Bayesian Approach to Limited~Angle CT Reconstruction*

by

Kenneth M. Hanson
University of California
Los Alamos National Laboratory
Los Alamos, NM 87545

George W. Wecksung
University of California
Los Alamos National Laboratory
Los Alamos, NM 87545

Consider the function f(x,y) to belong to the set of all integrable
functions with compact support. The projections of f(x,y) may generally be

written as

8, = ffhi(x,y)f(x,y)dxdy ,i=1,...,N (v

where the h; are strip-like response functions corresponding to each of the N

available projection measurements. The objective of computed tomography (CT)

is to reconstruct the source function f(x,y) from these N measurements.

Clearly a limited number of such measurements cannot completely specify an
arbitrary f(x,y). Since Eq. 1 may be viewed as an inner product between hy |
and f in the Hilbert space of all acceptable functions, each measurement con- i
sists of a projection of the unknown vector f onto the basis vector hy. The
available measurements can only provide information about those components of

f that lie in the subspace spanned by the response functions called the mea-

surement subspace. The components of f that lie in the orthogonal (null)

subspace do not contribute to the measurements and, hence, cannot be

*This work was supported by the U. S. Department of Energy under Contract
#W-7405-ENG-36,
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determined from the measurements alone. Without prior information about
f(x,y) 1t is at least necessary to restrict the solution to the measurement
space in order to make it unique, i{.e., have minimum norm. The null-space
components of such a solution are obviously zero. It is known that this
leads to identifiable, objectionable artifacts when the projections span a
limited range of angles.ls2 In its generality, Eq. 1 is representative of
any discretely sampled, linear-imaging process. Thus, the above statements
and the approach that follows are applicable to many other problems such as
restoration of blurred images and coded~aperture imaging.

The Bayesian approach to CT reconstruction3 is based on the assumption
that the image to be reconstructed belongs to an {dentifiabhle ensemble of
similar images. The best estimate for the reconstruction is taken to be that
particular image f that maximizes the a posteriori conditional probability
density of f given the measurements g. This probability is given by Bayes’

law

P(flg) = P(8IEIP(E)

2
F(g) (2)

in terms of the conditional probability of g given f and the a priori proba-
bility distributions of f and g separately. We assume that the measurement
noise is additive with a probability distribution that has zero mean and is
gaussian distributed. P(f) is also assumed to be gaussian distributed about
a mean value f. The covariance matrices of the noise and ensemble image-
vectors are R, and R¢, respectively. Under these assumptions, the maximum

a posteriori (MAP) solution is easily shown to satisfy

Re"1(E-£) + HTR_ ~l(g-Hf) = 0O (3)

where H is the linear operator (matrix) corresponding to the projection pro-
cess described b& the integral in Eq. 1. The transpose of H is the familiar
backprojection operation. It can be seen from Eq. 1 that the desired solu-
tion strikes a balance between its difference with the ensemble mean f and

the solution to the measurement equation (g = Hf). This balance is deter-

mined by the covariance matrices R¢ and R that specify the confidence with

S e ) e R M YA o 1
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which each difference is weighted as well as possible correlations between
the differences.

We have adopted an iterative approach to the solution of Eq. 3 based on
the scheme proposed by Herman and Lent.3 The nth estimate f™ is given by

the iteration schene:

£° = £, (4a)

n+] n n.n

£ =f" +c'r, (4b)

™ = f - £+ RHTR "M(g - HED), (4c)
nT _n
r S

T e (4d)
S s

s® = (I + RHTR “H)LP, (4e)

where vector r"™ is the residual of Eq. 3 (multiplied by R¢) and the scaler c?
n+l

is chosen to minimize the norm of r This fterative scheme is very simi-
lar to the one proposed by Hunt“ for nonlinear MAP-image restoratfon. We
have found that this technique works well although convergence typically re-
quires 10 to 20 fterations. It is easy to see from the form of this itera-
tive procedure that significant null-space contributions to f can arise from
the a priori information. First, the zero-order estimate is f, which can
contain null-space contributions. Second, in Eq. 4c, Ry can generate null-
space contributions when it operates on the result of the backprojection (HT)
process, which lies wholly in the measurement space.

The above MAP-reconstruction technique has been applied to an example
consisting of a fuzzy annulus with variable amplitude (see Ref. 2), which
roughly emulates the nuclear-isotope distribution in the cross section of a
heart. The available projection data are eleven views covering 90° in pro-
jection angle. Each projection contained 128 samples., The measurement-space
reconstruction obtained using ARTS shows severe artifacts that tend to

obscure much of the source distribution. In the MAP approach it was assumed

that f was an annulus with constant amplitude and that the covariance matrix

Re was large (1.0) at the peak of the annulus and small (0.2) inside and
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outside. The measurement noise was assumed to be uncorrelated, constant, and
low in value. The resulting MAP reconstruction is vastly superior to the ART
result showing much more of the detailed variation in amplitude present in
the source.

In past comparisons of MAP results to more standard techniques in the
areas of CT3 and image restoration, 55678 the MAP approaches yielded little
or no benefits. The reasons for the success of the MAP approach in the above
limited-angle CT problem are 1) the solution is severely underdetermined

because of the limited data set, and 2) the a priori assumptions about f and

rg can be made quite restrictive. It 1s expected that the MAP analysis will

be most useful in situations where these two conditions hold.
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The Use of A Priori Information In
Image Reconstruction From Limited Data

B.P. Medoff, W.R. Brody and A. Macovski

Stanford University
Stanford, CA 94305

Introduction

Image reconstruction algorithms imple-
mented on existing CT scanners require the
collection of line integrals that are evenly
spaced over 360 degrees.! In many practical
situations, requirements for high temporal
resolution or the presence of an x-ray opaque
structure prevent the measurement of all the
line integrals. Altempts to use existing algo-
rithms in this “limited data” situation result in
images with severe streak artifacts.2

Recently, there has been interest in an
iterative approach to image reconstruction
from limited data.34 The algorithm employs
repeated transformation between the space
and frequency domains, and is in essence a two
dimensional extension of a frequency domain
extrapolation algorithm introduced by Ger-
chberg® and Papoulis.® Because of its reliance
on a frequency domain interpretation, this
algorithm is limited to a particular type of CT
data collection geometry (parallel beam) and a
particular pattern of misscing data (missing
complete projections). While the importance
of using a priori information was recognized,
results have only been shown using the a priori
knowledge of finite extent and positivity.

In this paper, an operator framework for
limited data image reconstruction that applies
to arbitrary scanning geometries, and to arbi-
trary patterns of missing line integral data, is
introduced. This framework is not based on a
frequency domain interpretation, and hence
can be used when the pattern of missing data
does not correspond to a missing sector in the
frequency domain, as happens, for example, in
the Hagel Problem.” The operator framework
allows the reconstruction algorithm to incor-
porate a wide class of a priort information
about both the line integral data and the
underlying density.

This paper shows how a certain kind of a
priori information - knowledge of the density
in part of the object - can be exploited to
improve the quality of the reconstructed
image. The technique is demonstrated with

This work was supported by the National Heart, Lung and
Blood Institute {contract 1R01-HI25905) and by a grant in
aid from the American Heart Association Dr Brody 1s an
Esablished Investigator of the American Heart Associstion

images reconstructed from real x-ray data
obtained from a clinical CT scanner.

Limited Data Reconstruction

Let the full set of line integral data z be
divided into two subsets: the measured line
integrals y and the missing line inlegrals z
Let f be an image representing the attenua-
tion coeflicients of the object in the plane
through which the measuremerts are mad:.:
The set of line integrals & will be referred to as
the shadow of f. Our goal 18 to produce an
estimate f that approximates J. The algo-
rithms to be developed are based on two fun-
damental observations.

(1) My technique that generates an image
must implicitly assign values to the missing
line integrals. Instead of attempting to com-
pute the estimate f directly from the limited
sct of data, we can attempt to estumate the
missing line integral values that would be
predicted by this image estimate. Then the
estimated line integrals can be combined with
the measured data, and the resulting full set
of data can be reconstructed using convolution
back projection.

(2) Misstng measurements correspond to miss-
ing information. Two objects that are distin-
guishable given a full set of data might be
indistinguishable given a lunited set of data. A
unique image is only determined if the infor-
mation not contained in the measurements is
available in the form of apriori knowledge
about the object or line integral data. The
a priori information can be represented as
constraints that must be satisfied by the
reconstructed image and line integral data.
Examples of constraints are: The image and
line integrals are nonnegative; the image is
confined within a known boundary; part of the
image has a known value; all of the values of
the image lie in some known range.

Define 2 to be a consistent full set of
projection data if and only if: (1) z satisfles
the line integral constraints; (2) z can be
reconstructed to produce an image that
satisfies the image constraints; and (3) the line
integrals calculated from this image equal the
values in 2. Define £ to be a consistent esti-
mate of the missing data if and only if it can
be combined with the measured data y to
form a consistent full set of data.
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The limited data image reconstruction
problem can be viewed as the problem of
finding a consistent estimate of the missing
data.

The Consistency Principle

Define a constraint operator C* which
enforces constraints on a full set of line
integral data. For example, an operator that
enforces a nonnegativity constraint might set
negative line integral values to zero. Define
the following: A constraint operator C! which
enforces constraints on an image, a linear
reconstruction operator R which produces an
image from a full set of projection data; and a
line integral projection operator S which pro-
duces a shadow from an image. R can be
approximated by the usual convolution back
projection algorithm. S can be approximated
by numerical integration of a discrete
representation of an image. The full set of
projection data, 2z, can be thought of as a vec-
tor partitioned into two component vec'lors. z

and y. This will be represented as z = : .

With these definitions, we introduce three
Consistency Conditions. If £ is a consistent
estimate of the missing data, it can be com-
bined with the measured line integrals to form
a full set of line integral data which satisfles
the line integral constraints,

[ [~

x| _ z

ly =C* ly . (1
A consistent estimate can be combined with
the measured data and reconstructed to pro-

duce an image which satisfies the image con-~
straints,

[ =
z)_ z
Rly] —C’R[y] . 2
The line integrals of the reconstructed image

must agree with the measured and estimated
line integrals,

(3

Based on these relationships we intro-
duce the Consistency Principle: There exists a
unique reconstruction from a limited set of
line integral data if and only if there is a
unique estimate of the missing data that
satisfies (1)-(3).

Ghosts

Suppose that there are two different esti-
mates of the missing data, £, and £ which
both satisfy (1)-(3). Then, from (3) and the
fact that Sand Rare both linear operators,

£y _oplBel_ (21| _ |72
m[v SRy =ilv] |y @)
m[Z]GZg = [zlazg (f))

Defineg =%, — Zp, and G = R{g] . Let
S' represent an operator that computes the

shadow only in the measured data region.
Then

sc- i ®
SVG=0 . 7

Define a Ghost /mage to be a nonzero image
which has zero line integrals in the regions
where data has been measured. Equivalently,
a Ghost Image is a nonzero image which is in
the null space of the operator S¥. When the
geometry of the missing data is such that
there may be images which are invisible to the
measured data, the constraints must provide
enough information to determine a unique
consisient estimate.

Iterative Algarithms

The consistency conditions (1)-(3) can be
combined in a stngle necessary functional
relationship that must be satisfied by a con-
sistent estimate of the missing data. One of
the many possible combinations is,

- (8

In general, there is no computationally
eflicient way to solve directly for a consistent
estimate £. A consistent estimate can be
determined using iterative techniques, as
shown in Figure 1. An estimate of the missing
data is combined with the measured data, and
the resulting full set of data is forced to satisfy
the line integral constraints. The full set of
data is reconstructed, and the reconstructed
image is forced to satisfy the image con-
straints. Line integrals of this image are cal-
culated and used to update the estimated line
integrals. We have previously presented
update techniques based on the methods of
successive substitution, steepest descent, and
conjugate gradients.” Let $* represent an
operator that computes the shadow only in the
missing data region. Then the recursion for
the method of successive substitution is

- [P { -
z)_ T|_ ormif| - s|Z
y]_snly]-scnly]_sc'nc v

£, = SCIRC” [‘f;l A ®)

A detailed proof of convergence and analysis of
this algorithm is presented elsewhere 8

~=2ws
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When C* is the identity, C' is a known
extent constraint, parallel beam geometry is
used, and complete projections are missing
over a continuous range of angles, (9) is
equivalent to the Gerchberg-Papoulis algo-
rithm. Our framework, and the resulting algo-
rithms, are not restricted to this special case.

The Use of A Priori Information

The algorithm based on the method of
successive substitutions has been imple-
mented on a third generation (fan beam)
Varian CT body scanner. This section presents
experimental results demonstrating the use of
a priori information about the density in a
region of the underlying object. In the experi-
ment, parts of some of the fan beam projec-
tions are missing. The missing data does not
correspond to a missing sector in the fre-
quency domain; therefore, a Gerchberg-
Papoulis frequency domain extrapolation algo-
rithm can not be directly applied.

Figure 2 is a full data reconstruction of a
slice through a phantom that contains within it
three smaller rods. Assume that in 10% of the
fan beam projections in a continuous angular
range, the central 20% of the nonzero line
integrals are missing. Figure 3 shows the
streak artifact generated when convolution
back projection is used to reconstruct the lim-
ited set of data.

First, a reconstruction is obtained using
the iterative algcrithm with positivity and
known outer boundary constraints. The result-
ing steady state image is shown in Figure 4.
Although this image is an improvement over
the image obtained using convolution back
projection directly on the limited set of data,
there is still significant streak artifact. The
residual error can be determined by taking
the difference between the steady state image
and the actual density values of the object.
The nonzero line integrals of this residual
error image are concentrated in the missing
data region. This error represents a ghost
which can not be eliminated using only the
positivity and known extent constraints.

Next, assume that a region in the center
of the object has a known uniform value. This
information can be represented by a con-
straint operator which resets the central part
of the image to this known value, as shown in
Figure 5. The image produced by the iterative
algorithm using positivity, known extent, and
this additional known background information,
is shown in Figure 8. Compared with the
steady state result shown in Figure 4, there is
substantial reduction in streak artifact. Ghost
components that are not consistent with the
additional constraint have been eliminated.

This example illustrates three important
points. First, it shows the potential of using
deterministic a priori information to reduce
ghosts and improve the quality of the recon-
structed image. Second, it shows how the
operator framework incorporates this informa-
tion into the reconstruction process. Finally,
it illustrates the robustness of the technique.
Note that although the background constraint
removes the small structure in the center of
the image, this structure is resolved in detail
in the steady state reconstruction. Although
information about this structure is not
retained in the estimated line integrals, it is
retained in the measured data and reincor-
porated at each step of the iteration. The
steady state reconstruction is the best
compromise between the measured data and
all of the available a priori information.

Conclusion

A new operator framework for image
reconstruction from limited data was intro-
duced. This framework makes no special
assumptions about the pattern of missing line
integrals or the scanning geometry. Improved
reconstruction was obtained by using this
operator framework to capture deterministic
a priort information. Experimental results
were presented which demonstrate the perfor-
mance of the technique.

References

1. G. T. Herman and A. Naparstek, SIAM J.
Appl. Math. 33, 3 (1977) pp. 511-533.

2. G. S. Harell, D. F. Guthaner, R. S. Breiman,
C. C. Morehouse, E. J. Seppi, W. H. Marshall,
and L. Wexler, Radiology 123 (1977) pp.
515-517.

3. K. C. Tam and V. Perez-Mendez, J. Opt. Soc.
Am. 71, 5 (1981) pp. 582-592.

4. T. Sato, S. J. Norton, M. Linzer, O. Ikeda, and
M. Hirama, Applied Optics 20, 3 (1881) pp.
395-399.

5. R. W. Gerchberg, Optica Acta 21, 9 (1974)
pp. 709-720.

6. A. Papoulis, IEEE Trans. Circuits Syst. CAS-
22, 9 (1975) pp. 735-742.

7. B. P. Medoff, W. R. Brody, and A. Macovski,
in Proc. International Workshop on Physics
and Fngineering in Medical [maging.
(Pacific Grove, CA, 1882).

8. B. P. Medoft, Ph.D. dissertation. Dept. of

Electrical Engineering, Stanford Univ,
Stanford, CA, 1982.




FAT-4

Measured
L

Reconstruct Calculate
fane

Esti " fmape lulvsruls

I Ctl:uhnd

T L Update

Figure ¥: The iterative limited data image recon-
struction procedure.

Figure 3: limited data reconstruction with severe
streak artifact produced by convolution back projec-
tion. In 10% of the projections, the central 20% of
the nonzero data is missing.

Figure 2 Full data reconstruction of a slice through
a phantom that contains within it three smaller rods.

Figure 4: Steady state image produced by the itera-
tive algorithm using known extent and positivity con-
straints. There is significant residual streak artifact.

Figure 5. A priori knowledge of the background den-
gity in a region of the object can be represented as a
constraint operator. This operator resets the central
region of the image to the known value at each step
of the iteration.

Figure 8: Steady stale image produced by the itera-
tive algorithm using the known background con-
straint in addition to known extent and positivity.
Compared with Figure 4, there 1s significant reduc-
tion in the residual streak artifact.
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Incorporation of Prior Constraints in Tomographic
Reconstructions from Coded Images

Richard G. Paxman, Optical Sciences Center, University of Arizona, Tucson,
Arizona 85721

Gene R. Gindi, Department of Diagnostic Radiology, School of Medicine,
Yale University, 333 Cedar Street, New Haven, CT 06510

Harrison H. Barrett, Optical Sciences Center, University of Arizona, Tucson,
Arizona 85721, and Department of Radiology, Arizona Health Sciences
Center, University of Arizona, Tucson, Arizona 85724

The study of coded-aperture imaging has usually centered on the restor-
ation of planar objects from planar coded images. The concept has been
generalized to the problem of restoring a 3-dimensional object from a planar

coded image. These two tasks are illustrated in Figure 1.

CODED APERTURE

698

3-OIMENSIONAL OBJECT

PLANAR OBJECT

Figure 1

Clearly the second problem is more ambitious since we seek to restore a
3-dimensional function from a 2-dimensional data set. Said in another way,
we are trying to solve N® unknowns given N2 equations. The two-dimensional

data set has been shown to be deficient in two ways: (1) Because this is a

L__ — i L ) B
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restricted-view-angle system, "missing cones" of information exist in the
3-dimensional Fourier transform of the object; (2) Because the coded image
can be considered to be a series of overlapping pinhole projections of the
object, there is a mixing or "multiplexing" of data in the 3-dimensional
Fourier transform of the object.

As a first estimate of the object one can perform mismatched scale

correlation on the coded image. The output of this process is equivalent to
a blurred version of the cbject in which the blurring psf is shift-variant
and anisotropic. This estimate can be processed using the Jacobi method -

an iterative technique which in the limit of rany iterations becomes inverse
filtering. The iterative nature of the restoration provides a convenient
framework for the injection of a priori information. Constraints such as
positivity and spatial extent of the object can be enforced at each iteration
in the hopes of overcoming the ambiguity arising from the deficiencies in the
data set.

As a first try at implementing these ideas, we performed a computer
simulation in which the dimensionality of the problem was reduced so that the
object was 2-dimensional while the coded aperture and coded image were each
1-dimensional. The object was further simplified to consist of 4 discrete
layers. A 25 element pinhole code approximating a non-redundent array (NRA)
was used. The geometry of this simulation is shown in Figure 2.

The constraints used in the constrained reconstruction include positivity,
lateral extent of object, and power per layer, that is knowledge of the inte-
grated source strength in each layer presumably derived from an independent

measurement. The unconstrained and constrained reconstructions after 175

iterations are shown in Figures 3 and 4, respectively. The dotted lines
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represent the true object. When photon noise was added to the simulation

the constrained reconstruction was found to be relatively stable.

Admittedly, the object used in this simulation is far from being real- |
jstic. Furthermore, a large amount of prior knowledge about the object is |
implied by reconstructing on only the 4 given planes. Nevertheless the ['
results are promising because of the dramatic improvement in the recon- |
struction due to the constraints.

To perform more realistic simulations a continuous object made of super-
imposed circles of various weights was used so that coded images could be "

analytically derived. Reconstructions were performed on a finely sampled

grid. As might be expected, the results in the continuous case are not as
dramatic as those in the discrete layer case. Even though the constraints
do in fact improve the mean square error of the reconstruction, thus far the {1
improvement has been rather mild.

Continuing work includes attempts to improve the design of coded aper-
tures for out-of-focus behavior, reconstructions from orthogonal-view coded

images, and full 3-dimensional reconstructions from 2-dimensional coded images.

|
E
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!
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Inverse Scattering Reconstructions From
Incomplete Fourier Space Data

N.H. Farhat
University of Pennsylvania
Electro-Optics and Microwave-Optics Laboratory
The Moore School of Electrical Engineering
200 s. 33rd St., Philadelphia, Pa. 19104

ATSTRACT

We show that 3-D tomographic inverse scattering reconstruction of a
scattering object is obtainable from data lying on a curved surface, rather
than within a volume, of its accessed Fourier space as would ordinarily be
required.

1. 1Introduction

It is known from inverse scattering theory [1]-[4], that multiaspect
moncstatic or bistatic coherent measurement of the far field scattered by a
plane-wave illuminated conducting or non-dispersive object under conditions
that satisfy the physical opiics and Born approximations can be used to access
the 3-D Fourier space I'(P) of the object scatferning function y(r), Here T is
a 3-D position vector in object space measured relative to a common origin in
the object or its vicinity and p = k (1 -1;) is a 3-D position vector in
Fourier space or p-space with lp and T1; be1ng unit vectors in the directions
of observation and incident 1llum1nation respectively and k is the wavenumber
of illumination. The scattering function y(Tr) represents the 3~D geometrical
distribution and strengths of those visible scattering centerns or difgerential
scattering cnoss-sections of the body that give rise to the measured field.
Correction of the field measured in practice in this fashion for range-phase,
clutter, and system response [5],][6] leads to accessing I'(p) over those values
of P employed 1n the measurement. We will designate the measured data mani-
fold by T (p) and assume without further elaboration here that the values of
P utilized always sample the p-space in a manner satisfying the Nyquist crite-
rion to avoid aliasing in the reconstruction. The size and shape of the
accessed Fourier region depends on geometry and on the extent of the spectral
and angular apertures utilized i.e., on the values k and (1g,1j). Tt
is possible then as shown by computer simulation in [3] and [4] to retrieve
tomographically a diffraction and noise Limited version yq(r) of the object
scattering function through application of the Profection-S{ice Theorem de-
rivable from the multi-~dimensional Fourier transform [7]-[10].

The aim of this paper is to show that high resolution reconstruction of
yd(r) is possible by measuring Fm(p) over a curved surface In p-space rather
than within a_volume as would ordinarily be required for the retrieval of 3-D
detail of ygq(r). Because, for a given fixed spectral range, the number of angu-
lar observation points needed to adequately sample the p-space over a volume
is considerably higher than the number needed to access the outer surface of
the volume or a portion of it, a sizable reduction in the number of coherent
sensors or receivers is achieved. In practice this translates into a propor-
tionate reduction in the projected cost of high resolution wavelength diver-
sity imaging apertures and would for example, open the way for cost-effective
implementation of envisioned [11] giant {maging radar netwerks.
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II. Theoretical Considerations

Let H(S) be a Fourier space sampling function describing the values
assumed by the vector p = k(1lg-1j) during data acquisition. We can express
then the Fourier space data manifold accessed by measurement as,

Ta(®) = T(p) H(P) (1)

which can be regarded as a 3-D Fouwrlen transform hologram of the scattering
object. A diffraction and noise limited version y43(r) of the object function
y(r) can be obtained by Fourier inversion of eq. (1). That is (within a con-
stant 1/(2m)3),

T

Ya(® = 7 TEHG e3P T dp = @ ara(r) (2)

where _ _ T
h(r) = f H(p) e JprT dp (3)

is the 3~D {mpulse nesponse or peint spread functicn of the system and the
triple asterisks denote a 3-D convolution. Clearly, because H(p) (which can
be now identified also as a 3-D thansfer function of the system) is dependent
on recording geometry through p = k(1g-14), the impulse response here, in con-
trast to conventional monochromatic 1maging systems, is spatially variant. A
valid question then 1s the identification of favorable recording geometries
{for which a narrow h(r) is realized for a wide range of object bearings utili-
zing a minimum number of observation and/or illuminating points 1,e., (lR,l )
values in order to keep to a minimum the number of broadband coherent receivers
and transmitters employed in the recording geometry. To provide an answer to
this question we apply the projection-slice theorem to eq. (3), There are two
forms of this theorem. One states that a projection (central slice) in Fourier
space and a central slice (projection) in object space are a Fourier transform
pair. The second form establishes a similar relationship between parallel
wedghted pacfections and parallel slices in the two domains [3],]9]. 1In the
context of this analysis, the first version means that the 2-D Fourier trans-
form of the projection of H(p) on an arbitrarily oriented plane 1n p~space is
a central slice through h(r) oriented parallel to the projection plane. This
immediately suggests that desirable recording geometries are those for which
the projection of their H(p) in any direction cover always extended areas
whose 2-D Fourler transform will necessarily be concentrated in a narrow re-
zlon indicating an h(r) with central slices_exhibiting peak amplitudes of
varrow extent. If all central slices of h(r) possess peaks of narrow extent
the 3-D impulse response h(r) will consequently be narrow. With this condi-
tion established, we consider next the two bistatic recording geometries shown
in Fig. 1. 1In one (a) a randomly or regularly sampled circular recording
aperture of diameter D 1s used to access a truncated conlcal volume in p-~space
with the truncation being set by the initial and final values of the range of
wavenumbers k utilized in the measurement. In the second geometry (b), a
number of random or equally spaced sampling points or coherent receivers dis-
tributed in a circle of diameter D are employed to access an identically shaped
hollow truncated cone. Both geometries assume a centrally located coherent
tronsmitter or illuminator T. The sampling functions H(P) realized in both
cases will coincide over the sidewalls of the truncated cones. A brief study
of the two cases reveals that the shape and extent of the areas covered by
nearly all projections of the solid truncated cone and the hollow truncated
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Fig. 1, Geometries for accessing the Fourier space of a 3-D scatterer.
(a) with a sampled 2-D circular aperture, (b) with a circular
array of sampling points,

cone are the same except for a few projections in those directions forming a
small solld angle surrounding the OT Line where the hollow nature of H(p) in
(b) will be evidenced by a missing central region. This difference is illus-
trated by the two projection examples included in Fig. 1. However, because
the outer boundaries of comparable projections of H(p) in (a) and (b) are _
identical, the assoclated Fourier transforms representing the slices of h(r)
for both geometries are expected to possess central peaks of the same extent.
The amplitude and shape of side-lobe structure in the outlying regions sur-
rounding the central peaks will however differ somewhat because of the differ-
ent number and distribution of data points in the comparable projections. It
can be concluded therefore that the 3-D resolutions obtained with data accessed
over a volume of p-space and with data accessed over the outer surface of the
volume are nearly the same. Verification of this conclusion is found in the
results of a numerical simulation of microwave wavelength diversity imaging
[3) which are presented in Fig. 2., A semi-circular array of sampling points
consisting of 50 equally spaced recelvers distributed over an arc of 130° as
depicted in Fig. 2(a) is assumed. A 3-D test object consisting of two ad-
joining Ilm diameter conducting spheres arranged as shown and centered at a
distance R directly above the transmitter T is chosen. A spectral range of
(2-4) GHz and a ratio of R/D =1 are assumed in computing [y (). The far field
scattered by the two spheres was computed using the Mie series formulation [12].
Weighted parallel projections in the direction p; of the accessed P-space data
manifold lying on a truncated semi-conical surface represented by H(p) in Fig.
2(a) were obtained by multiplying T (p) by the complex factor expjlapz), a= 0,
-30cm, -40cm, before computing the projections. This yields three weighted
projection holograms shown to the left in Fig. 2(b) that correspond from top
to bottom to parallel horizontal slices through the object in Fig. 2(a) at

z= 0, =-30cm and -40cm. The optically retrieved images from these projection
holograms are shown to the right in Fig. 2(b). These demonstrate clearly the
3-D tomographic imaging capability from the limited p-space data accessed by
the geometry of Fig. 2(a).
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Fig, 2. Details of numerical simulation of 3-D tomographic image re-
construction from limited Fourier space data. (a) Recording
geometry (b) Weighted projection holograms (left) and re-
trieved images of three slices through the illuminated portion
of the two spheres.
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Deblurring and Three-Dimensional Reconstruction
from Multiple Linear-Tomograms

Satoshi Kawata Jack Sklansky
Department of Applied Physics School of Engineering
Osaka University University of California, Irvine
Suita, Osaka 565 Japan Irvine, California 92717
ABSTRACT

The image of the tomogram obtained by a conventional x-ray tomographic
machine is degraded by the superposition of motion-blurred images of nonpivotal
planes. We introduce a method to eliminate these blurred images from a tomogram.
In this method a set of tomograms, each focused on one of a set of parallel
planes, are combined to form a three-dimensional reconstruction of blur-free
tomograms. This approach is equivalent to the inversion of a linear system. By
a mathematical analysis of linear-motion tomography, we found that linear-motion tomog-
raphy is restricted to angularly~limited frequency information. An iterative
matrix inversion algorithm with the constraints of nonnegativity and finite-
extent is applied to the reconstruction of the plane of interest from a set of
tomograms .

SUMMARY

1. INTRODUCTION

Even after the introduction of the computed tomographic (CT) scanner,
conventional x-ray tomographic machines are still widely used in hospitals.
This is because conventional tomography has the following benefits in comparison
to CT:
1) simple and inexpensive equipment,
2) small radiation dose, and
3) no restriction with slice-angle.

However,compared to CT, conventional tomography has poor image quality. The
images of the planes adjacent to the pivot plane are blurred and superimposed
on the tomographic image of the pivot plane. To suppress this blur, high-pass
spatial filters have been applied to tomograms [1].

[n this paper we propose another approach to suppress superimposed non-
pivotal planes in a tomogram. We combine the image of multiple tomograms,
cach focused on a distinct member of a set of parallel planes, so that nonpivotal
planes are eliminated from the image of the tomogram focused on the plane of
interest. In current practice, one often takes a set of tomograms rather than
a single tomogram at one session. For this purpose, a multiple-film cassette,
which provides multiple tomograms by a single motion-scan, is commercially
available.

2. BASIC FORMULATION OF CONVENTIONAL X-RAY TOMOGRAPHY

In conventional x-ray motion tomography, an x-rav source moves Syn-
chronously with the film so that the projection of a particular plane (the
pivot plane) in the object remains stationary relative to the film during
the exposure. The projections of all other planes move relative to the film
and are blurred on the film. Figure 1 illustrates the geometry of linear-
motion tomography.

+
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Let the three-dimensional (3-D) distribution of the attenuation
coefficient of the object and the one-dimensional distribution along the path of
the x-ray source during the exposure be denoted bv a(x,v,z) and h(x), respectively,
where x and y form the x-ray source plane, and z is the distance from the
x-ray source plane to the film plane. The image of the tomogram in
the pivot plane z = p is given by

_ £ , y 1
t(x,y,p) //a((kp—c)/c (kp-2) /¢ )

(1)
. _& h x-£, dg dg
kip=t ( X p-c| )
g

e ————— o ——

where the film is located at z=kp (k times farther than the distance of the )
pivot plane from the source plane), and where the path of the moving x~-rayv
source is assumed to be on the x-axis.

Because |p-C| appears in the denominator of the integrand in Eq. (1),
most of the integration is produced for values of [ close to p. Thus,
in the above integral,

kp-%
g P

1R
ﬁf
|
1
i
—

and k L k
4 p

Hence

t(x)}'sp) E./:/.a( k§l~ ’ '—Eg'l—— > g)

. n f—%& ) & dg
klp-¢ (5 lp-cl)
p

Since we are interested in obtaining a three-dimensional tomographic re-
construction, we replace p by z. This yields

£y, 2) E./‘,/-"’(k?l T )

. z h x-§ ) d§ dg
kz=E] X Vgl

The above equation may be expressed as the following two-dimensional convolution:
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t(x,y,z) = a(k—ff ’ ;“_L- ’ 7‘) ** h’(x,z) (2)

where ** denotes two-dimensional convolution, and h“(x,z) is the
following two-dimensional (2-D) point spread function (PSF) expressed in
terms of the one-dimensional PSF h(x):

h™(x,z) = B h Bx Y., (3)
[z | 2|

where 8§ is a constant in the convolution, and subsequent to the convolution is
replaced by z/k. Thus the PSF h’(x,z) varies spatially with respect to the

pivot-to-source distance z (or, equivalently, p).

Figure 2 illustrates this 2-D PSF and its 2-D Fourier transform
(the transfer function) of linear tomography, in the case of the constant-
speed motion of the x-ray source within the finite path length. The
transfer function, illustrated in Figure 2(b), has angularly bounded
ranges where all values are zero. This means that linear tomography
system misses the information of the spatial frequency com;onents of
these ranges in the original signal. In other words, we cannot obtain a
unique solution of the double integral equation of Eq. (1). Similar
problems can be seen in CT reconstruction with limited view angle (2,3]
and in coded-aperture imaging [4].

3. CONSTRAINED ITERATIVE RECONSTRUCTION

1f some constraints given by equalities and inequalities are added
to Eq. (1), which agree with the physics of the object and the system, the
solution of Eq. (1) with these constraints may be unique, and the missing
information can be recovered. There have been many works of such constrained
signal recovery algorithms proposed mainly in the field of diffraction-limited
optics [5].

Our approach for 3-D reconstruction from multiple linear tomograms is
an iterative matrix inversion algorithm, which is well known in numerical
analysis. This algorithm has been successfully used for digital image
restoration [6,7]. It also appears in the well-known CT reconstruction algorithm,
ART (Algebric Reconstruction Technique).

As a digital version of Eq. (1), we can express linear tomography hv a
linear matrix equation:

t = [H] a, (4)

where vectors t and a are 3-D distributions of the tomograms and the object,
respectively. The elements of the individual vectors represent the sampled
voxels (3-D elements) of the tomograms and the object, respectivelv. [H] is
the matrix of the PSF, or the sampled version of Eq. (3).

(n)

The estimate of a in n iterations, a , by the successive displacement
method with constraints is given by
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(n-1) _

)~ gD 4w ™yt (e - (o) + (D4 (e1a‘™, (5)

I8,

where [D] is the diagonal matrix whose diagonals are the same as

those of [H], [E] and [F] are the lower and the upper triangle matrices

of [H] with zeros on the diagonals, respectively, and [R(“)] is the diagonal
matrix to constrain the output within a bounded region. The a priori
information, such as the maximum limitation of the object size in 3-D

space and the possible attenuation coefficient values, that is between

0 and 1, can be used for this constraint matrix.

If the number of tomograms available is insufficient to form the 3-D
space of the object, we have to interpolate or extrapolate the tomograms
along the z axis. The method applicable for this purpose is an iterative
algorithm [8] that minimizes the sum of the squared error between the
object (i.e. the true attention function and the computed 3-D reconstruction.
This algorithm is also based on an iterative matrix inversion algorithm [91.

4. EXPERIMENTAL RESULTS AND CONCLUSIONS

We carried out computer simulations of a 3-D reconstruction of a cemputer
generated phantom with 11 planes by the constrained iterative matrix inversion
algorithm. The results encourage us to believe that this algorithm will be

useful for 3-D reconstruction of blur-free tomograms from a set of conventional
x-ray linear tomograms.

The iterative matrix inversion algorithm is very efficient in computation
time and in memory capacity when the matrix is very sparce and the diagonal
elements are relatively larger than others. Linear tomography satisfies
these conditions, as well as the condition for convergence. The
condition for convergence is guaranteed by the fact that anv eigenvalue X,
of [D]-l[H] lies between 0 and 1. In other words, the optical transfer
function (OTF) of linear tomography has a nonnegative value at every frequency,
as illustrated in Figure 2(b) [6].
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Two-dimensional Reconstructions from One-dimensional Data
by Maximum Entropy

Sibusiso Sibisi

Department of Applied Mathematics and Theoretical Physics, -
Silver Street, Cambridge CB3 9EW, England

The Maximum Entropy Method (MEM) is a powerful information-
theoretic approach to the inversion of many types of data in
science and engineering. It has been used for reconstructing
positive images in such areas as radio astronomy [1,2], medical K
tomography [3), plasma diagnostics [4] and crystallography [5].
Practical data are always corrupted by noise and are usually
incomplete: for example, there may be missing projections or
missing Fourier components. Also the instrumental response
function may be incompletely known [6]. These factors can
lead to severely ill-posed inversion problems.

We apply the method here to Fourier Transform Nuclear
Magnetic Resonance (FTnmr). The experiment consists of per-
turbing the magnetic moments of a set of chemical species with
a transient magnetic field and observing the profile of oscil-
lating decays as the moments relax to their equilibrium con-
figuration in an underlying uniform field. The data are a
time-series representing the overall magnetic moment, from
which we wish to recover the decays and frequencies of the
individual species. The early data points in the time-series
frequently need tc be rejected because of distortions due to
finite pulse width. The data are therefore incomplete. There
is also usually an imperfectly known time delay before detectiorn
and an imperfectly known misalignment angle between the detec-
tors and the net magnetic moment at time t = 0., MEM can recover
these parameters as well as finding both the frequencies and
decays, even though the recovery of decays is a notoriously
ill-posed problem.

Our problem is of the novel type

(1) F(t) = [dk [fduwf(k,w) exp(-kt-iwt)
(0]

-0

in which a 2-dimensional function f(k,w) representing a set of
oscillators of strength fdwdk in the frequency/decay cell dwdk
produces a l-dimensional time-series F(t). With practical
FTnmr data there is also an unknown origin shift in t and an
unknown overall phase shift exp(i¢): determination of these is
discussed elsewhere [7]. The data Dy are noisy samples

(2) Dt “fl‘~ Re(F(t)) + r.o,

.
where ot is a standard deviation and ry is random with unit
variance. From D; one wishes to reconstruct f(k,w).

o
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The conventional technique is based on Fourier trans- t
forming D An individual species u of frequency wy and decay
ky would glve a Lorentzian frequency spectrum f,k /(ku + (w- wu) ) !
peaked at w; with width ky, and one attempts to describe the
data transform D(w) as a sum of such Lorentzians. However,
close rapidly decaying components overlap and become confused.
Apodisation techniques [9,10] are used to improve resolution.
For instance, if the dccays k, are all the same, equal to kg
say, then multiplying F(t) by exp(k,t) and then Fourier trans-
forming yields, ideally

(3) D(w) = Ef“a(ww“)

But this is unsatisfactory when the decay rates differ ard a
simple exponential filter is liable to give large noise amplifi-
cation. Noise may be suppressed by modifying the apodising
filter. For example, exp(kot - Ct?) where C>0 is often used

but suppressing noise leads to poorer resolution. 1In general
there is no all-purpose apodisation filter.

To do MEM we first construct the chisquared statistic
(4) U Z[ﬁRe<F<t)> - De) /0]

and define the set E = {f:x? (f)<x } as the ’feas1ble set of
reconstructions consistent with the data, where Xp2is some chosen
tolerance level (say, the value corresponding to 99% confidence).
Any f for which x?(f)>xo2is rejected: its residuals are too

large for it to be consistent with the data. However, we still
need to select just one reconstruction from the large set E.

To this end we introduce entropy.

The configurational entropy of a reconstruction is (8]

(5) S (f) ~f [ akdwp (k,w) log (p (k ,w) /m(k,w)) ;

£(k,w)/f[dkdw £ (k,w)

p(k,w)

Here, m(k,w) is a measure representing the relative importance
of different regions of the (w,k) plane. The global (uncon-
strained) maximum of S is attained when f(k,w) is directly
proportional to the measure. Maximising S subject to the
feasibility constraint yields that unique reconstruction which
has least overall structure relative to m. Spurrious struc-
tures due to noise and instrumental artefacts are automatically
suppressed

To determine m, we observe that the natural measure in
the frequency/decay~-time phase-plane (w,T) is uniform i.e. ghere
is an uncertainty relation SwlT = const. between w and T=k~
This transforms to a measure m(®w,k) = 3(w,T)/d(w,k) = k=% in
the (w,k) plane. We can now use MEM to find the optimal two-
dimensional reconstruction f(k,w) which fits the data.




We are currently using the technique on real FTnmr data
[7?, but here we report simulated results from a 5-component
example. Fig.l shows this example as a 2-dimensional plot
against decay k and frequency w. Fig.2 is the corresponding
time-series data D;y sampled at 128 points with gaussian noise
of unit standard deviation (relative to fff(k,w)dkdw = 200).
Fig.3 is the conventional spectrum of Lorentzians D(w). Peak
{b) appears to ke of lower amplitude than (c) because of its
faster decay. But, because of the strong overlap, it is not
possible to tell which is the broader, let alone deduce the
width., Fig.4 is the spectrum obtained after applying the apcd-
isation filter exp(kot - Ct?) to the data. Here, ko is the
decay of the peaks (d) and (e) and C=ko/To where To is the
lenyth of the time-series. Noise has been amplified and the
amplitude ordering is clearly wrong.

The MEM 2-dimensional reconstruction is in Fig.5. Peaks
are well resolved in w and the decay values may be read off the
k axis although peaks are broad along this axis. This is
because of the inherent difficulty of recovering decays. The
width in k gives the substantial uncertainty in the decay values
whilst the small width in w shows that each frequency is well-
determined.

Fig.6 is the projection of Fig.5 onto the fregquency axis.
By comparison with Figs.3 and 4 the peaks are much better re-
solved and the ordering of the amplitudes has been corrected.
The wavy background in Figs.3 and 4 due to noise is absent
from Fig.5. Thus, even when decay information is removed by
projecting onto the frequency axis, MEM is still inherently
superior to conventional apodisation because it allows each com-
ponent to be fully resolved in w, regardless of its decay rate.

Finally, we point out that this analysis is possible
because of the relative sparseness of the components; it is not
realistic to hope to recover more than about one component in
the decay axis for a given frequency. The method, however,
remains relevant for FTnmr and for problems in engineering
which have relatively few modes of oscillation.
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The Phase Problem of X-Ray Crystallography
from the Viewpoint of Signal Recovery

GERARD BRICOGNE
Department of Biochemistry
College of Physicians & Surgeons
Columbia University
630 West 108th Street

New York, New York 10032

The diffraction of X-rays by crystals was discovered in 1912 by Laue
who proposed a theory of the phenomenon based on its analogy with optical
diffraction by gratings. It is most easily understood from the standpoint
of Fourier analysis, in which 1language it was reformulated shortly
afterwards. The electron density in a crystal is periodic, and may
therefore be conceived as a superposition of plane waves whose wave vectors
belong to a "reciprocal 1lattice" dual to the crystal lattice. The
contribution of each wave, or system of fringes, is described by a complex
Fourier coefficient, whose amplitude gives the strength of this system of
fringes, and whose phase determines the position of the fringes relative to
some fixed origin. If all the amplitudes and phases of these waves are
known, it is possible to obtain a picture of the electron distribution in
the crystal by superposing them; that is, by a simple Fourier synthesis.

In an X-ray diffraction experiment, however, only the intensities of
the diffracted beams can be measured, and these are essentially the squares
of the amplitudes of the Fourier coefficients; the corresponding phases are
lost in the measurement process, and must be restored by some means before
the desired picture of the crystal structure can be obtained. This
constitutes the "Phase Problem" of X-ray crystallography.

The early crystal structure determinations were ©performed by
trial-and-error methods in which the atomic positions were first guessed,
then adjusted so as to produce the best fit between calculated and observed
intensities.

The first conceptual advance took place in 1934, when Patterson had

some seminal discussiors at M,I.T. ~"fth Norbert Wiener who was then
developing the Fourier trunsform inte - ¢col for statistical analysis. As
a result, he realized that a Fourier & -ies having as its coefficients the

directly observable intensities, and thi's :containing no phase information,
would yield, in Wiener's language, the a.tocorrelation function of the
electron density in the crystal. The positions of the peaks of this
function {(the Patterson function) would thus give the interatomic vectors
of the structure. In simple cases, the atomic positions can be inferred by
trial and error from this set of interatomic vectors, This method of i
"Patterson deconvolution" became the basis of most crystal structure
determinations. Patterson's work was important in another respect: he |
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showed that the phase problem may not always have a unigue answer, by
giving an example of two crystal structures (which he called "homometric")
which were distinct and yet had the same autocorrelation function,

The first break-away from trial-and-error methods was the use of heavy
atom substitutions to determine the phases of the Fourier coefficients. A
classical example of the application of this technigue 1is Robertson's
solution of <the phthalocyanin structure in 1936: by comparing the
intensities diffracted by the organic molecule to those obtained after
insertion of a nickel or platinum atom at the centre of the organic group,
most phases can be determined and the Fourier synthesis can proceed without
any previous model.

Both Patterson and heavy-atom substitution methods have since grown
enormously in sophistication and ©power in the hands of protein
crystallographers, but their conceptual foundations still go back to the
mid-thirties.

Only relatively late was it realized that some special features of the
electron density in a crystal, namely positivity and atomicity, lead to
mathematical” relationships between the phases and the amplitudes of the
Fourier coefficients, so that a purely mathematical solution to the Phase
problem could be contemplated.

Harker & Kasper showed in 1948 that positivity implies a set of
inequalities involving the Fourier coefficients, which were later (1G50)
shown by Karle & Hauptman to be the simplest of a large family of
leterminantal inequalities. The general theory of such inequalities had
been known to mathematicians since the work of Toeplitz in 1911.

Atomicity was exploited in two different ways, one of them analytical
and the other statistical.

The analytical approach is that of Sayre, who in 1952 derived a set of
nonlinear convolution equations satisfied by the Fourier coefficients of
any structure consisting of equal, resolved, spherical atoms. Sayre's
equations had an immediate impact, and their implementation led to the
first "direct method" of X-ray structure determination.

In the statistical formulation, proposed by Hauptman & Karle in 1953,
atomicity is interpreted as a statement that crystal structures may be
thought of as being generated by placing identical atoms randomly, and
independently of each other, throughout the unit cell of the crystal., The
Fourier coefficients of such structures are therefore sums of a 1large
number of 1independent identically distributed random variables (the
contributions from individual atoms); the Central Limit Theorem of
probability theory may then be invoked to obtain asymptotic estimates of
their joint distribution. Such joint distributions of Fourier coefficients
can yield phase information 1if knowledge of the amplitudes is assumed.
These 1ideas have had a profound, if somewhat delayed, influence on the
development of direct methods. Thirty years later, the initial formulation
of Hauptman & Karle has been much improved upon, and its connections with
classical methods of probability theory have been greatly clarified.
However, their original 1intuition of the nature and power of the
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probabilistic approach to the phase problem has remained the basis of ail
later developments.

Recent work by the present author has been aimed at relating the
mathematical apparatus of probabilistic direct methods to that used in
various branches of signal processing, and in particular to Jaynes's
maximum-~entropy formalism.

The representation of a crystal structure as 2=n "atomic chaos", used
by Hauptman & Karle, is a device for ranking sets of Fourier coefficients
by the value of their joint probability. An alternative procedure would
consist in ranking the corresponding electron density maps according to
their relative frequency of occurrence in tre statistical ensemble of
structures generated by the same random process. The relative frequency of
a map can be evaluated by simple combinatorial arguments, and its logarithm
is found to be proportional to the Shannon entropy of the map.
Probabilistic direct methods are thus closely related to Jaynes's
maximum-entropy principle, which has been applied successfully to many
problems of spectral estimation and of image reconstruction from incomplete
or noisy data. This :onnection can be made more precise: it will be shown
that the maximum-entropy principle can be rigorously derived from the
hy,.otheses on which probabilistic direct methods are based, and that it
embodies the optimal exploitation of these hypotheses.

In spite of this unification of hitherto distinect formalisms, the
X-ray phase problem retains a unique level of difficulty armong the signal
recovery problems so far tackled by the maximum-entropy method. Because of
the non-convexity of the observational constraints represented by the
knowledge of the intensities, the maximum-entropy condition does not define
a unique set of phases, and ainy solution algorithm must accommodate a high
degree of branching. A strategy for dealing with this problem by
sequential decision methods will be presented.
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IMAGE RECONSTRUCTION AND PARTIAL DECONVOLUTION WITH SUPPORT CONSTRAINT
SEPARATION ANGLE AND LEAST-SQUARES INTERPOLATION PROCEDURES

A. Lannes
Laboratoire d'Optique Electronique

29, rue Jeanne Marvig, 31055 Toulouse Cedex, France

In image reconstruction from projections [l], and more generally, in any

partial deconvolution with support constraint, the centrad probdiom o to o). -
elfy tne conditions under which [t 7s possible to interpoiuate, Un o bounded

region W, the Fourter transjorm of an object function with support In u ou-
ded region V [2,3,4] . In particular, it is then essential to understand, in an
analytical way, the parts played by the size of V and W, and the geometry of
the whole V,W-configuration (cf. for example Fig. 1). The aim of this communi-
cation is to summarize the corresponding analysis, and to visualize the main
results with the aid of appropriate representations.

W o ootepodatoen
domaon

Vooosuppett constaaont

Four l er

Object
space

space

Fig. 1 : = Fourier transform interpolation of functions with bounded supperta.
An example of V,W-configuration.

L. PRINCIPLE OF THE INTERPOLATION METHOD

In the geometrical illustration of the problem, presented on Figure 2,

the infinite dimensional Hilbert space of square-integrable functions 1s sche-
matically identified with the three-dimensional Euclidean space. By hypothesis,
the object function ¢ has its support contained in V (¢ = 0 outside V). Deno-
ting by F the Fourier transform operator, and by W the characteristic function
of W w=11in W, w = 0 outside W), the binary filter eliminating the spectral
regions in W is the operator of orthogonal projection onto K' : Q' =F~!(1-w)F.
Let ¥ = Q' be the projection of ¢ onto K', ¥. K' be an approximation to ¥,
and ¢'? be the corresponding quadratic error

e Lo A A
R 1 2 RN A 2] R N

The problem is to obtain an approximation to ¢, &, using as data ¥, and in
addition, to understand how the error

Y \
‘ (t = FY).

A LR

8
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depends on ¥ and W, in particular. (:learly, when W is bounded, the problem con-
sists essentially in interpolating ¢ in W from its values outside W. Strictly
speaking, this is only true if «' = 0,

K' Q'
-t
: Q
' V] —» K
N ]
S A x /
Q
¢ i‘ 'S
— - ‘
/s N '
G H
sge s = deomctrteal [Hlustration of the interpolation principle.

subapuace o) Junctions $ witn support in V (object space)

K @ swbepace of fueetlons the support of tho Fourier transjorm of wriern

s in W

K' 0 sibepace of Junetlons the support of the Fourler transform o) wnien
fooowtasTde Wo(image space)

G oopepaior of orthogonal progection onto Ko (binary U ter climinat g
L speetral regions cutside W)

Q' opcrater of orthacgonal projection onto K'Y (binary
the speetral regions in W)

G @ subspace of functions ¢ filtered by Q' (G = Q'H = AH ‘o the range

L)f A)

ot geparation anglc between Hoand K.

it

Silter oliminating

Let A be the mapping of H onto G induced by Q' (cf. Fig. 2). The least~
squares solution of the equation A¢ - ¥ = 0 is defined by the relation

= A" 1
oy = ATl

where ¥y Is the orthogonal projection of Y onto G. In the Fuclidean case pre-
sented on Figure 2, A is invertible /ff (if and only if) the angle a between H

and K is different from 0. Then, t‘; = (¢'? - ¢'% /sin’a.

The concept that generalizes the traditional notion of angle with respect
to the problem under consideration is that of sepu-ation angl/.. 1t is easy to
show from Proposition 1 in [2] that

, A .
cosa = sup f[wdl? . (L)
floll=1

Thus, cos’a is the largest fraction of energy that the Fourier transform of a
function with support in V can have in W. According to the Parseval identity,
sin‘a isthe smallest fraction of energy that ¢ can have outside W. It then
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follows that the quadratic error eé is governed by the relation :
12 12
A
< — . (2)

€
sin’a

2
s
This inequality shows in an explicit way that the closert, n/2 s trne separa-
tion angle, the more reliable is the interpolation mrocess. Conversely, when u
is small, the problem is practically ill-conditionea.

2. INTERPOLATION PROCEDURE

Denoting by P the operator of orthogonal projection onto H, the least-
squares solution is explicitly given by the relation

o = A7Y,  with ¥y = A(PA)T'PY; (3)
thus, ¢g = (PA) 'PY where P¥ = v¥ (v = 1 in V, v = 0 outside V). Since, for
any Y- K' and ¢¢H, <¥ | ¢> = <¥ | Q'¢> = <PY¥ | 4>, the operator of H into K'

induced by Q', and that of K' into H induced by P are mutually adjoint. Note
that the smallest spectral value of PA is equal to sin“a (cf.[2] and[3]).

Always subject to the condition a > 0, and provided that w lies in the
open interval }0, 2[, the Jacobi sequence

% » bpey = On + wP(¥ - AG) (4)

converges towards &g for any starting function ¢O» H (cf. Proposition 1 in [3]
with a' = 0). The optimal relaxation parameter wy and the corresponding asymp-
totic rate of convergence are given by the relations :

W, = 2/(2 - cos?a) and  Vv(wy) = cos?a/(2 - cos®a). (5)
The fact that v(mo) is a decreasing function of o shows that the closer a is to
/2, the easter is the imterpolation process.

According to Equation (5), w, is greater than 1 and less than 2. As indi-
cated in the next section, it is generally possible to specify its value , a
priori, from the knowledge of V and W alone.

When ¢, is taken equal to 0, and w is set equal to 1, the Jacobi sequence
(4), o,47 = PY + PQ%,, corresponds to explicit calculation of the series

> Q" pY, (6)
n=0

which yields ¢, from the alternating Projection Theorem (cf. Eq. (13) in 4] 3
by hypothesis, the projection of ¢ onto the orthogonal compiement of H is
equal to 0). It should be noted that this choice of w is only suited to cases
where o is close to 7/2.

3. BEHAVIOUR IN V AND (! OF THE SEPARATION ANGLE

For clarity, we assume that V and W are two-dimensional bounded regions,
and give the corresponding results without proof. The reader interested in the
underlying mathematical material may consult References {2] and (5].

Let n be the geometric mean of the measures (or areas) of V and W :

n= () uwz. (7)

By definition, n is a size parameter without physical dimension. As expected,
when n tends to infinity, o tends to 0 more quickly than any integral power of
vf 1/n. It follows that the interpolation process can only be performed if n is




relatively small. The behaviour of o for small n is essentially governed by the
relation

sup{0, n(l - In?)} < cos a < inf{l, n} where J - ZHZIQ" (X.0)2dd dx. (8)
V'W

Here, V and W, the centres of gravity of which coincide with the origin, denote
the sets of measure 1 similar to V and W respectively. More precisely, provided
that n 1s sufficiently small, cos o can be obtained from a series of the form

[+ o]

2
cos o = n 5-(_1)m k n ™ (9
g m
m=0
where the coefficients ky (for m>0) depend on the geometry of the V,W-configu-
ration (k, = 1, k; = J, etc...). For example, when V is a disk and W has rota-
tional symmetry (cf. Fig. 1), we have

1 5 1 1

2 7
k, = 3 D, , k, = 5 b, - 17 by , k; = z D" 3% D,D,, etc...
with - m
D =72 Jr(mr®)” w(r) dr (w =1 in W, w = 0 outside W).

The coefficients ky for m greater than 2 or 3 can be easily obtained by perfor-
ming appropriate algebraic calculations with the aid of the computer[6]. In the
special case where V and W are disks, the previous expressions yield :
7 1

k, = % R kz = 145 °* k, = 197 ° etc...
We then retrieve in a quite independent manner, the coefficients that can be
directly obtained from an analysis based on the prolate-spheroidal wave func-
tions (7]. The question raised by Landau and Pollak (in Reference 18], Para.
5.5) about Avw to deal with problems involving regions (essentially) other than
diuks has therefore becn solved.

We may now advance the following conjecture : for a given value of n, the
minimal value of o is attained when V and W are disks. Intuitively, with re-
gard to the interpolation process, this is indeed the worst situation. Accor-
ding to our analysis, this conjecture is at least true for n asymptotically
small : the minimal value of k; = J is attained when V and W are disks (cf.
Eq. (8)). For large n the problem remains open.

References

[1] G.T. Herman, Image Reconstruction from Projections, 1979, Springer-Verlag,
Berlin.
[2] A. Lannes, J. Math. Anal. Appl., 1980, 74,

n
[3] A. Lannes, J. Optics (Paris), 1982, 13, n° I,
- [

o

2, 530.
27.

[4] W.D. Montgomery, Optics Letters, 1982, 7, n” 1.

[5] A. Lannes, J. Math. Anal. Appl. (to be published).

[6] E.W. Ng, Symbolic and Algebraic Computation, 1979, Springer-Verlag,
New-York.

7] D. Slepian, B.S.T.J., 1964, 43, 3009.

{81 H.J. Landau, H.0. Pollak, B.S.T.J., 1961, 40, 65.




1)
FAl4-1 ’
l
i

LBI Image Recovery Using Sharpness Maximization
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In radio Long Baseline Interferometry (LBI), the image is
recovered from measurements made in the aperture plane. However, two
major difficulties hinder the imaging process.

The atmosphere contributes errors in the phase of the sampled
complex signal, and the small number of points sampled in the
aperture makes the point response function or '"beam" of the
instrument have significant positive and negative sidelobes over a
large area of the image. Imaging under these conditions of unknown
phase and poor sampling is an active area of interest for radio
astronomers.

One of the significant effects of th phase errors is to "spread
out” the image. While the true image is usually empty sky with a few
isolated patches of brightness, the distorted image is often a wide
distribution of 1low level brightness. One possible way for
recovering the true image iz to adjust the phase at each antenna in
the array until the image with the minimum spreading is obtained.
Muller [1], Brown [2], and McCall [3] report on adaptive optic
systems and simulations to recover images based on this principle.
These systems make use of a parameter measured in the image plane to
control the aperture plane phase adjustments. This parameter is
often referred to as the "sharpness", and is considered for this
discussion to be the summation of all pixel amplitudes cubed. The
operative assumption is that the sharpness parameter will be a
maximum for the undistorted (true) image.

A series of simulation experiments were conducted to see if the
sharpness system could be wused for LBI image recovery. These
experiments were undertaken as part of a wider survey of a number of
potential and practical LB! image recovery techniques. There are two
practical reasons for considering the sharpness approach. The first
is that the imaging can proceed without the need to remove the "beam"
from the image during the phase recovery. Most other LBI imaging
processes (eg. Readhead [4] and Cornwell [5]) are iterative, and the
image must be deconvolved from the beam as an integral part of each
iteration. As the deconvolution is a tedious calculation, there is
an advantage in separating the two operations. The sharpening method
allows the "dirty image" (including the beam) to be recovered, and
then the beam deconvolution to be done only once in a separate,
independent operation. The second advantage is that the phases may
be corrected individually for each antenna and it 1is thus
possible to obtain the sharpened image which is in agreement with the
"phase closure constraint". This constraint specifies that phase
errors cancel in certain sums of the measured phases, and thus
recovered images should have the same closure sums {(eg. Jennison
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[6]). The sharpened dirty image is thus simple to calculate and
remains true to the measured data.

The simulation experiments were conducted by choosing some
simple test images and convolving them with an LBI beam. Typically,
the image consisted of 3 or 4 Gaussian sources and the LBI telescope
array included 6 antennas. The simulated LBI data was then spoiled
by artificial phase errors which were added to simulate errors at
individual antennas and could be adjusted so that the maximum error
was a fixed fraction of 360°. No amplitude errors were included.
It was found that the sharpness was always larger for the true image
than for the distorted image for random phase errors. There was a
factor of approximately 10 between the sharpness with phase errors of
360°. Unfortunately, it was also found that the autocorrelation (AC)
image had an even larger sharpness of about twice the true image
value. The AC image may be obtained by setting all the aperture
phases to a constant, and the result is an image that is symmetric
about the origin. The large sharpness is a consequence of the AC
image having a large brightness at its center. This result suggests
that the sharpness recovery process will be hindered by confusion
between the true and the AC image.

Tests were also made to examine the variation in the image
sharpness as the antenna phase was varied from 0 to 360°. It was
found that the variation was not the expected simple sine curve. The
sharpness was more sensitive to phase changes at antennas involved in
short baselines, and several peaks in the sharpness function were
observed for these antennas. For antennas involved in longer
baselines, the effect on the sharpness was less pronounced, and a
single shallow peaked curve usually resulted (Figure 1). The
difference in sensitivity can be explained by the differences between
the aperture amplitudes sampled by the short and the long baselines.
Since the amplitudes are largest near the origin, where they will be
sampled by the shortest baselines, the sharpness is more sensitive to
phase changes in these signals.

Finally tests were conducted to see how the process worked at
restoring images. In this case the antenna phases were adjusted
sequentially by a successive approximation method to obtain the
maximum sharpness for the image. Usually several passes were made
with the data until the sharpness was no longer increasing. It was
found that, for images with small phase errors (:36°), a reasonably
correct image could be recovered if the individual phase adjustments
were kept small (* 23°). For larger errors and larger adjustments to
the antenna phase, an image resembling the AC image would usually
result. This image sharpness was, as expected, larger than the true
image value. With larger phase errors and smaller phase adjustments
an incorrect image was produced. This image would usually contain a
number of compact sources; however, their distribution and sizes
would not correspond to the true image. The final sharpened image
was influenced by the initial image pattern with the sharpened peaks
corresponding to the largest speckles in the distorted image. An
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example showing the initial and the sharpened images is given in
figure 2.

In conclusion it has been shown that image recovery by
maximizing a global image parameter such as sharpness is not
practical for LBI imaging. With large phase errors, the sharpness
function has several maximums, each of which corresponds to a
different, compact brightness pattern. The sharpening operation is
unable to distinguish one peak from another. Similar problems are to
be expected with comparable optical systems with large phase errors.
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PHASE SYNCHRONIZATION OF DISTORTED IMAGING ANTENNA ARRAYS

Bernard D. Steinberg
Valley Forge Research Center, University of Pennsylvania
200 S. 33rd Street, Philadelphia, Pennsylvania

I. Diffraction-limited performance of an imaging system is often unattainable
without some feedback-controlled compensation built into the image-forming pro-
cess. Dielectric-constant perturbations due to atmospheric turbulence distort
the phasefront of the optical radiation field. Muller and Buffington have dis-
covered a class of integrals of the image intensity which, when maximized by ad-
justments of a compensating lens or mirror, reduce the error in the image to
zero, except for an unknown shift in the optical axis [1]}. This is a remarkable
theorem. Its success depends upon the spatial incoherence of optical sources.
Another approach, due to Gerchberg and Saxton [2], utilizes known properties of
the class of expected signals, their autocorrelations or their Fourier trans-
forms. It introduces considerable heuristics into the iterative Fourier trans-
formation process. After each successive transformation, portions of the image
or its Fourier transform are retained and portions deleted. Retention or de-
letion is based on a priori scene information and the physics of the process.
Ref. [3] and [4] apply [2] to the optical problem.

Low frequency acoustical wave propagation in the ocean also suffers ray path
distortion due to variations in the refractive index of the medium. Unlike the
optical atmospheric problem, the distortion-inducing phenomenon is not confined to
a thin layer near the imaging instrument. One adaptive-beamforming approach in
a medium modeled by a zero~mean, random, additive component to the propagation
velocity having prescribed correlation properties has shown that the aperture
size can be extended considerably and that diffraction-limited performance can
be preserved, although in a severely restricted field of view [5}. A similar pro-
blem exists in ultrasonic imaging within the human body [6], although no solutions
have been forthcoming.

The microwave imaging problem has its own peculiarities. Because of the long
wavelength (1-30 cm), the aperture size required for picture taking with micro-
waves i{s huge. To achieve resolving power of common optical instruments such as
the camera or small telescope, a microwave antenna need be 100 m to 30 km in size.
The large size demands a distributed array such as the radio astronomical Very
Large Array in New Mexico [7}. However, for terrestrial imaging purposes, the
site cannot be a fully dedicated site, implying that the aperture of the system
must be a highly thinned antenna array in which the individual parts are sep-
arated from each other and distributed over the requisite area, and the design
must circumvent the conventional requirement that the array surface be planar or
any other a priori shape. Practicality demands that the design procedure be suf-
ficiently robust to permit the element coordinates (x,y, and z) to be arbitrarily
chosen and, furthermore, to possibly vary with time. This latter property imposes
still another design constraint, which leads to the most difficult and most inter-
esting condition; it precludes the a priori information needed to design the beam-
forming and scanning phase-shift program. Instead, some low order intelligence
must be built into the system so that beamforming and scanning can proceed in
the absence of accurate knowledge of antenna element position. The instrument
which accomplishes this task is called the radio camera.
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I1. The microwave imaging problem differs from the optical problem in several
basic ways. The sources in optical astronomy are spatially incoherent and are .
largely temporally incoherent (due to the very large spectral bandwidth). The

converse is true in microwaves. The bandwidth is very narrow and, because the
microwave signals are reflections from a transmitter and are not derived from
active sources, the sources are spatially coherent. Thus the information nec-
essary to cohere a distorted array must be derived from a coherent radiation

field of known or assumed properties across the microwave aperture.

The sources of distortion are different, too. A microwave array may be dis-
torted because it is too large to be surveyed properly. It may suffer from wind-
loading. Its installation may be faulty. Or its distortion may be electrical
rather than geometric: Medium turbulence can cause the integral of the dielectric
constant over a path from a source or a target to the array to vary randomly with
position in the array. This is similar to the optical problem. Multipath and
scattering of the echoes can alter the amplitudes and phases of the signals re-
ceived across the array. Electromagnetic coupling from the antenna elements to
the local environment may vary with position in the array, causing random errors
in the driving point i{mpedances of the antenna elements.

This paper will demonstrate an experimental procedure based on a relatively
simple algorithm which provides diffraction~limited performance from large micro-
wave apertures that are nonrigid and poorly surveyed. The experiments were con-
ducted with 3 cm wavelength and a 40 m antenna. Fig. 1 shows the experimental
set-up. A single time-shared receiver was moved along i cable 10 m above the
ground at the Valley Forge Research Center of the University of Pennsylvania. The
cable was 39 m long and was free to sway with the wind, which it did. The radar
transmitter was pointed toward a town at a distance of 6-7 km. The reference rad-
iation field was obtained either from a corner reflector placed in the town or
from stable target echoes having required reradiation properties [8]. The trans-
mitter was pulsed 1,000 times per sec. The receiver was turned on 200 to 300
times at random intervals as it was moved over the 39 m course. The movement of
the system took approximately 2 minutes. The estimated uncertainty in antenna
location at each of the sample points was about 1 wavelength. Thus, the received
echoes bore an uncertain phase so large as to make conventional imaging impossible.

The echo traces accepted by the receiver were coherently quadrature demodul-
ated, samples every 25 ns, A/D converted and stored in the microprocessor. The
beamforming and imaging algorithm consists of three parts. First, the variance
of the amplitudes of the group of echoes from each range bin, measured at each
element in the array, is calculated. The range bin having the lowest normalized
echo variance is selected as the reference range for the system. Next, the pro-
cessor either multiplied the complex sample at each array element from each range
trace by the complex conjugate of the echo at the reference range, or more simply,
merely phase rotated the received echoes by the phases of the complex conjugates
of the signals at the reference range. This was the adaptive part of the process.
Lastly, the processor applies linear phase weighting across the array to electron-
ically scan the adaptively formed beam in angle.

The object of the first step is to find a target or a clutter patch whose re-
radiation most closely approximates that of the point source. The object of the
second step is to self-cohere the array upon that target. The object of the third
step is to scan the beam in angle to the left and right of that target.

This algorithm is very simple to implement. It requires no special filtering
nor any complicated signal processing. The algorithm was tested extensively with
ground based equipment [9] and with airborne radar data [10].
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III. Each of the distortion-inducing sources mentioned above set limits to the i
compensatory capability of the algorithm. Since the algorithm is based upon

the use of only a single reference source no possibility exists for surveying

the element locations; at least three and preferably four reference targets or
beacons are needed for self-survey {11]. As a consequence, compensation for
element position errors is effective only in a relatively narrow sector in the
direction of the reference source. The theory indicates that the loss in image
contrast from the direction of the self-cohering reference source is, in decibels,
AG, = 4.3k20§82 {12]. P pertains to position errors, k = 21/X is the wave number,
Ux is the standard deviation of element position error normal to the direction to
the reference source, and 8 (rad) is the scan angle from that direction. Defining
the field of view (FOV) as that angular sector (rad) in which the contrast has
diminished by no more than 1 dB at the edges, the FOV of a radio camera is FOV =
\/210g. A value of 0y equal tc 10 wavelengths, which is 100 times the conventional
image-forming tolerance, permits diffraction-limited operation with very little
contrast penalty over a field of view of approximately one degree.

Another source of phase error is multipath and scattering. Energy from the
target may be scattered by reflectors located outside the direct path to the array
and some of the scattered energy may arrive at the array. Energy also may be re-
fracted to the array by refractive index variations in the propagation medium. HF
propagation in the ionosphere and acoustic propagation in the ocean offer examples
of multipath propagation. The direct effect of the scattered energy is distortion
of the phasefront of the radiation across the array. In turn, this distortion
leads to phase errors in adaptive beamforming.

A theory useful for design purposes has been developed {13]. It shows that
the loss in gain due to scattering, in decibels, is AG_ = 4.3S[1-p(U)]. S is the
power ratio of the scattered field at the array to the direct signal and p(d) is
the autocorrelation function of the phase error due to the scattered signal as a
function ol the scan angle from the direction of cohering of the array. The dB
loss in gain is zero at the origin and grows asymptotically toward 4.3S5 dB. Thus
the intensity of the scattered field, at the array, can be as large as 1/4 the
direct field intensity without causing more than a 1 dB loss in image contrast.

The simplest source of phase error is measurement error associated with re-
ceiver noise. Assuming that the phase error is unbiased and uncorrelated from
array element to element, the dB loss in gain is AG_ = 4.3/(SNR) where SNR is the
power ratio of signal to noise. Since the minimum useful SNR in radar is ap-
proximately 20 the maximum expected loss is about 0.2 dB, which is very smali. In
general, receiver noise can be ignored as a source of loss in array gain when
scanning the beam of the radio camera.

The combined effects of the phase errors from these sources of phasefront
distortion upon the main-lobe gain of the antenna array and, therefore, upon the
contrast in the image is, in decibels, XAG.

IV. The raw image produced by the radio camera suffers two primary deficiencies.
The first is the effect of incoherent residual errors. The second is the high
artifactual content due to the inherent high sidelobes of sparscly filled aper-
tures. The current state of the research on the following three techniques will
be described. The first is the use of diversity techniques, e.g., element po-
sition, frequency. The second is Image feedback control. Although the Muller-
Buffington technique is limited in its direct applicability, there is optimism
that a modified form of the theorem will prove useful for the relatively narrow
band waveforms employed in microwave imaging [14]. Third, there is some ecvidence
that the effect of the gaps in the aperture of a thinned array can be mitigated
somewhat. Instead of forming the Image as the square magnitude of the Fourier
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transform of the samples of the electric field measured by the thinned array,

all cross-products eie* are formed and a statistical interpolator such as max-
imum entropy or maximum likelihood is applied to bridge the gaps between them.
The result is a gapless estimate of the autocorrelation function of the radiation
field across the aperture. The Fourier transform of the correlation estimate
becomes the image [15].
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