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SUMMARY

The standard results of lineari;ed optimal control theory are explored and
examined to see how they can be applied to flight centrol systems. A feedback
control system operating on the ctevators of an aivcraft-like gliding
projectile is investigated. The projectile is required to closely follow a
predetermined maximum range trajectory in the tace of initial disturbances.

lquations of motion are set up and ]ineari&ed. Approximate solutions for the
maximum range trajectory are given and approximate analytical expressions for
the eigenvalues of the plant matrix are derived. After assigning weighting
values to the state and control variables in the integral quadratic
performance index, solutions to the Riccati matrix equation are computed and

used to evaluate optimal state feedback gain vectors. The effect of this
optimal feedback on glider performance is observed from computed trajectory
simulations. An  optimal feedback gain vector is selected subject to

limitations on angle of attack, elevator deflection angle, and attitude.

The question of ‘ncomplete state variable feedback is considered in  the
interest of simpler engineering design. Using a reduced order system
representation, relationships between performance index weights and closed
loop poles are established and a sub-optimal system based on feedback of only
one state variable is investigated.
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1. INTRODUUTION

In recent  years,  technological advances have  opeted ap new concepts  in the

devsign of flight control systew tor aireratt, guided wissiles, and malitary

projectles, The products of  these advances, which are now manifest g
sonsors, M CIrOProcessors, and  computing technigues, are  already  beany
exploited in modern advanced aircratt and  gurded missile design. Now, with

the development of smaller vobust sensors together with small and even cheaper
microprocessor chips, the possibility of movnitoring and controlling the tlight
of such military projectiles as bombs, shells, and artiltery reckels, 1@

SICrRIng.

These new developments have brought with them new approaches to contrel svstem
design which arve pavticularly relevant to tlight systems. In flight, when
speed and altitude vary, system parameters are often time-dependent and oflen
performance over onily a iwmtted time of flight is of interest. Modevn control
system theory can  take account of such  tiwe vaviaticns and limited  times of
flight. Traditional classical control system design theory 1s, in the main,
applicable to linear systems with  time=iavariant pavameters and these systems
are required  to be asymptotically stable as time becomes lavge. The basic
wathematical tool used in the traditional methods  is the  Laplace transtorm
whereas matrices are basic to modern control theovy., The handling of matiices
has heen facilitated by the interactive computer aided design packages which
are now  becoming available  and which really have turncd  the use  of modern

contvol theory by cangincers into a practical propusi(inn.',h.b Such matrix

methods  can veadily cope with the multi-input-output control wsystems
trequently needed  in light, as for justance on  an aivceratt  with rudder,
clevator, and  ajleron controls. For systems which are  senxibiv time-

invariant, matrix metheds can be readily  veduced 1o the well known classioal
representation thus rendering such systems amenable  to treatment by the weil-

developed ciassical design technigues.

;
i
;
!
i
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Another attrastion c¢f the modern theovy in applications to flight control
system design is that it has a natural conuection with optimisation theory,
and this in turn enables cheracteristics of the desired flight path to be used
directly as criteria while developing a feedback control design. For example,
in the case of a feedback control system for a projectile which is required to
follow a desired trajectory, the modern method could be used to find a set of
optimal feedback gains which would serve to minimise the time integral of
weighted squares of deviations from the required trajectory values. Another
use would be to determine optimal feedback gains for a terminal guidance
system to minimise miss distance subject to limitations on the amount of
available contvrol. A virtue of the linear control system, which results from
this method of minimising the integral of weighted squares of errors of
deviations in system variauvles, is that by following simple rules governing
selection of weights the system is inherently stable and also, the effects of
random variations or noise are suppressed. In fact, the art of linear system
design by this method often lies in the <choice of suitable weights. In
general, the optimal feedback gains will be time-varying and an on-board
microprocessor will be needed to gencrate the gain values together with
desired values of system variables to be compared with actual values measured

by sensors.

This thesis aims at exploiting modern control theory, to investigate how it
can be applied to the mid-course flight of a gliding projectile and to see how
it reveals the physical flight behaviour. The sort of projectile considered
is a standard bomb configuration to which an aircraft-iike wing has been added
together with a pair of elevator controls at the rear tail fins as shown in
figure 1. The wing provides the bomb with a gliding capability, significantly
increasing its range so that the position of launch may remain at a safe
stand-off distance {rom a heavily detended target. A complete trajectory from
launch to target would consist of three phases, as shown in figure 2, launch,

mid-course, and terminal. Launch may occur by release from an aircraft or by
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rocket boost from a ground launcher and the launch phase of the trajectory
must terminate in favourable starting conditions for the mid-course gliding
flight. Mid-course flight must take the projectile to within acquisition
range of the target, such that the terminal phase seeker can see the target.
However, the greater the mid-course range the greater the terminal errors due
to initial disturbances will be, and hence the need for some corrective
control, and for some assessment of allowable tolerance in mid-course initial

conditions,

The main influence of elevator controls is on pitching motion which, for an
aircraft at zero bank or roll angle, means that the main influence is on those
system variables which affect motion in a vertical plane. Such motion is
termed longitudinal motion as distinct from the lateral motion which governs
rolling and yawing behaviour. For conventional aircraft it is well-
established that the longitudinal and lateral motions can be decoupled as long
as roll angle variations do not exceed first order magnitudes.4,® On the
ideal mid-course trajectory where there is no call for side manoecuvre there is
no demand for large roll angles and hence for the purpose of preliminary
control system design, the lateral and longitudinal motions can be treated
separately. For aircraft, the longitudinal motion typically possesses two
characteristic modes, a well-damped short period mode and a lightly damped
long period mode. Oscillitary motion of the short period mode is prominent in
the angle of attack and angular pitching velocity behaviour whilst the long
period oscillations dominate the velocity and attitude behaviour. The damping
agency for the long period mode, or phugoid as it 1is called, is the
aerodynamic drag. In order to maximise range it is necessary Lo minimise drag
and hence, damping is of necessity, small. This means that initial errocs in
velocity and attitude would tend to persist throughout mid-course flight
without some form of control. Using figure 3, a simple physical explanation
of the phugoid oscillation can be given. For the undisturbed or equilibrium

flight path, the vertical component of aerodynamic lift is a little less than
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the weight, allowing the glider to sink at a rate at which the potentiat
energy loss just balances the energy dissipated by drag. Suppose that the
glider flies at a constant angle of attack, then a disturbance which causcs
the velocity to increase will cause the lift to increase and the glider will
rise, increasing its potential energy at the expense of its kinetic energy.
Velocity then decreases, causing 1ift to decrease until the glider eventually
sinks and the process is repeated in reverse setting up a phugoid oscillation
about the equilibrium flight path. Aerodynamic drag dampens this oscillation.
To counter this oscillation, the angle of attack would need to be continuously
controlled so that the equilibrium balance between litft and weight of the
undisturbed flight path is maintained. This is what the elevator controls

seek to do by their pitching effect on angle of attack.

In a powered aircraft the phugoid would be controlled by regulating velocity
through engine throttle control, relying on elevators for attitude control.
In a piloted glider the pilot is wusually able to counter phugoid motion
because of its relatively long period. The unpiloted glider relving on
automatic control of phugoid motion through elevators has not attracted much
attention in the literature although it 1is interesting to note that automatic
control systems which fed back attitude and veleocity to elevator controls were
devised for both British and German bomber aircraft early in the second world
war.® When a gliding projectile is to be released from an aircraft it is
likely that the error in initial attitude reference will exceed the magnitude
of attitude measurements needed for feedback during gliding flight, so it is
worthwhile briefly considering the consequences of sensing velocity alone.
One way of counteracting the phugoid is for the elevators to cause the glider

to climb for velocities in excess of equilibrium and attempt to maintain the

increased altitude, when vel::)ty falls Lo the equilibrium value. Although
this diminishes the phugoid - results in a displaced equilibrium tlight path
and loses positional acc ::oy. To maintain positional accuracy it is

necessary to try to main..i: osciilations about the equilibrium flight path.




This could be achieved by allowing angle ot attack to dec.=ase for velocilies
in excess of equilibrium values, thus diminishing the excess of 1ift over
weight and hence phugoid amplitude, but  also diminishing drag and hence
damping. This tends to maintain equilibrium flight path position, but unless
the control system is carefully designed, too large a decrease in angle of
attack in respomnse to increased velocity could lead to an unrecovevable
downward plunge. In  this respect, phigoid motion is not unlike that of a
simple pendulum which executes small oscillations about its equilibrium
position for small disturbances, but for 1large disturbances a projectile can

loop the loop whereas the pendulum encircles the pivot.

If, on the other hand, the angle of attack 1is caused to increase for
velocities greater than the equilibrium value then the opposite effects occur
and phugoid oscillations are enhanced. The amplitude of oscillations is
initially increased but the increased angle «  attack increases the drag and

hence the damping has a more marked etffect in reducing excess velocity.

The consequences of the foregoing discussion are that we can expect to
regulate velocity and attitude at the expense of position, velocity and
position at the expense of attitude, or attitude and positicn at the expense
of velocity. These observations will be useful later on when weights are
selected for constructing the performance indexes used in optimal feedback
design. For the projectile considered in this thesis, the objects of the mid-
course control then are to maximise range by preserving gliding flight and, to
within constraints on control deflection and angle of attack, to reduce

terminal effects arising from initial errors and flight disturbances.

Elements of linearised optimal control theory are introduced in section 5 and
application of this theory to the design of a feedback control system for the
glider is carried out in section 6. A consequence of linecarised optimal

control theory is that all state variables should be fed back to the

controller thus it is of interest to investigate the performance of simpler

At




sub optimal systems with partial feedback. A sub optimal feedback control
system based on a veduced order mathematical model which considers only
phugoid motion in isolation 1is studied in detail (o section 7. Also

considered in se~tion 7 is a sub optimal system in which only velocity is fed

back to the controller.

In the next section the equations of motion for a gliding projectile are
derived and include the effects of wind disturbances. In section 3, the
equations of motion are used to extract conditions for optimal flight paths
and in section &4 the equations for first order perturbations about optimal
conditions are derived and {orm the basic equations for applying the linear

optimal control theory in the section following on.

2.  LEQUAT.ONS OF MOTTION

The full cquations of moticn for an aiveraft cun be obtained from such toxts
as references 4 or 5. It is found that when large sideways manoeuvres are not
needed then roll angles can remain small, and horizontal and vertical
components of the motion become uncoupled. Thus for the purpose of
preliminary design of a fecdback control system operating on the projectile's
elevators, only motion in a vertical plane will be considered. Equations of
motion for flight in a vertical plane, subject to wind disturbances, will now
be derived in a form convenient for treating gliding flight and for subsequent
linearisation for the purpose of control system design. Nomenclature together
with force, moment, and ax2>s systems for tlight in a vertical plane are shown

in figure 4. In the figure

V is the velocity vector of the projectile's centre of gravity,
Vw is the velocity vector of the atmospheric wind,
and Vh = -V+V , the velocity vector of the aiv relative to the
projectile and thus the velocity on which the magnitude and

direction of the aerodynamic forces depend.
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The acrodynamic forces are:-

L the lift force acting normal to V. not including the elevators

R
component.,
LC the litft force component of the elevators,
and D the drag force acting in the direction of VR'
M is the pitching moment about the ceutre of gravity,

and m is the mass of the projectile.
The angles in figure 4 are:-

o the augle of attack, which is the angle between V¥V and  the
projectile's longitudinal axis, positive for nose up,
N the ve'lative angle of attack, which is  the angle between VR and the
projectile’'s longitudinal axis,
1 the elevator control deflection angle, positive downwards as shown
and 8 the angle between the projectile's longitudinal  axis and  the

hovizontal lying in the same vertical plance.

There are two sets of three dimensional axes systems shown in figure 4 and

these are defined by the mutualiy perpendicular unit vector triads G}, T, /Re

~

and £, J, 0.

; ~ S e . . . .
The ?;, T kp system is fixed relative to carth with ?o and ?’contalned in a
. P . n .
horizontal plane such that % is directed along the range X and k = is
vertically dowawards. The £, 3, 0 system with origin at the centre of

L4 L ]
gravily, votates with angular velocity j(8-a) and { is along the tangent to

the flight path and i is along the inward drawn normal.

The linear accelervation of the centre of gravity is found by differentiating

the velocity vector ¥ = Vi,

Thus V= {’{ + Vf.f..
where t = ](é-&) AL = -i(8-a),

P DREe

i
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giving the vesntt U= v - vd=d) a.
From figure 4, the force acting on the pyojectile is

- {D cos (ﬂR-u) - (L*L() sin (uR-u) tmg sin (0-a)}f

- {(thc) cos (aR—u) + D sin(uR-a) -~ mg cos (O=a)}in

Equating this force to m¥ gives the two scalar equations
*

myv = -Dcos(uR-u)+(L+Lc)siu(ak—d)-mg sin(0-a) (1)

and mV(é-&) = (L+Lc)cos(aR-u)+Dsin(aR-a)-mg cos (0-a) (2)

In addition there is the moment equation
BO = M (3)

where B is the pitching moment of inevtia of the projectile about a transverse

axis through its centre of gravity,

Additionally, the range X and altitude h satisty

X = V cos (0-a) (4)
h =V sin (0-a) (5)

1t is now necessary to define the aerodynamic forces and moments appearing in

(4)

equations (1), (2) and (3). The drag is expressed in the form

n= (pv§3/2)

2 ~ 2 A
x{CDo+uRS(3LL,8u) /(nLAsw)}

vhere p is air density
S is the reference area on which aerodynamic coefficicents ave
based,

CDO is the drag coefficient at zero angle of attack,
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30[/3d is the wing lift coefficient derivative evaluated at a=0

and S/(ueASw) is a constant.,

The uﬁ term in the expression tor drag D, vepresents the comporent ot deap
induced by vorticity shed from a finite span wing and would disappear only for

a wing of infinite span. The litt own the projectile, apart from that arising

from deflected elevators, is given by

= 2G6/0
L= (pVps/2) € (ap),
and the lift ou the deflected elevator coantvol by
L, = (nVﬁS/Z) (o€, /omn,

where CI(NR) iy the Lift coefficient for the projectile
L]

and 8CT/Dn is the lift coefficient derivative tor the elevator control

The drag cocfficient CDo and  the lift coefficient derivatives 3¢, /an  and

acl/au are Mach number dependent, bui  tor the Mach number range considered

here, which is less than 0.5, these acrodynamic coetficients can reasonably be

taken as constants. Thus the projectile l1ift will be expressed as
(pVﬁS/Z) (acL/au)wR

where (DCI/DN) is evaluated at =0,

Similarly, the pitching moment. is expressed as

M o= (pVﬁSb/z) {uR(acm/na)e(qh/zvk)(acm/oq)

+(&Rh/zvR)(acm/a&)+n(acm/an)}

where b is a refeveuce length

Cm 1s the aerodynamic pitching moment coefticient

S e AT I AR, 3w




[
and g = 0

and the partial devivatives of Cm ave evaluated for zero values of their

arpuments. The moment  components in Dcm/au and acm/an represent the statie

pitching moment due o angle of attack and  elevator deflection respectively,

while the componeutls in BCm/Bq and DCm/3& represent damping effects.

The aiv density p appearing in the acrodynamic forces and momeats is dependent

uponn altitude h and a frequently used analytical relationship is given by

-h/H

P s where

> =0
¢ ‘N’

prof is a constant refereace density

and H is a constant scale height.

Using this vrelationship for p and expressing the relative velocity VR and
angle of attack e in terms of wind veiocity VU and wind  direction with the

horizontal Hys a8 shown in figuve 4, equations (1) to (5) togpether with

e
I

give the following set of equations for the motion of the projectile.

<
1)

«(D/m) {V-Vw cos(JitO-a)} / VR
-(L/m)(vw/VR) sin(rw+0-w) ~g sin(0-a)

- (pm fS/Zm) (i)cL/aq) nVRV sin(p +0-a)exp(-h/H) (6)

o= (D/mV)(Vw/VR) siu(uw*e-a)
-(L/wV) {V—Vw cos(uwto-u)} / VR
+{(g/V) cos(O~a) + q

—(prcfS/Zm)(D()L/i)n) an{V—Vw cos(p +0-a)} €D,
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- 1
0= q (8)
o= N y Py (0 sf . o N/
q (')l'(! fhl,)/LB)V“u\‘(\')(.m, o)t ( lll,/.,\" ) (\)(.m/()q)
. - At 2SN g e /- “h/n )
F(gh/2Vg) (o(,m/ou) L /an) le (9)

;’ X =V (‘()!i((‘)"(‘) ( l())

E < ¥ osin(d-w) (11) £
5

Equations (0) to  (11) thus represent a  set of six ecqualions f{or the state

variables V., o, 0. 4, X, h and control varviable 1} where

- . ) "h/’"
= 572 S
(O/m) (pn\rb/..m)\R ¢
N 5
A0 TS(AC. 7O I REASW] .
s noﬂjf\‘ S (if, W1/ ReASw ] (1)
(Lm) = (0 SZmVEC, Jom)a ‘o"""" ()
voet ROl R
Vi = V¢ r\f\f_-zvvw cos Ly - a) (14)
. E
@ = sin {(Vsinu-\'w siu(uw+@))/vk} L) %
L] L2 o 0 E
= 12eVV cos(l t0-u 2 :
@ afy W cor (pwo()(\)} Ny :
P VY coy +0-)Y! /ud
* \MWOq){\w V¥ cos(pto SR VA .
\:I_I iy ALY +O=-y 72 . {
+H( \w \w\)\IH(Hw 0-a)} /\§ (16) L

The values ot the acrvadynamic coefficients appeariug in cquations (€) to (13)
Pl [ ]

can be found trom data handbooks such as vetervences 7 and 8.




3. OPTIMAL GLIDE PATH

The desired glide path is one which maximises the range X for a given decrease
in altitude for flight In still air. Descent rate is governed by Lhe elevator
control setting so that the mathematical problem is to tind the time variation

of control angle n(t) which maximises

subject to the constraints imposed by equations (6) to (16) with Vw=0. When

Vw=0, equations (6) to (16) become,

6 = -(prefS/Zm)VZCD((!)e-h/H - gsin(6-a) (17)
a = -(p_,S/2mV{a(IC, /o)

+ n(3CL/8n)}e-h/H + 0 + (g/V)cos(6-a) (18)
é = q (19)

g = (prebe/2B)V2 e'"/“{a(acm/aa)+(qb/zv)(acm/aq)

+(8b/2v) (3C_/30)+n(dC_/on)} (20)
where
Co(a) = Co + a2S(9C, /oa)2/neAs (21)
D Do L Yw b

However, a good engineering approximate solution is available for this preblenm
and is based on physical reasoning. It is argued that maximum range fligat

patiis will be flat and heuce changes in © and a will be small. Hence, the
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approximation © = q = a=0 is attempted in equations (17) to (21), giving

-h/H

V= -(prot.S/Zm)VzCD((x)e -g sin(0-a) (22)
0 = -(prpfS/zm)v{u(acI/aa)

+ nec /amie ™M +(g/v) cos(o-a) (23)
0 = a(acm/aa) + n(acm/an) (24)

The physical interpretation of these equations is, first, from (23) that the
lift is approximately equal to the weight of the projectile and that changes
in velocity are due to chdnges in altitude. For small changes in velocity, or
that is, kinetic energy, equalion (22) implies that the rate of loss in
potential energy is approximately balanced by the energy dissipated in drag.
Equation (24) is the trim equation giving the relative values of o and n which
reduce the pitching moment to zero. As shown in reference (9), eqerations (22)

and (23) can be combined to give
d(vZ+gh)/dt = -gXCp(a)/,a(dC, /da) N (AC /¢Nn)} (25)
where, from equatioa (24), n = -G(3Cm/30)/(3Cm/8n),

so that integration of equation (25) with o assumed to be sensibly constant

yields

X-X, = {(v';’-vi)/Zg +(h -h) }{o/Cp(a)}

x{(Z)CL/B(!)*'(Q/G)(331‘/2”1)} (26)

where subscript i1 denotes initial value, It is possible to woubtain turther
close approximations for trajectory paramcters wheny o is assumed to  be

invariant. For example, equations (23) and (24) give




V2 o= q eh/H cos(O-u)

(27)

(» :S/Zm){(BCL/aa)+(q/a)(8CL/an)}a

rat

Differentiating equation (27) with respect to time and ignoring changes in (98-

) gives

v = (V</2H) sin(0-a) (2%)

which when substituted into equation (22) gives for the glide path angle,

tan(0-q) = -g CD(G)

(g+Ve/2H) { (OC /&) +{nfuw) {aC /o) } (29)

The time of flight can be found by puliting

h h
t = \[ dh/L = J dh/ iV sin(0-¢) ¢,
h. h
i

1

Equations (27) and (29) enable {V sin(0-m)! ~ to be axpressed in sinple

exponential functions of h which can be readily integrated to give the result

t = {(DCL/aﬂ)f(ﬂ/ﬁ)(3CL/OH)}

X a{(Vi-V)/q -ZH/Vi+?H/V} / CD(G) cos(0-¢) {30)

Equations {26) to (30) provide close approximations to glide path trajectories
vhich are flown with angle of attack « sensibly constant such that the glide
angle is not too steep in the sense that the approximation cos{0-«a) % 1 is

acceptable.

It can be seen from equation (26) that if changes in V¥ are ignored & maximui

N

v

i
%0
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value for the range (X - Xi) occurs when a constant angle of attack is chosen
to maximise G/Cn(a). fgnoring changes in V¥ results in an optimum angle of
attack which is iadependent of the altitude range. From equation (21) it is
found that the if a is the value of o« which maximises a/CD(a), then the

optimal angle of attack is given by

2 2
0lo CDo

(S/neASw) (acL/au)Z (31)

The foregoing engineering approach shows that a close approximation to the
glide path with maximum range occurs when the angle of attack is held at a
constant value a and hence, from equation (24), the corresponding constant

elevator setting is

n, = = (8C_/3) / (3C,/an) (32)

The optimum angle of attack is a function of the aerodynamic properties of the
projectile and equations (27) and (29) show that the initial optimal velocity
and glide path angle are depencent on o and initial altitude hi' Thus for a
selected value of hi’ if the launch phase cannot consistently provide an
initial mid-course velocity as high as the required optimal value, then o
would have to be increased from the optimum to satisfy equation (27), =4nd in
consequence the range would be reduced. On the other hand if the launch phase
could consistently provide an initial mid-course velocity in excess of the
optimum, decreasing « below the optimum would again lead to reduced range
provided the assumption that changes in V? weve small still held. In this
case som2 other strategy would be employed to retain potential energy until
sufficient kinetic energy had been dissipated to slow the projectile down to
the optimal velocity and then initiate the glide. It will be assumed that the
launch phase can be designed such that the expected conditions at the

commencement of mid-course flight are the optimal glide path values. The
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function of the feedback control system actuating the elevators is then to
minimise errors in position, at the end of mid-course flight, due to initial
departures from optimal glide path trajectory parameters.

4. PERTURBED EQUATIONS OF MOTION

Departures from the optimal glide path parameters are now treated as First

order perturbations about optimal values. A set of linear equations in these
perturbed state variables can now be found from equaticns (6) to {(11). The
procedure is illustrated by taking equation (6) as an example. This equation

is of the form
FV(V, a, 6, h, V, n, Vw) =0,

Therefore GFV =0,

i.e. (UFV/BV)on +(3Fv/aa)oa1

JC "';‘ < -
+(3FV/00)0 Oll(,FV/Wh)ohl

+(IBy V), V| +(IFy /0NNy H(OEG SOV )Y, = 0 (33)

where subscript 0 means that partial derivatives are e¢valuated at optinal
values. Carrying out this procedure for each equation from {6) to (11) yields
a system of linear first order equations in

v §)

Y Y O I

My

which are the first order perturbations in

vV, «, 0, 6, h, n, respectively.

The resulting perturbation equations are now given

Vi = o pppSiam) 2V Cpla )V,
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+ o gcos(@o—uo)

- 2 2 (s :
dl (prefblzm) v O(OCD/OU)G

-~ 6,8 cos(@o-uo)

t (P gS/2m) (V2 /) Cpla) hy

+ Vwcos My, (p_ _S/2m) 2VOCD(a°)cos(60-uo)

ref
+Vwcospw(prefS/2m) Vosin(eo-ao)

x{ (3Cp/00) | -C (o) -n_(3C,/2n)]}

“Vosink (p  5/2m) 2V0CD(00)sin(Go-uo)
+szinpw(pref8/2m) Vocos(ﬂo-ao)

x{(3Cy/00) | -C (@) - n_(3C, /9n)}

-(gVI/V*o) cos(OO—uo)

V(P ¢572m) {C e )+n_(dc,/n)}

ref
- < 2
(al/Vo) (prefS/Zm) v o (OCLIBG)O

+(01/V°)g sin(eo-uo)

-(Qg/VO) sin(eo-uo) +q

*PpogS/2m) (V h,/H) {Cp (u) +n, (3¢, /on)}

ref

“(P g S/2m) Y (3C /30) n,

+2VwC°Spw(prefS/2m) cos(eo-ao)

x{Cp (o) +n_(3C, /an)}

+VwC°S“w(prefS/2m) sxn(Oo-uo)

(34)

¢
|

3
3

T

= Sl edE i




x{(3C, /3) +Cp/(a )}

—2szinpw(pre{8/2m) sin(eo—ao)

x{CL(uo) *no(acL/aﬂ)}

+szinuw(pref8/2m) cos(eo-ao)

x{(acL/Ba)o +CD(ao)}

6,= g

, w2 .
-V, (p o (Sb"/4BV ) (3C, /38) |

x(p_, (8/2mV Z(C; (a )#n (3, /O0)}

—Vl (acm/aa)o

x(p_ (SHZ/4BV ) g cos(O -a )
2 n
+a, (p, Sh/2B)VZ - (3C /30)
< /2m)v2 : e -
~{(p o ¢S/2mIVE (BC /3) | -g sin(O -a )]

2 .
xo, (P, Sb°/4B)(AC /30 |

- 2 {
ngre£8b /AB)\aCm/aa)o

Xg snn(@o-do)

+q(pref5b2/48)vo

x{(3C_/3q) | +(3C_/da) }

- 2 34
hl(prefsb /4B) (acm/oa)o

x{p_, (5/2m) (V_/H) (C, (@ )*n (3C; /)]

2 .
+nl(ptebe/2B)V o (0Cm/0n)

(35)

(36)

e o3 e s
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o 2
+Vw gosuw(prebe /48)
x(80,/3u)0(Vo/Vo)sin(eo—uo)

~Vw cospw(prMSb/ZB)Vo (Bleaa) sin(0 -a )

+Vw sinpw(prebez/éB)
x(acmla&)o(ﬁo/vo)cos(eo-ao)
-Vw sinpw(prebe/ZB)
KVO(Sleaa)O cos(Oo-uo)

—(prebez/AB) (8Cm/8u)0

x31n(60-aoj d/dt(Vwcospw)

- 2 N
(prebe /4B) (acm/au)o

xcos(eo-ao) d/dt(szinpw)

hl = V151n(00-00) -alvocos(ﬁo-ao)
+6yocos(eo-uo)
Equations (34) to (38) are in a form amenable to application of linear

optimal control theory.

5. LINEAR OPTIMAL CONTROL THEORY

Equations (34) to (38) can be written in the standard form
]
X = Ax+bn +Dv

where x is a 5- component state variable vector
A is a 5x5 system matrix
b 1is a 5~ component control vector

nl is increment in elevator control angle

(37)

(38)

(39)

v e

RO IO




D is a 5x5 disturbance matrix

and w 1i$ a 5- component wind vector

In standard notation, x is the state variable column vector having components

xj, where corresponding to equations (34) to (38), j=1,2,3,4,5, such that .

Optimal control theory is thoroughly covered in many texts.10 11 16 In
reference 10 optimal feedback control is introduced through the Hamilton-
Jacobi approach which is guite general aud not restricted to linear systems.
Theory of linear optimal systems is treated in great detail in reference 11
while reference 16 deals with optimisation generally. Because this thesis is
restricted to linear optimal control of deterministic systems it is worthwhile
demonstrating how readily solutions for such linear systems follow from the
standard results of the calculus of variations. This leads directly to the
optimal system description with the additional adjoint variables and to the
alternative Riccati matrix equation. In the absence of random disturbances
the deterministic problem is treated as follows, First an integral quadratic

performance index of the form

te

T T T
= + b + 3 - -
J(tf,tl.) f (x Qx nll.nl)dt X (tf)Sx(Lf) (490)
t.
1
is set up where Q, P, S are symmetric weighting matrices which are arbitrarily
selected but subject to the conditions that P is position definite and Q and §
are non-negative definite. The object is to find the functional form of the
control angle increment "1 which minimises J. This is, in effect, to
determine a control sctting which minimises the variance of perturbations in

the state variables, subject to the constraints,




X = Ax + bn, - (41)
By writing equation (40) in the torm

t

f
- T T o T T T
J(tf,ti) = (x Qx+ann1+x Sx+x Sx)dt+x (ti)Sx(tj) (42)
t
1

where x(Lf) is a constant, the problem can now be treated by the classical

(12)

calculus of variatious. To remove the constraints imposed by equation

(41), the adjoint vector of Lagrange multipliers A is introduced and the

unconstrained tfunctional

TSi+A1(Ax+bnl-§)

G = xTQx+nTPnl+§TSx+x
is constructed, for which the Euler-Lagrange equations,
d/dt (36/dX) - DG/OX = 0,

where

P o

T
X = [x" A A nlll

become X = Ax ¢+ bq1 (43)
. T
u = -Qx - Ap (44)
n, = P Wy (45)

A= 2p (46)
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and the transversality mmdition12 for free x(tf) and Lf gives
Hlty) = Sx(ty) (47)
Substituting for n, in equations (43) from (45) gives,
x A e~ bt x
= (48)
. T
Lu -Q -A \

These equations could be solved for p and hence from equation (45), n, would
he known as a function of time. This is not the form of solution required for
teedback control where Ny is needed as a function of X, Equations (48) show

that g is a linear function of X and making the substitution
i = Rx (49)

gives the matrix Riccati equation

T T

R+ RA+ AR - RP'DIR + Q=0 (50)

with ny = -p° TRy (51)

which is now the required form for ny- The boundary condition for R is found

from equations (47) and (49) to be
R(tt‘) = § (52)

Equation (50) «cam thus be solved for R(t), tiﬁtﬁtf, by allowing time to run

backwards and solving for R(Y) where 1 = tf-t. This is equivalent to solving




R+ RA+ATR - R VR 4 @ = 0 (53)

to find R as a function of T subject to

R_ =8 (54)

Having solved tor R, the feedback goin matrix K is defined as

and hence from equation (51)

Ny = -K'x (56)

Equation (56)  implies that the greatest reduction in the variance of the

perturbed state vaviables occurs wvhen all the states are fed back.

Material from the cited Llitevature which bears dirvectly on litcar optimal
control design theory has been brought together in the scctions which follow
but with some additional details to emphasise the design techniques used in
this thesis. Such details concern the properties of the Riccati matrix, its
link with Liapunov theory, its asymptotic bhehaviour, and the rveason why all

state variables arc fed back in the optimal case.
S.1 Properties of Riccati Matrix R

At this stage it is worth examining the properties of the Riccati matrix R
a little turther. Remembering that the weighting matrvices Q, P, §, were

chosen to be symmetric, then taking the transpose of equations (50) and

I C e . -
(52) shows that R satisfies the same equation and boundary condition as R.

2 unknown clements there arve

Thus R is a symmetric matrix and instead of n

(ntl)n/2.




5.1.1 Relatiouship between R and Integral Performance Index

It is also found that R provides a measure for the minimised performance

index, This is readily shown by writing t for Li in cquation (40) and

. ) . ~1T
substituting the optimal value =P b Rx for n

1 in equations (40) and

(41), piving,

te

I = J[ xT(Q+RhP-lhTR)xdT+xT(t[)Sx(L()

t

1

and %= (A~ bP ITR)x

Differentiating equation (57) with respect to t, gives

Jea0 = ot @+ ree” TR x ()
Expressing J(tf.t) in the quadratic torm

J(Low) = %L (L) 6L x(L),

f)

substituting into equation (59), and eliminating =x through equation

(58), yields

T T

Crcatalec - re bTe + @-0OpP bR+ Q=0

where the boundary conditon

follows from equations (57) and (60). Comparison of cquations (61) aud




(50) shows that

is a solution of equation (61) and hence {rom equation (60)
x (6) R(U) x(¥) = I(t,t) (62)

and thus R provides a measure for the minirised parformance index.

5.1.2 Link between R and Liapunov Stability

The Riccati matvix B may also be used to check the stability of the

(10)

optimised system through Liapunov's second method. The scalar

function J(tf.t) can be regarded as a Liapunov function which assures

4
stability for J(tf,L) positive defihite and J(tf;t) negative definite.

When Q. P, and S are positive definite then J(Lf,t) must be positive
definite and from equation (59), the additional requirement.  that

(Q+RhP-lth) be positive definite assures that J(Lf,L) is negative

definite.
5.1.3 Asymptotic behaviour of R

The asymptotic  behavionr of R as tf*m will unow he examined.

Substituting equation (56) into cquations (40) and (41) gives

L.

{
It 3 = j xll(QH'\'I’KI)x(lt'FxT(tf)Sx(t‘f) (63)
L
1
» T
and Xx = (A - bK )x (64)

Thus if equation {64) vepresents a  stable system, x(l{)'o as waw:nnl

heace

iy

D s i i

i it

b v i
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J(tf,ti) » Constant as t ow.

Comparing this result with equation (62) shows that

R 2 constant as tf > ®

*
and hence R =+ 0.

This result shows that if equation (53) is used to solve for R in the
case of the time-invariant, infinite upper limit, optimal system, and R
approaches a finite 1limit for large t ther the system must be stable.
In this case equation (55) shows that the optimal feedback gain vector K

is constait.
5.1.4 Time invariant, infinite upper limit performance integral

Another property of the Riccati matrix as determined from equation (50)
is that it is independent of the values of the state variables and
hence, from equation (55), so are values of the optimal feedback gains,
K. This appears to be a consequence of the requirement that all state
variables be fed back. A closer look at this situation can be had by
rewriting equation (62) for the time-invariant system with infinite

upper limit performance integral to give

TR x(t) = J(»,t) (65)

In this case, where the feedback gain vector K is constant, the partial
derivatives of J(«,t)} with respect to eack component of K must be zero
for a minimum value of performance index. This means that the partia}
derivatives of R on the leit hand side of equation (65) with respect to
the K components must all be zero if the minimum is to be independent of

x, which evidently it 1is, Presumsbly then, if not all of the state
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variables are fed back or it not all the feedback gains are regarded as
free parvameters, not  all the partinl derivatives of the elements of R
can simultancously be zero, Hence any  sub opt imal  system based on
incomplete state variable feedback must consider initial wvalues of the
state variables. This result is important because in many practical
situations it is not feasible to feed back all the state variables and
there is then a need to examine sub optimal systems. This problem will

be discussed further in section 7.

5.1.5 Alternative to Riccati Matrix Solution

As an alternative to the Riccati matrix eguation solution for the time-
invariant infinite upper time limit optimal system, there is equation
(48). This equation together with equation (64) provides some links
between the eigenvalues of the <closed loop system matrix and the
elements of Lhe weighting matrices P, @, and the optimal feedback gain
components of K. Equation (48) represents a system of order 2n but it
is found from symmetry that the characteristic polynomial has only ntl
even powered terms. The characteristic equation in terms of the scalar

parameter A for this system is given by the determinantal equation

AL - betlp]
n
=0 (66)
Q AL +A"
n |
where Iﬂ denotes the unit matrix of order n. By virtue of the symmetry
-1 T

of Q and bP b, the left hand side of equation (66) 1is found to be an
even function of A, This fact is readily established by substituting -A
for » in the determinant and interchanging rows and columns. Thus the
characteristic polynomial of this optimal system is a polynomial in A2
of order n, and the eigenvalues occur in pairs, coasisting of one

positive and one negative value. For x to vanish as time becomes large
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the cigenvalues with negative real parts are assigned to x and those
with positive real parts to p. The characteristic polynomial
corresponding to the x eigenvalues is, from equation (64), the expansion

of the determinant
T
Al - A+bK ,
n

and is found to have coefficients which are linear in the components of
K. This polynomial can also be constituted from the roots of equation
(66) with the negative real parts. Equating corresponding coefficients
in the two polynomials leads to a linear set of algebraic equations for
determining values of the components of the optimal gain vector K. When
direct algebraic factorisation of the characteristic polynomial of
equation (66) into x and p eigenvalue components is possible, direct
algebraic relationships between the matrix elements of A,P,Q, and
optimal gain components can be obtained. Having discovered that the
coetficients of the characteristic polynomial in equation (64) are
linear functions of the feedback gain components it is evident that if
all the state variables are fed back there are sufficient free

parameters to place the system poles in any desired positions.
5.1.6 Selection of Weighting Matrices

There now remains the question of how to choose the weighting matrices
P,qQ, and S. The ideal control system would immediately eliminate
disturbances as they occurred but in doiug so weuld require unlimited
control power. To be realistic, finite errors due to disturbances must
be allowed, so that control power demanded can be limited. The design
aim then is to weight errors in the state variables as heavily as
possible while constraining control power to a practical limit and at
the same time ensuring that the assumed linear laws are not violated and

the linearised theory rendered invalid. Dealing first with the




weighting matrix S, which because it penalises terminal errors, is used
in designing missile terminal control systems and often leads to demands
for rapid changes in feedback gains when homing in on a target. The
weighting matrix Q is used to design systems which regulate
perturbations in state variables throughout the whole trajectory. It is
this sort of regulation which is sought in mid-course control of the
gliding projectile with consequent relativély small changes in feedback
gain. Thus in the mid-course control system design of this gliding
projectile, S will be taken as zero. A very convenient way of dealing
with Q is to try, by physical arguments, to find fixed ratios between
its elements, and then to take some scalar multiple of Q as a variable
parameter. Thus performance can be assessed against the variation of
this one parameter. Unfortunately the method cannot be applied to this
projectile because there are absolute limitations on angle of attack ¢
and elevator contrel n. A feature of a high aspect ratio aircraft-like
wing is that the variation in lift coefficient with angle of attack may
be reliably regarded as linear up to the stall, but when stall does
occur, the loss in lift is dramatically sudden. Thus perturbations in

angle of attack ., must be constrained to lie between the steady value

1

o and the stall value. If large perturbations in o, are unavoidable it
may be necessary to reduce o and accept the accompanying reduction in
range in return for improved accuracy. In similar fashion, Ny is
constrained to lie between no and elevator deflection stall angle. With
only one control variable, P is a scalar, and Q will have elements qij'
On physical grounds, reasonable first guesses for P and Q are found by
choosing acceptable maximum values for each state variable perturbation

),

P = l/nzlm' Using these values, the system equations can be solved and

Xim? and elevator angle perturbation qlm and putting qij = 1/(ximxjm

the maximum values of the critical state and control wvariables

determined. Determination of weights can then proceed by an iteractive

procedure which increases state variable weights when full allowable
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elevator deflection is not realised and vice versa.

6. CONTROL SYSTEM DESIGN

Using the‘physical properties of the gliding projectile given in Appendix I,
values of the state variables V, a, ©, q, h, X, were computed for maximum
range in undisturbed flight starting from an initial altitude of 4 km. This
was accomplished by integrating equations (6) to (11) using the Differential
Analysis R. Eplacement (DARE)(IA) simulation language on the University of
Adelaide's CDC 6400 computer and later repeated with use of the Continuous
System Modelling #Program (CSMP) om the DRCS IBM 370 machine. The set of
variables which maximise the range in undisturbed flight are distinguished by
the subscript 0 while subscript i denotes initial condition. Initial values

of V., and 90 are found from equations (27) and (29) while a, and Ng are

0
obtained from equations (31) and (32). For the undisturbed maximum range

trajectory, equations (31) and (32) give

oy = 0.17037 rad
Ny = -0.55370 rad
and for h, = 4000 m, equations (27) and (29) give
= 172.6m s}
o1
. = 0.05373 rad
oi.

In addition, putting

95 0,

oi
allows equatiors (6) to (11) to be integrated to obtain the O subscripted

undisturbed maximum range state variables corresponding to the constant

elevator setting no. These results are plotted in figures 5 to 8, and for
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comparison, some spot values calculated from the approximations given Dby
equations (26), (27), (29), (30), are superimposcd and show close agreement.
The 0 subscripted variables are the command values of the state variables that
the control system must endeavor to achieve during disturbed flight. Such
command values would need to be stored on-board in microprocessor memory and
be made available for use by the control system. The accurate generation of
command values from the simple relationships given by equations (26), (27),
(29), (30) presents the possibility of designing a control system which can
adapt to large errors in initial values of state variables through an on-board
mini-computer together with meriory. However, this paper is confined purely to
feedback control with a preset store of command values. The state variable
feedback scheme being consideicd 18 shown in figure 9, where the feedback
gains Kv to Kh are determined by assigning weights to the five state variable
and control variable perturbations appearing in the matrices Q and P of the
integral performance index of equation (40). Before embavking on a design
procedure it is necessary to check whether the desired linearised system
needed is both controllable and observable, When some states are decoupled
from the input, the system is not controllable and when theve is decoupling
between some of the states and the output, the system is not observable.
Tests for controllability and observability are provided by the neat results

(15)

of Kalman The result for the system given by equation (41) is that for
controllability, the matrix whose nth column is given by A"-]b should be non-
singular, where n is the order of the square matrix A. The controllability

matrices for the values of A and b given in Appendix 1 were found to be non-

singular.
6.1 Choice of Performance Index Weights and Determination of Feedback

The weighting of the state variables perturbations in the integral of the

pertormance index will be chosen to be of the form
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,:;n
xTQx = 3 (x./x. )¢
"
j::_[

and the control weighting to be (nl/nlw)4

Thus values of xj, n, whiich exceed xjw' n,  will be heavily penalised. I

v
will be assumed that initial errors of 20 n su'l in velocity and 100 n in

altitude may be encountered. As a first guess then, put

oy o .
Vlw - 20m s 7, hlw = 100 m

There seems to be no reason to limit the angular pitching rate ¢, hence
this term will be omitted from the pertornance index. The question of
naximun allowable angle of attack will now be considerved. Maxinuia wing
1lift is dependent on Mach nunber, aspect ratio, and wing cross-section.
Design handbooks such as references 7, 8 give values of maxinun 1ift
ceefficiant CLMHX' for various Mach numbers and aspect ratios. For a wing

of aspect ratio 7 at a Mach number 2f 0.5, which corresponds roughly 1o
- -1 . . .

oi * 172.4 m s~ at altitude hoi =4 ko, a CLHAX of about 1.4, based on

wing area, should be achievable. The naxinum range {light ot angle of

attack Gy 0.17037 radian requites C[ to be 1.16. This leaves a margin of

about 0.035 radian or 2 degrees for control purposes. The constant

elevator angle deflection for maximum range flight 1is -0.5537 radian so

that if a maxinun deflection of about 0.7 radian or 40 daqrees is permitied
a reasonable choice for Ny is 0.1 radian. An initial gquess for an
attitudz angle weight, qw, can be oblainerd by considetving the tlight paths

of figure 2.  For 100 m error in altitude at the end of midcourse flight

the corresponding nean flight path error is about 1/4 degree and the change
in line of sight angle to target is about | degree. Allowing 4 degrees of
total secker beam angle to accommodate final midcourse altitude error:o

requires a wean nidcourse flight path error of 1/2 degree. Thus as a farst R

guess, %w will be taken to be 1/2 degree. Sunmarising, the weights on the Bk




state and contreol variable perturbations were first taken to be

- -k
Voo in s

1w
Y S 0,035 vadian
bw
0 = 00,0087 radian
[\%
h < 100§

1w 100
M ™ 0.1 radian.

Ihe weighting natrvices 0 and I appearing in equations ;1)  and {(33) are

- thus taken as

WAV 0 o )
/ v ¢ v
Q - 0 l/ﬁ'& 0 0 0 {67)
0 0 /o’ 0 G
W
_ 0 0 0 0 ]
- O G o U jiun,”
dw
and - 1/, 7.
' ! ! Ill W

The control system resulting froa this choice of @ and P will be 1eferred
to as System . substituting these values  tor Q and I' 1nto the Kiccaty
natrix equation {53}, together with values of & and b obtained tron

equations (M) to {38}, allowead R to bo deternined and hence the optinal

feedback gain vector K frow cquation {55). Becausa the Riccats natrix in

Lthis <ane 1o of  order »xh and 15 symwetrical there are {iifteen anknow:

elenent s rii to be soilved for from the set of sinultaneous oquations

k=3 ko5 &
"ij "% "k ki i &
k=1 | [

<
()

vhere for J=1, 1 = 1,7,3,1,5




LRI T i

andd the qii arve elements of Q. Solutions for the rl.i were computed from

N equations (68) using both the DARE and CSMP  integration routines.

Components of the time wvarvying otpimal gain vector K were then found from
equation (55) and equation (56) gave the clevator deflection augle
increment Ny which when added o g+ gives the value for n to be

substituted into the trajectory equations (6) to (11). These equations

ik g i " ik ko

were inteograted for an initial velocity 20 m s ! greater  than the initial

(i
i

Bl

optimal value of \/,.l = 172.4 n s‘l. The resulting trajectories for vV, 0,

ity

g

- h, are shown in figures 5 to 8 where the optimal and no-feedback control

i

trajectories are shown for comparison. These figures cleavly reveal the
low=damped oscillatary phugoid motioun. From figures 7 and 8§, the optimal
tlight path has an altitude of 1 km when the ground range is 25 ln and the
time Laken for the prejectile to veach this position is 158 s, The very
marked offect that velocity perturbations have on attitude is indicated by
rigure 6, which shows that the initial velocity paerturbation of 20 m 5

induces an attitude oscillation of about 7 degrees amplitude initially an
uncontrolled {light, decaying to 1.7 degrees at t = 158 5. In controlled

flight. the maximum amplitude is 2.4 degrees, decaying to 0.7 degree.

-

Figure 7 shows how the contyvolled fiight jmproves the altitude variation ;
. . . . . v
with time in that the vate of descent is closer to the optimum than the e
by

=

uncont rolled flight. However, it is the positional accuracy which is i
wmportant, and figure & ryeveals that the controlled flight shows no i
improvement over uncoutrolled flight at a  ground rvange of 25 km, The i
altitude errvor at 25 km ground ranpge is about 300 m which would requive a i

secker beam angle of 6 degrees to  accommodate, and to which must be added

prt

another 1.6 degrees for the attitude ervrer. At this point, the question to

I

T DT



be investigated is whether this seeker bheam angle requirement of 7.4
T . . . -1
degrees to accommodate an initial velocity perturbation of 20 m s can be

reduced by improving the feedback control.

To this end, further changes in weighting values were made. Values of @,
and Ny, were left unchanged because, in the trajectories just described,
values of maximum angle of attack and clevator «control deflection were
considered to be marginally acceptable. The procedure was then to diminish
the weights Vlw’ Qw’ hlw’ by a factor of two successively and to calculate
trajectories tor various combinations of these diminished weights and to
note changes from optimal terminal conditions at t = 158 s in response to
an initial velocity perturbation of 20 m s_l. Because a check had shown
that there was not a significant difference between trajectories calculated
with time-varying optimal feedback gains and those calculated for constant
feed back gains based on values of Riccati elements corresponding to
T=158 s such constant gains were used in the trajectory selection procedure
to reduce excessive computation. To assist in the selection process it is
possible to compute and compare values of the performance index given by
equation (40), for the various fteedback gain vectors. This is achieved by
solving equation (68) for the rij with the n]: term omitted and by
substituting aij_bin for aij and qij+Kin/nli for qij' The underlying
philosophy behind this approach is that a tightening of the control over
each state will bring each state close to the required optimal value at
corresponding times and this should then also lead to acceptable position
accuracy. However, attempts to exercise tight control over attitude and
velocity simultaneously, revealed some adverse interaction and a closer
examination of the physical reasons was demanded. This adverse interaction
st.ws from trying to regulate velocity through elevator controls without
significantly changing the projectile's attitude or flight path direction.

To regulate a velocity in excess of the desirved value, the elevators would

be deflected so as  to increase the angle of attack and hence increase the
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induced drag. Thus, during a phugoid velocity cycle, the higher velocity
part would be flown at higher than opLimum angle of attack and the lower
velocity part at lower angle of attack. Iu this way the mean drag force is
increased, as is required, but so also is the mean lift force and it can be
shown that the undamped amplitude of thc phugoid tlight path oscillation is
approximately proportional to the square root of the 1lift coefficient CL'
This result is readily derived by solving the open loop part of the reduced
system equations (IT.35) for z, with 2_=0 and 2 =V . at zero initial time.

2 2 1 11

In this notation, 2, is velocity perturbation V1 and 2.,

perturbation angle ¢1. It is found that the undamped amplitude of wl for

is the flight

the above initial conditions is proportional to -aZI/wlp. From equation

(35),
o . - 2 -
a,, ¢ (prefS/Zm)CL(uo) (g/VO)cos(OO ao) (69)
when the contribution of elevator 1lift is ignored. Under optimal

conditions, lift is approximately equal to weight and hence the magnitude

of the two terms in equation (69) are roughly equal so that

&~ - Y
a,, = Z(DrefS/Zm)CL(do,.

Equation (I1.32) shows that w, is proportional to (CL(GO))llz and thus

lp

-a21/wlp Ls approximateiy proportional to
. 1/2

(C (ag)) .

Hence attempts to control velocity in this way tend to accentuate the

phugoid oscillation initially by increasing the [requency and undamped

amplitude of the flight path angle although damping is increased. This

initial effect tends to increase the velocity direction error and although

the velocity magnitude ercor may be reduced, a flight path positional errcr

is still maintained.

Now consider what happens when the clevators act in the opposite manncr so




that they reduce angle of attack in respounse to an increase in velocity.
The tendency then is to reduce the phugoid frequency and undamped amplitude
and although the velocity magnitude is not so well regulated, the flight
path positional accuracy tends to improve. However, if this form of
control is overdone in such a way that angle of attack is reduced too much
in responsc to increased velocity, an instability will be reached when the

glider will begin to nose dive at ever increasing velocity.

This interaction between velocity and attitude control of a glider
highlights the difference between flight path control of a powered aircraft
and a glider. On the powered aircrafl, velocity regulation would be sought

through feedback to engine throttle as well as to elevator controls.

Returning now to the search for more accurate trajectories by diminishing

v h, , it was found, in accordance with the above considerations,

1w’ Qw’ 1w
that positional accuracy was not improved by reducing Vlw’ but that

improvement was gained by reducing Qw from 1/2 degree to 1/4 degree and hlw

from 160 m to 12.5 m. For the set of weights

' =20 m s-1
lw
o = 0.035 radian
lw
= (.00436 radian
1w
h = 12.5m
1w
n]w = 0.1 radian

equations (68) and (55) were again used to obtain an optimal time varying
gain vector K. The components of K are plotted in figure 10. This figure
shows the gain components to be virtually constant over most of the flight
time and consequently trajectories were computed for these gains and for
gains held constant at their initial values. These trajectories were
sufficiently close to each other to indicate that constant feed btack gains
based on a constant initial-valued plant matrix A and control vector b were

adequate for design purposes. This is a useful attribute of the optimal
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control approach in that it does indicate when a time-invariant system

- representation is a reasonable approximation for the determination of state

feedback gain and thus when the extra complication of time varying gains

can be dispensed with.

The values of feedback gains used in the constant gain trajectory

computations are:-

Kv = -2.034 x 10.2 radian m-ls
Ka = 6.335
Ke = -26.469
K =-1.867 s
q
Kh = -7.566 x 10-3 radian m-1

The control system using these values of feedback gain will be referred to
as System II. Trajectories computed for this set of gains are shown in
figures 11 to 16 for an initial velocity perturbation of 20 m s~1. From
figure 14 the altitude error at 25 km ground range is 200 m and from figure
12 the attitude error at t = 158 s is 0.45 degree. Thus the seeker beam
angle needed to accommodate this error is 4.9 degree or 0.245 degree per

ms of initial velocity error. In figure 12 the oscillation in Oo is due

to the magnified scale showing up round off error in the value used for Voi

and stresses the sensitivity of attitude angle to velocity perturbations.

Figure 13 shows that the controlled rate of descent is indistinguishable

2 from the optimal value, and the altitude error shown in figure 14 arises

from the positive velocity increment shown in figure 11. In achieving this
amount of control, figure 15 indicates a maximum angle of attack variation

from optimum of 0.0322 radian or 1.84 degree and from figure 16 the maximum

elevator deflection angle is 0.515 radian. Hence, in responding to aa
initial velocity error of 20 m s-l the angle of attack is contained to

within 2 desrees of the optimum value, as required, aund the elevator

deflection angle remains less than 0.7 radian. Another trajectory which
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was computed for an initial altitude error of 100 wm showed that this error

had been halved by the end of midcourse flight.

To demonstrate the  stability of this coutrol  system to in-flight
disturbances, o sevies of random wind gusts was  introduced atong the
trajectory having an initial velocity error of 20 m s_l. Hovizontal and
vertical compounents of these gusts are shown in figures 17 and 18, and
figure !9 shows them suwperimposed on projectile velocity. The gusts were
of duration 5 s and had vandom directions and random magnitudes in the
range 0 to 10 m s-l. Responses Lo these gusts and to the initial vewocity
errvor of 20 m s-l, of attitude, altitude, angle of attack, aund elevator

deflection angle, are shown in figures 19 to 24, and are all stable.
6.2 Integrity

There is now the question of the integrity of this control system 11 and
the effect of the single fajilure ot each state variable feedback will be
examined. In a time-varying linecar system  one  could compute the
performance index by modifying the Riccati equation in the manner
previously indicated in the search for a suitable weighting matrix Q.  Such
computations readily rveveal a non-converging asymptotic behaviour when it
exists and can thus be used to indicate stability or the lack of it,
However in this instance where the system is well approximated by a time-
invariont system it is easy to compute ¢igenvalues of closew-loop matrices
formed from the difference between the iunitial-valuc ! plant matrix and the
product of the initial-valued control vector and a constant teedback gain
row vector which has each gain  component made zevo successively.
Eigenvalues of the closed-loop system IT having fecdback failure of one
state at a time are given in Table 1.

Table 1 shows that attitude feedback tailure is completely destabilising.
The main ecftect of cach other failure ix  to greatly reduce short perviod

damping. Trajectory computations for each failure, other than attitude,
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TABLE 1.

SYSTEM I1 POLES FOR EACH FEEDBACK FAILURE

Feedback Angle Attitude
Failure Nene Velocity of
Attack
-10.62 £ 12.23i { =-C0.1102 * 16.22i -0.2008 * 18.291 { -6.1629
System -0.3174 ~-0.3148 -0.2250 5.618
Poles ~0.06582 -0.07605 -0.08051 0.3062
s! -0.006205 -0.005409 -0.005689 -0.3690
-0.008212
Feedback Pitch Altitude All
Failure Rate
-0.1135 = 16.22i{ -0.1135 % 16.231 -0.3456 * 6.0451
System [|-0.3178 -0.3774 -0.01041 * 0.08546i
Poles -0.06555 -0.01051 -0.0008673
s -0.006203 -0.001628
confirmed that flight stability was maintained, except for pitch rate
feedback failure in the face of velocity perturbations. pitch rate
feedback failure, angle of attack perturbations reached such large
amplitude that for negative perturbations the 1lift became significantly
less than the weight, causing the projectile to plunge downwards and
further increase the velocity perturbation to values well outside the

validity of the linear theory.

respons

e toa 10m s-]

initial velocity perturbation,

Under these conditions, computations of

showed that

projectile plunged downwards and made a 180 degrce backward turn.
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6.3 Implementation

This feedback system requires contiunuvous measurement of the tive state
variables, velocity, angle of attack, attitude, pitching rate, and
altitude. One could use a pitot tube for velocity, a yawmeter for angle of
attack, a position gyroscope for attitude, and an altimeter for altitude.
For pitching rate measurement there are rate gyroscopes, or an array of
accelerometers, or coriolis devices using deflection of small gas jets or
vibrating simply supported beams. A practical difficulty arises from the
accuracy required for the initial setting valuve of a position gyroscope
used to measure attitude. As mentioned previously, a 1/4 degree ecror 1in
flight path direction leads to a 100 m error in terminal altitude which in
turn requirves 2 degrees of seeker beam to see the target. Lf the
projectile is launched from a moving platform such as an aircraft then an
accuracy of a fraction of a degree 1in the initial gyroscope axis setting
would not be achievable by simple means and attitude would vot be available
for mid course trajectory correction. When states are not available for
measurement, the sophisticated solution is to use au on-board computer
simulation of the plant behaviour to estimate the missing states from the
measured ones. The way in which this 1is usually carried out is described
with reference to figure 25. This figure shows the output from the part of
the system under control to be the state vector x. When not  atl the
components of X are available for measurement, the remaining ones may be
represented by Fx where F is a matrix which, for example, would be a
unitary matrix if all of x was available. Thus the signal which passes on
into the estimating part of the scheme consists of the measurable parts ot
x contaminated by the measurement noise v. From this signal an estimate of
the state vector, denoted by x, is computed and fed back Lo the system
contro'ler. Clearly then, the function of the estimation process 1. to
make X approximate x as closecly as  possibie. From figure 25 1t is casuly

shown that
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X-% = (A-bx'im(x—i) b v (70)

This equation shows that estimation performance depends on the choice of
the gain vector Kf. For a time-invariant system, classical design
techniques can be used to select Kf such that the estimation process is
stable and such that a quick response minimises Lhe difference between x
and Xx. It the compeonents of the noise vectors v and w are assumed to be
white and Gaussian with zero mean values then a sophisticated method of
determining Kf is  available through use of Kalman filter theory,

descriptions of which are to be found in refevences 11 and 16. The result

of this theory is that the best estimate of x is given by X when

x:: = p lpR 1)

and R is the solution of the Riccati matrix equaticn (50), integrated
forward in time, with the elements of the matrices Q and R now rtepresenting
the power spectral densitiex of the components of the system noise vector w

and the measurement noise vector v respectively.

Another approach to design when some states  are not available and when the
system is time-invariant is to investigate the use of compensating networks
to achieve the closed loop transfer functions derived by optimal control
theory for complete state feedback. Techniques for designing such
compensating networks are discussed in references 10 and 17. However, the
approach that will be considered in more detail in the next section is that

of approximating the system Lo be controlled by one of reduced order.

7. SUB OPTIMAL CONTROL.

In this section the possibility of sub optimal control is pursucd because the
lower pevformance from pavtial state feedback is  compensated by design
simplicity. The first method to be considered is that of representing Lhe

system by a reduced order mathematical model and using this model as the basis
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for applying 1linear optimal control theory. Provided that this model is a

ciosc approximation, we might expect the design to be nearly optimal in

sense that the optimality will be almost independent of initial conditions.

7.1 Reduced Order Approximation

the

Reduced order approximations are likely to succeed when there is wide

separation between system poles and the concept of fast and slow vaviabhles

can be invoked. in dynamical problems this situation leads to the use of

singular perturbation techniques which can be particularly useful

in

solving non linear equations. A discussion on the application of singular

perturbation techniques to solution of aircraft performance problems
given 1in reference 18 where conditions for successful application
investigated. Typically, for conventional aircraft configurations,
phugoid and short period open loop modes can be separated, and

projectile considered here is no exception as is shown in  Appendix

However, in using this separation property to design closed ioop cont

1s

are

the

the

11,

rol

systems it is necessary uvo check the c¢ffect of loop closure on pole

positions, At the end of Appendix 11 it is shown that the phugoid motion
can be approximated by the second order system
2, = gzt +d,a
1 T DRt Bt K5 2 R
2, = = 2., =a,. %, .
z, A 17"y 0% dzdl (72)
where 2y = V]
z, = O—al = wl the increment in flight path angle,
= d +;
dy = apptagy

dy = =(ay,tay4),

the elements a. . being those corvesponding to the elements of the complete
ij i

plapt matrix A based on initial flight conditions. By putling




- 44 -

TR
EERBRTET Y &

= 2
Q= l/vlm 0

2
0 l/q:lnl
= . ) = 2
) and F llulm

in equation (66), the characteristic ecquation for an optimally controlled

- system based on equations (72) and their adjoint sel, becomes

- - 2 2 2
A-ayy a3 A% dydy®yn
2 2 2 = :
n21 A+323 dle“Im d2“lm ¢ (73
2 L. ..
i/Vlm 0 A"dll dz]
- 2 -
0 V¥ A Aayq

As pointed oul previously in section 5.1.5, this characleristic polynomial
is an even function of A, having the form
A‘+01A2+c3:0 (74)

The vreoots of equation (74) are thus tAl and 1A?, where

1/2

AN, = €y (75)

172
- 2408 = -
and A] Az ) (76)
Expanding the determinant in equation (73) gives

,
¢ = -(a. 2ra 22 22

1 11 tpy TR gap dmd T mdy Ty (an
. .. . . - E 2 292 3
Cy = (d2|d13 d]ldzj) Q(alldz*nZId]) v (78)

a4 ta d )%p®

2347132




wvhere p = “1m/v1m

and v o= ulm/¢lm'

The characteristic equation fov an optimal system based on cquations (72)

alone is thus

2 . - ;
A U\1+A2)A + )‘1)‘2 0 {79)

whete A A, are the roots of equation (74) with the negative real parts.

1’ 2
Hence from equations (75) and (76)

2 1/2

(‘°1‘2°31/2) ;1/2)1/2 (80)

-(-C1+ZC:

1/2,1/2 1/2,1/2

and 2A =2¢

g = mlrem2e )

-(—cl+203 ) (81)

Fquations (75) to (78) provide the links between the poles A], A, of the

opt.imal system and the assigned weighting ratios g, v.

Optimal feedback gains kl and k2

weighting ratios M,V by first substituling

can  be related to the poles Al,Az and

@ = -klvl—kzq»1 (82)

in equations (72) so that the characteristic equation becomes

2 . - - .
A (‘]]l M4y dll\1 dzkz)A
+(321313—n‘1323)+kl(d]u23+d2a]3)-k2(d2al]+d1n21)=0 (83)

Equating coefficients in equations (79) and (83) and solving for k. and k,

1 2

gives




k, = J”(dln) +d )'-IZI(d "(‘l ."l )

] 2t 11 1723
e e e
(12((]1.!23*(‘2-!131'n]l((lz(\“'(ll.\ZI)
=(A +)\2)(d al,)l'*d,) )h‘.’)\l)‘) (84)
"“_ﬁ"uld ﬂd?alg«d(d }*d(xl)
and
ky = a3(dga, 4y 11) (dqagatd,aq)
4. (dld?_,3 )id \d ll*d
-()\ EA, )(d azihizala)-d])\ )\,) (85)

4, (d )‘d (d +d )

19300, 21

Thus for the second order system given by equations (72), plots »f oplimal

feedback gains kl and k, sad of weight rovios | oand v can be drawn in the A

plane from the relationships given by  covathous (773, (783, {80y, ({81},
(B4) and (85). Such  plots ave shown o figuve 26 tor  the case when the
characteristic equation for the closed Loop system has a pair of complex
copjugate rootls. From equations (84) and (85) it is seen that when A], AQ
are complex conjugates of vach other, the locii of kl and k, in the A plane

are concentric circurar arcs.  Putting A=gHiw, the centre of the kl circles

is

at. O = ((l,).'l +d .\ )/(l

and ot the k, circles

&

at 0 = ~(dja, vd,a, 0/d,

Figure 26 shows curves of constant values of p along which v varres. The

largest value  shown for pois /450 radian m 5 which would corvespond oo

. -1 . , . .
=2 degrees and Vo =% m o« . From equations (77) and (78) it can he seen

o
i Im
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that the roots of the open loop charvacleristic equation occur when vas=0,

and at that point on figure 26 the values of 0 and w are in close agreement
to those given for the complete open loop system in Appendix I. As
velocity weight is tightened, or, that is, Vlm is decreased and hence y
increased, figure 26 reveals that the phugeid becomes more oscillatory.
This 1is because the system 1is trying to regulate velocity through the
effect of angle of attack on drag. As attitude weight is tightened, that
is as wlm is made smaller, Vv increases and the system response eventually
becomes aperiodic. In fact as v»®, once root of the characteristic equation
tends towards the centre of the kl circles and the other towards —dzv.
Relaxing the velocity weight completely is represented by the p=0 curve in

figure 26 and along this curve k, is positive, showing that when velocity

1

is free to change, angle of attack is decreased when velocity perturbations
are positive, Thus the physical features of the plugoid response are borne

out in figure 26.

To relate the feedback gains k], kz of the reduced system to feedback gains

in the full system, the assumption is made that a, is a fast variable and

will respond instantly to elevator deflection so that the steady state

relationship of equation (24) can be used to give

n, = -ul(acm/au)/(acm/aq)

= -TBuJ/Q, from Appendix

Thus , puttiog &, = «klvl ~k2w1

[ ;
1961 WAL IS
l/ .

wvhere K . Lo, b are optims  2ii - operaticy cu teedbock of

3

((l’ G re tr elevalor:n




In order toy restrict the total elevator deflection angle to less than 0.7

radian, the magnitude of kl must not.  exceed 2.25)(1()-3 radian m-ls to
accommodate a maximum initial velocity error of 20 m s-l. Thus in figure
26 the choice of optimal feedback gains must be restricted to values lying
in the region to the right of the kl = -2.25)(10—3 radian m“ls circle, which
is seen to be approximately given by p=n/900 radian m-ls. This value of p

corresponds Lo Vlm=]0 m s-] for o |=2 degrees.

im

For aperiodic response when the two roots of the characteristic equation of
the reduced system lie along the negative real axis the corresponding
optimal feedback gains and weight ratios are plotted against the root
closest to the origin and the plots are shown in figures 27 and 28. As v
becomes large it is found that the root farthest from the origin cn the
negative real axis behaves as -dzv, kl approaches

-a,)l/dz:l.72:1:10_3 radian mnls and k, approaches v. Figure 28 shows that

2
for the apericdic respouase, kz is very close to its asymptotic value V.
Thus for large values of v when one of the phugoid poles moves far away
from the origin, the assumption that the phugoid poles and the short period
poles are well separated. may be violated and a check on the stability of
the complete closed loop system with fecdback gains k1 and k2 should be
made. This check showed that for values of v between 2 and 4, the feedback
gains kl and k2 caused undamping of the short period mode thus rendering

the complete system unstable. The stability boundary corresponding to this

undamping of the short period mode is shown in figures 27 and 28.

There now remains t.e problem of selecting a pair of feedback gains k] and
k2’ which veduces to choosing relative weights poand v. In accordance with
previous considerations that o, should be restricted to about 2 degrees and
that the average crroy in flight path direction should be no morve than 1/4

degree, the valuces

u' = n/90 radian
n
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and wlm = n/720 radian, are taken,

piving v = 8.

-1 , .
Because V1m =20 m s was found to give the best results for the complete

optimal control system, this value will be selected again, giving

W = n/1800 radian m 's.

But, as shown in figures 27 and 28, the complete system is unstable for
v=8, so some other criteria must be used ftor feedback gain selection. The
approach used here is to search the stable regions of figures 27 and 28 for
values of the we.gh: rvatios p and v which minimise an integral performance
index for the reduced system. In the general notation, the quadratic

integral performance index based on the reduced system given by equations

(72), is

J(t) 2 Rz

= {ZTQZ*W%/ﬂii} dt (86)
¥ Y12
v

11
12 )
949
and Q =

0 q22

J7~
t
where R = [;

For every pair of values ot p and v in the region scarched there are o

corresponding pair of fecdback gains kl and k. Using thesce feedback




gains, we can put

o, = -klzl-kzz2 in equation (86)

and letting t»0 in the integral performance index, the Riccati equation for

R reduces to a set of linear equations in the elements rij’ given by

.

2a), "2y 0 {;11 ki %m 911
-& - u = 2
a3 Ay78p3 T3 12 ki, (1/oy D) (87)
2. 2
0 2344 23,4 22 k3=%m 922
L J4 L " Ny

In solving these equations, N, and q,, are taken as the inverse squares of

the maximum allowable values of V] and wl’ which are

—4 _1 = ) of 3Kl
Vlm =20ms , wlm = 1/4 degree,

but kl and k2 correspond to values of p, V selected in the region being
seaxched. When, as in previous considerations, only initial values of
velocity perturbations are considered, then from equation (86)

= 2
oo T 11V

and heace Ty can be used as a measure of performance index J.  Such valuces

of r,, were calculated along the curves of constant p shown in figures 26,
27 and 28 except for p=n/450 radian m_ls which requires too much control
deflection, The lowest wvalues of r, were found to occur along N=0,
decreasing monotonically from v=0 to a minimum between v=2 and v=4, Thus

values of k., and k,

1 , are sought which cerrespond to a point on p=0 in figure

27, lying to the left of the stability boundary at a distance which ensures
adequate damping of the short period mode. Trajectories were computed
using the optimal feedback gains corresponding to v=l, 1.4, 1.6, and p=0.

As expecled, the greater the value of v the less the altitude evrvor but the




lower the short period damping. The trajectory for v=1 showed na

appreciable altitude correction, whereas Lrajectories for v=1.4 and 1.6
both showed about. 50 m correction. 'frajectories for v=1.4, which have wore
shovrt period mode damping thaon those tor v=1.6, are showa in tfigures 29, 30

and 31.

At this stage it is worth investigating how a similar approach, through usc
of the reduced order system, could be used to achieve a tighter regulation
of velocity at the expense of flight path direction. This means choosing
Vlm to be very small and wlm to be large. In terms of relative weights, p
is to be as large as possible with v small. From figure 26, the larpest
value of g which maintains angle of attack and elevator deflection to
within acceptable limits for an initial velocity perturbation of 20 m s_l,
is p=n/900 rad m_ls. Equation (87) was again used to calculate ' for the

. . .. . . . . . -1
values of B shown in figure 26, excepting again for /450 vad m s, and

values of v were selected to be 0, 0.2, 0.4. The minimum value for "1
. =1 N . .

occurred for v=0.2 and p=n/900 rad m s, for which the corresponding
—.1 .

weights ave V. =10 m s P, =10 degrees, and a, =2 degrees. Trajectories

8 lm ! l1m cgrees, R PR J )

obtained for this tighter control of velocity are compared with the
trajectories obtained for tight attitude control in figures 29, 30 and 31.
Further comparisons of the response of these two kinds of control are shown
in figures 32, 33 and 34, where angle of attack, velocity, and altitude are
plotted for the first 20 s of flight, following an initial velocity
perturbuation of 20 m s-!. Figures 32 and 33 show now velocity 1s decreased
by increased incidence but, from figure 34, at the expense of increased
attitude angle. The lower damping of the short period mode for the tightly

controlled attitude case is evident from figure 32.

The tightly controlled velocity case is more appropriate for the gliding
projectile because it suppresses attitude errurs and provides some altytuds

correction. Only three states are fed back to the elevators, these arve

velocity, attitude, and angle of attack. The values ot derived feedback
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gains are:-

-7.99 x 10-4 radian m-ls

=
§l

bo
it

4.3¢9

=~
]

-4.39

From the computed trajectories, the errors at 25 km ground range resulting
from an initial velocity perturbation of 20 m s.1 are 270 m in altitude and
0.12 degrees in attitude. These errors require a full beam angle of 5.6
degrees for seeing the target or 0.28 degree per m s—l of initial velocity
error. Maximum attitude error is 0.85 degree or 0.042 degrece per m s = of
initial velocity error. Improvement in altitude error is possible only at
the expense of further undamping of the short period mode but tnis is

undesirable. Stability was further checked by computing trajectories for

flight with an initial velocity error of 20 m s—l and with a series of

random wind gusts having magnitudes in the range 0 to 10 m s-l. These
gusts are shown in figure 35 and the respenses of angle of attack, attitude
and altitude are shown in figures 36, 37 and 38. Figure 36 shows the
relatively low damping of the short period mode as revealed by the angle of

attack response to the first few random wind gusts, IFor these gusts, the

angle of attack perturbation exceeds the maximum value limit of 2 degrees,
reaching a maximum of 5.7 degrees at 13.5 s. This is not surprising since
the system was designed to control velocity errors up to only 20 m 5_1
within angle of attack perturbations of 2 degrees. As in the case of the

full state feedback, failure of attitude feedback, undamps the short period

mode, but is otherwise stable in the face of velocity, or angle of attack

feedback fa.lure.

This reduced order approach to optimal control system design resulted in
relativelv simple algebraic relationships between closed loop nole
positions, optimal feedback gains, and state and control variable weights.

The simpler model does provide insight into the physical behaviour of the
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elevator-controlled glider, indicating

altitude, attitude, and velocity vegulation, simultaneously.

the difficulties in

obtal

nitg

Obviously the

approach cannot safely be used in total isolation {rom the conplcte systen

as the discovery cf short period mode instability has shown.

1.2 Single State Feedback

Because, an mentionaed  previously,

there may be difficulty in

initial attitude reference axes accurately enough, naking

attitude measurements too inaccurate for

regulating gliding flight,

set

ting

in-flight

it is

of interest to discover what can be achlieved by velocity feedback alone.

In this section, the response of the complete system

ervors is considered when only velocity is fed back to the clevators.

search for a velocity feedback gain is f{irst commenced through

nodified form of equation (68) to compule Riccati elenments.

use

to initial velocity

The

of a

Using the sane

state variable wetghts as  used in the final full state feedback systenm 11

design, a measure of the quadratic integral performance index,

the control contribution, is obtained by

computing r

excluding

from equation (638)

1l
with the quadratic term omitted and with A replaced by a?l_bZRI and ay
by all-b4Kl' In figure 39, vy 52 obtained is plotted against Kl and a
nininun i seen Lo occur at Kl=—6x10" radian m-]ﬁ. Whan Kl is negative

the elevators veduce angle of attack for
As discovered previcusly this type of response leads to

correction but can lead to irrecoverable

positive velocity perturbations.

downward plunging flight

if K

the best altitude

135

1

39 where a

YT o
radian m 5.

not carefully selected. This tendency is reflected in figure
. . -3
rapid rise in vy, s shown for K[ approaching =-/x10 ~
) -3 . -1 . .
However, for K =-ox10 ~ radian m “s, the short period node danping was too

L

low and the computed trajectory showed instability.

ninimun value of K1 to a value of

trajectory with a low-damped oscillatory response in the phugoid

Plots of velocity, attitude, altitude and

initial velocity perturbation of 20 m

5x10”3 radian o ts produced

<

2

are shown in figures 40,

a st

-HL,

Backing off from this

able

nmode.

angle of aitack vesponse to an

4o
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and 43. These Cigures show a  low-damped oscillatory vesponse  having an
amplitude in attitude perturbation of about 2 degrvees, and in altitude
perturbation of about 270 m.  Maximum angle of attack perturbation is about
1.8 degrees. Figures 40 and 43 show how angle of attack decrveases tor
positive velocity perturbation. It is of ioterest to compare these
trajectory results with trajectores obtained for a positive value of K]
when angle of  attack iancreases with positive wvelocity perturbation. For
the purpose of comparison, trajectories for Kl=‘)xl0-3 radian m-ls are also
shown in  figures 40 to 43. These trajectories show that amplitudes of
initial phugoid response are increased but so is the damping. The settlinp
time for this sort of contvol is small enough to effectively remove initial
perturbations in velocity and attitude by the end of midcourse flight, but
its accentuated  attitude respouse (o  in-flight velocity disturbances

rendevs it unsuitable as a midcourse controller.

The controller with K\:-5x10-3 radian m ls has  attitude and altitude
responses  to velocity perturbations which have smaller values than the
uncontrolled system and  hence  this  sort oi controller could [fing
application in wid-course tlight. Hlowsver, the teedback gain for this
controller is not fuily optimal, having been selected to minimise the
response to initial velocity perturbations only, Nevevtheless, a rvesult
given in reference 10, could find application in providing information on
how such  a sub optimal system would respond to  a general set of initial
conditions. The result rveferred to, uses the fact that the ratio of two
quadratic forms, cach having the same number of variables, has turning
points for finite values of the variables provided that none of the square
. . . . A T T
terms disappear from the denominator., Thus, for the ratio x Rx/x Qx, where
Q must be positive definite, it is shown in refevence 10 that the maximum
value of this vatio is the maximum cigenvalue of Q-]R. To see how this
rvesult can be applied to a control system we return to cquations (39)  and

(40) and exclude wind disturbances and the final state weighting matyvix S.
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. T . . ) -
Putt ing 1, =~K x where K s now an ain vector which does not destabilise
1 ’ 8

the closed loop system, we have

x = Alx (88)
b
and J](x,t) = J/xT(t)QIX(‘t)dt
t
_.T
= x (t)Rlx(t), (89)
where A1 = A-bl(T
Q = QHKPK'

and tf is constant

Following reference 10,

(43, /d0)/, = -(x'Qx)/ (x R x)

itA

T, (90)

where T is the maximum cigenvalue of Ql-lRl. Integrating both sides of

inequality (90) leads to the inequality

t $-T 1oge{Jl(x,t)/J1(x0)} (91)

The usefulness of this result depends on the value of the upper bound T
which has been derived. It should be noted that the choice of Q1 for
determining T is arbitrary, apart from the requirement that Q] be positive
definite. When Ql is positive non-negative, the maximum eigenvalue of
Q-]R1 becomes infinite, rendering (91) a useless piece of iaformation.

From equatiocns (88) and (89), Rl corresponding to arbitrary Q1 can be fouad




from the matrix equation

|
<

e T
R1+A1R1+R1A1+Ql (92)

Suppose now that we have a system with known closed loop behaviour, perhaps
an optimal system with full state feedback. Let the known value for the
performance index of this sytem at time ts be J(x(tf)). Now change the
feedback gain vector K to another set of values such that closed loop
stability is maintained. 8o doing, establishes Al. Suppose further, thac
a reasonable value of T has been found by selecting arbitrary Ql and
solving equation (92) for Rl’ then inequality (91) can be used as a basis
for finding an upper bound for the time the changed system would take to
bring the performance index J(x(t)) to some fixed value J(x(tf). To use
inequality (91) we need to ki. .7 the maximum value of Jl(x,t) which just
fits inside J(x(tf)). The mathematical problem then is to find the maximum

for J](x,(t)):xTRIX subject to the constraint

Jlx, (L)) = lex
= J(x(tf)), a¥ 4 . c-amt.
This is achieved by introduci- . - inge miltiplier A and seekiug the

turning points of the auxiliary rauvtion

Jy () = AMIx(t)) - T(x(t )}

which occur when

8J1/3x-)ﬁj/3x=0,
or, that is when 2R1x~2ARx=0, 93)
which shows that X is an eigenvalue of R-IRI.

rre-meltiplying equation (93) throughout by xT, shows that




J,-N=0,

and thus if Jlm is the maximum value of J] which just fits inside J(x(tr))

J m:AJ(x(Lf))

1
vhere A is the minimum eigenvalue of R-IRI,
and from inequality (91),
< -
t < =T log {AJ(x(t))/3 (x,)} (94)

where t is the time taken for the modified system to bring the performance
index J of the initial system from J{(x(0}) to J(x(tf)). Inequality (94)
thus affqrds some means of comparison between settling time for a given
optimal coutrol system with complete state feedback and the stable system

with the same plant matrix but with arbitrarily selected feedback gains.

8. DISCUSSION AND RESULTS

Livear optimal coutrol theory has beea used to determine the state variable
feedback which best regulates mid course flight of a gliding aircraft-like
projectile with elevator controls. A set of differential equations in
perturbations of the state and control variables about the desired operating
conditions for the projectile have been derived. These equations provided the
linear mathematical model necessary for application of optimal control theory
to determining ieedback gains. The desired operating condition was the
trajectory resulting from the constant elevator setting for which the

norizoutal range over an altitude drop from 4 to 1 km was maximised.

in gliding trajectories, aercdynamic lift and weight are approximately equal
and oppesile and charactevistically, conditions change slowly along the ilight

path. Consequentiy it was discovered that a time-invariant system medel was




adequate tor feedback control design. Becanse 1ift depends on the square of
velocity, perturbations in velocity can easily destroy the balance between
lift and weight causing the projectile to rise or fall about the desired
flight path. To control these e¢xcursions about the desired flight path, the
elevator controls modify the aevodynamic lift by causing changes in angle of
attack, Because at a . fixed horizountal vange from its point of launch, the
projectile's seeker beam must be able to capture the target it is also
important to vestrict angular excursions in attitude of the beam axis about

its direction on the desired trajectory.

The physics of regulating altitude and attitude 1in response to velocity
perturbations through use of feedback to elevator controls has been
considered. It has been discovered that there are three extreme ways in which
elevator controls can react. Firstly, velocity can be controlled by bringing
about changes in altitude. For example, if velocity is too high, the elevator
controls could cause the projectile to climb until velocity falls to the value
where 1lift just balances the weight and flight would then proceed at an
altitude consistently higher than the desired value, but desired values of
attitude and velocity would be maintained. The second way in which elevators
can react is to cause a decrease in angle of attack in response to increased
velocity and vice versa. This action reduces the increase in l1ift due to
increase in velocity and hence tends to reduce displacements normal to the
desired flight path and, at the same time, also tends to maintain the desived
attitude,. Reducing angle of attack in response to higher velocity and vice
versa leads to a lower mean drag than that for the uncontrolled flight at
constant angle of attack. The resulting motion is oscillatory and the lower
mean drag means that damping is lower than in uncontrolled flight. Tt this
type of control is overdone so that the 1lift, in response to increased
velocity, becomes less than the weight, then the flight path will take a
downward plunge attempting to perform a 180 degrees bhackward turn, This

behaviour could not be predicted by the lincarised mathematical model. The

PR
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third type of clevato. control occurs when the angle of attack is caused to
increase in response  to increased velocity and vice versa. This results in
increased mean  drag which attempts to  reduce velocily to the desired value.
The increased differential between 1ift and weight initially tends to increase
displacements normal to the desired flight path and the resulting motion is
highly oscillatory with greater amplitude and damping than in uncontrolled
flight. The oscillatory nature of the response can preserve some accuracy in

altitude.

These observations on the three extreme types of response lead to the
following conclusions. Of the three states, velocity, attitude, and altitude,
it is possible to regulate any two at the expense of the third using elevator
controls, but not all three at once. The control system design method used,
effectively mixes the three different types of response in proportiens
dependent upon the weights selected for the state variable perturbations in
the integral quadratic performance index. It 1is not possible to obtain
continuously improving flight regulation from feedback gains obtained by
simultanecously increasing the weighting of all state perturbations in the
performance index. Because a!titude and attitude are the important parameters
in meeting accuracy requirements of the mid course trajectory, velocily was

not heavily weighted.

Three control systems have been considered. In the first system all five
states are fted back to the elevators. in the second system, based on a
reduced order mathematical model, only three states are fed back. Thirdly, a
system which fed back only velocity to the elevators waz considered and in
this case the performance index was based on velocity pertuibations only.
Features of the three sytem are given in Table Zz beinw,

Comparative performance of these systems is given [. Table 3 below

In these three systems, elevator deflection ant;i~s are less than 0.7 radian
and angle of attack variations do not exceed 2 denrees in response to velocity

perturbations of up to 20 m s-l. All three systems were found to be stable in




TABLE, 2. COMPARATIVE FEATURES OF 3 FEEDBACK CONTROL SYSTEMS
States fed Feedback Pole Positions
System back to gains s-1
elevators
1) Full Velocity xv=-2.o34x10'2rad mls | -10.62¢12.23i
State Angle of attack Kd=6'335 -0.3174
Feedback Attitude Kq=-1.867 S -0.0682
(Systam I1) Pitch rate Ke=-26.47 -0.006205
Altitude K, =-7.566x10 rad m"!
2) Reduced Velocity Kv=-7.99x10"'rad m s -0.05246.051
Order Angle of attack Ka=4.385 -0.5198
Model Attitude K0=-4.385 ~0.01144
-0.001085
3) Velocity Velocity Kv=-5x|o'3rad m s -0.3511%6.046i
Feedback -0.0042%0.05233i
Only -0.002297
4) No -0.34566.045i1
Feedback -0.0104140.085461
~0.008673
1

the face of successive random wind gusts having magnitudes in

10 m s-'1 It was found that time-invariant models of

adequate for determination of feedback.

the range 0 to

system behaviour were

Consequently, the full state feedback




TABLE 3. COMPARATIVE PERFORMANCE OF 3 FEEDBACK CONTROL SYSTEMS

System

response

Maximum amplitude of
to upit

velocity perturbation

Amplitude of response
at end of midcourse
flight to unit

initial velocity

Total seeker
beam angle
required per

unit initial

perturbation velocity

Altitude Attitude 7 Aititudu Attitude perturbation
1) Full State
teedback (11) | 10m/ms™" 1 0.059/ms™ | 1ow/ms™ | 0.0229/ms™Y 0.24/ms”!
2) Reduced - . |
orqEE—Tgﬂgkuw”}B.Sm/ms—l 0.0lo°/ms_1 3§1§9£T§_1 0.006°/ms_1 0.28"/ms-1
3) Velocity
feedback alone 20m/ms-] ().10°/ms-1 lSm/ms-1 0.063°/ms—1 0.43"/ms-1
PZS No feedback :Zlomlms”1 0.37°/ms-] 15m/ms- 70:66867;;-1 0.lo7°/m:~:—l

system could be
methods, when not all states
on a reduced

to velocity perturbations and,

beam angle size needed.

very lightly damped and the persistence

undesirable. The velocity
suppression of
This is because the
horizontal range and not time.

correction of altitude as

with an initial velocity perturbation.

for elevator controls,
be carried out when velocity

descent may

component of the initial

Rowever,

attitude response

be excellently regulated but

velocity will

order model performs very well

from Table 3,

Table 2

alone

With the full feedback

regulation is

but is not

synthesised by compensating networks,

n

feedback

However,

tend to

des

are available for measurement.

suppressing attitude response
this is reflected in the seeker
shows the short period mode to be

of short period oscillations

system

cffective in

altitude control being sought is control with respect to

a function of time is excellent

as previ

regulation of altitude and attitude with time can only

slackened.

the perturbation in

achieves a

control system,

persist,

igned by classical

The system basecd

may be
moderate

altitude control.

the

for the trajectory
ously pointed out,
Thus the rate of

the horizontal

leading to a




a~

persistent altitude error with horizontal rauge.

The full state feedback system induces well damped responses to disturbauces,
and oftectively halves the seeker beam angle that an uucontrolled projectile
would reguire. The performance of this svtem indicates the measure of crror
suppression obtainable when angle of attack varviations are limited to 2
degrees about the opevating value and elevator deflection is limited to 0.7
radian. When initial trajectory errors cannot be confined wiihin acceptable
limits a different strategy in selecting a wmean flight path is called for. To
meet a wide range of initial trajectory errors it may be necessary to arrange
automatic on-board selection of compensating fixed elevator settings. The
penalty for this, is that in addition to the requirements of the feedback
control system, more on-hoard computer memory is needed together with elevator

setting algorithms.

A A
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LIST CF SYMBOLS
A Plant matrix
B MBoment of inevtia of projectile in pitching plane about axis
through centre of gravity
CD Drag coetficient
B CDO Drag coefficient at zeveo angle of attack
i L Lift coefficient
- Pitching moment coefficient -
7 D Acvodynamic drag, or in equation (39), a disturbance matrix ig:
¥ Unmeasurable state selection matrix
. G Unconstrained functional
R Scale height for cxponential atmospheric density approximat {on
B l Unit matrix
- J Integral quadratic pervformance index
7 K Feedback gain vector
- K[ Feedback gain vector used in estimation process to minimise (x=x)
- L Lift. torce on projectile
E IR' Lift contribution from controls
- M Pitching mement about centre of gravity of projectile
P Coutrol vaviables weighting matrix
Q State variables weighting matvix
i R Riccati matrix
S Reference area for aevodynamic cocetficients, or in cquation (40),
a final state weighting matrix :
T Upper bound of settling time fer a dynamical system E\
s/(naASw) Induced drag factor ;§
v Velocity vector e
v Velocity magni tude
X Horizontal range variable
"ij Flement of the plant matrix A
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~ 64 - i
b Contvol vector
hz‘ha Components of control vector b
. dl,d2 Components of control vector for reduced order system
- R Gravitational constant, 9.8 m sz
' h Alt i Lude
; e Unit vector in horvizontal downranpe divection
;7 i Unit vector in horizontal divection normal to ie .
: kc Unit. vector direction vertically downwards
kl Velocity feedback gain in veduced order system
; k2 Flight path angle feedback gain in reduced order system
7 k Integer
5 m Mass of projectile
- ' n Unit vector normal to tlight path forming right hand set with {,j
é 4 Angular pitching rate
) v Element of Riccati matrix R
b
t Time
t Unit vector in a forwards divection tangantial to tlight path
v Measurement noise vector
w Systom noise vector
X State variable vector
X Estimate of x
. State vaviable vector for reduced orvder system
0 Angle bhetween longitudinal axis of glider and hovizontal
‘ o Angle of attack #
f Elevator deflection angle é
. &
0‘ Perturbation in O ’1
A Variable used in characteristic polynomials ov Lagrange multiplier ?
\ Relative velocity weight tor reduced order system ié
M, Angle between atmospheric wind and the horizontal ﬁ
i
v Relative flight path angle weight for reduced order system ;f
) Atmospheric density Ei




w

Y

Superscripts
T
Subscripts

0

i,k

m

w
hw

vw

81

0

u

Constant reference atmospheric density covvesponding to
scale height W

Real part of complex root of characteristic equation
lmaginary part of complex root of characteristic cquation
Dummy time vaviable

Flight path direction angle (9-a)

Transposed matrix

Unperturbed or optimal Lrajectory conditions
Perturbed trajectory conditions

Integors

Denotes maximum value of a variable for weight selection purposes
initiai vaiue at t=0

At final value of time

Wind

Horizontal wind

Vertical wind

Relative wind

Velocity

Angle of attack

Attitude

Pitching rate

Altitude
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APPENDIX

PROJECTILE MASS AND AERODYNAMIC PROPERTIES

Mass

Pitching moment of inertia

Reterence area

Reference length

Wing aspect ratio

Wing arca

Induced drag factor

Sea level air density

Air density at altitude h,

m

B

S

b

S/m:ASw

3

pref

]
'ref:/zm
preESb/ZB

2
prebe /4B

1

Hi

280 kg

73 kg m?

p

1.

1.

1.

ref

.06 m2

.28 m

.9 m?

378 x 10°°

.228 kg m-3

exp(~h/H), where H=10%m

3157 x 1074 w1

b -2
m

4130 x 10

9783 x 107 m ]




Aerodynamic Force Coetfficients

Cho

(p _.S/2m)C

ref DO

301/80

(

\prefSIZm)acL/au

ac, /on

(S/nsASw)(acI/aa)2

LD(u) = CDO*S/HEASW

¢ = (2S/ncASw)(ac]/aa)2 o

Aerodynamic Moment Coefficients
aleau
(prebe/ZB)acmiau
Bleaq
(pref5b2/4ﬁ)3cm/3q

ac_/ou
¢ H'l/('

W

0.25

5 -1 .
m

1.2893 x 10

3.2893 x 1073 ;"1

8.612 '

(BCL/80)2 a?

-1.837 x 10-3 m-z

-112

~2.2156 x 1070 7!

i




AN Y 2y Aiou
BB AR NN vl S R T

- b2 : G = _p -4 -
(P (SV2/4B)IC_ /e 47678 x 107
S ac_/an = -4
. (P, Sb/2B) 8C_ 737 = -5 652 x 10" % g2
refv /" w coe
Optimal Glide Path Par 1rs
From equation (31), a = 0.17037 rad = 9.76 degrees
and from equation 2n), Vo = 141.14 exp (h/2H) m :s-],
. with cos(9 - o )z,
0 o
’ Maximum value of Lift/Drag = w (9C, j0ar)
. 2000 e n2
(,Do+ao(&)(,]‘/<)a) S/neASw
+ n_(ac /on)
200 an2ea
cl)omo(a(,l‘/oa) b/ncASw
= 7.411 tor (YO = 0.17037 rad
and N, = ~0.5537 rad.
From cquation (29), tan(9 -a) = -1.3224/{(V2/2H) } (1.2) 1
N . ot . .. - 2.y 2
. From equation (27), range Xo 7.411 {(Voi V0 /19.6) |
+(hm.—ho)} m (r.3)
and from equation (30), time t
= 7.1.11[{(voi-vo)/9.8}+zn{(1/v0)-(1/vm.)}] (1.4)
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. 3 : 1 y H i = 2 y. 31 v = (
Also, equation (2R) gives v, = (V(\/).H)mn(()o (xo) {(1.5)
W, =64 x 109 m h = 10% m
i f
e -1 -1
V., = (72.4m s v . = 148.4 m s
i 07!
0 -a . = -0.11664 rad e - = =0.12072 rad
oi ol of of
o, = 0.05373 rad o = 0.04965 rad
ol of
= = 2
xoi 0 xof 25,144 m
t. =0 t = 157.2 s
i £
L] _2 - _2
V. = -0.1729 m s \Y = -C.1326 m s %3
ol of k2
Values of elements aij of plant matrix A as given by equations (34) to (39) :3‘
3
for initial flight conditions (hi=4x103m) 2
B
w9
i+ 1 2 3 4 5
J
4
I -0.0152s " 2.041ms ™% -9.733ms 2 0 0.0001311s” 2
2 -0.00065629m™ ! -0.38673s"  0.0066153s™! 1 0.000006m s’
3} 0 4] 0 i 0 1
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4 0.000036m 's”! -16.554s 2 -0.000362965 % -0.3109s" 0

1

b oynm s” 0 0

5 -0.11638 -171.23ms

Values of elements aij of plant matrix A as given by equations (34) to (39)

for final flight conditions (hf=103m)

i 1 2 3 4 5

1 -0.0177s"! 2.0352ms " -9.7287ms % 0 0.0001311s" %
2 -0.00076863m > -0.44963s ! 0.0079527s"1 1 0.000008m s
30 0 0 1 0

4 0.000069m s -36.57557 ~0.00050701s™ % =0.3613s"] 0

5 -0.12043 -147.32ms” 0 147.32ms 7! 0 0

Values of components bi of control vector b as given by equations (34) to (39)

for initial flight conditions (hi=Ax103m)

b, = -1.52 x 1072 L b, = ~1.126 x 100 572

Values of components of b for final flight conditions (hf=103m)

B Al

Mw
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“1.126 x 10! s~ 2.

,h4=

-1
s

~2

=1.7662 x 10

l)l=b3=l\5:0

bz
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APPENDIX 11
CHARACTERISTIC EQUATION AND SOLUTION

[n this appendix the characteristic equation corresponding Lo equation (39),
with coefficients assumed to be time-invariant, is solved by an approximate
method so that the dynamical behaviour of Lhe glider can be related to its
acrodynamic and mass properties. By comparing the magnitude of the wmost
sigunificant elements aij of the plant matrix A, given in Appendix | for
initial and final values of flight, it can be seen that the assmmption of time
invariance is reasonable. This situation 1is brought about because the
aerodynamic coefficients have been assumed to have constant values over the
speed range and in gliding tlight the dynamic pressure, given by pV2/2. s
then approximately constant. The Mach number range based on optimal glide
path conditions varies from 0.53 initially to 0.44 finally, which is well

outside the transonic range, so that the assumption of constant aecrodynamic

coefficients is reasonble.

It is evident from the very small values of the elements in the fifth column
of the plant matrices given in Appendix [ that the state varviables are only
weakly dependent uwpon altitude. Hence for open loop analysis, at least, it is
reasonable to consider only the fourth order system obtained by taking the
clemeats in the fifth colum of A to be zero. 1f the roots of this fourth

order equation are A A A Ab’ then the fifth rool corresponding to the

| I A

complete quintic is approximated by

A5 = lAl/AlAZABAh (11.1)

where JA] is the determinant of the complete A matrix. In considering the
system given by equation (39) it is worth including feedback of all the state
variables excluding altitude. Thus equation (39) will be treated as the

system




x = | . . . . x = | b, | [K KKK, |x (11.2)

or x = Cx (11.3)

ww”wu“" b ‘ R

"
L
|

where the elements of the matrix C are given by

T

T

Cij = aij - bin. (I1.4)

1

The characteristic polynomial corresponding to the system given by equation

(11.3) is found by expanding the determinant

% fo no IAIA = C|l in the form

4 N 3 ) 2 .
At + LOA + (.1)\ + CZA + (.3,

" .
W p e E R 3 U i ) D Gt w g s L t R B R AN
CPATPRE SATIR NI s B B3 b .o STh IRBATR &0 orpifey s B gy 2L

where it is found that

) +b x +b K (11.5)

122 % AT

R I T SR

P

LALA

Cp = ay1(ag0ta) =35534,73543,497312)) 343

ol L R

*boK a5 Ky (ag byta  bymag b)) oK 4 :

-Kb(a11b$+322b4—342b2) (11.6)

2 T A48 2 11%22% 2 M 127 21206 T 20 P 24 F

Y242%227242%23




v

K (a5a,,0578120940472130)

b, +a, .t

RAPACTR L YA RL WA AL IR PRLIELI®)

Ky(a) byma, b,y ta

-K

22%4)

40P11%42P272 1122047 212221472 12741 P2)

35 A ®23%2 7 11%22%9 1272100 120 s

1213%41%227313%42%01

K (3158430573153, 30, 42 33),0,73)43,,0))

Ky (a2l mag 2 ybyta 40,0y e g0, by)

-K3(a bz-a11322b4+a

1142 12°21% 721274120

(11.7)

(11.8)

By carrying out an crder of magnitude analysis of these expressions for the Ci

coefficients from the values of aij given 1in Appendix 1T

simplify the results as follows:-
Co = ~(ag9%ay,)*b Kyt K,

C, = -a, . tb K. a

' 42 +5 K, +b K

271712 7472 7473

Kb, (a) *ayy)-bya

Cy = ayy(a)172,3) 4K b, (a 4%a,,) Kb, (a) ) =a,,)

it is

possible to

(11.9)

(11.10)

LRSS T ks L g

B

e T Arwkry e
AL T R R o 1




KylbyGay vayy)-ag b, )

-Ka{bb(alzaZI-al1322)+b2a1]a42} (11.11)

Cy = 3119239278138 %2

Kby qaypmbyayg0,,)

*Robua1485,

“Kylby(aypay may ap,) )0 1a,,] (11.12)
11.1 SOLUTION OF QUARTIC
An approximate solution to the quartic
94 a \ 2 ~ -
AP COAT + C AR+ CA Cy=0 (11.13)

can be obtained by the method of vreference 13. Using the notation of

reference 13, the quartic can be written as the two quadratic factors,

(AZ+(0-2)A+B-b) (A2 + (ata) A+B+b)=0 (11.14)
where a = Co/Z , B = (A+f)/2 ,
a=tY2 | b= aeB/f)2 (11.15)

and § satisfies the cubic equation

£3 + (2A-02)E2 + (A2+2Ba-4C )E - B2 = 0 (11-16)

The approximate solution of this equation is described in reference (13).

ORI
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By substituting § = x(-B)Z/j in equation (11.16) it is found that the

resulting cubic equation

3

x> + (2A-a2)(-B)"2/3

x2+(A2+ZBu-4C3)(-B)-A/jx-l=0 (ran
has one real root for O0<x<l. Over this interval, the Chebyshev

approximation x3=1.5x2-0.5625x+0.03125 is substituted, reducing equation

(I1.17) to the quadratic

{(20-02) (-B) "2/ 341 .53x2 +{(A2+zna-4c3)(-m"‘/3-o.sezs}x

-1 + 0.03125 = 0, (11.18)

which leads to the solution for £,

P
i
]

(A2+2na-4c3)(—n)‘2’3-o.5625(-u)2/3

2(2A-a2) (-B) "2/ 343

r—

i+

(AZ*ZBG-IOC,;)(‘B)-2/3'0'5(’25(-")2/3 z

2(28-a2) (-B) "2/ 343

o~

2(1-0.03125) (-B)¥/3 | 1/2

+

(11.19)

2(2A-a2) (-B) "%/343

This solution can be greatly simplified when the following conditions hold,

S L Bnd T il L ol A

TR T

e i an ik 1L




« 79 -

I(A2+230-401)('B)—4/3I > 0.5626,

A~ (-3) 23 s> s,

|482(2A-a2)/(Az+ZBa-403)2| << 1, (11.20)

|2Bo-4C,| << A%
and ignoring 0.03125 compared with 1, gives the simple approximation
1/2 _

£ = B2/A% or § = -B/A. (11.21)

Tn summary, an approximate set of solutions to the quartic equation (1I.13)

is given by

A g = =(ama)/2 % [(e-)%/6 - B-m)1Y2,
- , 2 1/2 ,
A3 4 = -(a+a)/2 t [(a+a)®/4 - (Btb)] (11.22)

where a, B, a, b, are given by equations (I11.15) and the parameter §

(13)

approximated by equation (I1.19). An exceptional case occurs when B=0

in equations (11.15), making £=0 a solution of cquation (11.16). In this
1/2

case the limiting value of b is 0.5(A2-ac3) unless (A2-4C3) is negative

in which case the positive root of the quadratic
£2 + (2a-a®)§ + (A%-4Cy) = 0 (11.23)

is taken as the value of £ in equations (11.15). A modification to
equations (1Y.22) should be used when B and b are approximately of the same

value. In this case, the relationship
p-b = Cq/(ﬁ+b) (11.24)

obtained by comparing equations (11.13) and (11.14), should be used.

Similarly when « and a are approximately of the same value, the

T T T R YT TR T e R WG A T B IR D 1ol A R bk e SR

g ol A
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i
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relationship
a=a = C"“Zﬂ/(a+u) (11.25)

should be used,

Inserting the values of aii from Appendix 1 into equations (11.9) to

(11.12) with zero feedback gains, it is fouad that

>
irg
o

B L2 - Clﬂo/z

and that all conditions (I1.20) are well satisfied. Hence, from equations

(I1.1%) and (I1.21)

- e/ _ 5 .
a=g/ =072 0y/0,

ata = C, - (.2/(,1 , =a = (,2/(.1,

b = (1/2)lcl+(c0/a)(co-202/c])},

(ke B L A

B = (1/2){C +(1/4){C-2¢C,/C )*¥}

CSha s T

S——
e

Uasd !

It is found that (CO/Z - C2/cl)2 and C0/2 (CO/Z - CZ/CI) are negligible

compared with Cl' so that

Tn I T L

Btb = Cl' and from eqution (II.24)

g-b = CJ/C]

R I T

bt oot

From cquations (I1.5) to (TI1.12), the following approximations, in terms of

the elements of the plant matrix A, are obtained

= . ca = g - 4
ata = -(agytaggtayy)y 02 = a5y 1§
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Bth = -n . y P=b = a (11.26)

42 13217929 N

Substituting these results into cquatioh (11.22) shows the short period

damping and frequency to be approximated by

e g

= T . 2 s an a2 .
usp (‘/2)(“22'“aa*“23)' L D400 Sp,(ll.«!l)

and the long period damping and frequency by

= . p - 2 -~ . - . 32 p)
olp (1/2)(.111 a23), w Ip D 389179 1 0 Iy (11.28)

Using the numevical values  of “ii from Appendix I, the initial open loop

values of damping, frequency, and period avre,

o = «3.655x10" s, w = 6.036 87V, T = 1.041 s,
sp sp sp
= =2.-1 = A 0
0, = =1.091x10 “s ", w = 7.969%10 “s T, 0 78.85 =,
Ip Ip Ip .
and the final values arve
-1 =1 _ -1 o~ _
O = =4 015%10 "s ", w._ T 6,034 s ", T_ = 1,041 s,
sp sp sp
. ~2 -1 - Ny BN N .
Qo= =1 28110 s, w_ o= 8.634x10 s, ] = 72.78 .
Ip sp lp

The elements nij can be expressad in terms of  the signitficant aerodyoamic
cocflicients when the gravity components are climinated through equations

(22) and (23). This vesults in the following approximations

Osp Y -(vo/z) [(pS/Zm){(DCL/Bu) *Ch(u )}

LT TR

+(p$h2/48){(BCm/3q+aCm/8u)}] (11.29)

o
1y

-(pSb/2B) v, (acm/aa) (11.30)

)

o, = =3/2) Vo(pS/Zm) Cn(uo) (11.31)




Z ~ 1 2 3/ ) e
- wlp ¥ {2 Vo(pbfzm) LL(ﬂ0) (11.32)

11.2 REDUCED ORDER SYSTEM
: The prospect of a reduced order system to represent the long period motion

P is apparent from consideration of equations (I1.14) and (11.26). The first

three plant equations of the fourth order system are

1 1171 1272 1373
i Xp T Ag Xy T Ak, Taggxy ¥ ox,
X3 7 %,
» and these can be written as
. Z) = apEptaggz,tag,ta )X,
L]
Zy T g gty g agy)¥%, (11.33)
! vhere 2y = x1
and z, = x3- X, (I1.34)

5 s controlled variables and x2 as the control variable,

then the characteristic equation for the open loop part of this system is

Regarding Zy, 2

o =
AT 4 Maygmay,) +agqa,,may5a, ) = 0,
F ’ which from equation (II.26) is equivalent to
. AZ + A(a-a) + B-b = 0,

the long period quadratic component of the complete quartic given by

2 equation (I7.14). 1In terms of the physical variables,

z. =V the velocity perturbation,
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2, = G)*ﬂl, the perturbation in flight path direction,(see figure 4)
and x, = o, the increment in angle of attack.
$
L
1




