
ý7777777 -7-V
Defence Fellowship Paper 1980

Linearised Optimal Control and Application N

to a Gliding Projectile
by
G. Jepps

DTIC
AfELE'CTE w

DETC 9

LUJ

C-9 FOR JPUBLIC 11f"IxEASE

Department of Defence (")orroie~ho ut~i

of Ausri'



THE U~fT)'r) "JATF.S NATIONAL

TIECH-N C AL INFO~RvATK.N SE~RVICE
13 AU I I I1rWEI TO

FiEFpRVuuCE AND SG2LL THIS RK.iORT



Department. of Defencc

iDefence Fellowship Paper

LINEARISEI) OPTIMAL CONTROL AND APPLICATION 10 A GLIDING PROJECTILE

G. Jepps J,

DRCS Salisbury, South Austral ia

N_7

This paper represents the views of the author and not. necessarily those of
eit-her the D)epartment of Defence or the Minister for Defence.

S!ii

;]i



Preface

T'he stuidi es which Led to this paper were carried out under t he Defence
Fellowship Scheme during the year 1980 i.n the Elect r ical Engi neeri ng
Department. of the University of Adelaide. The ob~jects of these studies werv
to pursue the Latest developments in modern control system theory, to examine
applications to the design of flight control systems in particular, and toappl~y the theory to some problemn of interest to the Department of Defence.

The problem selected was the mid-course control of a gliding project~ile and
this has a direct application to glide bomb design.

Stud ies also included short coturses on the use of microproces'sors and
experienice was gained in using computer-aidted design packages Under the
guidance of IDr. M .J. Gi hbard of the Electrical Engineering Department

'rhis paper has been submitted to the University of Adelaide as a Master of
Engineering Science thesis.

G. Jepps, Aerobal listics D)ivision, Weapons Systems Research L~aboratory

Copyright assigned to tile Commonwealth, 19R1.
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S 11 M M A R Y

The~ standard results of' li ean i ed opt.imnal contrnol theory are. explored and
examinled to see how they can be applied to f'light: control systems. A feedb~ack
control, system ope ra t inlg onl the elevators of' an a Lrcraft-l ike g l Ii iing
projectile is investigated. The projectile is required to closely follow a
predetermined miax-imum range trajectory in the face of initial disturbances. '

liqtuations of motion are set. up anfll ineari-i~ed. Approximate solutions for thle
maxitr~un range trajectory are given and approximate analytical expressions for
the eigenvalues of the plant matrix 'are derived. After assigning weighting
values to the state and cont rol va ria blIes in the i ntegra L quadrat ic
performance index, solutions to the Riccati matrix equationi are computed anid
used to evaluate optimal state feedback gain vectors. The rffect of this
optimal feedback onl glider performance is observed from computed trajectoryH
simulations. An optimal. feedback ga in vector is selected subject to
limitations onl angle of attack, elevator deflection angle, and attitude.

Trhe quest ion of 'ncompl)et~e state variable feedback is consi dered in t~he
interest, of s implIe r engineering dles ign. Us i tig a reduced order sys tern
repr-esentation, relationships between performance index wei ghts a ld c I osed
loop poles are estahi i shed and a sub-optimal system based oni feedback of only

onie state variable is investigated. K I~-V.
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Another attra 2t, iou ef the modern theory in applicat ions to flight cont rol

system design is that it has a natural conuect-ion with optirmisat ion theory,

and this in turn enables characteristics of the desired flight path to be used

directly as criteria while developing a feedback control design. For example,

iii the case of a feedback control system for a projectile which is required to

follow a desired trajectory, the modern method could be used to find a set of

optimal feedback gains which would serve to minimise the time integral of

weighted squares of deviations from the required trajectory values. Another

use would be to determine optimal feedback gains for a terminal guidance

system to minimise miss distance subject to liimitations on the amount of

available control. A virtue of the linear control system, which results from

this method of minimising the integral of weighted squares of errors of

deviations iii system variables, is that by following simple rules governing

selection of weights the system is inherently stable and also, the effects of

random variations or noise are suppressed. In fact, the art of linear system

design by this method often lies ill the choice of suitable weights. In

general, the optimal feedback gains will be time-varying and art on-board

microprocessor will be needed to generate the gain values together with

desired valutes of' system variables to be coimipa red with actual values measured

by sensors.

This thesis aims at exploiting modern control theory, to investigate how it

can be applied to the mid-course flight of a gliding projectile and to see how

it reveals the physical flight behaviour. The sort of projectile considered

is a standard bomb configuration to which an aircraft-like wing has been added

together with a pair of elevator controls at the rear tail fins as shown in

figure 1. The wing provides the bomb with a gliding capability, significantly

increasing its range so that the position of launch may remain at a safe

stand-oft distance from a heavily defended target. A complete trajectory from

launch to target would consist of three phases, as shown in figure 2, launch,

mid-course, and terminal. Launch may occur by release from an aircraft or by
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rocket boost from a ground launcher and the launch phase of the trajectory

must terminate in favourable starting conditions for the mid--course gliding

flight. Mid-course flight must take the projectile to within acquisition

range of the target, such that the terminal phase seeker can see the target.

However, the greater the mid-course range the greater the terminal, errors due

to initial disturbances will be, and hence the need for some corrective

control, and for some assessment of allowable tolerance in mid-course initial

conditions,

The main influence of elevator controls is on pitching motion which, for anl

aircraft at zero bank or roll angle, means that the main influence is on those

system variables which affect motion in a vertical plane. Such motion is

termed longitudinal motion as distinct from the lateral motion which governs

rolling and yawing behaviour. For conventional aircraft it is well-

established that the longitudinal and lateral motions can be decoupled as long

as roll angle variations do not exceed first order magnitudes. 4 , 5  On the

ideal mid-course trajectory where there is no call for side manoeuvre there is

no demand for large roll angles and hence for the purpose of preliminary

control system design, the lateral and longitudinal motions can be treated

separately. For aircraft, the longitudinal motion typically possesses two

characteristic modes, a well-damped short period mode and a lightly damped

long period mode. Oscillitary motion of the short period mode is prominent in

the angle of attack and angular pitching velocity behaviour whilst the long

period oscillations dominate the velocity and attitude behaviour. The damping

agency for the long period mode, or phugoid as it is called, is the

aerodynamic drag. In order to maximise range it is necessary to minimise drag

and hence, damping is of necessity, small. This means that initial errors in

velocity and attitude would tend to persist throughout mid-course flight

without some form of control. Using figure 3, a simple physical explanation

of the phugoid oscillation can be given. For the undisturbed or equilibrium

flight path, the vertical component of aerodynamic lift is a little less than J
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the weight, allowing the glider to sink aL a rate at which the poLentIia I

energy loss just balances the energy dissipated by drag. Suppose that thei

glider flies at a constant angle of' attack, then a disturbance which causes 1-4

the velocity to increase will cause the lift to increase and the glider will

rise, increasing its potential energy at the expense of its kinetic energy.

Velocity then decreases, causing lift to decrease until the glider eventually

sinks and the process is repeated in reverse setting up a phugoid oscillation K,

about the equilibrium flight path. Aerodynamic drag dampens this oscillation.

To counter this oscillation, the angle of attack would need to be continuously

controlled so that the equilibrium balance between lift and weight of the

undisturbed flight path is maintained. This is what the elevator controls

seek to do by their pitching effect on angle of attack.

In a powered aircraft the phugoid would be controlled by regulating velocity

through engine throttle control, relying on elevators for attitude control.

In a piloted glider the pilot is usually able to counter phugoid motion

because of its relatively long period. The unpiloted glider relying on

automatic control of phugoid inotion through elevators has not attracted much I

attention in the literature although it i.s interesting to note that automatic

control systems which fed back attitude and velocity to elevator controls were

devised for both British and German bomber aircraft. early in the second world

war. 6 When a gliding projectile is to be released from an aircraft it is

likely that the error in initial attitude reference will exceed the magnitude

of attitude measurements needed for feedback during gliding flight, so it is

worthwhile briefly considering the consequences of sensing velocity alone.

One way of counteracting the phugoid is for the elevators to cause the glider

to climb for velocities in excess of equilibrium and attempt to maintain the

increased altitude, whe. vel--,-ity falls to the equilibrium value. Although

this diminishes the phugoid results in a displaced equilibrium flight, path

and loses positional ac .'. To maintain positional accuracy it is

necessary t.o try to main,....m= oscillations about the equilibrium flight path.
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in excess of equiiiibr iunt va Ities, thus d iu utikish ing the excess of lift, over

weight. and hence phugoid amplitude, but. also dilminishing drag and hence

(damp ing. This tends to maintain equilibrium [1light pathi posit ion, but unless

the control system is carefully designed, too large a decrease in angl~e of

attack in response to increased velocity could lead to an unrecoverable

downward plunge. In this respect, phungoid motion is not unlike that of a

simple pendulum which executes smal~l oscillations about i~ts equilibrium

position for smal~l disturbances, but for large disturbances a projectile can

loop the loop whereas the pendul um enci rc]lCs the pivot.

If, on the other hand, the angle of attack is cauised to increase for

velocities greater than the equilibrium value then the opposite effects occur

and phugoid oscillations are enhanced. The amplitude of oscillations is

initially increased but the increased angle tattack increases the drag and

hence the damping has it more marked effect, in reducing excess velocity.

The consequences of the foregoing discussion are that we can expect Lo

regulate velocity and attituide at the expenste of position, velocity andr

position at the expense of' attitude, or attitude and position at the expense

of velocity. These observations wiil be useful later on when weights are

selected for constructing the p~erformance indexes used in optimal feedback

design. For the projectile considered in this thesis, the object~s of the mid-

course control then are to maximise range by preserving gliding flight and, to

within constraints on control deflection and angle of attack, to reduce

terminal effects arising from initial errors and flight disturbances.

Elements of linearised optimal cont-rol theory are introduced in sect.lon 5 and

application of this theory to the design of a feedback control systemn for the

glider is carried out in sect ion 6. A consequence of li earised optimnal

control theory is that all st-ate variab~les should be fed back to the

controller thus it is of interest to investigate the performance of simpler A



stub optimal systems with partial. feedback. A sub optinial feedback cotntro lo

system based on a reduced order mathematical model which considers only

- phugoid motion in isolation is studied in det.a i.1 in section 7. Also t

considered in 'v-tion 7 is a sub optimal system in which only velocity is fed

back to the controller.

In the next section the equations of motion for a gliding projectile are

derived and includo the effects of wind disturbances. In section 3, the

equations of motion are used to extract conditions for optimal flight paths

and in section 4 the equations for first. order perturbations about optimal

conditions are derived and form the basic equations for applying the linear

optimal control theory in the section following on. ii

2, EQUATIONS OF NOTION

'rhe ull cquations of alot ion for .. a i icraft. can be obta ied from sutc!' ' .c

as references 4 or 5. It. is found that when large sideways mnanoeuvres are not

needed then roll angles can rema in small, and horizontal and vertical

components of the motion become uncoupled. Thus for the purpose of'

preliminary design of a feedback control system operating on the projectile's

elevators, only motion in a vertical planne will he considered. Equations of

motion for flight in a vertical plane, subject to wind disturbances, will now 2W

17

be derived in a form convenient for treating gliding flight and for subsequent-

linearisation for the plurpose of control system design. Nomenclature together 1;

with force, moment, and axes systems for flight in a vertical plane are shown

in figure 4. In the figure

Sis the velocity vecc.or of the projectile's centre of gravity,

IV is the velocity vector of the atmospheric wind,W
and 7 = -V+VW the velocity vector of the air relative to the

projectile and thus the velocity on which the magnitude and

direction of the aerodynamic forces depend.

-,I
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cI'(: (. I Odt3 ldli tli . to a i ." Cbtel i, t'.:

I. tile lift. force acting normal to V not including tile elevators

tI comiponen-t.,

I-Jil, the li tt force component. of the elevators,

ainO D the drag force act ing il thfe di'ret'. iotn of V

M is tihe pitching moment about the centre of gravity,

and III is il h 11as of. the projectil e

The angles in figure 4 are:-

CY the aigl e of at. tack, whiac h i s the angle between V and the

projectile's lotgit.iuditial axis, positive for nose Iup,

(Y the relat ivO anigle of attack, which is the angle bet.wen i and theit

projectile's longi tudinal axis,

11 the elevat.or control dofl.ection angle. positive dowlnwa rds as shown K
and 0 tOhle angIe bletween the projetel i l.e's Iongi tudinai ax is and the

-horlzontal lying in the sameil vert icaI plane.

There are two sets of three dimensional axes systenms shown in figure 4 and

these are defined by the mutl.ually perpendicular unit vector triads I ,

and C, 3, i

The I ,e , k system is fixed relative to earth with T and j contained in a

horizontal plane such thata e is directed along the range X and k is
Ck

vertically downwards. The J, 3, in systemnl wit~h origin at the ce ntre of

gravity, rotates with anigular velocity , (@-I) and C is along the tangent to

the flight. path and fi is along the inward dirawin normal.

The linear acceleration of the cent.re of gravity is found by differentiating

the velocity vector = Vt.

Thus V = Vt + Vt..

where ' (O-u) AC(.J._ A



givinig t.ilt, ri'siiIt V(V VI(O)o) 11. T
From figiire 4, the force act.i ng on (he projecti le isI

- {I) cos ((V - (.4+(1 ) sill (a -y) mg sill (O-O )t}j

- {(L+I) cos (a R-) + D sin(ala) - mg cos (0-0)1fi

-R.

Equating this force to m7' gives the two scalar equations k4:M

mV -Dcos(nv -)+(L+L )sin(r-ty)-,ng sin(0-ty) (I)

and mV(O-a) (l]+I c)cos(v (R- +Dsin(a R- (y)-mg (-n) (2)

In addit ion there is tihe moment equat.ion

10 = M (3)

where 11 is t.he pitching momlien t () • .inert. ia of the projectile about a t.rallsverse

ax.s through it-s cent.re of grav.i.ty.

Additionally, the range X and altitude h satisfy

X = V cos (0-0) (4)

h =V sinl (0-4y)()

lt. is now necessary to define the aerodynamic forces and moments appearing in

equations (1), (2) and (3). The drag is expressed in tihe form(4)

D = (pVRS/2)

22xtc )+CIS(ay/C Do) /(nt;ASw) )

where p is air densiLy

S is the reference area oil which aerodynamic coefficients are

based,

C is the drag c'oeffi cient. at zero angle of att-ack, 1DO)



ac /3C/ is tile wing lift. coefficient derivative evaluated at =0O

and S/(,cwAN,) is a constant.
w

The (•2i term ill ttlv eXpr) 'os ,ion tor d rap, 1), re|pre '(vli s t he componevnit. of dr.i, g

indtced by vo 1t. i c'iy Al hed fFrom a Fi n|i v*e spant witg u a d( woti I d d i sappea r onl y Io

a wing of infinite span. The iitt on the projectile, apart from that. arising

Fr1-om def'lected elevator.,c is givevn by

1. / (

where C ((Y i the Ii Ft cov f Fi cic ell fo0r the proj oct ie I

and 0CT/3il is tile lift, coefficient. derivative for the elevator 'ontro I

cva luatd c"0. r)

The drag coefficient ]1 and the lift coeIfficient derivatives 3(X/0I1,) and -.
D~o

aC]/Ou zire Mach numtber dependenit, bum for the Mach tnumtber range cons idered

here, whi ch is less LIhan 0.).5, theose aerodnom i, c coefficients ('411n reasoliably be

taken as cons stantts. Thus the project ile I ift will be expressed as

where (3Cl/a) i.S eVal uat.e, at. L•lO.

Si milarly, the pitching molenit: is expressed as

+(0( b/2V W (au~/),+n (c 011
N"i

Wh.ere -. is a -"-l" '.lil' length --

: C is Ltlhe a vr-odylinaim ic 1) iL chijng Ir.(lmm~l t cotf Ii c iell I A,

mE

S.. . .... ~~~~~~~~~~~~~~~~~........ ... ... . . . . . . .. . ", 2 , -,,. . • . ,,' . -t .. :,
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and q ~

and thec parvtial dervatVILives of' C are eva ma ted 1'or vw.ro valu tes of' the i r-

arguXmenlts 'Ih mm comopommeit s ini .1/11 m~d N. /Z)I) repre~swill (ti st atIi c
in m

Pitchiiing mnoment. duv t o migle of- att~ack and v-i va tor detflect i oi respect. ivt y,

wh ile the compolent. ts ill ~C /01 'Ind i)C /(Y repicscnit damping ef lects.

The all, density p appca ring ill the aecrodynaminic forices anid moWCet5 Js dependent.

11poIn alt itA 11d Ii and it frequenICt IV Used 3analytical rehL~ioioSh ip is givenl by

P ~ e Where

f) is a constant. roer ence dens ity

and( If is a coRISLint. scal height.

Uisinrg t i s re Iat. i oish~i p for 1) and expressing the re Iatt i e vV l oc i.t-V V R andt -

lIng I o f a t t ack,. i i trve o f wi lit veulcit V and Wind directionl Withi the

Ito ri zonitai I pwI,; , s shown i n f i gkie 4., eq iual i om (I t Io (5) t ogo t ig,'- w ith

0

give t he4'o I410 Iowi n s et o f equa It. j onils to-t. thev mo t ion o f thle 1)rp vov et. ei .

V (1)/r) tV-V cOs(Ij+O=Cvfl V'

-(I./m)(V /V ) ill(j' +0-(Y) -P, .i 11(0-(V)w R w

rfSI 2r) (aC /arl)qV11 V sili(p +0-iY)eXP(-hI/Il)(6

0v (D/niV)(V /V) Sill (p O-tv)

-0(1/mV) 1V-V 10-11~ ~i) 1/vR

+$(g/v) ('os(O'C) q4 C

-1 8/ef1 2m) W~C /ci)l l)V IVVkj cos;(p +0-(Y) ()

re ___ f. 11_ whf



In In

() V co~o' o

Eqjuai.jtios (o ) to (I)) thIus represoMi . svt of six equat ions for tilie -.tatu'

varaVjblIes V. o, 0, 11X, and coutirot va.iabi Ic j whore.

re F

( I/r) (' S/21in)Vý (Mi' Ifl(Y hy e(

W w w

s I ( s I -Vw S 111w1.) / f

ui`UV COS4 #0_0V Io~ ! ()-

w I w

Teva I Ie o t the wirodynamni c coeficii clnt, appoa king i n eijua t ionls (6) to~ (1'))

can be foutid fromn dat a hiandbooks Such as reI ecs7 a ad 8.



-12-

3. OPTIMAL GLIDE PATH

The desired glide path is one which maximiseCs the range X for a given decrease

in altitude for flight -"n still air. Descent rate is governed by the elevator

control setting so that the mathematical problein is to find the timpe variation

of control angle q(t) which maximises

tf*f

J (t) dt

t.

subject to the constraints imposed by equations (6) to (16) with Vw=O. When

Vw=O, equations (6) to (16) become,

V2CD -h/H

, -(r S/2m) (() e gsin(O-ot) (17)

-(PrefS/2m)V{e(adCL /a)
:•= }e h/11

+ rJO~CL/89))e + o + (g/V)cos(O-a) (18)

0 q (19)

=2 -h/H
q (PretSb/ 2B)V e - O(Cm/a•)+(qb/2V)(Dm/aq)

+(&b/2V)(a(c /a&)+fl(aC I/an)} (20)

"where

2 2
-CD(a) = CD + 2 (aC /,) /n;tAS (21)

However, a good engineering approximate solution is available for this problem

and is based on physfical reasoning. It. is argued that maximum range fl.igat

paths will be flat and hence changes in 0 amid e will be -small. Hence, the



approximation 0 =q a=0 is attempted in equations (17) to (21), giving

-(p ~S/2m)V 2 C 0(ay)e g/ sin(0-a) (22)

0 -(p .S/2.-)V .(3C /31a)
re f L

iti

0 cv(ac _ac" ) + q(ac l31l) (24)

The physical interpretation of thesse equamt ions is, first, from (23) that the

lift is approximately equal to the weight of the projectile and that changes

in velocity are due to chdanges in altitude. For small changes- in velocity, orI

&=. that is, kinetic energy, equation (22) implies that the rate of loss in

potential energy is approximately balanced by the energy dissipated in drag. i

Y. Equation (24) is Lhe trim equaZion giving the relative values of aY and q which I
reduce the pitching moment to zero. As shown in reference (9), equations (22)

and (23) can be combined to give

d(V 2+gh)/dt = -gXC (cf/ ,C(aCL./ocl+q(aCL/Uq) } (S).

where, from equation (24), rj = "a(3Cm/aa)/(GC /00l),
m Ins.I

so that integration of equation (25) with aY assumed to be sensibly constant P 1

yields

X-X. z {(V2-V 2 )/2g +(hi-h)}f{u/CJ)((a)

x (acl/au)+/e) (D-C1 /aaq) } (26)

where subscript i deunotes initial value. It. is possible to obtain further

close approximations tot trajectory parameters when; a is azssumed to be

invariant. For example, equations (23) an(1 (24) give
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g eh/H cos(O-) (2

0) . . 2.) (aCL.Z.a) + (i./a) (a,'. (27)) 'c

Differentiatting equation (27) with re.spect to time and ignoring changes in (9-

ci) gives

which when substituted into equation (22) gives for the glide path angle,

tan(O-a) -g CD(a)

((jfV 2 /2H){ (O(:/al)+(rl/) (OCL!Lrl) • (29)

The time of flight can be found by putting

h h

t = dh/* j dh/'V sýii(0-c) •.

h. h.
1 1

•-1

Equations (27) and (29) enable fV sin(0-ci) to be expressed in sinple

exponentiaJ. functions of h which can be readi.ly :i.ntegrated to give the result

t if {( CL/ W') (v/') t OCL/OIaI)

x a (Vi-V)/g -2H/Vi+?7!/V} t C(a) cos(O-a) (30)

Equations 2•6) to (30) provide close approximati.ons to glide path trajectories

which ar.e flown with angle of attack a senzibly constant such that the glide

angle is not too steep in the sense that the approximation cos(9-a) 1 is

acceptab./ e

It can be seen from equation (26) that. if changes in V2 are ignored z, maximum
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value for the range (X - X.) occurs when a constant angle of attack is chosen

to nmaximise aY/C D(Y). Ignoring changes in V2 results in an optimum angle of

attack which is independent ot the altitude range. From equation (21) it is

f'ound that the if aV is the value of a which maximises a/CD(o), then the
0

optimal angle of attack is given by

0(2 = C

o Do

(S/TnrAS) (aCL/Do) (31)

The foregoing engineering approach shows that a close approximation to the

glide path with maximum range occurs when the angle of attack is held at a

constant value 01 and hence, from equation (24), the corresponding constant
0

elevator setting is

rno = -o(aCla) M (ac/arl) (32)

The optimum angle of attack is a function of the aerodynamic properties of the

projectile and equations (27) and (29) show that the initial optimal velocity

and glide path angle are depentent on a and initial altitude h. Thus for a
0 1

selected value of hi, if the launch phase cannot consistently provide an

initial mid-course velocity as high as the required optimal value, then at

would have to be increased from the optimum to satisfy equation (27), .nd in

consequence the range would be reduced. On the other hand if the launch phase

could consistently provide an initial mid-course velocity in excess of the V
optimum, decreasing a below the optimum would again lead to reduced range

provided the assumption that changes in V2  were small still held. In this

case somý other strategy would be employed to retain potential energy until

sufficient kinetic energy had been dissipated to slow the projectile down to

the optimal velocity and then initiate the glide. It will be assumed that the

launch phase can be designed such that the expected conditions at the

commencement of mid-course flight are the optimal glide path values. The

. . ..- . ......-
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function of the feedback control system actuating the elevators Is theni to

mininiise error~s in position, at the end of mid-course flight, due to initial

departures from optimal glide path trajectory parameters.-

4.PERTURBED) EQUATIONS OF MOTION

Departlures 0-ro1 thle optimlal glide pa th par'ameters are-- iiow treated as first

order perturbations about optimal values. A set of linear equations in these

perturbed state variables can now be found from equat~ions (6) to (11).- The

procedure is illustrated by taking equation (6) as an example. This equation

is of thle forma

Fv(V, , 0, h, V. ,V~ 0,

Therefore 65F 0

+(,)F /00)C) t OFv/,1h) h

+ ;FvZV'~)e, + (;)FV /Oi), 0 l1 + (;)F' )0Vw 0(33)

where subscript 0 means that partial derivatives are evaluated at opt~ifla~l

values. Carrying out this procedure for each equation from (16) to (1.1) yields

a systemn of linear first order equations in

which are the first order perturbations in

V, C, O, 6, hp ii, respectively.

The resiulting perturbat ion equations are now given

V (f) S/62m) 2V C (al )V.
I ref D o A
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+elgcos(()- a)

(p al re t /2m) V2(0 c D /30f)

-0, g Cos (0 -a )
0 0

+(p 5/2.) (V2 /11) Kju
refSI 0peS/m Ds( -0 )

+-V Co p refS/2r) 2V C (ai )s in(E -aY
w rf o D 0 0- 0

+V sonp (preS/2m) VcoSi(E) -a)

a (aV1 /V2) c ts(O --54

V1 Pf /2 ) C(IY)r O(CL/aErj)1

-(a1/V) (p fS/2m)) 2V2 C (av /a)si a

w~~ 0 e

+V ip(p S/2m) (V V cH s C(0) i-r acre 0 ref 0 L

ref0 L (3)4)

I-A

+2gV /V2 (preS/2m aoc -

0 0 0



,c(C 1./au) 0+C D/ (Ol)

-2V silp (pS/2mf) sinCO) -O.)

xfC ( v +tj (ac Mon))U1~L 0 0 L

+V sinp (p rfS/2m) cos(f0 -cx0)

x{(aC /00i) +CD(ax (35)

O q 
(36)

2

X(p S, 2m)V 2 (cL( O)+n (acL/Pr1)

-V1 (ac 1/3&)0
X~p S2/4 g cos(o -%)

+a(p Sh/2B )V2  a3c /3(w)

-I(preS/2m)V 2(3C /aa)0 -g sin(00-%A

2
xa1 (p fSb /4B)(3C /3a)

O(PSb2/4B)-IC /Oai)

xg sinl(o 0 % 0 0.

+q(p fSb2/4B)V0

x((aC /3q) +(aC /8&)}

-h (p reSb2/4B) (3C/OY

xIPfS /2m)(V /H)(C (Of)+q (OCLc/aF1)T

+n~ (p reS)/2.B)Vo (OC /Dr])
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+V cosp (I)refSb 2 /40)

X(acm~/at) (V /V )sin(e Ua

-V cosp (fre)Sb/ 2 B)V* (C /a3) sin(e-a )

+V sinp (P Sh 2 /40)
W w ref

X((OC/au) (V /V )COSQ13 -f

-V sinp (PrefSb/ 2 B)

XVo (;CI/&a) 0 Cos (00-ao)

"(PrefSba/ 4 B) (3C /D3)

xsin(O -ao) d/dt(Vwcosp w)

"(P refb2/ 4 B) (8C /a&)

xcos(Oo -a) d/dt(Vwsinpw) (37)

h V si.n(O(-aY) -a V Cos(O -ao)1 0 0 1lo 0 0

+QOV cosG(3o -a) (38)

Equations (34) to (38) are in a form amenable to application of linear

optimal control theory.

5. LINEAR OPTIMAL CONTROL ThhORY

Equations (34) to (38) can be written in the standard form

x= Ax + bri + Dw (39)

where x is a 5- component state variable vector

A is a 5x5 system matrix

b is a 5- component control vector

1l is increment in elevator control angle
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1) is a 5x5 disturbance matrix

and w is a 5- component, wind vector

in standard notation, x is the state variable column vector having components I
xi, where corresponding t.o equations (34) to (38), j=1 ,2,3,4,5, such that

x VI, X2 C111 Ij X.1 1 x. q, xg h

Optimal control theory is thoroughly covered in many texts.1 0 11 16. In

reference 10 optimal. feedback control is introduced through the Hamilton-

Jacobi approach which is quite general. and not restricted to linear systems.

Theory of linear optimal systems is treated in great detail in reference 11

while reference 16 deals with optimisation generally. Because this thesis is

restricted t.o linear optimal control of deterministic systems it is worthwhile

demonstrating how readily solutions for such linear systems follow from the I?
standard results of the calculus of variations. This leads directly to the

optimal system description with the additional adjoint variables and t') the

alternative Riccati matrix equation. In the absence of random disturbances

the deterministic problem is treated as follows, First an integral quadratic

performance index of the form

J(tf9tt) - f (xTQx+ii )dt+xT (tf)SX(tf) (40),
t .

.

is set up where Q, P, S are symmetric weighting matrices which are arbitrarily I

selected but subject to the conditions that P is position definite and Q and S

are non-negative definite. The object is to find the functional form of the

control angle increment tl which minimises J. This is, in effect, to

determine a control setting which minimises the variance of pcrturbations in

the state variables, subject to the constraints,

IA



x Ax + bri (41)

By writing equation (40) in the form

~t. f r T . 1' + T-

J(tf L (x Qx+n1Prl1+x Sx+x "x)dc x t.)Sx(t..) (42) :4

t.

where x(tf) is a constant. Lhe problem can now be treated by the classical

calculus of variatiois.(12) To remove the constraints imposed by equat:ion

(41), the adjoint vector of Lagrange multipliers A is introduced and the

uncoustrained functional

G T T1 .XTS+T;
C, x QX+Ilf' 1" Sxx Px1 (Ax+brIl-x)

is constructed, for which the Euler-Lagrange equaLions,

d1/dt (3G/3IX) .- )G/,:X 0 ,

where

x-*' -- { , r, n ,

become x Ax + bi 1  (43)

u - Qx - (44)

III - p-b (45)

A 2p (4()



-22

and the t ransve r'sa1 iy condiit.ion 12for free XO(-.. atid tAi Yes

Substituting for 11 in equations (43) from (45) gives, I
A -bplbT x I

= ~(48) iL~l T

IIThese equations could be solved for p andi hence from equation (45), qlwould i

he known as a function of time. This is not the form of solution required for

feedback control where jI) needed as a function of X. Equations (48) show

that p is a linear function of x and making the substitution

p Rx (49)

gives the matrix Riccati equation H

R+ RA+ AR -RbP b R Q= 0 (50)

with -PbR (51)

which is now the required form for ql. The boundary condition for R is found

from equations (47) and (49) to be iI

R(tf) S (52)

Equation (50) can thus be solved for R(t), t. .t.<t. by allowing time to run w

backwards and solving for R(2) where T t.ft. This is equivalent to solving
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RRA 'H -l' -t Q --. t.) 0

to find R as a function of I subject to

R S (S4)

Ilaving solved for R, the If'(dback gaiin matrix K is defi ned as 14

KT I) pIbTR (55)

and hence from equation (51)

II - x (56)

Equation (56) .implit, that the greatest reduction in the variance of the

pertulrbcd state variablon occurs; when all the states are ted back.

is-.

Material fr-o the cited literature which hears directly on Ii icar opit i ma I

control design theory has been brought together in the sections which follow

but with some additioonal details to enuphasis r the design techniqtims used in

this thesis. Such details concern the properties of tile Riccati matr'ix, its

link with Liapunov theory, iLs asymptotic behaviour, and the reason why all

state variablIes are led back i.n the optimal case.

5.1 Properties of Riccati Matrix R

At this stage it is worth examining the properties of the Riccati matrix It

a little further. Remembering that the weightting matrices Q, P. S, were

chosen to be symmetric, then taking the transpose of equations (50) and

(52) shows that R satisfies the same' equation and boundary conditio:t as R.

Thus R is a symmetric matrix and instead of n2 unknown clements there are

(ni 1 u)/2.
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S.1.1 Relat.iouship between R and Integral Performani*tce lhidex

It is also found that. R provides a 11i askir c! for the iujd.uiii.!ed performancet

inldex. Thi s is read i Iy shown by writ. i ng t for t. in equat.ion (40) and

Sil )t lit uti ug t he optimsal value j)l ;'Rx for i1 in e~quat.ions (40) a nd

(41), giving,

TF

J(tt ,t) = 1 / (QfRlP" IbTR)xdT+xT t f)Fx ( f (57)

and x (A - b R)x (58)

Differenttiatiing equation (57) with respect to t, gives

t) = -x' ( Q t Rbd l) r1) x(t) (59)

Expressing ,3(t.,t.) in the quadratic tform

J(tft.) = x (t.) C(L) x(t) , (60)

substitutling into equation (59), and climiniating x through equat ion

(58), yields

T . T-I T
C• CA + AC - RbP"1TC + (R-C)bP lb)R + Q 0 (61)

where the boundary conditon

C(t i) ( S

foillos from equkat ions (57/) and (60). Compari son of equat.i ons (61) ad



(50) ,Show.; that. I

is Il Soil 1. iOnl ol equfitt i oil (61) and hienice Iroiit eq(i L ionl (60)

x W(t R(t) x(t) J(tft) (62)

and thus R p rovides a iieasure for the minim ls, d pei'formance index.

5.1.2 Link between R and LiIpunov St abi lit.y

The Ri cati matrix I may also be used to check the stabilit.y of the

opt imi sed system throiigh 1.i:ilnov s second netho l.(10) The s cla I a

function J(tfMt) can be regarded as a Liapunov function which assures

stab il ity for 1 (tf, It.) positive definite and fJ(t;) negztve deiinit.e

When Q, P , and ,i are positive definite then , (tf~t) must be positive

de finit t a nd from eqv qa t oil (59), t he add it. i ona I requi rement. that.

(Q+RhbI'- R) be positive definite assliles that. J (t ft) is negative

def i i it c

S 1 .3 Asyymptotic behaviour of R

The asynptoti I4 bluiv iour of R uIs t.as wi I IIlow he exami ned.

Substituting equation (56) into equations (40) and (41) gives

f

J t f t i) = f ) XT (Q4 KPK'I) xdt'x Ttf (f (63)

and X (A - bK )x (64)

Thus if eqilation (64) epreo,;lts ;I stable system, x(t ) 0 as t. .- lnd

heace

A
~---*--~ .*.-- - -- - -- "-
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J(tf t)i, Constant as tf

Comparing this result with equation (62) shows that

R -> constant as tf o

and hence R 0.

This result shows that if equation (53) is used to solve for R in the

case of the time-invariant, infinite upper limit, optimal system, and R

approaches a finite limit for large [ theu the system must be stable.

In this case equation (55) shows that the optimal feedback gain vector K i

is constanit.

Ii
5.1.4 Time invariant, infinite upper limit performance integral

Another property of the Riccati matrix as determined from equation (50)

is that it is independent of the values of the state variables and

hence, from equation (55), so are values of the optimal feedback gains,

K. This appears to be a consequence of the requirement that all state

variables be fed back. A closer look at this situation can be had by

rewriting equation (62) for the time-invariant system with infinite

upper limit performance integral to give

xT(t)R x(t) J(cot) (65)

In this case, where the feedback gain vector K is constant, the partial Ir

derivatives of J(O,t) with respect to each component of K must be zero

for a minimum value of performance index. This means that the partial

derivatives of R on the ]eft hand side of equation (65) with respect to

the K components must all. be zero if the minimum is to be independent of

x, which evidently iL is. Presumably then, if not all of the state
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v ariables are fed hack or it not all the feedback gains are regarded a

free pa rameteCrs;, riot aH L he parti. l d ii(eri vati ves of' the e lemient s of' R

canl s hilL talicoulSIy b~e z.erot. Ifeli v ally Hill o pt imil s ys tem bap.t.ed oili

incomplete state variable feedback must consider initial values of the

state variables. This result is important because in many practical i
F situations it i~s not feasible to feed back all the state variables and

there is then a need to examine sub optimal. systems. This problem will

IVbe discussed further in section 7. .J

5.1.5 Alternative to Riccati Matrix Solution]

As an alternative to the Riccati matrix equation solution for the time-

invariant infinite upper time limit optimal system, there is equationI

"(48). This equation together with equation (64) provides some links

between the eigenvalues of the closed loop system matrix and the

elements of Lthe weighting miatrices P, Qand t~he optimal feedback gain

components of K. Equation (48) represents a system of order 2ni but it

is found from symiletry that the characteristic polynomial has only n+1

even powere terms. The characteristic euation in terms of the saa

parameter X for this system is given by the determitiantal equation

X1 -A -l b%l n~A b

[where I tidenotes the unit matrix of order n. By virtue of the synmmetry

ofQand bP b , the left hand side of equation (66) is found to (66)n

evenfuntio ofA. hisfac isreailvestblihedby substituting -A

for A, in the determinant and interchanging rows and columns. Tfhus the

characteristic polyaomial of this optimal system is a polynomial in A2

oforder ii, adthe eigenvaiues occur in p)airs, consisting of one

postiv an oe ngatvevalue. For x to vanish as time becomes large
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the eigenvalues with negative real parts are assigned to x and those

with positive real parts to p. The characteristic polynomial

corresponding to the x eigenvalues is, from equation (64), the expansion

of the determinant

A A+bKj

and is found to have coefficients which are linear in the components of

K. This polynomial can also be constituted from the roots of equation

(66) with the negative real parts. Equating corresponding coefficients

in the two polynomials leads to a linear set of algebraic equations for

determining values of the components of the optimal gain vector K. When

direct algebraic factorisation of the characteristic polynomial of

equation (66) into x and p eigenvalue components is possible, direct

algebraic relationships between the matrix elements of A,P,Q, and

optimal gain components can be obtained. Hlaving discovered that the

coetficie.its of the characteristic polynomial in equation (64) are

linear functions of the feedback gain components it is evident that if

all the state variables are fed back there are sufficient free

parameters to place the system poles in any desired positions.

5.1.6 Selection of Weighting Matrices L

There now remains the question of how to choose the weighting matrices

P,Q, and S. The ideal control system would immediately eliminate

disturbances as they occurred but in doing so would require unlimited

conitrol power. To be realistic, finite errors due to disturbances must

be allowed, so that control power demanded can be limited. The design

aim then is to weight errors in the state varia')les as heavily as

possible while constraining control power to a practical limit and at

the same time ensuring that the assumed linear laws are not violated and

the linearised theory rendered invalid. Dealing first with the j
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weighting matrix S, which because i.t penalises terminal errors, is used

in designing missile terminal control systems and often leads to demands

for rapid changes in feedback gains when homing in on a target. The

weighting matrix Q is used to design systems which regulate

perturbations in state variables throughout the whole trajectory. It is

this sort of regulation which is sought in mid-course control of the

gliding projectile with consequent relatively small changes in feedback

gain. Thus in the mid-course control system design of this gliding

projectile, S will be taken as zero. A very convenient way of dealing

with Q is to try, by physical arguments, to find fixed ratios between

its elements, and then to take some scalar multiple of Q as a variable

parameter. Thus performance can be assessed against the variation of

this one parameter. Unfortunately the method cannot be applied to this

projectile because there are absolute limitations on angle of attack a

and elevator control '1. A feature of a high aspect ratio aircraft-like

wing is that the variation in lift coefficient with angle of attack may

be reliably regarded as linear up to the stall, but when stall does

occur, the loss in lift is dramatically sudden. Thus perturbations in

angle of attack.e 1 must be constrained to lie between the steady value

a and the stall value. If large perturbations in a1 are unavoidable it
0

may be necessary to reduce a and accept the accompanying reduction in
0

range in return for improved accuracy. In similar fashion, rl is

constrained to lie between n and elevator deflection stall angle. With

only one control variable, P is a scalar, and Q will have elements qij

On physical grounds, reasonable first guesses for P and Q are found by

choosing acceptable maximum values for each state variable perturbation

X and elevator angle perturbation nlm and putting qij = 1/(ximxj.)'
Xim,

P = I/r 2 . Using these values, the system equations can be solved and
lm,

the maximum values of the critical state and control variables

determined. Determination of weights can then proceed by an iteractive

procedure which increases state variable weights when full allowable
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|H.

elevator deflection is not realised and vice versa.

6. CONTROL SYSTEM DESIGN

Using the physical properties of the gliding projectile given in Appendix I,

values of the state variables V, o, 0, q, h, X, were computed for maximum

range in undisturbed flight starting from an initial altitude of 4 km. This

was accomplished by integrating equations (6) to (II) using the Differential

(14)
Analysis R, Eplacement (DARE) simulation language on the University of

Adelaide's CDC 6400 computer and later repeated with use of the Continuous

System Modelling Program (CSMP) on the DRCS IBM 370 machine. The set of

variables which maximise the range in undisturbed flight are distinguished by

the subscript 0 while subscript i denotes initial condition. Initial values

of V and 0 are found from equations (27) and (29) while a and q0 are

obtained from equations (31) and (32). For the undisturbed maximum range

trajectory, equations (31) and (32) giw,

0(0 = 0.17037 rad

S= -0.55370 rad 
A

and for hoi = 4000 m, equations (27) and (29) give V

V. 172.4 m s" K
0 = 0.05373 rad

In addition, putting

01
oi=0 i!ioii

allows equations (6) to (11) to be integrated to obtain the 0 subscripted

undisturbed maximum range state vwriables corresponding to the constant

elevator setting rO. These results are plotted in figures 5 to 8, and for

Si - - I I I I
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comparison, some spot values calculated from the approximations given by

equat.ions (26), (27), (29), (30), are superimposed and show close agreement.

The 0 subscripted variables are the command va lues of the state variables that

the control system must endeavor to achieve during disturbed flight. Such 14

command values would need to be stored on-board in microprocessor memory and

be made avai table for use by the control system. The accurate generation of

command values from the simple relationships given by equations (26), (27),

(29), (30) presents the possibility of designing a control system which can 14k

adapt to large errors in initial values of state variables through an on-board

mini-computer together with memory, Hlowever, this paper is confined purely to

feedback control with a preset store of command values. The state variabl,

feedback scheme being considered is shown in figure 9, where the feedback

gains Ky to Kh are determined by assigning weights to the five state variable

and control variable perturbations appearing in the matrices Q and P of the

integral performance index of equation (40). Before embarking on a design,

procedure it is necessary to check whether the desired linearised system

needed is both controllable and observable. When some states ar,ý. decoupled

from the input., the system is not controllable and when there is decoupling

between some of the states and the output, the system is not observable.

Tests for controllability and observabilit.y are provided by the neat results

(ns)of Kalman The result for the system given by equation (41) is that, for

controllabil.ity, the matrix whose uth column is given by A -bl) should be non-

singular, where n is the order of the square matrix A. The controllabi lily !t

matrices for the values of A and b given in Appendix I were found to be non-

singular.

t- 6.1 Choice of Performance Index Weights and Determination of Feedback

The weighting of the state variables perturbations in the integral of the

performance index will be chosen to be of the form
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x Qx (X /X )2

j :I

and the coldtro! weighhtiiiq to be (ill / qw )

Thus values of x, n1 wh.,clh exceed X n will be heavily penalised. I tI

will be as-isumed that initial errors of 20 nr s in velocity and i00 r.i in

altitude may be encountered. As a first guess then, put

V 20 m ,s hw 100 r,
1wW

There seems to be no reason to limit the angular pitching rate q, hence

this term will be omitted from the periornance index. The question of I

maximum. allowable angle of attack will now be considered. Maxir.11if.,

lift is dependent on Mach nur.mber, aspect ratio, and wing cross-section.

Design handbooks such as references 7, 8 give values of maxirmur.i .1 ift

ccofficiiai l C for various Mach numbers and aspect ratios. For a winll(

of aspect ratio 7 at a Mach number -f 0.5, which corresponds roughly to

V 1.7 2.4 m s at altitude h 4 krm.. a CLHAX of about 1.4, based on

wing area, ,hou1d be achievable. The naxinmum range fl.ight a1 angl e of

aIttack 0o 0. '703" radian requires C to be 1.16. This leaves a margin of'
() 1.

about 0.035 radian or 2 degrees for control purposes. rhe Constant

elevator angle deflection for maximum range f.light is -0.!3/ radian so

that if a rmaxi.nara, deflection of about 0.7 radian or 40 dzqrec!- is permvitted

a reasoiiable choice for 1l is 0.1 radian. An in it ia I guess for an

attitude angle weight, 0 can be obtained by considering the fligM paths

of figure 2. For 100 n error in altitude at the end of midcourse flight

the corresponding mean flight path error is about 1/4 degree and the change

in line of sight angle to target is about .I. degree. A towinq 4 degrees of

tolal seeker beam angle to accomamodate Final. midcourse a.ltitude eriori

requ.ireýs a I:lean rmidcourse flight path error of 1/2 degree. Thus as a f.iit

uess, wi 11 be taken to be 1/2 degree. Sumraarising, the weigjhIs on theSguess,
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J i =3.4,5.

j=4, i 4,5

j=5, i =5

rand the qj JV4' elements; of Q Solut ions for the r. were C-o;,Iplited from

equat i otis (68) us ijng both the DARE and CSMP integrat ion routinles.

Compoatent.s of the t ime varying otpimal gpain vector K were then found from

equIati oi (55) and equation (56) gave the clevaLor deflect~ioni augle

itcr renitet ill wh hich whll mdiled to q0 , gives the va1uC for tl t.o be

subst itu.or ed into the rajveclory equations (6) to (11). These equations

were integrated for an imlitial velocity 20 in s. greater than the initial
-1

opt ia idI value of V 172.4 m f The resulting trajectories for V, 0,

it, are shown in figures 5 t.o 8 where the optimal and no-feedback control

traje ct.ori es are shown for comipa rison. Theste figures clearly reveal illth

low-dampled os('iltatory phugoid mot.ioln. From figures 7 and 8, tihe optimal

tlight pa1)th has an itt tit.kide of I kin whetI the ground range is; 2*5 kli ad• the

time taiken tor~ the I)ir,; iietol. to r'eich t~hi.s l051iLionl i:; 158 s. The very

mnarked ef'fect. tha~t veloci t y perttirhbat.ion:.; have on aItt i tide is. i ndi cait c'c by

-If~igure 6, whi clt shows t hat. the i iiit. i a veloc'ity pert urha tion of 20 in s

indulces "ii af t icml,' os-iiloat., iou of~ abount 7 degrees ampl)ituide initial ly in
I-

tllnl'lt-.rolle~d flight, decaying to 1.7 degrees at t 1[,8 s. 1 11 cnt roll11ed

flight, the maximum amplitude is 2.4 degrees, decayinl to 0.7 degree.

Figure 7 shows how the cont-rolled f tight improves the altit.iude variat ion

wi Lh t i me in that. the rate of desc'ent is closer to the optinim than tihe

nconlt roll ed flighlt, Iloweve r, it is tile positiional accritracy Which is

impott itat and f i gu re P reveals that the coant rolled I liglt shows no
improveiiment over liiiOil .rol Ied fl i ght at a g round riange of 25 kmi.

-1 igh. iil L nth.

alLit. ude errtor at 25 kill ground ilige iOz about 300 il which cWouild requllite ai

seeker beam angle of 6 dc'eeIS tIo 1'ccoimillocl•at(', aiind to ,hich ClilniS Il' . tdde d

another 1. 4 degrees for the ati.tituitlud errAr. At thi s poixit, thl, qhuest ioi to



be investigated is whether this seeker beam angle requirement of 7.4

-1
degrees t.o accomumodate an initial velocity perturbation of 20 m s (:an be

reduced by irproving the feedback control.

To this end, further changes in weighting values were made. Values of a

an'd 11 were left unchanged because, in the trajectories just described,

values of maximum angle of attack and elevator control deflection were

considered to be marginally acceptable. The procedure was then to diminish

the weights V lw' 11w , hlw, by a factor of two siccessively and to calculate

trajectories for various combinations of these diminished weights and to

note changes from optimal terminal conditions at t = 158 s in response to

-1
an initial velocity perturbation of 20 m s Because a check had shown

that there was not a significant difference between trajectories calculated

with time-varying optimal feedback gains and those calculated for constant

feed back gains bised on values of Riccati elements corresponding to

T7158 s such constant gains were used in the trajectory selection procedure

to reduce excessive compulation. To assist in the selection process it is

possible to compute and compare values of the performance index given by

equation (40), for the various feedback gain vectors. This is achieved by

solving equation (68) for the ri. with the r1,2 term omitted and by
1w

substituting a. -b.K. for a.. and q. j'KiK./q 2 for qij. The underlying
I J 1 J j1w

philosophy behind this approach is that a tightening of the control. over

each state will. bring each state close to the required optimal value at.

corresponding times and this should then also lead to acceptable position

accuracy. Hlowever, attempts to exercise tight control over attitude and

velocity simultaneously, revealed some adverse interaction and a closer

examiatmion of the physical reasons was demanded. This adverse interaction k

.:t:,,s From trying to regulate velocity through elevator controls without

significant.ly changing the projectile's attitude or flight path direction.

To regulate a velocity in excess of the desired valuet, the elevators would

be deflected so as to increase the angle of attack and hence increase the p
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indiuc(-d drag. Thlsa, hiti ri ig a phugo i v1 elIoc it~y cyclIe , t he h ighe r veloc'it y

pairt woulId be flIown at hiigher Lhaii 0111 imoiianiigle of at tac~k andc the lowe r

velocity part at lower angle of attack. In this way the mean drag force is

increased, as is required, but so also is the mean lift force and it can be

shown that. the undamped amplitude of the phugoid flight paLli oscillation is

Aapproximately proportional to the square root of the lift coefficient CL

This result is readily derived by solving tile open loop part of the reduced

system equations (11.35) for zwith z =0 and z1 =V1  at zero initial time.

A-~ Ini this notation, z; is velocity perturbation V1 and zis the flight

perturbation angle ~'* It is found that thle undamped amplitude of for

the above initial. conditions is proport-ional to -a2 1 /W Fo quto

(35),

a 1  -(prefS/2m)C,(u )-(g/V,)cos(o Ud0  (69) A

when the contribution of elevator lift is ignored. Under optimal

conditions, lift is approximately etjilal. to weight and hence tile magnitude

of the two termis in equation (69) at-e roughly equal so that

a (rf/mC(
- ~~~ ~~21 2 peS2) 1 ( 0

Equation (11.32) shows that. w 1Pis proportional to (C L(a ))0 / and thus

- /W is approxirnateiy p~roportional to
21 /2

Hence attempts to control, velocity i~n this way tend to accentuate tile

phugoid oscillation initially by increasing the froequency and undamped

amplitude of' the fli git path angle although damping is increased. Tflu s

initial, effect tends to inc~rease the velocity direction error and although

thle velocity magnitude ercor may be reduced, it flight p)ath positional error

is still maintained.

Now consider what happens when the elevators act in thle opposite rflanzir so -

ýjj
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that they reduce angle of attack in response to an increase in velocity.

The tendency then is to reduce tile phugoid frequency and undamped amplitude

and although the velocity magnitude is not so well regulated, the flight

path positional accuracy tends to improve. However, if this form of

control is overdone in such a way that angle of attack is reduced too much

in response t.o increased velocity, an instability will be reached when tile

glider will begin to nose dive at ever increasing velocity.

This interaction between velocity and attitude control of a glider

high] ights the difference between flight path control of a powered aircraft

and a glider. On the powered aircraft, velocity regulation would be sought

through feedback to engine throttle as well as to elevator controls.

Returning now to the search for more accurate trajectories by diminishing

Vlw, (w, h1 , it was found, in accordance with the above considerations,

that positional, accuracy was not improved by reducing Vlw, but that

improvement was gained by reducing O front 1/2 degree to 1/4 degree and It
ow lw ;'

from 100 m to 12.5 m. For the set of weights

V 20 n| s I

oflw 0.035 radian

0 0.00436 radian
IW

hlw 12.5 m

lw = 0.1 radian

equations (68) and (55) were again used to obtain an optimal time varying

gain vector K. The components of K are plotted in figure 10. This figure

shows the gain components to be virtually constant over most of the flight

time and consequently trajectories were computed for these gains and for

gains held constant at their initial values. These trajectories were

sufficiently close to each other to indicate that constant feed back gains

based oni a constant ;i itial-valued plant matrix A and control vector b were

adequate for design purposes. This is a useful attribute of the optimal
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control approach in that it does indicate when a time-invariant system I
representation is a reasonable approximation for the determination of state V
feedback gain and thus when the extra complication of time varying gains

can be dispensed with.

The values of feedback gains used in the constant gain trajectory

computations are:- I

-2-1
KV = --2.034 x 10 radian m s

VVKf = 6.335

Ke =26.469

K = -1.867 s
q

-3 -Kh = -7.566 x 10 radian m

The control system using these values of feedback gain will be referred to

as System Il. Trajectories computed for this set of gains are shown in la

figures 11 to 16 for an initial velocity perturbation of 20 m s From

figure 14 the altitude error at 25 km ground range is 200 m and from figure .

12 the attitude error at t = 158 s is 0.45 degree. Thus the seeker beam

angle needed to accommodate this error is 4,9 degree or 0.245 degree per i
m s of initial velocity error. In figure 12 the oscillation in 0 is due H
to the magnified scale showing up round off error in the value used for V

and stresses the sensitivity of attitude angle to velocity perturbations.

Figure 13 shows that the controlled rate of descent is indistinguishable /'I

from the optimal value, and the altitude error shown in figure 14 arises

from the positive velocity increment shown in figure 11. In achieving this

amount of control, figure 15 indicates a maximum angle of attack variation

from optimum of 0.0322 radian or 1.84 degree and from figure 16 the maximum A
elevator deflection angle is 0.515 radian. Hence, in responding to ,an

initial velocity error of 20 m s the angle of attack is contairoid to I.
within 2 degrees of the optimum value, as required, azA the elevator

deflection angle remains less than 0.7 radian. Another trajectory which
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was comptited for anl in it ial aIt itkide error of 100 in sinowed (flhat thIiisenrr

had beent halved by the end of midcourse fli glit.

To demonstrante tie st~ability of t~his cont~rol systemI to in- fl i gh L

di sto rbanices , serties of' random w ind gusts was inotroduced at oig, I.hel

trajectory having anl iiiiial velocity error of 20 Ill H~orizontalI and

vertiicalI complIonenits of these gusts are shown in f igtarvs 17 and 18, and

figure 19 shows them stiperimposed oni projectile velocity. The gusts were

of duration 5 s and had random directions and random mignittindes inl t~he

rane ) o t)III s Responses Lo these u ~ n ~eii~ia ' ii

error of 20 inf 8 of a t ti.tude , alIt itutde , angle of attack, andn~ elevator.

deflection angle, are shown inl figures 19 t~o 24, and arte all stable.

6.2 Integrity

There is now the quiestion of t he i titegri iv of thiis cotit-r-l system 11 and

the effec t of the single fail iire ot each S tatLe va Ir ab 10 f eedtback will he

examined. InI a t. i me --*va r yi ZI g I nea r -,Ystennl onle Colld IICompin, v t het

pe rformannce i ndtt!x by molli fy ing the Ri ccat i equna t ion i it thei mannerI

previously indticated inl the sea-rch for a sinitable Weight illp matrix Q. Such

computat ionis readi ly reveal, a non-Coriverging asymptotic behaviour Wineii itL

ex ists an(I can thus be used to i ndic-ate stabil1ity or the lack ofI it.

However in thnis instance Where the syvstemi .is we ll approxinmated by a time -

inva riant syst-em it i s easy to comptite i geriva lines of cl ose(,- l00t) mlatriceQs

formed from the difference bet~we'n thne inn t.i a -va I, 'pIantit matrnijx and t he

product of the init jal-valued cont~rol vector aind a constant feedback gaiin

row vector which has each gain comp~onent made zero sic ce ss ivelIy.

Fige~nv~ilties of the closed- loop system IT hawing feedback fail tire of oil(

state at a time are giveni inl Table 1.

Table I shows t-hat attiitu~de feedback failure i~s comnpl ete ly destabi. isnslg.

The na in efftect of each other fanili 're is4 to greatlIy redunce short pe ri od

(Iamp itg . Tra~jec tory comnputat ionis ton each failI mitre, ot-her thani at~t ittinde
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TABLE 1. SYSTEM II POLES FOR EACH FEEDBACK FAILURE

Feedback Angle Attitude

Failure None Velocity of

Attack

-10.62 ± 12.23i -0.1102 t 16.22i -0.2008 _ 18.29i -6.1629

System -0.3174 -0.3148 -0.2250 5.618

Poles -0.06582 -0.07605 -0.08051 0.3062

s -0.006205 -0.005409 -0.005689 -0.3690

-0.008212

Feedback Pitch Altitude All

Failure Rate

-0.1135 + 16.22i -0.1135 + 16.23i -0.3456 + 6.045i

System -0.3178 -0.3774 -0.01041 0.08546i

Poles -0.06555 -0.01051 -0.0008673

s -0.006203 -0.001628

confirmed that flight stability was maintained, except for pitch rate

feedback failure in the face of velocity perturbations. For pitch rate

feedback failure, angle of attack perturbations reached such large

amplitude that for negative perturbations the lift became significantly

less than the weight, causing the projectile to plunge downwards and

further increase the velocity perturbation to values well outside the

validity of the linear theory. Under these conditions, computations of the-1

response to a 10 m s initial velocity perturbation, showed that the

projectile plunged downwards and made a 180 degree backward turn.
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6.3 Implementation

This feedback system requi, res continuous measurement. of the fiv\e st at t

variables, velocity, angle of attack, attituide, pitching rate, nlid

altitude. One could use a pitot tube for velocity, a yawmeter for angle of

attack, a position gyroscope for attitLude, and an altimeter for altitude.

For pitching rate measurement there are rate gyroscopes, or an array ot.

accelerometers, or coriolis device.,; rsiug deflection of small gas .jets or L
vibrating simply supported beams. A practical difficulty arises from the

accuracy required for the initial setting value of a position gyrostope

used to measure attitude. As mentioned previously, a 1/4 degree error in

flight path direction leads to a 100 m error in terminal altitude which inl

turn requires 2 degrees of seeker beam to see the target. It the

project.ilh is launched from a moving platform such as an aircraft then a-

accuracy of a fraction of a degree in the initial gyroscope axis set L tIoII.g

would not be achievab e by simple means and atLitude would not be avai lable

for mid course trajectory correction. When slatees are not. availble for

measurement., the sophisti('ated solution is to use an on-board connut e r

simulattion of the plant. behaviour to estimate the missing states Iron thie

measured ones. The way in which this i.s usually carcried odt is dcs rr ibbd-

with reference to figurt' 25. This figure shows the output from Liit' part of H

the system under control to be the state vector x. When not a I I t" lie

compo1ntts of x are available for measurement, the remaining ones may he

represented by Fx where F is a mat r ix whi i ch, for example, would hbe a

unitary matrix if all of x was avai lable. Thus the signal which passes oni

int.o the estimating part of the scheme consists of the measurable parts of

x contamliinated by the measurement noise v . From this signal ali esti imate o.

the state vector, denoted by is, s 'omplfted and f(ed back t.o thet system

contLro' Ier. Clearly then, the function of the estimatioll pro'ess I,,

make X alpplox imatue x as closely as possible). Frol f i gure 25 it is es N y

shown that
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x - = (A-bKfF)(x-k) -K fV+W (70)

This equation shows that estimation performance depends oil the choice of

the gain vector K For a time-invariant system, classical design

techniques can be used to select K such that the estimation process is

stable and such that a quick response minimises the difference between x 'A

aand . It the components of the noise vectors v aind w are assumed Lo he

white and Gaussian with zero me,- val.ues then a sophisticated method of

determining Kf is available through use ot Kalman filter theory, ýei

descriptions of which are to he found in references II and 16. The result

of this theory is that the best est.imat.e of x is given by x when

K= P-FR (71)

and R is the sol.ution of the Riccat.i mat~rix equation (50), integrated K

forward in time, with the elements of the matrices Q and R now representing I

tile power spectral. densities ot the cOral)orients of the syskt.e0, ,oise vector017 W

anid the measurement noise vector v respectively.

Another approach to design when some states are not available and when the

system is time-invariant is tU. investigate the use of compensat..iug uetwork,,s

to achieve the closed loop transfer functions derived by optimal control

theory for complete state feedback. rechn iques 1o' desi.gnl i g suc'h

compensati.ng networks are discussed in references 10 and 17. loweve r, the I
approach that will be considered in more detail in tile t,(£xt section is that MR

of approximating the system to be controlled by one of reduced order.

7. SUB OPTIMAl, CONTROL In

In this section the possibility of sub optimal control is pursued because the

lower performance from partial state feedback is compensated by dos I gi,

s simp I ci t y . The first method to be considered is that. of' reipresent ing th••le

,.system by a ediiced order mathematical model and ussing this model as the basis ,
s b
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for applying linear optimal control theory. Provided that this model is a

close approximation, we might. expect. the design to he nearly optimal in the

sense that the optimality wilt be almost independent of initial conditions.

7.1 Reduced Order Approximation

Reduced order approximations are likely to succeed when there is wideI

separation between system poles and the concept of fast. and slow variables
call be invoked, in dynamical problems this situation leads to the use of I

singular perturbation techniques which can be particularly useful in

solving non linear equations. A discussion on the appl.i cation of singular -

perturbation techniques to solution of aircraft performance problems is

given in reference 18 where conditions for successful application are

investigated. Typically, for conventional aircraft configurations, the

phugoid and short period open loop modes can be separated, and the

projectile considered here is no exception as i.s shown in Appendix 11.

However, in using this separation property to design closed loop control

systems it is necessary to check the effect of loop closure oin pole ill

positions. At the end of Appendix II it. is shown that the phugoid motion

cant be approximated by the second order system 4•i

7'1 t al fit alz2+d a€1 ~

.2 1 Zm:z +d a (72)
2 21~ 1 2:1)2 '2 1

where v V

z= O-a1 the increment. in flight. path angle.

= a 1 2 + 13

(I2 = -(a 2 2 +a 1

2 22 23

the vit ieents ita. being those -oerretponding to the elements of the comlnl, let

plapt matrix A based on initial Iflight. conditions. By putLing

- - -~--*~,--i------..-.................
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•In

and 1 1/21 2
lilt

in equat ion (66), the ch'aacteristic equlatlon for an optimally control :led

system based on equations (72) and their adjoint sel., becomes

A-a -a3 d(y•2  dldW2l•'
11 13 1 lilt 1 2 Im

d d•' U 2 20 27 0
a 2 1  A+a 2 3  1 lilt d 2 Ih (73

1/V 2 0 M a l) I "21

0 1/ia i A-a
lilt '13 23

As pointed out. previously in section 5.1.5, this characLevisiC.t C polytioiaial

is an even fiinctioni of A, having the form 1

A4-f c A2 +c =0 ( 74)
1 3F

The rootFs of equation (74) are thus t-A1 and tA, where

AX c 1 12  (75)
1 2 3

and -X2 (6)

Ex;paludillg the deterlliinalit. in equlation (73) gives

2-d12112 - 2.* 77 I

c 1 -(a I+a 2 3  2a 13 it 21 -d. 1 21 -(1.) v (77)

c:I (a 1 - I t (a (I + ;j (1 (78)

2. ( 1 12 I+a 13 2 (1 2 l: l•-
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where p a1 /Vim A

alia V • y /illI * m

The 0'h.racter st i: equaL ioil for an opt. inal system lbas('d Ol cqualI i oi Y2)

al one is thus ,-

A2 
- +Al+2 )A + A, 2 =0 (79)

Where AX, A2 are the root.s of equation (74) with the negative real parts.

Hfence from equations (75) and (76)

2A, (-c 1 -2c 3
1/ 2 ) 1 / 2  (-c1+2c 1/2 1/2 (80)

ad 2 = *'(-*c=2c.1/2)1/2 +2C 1/2)1/2

anid 2A -2c I -C +c1  ()

Equations (75) to (78) provide the links between thi poles, A,, A, of the

optimal system and the assigned weighting ratio us 1., V.

Optimial teedback gains k and k2 can be related t.o the poles A A 1mad

weight ing rat.ios p, v by irst. subst i.tutin lg

-klVlk 2 q. (82) k

in eqv ations (72) so that the charac ter istIic e(quat ion becomes

A2
-~11 3 3 (l 1 1 (l 2k

+(a2l 3 -al a23)+kl (dla23+d a13)-k2(d a l+dlla21)=O (83) ••
21 13 at a2 3 )+ 1d 1 )+2d1

lquatitug coefficients in equations (79) and (83) and solving fo" kIt nidk.2 i.

gives

F1
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k kd 1 "41 2 11 2 1 (ud a2 3 +d 2 a 1 3 )

al- (d, it )* d it8d 1 231+ 2 13 1 2 I' 12 2
a aid

(I2 (d a24d 3 +d a (d2 3 +d I

i2 13 1,2123 2 11 2:3 1,,3 2' 3

t . . -d-Z) + d•T -i -a- - (dI +a id
2. 13 1 21 2 1 3 1" '231 1

- 1  2 1 23 2 '13 1 1 2- 1 + k It3 1 )-l d l((I, "I,8513,j:

"2(d 1 , 2 3 +d 2 a 213) 1(2 +d 1 2 1 ) 1

Thus for t he second order system giVeal by equatxLions (72), plots if opLila l

feedback ga i n kI and k (1nd of weight v:nitio,0 1. and v can be drawn in tih X\

p la ie fro ,m the ,re lat io w sh ip " givefl by e ,., . a otimk (77 " ' . ), o- , ,

(84) and (85) Such plots arC 3110%,n r1 fitg, re ,6 to ,' i26 1 h c: wNhCe1 the Lil C

characteristic equation for the closed Loop s\ ;ta'.,' has :a pair of vompl t

coallilgate roots. From ejqat. ions (84) ond (8R) it is seen that when YI x '"

are complex conjupgates of ,vach other, tih locii. of k andi k2 ill the X p1ane :1

are concentric circul;ar arcs. Putting x=oh iw, the centre of the It v'irc .ca

andl(I of the k, circles

at o = (d 1 2 3++d " 1 3 )/d 1

Fa gut re 260 show0,s n x'1 'vea; of cow;it.aait vallehs i . aloxa >. wih'ich V :arla '(; T'lw,

l1 arges t v la lIim. :-hO \t l ti ' 1 it; )(/'4"0 1,Id i i A lt which woould CO t'-,,1po01 11

f hl 1 2 doeg l'e s 11d V .. it! Fr01om e( .ll' l t i ots (0'7) 'and 78) it call bO' ., n

, , I a ItI II II iI I•'r
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t.hat thle roots of Lilte openlo op (jh a c torintI.ic C eqat ioll occil r wheii v-.j *;:()

arid at that point on figure 26 the values of a and w are in close agreement

to those given for the complete open I oop system in Appendix I. As

velocity weight is tightenedI, or, that is, V I nis decreased and hencep

increa sed, f igure 26 reveals that the phugoid becomes more oscillaLory.

K This is because the system is trying to regulate velocity through the

effect of angle of attack onl drag. As attitude weight is tightened, that

is as 4j is made smaller, V increases arid the system response eventually

becomes aperiodic. Ini fact as V-, one root. of the characteristic equation

tendlr towards the centre of the k circles and the other towards -d V.

Relaxing the velocity weight completely is represented by the p() curv, ill

figure 26 and along this curve k is positive, showing that when velocity

is free to change, angle of attack is decreased when velocity perLturbationis

are positive. Thus the physical features of the pl'u,,goid response are borne

out in figure 26.

To relate the feedback gain., kc1 k2 of the reduced system to feedback gains *
i~n the full system, t~be assumption is made that. (Y i~s a fast variable and

will respond instantly to elevator deflection so that the steady state

relat ionshI i of equtation (2141 call be used to give

Thus ~ ~ ~ ~ ~ i f~i.rgi s. ~t A rom Appendix 1. '

ithads lo Y 13k, /4, K2  3k 4 K-, 13 )j'~

re r.. el todb.c *'t

. . . .... .. U tO I.C ~ I
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In order to restrict Lthe total elevator def lection angle to less than 0. 1

radian, the magnitude of k must tiot. exceed 2.25x10- radian iv- IS t~o
I

accommodate a Maximum initial velocity error of 20 iM s . Thus in figure

26 the choice of optimal feedback gains must be restricted to values lying

-3'
in thc region to the right of the ki -2.25xl0 radian in s circle, which

is seen to be approximately given by p~rr/900 radian m S. This value of p

corresponds to V =-10 M s- for a =2 degrees.
In lin,

For aperiodic response when the two roots of the characteristic equation of

the reduced system lie along the negative real axis the corresponding

optimal feedback gains and weight- ratio$ are plotted against the root

closest to the origin and the plots are shown in figures 27 and 28. As v

becomes large it. is found that the root farthest from the origin on the

negative real axis behaves as -d V, k1  approaches
2-1

-a 9 /d2 = 1.72x10 radian m s and k2  approaches V. Figure 28 shows that~

for the, aperiodi(: response, k is very Close to .its asymptotic value v.

Thus for large va 1 nes of V whenk one of the phugoid poles mioves far away

froin the or7iginl, the assumption that the phugoid poles and the short period

pole s are well separated. may be viol ated1 and a check oil the stability OF

the comiplete closed loop 3ystem with feedback gains k and k should be

ia d e . lThis check showed that for va luies of v between 2 and 4, the feedback

gains k a nd k 2caused undamp~ing of the sotperiod mode thus rendering

the coimplete system unstable. The stabi lity boundary corresponding to this,

iindamp intg of the short period mode is shown in figures 27 and 28.

There now remains t..,, problem of select~ing a pa ir of feedback gains k aind

k, wh i ch reduces t.o choos inzg relatIivwe weights pi and V. In accordance wit h
2'

p rev iouis cons ide rations that cy shouild be restricted to about 2 degrves azid

that t-he average error ini IIighit path di rec-tion should be nto miore th~ztz 1/4

degrce. the values

(Y ST1/90O radlian
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and * li "/720 radian, are taketi,

gAi"iIg V 8

-1

Because! V 20 Im s was found to give the best results for the CoMllplete

optimal control. system, this value will be selected again, giving

4 n/1800 radian m s.

But, as shown in figures 27 and 28, the complete system is unstable for

IN

v=8, so some other criteria must be used for feedback gain selection. The

approach used here is to search the stable regions of figures 27 and 28 for

values of the we,,.'. ratios p and V which aminimise an integral performance

index for the reduced system. In the general notation, the quadrat i.c,

integral performance index based on the reduced system given by equations

(72), is

J(t) =z Rz

T 2/Y 2)(fL(86)

t

where R h

and Q ±U

For every pair of values of p and v in the region searched there are :,

correspondinug pair of' feedback gains k 2nd k,. Using these feedback
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gains, we can put

Y _-klzl-k z in equation (86)

and lettLing t-'>O in the integral performance index, the Ri.ccati equation for-

R reduces to a set of linear equations in the elements ri , given by

F2all -2a 0 rI k2(1.q.

a13 a1 -23 -a2a r 2i k 2
-k ( l/U q2) (87)

S 2a13 22 2 1m q2

In solving these equations, ql and q2 2 are taken as the inverse squares of

the maximum allowable values of V and ,il which are

Vi 20 m s q, rs 1/4 degree,

but k and k2 correspond to values of p, v selected in the region being

sea rched When, as in previous considerat ions, only initial values of

velocity perturbations are considered, then from equation (86)

t. O = rllV li

and hencef r c -an be used as a measure of performance index J. Such values

of rll were calculated along the curve-., of constant p shown in figures 26,-1

27 and 28 except for p=n/450 radian m s whicih requires too much control

deflection. The lowest values of r were found to occur along [1=0,

decreasing monotonically from V=O to a minimum between v=2 and v=4. Thus

values of k and k are sought which cerrespond to a point on p=O in figure
1 2

27, lying t.o the left of the stabilit.y boundary at a distance which ensures

adequatv damping of the short period node. Trajectories were, comput.ed

using tie opt imal feo edbtack gains cor iresponl i rig to V% l, 1.,4, 1.6, and l -pnO.

As exvctIed,(i the greater the valte of v the less the altittide error hut tlhe
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lower tHi short period damping. The trajectory for v=1 showed ,i,

appreciable altitude correction, whereas trajectoiies for V=1.4 and 1.6
both showed about 50 ,, correcttionl. Trajectoties fo, v=,.4, which have more

shorti period mode dampinlg than those tor V=1.6, are showu in figures 29, 30.

and 31.

At. this stage it is worth investigating how a similar approach, throughi use

of the reduved order system, could be used to achieve a tighter regulation

of velocity at the expense of flight patti direction. This means choosing

V to be very small, and qi to be 1.a rge. In terms of relative weights, I.1
Im fin

is to be as large as possible with v small., From figure 26, the largest-

value of pI which maintains angle of attack and elevator deflection to

within acceptable I imits for an initial velocity perturbat.ion of 20 ti s

-1
is [p=T/900 rad an s. Equation (87) was again used to calciilate r for the

values of 1. shown in figure 26, excepting again for 11/450 cad Inl s , and

valuies of V were selected to h~e 0, 01.2, 0.4. Thie minlimumII Value forr

-- 1occulr red for v=0.2 alld p~=nt/900 tad II s,, fo r wh ich t he co rreslond in I)),

Weights art V =10 Ill S , hl= 10 degrees, and a =l2 degrees. Trajectories,

obtained for this tighter cont rol of veloc'ity are compa red with thei

traject-ories obtained for tight at.t. itude control in figures 29, 30 and '1.1

Further comparisons of the response of these two kinds of control are shown

in figures 32. 33 and 34, where angle of attack, velocity, and altitude iret

p)lotted for the first 20 s of flight, foIl owing an initial ve I oc I tv

pertnrbation of 20 rn s IFigures 32 and 33 show now velocity is decreased

by increased incidence but, from figure 34, at the expense of iincreased

attitude angle. The lower damping of the short peri od mode for the tightl v

controlled attiiude case is evident from figu re 32.

The t. i ght I y cont. ro I led velocity case is more ap1pro'pri'ate for the gI i d•i

pro.ject i Ie because it. suppresst s at tit tide errurs auld proviides some( a It l, Ido

co1rrect ion. Only three states are ted back to the el I vait or ., , these ;i t

veloc(ity, a t t iude, and angle of attack. The valule; o(u derived Ieedhatl
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gain.% are: -

-4 -1

•:KV -7.99 x 10 radian m

K =4_9
(Y

KO -4.39

From the computed trajectories, the errors at 25 km ground range resulting

from an initial velocity perturbation of 20 In s are 270 m in altitude and

0.12 degrees in attitude. These errors require a full beam angle of 5.6

-Idegrees for seeing the target or 0.28 degree per in s of initial velocity
• -1

error. Maximuai attitude error is 0.85 degree or 0.042 degree per m s of

initial velocity error. Improvement in altitude error is possible only at
-4

the expense of further undamping of the short period mode but this is I t

undesirable. Stability was further checked by computing trajectories for

-1flight with an initial velocity error of 20 m s and with a series of

random wind gusts having magnitudes in the range 0 to 10 in s" These I
gusts are shown in figure 35 and the responses of angle of attack, attitude

and altitude are shown in figures 36, 37 and 38. Figure 36 shows the

relatively low damping of the short period mode as reveal-d by the angte of

attack response to the first few random wind gusts. For these gusts, the

angle of attack perturbation exceeds the maximum value limit of 2 degrees,

reaching a maximum of 5.7 degrees at 13.5 s. This is niot surprising since

the system was designed to control velocity errors up to only 20 m s

within angle of attack perturbations of 2 degrees. As in the case of the

full state feedback, failure of attitude feedback, undamps the short period

mode, but is otherwise stable in the face of velocity, or angle of attack

feedback fa-.lure.

This reduced order approach to optimal control system design resulted in

relativelv simple algebraic relationships between closed loop vole

positions, optimal feedback gains, and state and control variable weights.

A The simpler model does provide insight into the physical behaviour of the
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eleva tor-control led glider, inidicat~ing thle dillicul tieS :ill obta~i ni nq

altituide, attituide. and velocity regu~latioin, s~imul taneoulsly. Obviously the -A

approach cannot. safely be used in total i solation f rom tile comp~lete systei Ieo

as the di~scovery ef Lihort period miode insitability ha-, shiown-

I S inqle Sate F'eedback I
Becaus-e a,, molnt jollod previously, thereo na)y be di ITf Cu I t y inl set tinq

init ial a tti t ide reference axes accurately enough. m.ýakingq inl-f ligh t

attituide meast'rements too inaccurate for regulating gliding flight, it isQ

of interest to discover whlat can be achiieved by velocity feedback alone.

lin this section, the response of' the complete system to initial velocity

errors is considered when only velocity is fed back to tile elevators. The

search for a velocity feedback gain is first commenced through use oif I

crodfie fom o eqat ion (62) to compute Riccati elen~ents. Using thie s

state Variable wei~gh is a) uised ?In the final ful~l state feedbac~k s;ysim 11~ri

desigIn, a mieasurec of the quadratic int egral. Performance index, exclurding

the c:ont tol contribution, is obtained by computIing r 1'ron equation (68)

with thle quadratic terrm owitted and with i, relCdb a -1 ) 2 al( a 'Y

by a. H- b K C it figure 1,9, r 5' obtained is plot ted againist 9 anld a

rainim~un is :Coen to occur it K ý'-6xlo>- radianl f,) W. hell E is uegative

the elevators reduce angl.1e of attick fo r positive velocity perturbat-ions -

As discovered previously this type of res;ponse leads to tile best altitude

Lo1rrect ion but canl lead to irrecoverable downward plung-ing flight if F i.

not. core Eu Ily Selected. This tendency is reflected in Ikigure, 3') where. a

rapid rieC lin I' :is shown fo r JK approaching -/.x 10~ radian r.i 3

fhowever , lor, K -t)XlQ radian ms . the short period modfe danp-ipinq was too

low and the computed trajectory showed instability. B41cking off from this

minimuim value of K1I to ak Value of -5x I 0 radian m s rdue a stable

trajectory with a low-damped oscillatory response -in the phugoid rýode.

P'lots o)f velocity, at t i tude, altitude and angi-e of ailock res:ponlse to anl

mnit i.11 Velocity Perturbation of 20 m S are shown in figures 40, -41. .1
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and 43. Tihese Iign tos show a low-damped osci I latory rP spon. e havintg ank

amlp I it tide ii attit-unde pert.uba t. iOUl Of about 2 dgre'Ce , ind in altitudt,

pe'rturbation of about 270 li. Mlaximu.m angle of attack perttirbation is about

1.8 degrees. F1igures 40 and 43 show how angie of at.tack decreases totr

positivw velocity pert urbat ion. It is of interest to comparo t hose

trajectory results with trajectores obtained for a positive value of K

whetn angle of attack increases with positive velocity pert i-rbat ioni. FI r

the purpose of comparisoil, trajectories for K =5xlO radian lit s are also

shown in figures; 40 to 4t3. 'these trajectories show that amplitudes of

i it i[l phugoid response are increased but so is the damp)ing. The sot tlIui In-g

time for this sort of control is small enough to effectively remove iitiai Lla

pertu rbat i oils in velocity all( att itudtd by the cnd of Wi dcou 'se f light, bit l

its accentuated attitude response to ill-fl ight, ve I oc i ty di st.urbantces

renders it uusui table a,, a midcolirse cont roller.

The col, .ler iwith K I-Sxl103 radi ia l s has at t i tude and a it iltitd

responsls ito velocity pert.uirbati oni; which have sinlaller values t.5halI t, h

Uncont ro Iou Id system and lhvc'e thiis so It oi control ler could fiIi no-

appI i cal ion in in idl- -ol ise fl ight . Itow'"ve r . ilt,' itv dbaick ga in for this

controller is niot fili VL opt i ma I hayving beeii selct edto to niiiiilti lilthe

response to initial velocity perturbations only. Nevertheless, a 'esult

givell in reference 10, CoullId Iilld application il providing in formation oil o

hlow s ucli a suib Opt imial system woul r espondI to a general set. of i nit i a I

colidi t. i onsi . The result referred to, uses the fact tLhat the ratio of two

quadrat ic forms, each havinug the same niiumiiberP of variabl, 1s, has turLniilig

points for Ilinilt values of the variables provided that none of the square

te rils disai ppear fromt the ditioniaintor0. Thusi, for the ratio x Rx/x Qx, whee r

Q inlist. he positive delfinite, it iS SIhown ill reterintce 10 that the itiaxnilmlulml

val.ue of this ratio is the maxinium eigenvalue of Q R. 0o see how this

resuilt can be applied Lo .a control systenm we return to. equations (39) and

(40) and exclude wind disturbances and the final state weiIht ing mat Ix S.
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*1'.
IPMtt i ng 11 =-K x , where K N now aoy Xa i i ve-t or wli i cli does riot des . abi Ii i ;

the- clse I1Eloop01 system, we lurive

and J (x,t) Jx T)Q (T~dT
fIj

t

= x(t)R X(t), (89)

where A = A-bK T
14

=Q+KPK T

itnd tf is constant

Following reference 10,

<= T ,(90)

where. T is the maximum eigenvalue of Q 1 R. Integrating both sides of

inequalit~y (90) leads to the inequality

t -T log e ({J (x,t/ 1t X (9:1)

'fhe usefullness of this result depends on the value of the upper bouind T

which has been derived. It should he noted that the choice of QIfor

determining T is arbitrary, apart from the requirement that.Q be positivje

def inite. When Qis positive non-negative, the maximum eigenvalue ofII
R1 becomes infinite, rendering (91) a useless piece of infornmation.

From equiations (88) and (39), H1 corresponding t~o arbit~rary Q1 can be foundJ
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fromi the matrix (.quation o-

T-+A0R +R AI+Q = (92)

Suppose now that we have a system with known closed loop behaviour, perhaps

an optimal system with full state feedback. Let the known value for the

performance index of this sytem at time tf be J(x(tf)). Now change the

feedback gain vector K to another set of values such that closed loop

stability is maintained. So doing, establishes A1 . Suppose further, thiaL
V ti

a reasonable value of T has been found by selecting arbitrary Q1 and

solving equation (92) for H1 , then inequality (91) can be used as a basis ...

for finding an upper bound for the time the changed system would take to

bring the performance indaIx J(x(t)) to some fixed value J(x(tf). To use
oK

inequality (91) we need to ki, .. i the maximum value of Jl(x,t) which just

fits inside J(x(tf)). The mathematical problem then is to find the maximum

Tfor J (x,(t))zx R x subject to the constraint

.J(x,() xRx
= J(x(tf)), a .. -. ant.

This is achieved by introduci" . ,nge m1l Itiplier A anId seeking the

turning points of the auxiliary ,ak-.t.kn

J (x(t)) = XlJ(x(t)) .(x(t

which occur when

or, that is when 2R x--2RxO, (93)

which shows that A is an eigenvalue of RR

TSPre-.mult-plying equation (93) throughout by x , shows that _J



-57- -

I,
Jl-\J=O, i-i,

anld tah us i| "I J is '.h e, m al;x im uim vii ltie o | J ] W h i ch? ju s t fit~s illtS itle I(X (t .) •

where A is the minimum eigenvalue of R-R

and from inequality (91),

t ! -T loge{AJ(x(tf))/Jl(xo)} (94)

where t is the time taken for the modified system to bring the performance

index J of the initial system from J(x(O)) to J(x(tf)). Inequality (94)
f

thus affords some means of comparison between settling time for a given ,

optimal control system wiith complete state feedback and the stable system

with the same plant matrix but with arbitrarily selected feedback gains.

8. D)ISCUSSION AND RESULTS

Linear optimal control theory has been used to determine the state variable

feedback which best regulates mid course flight of a gliding aircraft-like Fi

A..

projectile with elevator controls. A set of differential equations in

perturbations of the state and control variables about the desired operating

conditions for the projectile have been derived. These equations provided the Jý

linear mathematical model necessary for applicatie.n of optimal control theory

t-o determining feedback gains. 'rhe desired operating condition was the

trajectory resulting from the constant elevator setting for which the

horizontal range over an altitude drop from 4 to I kin was maximised.

in gliding trajectories, aerudynamic lift and weilght. are approximately equal

and opposiLe ankd characteri-sttcally, conditions change slowly along the flight

: vath. Consequentlv it. was discovered that a time-invariant system model was

M
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adeqiate for feedback control design. Because lift depends on the square of

velocity, perturbations in velocity can easily destroy the balance between

lift, and weight causing the projectile to rise or fall about the desired

flight path. To control these excursions about the desired flight path, the

elevator controls modify the aerodynanaic lift by causing changes in angle of

attack. Because at a -fixed horizotial range from its point of launch, Ihe I

projectile's seeker beam must be able to capture the target. it is also

important to restrict. angular excursions in attitude of the beam axis about

its direction on the desired trajectory.

The physics of regulating altitude and attitude in response to velocity

perturbations through uise of feedback to elevator controls has been

considered. It has been discovered that there are three extreme ways in which

elevator controls can react. Firstly, velocity canl be controlled by bringing

about chaniges it, altitude. For example, if velocit.y is too high, the elevator

controls could cause the projectile to climb until velocity falls to the value

whe re if t just balances the weight and flight would t~hen proceed at anl

altitude consistently higher than the desired value, but desired values of

att i tude anid velocity would be maiintai ned. The second way in whi ch el evat ors

can react is to cause a decrease in angle of attack in response to increased

velocity aid vice versa. This action reduces the increase in lift due to

increase in velocity and hence tends to reduce displacements normal to the V

desired flight path and, at the same time, also tends to maintain the desired

attitude. Reducing angle of attack in response to higher velocity and vice Tk

versa leads to a lower mean drag than that for the uncontrolled flight a A'

constant angle of attack. The resulting motion is oscillatory and the lower

mean drag means that damping is l.ower than in uncontrolled fIi ghlt. if this

type of control is overdone so that the lift, in response to increased

velocity, becomes less than tihe weight , then the flight path will take it

downward plunge attempting to perform a 180 degrees backward turn. This

behaviour could not be predicted by the iiul-arised mathematical model. The

S~Ii
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third type of elevato, control occurs when the angle of attack is caused to

ticrease ini response to increased velocity and vice versa. rhis results in

increased iman drag which attempts t..o reduce veLociLy to the desired val ie.

The increased differential between liftt. and weight initially tends to increase

displacements normal to the desired flight path and the resulting motion is

highly oscillatory with greatei amplitude and damping than in uncontrolled

flight. The oscillatory nature of the response can preserve some accuracy in

alIti tude.

These observations on the three extreme types of response lead to the

following conclusions. Of the three states, velocity, attitude, and altitude,

it is possible to regulate any two at the expense of the third using elevator

controls, but not all three at once. The control system design method used,

effectively mixes the three different types of response in proportions

dependent upon the weights selected for the state variable perturbations in

the integral quadratic performance index. It is not possible to obtain

continuously improving flight regulation from feedbock gains obtained by

simultaneously increasing the weighting of all state perturbations in the

performance index. Because altitude and attitude are the important parameters F

in meeting accuracy requirements of the mid course trajectory, velocity was

not heavily weighted.

Three control systems have been considered. In the first system all five

states are fed back to the elevators, in the second system, based on a

reduced order mathematical model, only three states are fed back. Thirdly, a

system which fed back only velocity to the elevators was considered and in

this case the performance index was based on vel.ocity perturbations only.

Features of the three sytem are given in Table 2 b ',.,

Comparative performance of these systems is given Table 3 below

In these three systems, elevator deflection an-, are less than 0.7 radian

and angl s of attack variations do not excee2 es in response to velocity

perturbations of lip to 20 int s .All three systems were found to be stable in
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TABLE 2. COMPARATIVE FEATURES OF 3 FEEDBACK CONTROL SYSTEMS

States fed Feedback Pole Positions 1 1"

System back to gains s

elevators

1) Full Velocity K =-2.034xlO 2 rad m s -10.62±12.23i
V

State Angle of attack K1=6.335 -0.3174

Feedback Attitude K =-1.867 s -0.0682
q

(System II) Pitch rate K0=- 2 6 . 4 7  -0.006205

Altitude Kh I7=. 566x10 3 rad m-

2) Reduced Velocity K v=-7.99x10 -rad m s -0.052±6.05i

Order Angle of attack K r4.385 -0.5198

?ode I Attitude Ko=-4.385 -0.01144

-0.00 1085

-3 -13) VelociLy Velocity K =-SxIO rad m s -0.3511±6.046i
V

Feedback -0.0042±0. 05233i

Only -0.002297

4) No -0. 3456±6.045i

Feedback -0.01041±0.08546i

-0.008673

the face of successive random wind gusts having magnitudes in the range 0 to

10 m 8 It was found that time-invariant models of system behaviour were

adequate for determination of feedback. Consequently, the full state feedback



TABLE 3. COMPARATIrVE PE RFORMANCE OF 3 FEEDBACK CONTfROL SYSTEMS

System Maximum amplitude of Amplitude of response Total seeker

response t.o init. at end of midcourse beam angle

vel.ocity perturbation flight to unit required per

initial velocity unit, initial

perturbation velocity

Altitude Att i tude Altitude Attitude perturbation

1) Full SLate

feedback (11) lOre/ms 1 O.05 0 /ms 1011m/ms 0. 022/ms - 0.2 4 "/ms

2) Reduced

order model 13.5m/ms- 0.04/Ins- 13.5in/ms -1 0.006°/ms-I 0.28°/ms"1

3) Velocity
feedback alone 20m/ms 0.10°/ms 15w/ms 0.063°/ws 0.43J/ms 1

4) No feedback 24m/ms 1  0.370/ms I 1501/111s 1 0.086O/ms- 0.47o/,ns'1

systein could be synthesised by compensating networks, designed by classical

melhods, when not all states are available for measurement. The system based

on a reduced order model performs very W0l 1 in sUpttpretssilug at t [tildC IreSpOnS

to velocity perturbations and, from Table 3, Lhis is reflected in the seeker

beam angle size needed. I'owever, Table 2 shows the short period mode to be

very lightly damped and the persistence of short period oscillations may be

undesirable. The velocity alone feedback system achieves a moderate

suppression of attitude response but is not effective in altitude control.

This is because the altitude control being sought is control with respect to

horizontal range and not time. With the full feedback control system, the

correction of altitude as a function of time is excellent for the trajectory

with all initial velocity perturbation. However, as previously pointed out,

for elevator controls, regulat ion of altitude and attitude with time call only

be carried out when velocity regulation is slackened. Thus the rate of

descent may be excellently regulated but the perturbation in the horizontal

component of the initial velocity will tend to persist, leading to a
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persistent altitude error with horizontal range.

The fu1l state feedback systviem induces we l I damped rvsponses tLo disturbances,

Sand effectively halvesy• the seeker beam anIgle that an uncontrolled projectile

would require. The performaal'.(e of this sytem indi &ates the measure of error

suppression obtaainable when angle of attack variations are limited to 2.

degrees about the operating value and elevator deflection is limited to 0.7 7

radian. When initial trajectory errors cannot be confined within acceptable

limits a different strategy in selecting a mean flight path is called for. To

Frý fmeet a wide range of initial trajectory errors it. may be necessary to arrange

automatic on-board selection of compensating fixed elevator settings. The t

. penalty for this, is that in addition to the requirements of the feedback

control system, more on-board computer memory is needed together with elevator

L• settinlg al]gorithms.

-i
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1,1%T O1F SYM1I1hIs.

A P] ant mat rix

H Moillit' t 0o ilert i .1 of project ile I l pit Ichiiig pIlane aboilt axi

through cet(!. re ol gravity

CI Dag CoeIfic it,ii t

C I)Drag coeffic.tent at zero angle of attack

cL lift coefficient

C Pitching moment coefficientIll

1) Aerodynaamic drag, or in equation (39), a disLurbance matrix

I. Unleasurable s;Ltate select ion mat rix

G. Unl ons L I-1 i t ne( I 111tC i 0111 i

II Scalte height for exponent ial atimospheric density alproxilliat ionI

I Ulnilt mat ix

2 l~t eg'.'a 1 'qUi'J,|rt I Q , ' I(, forl.lilCP.ltle'o i (h

K Feedback gainI Vect.or

K Feedback gain voctor used in ,st illmation process to minlinlise (x-.')

I. Lift. force on projectile

Si, Iift contribultion frout colt. rols

M Pitching moment about cent re of gr-avity of projectile I

P Cont ro Iva r .ib I es we i ght i ng 1at mix

o State variables weighting ,matrix

R Riccati ,,,.'tr,'ix

S l~eIReference area for aerodynamiic coetfitCients, or in equaLion (40),

a final state weighting mat lix

T Upip, r b1 ol it(I set Lli iig t ime f o r a dynfami ca I siy stem

s/ (WAS ) Induced drag factor
w

V Velocity Vector

V Vt'loci ty iliagili t tith.

XiHoriontal Irange Variable

a . Elemeiit(it the plant matrix A



-64

b ('ollt rol Vector

2' 1)4 Compollnnt.; o I ('olt.trol vect.o1 h1)

d IId 2  Comnponen~t~s of' control1 vecto0r for redticed order syst em

,,g I-itvitat otnao l (itI St, o tanLt, 9 . In1

hi AIt i tude

I til it vtctor 1 i hor i h zonlt 4l1 dowiur-aiige (I I r't ioll

Untit. vect.or inl horizonta1 di'rec'tion normal L o i

k Ilui L vect.or directi.on vel rLcally downwarids

k Velocity leedbac'k gain in r"educed order system

k Flight pat.h angle feedback gaiin in reduced order syst.em

k .lnteger t

-n Mass of p,'roject v

i1 Unit. veCt.or normal t.o flight. path forming right hand set with , A

q Angular pI lthiiig rate Ii

rij lElementi of, Riccati I.attrix R I

t T i ,ie

L [tit Ivect or in a fo rva rds d i rect. ion tangut i , I to flight pat I

V Mvasilrement 11oise Vector

W SOVSt !IIl 110i.%(' Ve'(tOr I

State variable vecLor

. Est irnate of x

2 State variable vector for re"tduced order syst ea

0 Augle htweevi lontgitudinlal axis of glider and hor i zonta I

(V Angle ot att.ack

Sq lElevator det'lection angl.e

O Perturbation in 0

Vari ab ] e used iln characteri sI i c polyomki *i Is or Lagrange mii tipI ier

p Re la i ve veloc ity we i ghtt fo r reduced ordehr sys t em

,::• lp Anlgle bet~weenl atlnospheric wind and Lthe loriz'outial

A e a pd' I Relative flight path angle weighL tor reduced order system

•- p Atmosphe r i c" dels i t y•.•'-"-
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i I I

Wd I iia gin par~~Y~ t of coniplemc root ofI cia ra ct ra s . it' equiiit i 033

1 1)~~tiinuny L ilit,' Var Iiable ~

''F Itight.. paLth d irec L i oi a tiglt (O-~)-v

S upe 'sc r 1) ts

0) Unipe rt u3'brv ot opt irna I L raj ect ory conditLions

I P&' uN,13 lilt'(l t r;3je(ct 0ry colidi t i oils

i ,j k Ililt eg('rS

IlDenot~e.s maximlumi value of It varilable for weight. select ionl purpos's-

I Alt i Cj l va i tit, ~I t =0

IAt fli alI valIuit o t t ime

1W Hoizna wind

Rel.ative Windt

4 V Velocity

(Y Anl~ge of attack

0 At it udte

P)itIch i Itg rat-e

ht Alt 't-itde
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APPFNI) I ( I

PROJECTILE MASS AND AERODYNAMIC PROPERTIES

Miass m 280 kg

Pitching moment of inertia B 73 kg m2

Reference area S 0.06 m2  V

Reference length h 0.28 m

Wing aspect ratio -7

Wing area 0.9 m2

Induced drag factor S/nfAS 1.378 x 10=2
w

g =9.8mss

Sea level air density Prf 1.228 kg f-

Air density at altitude h, p Pr exp(-h/l), where ll=10 4 m

:p, .reS"'m =1.3157 x 10O4 ii1

rei f-x(h1) hr

-4 -2
PeSb/2B = 1.4130 x 10 m

rref
2rfb/4B 1.9783 x 10~ -5n mA
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Aerodynamic Force Coefficients

C = D0.25 I

(p efS/2m)o .= 3.2893 x 10- m 1

aC 1 /aa=_.25 I o

-3 -1(prefS/2m)3C[,/at 3.2893 x 10 m

ac /an

(S/ncASw)(aC/a30) 2  = 8.612

C )((a) = Co +S/I•ASw (3C,/lat) 2 Cr2

CD. =(2S/ncASw)(3C1/()a) 2 (I

~1 II

Aerodynamic Moment Coefficients

acmlaa = -13m

(PrefSb/2B)3cm/ac = -1.837 x 10 i-

aCn/3q = -112ni

A:

(i)ref bS/4B)ICM aq -2.2156 x 10 m

-I
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S(f) re Sb: 4•]• m 3 ' -1i

( t 2/4I3)aC /ý - -4 /478 x 10- mMH
ac /•'q1 = -4

"(p.. Sb/n) -4 a-2

- ) C/3~ -5 652 x 0io

i~l

Optimal Glide Path Par rs

From equation (31), a = 0.17037 rad 9.76 degrees0

and from equation (27), V = 141. 14 exp (h/2H) Y -1

with Cos(() -a )•1. (1.1)o 0

V ( value of Li ft/Drag (Y (o•ci/3a)

C;no+f2 (ac /3(y) 2 S/nCAS
w

+ qo (acL/qn)

22Ci)o+ 2 (•c /3a) S/hCAS

= 7.411 for (v 0.17037 rad0

and lo = -0.5537 rad.

From equation (29), tan(Oo -o) =-1.3224/1(Vo/2H)} (1-2)

From equation (27), range X 7.411 J(V 2-v 2/19.6)0 "oi 0

+(hoi-ho)} m (..3)

and from e(upaltion (30), time t

= 7.411t (V -V )/ 9 "8 J+2{1(1f V)-(1/V )}] (1.4 )
oi 0 0 01
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Also, •,quwition (28) gives V = (V2 /211)sin(O -,(y ) (1.5)0 0 0 0

4h 4 x 103 m It 10 3 m
7

V :1 172.4 m s Vof 148.4 rm s

0o-co -0.11664 rad 0 U-o -0.12072 rad
o1 01 of of

eo = 0.05373 rad of = 0.04965 rad

X -0 X 25,144 m

01 of

t. =0 tf = 157.2 s

* 2 * 2V . -0.1729 m s V -0.1326 rn s.
01 ofv, vi

Values of elements a.. of plant matrix A as given by equations (34) to (39)

for initial flight conditionsi (h.=4xlO3m)

"If ii
j- 2 345

1 -0.0152s1 2.041ms 2  -9.733ms 2  0 0.0001311s-

2 -0.00065429m -0.38673s 0.0066153s I 0.000006m s

J30 0 0 1 0 .4
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$ 3.542 -24 0.000036m' -S 6.554s- -0.00036296s -0.3109s 0

5 -0.11638 -171.23ms 171.23m s 0 0

Values of elerment.-; a.j of plant matrix A as given by equations (34) to (39)

for final flight conditions (hf=lO0n)

j+ 1 2 3 4 K
I.J

1 -0.0177s- 2.0352ms" 2  -9.7287ms- 2  0 0.0001311s"
2

2 -0.00076863m 1 -0.44963s1 0.0079527s-1 0.000008m-s

3 0 0 0 10

S-1-22
4 0.000049m s 36.575s -0.00050701s 0.3613s 0

5 -0.12043 -147.32ms 147.32ms 0 I

Values of components b. of control vector b as given by equations (34) to (39)
I

for initial flight conditions (h.'-14xl0 3 m)1

b b 1b 0
- b3 3

-21- -2

b 2  -1.52 x 10-2 s , b4 -1.126 x 101 s

Values ot components of h for final flight conditions (hf=lO0m



I b3 = b =17 0

3

b -= 1.7662 x 10-2 1. I) = -1.126 x 101 s

I2

'ai

Ii
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APPENI)IX II

C;IARACTII I ST I C EQJUA'ION AND SOILUTI ON

[n this appentdix the character istici equation corresponding to equation (39),

with coefficients assumed to be time-invariant, is solved by an approximate

method so that the dynamical behaviour of the glider can be related to i t.

aerodynamic and mass properties. By comparing the magnitude of the most

si.guificant elements a- of the plant matrix A, given in Appendix I for~1,

initial and final values of flight, it. can be seen that the assumpt.ion of time

invariance is reasonable. This situation is brought about because the

aerodynamic coefficients have been assumed to have constant values over the

speed range and in glidinrg flight the dynami"c pressure, given by pV 2 /2, is

then approximately constant. The Maclh number range based on optimal glide

path conditions varies from 0.53 initially to 0.44 finally, which is well

outside the transonic range, so that the assuimption of (-onstant aerodynamnic

coefficients is reasonble.

It is evident from the very small values of the elements in the fifth column

of the plant matrices given in Appendix I that the state variables are only

weakly dependent upon altitude. Hence for open loop analysis, at least., it is

reasonable to consider only the fourth order system obtained by taking the

e lemnents in the fifth column of A to be- zero. If the roots, of this fourth

order equation are AI, A A A then the fifth root corresponding to the
1'2' 3' 49

complete quintic is approximated by

A5 = IAI/AIA~A 3A4  (11.1)

where IAI is the determinant of the complete A matrix. In considering the

system given by equation (39) it. is worth including feedback of all the state

variables excluding altitude. Thus equation (39) will be treated as the

svstem
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a a a a bi
11 12 13 14 II

x - x - )., IK K2 K3 K4 Ix (11.2)

~~~~~ 1a 22 33 4t ~ lF!1)

a4  a4  a a bj
41 42 43 444

or x Cx (11.3)

- ~where the elements of the matrix C are givenl byI

C J . 1 .1 (1 .4)

The characteristic polynomi.al corresponding to the system given by equation

(11.3) is found by expanding the determinant

fo no IM4 - C in the form I

X+ + c X + C- C,

where it is found that I

C0  -(a +a 2 2 +a 4 4 ) +b 2 K2 +b 4 K4  (11.5) L

C1  1a1 (a 2 2 +a 4 4 ) -a 2 2 a 4 4 -a 2 4 a42 a12a 21 a43

+b 2 Klal 2 -K 2 (a 1 b2 +a4 b 2 a2 b4 ) +bK

-K (a b +a 2 2 b 4 a 2 b2 ) (11.6) [
4 11 42

11 a24 42  1 I2 2 4 2 12 2 1 4 4  2  1 24

S42 22 42 '23I
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-KI (a 1 2 a 4 4 b2 -a 12a 2 4 b4 -a 1 3 b4 )

-K 2(a i J 24b -a 1 1 a4462 + 43"b 2 -a 2 3 14 )

-K. (a 1 b4-a 4 2b2+a 2 2b) (11.7)

4 11 21 42 2 22 4
- 4( a -b 2b2a a 22b4+a 122 21b4 a 12a 41b2)a

3 1 1 a23 a42a 11 a 22 a43+a 1 21 a 43=112a40 23

+a 13a4 a 22-a 3a42a21 (.8)

134122b 1321 b+ 12baab2

-K1 (a 1 2 a 4 3 b2 -a 1 2 2 3 b4 +a 13a 2 2 b4 a 13a 4 2 b2 )

Ka b I ~ a b1,

2 a a23 11 43b2a 13 41 2 13 21 4

-K (a a b)-a a b+it aI b-a a b)
3 11 42 2 11 22 4 12 21 4 12' 4l2

By carrying out an order of magnitude analysis of these expressions for the C.
1

coefficients from the values of a., given in Appendix I it is possible toI j

simplify the results as follows:-

co - +a, )+)b K +b K4  (11.9)

*Cl -'a +b Ka +b K+b K I
1 42 2 112 4 2 4 3

-K lb ( 1 +a2 2 -b~a (11.10)

C2 = 4 2(a1 1-23)+ 1 4(a 13-' 12 )- 2b4( 11 a23)
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-K 3 1 i4•(a I I+a 2 2 ) "421)2 2)

(11.112)

C3  a a~1 1 2 3 a4 2 a 1 3 a 2 1a 4 2

-K1 (b4a 13 22 -2a 13 4 2 )

+K b a a
2 4 13 21

-K lb 4 (al 2 a2 1 a i la 2 2)+b 2 a la 4 2 } (11.12)

11.1 SOLUTION OF QUARTIC

Aa approximate solutiof to the quartic

t4 f CoA-' i- C1 \ 2 + C2A + C3 = 0 (I1.13)

can be obtained by the method of reference 1:3. Using the notation oft

reference 13, the quartic can be written as the two quadratic factors,

(X2+(U-a)A } 1-b) ( 2 +(a+a)X+I3+b)=O (II. 14)

where v =Co/2 , = (A+t)/2 ,

a -- [112 ± a(c*-fl/[)/2 ,(11.15)

A -C a 2  B )-C2 - aA
1 2

and [, satisfies the cubic equation

+ (2A-a 2 )t 2 + (A2 +2BLY-4C)t _ B2 = 0 (ii.16)

The approximate solution of this equation is described in reference (13).
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By substituting 1 = x(-B) 2/ in equation (11.16) it is I ound that. the

rCsult.ing cubic equation

3 "2/x2*(A42Btx4C3) -B)-/3- 0
x + (2A-(i2)(-B) 2 /3X2+(A2+2Bo-4C )(-B) X-=0 (11.17)

has one real root for O<x<l. Over t.his ilit-erval, the Chebyshev

approximat. ion x'3 '-.Sx 2 -O.5625x40.03125 is :;ubstituted, reducing equation

(11.17) to the quadratic

{(2A-cv2)(-B)- 2 / 3 +1.5}x2 +{(A2+2BO-4C 3)(-B) 4 / 3-0.5625}x

-1 + 0.03125 0, (iT.18)

which leads to the solution for •,

S=-(n2.t-ana-4C3) (-10-2/30.5625 (-B) /

3

2(2A-aV2 ) (-B)-2/3+3

± (A2+2Hot-4C 3)(-B)- 2 / 3 -0.5625(-B)2/ 3  2

I 2(2A-tt 2 )(-B) -2/33

+ 2(1-0.03125)(-B) ' 3  1/2

(11.19)

2 (2A-ez)(-B) -2/3 +3

'this solution cat, be greatly simplified when Ole follow~ing conditionIs hold,



!(A2+2Bu.4C 3)(-B)- 4 / 3 1 >> 0.5626.

I(2A- I)(-B)2/31 > > .5,

14B" (2A-ay2) /(A2+2Ba-4C3) 21 << 1, (11. 20)

12BtV-4C3 1 << A2  ,

and ignoring 0.03125 compared with 1, gives tile simple approximation

B2/A2 or 1/2 = -B/A, (11.21)

In summary, an approximate set of solutions to the quartic equation (I1. 13)

is given by

Aa = -(a-a)12 ±- [(x-a) 2 t4 - (b)1/2

A = -(+a)/2 t 1(o+a) 2 /4 - 1/(1.22)2A3,4

where a, •, a, b, are given by equations (11.15) and the parameter ,
(03)

approximated by equation (II.19). An exceptional case occurs when B1:-O

in equations (11.15), making t=0 a solution of equation (11.16). In this

case the limiting value of b is O.5(A 2 -4C 3 )1/2 unless (A 2 -4C3) is negative3 3

in which case the positive root of the quadratic

•2 + (2A + (A2-4C3 ) 0 (1.23)

is Lakezi as the value of f in equations (11.15). A modification to

equations (1).22) should be used when [ and b are approximately of the same

value. In this case, the relationship

-1-) = C,/U"+b) (I1.24)

obtai ne,! by comparing equations (I1.13) and (11 .14), should be used.

Similarly when v and a are approximately of the same value, the



- 8() -

relationslhip 1)

C-a = C ooz/(a+a) (11.25) V

should be used,

inserting the values of ai. from Appendix 1 into equations (11.9) to

(11.12) with zero feedback gains, it is found that

A iM

BY2 - 2C
~2 10

and that all conditions (11.20) are well satisfied. Hence, from equations

(11.15) and (11.21) P1

a F1/ 2 = C0 /2 - c2 /C 1,

C - C 2 (' '1 C t -a /

b (11/21C1c+(C/4)(C-2C2 /c 1 )/ ,

(1/2)1C1 +(1/4)tC0-2C2/C1 ) }

It. is found that (C0 /2 - C./C 1 ) 2 and C0 /2 (C0/2 - C2/C 1) are negligible

compared with C so that

0+1b CIO and from eqution (11.24)

31-
S•~~I-b =G/;

From equations (11.5) to (11.12), the following approximations, in terms of

thev vlements of the plant ma~tr ix A, are obt ai ned

.a-a = -(a 2 2+a4 4 a2 3 ), 23-a 1a2 -a 1 1,

I-i
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'114 2) 13 3 1 -2 T u 3 I I

Subs tit ut i ng t-heset results. int-o v quat iot (1 !.22) Show, the short. period

damp ing andti freqnoency t~o be app rox ima ted by

sp /2)(a 22#a44+a2 3) 4LU4 *p 42 4.

and the long period damjping and frequency by

S /2) - p 13a 21-23a

US iig the InIrleal values of a. from Appendix I, the init'ial ope'n loop

valuol•s of dampinlg, frequeuk~y, and peri~od are,

o , 6.036 s- 1 , 1 - 8.841 s

p p M)' %

-1 -09 =X1 .2 k .- 9 i 78.85 s, 2.

arid the final vall ies :re ,4.

-4.015x1O S -1 .041
SPg

o -I.281X10- S , w 8. 634xcI10*s , 72. 78 i
sp=

The I elnents aI.. catl be cxpryes -,d in terms of the significant aerodymantic

coefticients whenl the gravity compononts are clinminated through equat. ions K

(22) and (23) . This result.s ill the following approximations I.

°sp -(V /2) [(pS/2m)l0C C/(,)(V +CI)(a }tI

+ (pS, 2/4B) { (aC 1/3q+c+0 ca' ) }) (11..)
m ill

s ?" -(ptSb/2B) V0 (a)c /3() (11.30)°.t

-(3/2) V (I)S/2m) Ce)((y1 ) (11.31)
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11 . 2 AEI)LICEI) ORDER SYSTEM

The prospect of a reduced order system to represent the long period motion I

is apparent from consideration of equations (11.14) and (11.26). The first

three plant equations of the fourth order system are

x a x + a x + a x
S 11 1 122 13 3

x 2  a 2 1x 1 + a 2 2 2 23 3 4

.3  x 4

and these can be written as

a~ a1 z+a 13 Z9+(a* +a 3 )x2

z2 = -121-a2.3 2 1 +a2 2 ÷ 2 3 )x 2  (11.33)

where z

and z2  x-x 2  (11.34)

Regarding z, z2 as controlled variables and x2 as the control variable,

then the characteristic equati3n for the open loop part of this system is

k2 + A(a2- al) + a -a a 0,
23 Ii a 1 3 21 23 11 0

which from equation (11.26) is equivalent to

,\ 2 + AO(-a) + pt-b = 0,

the long period quadratic component of the complete quartic given by

equation (I. 14). In terms of the physical variables,

II
z1= VI the velocity perturbati~on,

I!i



"1'2 0-= ,V' the perturbaltion iii flight path direction,(see figure 4)

and x. = a• the increment in angle of attack. I

•.- L '

}I'

• .I


