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SU101ARY

This report presents a unified treatment of theory for
calibrating the six-port reflectometer and the dual reflectometer
network analyser for measuring power and scattering coefficients,
given the minimum of standards for each. It describes a reflecto-
meter in terms of voltage variables and reduces the calibration
theory to equations in real unknowns to facilitate encoding the
computation necessary for known calibration methods in a low-level
computer language. The treatment forms the basis for software in
use with six-port reflectometers and dual six-port network analysers
in development at RSRE for compariug RF and microwave metrology
standards.

Accession For

NTIS GRA&I
DTIC TAB
Unannounced Q
Justification

By.
Distribution/
Availability Codes

Avail and/or

~ist Special

C
Con"lIw HMSO Lodo

swiga



RSRE REPORT NO 83003

A UNIFIED TREATMENT OF THE THEORY OF SIX-PORT REFLECTOMETER CALIBRATION
USING THE MINIMUM OF STANDARDS

T E Hodgetts and E J Griffin

LIST OF CONTENTS PAGE

I Introduction 2
2 Introduction to Six-Port Reflectometer Calibration 2

2.1 The general n-port (n > 3) reflectometer 2
2.2 The four-port reflectometer 5
2.3 The six-port reflectometer 8

3 Six- and Four-Port Reflectometer Equivalence 11

3.1 Six- to four-port reduction theory 11
3.2 Six-port calibration using "31" standards 16
3.3 Calibration in terms of a common Zo  17
3.4 Power flux from the measurement port 19

4 The Dual Reflectometer Network Analyser 20

4.1 Principles, calibration procedure and notation 20

4.2 Resolving sign ambiguities for dual six-port network
analyser 24

4.3 Dual reflectometer calibration theory 28
4.4 Calibration theory for measuring T8121 and 18211 of

non-reciprocal two-port junctions 30
4.5 Direct measurement of L8l2 and Ls21 32
4.6 Simultaneous comparison of power standards 34

5 Air Dielectric Lines as Impedance Standards 34
6 Simultaneous-Equation-Solving-Algorithms 36

6.1 Least-squares solutions for real unknowns 36
6.2 Extension to complex unknowns 37

7 Conclusion 38
8 Acknowledgements 38
9 References 39

- _-



I INTRODUCTION

Measurement of power and complex voltage transmission and reflection
coefficients with a six-port reflectometer were first described by Hoer and
Engen more than a decade ago (1,2). This form of reflectometer consists
essentially of four radiation detectors, each indicating the power absorbed by
it, arranged around a structure guiding radiation to the detectors and to the
device under test (DUT). The waveguide structure serves solely to direct to
the detectors different samples of waves incident on and reflected from the DUT
and observations are made of the ratios of power absorbed by three of the
detectors to that absorbed by the fourth. This simplicity of principle implies
that this form of reflectometer may be used for measuring scattering coefficients
at any frequency at which artefacts can provide physical approximation to a
conceptual impedance for calibrating the instrument. Examples have been
reported operating over the 10 MHz to 1 GHz range by Woods and Granville-George(3),
from 2 to 18 GHz by Hoer and Engen (4), and up to 75 GHz by Weidman (5).

This detailed report presents a unified treatment of the theory of known
procedures for calibrating both the six-port reflectometer and the dual reflecto-
meter network analyser (6-8). Because on-line computation of results is an
operational necessity, the theory has been reduced to equations in real unknowns
without ambiguity of square-root signs to facilitate programming in a low-level
computer language. The treatment was developed as a necessary prerequisite for
prograning desktop computers controlling these instruments for the eventual aim
of comparing standards for RF and microwave metrology. To meet this aim the
calibration methods treated are mainly, but not exclusively, those requiring the
minimum of known standards.

Although the operation of six-port instruments depends on the observation
of power ratios, we start from a description of an n-port reflectometer in terms
of voltage variables. This is appropriate because a scattering coefficient is
merely a ratio of two complex numbers each representing a voltage. This
description also has the merit of enabling the relatively few assumptions under-
lying six-port reflectometer use to be identified. Such identification is as
necessary for quantifying uncertainty of measurement with a six-port as it is
for any other form of reflectometer.

Starting from a description of the n-port reflectometer also facilitates
establishing equivalence relations between six- and four-port reflectometers.
These relations enable two six-port reflectometers forming a network analyser to
be calibrated in terms of a reflectionless waveguide plus a reflecting termina-
tion of unknown but repeatable voltage reflection coefficient (VC). This
method (8) calibrates both reflectometers in terms of the impedance Zo character-
ising the mode transmitted by a known length of uniform waveguide (reflectionless
by definition) and reflected by the termination. It yields the propagation
constant of the waveguide and if this be air-dielectric transmission line then
subsequently measured results can be normalised to the nominal real !o (Es Zo )

characterising the TEM mode postulated for a lossless transmission line.

2 INTRODUCTION TO SIX-PORT REFLECTOMETER CALIBRATION

2.1 THE GENERAL N-PORT (n > 3) REFLECTG(ETER

We define a reflectometer as an n-port linear, but not necessarily
reciprocal, time-stationary waveguide junction (where n > 3) directing
radiation from a source at port 1, Figure 1, to an output (measurement)
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FIG 1. GENERAL n- PORT REFLECTOMETER (n>3)

port 2 and to detectors at ports 3 to n. We assume that there is one mode
transmitted at each port but not necessarily the same mode at all ports and
that there is no evanescent mode at any port; these assumptions enable us
to include mode transformers within the Junction. They also enable us to
define at the reference plane of each port i (where n *' i > 0) voltages
proportional to the electric field intensity described by the transmitted
mode of waves incident on and emergent from port i. We denote these by
C* lex numbers ai and bi, respectively, such that their RMS amplitudes are
a~i and Ibil. The assumption of junction linearity implies that each bi

is composed of simply the sum of contributions each proportional to an ai
and this can be conveniently represented by the matrix notation

[b] - ISI[a] (2.1)

in which the elements of each row of IS) are complex numbers relating the
corresponding bi of the column matrix (bi to every ai forming the column
matrix [ a). The elements of I S) can be considered as scattering coefficients
normalised to a yet-to-be-defined impedance.

Without defining this impedance we can define for each detector
connected to port i (where now n P i > 2) a VRC ri - ai/b i . These ri can
be substituted in equation (2.1) to give

bl1
b2  82

b3  r3b3

b 4  - (S] r4b4

b5  rnbn

3



For n > i > 2 this notation represents

bi  silal si2a2 + si3r3b3 + .. + siirb + + ... snrnbn

*. 0 = silal + si2a2 + si3r3b3 + + (siiri-l)bi +...+sinrnbn

so that

b 't11 812 s13r3 s14 r4  Slnrn  a1

b2  s21 s22 s23 r3 s24r4  S2n rn a2

0 s31 s32 (s33r3-1) s34 4  S3n rn b3 (2.2)

0 s41 '42 s43r 3  (s44r4-1) 4n rn b4

0 sn1 s n2 snr3 n4r4 (s nn rn-) b

We now make the further assumption that there is unequal transmission
between the ports of the junction (a condition hard to avoid in practice).This implies that, denoing the square matrix of equation (2.2) by [M- , the

elements of any row of [A are not in Aeneral multiples of the corresponding
elements of any other row so that det[ * 0. Thus [i may in general be
inverted to give [14 - [A -1 and we can write

aI  b1 "

b 22
2 

0

b4  0

bn 0

or its equivalent

a m11bI + m12b2  (2.3.1)

a2 a m2 1b1 + 22b2  (2.3.2)

bi  a milb + mi2b2 (for n > i > 2) (2.3.3)

where mil and mi2 denote elements of the first and second columns of [t4,
respectively.

Rewriting equation (2.3.2) as b1 - (a2- 22b2)/m21 and substituting in
equation (2.3.3) Lives

il 22ili
b ;21 a2 + in 2 2 1 )b2

4



Defining r E a2 /b; as the VRC of an artefact connected to port 2 (either a
BUT or a calibration standard) allow us to write from this equation

bi -( 2 - "Ilb (2.4)

l21 i2 21 2i

or

b. = (ai + si)b2 (2.5)

where a1 mil/m2l and Bi - ( i2m2l - m22mil)/m21 are dimension-less
constants characterising the waveguide junction.

Equations (2.4) and (2.5) are fundamental to all reflectometers
comprising a time-invariant waveguide junction. Their application to
varying junctions is dependent on the validity of additional assumptions
such as the repeatability of RF switches within the junction. Application
of either equation to a particular reflectometer depends on the method of
detection employed since it is the detector output, or some function of it,
that forms the observed indication. In the next section we apply these
equations to a four-port reflectometer to illustrate this dependence on
detector output and to establish an equivalence between the four-port and
a perfect reflectometer preceded by a two-port "error box", a representation
we later use.

2.2 THE FOUR-PORT REFLECTO4ETER

For this n - 4 in Figure 1, and the two detectors D3 and D4 are each
assumed to provide an output voltage vi (i - 3,4) proportional to the IF
voltage presented to it by the four-port waveguide junction. These
voltages v i are at an IF to enable both the real and imaginary components
of v4 /vJ to be indicated by an associated superheterodyne receiver (9).
We initially assume that the complex indication provided by the receiver is
some function of this ratio, ie indication v - fn(v4 /v3). We relate v to
the b3 and b4 of equation (2.5) by first writing

vi  a (a ib i) - (l+ri)bi

and substituting in (2.5) to give

vi  = (l+ri )( i r + i )b 2

wv - fn(v4 /v3) - fn((l+r4 )(a 4 r4 )/((l~r 3 )(a3 83 ))) (2.6)

or v - fn((dr+e)/(cr+l)

where c M r3 /03  , d - (lfr4)c 4/((l r3)03)

• , (l+r4)04/((l+r 3) 03)

are characteristic of the reflectometer.

5
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If the additional assumption be made that the receiver indication w is
a linear function of v4/v3 , absorbing the coefficients of linearity in c,d,e
equation (2.6) becomes the bilinear transformation between w and r given by

v - (dr+e)/(cr+l) (2.7)

Physical significance is imparted to w, enabling r to be found from equation
(2.7), only by calibrating the instrument. Because it is characterised by
three complex numbers cd,e, it can be calibrated by observing wt(L - 1,2,3)
corresponding to the connection of three standards providing different known
rt. Therefore it is the impedance in terms of which these rt are known that
defines the Z to which

i. the result of measurement r,

ii. the elements of [S] in equation (2.1), and

iii. the ri of the detectors

are all normalised. It is this Z that determines c,d,e in the bilinear
transformation (2.7) to completely describe the reflectometer (comprising
the four-port junction, detectors and, given linearity of response, the
associated receiver).

The explanation in the preceding paragraph,that the impedance left
undefined in section 2.1 is defined by the Zo to which the rt of known
calibration standards is normalised, applies equally to any reflectometer.
It will be shown in section 3 that a modification of the calibration
method just outlined can be applied to the six-port reflectometer, so we
proceed to derive theory appropriate to four-port reflectometer calibration
for later use. Writing for at least three known VRC rt - xt + jyt
(j 2 /--; t - 1,2,3) and, for the corresponding wt o ut + jvt, and denoting
the real and imaginary components of c,d,e by suffixes R and I respectively,
then equation (2.7) becomes

(ut + jv ) (l+(cR+jc I ) (x +jyt)} - (d+jd,) (x1 +jy.) + (ed+Je 1 ) (2.8)

Separating real from imaginary components gives for t 3 an exact, and for
I > 3 an overdetermined, set of simultaneous linear equations in the six
real numbers constituting c,d,e:

ut = dRxL-d l y +eR- (xu- yv) cR+ xv+yuc I  (2.9)

v1 - dRyJE+dlx,+eI - (xvI+yeU) Ct- (xtul-yv 1 )CI

After equations(2.9) have been solved for c,d,e (using a least-squares method
if more than the minimum of standards are used), they can be recast to allow
the VRC of a subsequently connected DUT to be found from

x = (p(u-e R ) -q(v-e)}/(p 2+q2)

(2.10)

y - {q(u-eR ) + p(v-e) )/(p 2+q 2 )

where p - (dR-uclt+vcl) and q - (-d,+vcRucY)

6



Thus any unknon r x~jy can in principle be found from the complex
indication w provided that p and q are not both zero (which we show later
to be true generally). The vords "in principle" have been used because
measurement relies on (2.7) being used to interpolate in both x and y
directions in the complex r plane between the known F m xl+jyt provided
by the standards; extrapolation beyond those values may not be valid
(because, for example, the detector response may no longer be linear).

An alternative treatment of the four-port reflectometer regards it as
equivalent to an "error box" (ie a two-port junction having equivalence to
cd,e), one port of which forms the measurement port and having connected
to the other a perfect reflectometer (one whose indication w is simply a
VIC) as shown in Figure 2.

. Cr')

Source NotionalEro Measurement
Perfect Error port

reftectometer

FIG..2. ERROR BOX REPRESENTATION OF REFLECTOMETER

We derive this equivalence for later use by remembering that a two-port
junction with scattering matrix

r 1  512]

21  '22J

transform a vitc r into w, where

w 9 +1 a12a21
r

11 - "I 1-22r

8 '12 21) + 12221" 11" $22 2 22(1-S2 -2 r

" I I - I i , 7



Comparing this with equation (2.7) rewritten as

A * e-d/c (2.11)
c cr+ l

shows the equivalence of the "error box" representation to be valid if

c M -22 , d = 12s21 - '11*22 - • - iu

Both representations account for RF signal leakage between the detectors,
since transmission between all ports of the waveguide junction was initially
postulated; neither takes account of any interdependence of phase and
amplitude within the associated receiver. (We remark that they may be
applied to the reflectometers of a dual reflectometer network analyser (see
section 4) only if there are no leakage paths between the reflectometers.)

The error box representation makes it evident that the reflectomieter
cannot function if 812821 - 0. We may therefore assert that sl2s2l # 0 and
this is equivalent to d-ce # 0. But from equation (2.10)

p - jq - dR + jd I - (cR+jcl)(u+jv)

so that p2 +q 2  _ lp-jq12  Id-wc 12

Hence the condition p - q - 0 is equivalent to w - d/c in (2.11) which is
inadmissible since d-ce #i 0. Thus, as was asserted earlier, F - x+jy can
always be found from w.

2.3 THE SIX-PORT REFLECT0TER

For this, n - 6 in Figure 1, and each of the four detectors D3 to D6
is assumed to provide a linear indication of the power it absorbs. (In
practice bolometric detectors are most frequently used because of their
excellent a proximation to this assumption (10)). If each indicates power
Pi - CillbiT 2- lal 2) - Gi(-JriJ2)lbiJ2, (where 6 > i > 2) then Gi may be
interpreted as the conductive component of an admittance Yi characterising
the mode transmitted at port i. From equation (2.4) we form

i221"21 U a2 21 2

so that 2
X- l-Ire 12) ai r + mi 2 mil) b2 1

1*21 (2 i21 11
" + F lb 2I1  (2.12)

wneri an 0 are defined by a12 . aill- 2riJl)(il/m21)2

and 1i2 - Gi(l-ri 12)1( (im 2i _ m22mil)/m 2 1 )2

by analogy with the definitions at (2.5).

- I .. ." ; i8



Definin 11k2 -P/Pfr6 >i> 3adk 3gie

1w1,2  . a i r+o1 2

or IvkI2 _- cP+l 1(2.13)

where C M a / d ~ OL /0 a

From (2.13) the three observed power ratios can be interpreted as
defining three circles in the complex plane intersecting in r - x+jy and
operation of the six-port ref lectometer depends on this intersection being
unique, for which the centres must be neither coincident nor collinear.
The centres can be found, for dropping the suffix k, equation (2.13) can
be written as

1v12 (cr+1)(c*r*,l) - (dr+e)(d*r*,e) (2.14)

where * denotes complex conjugate.

IwI2(i 2 r12 cr+c*r*+l) - Id1lr 12,erdr*tl

ir 2  - c 1v12 -d e* r - c* 1w1 2_ d*e_ r* w2le1

Id 12_1c1 wI IdI12_IcI2IwI2 IdI 212 122

Expressing this in the form Ir 12 -r *r-.r r* - r 2_-1ro12, where r is positive
real, identifies it as the circle Tjrro?2 - r2. Its centre is

r * 1v12..~ (c PIwI2_(d~ej+d~e1))+j((de-deI)-c1wI2)

Since IrOI2 m rr*, it follows from the above that

(Id-i iw 12,, ,)2 Ir~ 0 -2 (clwvi -de*)(c* lwi -d e)

- Idl 2IJeI 2+Icl2lvI4_ (d*ce+dc*e*)I1wI2

and

(1d1 2-lcI 2Iwi 2)2 (r 2_-Ir 12) _ (lvI 2_lel12)( Id! 212lvi ,2)

Adding gives

r 2 -M Iwl2 (ldIdlc2Iel12-d*ce-dc*e*) 1v1 2 Id-ce 12

(Id 12_lc121V12)2  (Id 12-1c121w12)2

9



Thus for each k, IWO generates the circle

I CRlwkl 2(dReR+dIeI)k 2 y (dIeR-dReI)k-CIwkl
2 2 Id k-cek2wk 12

X_ Id 12 _ lcIIVwk, ) y Id 12_ Id bwkI (Idkj2_IcILjvk1S)i

(2.15)

Now the assumption of unequal transmission between all ports implies that
dk and ek are different for all k and equation (2.15) shows that the circle

*, centres are therefore neither coincident nor collinear. Generally both the
centre and radius of each circle is dependent on Jwj but if c = 0 then the
radius of each circle is simply rk - Iw/dik and the centre co-ordinates
(ro)k are independent of Iwi. It follows from (2.12) and (2.13) that
c = 0 implies that detector D3 is isolated from the wave a2 reflected onto
the measurement port so that equation (2.13) becomes a linear relation
between JwkI and r; this has been utilised for one form of five-port
reflectometer (11).

In general then, r - x+jy is uniquely determined from the three circles

each dependent on the power ratios IwkI2 and can be found if sufficient can
first be found of the seven complex numbers c, dk, ek. One scheme for
calibrating a six-port for measuring VRC has been described by Woods (12).
It requires the connection of seven standards providing differ nt known
ri (1 < X < 7) and observing the twenty-one corresponding 1wk1j but its
theory is particularly simple to derive from equation (2.14). Noting that

cr + c*r* - 2 (cRX - cIY)

and

dre* + d* r*e - 2(dReR+die ) x - 2(dIeR-d Re)y

gives (2.14) in the form

w I-+Ic 2 Ir 1 +2(CRx-ClY)) - Id 12 r 12+ le 12+2(dReR+dIeI)x-2(dIeR-dReI)y

Reintroducing suffix k and writing

-k k (dReR+dleI)k and qk -(deR-dRe,)

gives

IwkIL(l+!c 2 (xt+y2) +2(cRxP-cly t)) IdkI 2(x2+y 2
) +e 1 2+2px+2qkyt

(2.16)

Observing IWkI gives for each k an exact set of seven simultaneous linear
equations (2.16) in real unknowns to enable IdC2, cR, C, IdkI 2, leki 2, Pk'
qk to be found. If more than seven standards are available then the over-
determined set of equation (2.16) can be solved by standard methods (see
section 6). The solutions can then be used in equation (2.16) recast as

10



(x2+y2)(IcI2iwkI2 Idk12)+2(cRlwkI2 pk)x-2(ciwk 2+q k)y- lek2-lwk 12

to find r - x+jy from the corresponding observed 1wkJ 2 . Writing

Pk cR lwk 2  
qk +  C 1 Iwk 2

k Icl21wk,2_ '12 1" k = ic121w12_1d 2
- I2 wk2 Id kI d I Id k1

r2i 2 1 wkI 2  2 +2
k" ic21wk12IdkI 2 k k

finally gives

(x-f) 2 2 =ygk r 2

which can be solved by writing

2 2 2 2 2+ 2 2 2 2 2 ) 2+ 2,r1-r 2 (f2 12)-(f 1*g1) r2-r3+3 3)-(_ 2 g2)
S2(f , F 2(f3 - f2)

giving

g3 g2- g2 -g and x (g 2-gl

Other methods of calibration have been described which rely on the use
of only four standards namely four short- or open-circuits (13). We proceed
in the next section to derive a modification of the method derived in section
2.2 for a four-port to enable a six-port reflectometer to be calibrated by
means of only three precisely-known and one approximately-known standard.
This will pave the way to treating the dual six-port network analyser and
its calibration in terms of just one known standard.

3 SIX- AND FOUR-PORT REFLECTOMETER EQUIVALENCE

3.1 SIX- TO FOUR-PORT REDUCTION THEORY

The six- to four-port reduction algorithm treated in this section is
based on a derivation given by Engen (6). It enables a vector "indication"
to be calculated from the power ratios observed for a six-port equivalent
to that given by the receiver of a four-port reflectometer.

We define, consistent with (2.13), wk - (dkr ek)/(cr l) and solving
for r gives

r iaC I 2- 2 a3-w
1 -d 1  e 2 -d 2  cw3 -d 3

11



Writing Qk = 1wkI2 and eliminating F produces the three equations

S1 w 2  A 2 Iw'-m 2  ; B2Q3  Iwt-nl2  (3.1)

with

SceBd ce2d 1  d2e d e3-d3el

ce 2 -d 2  ce 3 -d 3  ce2-d2  ce3-d3

These three equations in w1 represent three circles in the complex w- t j
plane intersecting in wl. Their intersection is unique to each r because
the three centres (Om,n) are bilinear transformations of those of (2.14).
Now Qk are the observed power ratios and since eliminating F has shown that
A and B are constant for all F, it follows that they are characteristic of
the reflectometer. They represent, in the w1 plane, ratios of the radii of
the two circles centred at (m,n) to that of the circle centred at the
origin. We proceed to define three more real constants characterising the
reflectometer, namely the distances between the centres of these three
circles in the complex w plane.

Writing m - Mcosu + jMsinu, n - Ncosv + jNsinv, wV- u1 + jvl (M,N > 0)
into (3.1) gives

Q u 2 2

A2Q2 (U1-Mcosp)
2 + (v1-Msin) 

2  (3.2)

B2Q 3 (U -Ncosv)2 + (v-Nsinv)2 '

Now define

p a Im-n 12 _ M2 + N 2 - 2NNcos(v-u~)

q 0 In12 = N2  ; (3.3)

r a 1m12 . M2

These definitions of m,n associated with equations (3.1) are independent of
r so that these distances between the circle centres in the wl plane (p,q,r)
also characterise the reflectometer (the p and q so defined are not related
to those of (2.10) or (2.16)).

All five positive real numbers A2 ,B2 ,p,q,r can be found by observing the
power ratios corresponding to nine (or more) DUT whose VRC are known only to
be different; their precise values need not be known. Wo write from equations
(3.2) and (3.3)

22_Q . 2 B2Q3Q
AQ-Q - -2Mulcos-2MVlsn+ and B - -2Nu cosv-2Nv sinv+N 2

or

12
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cosv sinva~v] (3.4) 

Since sin(v-p) = sinvcosp - cosvsinp, we have

osu sin: - (sin(v.u)inv sinu
LOSV 8 invj Lcosy cosuj

I so the solution of (3.4) is

= (sinay -sin (M2 +Q-A 2Q2 M) (3.

i(s-vcosy cosu I(N2+Q1-B2Q3 )/(2N]

which is always valid since sin(v-u) * 0 because the circle centres are not
collinear (this follows the definitions of v and ).

Now define

a - (p-q-r)/(2Vq') ; B -A2Q2) /(2rr) ;(3.6)

y - (q+Q-B 2Q3 )/(2q)

using positive square roots in the denominators and noting that p,q,r are
necessarily positive. Then from (3.3)

a - -cos(v-P) - -cosvcosp - sinvsinu

(M +Q1 -A Q2)/(2H) (3.7)
!I.

2 2

Y - (N +Q- BQ 3 )/(2N)

Using (.7), (3.5) becomes

ru, (sin(v-v))_ Fsinv -sin: "(38

Lv1  -L yJ(3.8)" vU1  LCOSy CosJ 1LXJ.

* But from this and (3.2) we have

13
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2 2 F1~l = 1 * v1 I (where T denotes the matrix
Lvzj LvlJ transpose)

i nv -c ] (sin(v- )) 2 [ nv sin 1BLyJ L-sinu cosJ s n - ) - U -cosV cosuJll J

= (sinl-0)-2  (using (3.7))

M (sin(v-))2 (B 2+y 2+2ay)

M (02+-Y2+20X)/(1-a 2 )  (using (3.7) again)

Substituting for a,O,y from (3.6) and simplifying gives

Q2,+ qA4Q2 + rB 4 2 + (r-pq)A2  Q+(-r) 2Q 2 B2
1 (q-3-r)B 1Q3 + (p-q-r)A BQ 2Q3

(3.9)

+ p(p-q-r)Q 1 
+ q(q-p-r)A 2Q2 

+ r(r-p-q)B 2Q3 
+ pqr - 0

Connecting at least nine loads known only to have different VRC and
observing the power ratios Qk corresponding to each provides (on dividing
(3.9) throughout by (pqr)) at least nine simultaneous inhomogeneous linear
equations in the nine unknown coefficients

X, - p/(pqr) - 1/(qr) X4  - A2(r-p-q)/(pqr)

X2 _ qA4/(pqr) - A4/(pr) X5 - B2(q-p-r)/(pqr)

X3  M rB4/(pqr) - B /(pq) X6  A2 B 2(p-q-r)/(pqr)

X7 - (p(p-q-r))/(pqr) - (p-q-r)/(qr) (3.10)

X8  _ (qA2 (q-p-r))/(pqr)= A 2(q-p-r)/(pr)

X9  = (rB 2(r-p-q))/(pqr)= B 2(r-p-q)/(pq)

where, from (3.9) and (3.10)

X1~ 2  Q 2 , + X Q 2 + -
XQ 1 + X2Q +X 3Q3  X4QIQ2 + X5QlQ 3 + X6Q2Q3 + X7Q1 + X8Q2 + XqQ3 . -1

(3.11)

The set of equations (3.11) may be solved by a standard least-squares method
(see section 6) and from equation (3.10) can be deduced the relations
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2X5 - X7X9  2X4  X7 X8r X- X9XgXs7 q 2XlX8_X4 X7
(3.12)

p " r'q (X7/x1) ; A2 - VprI 2 ; B - 'p 3

in which use has been made of A2 and B2 being positive.

Equations (3.11) and (3.12) enable approximations to the five required
real numbers to be found. The solutions are likely to be only approximate
because, as Engen remarks (6), they represent conditions of tangency of
three planes to the ellipsoidal paraboloid represented by equation (3.9)
which is a quartic in Iwki. The solutions are refined by using a standard
Gauss-Newton iterative solution for the five unknowns of the nine (or more)
equations (3.9). (We remark that since these five reals characterise the
reflectometer and are found by using at least nine DUT known only to have
different VRC, they provide a means of monitoring the long-term stability
of the instrument with loads requiring stability only during observations
of the corresponding power ratios Qk.)

The purpose of finding these five reals p,q,r,A 2 ,B2 is to enable a
unique vector w to be calculated from the three Qk observed for any subse-
quently connected load, of course. This can be done by writing

w a u~jv S w1 (cosp-jni = (u1+jV1)(cosp-jsinv)

or

rul - r cosy sinuull

VUI [-sin cos v 1J
Sco...inO sin_1 -sin'j

- I (sin(v-u) II from (3.8)
L-sinu co si.J L-cosv cosiiJLyJ

l 0

--- cot(v-) csc(v-Pu)]I

or from (3.7)

u - B , v - (00+y)/± J (3.13)

But from the definition of vk we have

w a wI(cosy-jsinu) - (dr+e)/(cr+l)

which is identical to equation (2.7) derived for a four-port reflectometer
in which d and a are new constants of the six-port (given by
d - dl(cosu-jsinp) and e - el(cosoi-jsinu)). Since a,O,y are known from
(3.6) for any Qk, we can find the vector w corresponding to any load VRC,
apart from the sin mbiguity in (3.13). This sign ambiguity in the six-
port reflectometer arises from that of the sign of sin(v-u) and is equivalent
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to not knowing in advance which of the two scalar indications of the receiver
(or vector voltmeter) of a four-port reflectometer represents u and which
represents v. A way of resolving this by a slight modification of the four-
port calibration method of section 2.2, and a practical implementation of a
suitable six-port calibration scheme,are both treated in the next section.

3.2 SIX-PORT CALIBRATION USING "31" STANDARDS

With the aim of reducing the number of sources of uncertainty of
measurement by minimising the number of precisely-known standards needed,
we can employ the algorithm of section 3.1 to calibrate a six-port reflecto-
meter with three such standards plus a load whose VRC is only approximately
known (to resolve the ambiguity referred to). The power ratios Qk (k- 1,2,3)
are observed when these four loads having VRC of r,r',r"r'" are connected in
turn and the corresponding w,w',w"," are calculated using the same sign
for each in equation (3.13). This determines either the four w or their
complex conjugates w*. Now it can be verified by substitution in equation
(2.7) (or deduced from the theory of cross-ratio groups) that

(w- "') (w'-w" ) (r-rv") (r '-r" )
(w-w') W -7") (r-r') (rot-rote)

But the sign of the imaginary part of the RHS of equation (3.16) is known

from our knowledge of the four VRC and if it disagrees with that of the LHS
then the sign of v selected in equation (3.13) must be changed. The method
will fail if all four VRC have the same magnitude because the RHS of
equation (3.16) would then be real, but we describe below a calibration
method used at RSRE to avoid this failure. It also avoids the apparent
need to make at least nine physical connections to the reflectometer to
provide data for the six- to four-port reduction algorithm.

This procedure has been employed to calibrate different six-port
reflectometers at wavelengths ranging from metres to millimetres and it
relies on a short- or open-circuit uncalibrated variable attenuator to
provide six or more different VRC for use with the algorithm. Power ratios

Qk are observed for each of the following:

a. Three known standards connected in turn to provide three precisely
known different VRC. (In millimetric waveguide these have been an
electroformed short-circuit first connected directly and then via two
known lengths of precision waveguide (spacers) in succession. At VHF
a short-circuit and two calculable coaxial capacitors have been used.)

b. A nominally matched load.

c. A variable attenuator set to at least three settings first when
unterminated and then when terminated with a short-circuit. (This
provides two sets of three different VRC for which the phase of the
two sets differs by more than 900.)

This provides a set of ten loads known to have different VRC and the
corresponding power ratios are used in the algorithm of section 3.1 to
calculate A2 ,B2,p,q,r. Thus equations (3.9),(3.11),(3.12) are used in
sequence to yield approximate values and then successively better approxi-
mations are found by applying the Gauss-Newton technique (outlined in

V section 6) to equation (3.9). The power ratios corresponding to t'Ne first
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four loads (steps a and b above) are then used in equations (3.6) and (3.13)
to calculate the LHS of equation (3.16), the known values of F being used in
the IRS to resolve the ambiguity of sign of v in (3.13). The three precisely
known r and the corresponding values of v are then used in equation (2.9) to
complete the calibration of the equivalent four-port. Thereafter, the VRC
of any subsequently connected load is found by applying equations (3.6),
(3.13) and (2.10) in sequence.

In practice, the nominally matched load at (b) in this procedure can
be provided by setting the attenuator to provide its maximum attenuation,
so that the procedure involves making only four physical connections to the
measurement port. We have found it necessary to use the set of ten VRC
known to be different (rather than the minimum of nine) to ensure reliable
convergence of the Gauss-Newton routine used in solving equation (3.9). We
have found it sufficient to tirminate the process of successive approximation
of the five real numbers 2,B ,p,q,r when a precision of 1 in 106 has been
reached for each.

For a well-designed six-port reflectometer junction, the squared
distances p,q,r between the circle centres in the w1 plane are all of the
same order. The reliability of convergence obtained with the procedure
described has been tested at RSRE by employing it successfully for a six-
port junction maladjusted to the extent that p was two orders less in
magnitude than q or r.

As remarked earlier, the five real numbers found by this algorithm
provide a means of monitoring the stability of the instrument (since their
values do not depend on known F). We also remark that the redundancy
provided by using the algorithm minimises the variance of, in effect, the w
from their best fit values; this tends to average out the effects of any
departure of detector response from linear power operation. This means
that the values of r which can be measured for loads used in the process
(after reduction and calibration have been completed) may be more precise
than those obtained by subsequent measurements.

3.3 CALIBRATION IN TERNS OF A COMON Z

We have so far made the assumption in deriving calibration procedures
that there is no difficulty in realising a set of practical calibration
standards to provide at least three precisely-known different VRC Ft norma-
lied to the same Z • For example, in calibrating six-ports with a wave-
guide short-circuit and two known lengths of guide we have approximated to
truth by considering the cross-sections of the waveguide to be identical
and the standards to be lossless. The precision of measurement achieved at
3.53 with six-port reflectameters is greater than that of these approxima-
tions for commercial-quality waveguide and the performance recently reported
of an improved movable short-circuit (18) suggests that it is worthwhile
removing at least the need to assume lossless waveguide (although the VRC
of the short-circuit must be assumed known). This can be done by applying
to a six-port a method developed by da Silva and McPhun of calibrating a
four-port reflectometer (14).

The method assumes that the VRC of a reflector (the short-circuit)
retains a constant value ro irrespective of its position along a uniform
transmission line or waveguide. If the power ratios Qk are observed at
scale settings of toe 0, (L+0 t), (to+2), (L +30 along the line measured
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from the connection, then the VRC at the connection will be r.,
r' - ro exp(-261), r - ro exp(-46t), r"' - ro exp(-66L), 6 being the propa-
gation constant of the line. Corresponding vector indications wo,w',w",w"'
can be calculated from the power ratios and, from equation (3.16)

(W-w"') (v'-v' (ro-r') (r'-r")
o (3.17)(Tw (w"-T") (ro- r (F ) -rF")

0

Writing x - exp(-26t) then the RHS of this equation is (x2+x+l)/x and
denoting the LHS (calculated using the positive root in (3.13)) by V, then

W a (x2 +x+l)/x and so x - (W- I±l (W-I)2-4)/2 (3.18)

The two roots of (3.18) are reciprocals of each other and only the one with
modulus less than unity is admissible, since the transmission line attenu-
ates. The other possible value of the LHS of (3.17) is the complex conju-
gate W* and the version of (3.18) corresponding to this has the admissible
root x*, where x is the admissible root obtained from W. To choose between
x and x* we remember that theory predicts that for smooth conductors
6 g (jk), where k is the free-medium angular wave number in the transmission
line (usually written, with symbol usage different to that of this paper,
w/v or wilicu/c). Let Log represent the complex logarithm function with
phase 0 mapped into the range -w4 6 <w, then if x, rather than x*, is
correct we must have

Log x O -2jkL + 2rw (3.19)

where n is a suitable integer.

In particular the signs of the imaginary parts of the LHS and RHS of
(3.17) wili agree. If they do, we were correct in choosing x, W and the
positive sign in (3.13); if not then we should have chosen x* , V* and the
negative sign in (3.13). This is sufficient to resolve the ambiguity, for
the sign of (3.13) is independent of r; henceforth we shall denote the
correct root by x.

We now know x, so

r , r' - r x , - 2 , F"o

are all known multiples of Fo, and we know the corresponding wo,w',w",w"
so that, from equation (2.7)

dr + e-wcr = w ;dr x + e-w'crx a w' ;
0 0 00 0 0

dr0 x2 + a -wcr xw 2 . w" ; dr x3 + a - w'cr 0x 3 = wi"

which are four simultaneous linear equations in the three unknowns (cro ),
(dro ), * which can be solved by a standard least-squares method. This
knowledge allows the ratio of any two VRC r, r' to be calculated from the
corresponding indications w, w' obtained from the observed power ratios
for, from equation (2.7),
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V-0

r 0 r05 wc

But r/r' (r/r 0 )/(r'/r 0 )

so that the ratio can be found. To obtain any r absolutely, however, ro
must be known.

Variations of results obtained in experiments at RSRE using a sliding
short-circuit to implement this calibration method using 7 am bore precision
50 ohm airline as a standard showed that the assumption of a constant
ro M -1 for all short-circuit positions was inadequate. Nevertheless,
apart from its possible application were improved short-circuits available,
it is of interest because of its affinity with the method of calibrating a
dual six-port network analyser described later. This uses as the standard
a known length L of uniform line (or waveguide); a short-circuit which
is assumed only to have the same VRC for each connection is also used but
its r9 is measured by the calibration process, as is the x - exp(-26L) of
the line.

3.4 POWER FLUX FROM THE MEASUREMENT PORT

So far we have assumed that each of the four detectors provides an
indication only proportional to the power absorbed by it. If now we have
a power meter (ie one which correctly indicates the power absorbed) to
serve as a standard of power then a six-port reflectometer already calibrated
for VRC measurement can be calibrated to indicate the power flux emerging
from its measurement port. It may then be used for comparing power meters
by connecting them in turn, eg for comparing the effective efficiencies of
bolometer mounts.

From equation (2.12)

2 2 2
P-- a I ",03 r + s 1 2Ib 212

- 1831 2+crl 12b212

If the power absorbed by the standard power meter having VRC rL is PL then

PL w C0(lb212 - ja212)

(3.20)

SG 0(l - IrL12) lb2 1
2

where G is the conductive component of the admittance characterising the
mode transmitted at the measurement port.

By division
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Go0 (1-1r TI2)

PL m P3(lrI (3.21)
L 1 B312 IlcFLI 2 P3

Substituting for FL from equation (2.7)

L l Id -ce l2  3eL" Id31

Writing

GK 2 0o

10312 Id-ce 2

as a constant characterising the reflectometer gives

PL = K(Id-wc 2 - we2)P3 (3.22)

Both K in (3.22) or Go/J0 31 2 in (3.21) characterise the reflectometer and
can be found by observing Qk and the indication of the standard power meter
when connected to the measurement port; thereafter the power absorbed by any
DUtf can be found from either of equations (3.21) or (3.22).

4 THE DUAL EPLECTOKETER NETWORK ANALYSER

4.1 PRINCIPLES, CALIBRATIOtI PROCEDURE AND NOTATION

So far we have been concerned only with measuring the VRC and power
absorbed by one-port DUTs, but the scattering coefficients of two-port
junctions can be measured with two reflectometers connected to the same
source and a phase-changer, as shown in Figure 3. We illustrate
the principle of this by assuming that the reflectometers have been cali-

brated so that their indications are apparent VRCs in which the "reflected"
waves comprise both those reflected by and transmitted through the two-
port junction under test. Thus, using the notation of Figure 3, we have
rA - aA/bA and r1 I aB/bB: Denoting the scattering coefficients of the DUT

by si. in the usual way gives

aA sllb A s 12 b b (4.1)

a - s 2 lbA+ 22b

bB  bA
so that A- S1 + s12 b and r. " 21 bB + s 2 2

Eliminating (bA/bB) from these two equations gives

r 8 1 + Aa22 + (812'21-'ll'22) - BAts  (4.2)
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FIG.3. DUAL - REFLECTOMETER NETWORK ANALYSER

Dy setting the adjustable phase-shifter to three (or more) values known
only to provide different phase relations between bA and bB, there are
obtained three (or more) sets of (rA)i, (rB)i, (i - 1,2,3 ..) which result
in a set of three (or more) simultaneous equations (4.2) which can be
solved for 911, 822 and the product 812821. This allows determination of
the scattering coefficients of any two-port junction that is reciprocal (in
the sense that e12 - 821 when both ports transmit the same mode (15)),
provided we ignore for the moment the ambiguity of phase of 8l2. We remark
that the phase-shifter needs constancy only during each measurement and
does not need to accurately repeat its settings for a sequence of measure-
ments (unless, as we shall see, there is a requirement to measure phase
angles L812 and L821 of a non-reciprocal two-port junction). We also remark
that the reflectometers need not be six-ports and that a phase-shifter with
four settings allows the measured result to be the best fit to four sets of
power ratio data (since it is a least-squares solution of an overdetermined
set of equations (4.2)).

Each apparent VRC indicated during measurement of a passive, two-port
junction may be greater than unity, as can be seen by considering the "null
two-port junction" (ie when the two reflectometers are connected together)
for then aA and bB are equal (rA - 1/r2). This implies that the reflecto-
meter calibration methods so far derived may be inappropriate because they
employ standards of known VRC of Irl ( 1. Recalling the comments following
equation (2.10), this means that either the excitation of each reflectometer
must be halved after calibration to ensure that the detectors always operate
in their linear range or it must be assumed that their response remains
linear when Irl > 1. The calibration procedure we now consider is essentially
the one described in (8) and utilises connection of both reflectometer
measurement ports to each other and calibrates both instruments in terms of
just one precisely known standard, namely a known length Z of precision
imveguide or air-dielectric transmission line having the same uniform cross-
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section as the measurement ports. The steps in the calibration procedure are

illustrated in Figure 4 and they consist of observing the power ratios:

a. when the two measurement ports are connected together (condition 1);

b. when the two measurement ports are connected via the length L of

standard waveguide or coaxial line (condition 2);

c. when they are connected via a stable but unknown two-port, such

as a 6 dB or 10 dB pad;

d. when there is zero transmission between the measurement ports
(condition 3); this is achieved by terminating both ports with different

unknown reflecting terminations, which are exchanged to allow two sets

of observations to be made.

Ref l'r Ref l'r (a) measurement ports
A IB r concted directlyB together ( condition 1)

Re j'i1 ~~ R?7L... Mb connected via standard
A tine " line (condition 2)

i iT iyi.iiii"L. (c) connected via a

A t Breciprocal two -port

Re Ir ~a 1 etir (d) both reftlectometers
terminated: measured

A Load 2 'B also with loads 1 L2
interchanged (condition 3)

FIG.4. CALIBRATION PROCEDURE FOR DUAL -REFLECTOMETER

NETWORK ANALYSER

Only the three conditions numbered 1 to 3 in brackets are essential to the

calibration process (except for measurement of the phase angles Ls12 and L821

of non-reciprocal two-port junctions). The object of using additional unknown

one- and two-port devices is to provide overdetermined sets of equations to
enhance the measurement precision. Every least-squares solution implies a

consistency check and if the unknowns are stable they also provide checks of

consistency of calibration.
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All four states of phase excitation are used during steps a, b, c,
but only one is needed when there is zero transmission at step d. There
are therefore fourteen sets of observed power ratios for each six-port
available as data for applying the algorithm of section 3.1 to reduce each
to an equivalent four-port reflectometer (complete with its own ambiguity
of sign of v resulting from equation (3.13)). These equivalent four-ports
are modelled by the two-port error box representation of section 2.2 and
the notation illustrated in Figure 5 is used with this representation.
The waves incident on andemergent from the notional perfect reflectometers
A and B are denoted by aA, bA and a, bB; the vector indications of these
notional reflectometers by wA = aA/A and wB - aB/bB; and rA, rB are used

for the VICs at the true measurement ports. With this notation, (4.1) can
be applied to a two-port junction connected between the two notional
measurement planes to relate wA, wB to its scattering coefficients (by
analogy with the derivation of (4.2), giving

wBsll * wAs22 + (s 12s21-s s22) - ww B  (4.3)

During measurement a DUT can be considered as being in cascade between the
two error boxes so it is convenient to express (4.1) in a different matrix
form

b L 2 -82 1 ja B '"[ A] 1 1 22. I

The square matrix and its scalar multiplier in equation (4.4) is the so-
called cascading matrix (15) and this has the important property that the
cascading matrix of two (or more) two-port junctions connected in cascade
is the ordinary matrix product of their individual cascading matrices.

We now need to introduce further notation (illustrated in Figure 5) to
handle the observations made during conditions 1 to 3 of the calibration
procedure.

"Perfect" Error Error "Perfect'
ref lectoneter box box ref lectometer

A A B B

MWN MA)(r~ (WB)b or_--T--O -b.

AR and BR am cascading matrices of error boxes

FIG. NOTATION USED FOR DUAL SIX-PORT NETWORK ANALYSER
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Denoting the cascading matrices for error boxes A and B by (AR),(BR),
respectively, and that of the standard line by (LR), and using superscripts
1,2,3 to represent for these three conditions the vector indications VA,Ws,
enables us to write 1wA, 1wB for these indications when the two reflecto-
meters are connected together (ie connected via the "null two-port"), and
2WA. 2wB when they are connected via the standard length of line, etc.
This notation, plus the observation that the cascading matrix of the null
two-port is just the (2x2) identity matrix and can therefore be suppressed,
will enable us to set up cascading matrices to relate 

1 wA, wlB, 2wA, 2wB to

(AR), (BR), (LR).

The two six-port reflectometers have eight power meters between them
V' and these give seven independent power ratios, but the two sets of Qk (as

defined in section 3.1) account for only six of them. For measurements of
non-reciprocal two-port junctions we also need the seventh and the defini-
tions of the power ratios Qk must be extended to include it. If the indi-
cation from detector D3 of Figure 1 is hereafter called PR (instead of P3)
and the others renumbered 1,2,3 for each six-port then we have, in an
obvious notation,

QAk - PAk/PAR (k = 1,2,3)

QBk w P Bk/P BR (k - 1,2,3) (4.5)

QAB - PBR/PAR

Note that a measurement set of ratios includes only one QAB"

Having illustrated the principle of operation, described our calibra-
tion procedure, and established our notation, we can proceed to derive our

calibration theory. We tackle first the not inconsiderable problem of
resolving the ambiguities of sign of v for the two equivalent four-port

reflectometers.

4.2 RESOLVING SIGN AMBIGUITIES FOR DUAL SIX-PORT NETWORK ANALYSER

Having reduced each six-port to an equivalent four-port reflectometer,
we apply equation (3.16) to the measurements made with condition 1 of the
calibration procedure to give

1 11 1 1 1 1 1Iw A) X_____rr_) __rr1A7w4A)w2A- w3A) (rA- r4A)( r2A- 13A)

(IwlA w 2A) 1w3A -w4A) ( rlA- r2 (r 3A- r4A)

r1,- r4B)( r2B- r3B)

( rlBr 2B)( r3B r4B)

S(lwlB X w2B)(w w3B B)
w lB- w2B)( w3B-wwB) (4.6)
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because for the null two-port we have 1riA 1riB - 1 (i - 1,2,3,4) for all
four phase states. The signs of the imaginary parts of the cross-ratios in
vA and wV are compared and if they disagree then the negative sign is taken
in equation (3.13) for either wA or wB (at this stage it does not matter
which). This does not guarantee that both signs are now right but it does
guarantee that either they are both right or both are wrong; that is,we are
now using consistently for A and B either w or w* (but we do not yet know
which). We assume for the moment that we have w and correct later if this
is found to be wrong. It is worth noting that (4.6), unlike the use of
(3.16) in section 3.2, is exact so that (after any necessary sign change)
the two cross-ratios in w in (4.6) should be exactly equal. This is one
of many consistency checks that this calibration method automatically
provides.

Next, we calculate the elements of the cascading matrices of the two-
ports between the notional measurement planes of wA and wB, first when the
true measurement planes are connected together (condition 1) and then when
they are connected via the length of standard transmission line (condition
2). To do this, we apply (4.3) for each of the four measurements (with
different phase excitation) to each of the two conditions; for example for
condition 1, this gives

1 1 1 1W + ( 1 1 5 1 1 1 W1 (47
wiB '11 iA '22 12121 11l22 l l iB

(i - 1,2,3,4)

which provides four simultaneous inhomogeneous linear equations in the three"
unknowns 1sll, 1S22 and (Isl 2

1s21 - 1s911s22); these unknowns may now be
found by a standard method. From (4.4), we immediately have the elements
of the corresponding cascading matrix, except for a common factor (1/ls21);
this is ignored because (as we shall see) only the ratios of the elements
are significant provided 1321 0 0 (which is obviously true whenever trans-
mission between the two notional planes of w, and wB is possible). Applying
the same procedure to the measurements associated with condition 2 gives the
elements of its corresponding cascading matrix, apart from an ignorable
factor of (1/2s21). (We remark that, since the determinant of the elements
of the cascading matrix of a reciprocal two-port junction with both ports
referred to the same reference Zo is unity, the elements can be determined
absolutely, apart from a sign ambiguity; however, the assumption of
reciprocity is an unnecessary restriction and yet another sign ambiguity is
obviously undesirable.)

Denoting the cascading matrices just found for calibration conditions 1
and 2 by 1R and 2R, respect.vely, we see that they satisfy the equations

1 1 2 2
R s21(AR)(BR) and R s2 1 (AR) (LR) (BR) (4.8)

where the cascading matrix of the null two-port has been suppressed. We
also have, using the notation of section 3.3 in (4.4)

LR -[x(5) ep6t](4.9)L 20exp (M)'.-
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Now define a matrix T 2R( R)- detQlR). (As remarked earlier, det(IR)
is usually unity but we do not need to assume that it is, only that it is
#0. For this, the sufficient condition is the physically essential relation
21* 0.) The elements of T can be calculated from the known elements of

1R and 2R; using ij to denote elements, we obtain

T.. =2 R.1 R-2Ri R(.0
-. ~ R(3 -j.)(3..j) i(3-j) (3-j)j (.0

But we also have, on eliminating BR between the two equations (4.8),

2 R 2 (112) -1 1
Rl(AR)( (R) I ( AR) R)

so

T det( 1R) 2R( 1R)- 1 det( 1R)( 2l' 1 s2 1)(AR)(L R)(AR)-

or, on writing

det( 1 R)( 2 1 )2

as *(a number, not a matrix),

T( AR) - O(AR)(L R)

Finally, we multiply this out, using the suffix notation and substitu-
* ting from (4.9) for LRij, to give

*T 11 ARll + T1 2 A - OARl exp(-6t) (4.11.1)

T21 AR11 +T22 A 21 - A R 2 1 exp(-6.) (4.11.2)

T. 11 ARl12 + T 12 AR2 2  - OARI12 exp(6L) (4.11.3)

T 1AR12 +T22 AR22 - OAR 22 exp(60t (4.11.4)

Dividing (4.11.1) by ARll and (4.11.2) by AR21 gives

T 11 + Tlz2(AR2l/ARll) -*exp(-6t) - T 2l(AR1I/AR2I) + *2

or

T T211lAR12+ (T 2 Tl(AR11/A21) T 12 0 (4.12.1)

Treating (4.11.3) and (4.11.4) similarly give.

T21(A RI2/AR22)2 + (T 22-Tll) (AR12/A R22) T T1 2  -0 (4.12.2)

.4
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Also, on dividing (4.11.1) by (4.11.4) and recalling the notation of
section 3.3, we have

T11 T12 (AR21i/AR 11)
4. x - exp(-26t) - (4.13)

T22+T2 1 (AR12/AR2 2 )

Now (4.12.1) and (4.12.2) show that (ARll)/(AR21) and (AR12)/(AR22)
satisfy the same quadratic equation. There are two possibilities here;
either the two element ratios are given by the same root of the quadratic,
or one of them is equal to one root and the other to the other root. We
can reject the first possibility because it requires the two element ratios

to be equal which, from (4.4) requires that ASl2 AS21 - 0; this is plainly
non-physical. Taking the second possibility then, and solving (4.12) by
formula, gives

RRTR-I2 11_T22 T 11_T22) 24T12T21 (4.14)
(A2/AR22)'(ARll/AR21) - 2T2 1

Substituting these values into (4.13) gives

exp(-26t) - 11 2? (Tll-T22) +4T1 2T2 1
T1 1+T2 2±/(T1 1-T2 2) 

2 +TT

where the upper signs in the numerator and denominator correspond to taking
the upper sign in (4.14) for (AR12)/(AR22).

The two possible values are reciprocal so, as in section 3.3,
we reject the one with modulus > 1. (This requires a precision of measure-
ment that enables this discrimination to be effective for the few centi-
metres of air dielectric line used as the calibration standard. It has been
found to be effective for 75 mm of 7 nn bore precision coaxial line giving
about 0.004 dB attenuation; alternative methods similar to that of section
3.2 are available, however, for systems with insufficient precision.) Now,
consider the effect of choosing the wrong sign in (4.6), so that w* has been
used throughout instead of w. Reyiewing the derivation so far, it follows
that 1he effect would be to give s* and 28* for Is and 2s, and similarly
£R*, R*, T*, (AR12/AR22)*, (ARll/AR21)* and x* instead of their unconju-
gated forms. We resolve this by using the method of section 3.3 to choose
between x and x* and all other quantities are automatically resolved as
well.

It is important to note, however, that with 5 approximately equal to jk,
the discrimination depends on the ability to distinguish between exp(-2jkt)
and (exp(-2jkt))* - exp(2jkt). If these quantities are essentially equal,
as will happen if the length t is too close to an integral number of quarter-
wavelengths, then the method will not work. The determined difference
between 6 and jk affords a very sensitive test of the repeatability of
calibration.

All the ambiguous signs having been sorted out for the two equivalent
four-port reflectometers, we can now derive the theory for their calibration.
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4.3 DUAL REFLECTOMETER CALIBRATION THEORY

We begin by applying equation (4.3) to transform from wA to rA instead

of from wA to w . Prefixing s-j by A to represent the elements of the
scattering matrix of error boxA we have, remembering that we must invert

rA to allow for the reversed measurement direction (as shown by the arrows

in Figure 3).

A All + WAAS22+ (A 2AS21 -All AS22 A

Using (4.4), this becomes

rA1AR12 - wAAR21 + ARll - wArA1AR22

or
~~WA- (ARl 2/AR22 )

rA w(AR/AR2 2) (wA(AR 2 /AR) (4.15)

Comparing this with equation (2.7), we obtain

(CA/dA) 1 1/(ARll/AR21) dA- (AR1/AR22)
(4.16)

eA (AR12/AR2 2)

From (4.14) we have now determined (cA/dA) and CA.

Apply (4.3) to transform from rB to wB instead of from wA to wB; this

time we must invert rB to allow for the reversed measurement direction and,

by the procedure just used, we obtain

W BB Bs11 + r;1 B B 22 + (Bl2 BS21 - BS11 B822 r B wB

or

-1 -1
'WBB R -12 -rB B R21 +BR 11  a r B wB B R22

or

wB+(BR 21/BR2 2)

rB = (BR11/BR22) (+WB(BR 12/BR 11)) (4.17)

which gives, by comparison with (2.7) (or with (4.15) and (4.16))

(cB/dB) " -(BR 12/BRU1) ; dB - (BR11/BR2 2)
(4.18)

B -(BR2]/BR22)
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To obtain information about the quentities in (4.18) we appeal to
(4.8); substituting from (4.16) and (4.18) into R Is21 (AR)(BR) gives

[: l: Z :]2 21[ d 71 R22[: d 3 R22

If we premultiply this by (AR)-1 in the form

dot(AR) le22 A]

(noting that the physical necessity that A821 and AS12 are non-zero means
that the determinant is also non-zero), we obtain

d [ ] (AR2 2 ('S
2
1 DR22 det (AR))-l) 1 -:: (4.19)

where all the divisions in tht numerical factor are legitimate, including
that by BR22 which is (BS21) ; similarly, since

AR22 - (As21)l -1 0

the factor is not zero either. Writing

e a AR22( 121 0122 det(AR))-1

into (4.19) then gives

-CaOl a1 d 1 W 1
-3 1 12-A R22) ; de - O( Rll-eA R2 1)

-e& B O(-cA Rll dA R2 1) ; 1 - O(-cAI R12+dA 1R22)

Dividing out 0,

( / R12-eA R2 2  d R11 -eAIR21(c3/d1 ) 1 ll d

3BR 11g6A R21  B dA(R R22-(CA/dA) 'R12)
(4.20)

R227(cA/dA)lt 12
a - , I
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'ince we already know (cA/dA) and e , equations (4.20), together with the
oR defined at (4.8), give us (cBAB), eB and (dBdA) (on ultiplying the I

second of (4.20) by dA).

From (2.7), (4.15), (4.16), (4.17) and (4.18),

wA-eA w~
r A AA and r B B (4.21)

dA(l-wA(cAdA)) B dB(l-wB(cB/dB))

with all the parameters known except dA and dB whose product is known.

Multiplying equations (4.21) together gives an expression for (rArB)
which is completely determined (since the factors dA and dB combine into
their known product and everything else is already known). We now invoke
condition 3 of the calibration procedure in which the same fixed load is
presented first to one measurement port and then to the other. The rA of
one of these observations is clearly equal to the rB of the other (and vice

versa, since the realisation in calibration step d consists of two fixed
loads which are exchanged) and their product is rx2, where rx is the VRCof the relevant termination. A trivial amount of information about the

nature of the fixed termination(s) is sufficient to determine the correct
square root of rx2 (eg if rx2 o 1 +jO one can distinguish between short-
and open-circuits by inspection). Then, using equations (4.21) separately
dA and dB can be found (and measurements on both fixed terminations provide
for a check by comparison of results). The cA, dA, eA and cB, dB, eB
characterise the two reflectometers so that calibration is now complete.

The rA or rB at the measurement port of each six-port reflectometer
can be found from the observed Qk by determining a, 0 and y from equation
(3.6), finding the appropriate w from (3.13) (since the appropriate sign
for v is known), and finally obtaining r from (4.21). The rAi and rBi
obtained for the settings of the adjustable phase-changer can then be used

to set up a set of at least three simultaneous inhomogeneous equations
(4.2) which are solved by standard methods for '11' ;2Z and the product

$12821 of a two-port junction. If this is reciprocal in the sense that

'12 - '21 then it can be completely characterised provided plausible
arguments, like those of section 4.2, may be relied on to resolve the
square-root ambiguity (but see sections 4.4 and 4.5).

The calibration procedure of section 4.1 and Figure 4 provides for
these measurements on all the one- and two-port junctions used and the
results serve to monitor the consistency of calibration.

- 4.4 CALIBRATION THEORY FOR MEASURING I121 AND 1211 OF A NON-RECIPROCAL
TWO-PORT JUNCTION TRANSMITTING THE SAME MODE AT BOTH PORTS

So far, we have not made use of the seventh power ratio QAB - PBR/PAR
defined at (4.5); this provides another calibration constant which enables

11121 and 1s211 of a two-port junction to be determined. (Thus the assump-
tion of reciprocity s12821 - 1 can be verified within an ambiguity of an
even multiple of 9, which should be resolvable from physical considerations.)

From equation (3.20) the power flux from the measurement port of
reflectometer A is
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PA o(1-1rAI2)IbAI2  (4.22)

But from (3.22) and the definitions at (4.5)

PA - KAPAR(IdA-vAcA 12
- 2AeA,2 )

Substituting for rA from (4.21) this becomes

pA _ KAPRIdA-wAcAI 2 (1_-rA12 )

IbAI2  _ KAPARIdA-vAAI2/Go (from (4.22))

Evaluating PB, the power flux from measurement port B, similarly gives

IA 2 K2 dA 1ACA2 PAR (4.23)

bB -" 3  dB-vwcB P(2

But (KA/KB) is a characteristic of the network analyser and can be found
from the observations of the power ratio 04B when the two reflectometers
are connected together (calibration condition .) for then, using primes
in equation (4.22) to indicate this condition

B2 I-r; 12 BA

But PI - -Pi so that, from this equation, (4.21) and (4.23)

- P IN ~ cI2 1---1 (4.24)

Thus (KA/Kf) can be found by observing Q;g - PBR/PjR (as in (4.5))
during calibration condition 1. Since it is a constant for the network
analyser, and since observations are made with at least three settings of
the phase-changer, it provides another check of calibration consistency.
(The usual least-squares solution for the best value conveniently reduces
to the arithmetic man of the separately calculated values.)

From equations (4.1) and (4.2)

aA bB  a bA
rA b bA "-a11 * 12 bA B  abB '22 2 1 bB

b A B

al (rA-sll) :& and (r.21 (rB-s22) bA (4.25)
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ba - b (4.26)
1I121" I"A781 11 and 1211 '-221 A

Having found sii and *22 from equation (4.3), we have at least three setsof rA, 3 and & IbA/bBT using (4.23), since no ambiguity of sign arises

from this (because the sign of a modulus is positive). Hence 18121 and
Is211 can each be calculated several times from equation (4.26) and their
average values taken (as for calculating (KA/KB)). We can thus measure
Is121 and 1,211 of a two-port junction transmitting the same mode at both
ports (whether 812 - 821 or 812 * s20-

4.5 DIRECT MEASUREMENT OF ARGUMENTS LSl2 and Ls21

In principle, the phase angles L12 and L.821 can be measured but this
process has not been implemented at RSRE because this measurement has not
been required and because the network analyser of Figure 3 has to be modi-
fied to include isolators (which are temperature-dependent components and
which would limit the bandwidth of some reflectometers). Nevertheless, we
include a derivation of the method,following (19), both for the sake of
completeness and to clarify the additional assumptions necessary for this
measurement to be possible.

The modified network analyser would take the form illustrated in
Figure 6, for which it must be assumed that the phase-shifter is precisely

Source

P
Switched

~ivider xX -------. rce

Phase-shifter Flexible
. guide

(see text)

a  IbA i.I.h ib 5

FIG.6. DUAL NETWORK ANALYSER SUITABLE FOR MEASURING ZS 12 AND

'S21 OF DUT
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repeatable for each series of power ratio observations. It is also assumed
that, after the reflectometers have been calibrated by the methods already
described and after measurements have been made of the scattering coeffi-
cients of three reciprocal two-port junctions, then the flexible waveguide
is replaced by a rigid one. These three reciprocal junctions must each be
of the same length I as the non-reciprocal two-port DUT; the Lsl2( Ls21)
of two of them must differ and the third must be a,non-reflectng line.
This line must be capable of being connected at XX in Figure 6 (ie
between the power divider and one isolator) so that the connectors forming
this reference plane must be of the same form as those of the reflectometer
measurement ports.

We approach the measurement problem by considering the entire network
analyser as a three-port junction, of which two ports are the reflectometer
measurement ports and the third is a reference plane P situated between the
power divider and the source, as shown in Figure 6. We can write the
scattering equations for this junction as

b B BB 8BP la Bi
1bpJ 'IPA *PB *PJ Lap-

and the first two of these equations are

b - = and b - s a +sBB a s abA "sA sABs AP B BAS A EB BPPS ,S•

so that ap can be eliminated between them giving

bA - A*aA SAs + sAp(/sBP)(bE - %AaA - aBES

But the VRC measured by the reflectometers are rA - aA/bA and r B - aB/bB
so that

b A + j q rs~ bAP r (427)
b _ a E "A 'A B bBr + (5A - sBB8B

Now the quantities in braces in equation (4.27) are characteristics of
the network analyser and if they can be found by calibration then bA/bB can
be calculated from rA and ru for each phase-shifter setting allowing 2l2
and 821 to be completely determined from equation (4.25).

Calibration of the network analyser for measuring Ls12 and Ls21 thus
involves calibrating the repeatable phase shifter and the rest of the
analyser and it is necessary for this that any change of phase between bA
and b caused by physically separating the two reflectometers be known.
AssumLN sufficient isolation by the two isolators of Figure 6 for the
approximation sAB - sBA - 0 to be valid, then sAA and eBB will not change
when the reflectionless line is inserted at XXI of Figure 6 to allow
separation of the reflectometers and sAp changes by the factor e-6t, where
6 is the known propagation constant of the line (as does SPA)- (This can
be show by analysing the network of power divider, isolators etc forming
the three-port junction.)
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Given this assumption of sufficient isolation and the approximations
resulting from it, the two reflectometer measurement ports can be connected
to each other, so that bA/bB -r B, and we have from (4.27) that

rB = A 1+A 2 -A3rB%

where A1 = {sAP/sBP} ; A2 - {SAA} ; A3 = {SBBSAP/sBP}

By connecting in turn the two known two-port reciprocal junctions between
the reflectometer ports (for which we also need to connect the known line
at XX'), we can provide from equation (4.25) two more known (bA/bB)m,
(m - 1,2) so that from (4.27) we have

(bA/bB)m = A1 e + A2 (bA/bB)m r ,- A3 e-r

Hence, we can obtain a set of simultaneous equations in the unknowns A1 ,
A2, A3 for each phase-shifter setting. Assuming this repeats, this further
stage of calibration allows equation (4.25) to be used to obtain s12 and
921 completely for a non-reciprocal two-port junction.

We remark that values of S12 and s21 so obtained are most suitable for
determining Lsl2 and Ls2l. The magnitudes, Is121 and Is2 11,obtained from
(4.26) are likely to be more accurate because they do not rely on the phase-
shifter being repeatable or on the isolation being sufficient. Consistency
between the magnitudes obtained by (4.25) and (4.26) may provide a verifi-
cation of these assumptions. We also remark that this method provides a
method of verifying the plausibility of arguments used in section 4.3 for
resolving the ambiguity of sign of the square root of (s1 2)

2 for a recipro-
cal two-port; even with the perhaps dubious assumptions made concerning the
repeatability and predictability of the three-port junction comprising the
analyser of Figure 6, the method should be able to resolve an ambiguity of
0 or ff.

4.6 SIMULTANEOUS COMPARISON OF POWER STANDARDS

We have shown in section 3.4 that power standards can be compared by
connecting them in turn to the measurement port of a six-port reflectometer
and using equation (3.22). We note that a dual reflectometer network
analyser allows equation (4.24) to be used for comparing two power standards
simultaneously (rather than sequentially) and their VRCs can be also
determined.

5 AIR DIELECTRIC TRANSMISSION LINES AS IMPEDANCE STANDARDS

The assumptions made in our theory for calibrating the dual reflectometer
are that:

a. the source provides single-frequency radiation;

b. each detector provides an indication proportional to the power it
absorbs;

c. the reflectometer junction transmits only one mode at each port and
that both measurement ports transmit the same mode;
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d. the uniform line forming the calibration standard has measurable
attenuation and connectors at each end of a type that permit its length
to be accurately measured.

Then, to the extent that the connectors at the ends of the standard line may be
considered electrically "invisible", both reflectometers (including the connec-

tors forming their measurement ports) are calibrated in terms of the impedance
Z. caracterising the mode transmitted by the standard line. Connectors to
realise condition (d) for rectangular waveguide are relatively easily implemented
by lapped, dowelled, waveguide flanges; and, for some sizes of air-dielectric
precision coaxial line, connectors are available providing a good approximation
to coplanar inner- and outer-conductor contacts. For both, the contact impedance
is included in the attenuation constant 8 measured of the standard during cali-
bration, but this inclusion is unfortunately not self-consistent (because when
the measurement ports are connected together only one connector pair is involved,
whereas connection through the standard line involves two pairs).

At some frequencies, the imperfect surface finish of coaxial line conductors
causes Zo to depart measurably from the nominal characteristic impedance Ro (real)
calculable for the TEN mode for an ideal lossless line of the same dimensions.
In this event, the measured VRC rA and rp may be renormalised to the nominal
characteristic impedance Ro . The transmission-line model of a two-conductor
line describes it in terms of series resistance R and inductance L, shunt
conductance G and capacitance C, all per unit length at some particular angular
frequency w; then

Z° - (R+jL)/(GCjwC) and 8 - i(R+jwL)(G+jwC)

where 6 my be identified as the true propagation constant of the line as defined
in section 3.3 and Zo is the impedance characterising the line. The branches of
the square roots chosen are, of course, those which make Zo positive-real and 6
positive-imaginary for small R and G so that x - exp(-261) in section 3.3. Hence
on rearranging we have Zo a 6/(G+jwC) where C can be identified as the calculable
electrostatic capacitance per unit length of the precision line. For air
dielectric we may accurately set G - 0 so that Zo may be determined from the
measured 8 and the calculable C. Moreover

1 0 v 1C
0

where v is the velocity of propagation so that the indicated r (normalised to

Zo) may-be renormalised to Ro (to give ro ) since

Z -ftirI+ r R oZo1--- ol-

r(lZ/ 00)-(l-Z 
0A)

0 (l+Z 0A 0)-r(l-Z0 /Ro)

Altbough this process of renormalisation to a standard R calculable from
mechanical dimensions and the velocity of propagation in air is attractive as a
means of standardisation, it will require subsidiary measurement of the "residual"
contact iqedance of the air-line connectors as this enters into the propagation
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constant measured. The resolution of the six-port reflectometers should enable
these to be applied in established methods of measurement of this contact
impedance (16).

s

6 SIMULTANEOUS-EQUATION-SOLVING ALGORITHMS

6.1 LEAST-SQUARES SOLUTION FOR REAL UNKNOWNS

This section outlines the method employed to refine the provisional
solutions of simultaneous non-linear equations appearing in the six- to
four-port reduction derived in section 3.1. The methods are outlined here
because most desktop computers have no library of suitable routines. One
stage of the method entails solving an overdetermined set of linear equa-
tions. The solution of these is discussed separately here because the same
problem occurs in calibrating either a four- or a six-port reflectometer by
the use of known loads, derived in sections 2.2 and 3.2, respectively.

Suppose we have a set of M equations, not necessarily linear, in N
(4 H) unknowns; thus

fi(xl, x2, ..., x ... xN ) - 0 for i - 1, ..., M (6.1)

If we have approximations Ox. to the unknowns, we may re-write (6.1),
neglecting second-order term1 , asN af.

f ( 0, x ..., 0( ) + N- x -Ofor i- l, ..., (6.2)

j-1

where all the partial derivatives are evaluated at the point (xI = °x1 , ... ,
x --x., xN - OX). This set of equations is linear in the correc-tions (xj- °x), an may be solved for them by the method described

below. +he correction process may be repeated as often as necessary;
it displays quadratic convergence, like Newton's method of which it is a
generalisation.

Suppose now that we have a set of M linear equations in N (< H)

unknowns; in matrix notation we may write

Ax - b (6.3)

where A contains the coefficients and is of order (H x N), x contains the
unknowns and is of order (N x 1), and b contains the right-hand sides and
is of order (M x 1). We assume for the moment that A, x and b are real;
this restriction will be removed later.

In the special case where M - N, (6.3) admits the solution

x a A1 b (6.4)

When H > N, it is customary to choose the solution x such that the scalar
quantity (Ax-b)T(Ax-b) is an absolute minimum, where T denotes matrix
transpose. This is the "method of least-squares", first adopted by Gauss
in the light of his error distribution but now routinely used because of
its formal simplicity.
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To minimise (Ax-b)T(Ax-b) absolutely, we differentiate partially with
respect to each component of x and set all the resulting quantities equal
to zero. We then obtain N simultaneous linear equations in the N components
of x, and they admit the formal solution

x, AT A) -ATb (6.5)

When M - N, (6.5) reduces to (6.4), the absolute minimum of (Ax-b)T(Ax-b)
then being zero.

When M > N, (6.5) is not numerically-stable; the three appearances of
A (compared to the one appearance in (6.4)) cause a large increase in the
rounding errors during the actual solution. This problem is overcome by
resolving the matrix A into a product of matrices Q and U, where the matrix
Q (of order (N x N)) has the property that QTQ - IN (the identity matrix of
order (N x N)), and the matrix U is of order (N x N) and can be inverted

* easily. From (6.5) we then have

x aulQTb (6.6)

which is a numerically-stable form for x because the components of A only
appear once instead of three times as in (6.5). The resolution is brought
about by applying to A N successive transformations of the kind named after
Householder, which are described by Fox (17). The matrix U is upper-
triangular (it has non-zero elements only on and above the diagonal from
its top left corner to its bottom right corner) which makes it easy to find
x from (6.6) or from the equivalent form

Ux = QTb (6.7)

During the resolution it is usually necessary to alter the order of the rows
of A; this process, and the later unscrambling of it, will also be found in
Fox's book.

6.2 EXTENSION TO COMPLEX UNKNOWNS

We consider now the extension of this method to complex A, x and b.
If j is 4-1, we may write in an obvious notation

A - Ar + jA i  ; x - x r + jx i  ; b - br + jb i  (6.8)

Then, from (6.3) and (6.8), we have

(Arxr - Aix i ) + j(A r x i + Aixr) - (br) + j(b i ) (6.9)

If we equate real and imaginary parts in (6.9), we may re-write it in the
partitioned-matrix form

- (r) (6.10)
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which is purely real and may be solved using the method of the previous
section. In the real case, minimising (Ax-b)T(Ax-b) is the same as
minimising the sum of the squares of the differences between the left-
and right-hand sides of each equation;
when a complex problem is attacked The sum of b and 6 _
using (6.10), we minimise the sum of lies on the dotted circle, )
the squares of the real and imaginary and is always tightly - A
parts of the differences, which is the constrained. similair
sum of the squares of their moduli.
For uncorrelated equations this can be conclusion
shown to be correct from probability b is valid
considerations. It is, apparently, for multi -
unsatisfactory because the phases of iv
the differences are not constrained byda
minimising the sum of squared moduli;
but by considering Figure 7 we can see
that this does not matter. We have a
right-hand side vector b added to a FIG.7.

difference vector 6; if 1614 Ibi,
then, wherever the direction of 6 may
be, the sum vector s is still tightly-constrained both in magnitude and in
direction. Moreover, the maximum difference in phase between s and b
corresponds to the minimum difference in magnitude, and vice versa, so the
differences are well-balanced in practice.

7 CONCLUSION

It is axiomatic that the quality of a product or service cannot be main-
rained, let alone improved, without means of measuring that quality. This is
true also for measurement processes which require repeated (and therefore in
practice automated) measurements for their variation, and the stability of the
reference standards, to be quantified. In principle, the calibration methods
treated in this report allow the stability of six-port reflectometer instrumen-
tation to be checked without reference to standards whose long-term stability
would have to be inferred or even assumed. Moreover, the resolution ob.ained
at RSRE of measurement of VRC with these methods suggests that the long-term
stability of the reference standards can be compared since each calibration
requires only one such standard.

The derivation of the theory of these six-port reflectometer calibration
and measurement methods has been presented in this report as an analytic deduc-
tion from the basic postulates of linearity of the reflectometer and its
detectors. This was a necessary prerequisite for programming the solutions to
the problems (which are trivial only in the mathematical sense that they have
been solved), especially to ensure that all the ambiguities of square-root sign
are resolved. This approach appears to the authors to be more appropriate for
computation than that contained in earlier treatments (relying on geometric

.4 interpretations of diagrams in the complex plane of six-port reflectometer
behaviour).
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