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NONLDMAR MODE COUPWNG THEORY OF TE
LOWZR-fYBRM-DRnPT IDSTABELFrY

I. Introduction

The lower-hybrid-drift instability has been of considerable interest

to plasma physicists for more than a decade as a driving mechanism for the

anomalous transport of particles, momentum and energy in both laboratory

and space plasmas. In laboratory applications, this instability was

Initially studied to explain anomalous sheath broadening in theta pinch

Implosions, but has recently been applied to other laboratory confinement

devices such as toroidal reversed field pinches2 and compact torii. 3 In

space plasma, it has been proposed as a mechanism to provide anomalous

resistivity for reconnection events in the magnetosphere.4 Experimentally,

the lover-hybrid-drift instability has been observed in a recent theta

pinch experiment,5 and satellite data indicate that it exists in the

earths manetotail and agnetopause. 6

The linear theory of the lower-hybrid-drift instability is well

nderstood.- 7-9 The mode can be excited in inhomogeneous plasmas

whesn P >1L a (se/m* )1/4 where pis the mean ion Larmor radius and Ln is

the scale length of the density gradient. At maximum growth it is

characterized by <w h, w, k-i O, and kPa - 1 wherechrceizdb r~ S h w Y<Or .s 1/2
U ar + ly, alh is the lower hybrid frequency and pes M Pi(ue/2mi)

Since the instability is high frequency (w a I) and short wavelength

(kP > 1) the ions are treated as unmagnetized while the electrons are

treated as strongly magnetized. In the weak drift regime Vdi/Vi < 1 (where

Vdi is the ion diamagnetic drift velocity and vi is the ion thermal

velocity), w < kVdi and the mode is driven unstable by the resonant

interaction of the drift wave with the ions. In finite 0 plasmas,

electrons also resonate with the wave via their VB drift. The resultant

electron damping is stabilizing for kp as > 1. In the high drift

regime (Vdi/vi > 1), the mode is driven unstable via the interaction of a

positive energy lower hybrid wave and a negative energy drift wave. In

this paper we focus on the weak drift regime.

The nonlinear development of the lower-hybrid-drift instability is

complex and not as well understood as the linear theory. A variety of

nonlinear saturation mechanisms have been proposed to date. Ion trapping1 0

and stochastic electron heating1 1 have been proposed to quench the growth
of the instability in particle simulations. However, ion trapping is not a

N a - ap $~,.wd Septemb 7, 1N8. 1
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viable saturation mechanism when a broad 2D spectrum of waves is excited,1
2

and it has not been observed in recent simulations using realistic mass

ratios where such spectra develop.13  Stochastic electron heating does not

onset until a rather large threshold, n/n > 0.25, is exceeded where U is

the density fluctuation of the wave. A wave energy bound based on the

available free-energy in the relative electron-ion flow (current) has also

been invoked to calculate a maximum wave amplitude. In a finite B

plasma, however, the current and self-consistent magnetic field are coupled

and the magnetic field energy can also be tapped.15 The free energy then

becomes extremely large and does not realistically act as a bound.

Finally, electron resonance broadening has been proposed as a saturation

mechanism. 1 6 It has been recently shown in more refined calculations that

"resonance broadening" does not cause a net dissipation of energy but

merely leads to an exchange of energy between modes in k space unless wave-

particle resonances are included. 1 7 , 1 8  This mechanism can therefore only

stabilize the wave spectrum in finite 0 plasmas.
19

In this paper we present a nonlinear mode coupling theory of the

lower-hybrid-drift instability. Our preliminary calculations have been

presented previously. 2 0  The basic result is that the instability can

saturate by transferring energy from growing, long-wavelength modes to

damped, short-wavelength modes. This saturation mechanism is consistent

with recent computer simulations'3 and with experimental observations. 5 In

this paper, we extend, the earlier theory to self-consistently incorporate

finite B effects, and to include electron collisions in order to compare

our results with experimental observations.

The organization of the paper is as follows. In the next section we

derive the nonlinear wave equation and the wave energy transfer with the

two basic nonlinearities: the nonlinear electron E x B and polarization

drifts. In Section III we discuss the numerical methods used to study the

mode coupling process. In Section IV we present results based upon VB

electron damping of the short wavelength modes, while in Section V we

present results based upon collisional damping of the modes. In Section VI

we summarize our theory, compare our theoretical results with experimental

observations, and discuss some applications of our results to space

plasmas.
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II. Derivation of the Mode Coupling Equation

We consider a slab equilibrium of cold electron and warm ions with a

density profile no(x) supported by a magnetic field B - B0(x)e z as shown in

Fig. 1. Equilibrium pressure balance requires

a [P0(x) + Bo (x)18w] - 0. (1)

The ratio of thermal to magnetic pressure, B - 8wnT /B2 , is assumed to bei 0'
of order unity so that electromagnetic corrections to the lower-hybrid-

drift instability must be retained. The equilibrium ion velocity distri-

bution is taken to be a Mazwellian with an average drift velocity V -

V e where Vd - (v2/2a )a In n/ax, v2 - 2T /mi and -eBo/mic-
di y di i i. iiad eo/ c

Because of the flute nature of the instability (k.B - 0), we self-

consistently limit the spatial variations to the xy plane. In this limit

the electric and magnetic fields can be represented by the scalar potential

* and the vector potentials A. and A. as
8

B- B - CA/ax- a/3y) e (2)

E- - -cl3A/at (3)

with V.A - 0. Even when B - 1, the induction component of E is 8mall so

that it can generally be discarded except when the V, component of E does

not contribute.

We are interested in time scales of order a/at >> so that the ion

response to both the equilibrium and perturbed magnetic fields can be

neglected. Furthermore, in the weak drift regime the ions respond to the

perturbed potential # adiabatically to lowest order since /at << v itV 8
i

Thus,

n [ + ' ''IC + Vda )]ep(- e#/Ti), (4)

where the term proportional to 1 in (4) is a small correction describing

the resonant ion interaction.

13
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In contrast to the ions, the electrons are strongly magnetized since

a/at << a The electron motion is simply given by the E x B and

polarization drifts,

dE
V -E x -- d- (5)
%e z e dt B5

where d/dt - a/at + V .V and V cE x e /B . The electron density can be

calculated from the continuity equation,

d In ne/dt + V.V - 0. (6)

The electron compression V.V is obtained from Eq. (5). To lowest order,

c V V2 d- -n "z (7)

The first term in Eq. (7) arises from the polarization drift and the second

from the compression of the flux tube in a finite B plasma. The continuity

equation can now be written as

d d -0 (8)

so that the rate of change of the number of electrons in a flux tube (neB Az

is given by the polarization drift. The time variation of Bz in Eq. (8)

is calculated from Aupere's lA

V2A - - (41 c)J - (4ure/Sz)a./ay, (9)

where ix is dominated by the E x 3 drift of the electrons. Using V.A = 0,

we find that V2A - - /lzlay so that

no# a, (10)

which can be integrated to evaluate

ii
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in Eq. (7). The convective derivative of B. can similarly be evaluated

using Sq. (10) in conjunction with the equilibrium pressure balance

relation,

V-in B C Itnn (12)
VV z 2 B ax ay

Finally, invoking charge neutrality (ne - nj) and combining (8), (11) and

(12), we obtain the nonlinear equation

-;)^ + -l-116$ + e
(13)

+ X; ; 2 + ov, X z" I 1 r y 0

where

- es V

(1+0/2)1/2

Lea Qe(1 + 10/2)12

L1/
n (1 + 0/2)" it.

OesT

"YO " ol/2(Vdi/vi)/(l + 1/2)

and the subscripts on * denote a derivative with respect to that

variable. The quantity y represents the wave damping due to electrons,

which can result either from S resonant particles in a finite 8 plasma8 or

collisional viscosity.2 1  Equation (13) is only valid for yo < 1 since the

adiabatic Ion response can only be justified in this limit. Linearizing

this equation, we obtain the complex eigenvalue (in our normalized units),

a+ - + i o  + - i -e (14)

14 (1 )' Y 14k

Since Eq. (13) is second order in time, there is an additional root,

6
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-ilki (I + k )/-f0, (15)

wiob Is spurious. since It violates the assuption that <<a kv* This

root is growing and therefore vast be eliminated before carrying out our

numesrical computations (see sec. III).

In the flute limit considered here, the magnetic perturbations and

equilibrium YB3 do not structurally alter the equation for *.They enter

the equations through the factors (1 + 6/2) which appear in the normalized

variables defined In Eq. (13)0 We ignore this trivial finite 0 modifie-

tion to the equations in the remainder of this paper.

In the limit y 0, yo + 0, Eq. (13) reduces to the Hasegawa-Mina

equation In which the nonlinearity arises from the nonlinear polarization

drif tG2 2 This equation has two invariants, energy and enstrophy,, neither

of which Is prestrved in the more general Eq., (13). When yois finite, the

I x 3 nonlinearity also appears in Eq. (13). This nonlinearity has been

considered previously In studies of universal mode turbulence.23,24

Ouir calculation differs from previous work in that we do not make the

quai-linear hypothesis that

+ I i(ok k ky) (16)

in the term. proprtional to yoin 14. (13). Thus, our equation Is second

order io tims rather tha first order. In Sec. III it is shown that the

specttru always saturas when I 1so that the linear and nonlinear termse

in Eq. (13) are comparable. The quasi-linear hypothesis can therefore not
be justified in driftuwave turbulence. A similar second order equation has
been derived for dissipative drift waves.2 6

It Is recognised that both universal and dissipative drift wave
tuarbalence are ishereutly three-dimensional since k -k&%/1 is required
for the mode to eist and the spatial variations In the two directions
perpendicular to 3 are required to calculate the mode coupling. In 2-D
modals of this torbulence the coupling of modes* with differing k, 8s Is
loume4.23' There Is so theoretical justification for this procedure so
that caoe st be taken io applying the results of model calculations to
eqON~ew~stu3 Oosuvatior 5. By co, zraot,, the lower-hybrid-rift Instability



is a flute sode so that the neglect of the coupling along B can be

justified and the results of the 2-D model can be directly compared with

experimental observations.

A qualitative understanding of the direction of the flow of energy

described by Eq. (13) can be obtained by calculating the stability of a

single, large-amplitude wave 00 with k0 and wo0 satisfying the linear

dispersion relation in Eq. (14). A perturbation of wavevector k is coupled

through the pump to modes with k + p ko (p - 1,2,...). For simplicity, we

consider only the coupling of (w, k) with its nearest neighbors (w+, k+)

where -+ 0 and k - k ~o, i.e., p - 1. The dispersion relation

for this (k, k ) coupled system is (see Appendix)

a a M(-k hk )M(k,kO) a a

e(w, k) + I~oa a o I "o 0  (17)
E(W+ ,k+)

where

(W,) a - 1 + k2L1-iak - k + Ly

Mwk1 , 2 ) - k1x i2.ez[k. (1 - ik1) - 'k2(l - i6k2)]

When yo and ye are neglected in Eq. (17) and we take the limit w k'

the dispersion relation simplifies to

a-a a 2 2 2 ^22 -2 -2
-2 2* ( )2 k k 0) k 0k+ k 0 -k

#0 - (l+k;+;

The decay modes are purely growing with a growth rate which peaks around

k~k - 0 with k/k0 a 0.6 - 0.8, depending on the magnitude of k0. A

necessary requirement for instability is that one of the three decay modes

(k, k) has a longer wavelength than the pump. This decay process with

k.ko " 0 and k/k0 < 1 is clearly seen in our numerical simulation during

the initial phase of saturation (Sec. III) of the instability. For this

situation, in which Eq. (13) reduces to the Hasegawa-Mima equation, the

wave energy Inevitably cascades to longer and longer wavelengths so that no

stationary wave spectrum can result.
28
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When is included, this conclusion no longer remains valid. Taking

the limit k0 « k and again assuming w >> wk, the dispersion relation is

given by

2 *IIx~e 2 -4  ^ow 2
U - 1+k 2  [l + i-.(1+-2 ] . (19)

Equation (19) yields a dissipative instability when yo is finite. The

destabilizing term can be traced back to the E x B nonlinearity. This

dissipative instability produces a flow of energy from long to short

wavelength and, as will be demonstrated, prevents the condensation of wave

energy at long wavelengths, enabling the wave spectrum to reach a steady

state.

The dispersion relation in Eq. (19) contains no amplitude threshold

for instability as long as k is in the proper direction. In the more

general dispersion relation in Eq. (17), where the linear frequencies are

retained, *O must exceed a threshold before the instability onsets unless
the frequency matching condition

- + ± w -0 (20)

is satisfied. For ko - koey and k0 , k (< 1, this matching condition becomes

k2 3(k2 + kyk0 ). (21)xy

The locus of modes which satisfies Eq. (20), those with ky < 0 and Iky I <
i0 p are shown in Fig. 2. There is no threshold for instability of these

modes (neglecting dissipation). Nevertheless, for the lower hybrid drift

instability both of the decay modes k and k +k shown in Fig. 2 are
- -

individually unstable so that the mode coupling process can not saturate

the instability.

Interacting modes with Aw $ 0 can be driven unstable when *0 exceeds a

threshold. For the case k - k0 ey, this threshold can be easily calcula-

ted. The dispersion relation in Eq. (17) simplifies to

a012k4(k - k2)
2 - 2 2(22)

(1 + k2 )(1 + k20+ k2)

Xl9



A

K

Fig. 2: The locus of modes k - kp which satisfy the frequenc y matching

condition Aw2 - wk+ ± o o, withk k + k and

wk- ky ., + is shown.
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where the dissipative sources and sinks have been neglected. In this limit

Wk = 0 and k+ .-k so that A, = - is the frequency

mismatch. To have instability,

1-I2 > 22 (23)I;2 > oc 2(1 + k2 + k2)(1 + k2)(k2 - k2)

For cases of interest k0 - 1 and olc - .25. At this amplitude the

nonlinearity overcomes the linear frequency mismatch of the modes and a

broad range of modes is driven unstable. As a consequence, we would expect

the wave spectrum to saturate at around this level even when yo « 1, i.e.,

the driving rate is small. This conclusion is verified in our numerical

computations.

The particle flux can be calculated self-consistently with the wave

spectrum. The rate of change of the density n(x) =<n e(x,y)> y, where < > y

is a spatial average over y, is obtained by averaging the electron

continuity equation,

3n + -L <neV > - 0. (24)
~T a x eex y

To lowest order, Vex - (c/B)4/ay, the polarization drift being small.

The electron density can not be calculated directly since Eq. (24) for ne

can not be inverted analytically. However, since ne w ni, we can use the

expression for n1 in Eq. (4) to obtain an explicit expression for the

diffusion coefficient D -- <neVex>y/ (a/8x),

1/ k a

D D 0  (±.)k 2 Z y 4. (kk 1 F) (25); " /D° 31" ' k Jkl .-
2

DO  Peslh

Note that the normalization factor Do  of the diffusion coefficient

corresponds to a step size p with a correlation time W-h In the

quasilinear limit a/ar - - iw, and D is given by

Dq (V~L~ 'yZ yII( k2  (26)

The time evolution of both D and Dql will be computed along with the wave

spectrum in Sec. II.

11



III. Numerical Computations

The nonlinear equation for * in Eq. (13) is too complex to solve

analytically and we have therefore adopted a computational approach. It is

convenient to separate the second order Eq. (13) into two complex first

order equations by defining a new function

- + (27)
* V2* + Y01VI( T ~y)(7

Equation (13) for * can then be written as

4 ,T -r +  y + Yef + Vx ez.V* - O. (28)

Since yo < 1, we find from Eq. (27) that to lowest order

a -" (29 )

The second term on the right side of Eq. (27) is already small since it is

proportional to yo so that in this term can be approximated to lowest

order. Equation (27) then becomes an evolution equation for 4,

*, "- -y + 1;1;2(* - V2;)/yo. (30)

Finally, eliminating in Eq. (28) using Eq. (30), we obtain a similar
Ta

evolution equation for #,

T, , + e+ - * + IVI V2( - V2 )/y0 - V# x ez. (31)

Note that the iteration procedure which was carried out on Eq. (27)

eliminated the spurious unstable root. The dispersion relation which

results from linearizing Eqs. (30) and (31) yields the correct sigenvalue

of the lower hybrid drift instability given in Eq. (14) plus a spurious

damped root,

12

L~w - - t ' , ,w . "'....-- -- "-'- -"- --- "--



- - ilk 3(j + k2 )/ O, (32)

which does not cause any numerical difficulties. All of our numerical

computations are based on the two coupled equations for * and * in (30) and

(31).

The inclusion of the electron damping ;a in Eq. (31) is essential in

order to obtain a saturated spectrum since in the absence of this term all

modes in k space are unstable [see the growth rate in Eq. (14)] We have

used two forms of electron dissipation in our calculations. The first

arises from the VB resonant electrons in a finite B plasma. Explicit

expressions for this damping rate have been derived in Ref. 9. In the long

wavelength limit

e w YeO lky jk4 (33)

with

"eO -w ( . exp(- 2/Be ) (34)

BiB2(2 + Bi)

where B. and 0i are the individual electron and ion values of beta. In the

short wavelength limit, ye scales as k yk2 so we take as a model

e - yek k4/(l + k2 ). (35)

An important feature of the S resonant damping is that it scales as kS as

S0. Since the growth tern in Eq. (14) scales as k3 in the long wave-

length limit, modes with kx - 0 remain unstable even as k + 0. For large
k all modes are stable. The boundary between stable and unstable regions

of k space is shown in Fig. 3a for yeO/y0 a 0.1 and 1.0. The area below

the bounding curves is unstable. As y.e/y 0 increases the unstable spectrum

collapses toward long wavelength but unstable modes always remain.

Electron collisional viscosity is important in laboratory experiments

where measurements of lower-hybrid-drift wave turbulence have been made.

The electron damping rate for this case is given by
21
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Ye  V 0k2  (36)

where

v0 - vL/OI pa5 , (37)

ve is the electron-ion collision frequency

ve -
2 .9 x 10-6 (Xn/T e s3/2)-1

X is the Coulomb logarithm, 3e is the electron density in ca- 3 and Te is

the electron temperature in ev. In this case the collisional damping

dominates the growth at both large and small k so that the unstable region

of k space is localized around k 1 as shown in Fig. 3b for several values

of V0/y0. There is no instability when v0/ 0 > A/16.

The coupled equations for * and * in (30) and (31) are solved using a

pseudo-spectral method code developed by Fyfe et al. ,29 based on the work

of Ormsag.30 The dependent variables * and a are Fourier-decomposed,

#(x -r) - Z *(k,-r)exp(ik.x), (38)

where / -/I and n - n + + ne with u. and n integers. The parameter X

fixes the value of InI for which Iki - 1. The nonlinear term in Eq. (31)

is computed by fast Fourier transforming V# and V* from k to configuration
lb W

space, calculating the product V z e*.# in configuration space and then

fast Fourier transforming the result back to k space. The equations are

then stepped forward In time in k space and the cycle is repeated.

The numerical results presented in this paper are nominally computed

on a 32 z 32 mesh. However, to prevent aliasing of the wave energy during

the fast Fourier transformation, it is necessary to zero all modes with n >

32/3 so that the useful volume of k space Is actually much less than one

would expect.

A number of tests have been made to ensure that the code is correctly

advancing the equations in time. The growth rates of the modes as obtained

from the code during the linear growth phase have been checked with the

14
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Fig. 3: The region of instability in k space (below bounding curves) is

shown for (a) collisionless plasm and (b) collisional plasm,

where yo, ye0 and VOare the normalized ion growth rate,

electron V3 damping rate and electron collisional damping rate.

Collisional damping stabilizes the spectrum for ys fo> j/6
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solution of the linear dispersion relation. We have zeroed all but three

interacting modes in the full code and cross-checked their nonlinear

behavior with an independent code written to specifically study the

interaction of only three waves. The sensitivity of our results to the

step size of the time integration, as well as to the number of modes (some

runs have been carried out on a 64 x 64 mesh), have also been checked.

IV. Numerical Results: Collisionless Damping

In collisionless, finite-B plasmas the VB resonant electron damping

limits the range of unstable modes as shown in Fig. 3a. In this section we

present the results of our numerical computations for this case. Pre-

liminary results were previously presented for this collisionless case

although the structure of our electron damping is now more realistic than

that which was used in past computations.
2 0

In Figs. 4-6 we present in some detail the results of our computations

for the case o0 0.5, y o.ol - 5 (k p for, f -5y). The"o y e -3 Y
spectrum is initialized with random noise with * 10 and Eqs. (30) and

(31) are evolved until the wave energy (in our normalized units),

; .1 (39S(1 + j2 ) ik 12 ,

approaches a steady state value. The time history of W, the root-mean-

square potential,

-<2>1/2 - lk1)/2 (0
P UI0* 1) (40)

k

and the diffusion coefficients D and D q1 [Eqs. (25) and (26), respectively]

are shown in Fig. 4. All of these quantities exhibit a similar temporal

behavior. The initial decay (T 4 4) is associated with the rapid

dissipation of energy initialized in the damped modes, and is followed by a

* linear growth phase (4 4 T • 30). Subsequently, mode coupling occurs which

leads to saturation of the instability, albeit with some initial

overshoot (T - 30). The levels of the total wave energy and other

parameters of Fig. 4 are quite stationary in time after saturation. Also,

the stationary values of all four quantities are relatively insensitive to

the initialization of *.

16
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0 10 20 30 40 50 60 s0o6 90 100

(b)

Fi.4: The tine history of the normlized wave energy;1, root-mean-
A A

square potential P, diffusion coefficient D and quesilinear

diffusion coefficient Dql are shown for yo- 0.5,

To- 0.01 and v - 0.
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In Fig. 4 the potential P asymptotes to 2.0 after saturation so that

* 1, which is consistent with the discussion in Sec. II. The quasilinear

diffusion coefficient (Dql) tracks the actual diffusion coefficient D)

quite well during the entire time evolution of the instability. An

important point which must be emphasized with regard to D is that both

species, electrons and ions, continue to exchange both energy and momentum

even after a steady state is reached; the electrons through the VB reso-

nance and the ions by direct resonant interaction. If the instability had

saturated by ion trapping and the electrons had no resonant interaction

with the wave, there would be no diffusion in the steady state since the

electrons could not exchange momentum with the ions. Both species must

have a dissipative interaction with the waves to have diffusion.

In Fig. 5 we show a sequence of snapshots of the 2-D wave spectrum in

n space as the instability grows and saturates. The times at which the

snapshots are taven are indicated by the arrows in Fig. 4a. Only nx > 0 is

shown since the spectrum for nx < 0 can be obtained from n. > 0 by the

reality condition ^(- n) - +(n). Figure 5a shows the spectrum during the

linear phase of the instability. The spectrum is strongly peaked around

the most unstable modes, (nx, ny) - (0, + 5). Figure 5b shows the spectrum

just prior to saturation. Note the development of the prominent peak at

(4, 0), which is a marginally stable mode since ny - 0, and the broadening

of the main peaks of the spectrum in the nx direction. These results are

entirely consistent with the discussion of the parametric excitation of

daughter waves by a pump in Sec. II. The pump wave (0, ± 5) couples and

destabilizes the (4, 0) and (4, t 5) modes. These secondary peaks quickly

grow to large amplitude and excite other modes in turn. This mode coupling

process culminates as the total wave energy saturates and spreads through

most of the unstable or weakly damped volume of n space as shown in Fig.

5. Two significant features of Fig. 5c are: the shift in the peaks of

the wave spectrum toward long wavelength (0, ± 2); and the nearly isotropic

spectrum of waves surrounding these peaks. The detailed wave spectrum

exhibits substantial variability in time, even after saturation when the

total wave energy is nearly constant. This can be clearly seen by

comparing the spectrum in Fig. 5c with that at a later time in Fig. 5d.

The unstable and stable modes clearly continue to exchange energy in a

dynamic manner even after saturation. Nevertheless, the wave spectra at

18
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Fig. 5: Snapshots of the two-dimensional wave spectra are shown (a)

during the linear phase, (b) during saturation, (c) just after

saturation and (d) veil after saturato, for the run shown in

Fig. 4, where n - 5 k. The times of the snapshots are marked

with arrows in Fig. 4a.
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late time are always characterized by peaks which are shif ted towards long

wavelength from the most unstable mode and by a broad spectrum of noise.

Finally, In Fig. 6a we show the wave spectrum averaged over the time

interval 112 < T < 192. Much of the irregularity which was evident in the

instantaneous spectra has now disappeared. The averaged spectrum is

strongly peaked a round (0, + 3) with much smaller secondary peaks

at (t 2, 0). A contour plot of this average spectrum is shown in Fig.

6b. Note the cleft in the spectrum along ky - 0.

A number of runs have been made with different values of the drift

parameter yo and the coefficient of the electron damping -y.0. In Fig. 7 we

show the diffusion coefficient D and potential P at saturation as functions

of the drift parameter y0. The electron damping y e was varied with yo so

*that the spectrum of unstable waves in k space did not change, i.e., yeO a

0.1 yo. The potential P is quite insensitive to yowhile the diffusion

coefficient scales approximately as 2r (the reference curve D-0.76 y2is

shown for comparison). The insensitivity of P, and consequently

to to is consistent with the idea, expressed previously in Sec. II, that

the non-linear polarization drift in Eq. (13) must exceed the linear

frequency mismatch of the interacting waves in order for effective energy

exchange (and therefore saturation of the instability) to take place.

In Fig. 8 we show P and D as a function of yo with YeO - 0.11. In

this case the linearly unstable spectrum collapses towards longer wave-

lengths as yodecreases as previously shown in Fig. 3a. The dependence of

P and D on yo in this case is basically similar to that in Fig. 7. The

normalized potential P has a weak dependence on To, increasing slightly as

YOdecreases. The diffusion coefficient again scales as y6 (the reference

curve D - 0.76 ya is shown).

The somewhat surprising conclusion which can be drawn from Figs. 7 and

8 is that the diffusion coefficient D is very insensitive to the dissi-

pation rate y.0 much less sensitive, for example, than P. For yo - 0.25,

the diffusion coefficient D - 0.06 in both Figs. 7 and 8 even though y eO -

0.03 and 0.11, respectively. By contrast, P is 50% higher in Fig. 8 than

in Fig. 7 for yo a .25. As T*0 is increased for a fixed value of yo,

increases while the spectrum shifts towards longer wavelength so that D

does not change [see Eq. (26) f or D q1] The shift towards long wavelength
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Fig. 7: The dependence of the diffusion coefficient ; and the root-uean-

square potential P on the ion driving term yo~ Vdi/v1 is

shown for a fixed linearly unstable spectrum of waves

(e /Yo - 0.1 and vo 0). The reference curve is given
by D -0.76 y02.
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as yeO increases can be clearly seen in plots of the 2-D wave spectrum. By
comparing the quasilinear diffusion coefficient in Eq. (26) with the

portion of the linear growth rate in Eq. (14) which comes from the resonant

ion interaction and the expression for the wave energy in Eq. (39), we find

that roughly

D - i/at ,

where aW /at is the rate at which energy is extracted from the ions. Thus,

our numerical results indicate that the rate at which the instability is

taking energy from the ions is nearly independent of the electron

damping. Of course, damped modes must always be included in the simulation

or the wave energy does not saturate. The damping rate yeO must therefore

remain finite.

V. Numerical Results: Collisional Damping

In laboratory and ionospheric plasmas classical damping can dominate

the collisionless VB electron damping. As noted previously in Fig. 3b,

collisional damping stabilizes both long and short wavelength modes and,

unlike the VB resonant electron damping, can stabilize the entire

spectrum. The results of our numerical computations for this caoe a;.e

summarized in Fig. 9 where we show the dependence of the saturated values

of D and P on the collisional damping coefficient v0 for -o - 1.0. The

diffusion coefficient D and potential P are virtually independent of v0 .
This result is rather surprising because as v0 increases the range of

unstable modes in k space decreases dramatically (Fig. 3b) and, as a

consequence, the characteristic wave spectra after saturation in the three

cases presented in Fig. 9 are rather different. The spectra in the

cases V- - 0.05 and 0.10 are similar to those presented in Sec. IV, the

spectrum being somewhat broader for v0 - 0.05 because the range of linearly

unstable modes extends to larger values of Ili. For v0 - 0.15 the linearly

unstable region of k space has become rather localized and, as shown in

Fig. 10, the saturated wave spectrum is much more peaked. The two dominant

peaks at n - (0, ± 4) correspond to the most unstable modes while the

secondary peak at n - (2,0) is the parametrically generated daughter

wave. In this case the damping of the modes with finite nx is so large
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(except for ny - 0) that the energy which is pumped into them is rapidly

dissipated and the wave spectrum remains quite narrow. Nevertheless, the

saturated values of both P and D are virtually the same as those computed

for smaller values of v0. This result is a consequence of the structure of

the nonlinearity in Eq. (13) which only couples modes V, k with

k' x k * 0. For the case of a narrow wave spectrum such as that shown in

Fig. 10 the coupling of the modes is quite weak. Therefore, even though

the growth rates of the unstable waves are small, the coupling of wave

energy to the stable modes is correspondingly very weak and the saturation

amplitude remains large.

From our numerical results we 'conclude that the saturation of the

lower-hybrid-drift instability remains large even as collisions force the

mode towards marginal stability. At marginal stability, of course, + 0.

This rather discontinuous behavior as collisionality increases seems rather

unphysical and compels us to re-evaluate our assumptions. In the

Introduction we argued that ion trapping was not a viable saturation

mechanism when a broad, two-dimensional wave spectrum is excited. As we

approach marginal stability by increasing the collisionality, the spectrum

becomes quite narrow so that ion trapping should, at some point, become

effective and saturate the instability at a lower amplitude than that which

we have calculated from our mode coupling theory. Ion trapping occurs when
* -1

the bounce time of an ion in the wave potential becomes comparable to

the growth time JA of the instability or

* k2e#/m& - y. (41)

In our normalized units,

* - 12 (/m )l/2Vd/v (42)

for k 1 so that ^ + 0 as the mode approaches marginal stability.

Saturation by ion trapping occurs at a lower amplitude than that resulting

from mode coupling when

< (e/u)1/4 (v/Vdi)1/2. (43)



VI. Summary and Applications

A nonlinear wave equation [see Eq. (13)] has been derived which

describes two-dimensional (koB - 0) lower-hybrid-drift wave turbulence in a
finite B plasma. As in the linear theory of this instability in the weak

drift regime, the ions are treated as unumagnetized and to lowest order

respond adiabatically to the potential fluctuations. The resonant ion

contribution is included as a correction to provide the driving energy for

the instability. The nonlinear portion of the wave equation arises from

the electrons through their E % B and polarization drifts. In addition,

electron dissipation is included either through the collisionless VB reso-

nance or through collisional viscosity.

The nonlinear wave equation has been solved numerically using a

pseudo-spectral method code to obtain the evolution and saturation of the

wave spectrum as well as the self-consistent particle flux. The wave

energy typically saturates as the peaked unstable spectrum spreads

throughout the unstable and weakly damped regions of k space. The

saturated wave spectrum is characterized by two main components: a broad,-1
nearly isotropic spectrum with Jkl > -1g; and a Jagged spectrum consisting

of narrow peaks in the range Jki - 0.5 - These peaks are typicallyPa

displaced towards long wavelength from the linearly most unstable waves by

almost a factor of two. The peaks move around in k space as the waves

exchange energy in a dynamic fashion.

Our numerical computations demonstrate that the wave energy saturates

when the nonlinearity becomes comparable to the linear frequency of the

modes,

V .V - kV (44)

where V is the E x B velocity of the electrons and wk - kyVdi/(1 +

k2 p2s). For the most unstable modes, kp*5  1, wk - Vdi/pe hVdi/Vi
and (44) can be written as
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e*/T 2-3 (2me/a )1/ 2 V/ i  , (45)

where the numerical factor comes from the detailed computations. We have

also found that the saturation level is relatively insensitive to both the

magnitude of the electron dissipation, as long as the damping is sufficient

to stabilize the shortest wavelengths in the computational grid, and the

damping (growth) rate of the long wavelength modes.

Our interpretation of the saturation amplitude in Eq. (45) is that

effective energy exchange between the linearly growing and damped modes can

only take place when the nonlinearity becomes sufficiently large to

overcome the linear frequency mismatch

Aw - l wk2 + wk3 (46)

between interacting waves, k1, k2 and k3. Below the threshold given in Eq.

(45), only a few modes which satisfy Aw , 0 can exchange energy. Above

this threshold all modes can exchange energy. The saturation amplitude in

Eq. (45) also corresponds to the threshold for electron E x B trapping31 so

that strong mode coupling is really a consequence of the strong nonlinear

behavior of the electrons during this trapping process.

The particle flux has been computed self-consistently in parallel with

the nonlinear evolution of the wave spectrum. Both the exact and

quasilinear expressions for the particle diffusion coefficient D are then

calculated from the flux. The quasilinear expression (Dqt) tracks the

exact expression (D) within a factor of two. To lowest order

D - Ax2/At p .s2'i (47)

where the step size is given by Ax p and correlation time by At - y1

where .- halh(Vdi/vi)2 is the growth rate of the most unstable mode in the

absence of electron dissipation. The diffusion coefficient then becomes

D -2.4 p2 (Vd/v) 2(w, (48)
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where the numerical factor comes from the detailed computations. The

diffusion coefficient in (48) is very insensitive to the electron

dissipation, less sensitive than the saturation amplitude e*/Ti given in

Eq. (45). At first glance Eq. (47) seems to imply that the usual estimate

y - k2D or D - p2 y, where y is the maximum growth rate of the instability,
es

is quite accurate. However, the insensitivity of D to the electron

dissipation implies that this estimate is not valid. The growth rate y

decreases rather sharply as the electron dissipation is increased so that

D - p2 y should also decrease. It does not so that this estimate fails to
es

reproduce the computational results.

*We now compare the results of our mode coupling calculation with
laboratory observations of lower-hybrid-drift wave turbulence and with the

results of recent computer simulations of this instability. A CO2 laser

scattering experiment was recently carried out on the Garching, ln

-pinch.5 The measured density fluctuations were flute-like (k.B a 0)

with clear peaks around ky - 0.5 p;'. The lover-hybrid-drift instability

was therefore identified as the source of these fluctuations. Our computa-

tional results are in good agreement with several prominent features of the

observed wave spectra. They measure a broad angular spectrum with kx < ky.

They also observe that the peak in the wave spectrum is shifted towards

long wavelength by about a factor of two from the linearly most unstable

mode. In the experiment data were taken for three different filling

pressures, corresponding to three values of Vdi/vi. We have found that

classical electron-ion collisions have a significant influence on the

*growth rate of the lower-hybrid-drift instability in this experiment

especially for the two highest filling pressures. In Table I we summarize

some of the parameters of their experiment including the ratio of the

electron-ion collision frequency vei to the critical collision frequency,

Vc M .814(Vdi/vi)2 Olh

required to completely stabilize the lower-hybrid-drift wave. In calculat-

Ing VeI we have ignored impurities by taking Zeff - 1. The highest

pressure case (Is Torr) is very close to marginal stability and, given the

uncertainty in experimental parameters, could even be stable. We have

completed numerical computations for the three cases given in Table I. For

8o
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Table I

Parameters of Garching Experiment

PO(u Tort) ne(1014/cu3) Te(ev) B(T) Vdi/vi ve(10 6/sec) ve/c

3 1 115 .79 .52 3.3 .0067

5 2.3 74 .77 .25 13.7 .12

8 5.2 77 .73 .17 28.5 .56
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the two lowest filling pressures, 3 and 5 m Torr, the instability saturates
with n/n - 3.4 x 10-2 and 1.4 x 10-2, respectively, compared with the

measured values of 1.4 x 10-2 and 2.3 x 10-3. Our calculated saturation

levels are 2-3 times larger than measured experimentally. In the case of 8
a Torr the spectrum is close to marginal stability and as a consequence the
saturated wave spectrum is strongly peaked around the narrow band of

unstable modes at ky p s - 0.5& Because the spectrum is quite narrow, ion
trapping cannot be neglected so that the supposition made in Ref. 5 that

4ion trapping saturates the instability is probably valid for this case.

A number of computer simulations of the lower-hybrid-drift instability

have been carried out over the past several years. 10 ,13,32-34  Before

comparing our results with these simulations, we would like to point out

several difficulties which must be overcome in simulating this instability
which are not widely recognized. The large disparity between the electron

gyro time scale, -1 and the growth time of the instability, (vi/Vdi)2
1/2 1 /e/

6 , have forced the theorists to use artificially small mass
ratios, (mi/ue)1/2, and high drift velocities, Vdi/vi, in their codes. As
a consequence, the parameter

pas/Ln  (ae/Mi)1/2(Vdi/vi),

which should be a small number, is of order unity. Cases with larger mass

ratios had to be run with larger drift velocities so e/Ln has not been

varied significantly. The parameter es /Ln is significant for our

computations for two reasons. First, the ratio of the rate of change of

the magnetic free energy to particle drift energy in a finite 0 plasma
scales as L2/p2. 15  For realistic parameters the magnetic free energy

therefore greatly exceeds the drift free energy and the lower-hybrid-drift
instability has no free energy bound. In the simulations this has not been

the case. Second, in calculations of the nonlocal structure of the lower

hybrid drift instability, it has been shown that the number of unstable

harmonics In the x direction scales as L/pes so that for realistic
parameters a broad spectrum of unstable modes should be excited.35 This is

again not the case in many simulations. Recently, fluid-particle hybrid

codes have been developed and simulations of the lower hybrid drift

instability have been carried out with pes/Ln << 1.13  In these simulations
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a broad spectrum of modes in k space is excited with k < k . The cleft in

the wave spectrum along ky - 0, as shown in Fig. 6, is also seen in the

wave spectra from these simulations. Finally, the amplitude of the

potential fluctuations at saturation as obtained from these simulations is

given by

e+/Ti u 2.4(23/mi)
2 (v/ v)

2

which is in excellent agreement with our results [see Eq. (45)]. One

caveat to this comparison is that most of their simulations were carried

out for Vdi/vi > 1 while our theory strictly applies only for Vdi/vi < 1

Finally, we now consider two physical systems, the earth's

magnetosphere and ionosphere, where lower-hybrid-drift turbulence is

expected to be important. The plasm in the neutral sheet of magnetotail

is essentially collisionless. The lower-hybrid-drift instability has

previously been proposed as a mechanism for dissipating magnetic energy in
4this reversed field configuration. In the most simple 1-D model of

magnetic field annihilation the flux merging velocity V3 is simply given
by15

V3 - P2 v/X

where v is the collision frequency (anomalous or classical) and X is the

scale length of the magnetic field. The anomalous collision frequency due

to lower-hybrid-drift turbulence is given by v - D/p 2 so that from Eq.
as

(48), we find

Vh/VA - 2.4 (a/mi)/2 (Vdi/v i )3.

where V2 - 32/4Irmn is the Alfv;n velocity. The rate of dissipation of

magpntic flux is quite small during typical quiet conditions when Vdi/

vi - 0.1 while during subetorm activity when substantial thinning of the

sheet has been reported (Vdi/vi < 1), the dissipation rate can be quite

large.

88

=1W,1,,101



The lover-hybrid-drift instability has also been suggested as a

mechanism to generate small-scale irregularities (X < 1 a) in the

ionosphere during equatorial spread F (ESF),2 1,3 6  and observational

evidence supports this mechanism.3 7'3 8  An important quantity to experi-

mentalists is the power spectrum of density fluctuations during ESF.
3 8 , 3 9

Recently, Singh and Szuszczewicz3 8 have presented a composite of ESF wave

spectra from medium to short wavelengths. They find that (1) the spectra

in the medium and intermediate wavelength domain (A - 50 km * 200 m) scale

as k- 1 . 5 * 0.4 and k- 2.4 * 0.2, respectively; (2) the transitional wave-

lengths U - 200 m + 20 a) have a k- 4 . 8 * 0.2 dependence, presumably due to

drift waves; (3) the power spectrum breaks at kpi > 1 () < 20 m) to a

shallower k dependence; and (4) the shortest wavelength observations

(1 m < x < 20 m) are consistent with a wave-particle interaction such as

the lower-hybrid-drift instability. In order to apply the results of our

nonlinear theory to the ionosphere we show in Fig. 11 a plot of jk2

(e#/Ti)2(vi/Vdi)2(mi/2ae) versus n2  . 912 
- 9k2P2 after saturation for

Vdi/vi - 0.56 and ve/ h - 0.04. Since we assume quasi-neutrality and the

ions are basically adiabatic 6ni/n we/Ti), Fig. 11 can be interpreted as

an instantaneous power spectrum of density fluctuations associated with the

lower-hybrid-drift instability. The arrow at n2 - 9 denotes the fastest

growing linear mode (for typical ionospheric parameters B - 0.3 G, and

Ti 0.1 ev this corresponds to A w 15 cm). Two important aspects of this

figure bear comment. First, there is substantial power in the long wave-

length regime (n2 < 9) and the spectrum is relatively flat, consistent with

observational results. And second, the short wavelength spectrum (n2 > 9)

corresponds to a k- 6 dependence, somewhat steeper than the transitional

regime which has a k74 "8 dependence. Thus, we predict that the very short

wavelength power spectrum (X < 15 cm) has a k -6 behavior. Experimentalists

are unable to resolve the power spectrum of these very short wavelength

modes so that our results cannot be verified at this time but await further

improvements in experimental techniques.
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Appendix

One caveat needs to be added to the discussion of the mode coupling in

lower-hybrid-drift turbulence presented in Sec. II. The dispersion

relation in Eq. (17) was derived by keeping only the interaction of (c, k)
with its nearest neighbors (w+, k+). Unfortunately, the coupling to higher

order modes k + pk with p > 1 cannot be neglected in general. This can be

most easily understood in the limit w wk, w+ [see Eq. (18)]. Since we

have made no a priori assumption on k, the dispersion relation should

remain invariant under the operation k + k + pk. The dispersion relation

in Eq. (17) does not have this property and therefore cannot be correct.

In this limit there is no small parameter which allows the coupling to

higher order modes to be neglected. The coupling can be cut off, however,

by adding dissipation to the system. When the modes k + pO (with p > 1)
are heavily damped, the coupling to these modes can be neglected and the

dispersion relation in Eq. (17) is correct. For the parameters considered
in this paper, these modes are indeed heavily damped so that the dispersion

relation in (17) can be justified.

- 3

88



r-47

DISTRIBUTION LIST
Iz

PLEASE DISTRIBUTE ONE COPY TO EACH OF THE FOLLOWING PEOPLE (UNLESS OTHERWISE
NOTED)

NAVAL RESEARCH LABORATORY NASA
WASHINGTON, D.C. 20375 GODDARD SPACE FLIGHT CENTER

Dr. P. MANGE - CODE 4101 GREENBELT, MD 20771
Dr. P. GOODMAN - CODE 4180 DR. K. MAEDA

DR. S. CURTIS
A.F. GEOPHYSICS LABORATORY DR. M. DUBIN
L.G. HANSCOM FIELD DR. N. MAYNARD - CODE 696
BEDFORD, MA 01730

DR. T. ELKINS CODLMER
DR. W. SWIDER NAVAL AIR SYSTEMS COMMAND
MRS. R. SAGALYN DEPARTMENT OF THE NAVY
DR. J.M. FORBES WASHINGTON, D.C. 20360
DR. T.J. KENESHEA DR. T. CZUBA
DR. W. BURKE
DR. H. CARLSON COMMANDER
DR. J. JASPERSE NAVAL OCEAN SYSTEMS CENTER

SAN DIEGO, CA 92152
BOSTON UNIVERSITY MR. R. ROSE - CODE 5321
DEPARTMENT OF ASTRONOXY
BOSTON, MA 02215 NOAA

DR. J. AARONS DIRECTOR OF SPACE AND
ENVIRONMENTAL LABORATORY

CORNELL UNIVERSITY BOULDER, CO 80302
ITHACA, NY 14850 DR. A. GLENN JEAN

DR. W.E. SWARTZ DR. G.W. ADAMS
DR. D. FARLEY DR. D.N. ANDERSON
DR. M. KELLEY DR. K. DAVIES

DR. R.F. DONNELLY
HARVARD UNIVERSITY
HARVARD SQUARE OFFICE OF NAVAL RESEARCH
CAMBRIDGE, MA 02138 800 NORTH QUINCY STREET

DR. M.B. McELROY ARLINGTON, VA 22217
DR. R. LINDZEN DR. G. JOINER

INSTITUTE FOR DEFENSE ANALYSIS PENNSYLVANIA STATE UNIVERSITY
2000 NORTH BEAUBEGARD STREET UNIVERSITY PARK, PA 16802
ALEXANDRIA, VA 22311 DR. J.S. NISBET

DR. E. SAUER DR. P.R. ROHRBAUGH
DR. L.A. CARPENTER

MASSACHUSETTS INSTITUTE OF DR. M. LEE
TECHNOLOGY DR. R. DIVANY

PLASMA FUSION CENTER DR. P. BENNETT
LIBRARY, NW16-262 DR. F. KLEVANS
CAMBRIDGE, MA 02139

89



SCIENCE APPLICATIONS, INC. UNIVERSITY OF PITTSBURGH
1150 PROSPECT PLAZA PITTSBURGH, PA 15213
LA JOLLA, CA 92037 DR. N. ZABUSKY

DR. D.A. RA1LIN DR. M. BIONDI
DR. E. FRIEMAN DR. E. OVERMAN

STANFORD UNIVERSITY UNIVERSITY OF TEXAS
STANF'OID, CA 94305 AT DLLAS

DLe P.M. BANKS CENTER FOR RESEARCH SCIENCES
P.O. BOX 688

U.S. ARMY ABERDEEN RESEARCH RICHARDSON9 TX 75080
AND DEVELOPMENT CENTER DR. Rt. HEELIS'

BALLISTIC RESEARCH LABORATORY DR. W. HANSONABERDEEN, HD DR. J.P. McCLURE i
DR. J. HEIMERL

UTAH STATE UNIVERSITY
GEOPHYSICAL INSTITUTE 4TH AND 8TH STREETS
UNIVERSITY OF ALASKA LOGAN, UTAH 84322
FAIRBANKS, AK 99701 DR. R. HARRIS

DR. L.E. LEE DR. K. BAKER
DR. R. SCHUNK

UNIVERSITY OF CALIFORNIA, DR. J. ST.-MAURICE
BERKELEY

BERKELEY, CA 94720 PHYSICAL RESEARCH LABORATORY
DR. M. HUDSON PLASMA PHYSICS PROGRAMME

AHMEDABAD 380 009
UNIVERSITY OF CALIFORNIA INDIA
LOS ALAMOS SCIENTIFIC LABORATORY P.J. PATHAK, LIBRARIAN
J-1O, MS-664
LOS ALAMOS, NH 87545

DR. M. PONGRATZ
DR. D. SIMONS
DR. G. BARASCH
DR. L. DUNCAN
DR. P. BERLN RDT
DR.. S.P. GARY

UNIVERSITY OF MARYLAND
COLLEGE PARK, MD 20740

DR. K. PAPADOPOULOS
DR. E. OTT

JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
JOHNS HOPKINS ROAD
LAUREL, MD 20810

DR. R. GREENWALD
DR. C. MING

40



Director (Institute of Geophysics and
Naval Research Laboratory Planetary Physics):
Washington, D.C. 20375 ATTN: Library

ATTN: Code 4700 (26 Copies) C. Kennel
Code 4701 F. Coroniti
Code 4780 (100 copies)
Code 4187 (E. Szusxczewicz) Columbia University
Code 4187 (P. Rodriguez) New Tork;- Ne tork 10027
Code 2628 (22 copies) ATTN: R. Taussig

.-. A. Gross
University of Alaska
Geophysical Institute University of California
Fairbanks, Alaska 99701 Berkeley, California 94720

ATTN: Library (Space Sciences Laboratory):
S. Akasofu ATTN: Library
J. Tan M. Hudson
J. Roederer (Physics Dept.):
L. Lee ATTN: Library

A. Kaufman
University of Arizona C. HcKee
Dept. of Planetary Sciences (Electrical Engineering Dept.):
Tucson, Arizona 85721 ATTN: C.L Birdsall

ATTN: J.L. Jokipii
University of California

University of California, S.D. Physics Department
LaJolla, California 92037 Irvine, California 92664
(Physics Dept.): ATTN: Library

ATTN: J.A. Pejer G. Benford
T. O'Neil N. Rostoker
40. Winfrey C. Robertson
Library N. lynn
J. Haluberg

(Dept. of Applied Sciences): California Institute of Technology
ATTN: H. Booker Pasadena, California 91109

ATTN: i. Gould
University of California L. Davis, Jr.
Los Angeles, California 90024 P. Coleman
(Physic Dept.):

ATTN: J.M. Dawson University of Chicago
B. Fried Encrico Fermi Institute
J.G. Horalles Chicago, Illinois 60637
V. Gekelman AMr: E.M. Parker
R. Stenzel I. Lerche
Y. Lee Library
A. Wong
F. Chan
M. Ashour-Abdalla
Library
J.H. Cornwall

41



University of Colorado University of Minnesota
Dept. of Astro-Geophysics School of Physics
Boulder, Colorado 80302 Minneapolis, Minnesota 55455

ATTN: M. Goldman ATTN: Library
Library J.1. Winckler

P. Kellogg
Cornell University
School of Applied and Engineering Physics X.I.T.
College of Engineering Cambridge, Massachusetts 02139
Ithaca, New York 14853 ATTI:--Library

AITN: Library (Physics Dept.):
R. Sudan ATTN: B. Coppi
B. Kusse V. George
. Fleischmann G. Zekefi

C. Wharton T. Dupree
F. Morse R. Davidson
R. Lovelace (Elect. Engineering Dept.):

ATTN: R. Parker

Harvard University A. Zers
Cambridge, Massachusetts 02138 L. Smullin

AIT: Harvard College Observatory (RLE.):
(Library) ATTN: LiLbrary
G.S. Vaina (Space Science):
M. Rosenberg ATN: Reading Room

Harvard University Princeton University
Center for Astrophysics Princeton, New Jersey 08540
60 Garden Street Atta: Physics Library
Cambridge, Massachusetts 02138 Plasma Physics Lab. Library

ATTN: G.B. Field C. Oberman
F. Perkins

University of Iowa T.K. Chu
Iowa City, Iowa 52240 H. Okuda

ATTN: C.L Goertz V. Aranasalan
D. Gurnett H. Hendel
G. Knorr R. White
D. Nicholson H.. Kurlarud

H. Furth
University of Houston S. Yoshikawa
Houston, Texas 77004 P. Rutherford

ATTN: Library
Rice University

University of Maryland Houston, Texas 77001
Physics Dept. Attn: Space Science Library
College Park, Maryland 20742 R. Wolf

ATTI: . Papadopoulos
H. Rowland University of Rochester
C. Wu Rochester, New York 14627

ATTN: A. Simon
University of Michigan
Ann Arbor, Michigan 48140

ATTN: E. Fonthei

42



Stanford University N.O.A.A.
Institute for Plasma Research 325 Broadway S.
Stanford, CaliWornia 94305 Bmder, Colorado 80302

ATN: Library ATTN: J. Weinstock
Thomas Moore (SEL, R-43)

Stevens institute of Technology W. Bernstein
loboken, New Jersey 07030 D. Williamsl ATTN: B. Rosen

G. Schmidt Sandia Laboratories
X. Seidl Albuquerque, New Mexico 87115

ATTN: A. Toepfer
University of Texas G. yeonas
Austin, Texas 78712 D. VanDevender

ATTh: W. Drummond J. Freeman
V. Wong T. Wright
D. Ross
V. Horton Bell Laboratories
D. Choi Murray Hil1, New Jersey 07974
. Richardson ATTU: A. Hasegawa

G. Leifeste
Lockheed Research Laboratory

College of William and Mary Palo Alto, Calif ornia 94304
Williamsburg, Virginia 23185 ATTN: I. Walt

Attn: P. Croinfield J. Cladis

Lawrence Livermore Laboratory Physics International Co.
University of California 2400 Merced Street
Livermore, California 94551 San Leandro, California 94577

ATTN: Library -TI: J. Benford
"B. Kruer S. Putnam.
J. Thomson S. Stalings
J. Nucholls T. Young
J. DeGroot
L. Wood Science Applications, Ine.
3. Emmett Lab. of Applied Plasma Studeis
B. Lasiusky P.O. Box 2351
B. Langdon LaJolla, California 92037
R, Briggs ATTE: L. Linson
D. Pearlstein J. McBride

Los Alamos National Laboratory Goddard Space Flight Center
P.O. Box 1663 Greenbelt, Maryland 20771
Los Alamos, New Mexico 87545 ATN: H. Goldstein

ATTN: ibrary T. Northrop
D. Forslund T. Birmingham
J. Kindel
B, Bezzerldes TRW Space and Technology Group
H. Dreicer Space Science Dept.
J. Ingraham Building R-I, Room 1170
t. Boyer One Space Park
C. Nielson Redondo Beach, California 90278
E. Lindman ATTN: L Fredericks
L. Thode .L. Taylor

48



National Science Foundation Matthew , David
Atmopheric Research Section (ST) IFPS
Vashingtol, D.C. 20550 University o Maryland

ATTN: D. Peacock College Park, Maryland 20742

Goddard Space ?light Center Schunk, Robert W.
Code 620 Utah State University
Greenbelt* Maryland 20771 Dept. of Physics

ATTN: -Robert F. Benson Logan, Utah 84322

N ASA eadquartera
Code El-8
Washington, D.C. 20546

ATTN: Dr. 1. Scheerling
Dr. J. Lynch
Dr. D. Butler

lampar, David
Center for Space Sciences
P.O. Box 688
University of Texas
Richardson, Texas 75080

Leung, Phitip
Dept. of Physics
University of California
405 Hilgard Avenue
Los Angeles, California 90024

Lysak, Robert
School of Physics and Astronomy
University. of Minnesota
Minneapolis, 10 55455

Schulz, Michael
Aerospace Corp.
A6/2451, P.O. ox 92957
Los Angeles, California 90009

Shawban, Stanley
Dept. of Physics & Astronomy
University of lows
Iowa City, Iowa 52242

Tenerin, Michael
Space Science Lab.
University of California
Berkeley, California 94720

Vlahos, Loukas
Dept. of fysics
University of Maryland
College Park, Maryland 20742

44



FILMED

1=84

DTIC


