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NONLINEAR MODE COUPLING THEORY OF THE
LOWER-HYBRID-DRIFT INSTABILITY

1. Introduction

The lower-hybrid-drift instability has been of considerable interest
to plasma physicists for more than a decade as a driving mechanism for the
anomalous transport of particles, momentum and energy in both laboratoiy
and space plasmas. In laboratory applications, this instability was
initially studied to explain anomalous sheath broadening in theta pinch

;*QZ implosions, but has recently been applied to other laboratory confinement

2 and compact torii.3 In

devices such as toroidal reversed field pinches
space plasma, it has been proposed as a mechanism to provide anomalous
resistivity for reconnection events in the ugnetosphére.4 Experimentally,
the lower-hybrid-drift instability has been observed in a recent theta
pinch cxpcriunt,s and satellite data indicate that it exists in the

earth’s magnetotail and ngnctopauu."

The linear theory of the lower-hybrid-drift instability is well
vaderatood.’”? The wmode can be excited in inhomogeneous plasmas
vhen pi/Ln > (-‘/11)1/6 vhere p, is the mean ion Larmor radius and L, is
the scale length of the density gradient. At maximum growth it is
characterized by ®. S Oint Y < w,s keB = 0, and kpes ~ 1 where 2
w=w +1y, o, is the lower hybrid frequency and p = 91(me/2"1) .
N Since the instability is high frequency (w >> ni) and short wavelength
(kn1 2> 1) the ions are treated as ummagnetized while the electrons are
treated as strongly magnetized. In the weak drift regime V dilv i < 1 (where
Vg is the ion dismagnetic drift velocity and v; is the ion thermal
B velocity), w {kV,,

interaction of the drift wvave with the ions. In finite g plasmas,

and the mode 1is driven unstable by the resonant

oy electrons slso resonate with the wave via their VB drift. The resultant
electron damping 1is stabilizing for kp es > 1. In the high drift
regime (vd:l/v:l > 1), the mode is driven unstable via the interaction of a

R Ao
»

positive energy lower hybrid wave and a negative energy drift wave. In
this paper we focus on the weak drift regime.

The nonlinear development of the lower-hybrid-drift instability is

complex and not as well understood as the linear theory. A variety of

nonlinear saturation mechanisms have been proposed to date. Ion trappinglo

and stochastic electron heatinsu

have been proposed to quench the growth
of the instability in particle simulations. However, ion trapping is not a

Manuseript approved September 7, 1988. 1
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viable saturation mechanism when a broad 2D spectrum of waves is exc:i.ted,]'2

and it has not been observed in recent simulations using realistic mass

13 Stochastic electron heating does not

ratios where such spectra develop.
onset until a rather large threshold, n/n > 0.25, is exceeded where n is
the density fluctuation of the wave. A wave energy bound based on the
available free-energy in the relative electron-ion flow (current) has also
been invoked to calculate a maximum wave anplitude.u’ In a finite g

plasma, however, the current and self-consistent magnetic field are coupled

15 The free energy then

and the magnetic field energy can also be tapped.
becomes extremely large and does not realistically act as a bound.
Finally, electron resonance broadening has been proposed as a saturation
||e¢.:hani.s|n.]'6 It has been recently shown in more refined calculations that
"resonance broadening™ does not cause a net dissipation of energy but
merely leads to an exchange of energy between modes in k space unless wave~
particle resonances are :lucluded.”’18 This mechanism can therefore only
stabilize the wave spectrum in finite g plams.19

In this paper we present s nonlinear mode coupling theory of the
lower~hybrid-drift instability. Our preliminary calculations have been
20 The basic result is that the instability can

saturate by transferring energy from growing, long-wavelength modes to

presented previously.

damped, short-wavelength modes. This saturation mechanism is consistent

13 ana with experimental observations.s In

with recent computer simulations
this paper, we extend, the earlier theory to self-comsistently incorporate
finite g effects, and to include electron collisions in order to compare

our results with experimental observations.

The organization of the paper is as follows. 1In the next section we
derive the nonlinear wave equation and the wave energy transfer with the
two basic nonlinearities: the nonlinear electron E x B and polarization
drifts. In Section III we discuss the numerical methods used to study the
mode coupling process. In Section IV we present results based upon VB
electron damping of the short wavelength modes, while in Section V we
present results based upon collisional damping of the modes. In Section VI
we summarize our theory, compare our theoretical results with experimental
observations, and discuss some applications of our results to space

plasmas.
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II. Derivation of the Mode Coupling Equation

We consider a slab equilibrium of cold electron and warm fons with a
density profile np(x) supported by a magnetic field B = Bo(x)ez as shown in
Fig. 1. Equilibrium pressure balance requires

2 [p® + B (x)/81] = 0. (1)

The ratio of thermal to magnetic pressure, g = SwdTi/Bg, is assumed to be
of order unity so that electromagnetic corrections to the lower-hybrid-
drift instability must be retained. The equilibrium ion velocity distri-
butign is taken to be a Maxwellian with an average drift velocity 21 -

Vai e vhere V4, = (vf/Zni)a tn n/3x, v% = 2'1‘1/n1 and g, = eBo/nic.

Because of the flute nature of the instability (E-Q'- 0), we self-
consistently limit the spatial variations to the xy plane. In this limit
the electric and magnetic fields can be represented by the scalar potential
¢ and the vector potentials A, and Ay as®

-~

B=3Bee, = (3A/ox -3 /3 )e (2)

E==~Vp - c'laglat (3)

with VeA = 0. Even when g - 1, the induction component of E is small so
that it can generally be discarded except when the V¢ component of E does

not contribute.

We are interested in time scales of order 3/3t >> 9, so that the ion
response to both the equilibrium and perturbed magnetic fields can be
neglected. Furthermore, in the weak drift regime the ions respond to the
perturbed potential ¢ adiabatically to lowest order since 3/3t << v1|V|.8
Thus,

n, =yl + /% vzllv'll(g—t + Va4 :—y)]exp(- es/T, ), (4)

where the term proportionsl to /y in (4) is a small correction describing
the resonant ion interaction.



y 4

Fig. 1: The basic equilibrium configuration is shown. The unstable wave .

spectrum is taken to be two-dimensional with 15_-50 = 0.




In contrast to the ions, the electrons are strongly magnetized since
/st <« ne. The electron motion 1is simply given by the E x B and
polarization drifts,
. a_

[ [
"3 Exe, -3

(5)
e dt

wl 1)

v
e z

vhere d/dt = 3/3t + V_«V and Vo= cEx ez/Bz. The electron density can be

~E
calculated from the continuity equation,

| d 1 n /dt + 9, = 0. (6) |

The electron co-breasion v-ge is obtained from Eq. (5). To lowest order,

N P PR

" - C d 2 -d
VOY‘ rzn'e—a? V<é rra n Bz- (7
E The first term in Eq. (7) arises from the polarization drift and the second

o from the compression of the flux tube in a finite g plasma. The continuity

equation can now be written as

d d
r 13 m(nelnz) +-§-3-5:a-t- V29 = 0 . (8)

s0 that the rate of change of the number of electrons in a flux tube (ne/Bz)
is given by the polarization drift. The time variation of B, in Eq. (8 )
is calculated from Ampere’s Law

5 | VA_ = - (4n/c)I_ = = (4wn /B,)24/3y, ®

vhere J, is dominated by the E x B drift of the electrons. Using V.A = 0,
we find that vQAx - - anz/ay so that

2
S [gr = moee] = 05 (10) f

which can be integrated to evaluate

? 3 (e i
RN E (,FI.) (11) 1

o i, Pl Ngg S d.*‘.'u'\ﬁ - w\.‘.- N By e
53,1‘4n‘x 'f,t'nn"-'i‘l.,.-,‘-.-‘-‘-!‘._.
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in Eq. (7). The convective derivative of B, can similarly be evaluated
using Eq. (10) in conjunction with the equilibrium pressure balance
relation,

i YE'V m Bz =

jm

€ 3 %mmn 3¢
B ax ay * (12)
z
Finally, invokihg charge neutrality (n, = ny) and combining (8), (11) and
W (12), ve obtain the nonlinear equation 1

P PS - ~=1 - ~ -
(13)

+ (;; % ;z:&);z; + yo;; x ;zo‘el;.ll(;T + ;y) =0

A where
) et Pes v
s ‘ (1+8/2)
i P
g = .i.‘l Qe-(l + 8/2)1/21:
_ -

~ Ly 1/2 e
, p- = +p/2)’° 22
i P T
e es i
ﬁ

Yo = */2(vy /v )/Q1 + 8/2)

and the subscripts on ; denote a derivative with respect to that
variable. The quantity Ye represents the wave damping due to electroms,
which can result either from B resonant particles in a finite 8 plasm8 or
collisional viscoaity.ZI Equation (13) is only valid for Yo < 1 since the
adiabatic ion response can only be justified in this limit. Linearizing
this equation, ve obtain the complex eigenvalue (in our normalized units),

a . . K M Y, _
LVHo: SRR oy 2 B

Since Eq. (13) is second order in time, there is an additiomnal root,
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o = 11kI (1 + K)/y,, (15)

'"h:leh is spurious since it violates the assumption that “u”™ << kv This
toot 1s growing and therefore must be eliminated before c‘rrying out our

A

" numerical computations (see Sec. III).

- In the flute limit considered here, the magnetic perturbat:lou and
equilibrium VB do not -tmeturally alter the equation for ¢. They enter
the equations through the factors (1 + 8/2) which appear in the normalized
variables defined in Eq. (13). We ignore this trivial finite g modifica-
tion to the equations in the remainder of this paper.

In the »11-11: Yer Yo * 0, lg. (13) reduces to the Hssegava-Mima
equation in which the nonlinearity arises from the nonlinear polarization
drife.22 This equation has two invariants, energy and enstrophy, neither
of wvhich is preserved in the more general Eq. (13). When Yo is finite, the
E x gnonl:lmt:lt»y also appears in Eq. (13). This nonlinearity has been
considered previcusly in studies of universal mode tm:lmlem:c.zz"'24

Our calculation differs from prdvious work in that we do not make the
quasi~linear hypothesis that

“t + ’7 x - 1(% - ky]Q A . (16)
"n the terms prepcrtiml to Yo in Eg. (13). Thus, our equation is second
order in time rather than first order. In Sec. III it is shown that the
spectrum always saturtates when ; ~ 1 so that the linear and nonlinear terams
. 4n Bq. (13) are comparable. " The quasi-linear hypothesis can therefore not
be justified in dtﬂtm turbulence. A similar second order equation has
been derived for dissipative drift waves.2®

It 1is recognized that both universal and dissipative drift wave
turbulence sre isherently three-dimensional since k = keB/B is required
for the mode to exist and the spatial variations in the two directions
~ perpendicular to B sre required to calculate the mode coupling. In 2-D
models of this turbuleace the eoupltu of modes with differing k ‘s is
w”" 26 There is no theoretical justification for this ptoc.dnre so
that care must be taken in applying the results of model calculations to
sxperimsutal observatiors. By co irast, the lower-hybrid-drift instablility
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is a flute mode so that the neglect of the coupling along B can be
justified and the results of the 2-D model can be directly compared with
experimental observations.

A qualitative understanding of the direction of the flow of energy
described by Eq. (13) can be obtained by calculating the stability of a
single, 1large-amplitude wave ;O with io and ;0 satisfying the 1linear
dispersion relation in Eq. (14). A perturbation of wavevector k 1s coupled
through the pump to modes with“g ; P EO (p =~ 1,2,...). For sing}icity, we d
considfr on}y tEe coup}ing of (u, E) with its nearest neighbors (mi’ Et)
where qt '“m ; Wy and E+ = k + EO' i.e., p = 1. The dispersion relation .
for this (k, 5+) coupled systen is (see Appendix)

s Mk MR .
e(ws k) + l4g)2[ — i o) | ky + “kg] = 0 an
e(w, k)

vhere
e(w,k) = wfl + k2(1-18 )] - k + 1y,
8 = Yolky=w)/k3

M(k,,k,) = k) x kyee [k2(1 - 48,,) - k3(1 - 15,,)]

When Yo and Y, are neglected in Eq. (17) and we take the limit o >> Wy s
the dispersion relation simplifies to

2 24 249

0 "+
= |¢0| (k x koe ) —-rz— (__‘f— ——rz—) (18)
The decay modes are purely growing with a growth rate which peaks around i
Eon = 0 with klk # 0.6 - 0.8, depending on the magnitude of kg A .
nececuary requircnent for instability is that one of the three decay modes
(g, ) has a longer wavelength than the pump. 27 This decay process with .

E'EO "= 0 and k/k € 1 is clearly seen in our numerical simulation during
the initial phaoe of saturation (Sec. III) of the instability. For this
situation, in which Eq. (13) reduces to the Hasegawa-Mima equation, the
vave energy inevitably cascades to longer and longer wavelengths so that no

stationary wave spectrum can renult.zs
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When Yp is included, this conclusion no longer remains valid. Taking

the limit ko < k and again assuming w >> Wys the dispersion relation is

given by
o 2004120k x K, ee 12K ¥ 2+2)
mz - 0 ‘5 X [1 + 1 132——77——-] . (19)
1+ k7(14°)

Equation (19) yields a dissipative instability when Yo is finite. The
destabilizing term can be traced back to the E x B nonlinearity. This
dissipative instability produces a flow of energy from long to short
wavelength and, as will be demonstrated, prevents the condensation of wave
energy at long wavelengths, enabling the wave spectrum to reach a steady

state.

The dispersion relation in Eq. (19) contains no amplitude threshold
for instability as long as k is in the proper direction. In the more
general dispersion relation in Eq. (17), where the linear frequencies are
retained, ;0 must exceed a threshold before the instability onsets unless

the frequency matching condition

Aw = w -~ wkf + wy = 0 (20)

"~ N ~ -

is satisfied. For EO = koey and ko, k < 1, this matching condition becomes

k2 = = 3(k2 + k k). (21)

")

y y

The locus of modes which satisfies Eq. (20), those with ﬁy < 0 and |£y| <
ko, are shown in Fig. 2. There is no threshold for instability of these
modes (neglecting dissipation). Nevertheless, for the lower hybrid drift
instability both of the decay modes k and k + EO
individually unstable so that the mode coupling process can not saturate

the instability.

shown in Fig. 2 are

Interacting modes with Aw # 0O can be driven unstable when ;0 exceeds a
threshold. For the case §0 = ko ey, this threshold can be easily calcula-
ted. The dispersion relation in Eq. (17) simplifies to

I 12K455 (3 - 2)
—_— r L i
(1+x2)(1+ k20+ k2)

(22)

‘:’2'(;’0';‘&)2'2
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o
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where the dissipative sources and sinks have been neglected. In this limit

w « ky = 0 and Wy = = W 80 that M = wy = w, is the frequency
mismatch. To have instability,

- - K2
1612 > 1912 = —_— e . (23)
2(1 + k2 + kZ)(1 + k) (k3 - k2)

For cases of interest io ~ 1 and I;olc = .25. At this amplitude the
nonlinearity overcomes the linear frequency mismatch of the modes and a
broad range of modes is driven unstable. As a consequence, we would expect
the wave spectrum to saturate at around this level even when Yo K1, 1i.e.,
the driving rate is small. This conclusion is verified in our numerical

computations.

The particle flux can be calculated self-consistently with the wave
spectrum. The rate of change of the density n(x) = <ne(x,y)>y, where < >y
is a spatial average over y, 1s obtained by averaging the electron
continuity equation,

an _ 3 -

st t 5 <nev¢x>y 0. (24)
To lowest order, Ve * - (c/B)3¢/3y, the polarization drift being small.
The electron density can not be calculated directly since Eq. (24) for n,
can not be inverted analytically. However, since ng
expression for ny; in Eq. (4) to obtain an explicit expression for the

diffusion coefficient D = = <n_V__>_/ (3n/3x),

= ny, We can use the

e'ex’y
- - (22 2 s 3 Sk
D =D/Dy = (3) YOE w ¢k(ky¢k 15=). (25)

2
D0 " Pes®1h
Note that the normalization factor Dy of the diffusion coefficient
corresponds to a step size Pes with a correlation time m;;- In the

quasilinear limit 3/371 = - iw, and D is given by

a = G g riizig za iy (26)

The time evolution of both D and Dql will be computed along with the wave

spectrum in Sec. III.
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I1I. Numerical Computations

The nonlinear equation for; in Eq. (13) is too complex to solve
, analytically and we have therefore adopted a computational approach. It is
convenient to separate the second order Eq. (13) into two complex first
order equations by defining a new function

o T
..

. - -~ ‘.1 -~ -
: z V2 .
; vE e+ ylvii(e +§) (27)
“3
5 Equation (13) for ; can then be written as ]
-:, -~ _ -~ Y S ”~ .A - .
;3 ¢T g.r + ¢y + Yo ¢ + V¢ x e, VW=0 (28)
Since Yo << 1, we find from Eq. (27) that to lowest order
2 -~ ‘-2 .
¥ The second term on the right side of Eq. (27) is already small since it is

proportional to Yo 80 that ¢ in this term can be approximated to lowest
order. Equation (27) then becomes an evolution equation for y,

T

Do Yl

vomow IvIv2(y - 92;)/70. (30)

Finally, eliminating *f in Eq. (28) using Eq. (30), we obtain a similar
evolution equation for ¢,

br == b+ Ygh = ¥+ VIV - V20)/y, - V4 x ;z.vw. (31)

Note that the iteration procedure which was carried out on Eq. (27)
eliminated the spurious unstable root. The digpersion relation which
results from linearizing Eqs. (30) and (31) yields the correct eigenvalue
of the lower hybrid drift instability given in Eq. (14) plus a spurious
damped root,

12
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we=-1lkl301 + iz)/yo, (32)

e Aty g e

which does not cause any numerical difficulties. All of our numerical

N computations are based on the two coupled equations for ¢ and ¢ in (30) and
(31).

The inclusion of the electron damping ;e in Eq. (31) is essential in
order to obtain a saturated spectrum since in the absence of this term all
modes in E space are unstable [see the growth rate in Eq. (14)]. We have
used two forms of electron dissipation in our calculations. The first
arises from the VB resonant electrons in a finite g plasma. Explicit
expressions for this damping rate have been derived in Ref. 9. 1In the long
wvavelength limit

<

t Y " yeoliyli~ (33)
e

b with

1+ 282

: Yo = 7 YRR exp(~ 2/Be) (34)
‘ 8, 8¢ ( By

by vhere g8  and Bi are the :lnd:l.vidual electron and ion values of beta. In the
short \uvelength limit, y scales as k k2 80 we take as a model

;) Y " Y.o;yi"/(l + k2). (35)
X

5‘3 An important feature of the B resonant damping is that it scales as iS as
_ ; + 0. Since the growth ter- in Eq. (14) scales as ;3 in the long wave-
i length limit, modes with k = 0 remain unstable even as ;y + 0. For large
E x all modes are stable. 'l‘he boundary between stable and unstable regions
} ’ of k space is shown in Fig. 3a for YQOIYO = 0.1 and 1.0. The area below

the bounding curves is unstable. As vy eOlYO increases the unstable spectrum
collapses toward long wavelength but unstable modes always remain.

Electron collisional viscosity is important in laboratory experiments
vhere neasurements of lower-hybrid-drift wave turbulence have been made.

The electron damping rate for this case is given \)yz1

18
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- 2
Yo = Vok (36)
where
Vg = Velp/RyPeqs 37

Ve is the electron-ion collision frequency

v, = 2.9 x 10-6(An./'1‘e3/2)3_1,

is the electron denmsity in cn”3

A 1s the Coulomd logaritha, n, and T, is
the electron temperature in ev. In this case the collisional damping
dominates the growth at both large and small i 30 that the unstable region
of g space is localized around g ~ 1 as shown in Fig. 3b for several values

of vy/Yge There is no instability when vy/y, > V3/16.

The coupled squations for; and ¢ in (30) and (31) are solved using a
pseudo~spectral method code developcd by FPyfe et al.,” based on the work

of Orszag. 30

The dependent variables ¢ and ¢ are Fourier-decomposed,
#(x,1) = I ¢(k,7)exp(1k.x), (38)
k

b4

where k - nlx and n = nxc + nycy' v:‘l.th n, and a, integers. The parameter )
fixes the value of |n| for which |k| = 1. _The nonlinear term in Eq. (31)
is computed by fast Fourier transforling VQ and w from k to configuration
space, calculating the product VQ x c -VQ in configuration space and then
fast Pourier transforming the r:oult b.ck to 15_ space. The equations are

then stepped forward in time in k space and the cycle is Tepeated.

The numerical results presented in this paper are nominally computed
on a 32 x 32 mesh. However, to prevent alissing of the wave energy during
the fast Fourier transformation, it is necessary to zero all modes with n > .
32/3 so that the useful volume of k space is actually much less than one
would expect.

A number of tests have been made to ensure that the code is correctly
sdvancing the equations in time. The growth rates of the modes as obtained
from the code during the linear growth phase have been checked with the

14




The region of instability in k space (below bounding curves) is
shown for (a) collisionless plasma and (b) collisional plasma,

vhere Yor Ye0 and v, are the normaliszed ion growth rate,
electron VB damping rate and electron collisional damping rate.
Collisional damping stabilizes the spectrum for YeO/YO > /3/16.




solution of the linear dispersion relation. We have zeroed all but three
interacting modes in the full code and cross—checked their nonlinear

behavior with an independent code written to specifically study the

£ : interaction of only three waves. The sensitivity of our results to the
?i step size of the time integration, as well as to the number of modes (some
b2 runs have been carried out on a 64 x 64 mesh), have also been checked.
éﬁ IV. Numerical Results: Collisionless Damping
;%v In collisionless, finite~g plasmas the VB resonant electron damping ]
ig limits the range of unstable modes as shown in Fig. 3a. 1In this section we
present the results of our numerical computations for this case. Pre-
t; liminary results were previously presented for this collisionless case
}7 although the structure of our electron damping is now more realistic than
ks that vhich was used in past computations.2®
: In Figs. 6-6 we present in some detail the results of our compututiggs
: for the case v, = 0.5, v g = 0.0l snd A = 5 (kop . =1 f;r n, = 5). The ¢
.q spectrum is initialized with random noise with ¢ ~ 10 ° and Eqs. (30) and
: (31) are evolved until the wave energy (in our normslized units),
N Vedio+i2)ly 12 (39)
B 2y ko
bi approaches a steady state value. The time history of ﬁ, the root-mean-
» square potential,
Y
., P = <4222 2 (zlg 1)1/ (40)
w7 k
-
and the diffusion coefficients 5 and Bql [Eqs. (25) and (26), respectively]
ﬁ are shown in Fig. 4. All of these quantities exhibit a similar temporal
§ behavior. The 4initial decay (1t < 4) is associated with the rapid :
oy dissipation of energy initialized in the damped modes, and is followed by a .l
A linear growth phase (4 < t < 30). Subsequently, mode coupling occurs which
fj leads to saturation of the instability, albeit with some initial
Z overshoot (t ~ 30). The 1levels of the total wave energy and other
- parameters of Fig. 4 are quite stationery in time after saturation. Also,
K the stationary values of all four quantities are relatively insensitive to
{i the initialization of ¢.
*
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The time history of the normalised wave energy W, root-mean-
square potential P, diffusion coefficient D and quasilinear
diffusion coefficient Dq1 are shown for Yo " 0.5,

Yoo = 0-01 and v = 0.
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’” In Fig. 4 the potential‘l; asymptotes to 2.0 after saturation so that
," ; ~ 1, which is consistent with the discussion in Sec. II. The quasilinear
;‘ diffusion coefficient (ﬁql) tracks the actual diffusion coefficient (l;)

'«5{ quite well during the entire time evolution of the ins.tabil:lty. An
& important point which must be emphasized with regard to D is that both
§‘; species, electrons and ions, continue to exchange both energy and momentum

even after a steady state 1is reached; the electrons through the VB reso—
nance and the ions by direct resonant interaction. If the instability had
‘;‘é saturated by ion trapping and the electrons had no resonant interaction
'é‘ with the wave, there would be no diffusion in the steady state since the

electrons could not exchange momentum with the iomns. Both species must

have a dissipative interaction with the waves to have diffusion.

1 In Fig. 5 we show a sequence of snapshots of the 2-D wave spectrum in
n space as the instability grows and saturates. The times at which the
243 snapshots are taen are indicated by the arrows in Fig. 4a. Only ng > O is
] shown since the spectrum for ng, < O can be obtained from n, > 0 by the
reality condition ;(- n) = ‘;(g). Figure 5a shows the spectrum during the
linear phase of the instability. The spectrum is strongly peaked around
e, the most unstable modes, (n,, ny) = (0, + 5). Figure 5b shows the spectrum

:;” just prior to saturation. Note the development of the prominent peak at
F (4, 0), which is a marginally stable mode since n, = 0, and the broadening
i of the main peaks of the spectrum in the n, direction. These results are
entirely consistent with the discussion of the parametric excitation of
daughter waves by a pump in Sec. II. The pump wave (0, + 5) couples and
" destabilizes the (4, 0) and (4, 5) modes. These secondary peaks quickly
- grow to large amplitude and excite other modes in turn. This mode coupling

process culminates as the total wave energy saturates and spreads through

most of the unstable or weakly damped volume of n space as shown in Fig.

% 5c. Two significant features of Fig. 5c are: the shift in the peaks of

. the wave spectrum toward long wavelength (0, + 2); and the nearly isotropic
.-,» spectrum of waves surrounding these peaks. The detailed wave spectrum
' : exhibits substantial variability in time, even after saturation when the
P‘ total wave energy is nearly constant. This can be clearly seen by

comparing the gpectrum in Fig. 5c¢ with that at a later time in Fig. 5d.
o The unstable and stable modes clearly continue to exchange energy in a
dynaaic manner even after saturation. Nevertheless, the wave spectra at

&
»
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Fig. 5: Snapshots of the two-dimensional wave spectra are shown (a)
dur:lng' the linear phase, (b) during saturation, (c) just after
saturation and (d) well after ntun't.ion for the run shown in

Fig. 4, where n=35 ke The times of the snapshots are marked
with arrows in Fig. 4a.
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: late time are always characterized by peaks which are shifted towards long
wavelength from the most unstable mode and by a broad spectrum of noise.

\ Finally, in Fig. 6a we show the wave spectrum averaged over the time
1- interval 112 < ¢ < 192. Much of the irregularity which was evident in the
3 instantaneous spectra has now disappeared. The averaged spectrum' is
‘ strongly peaked around (0, + 3) with wmuch smaller secondary peaks
B at (+ 2, 0). A contour plot of this average spectrum is shown in Fig.
"% 6b. Note the cleft in the spectrum along ky = 0, 1
:i A number of runs have been made with different values of the drift

parameter v, a and the coefficient of the electron damping vy «0° In Fig. 7 we
show the diffusion coefficient D and potential P at saturation as functioms

K

; of the drift parameter Yor The electrgn damping Yeo Va8 varied with Yo 8°
f} ! that the spectrum of unst.able waves in k space did not change, i.e., Yeo *
B 0.1 yo- The potential P is quite imsensitive to y, while the diffusion
coefficient scales approximately as y% (the feference curve D = 0.76 y% is
:E:% fhawn for comparison). The insensitivity of P, and consequently

‘ $s to v, is consistent with the idea, expressed previously in Sec. II, that
e the non-linear polarization drift in Eq. (13) must exceed the linear
% frequency mismatch of the interacting waves in order for effective energy
% exchange (and therefore saturation of the instability) to take place.

TRy

In Fig. 8 we show 1‘; and 13 as a function of Yo with Yeo = 0.11. 1In
. this case the linearly unstable spectrum collapses towards longer wave-
;: : iengthg as v, decreases as previously shown in Fig. 3a. The dependence of
k) Pand D on Yo in thi;s case is basically similar to that in Fig. 7. The

:: normalized potential P has a weak dependence on Yor increasing slightly as
" Yo dccrcuen. The diffusion coefficient again scales as 16 (the reference

3‘.‘: curve D = 0.76 78 is shown).

' ‘ The somevhat surprising conclusion which can be drawn from Figs. 7 and )
"'fﬁ 8 is that the diffusion coefficient 5 is very insensitive to the dissi-
pation rate Ye0$ much less sensitive, for example, than P. For Yo " 0.25, 1
the diffusion coefficient D = 0.06 in both Figs. 7 and 8 even though y 0 "

; 0.03 and O.11, respectively. By contrast, P is 502 higher in Fig. 8. than

B in Fig. 7 for Yo " «25. As Ye0 is increased for a fixed value of Yor 2

g increases while the spectrum shifts towards longer wavelength so that D

:_"' does not change [see Eq. (26) for Bqll' The shift towards long wavelength

5
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Fig. 6: The time averaged wave spectrum (a) and auoé:lat.d constant ;
» ~ contours (b) are shown for the run presented in Fig. &. The
f o - spectrum was averaged over the interval 112 < ¢ < 192.
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as Y0 increases can be clearly seen in plots of the 2-D wave spectrum. By
comparing the quasilinear diffusion coefficient in Eq. (26) with the
portion of the linear growth rate in Eq. (14) which comes from the resonant
ion interaction and the expression for the wave energy in Eq. (39), we find

that roughly
D ~ awilat,

where awilac is the rate at which energy is extracted from the ions. Thus,
our numerical results indicate that the rate at which the instability is
taking energy from the ions 1is nearly independent of the electron
damping. Of course, damped modes must always be included in the simulation
or the wave energy does not saturate. The damping rate Ye0 must therefore

remain finite.

V. Numerical Results: Collisional Damping

In laboratory and ionospheric plasmas classical damping can dominate
the collisionless VB electron damping. As noted previously in Fig. 3b,
collisional damping stabilizes both long and short wavelength modes and,
unlike the VB resonant electron damping, can stabilize the eniire
spectrum. The results of our numerical computations for this case a.e
summarized in Fig. 9 where we show the dependence of the saturated values
of D and P on the cg}lisional damping coefficient Yo for Yo = 1.0. The
diffusion coefficient D and potential P are virtually independent of vo*
This result i1s rather surprising because as Vo increases the range of
unstable modes in k space decreases dramatically (Fig. 3b) and, as a
consequence, the characteristic wave spectra after saturation in the three
cases presented in Fig. 9 are rather different. The spectra 1in the
cases v, = 0.05 and 0.10 are similar to those presented in Sec. IV, the
spectrum being somewhat broader for Vo " 0.02 because the range of linearly
unstable modes extends to larger values of l&lo For Vo = 0.15 the linearly
unstable region of k space has become rather localized and, as shown in
Fig. 10, the saturated wave spectrum is much more peaked. The two dominant
peaks at n = (0, + 4) correspond to the most unstable modes while the
secondary pesk at n = (2,0) is the parametrically generated daughter
wave. In this case the damping of the modes with finite n, is so large
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Fig. 9: The dependence of D and ; on the electron collisional damping
rate is shown with Yo " 1.0 and Yeo ™ 0.
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(except for n, = 0) that the energy which is pumped into them is rapidly
dissipated and the wave spectrum remains quite narrow. Nevertheless, the
saturated values of both P and D are virtually the same as those computed
for smaller values of vo* This result is a consequence of the structure of
the nonlinearity in Eq. (13) which only couples modes k“, k with

E‘ x k ¢ 0. For the case of a narrow wave spectrum such as that shown in
Fig. 10 the coupling of the modes is quite weak. Therefore, even though
the growth rates of the unstable waves are small, the coupling of wave
energy to the stable modes is correspondingly very weak and the saturation

amplitude remains large.

From our numerical results we conclude that thé saturation of the
lower~hybrid-drift instability remains large even as collisions force the
mode towards marginal stability. At marginal stability, of course, ; + 0.
This rather discontinuous behavior as collisionality increases seems rather
unphysical and compels us to re-evaluate our assumptionms. In the
Introduction we argued that ion trapping was not a viable saturation
mechanism when a broad, two-dimensional wave spectrum is excited. As we
approach marginal stability by increasing the collisionality, the spectrum
becomes quite narrow so that ifon trapping should, at some point, become
effective and saturate the instability at a lower amplitude than that which
we have calculated from our mode coupling theory. Ion trapping occurs when
the bounce time d;l of an ion in the wave potential becomes comparable to
the growth time vy “of the instability or

0%1 = kze¢/‘i - Y2° ‘(41)
In our normalized units,

-~ Az 1/2
¢ =Y (‘i/-e) V‘u/v:l (42)
for k~1 so that ¢ + 0as the mode approaches marginal stability.
Saturation by ion trapping occurs at =2 Zower amplitude than that resulting

from mode coupling when

¥ < (m/a) e vy o2 (43)
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VI. Summary and Applications

A nonlinear wave equation [see Eq. (13)] has been derived which
describes two-dimensional (kB = 0) lower-hybrid-drift wave turbulence in a
finite B8 plasma. As in the linear theory of this instability in the weak
drift regime, the ions are treated as unmagnetized and to lowest order
respond adiabatically to the potential fluctuationms. The resonant ion
contribution is included as a correction to provide the driving energy for
the instability. The nonlinear portion of the wave equation arises from
the electrons through their E x B and polarization drifts. 1In additionm,
electron dissipation is included either through the collisionless VB reso-
nance or through collisional viscosity.

The nonlinear wave equation has been solved numerically using a
pseudo-spectral method code to obtain the evolution and saturation of the
wave spectrum as well as the self-consistent particle flux. The wave
energy typically saturates as the peaked unstable spectrum spreads
throughout the unstable and weakly damped regions of k space. The
saturated wave spectrum is characterized by two main components: a broad,
nearly isotropic spectrum with lEl 2 p::; and a jagged spectrum consisting
of narrow peaks in the range |l§,| ~ 0.5 p::. These peaks are typically
displaced towards long wavelength from the linearly most unstable waves by
almost a factor of two. The peaks move around im k space as the waves
exchange energy in a dynamic fashion.

Our numerical computations demonstrate that the wave energy saturates
when the nonlinearity becomes comparable to the linear frequency of the
modes,

-:-t—v«kvy‘ﬁv*kve » (44)

vhere ‘L. is the E x B velocity of the electrons and w = kyvd:l/(l +

2 2 - - -~
k p..). For the most unstable modes, ko ~ 1, w, vd:l/pec “‘lhvdi/vi
and (44) can be written as
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1/

2
e¢/T1 = 2-3 (Zme/mi) Vdilv1 , (45)
where the numerical factor comes from the detailed computations. We have
also found that the saturation level is relatively insensitive to both the
magnitude of the electron dissipation, as long as the damping is sufficient
to stabilize the shortest wavelengths in the computational grid, and the

damping (growth) rate of the long wavelength modes.

Our interpretation of the saturation amplitude in Eq. (45) is that
effective energy exchange between the linearly growing and damped modes can
only take place when the nonlinearity becomes sufficiently large to
overcome the linear frequency mismatch

B = wyy +uyy *ouyg (46)

between interacting waves, 51, 52 and k3 Below the threshold given in Eq.

(45), only a few modes which satisfy Aw ~ 0 can exchange energy. Above
this threshold all modes can exchange energy. The saturation amplitude in
Eq. (45) also corresponds to the threshold for electron E x B trapping31 8o
that strong mode coupling is really a consequence of the strong nonlinear

behavior of the electrons during this trapping process.

The particle flux has been computed self-consistently in parallel with
the nonlinear evolution of the wave spectrum. Both the exact and
quasilinear expressions for the particle diffusion coefficient D are then
calculated from the flux. The quasilinear expression (qu) tracks the
exact expression (D) within a factor of two. To lowest order

D - ax2/at PesY1 (47)
where the step size 1s given by Ax ~ Pes and correlation time by At ~ 7;1

vhere v, ~ w, (V4,/v,)? 1s the growth rate of the most unstable mode in the
absence of electron dissipation. The diffusion coefficient then becomes

- 2 2




3 where the numerical factor comes from the detailed computations. The

& diffusion coefficient im (48) 1is very 1insensitive to the electron

dissipation, less sensitive than the saturation amplitude e¢/‘1’i given in

Eq. (45). At first glance Eq. (47) seems to imply that the usual estimate

N Yy~k2D or D ~ pgsy, where y is the maximum growth rate of the instability,

' is quite accurate. However, the insensitivity of D to the electrom
dissipation implies that this estimate is not valid. The growth rate y

: decreases rather sharply as the electron dissipation is increased so that

fi D ~ png should also decrease. It does not so that this estimate fails to

reproduce the computational results.

A ‘ We now compare the results of our mode coupling calculation with
laboratory observations of lower-hybrid-drift wave turbulence and with the
results of recent computer simulations of this instability. A CO, laser
scattering experiment was recently carried out on the Garching, 10m
e-pinch.s The measured density fluctuations were flute-like (E‘E =z 0)

with clear peaks around ky ~ 0.5 p:i. The lower~hybrid-drift instability
was therefore identified as the source of these fluctuations. Our computa-

VL B S T RS

tional results are in good agreement with several prominent features of the
observed wave spectra. They measure a broad angular spectrum with kg < ky.
They also observe that the peak in the wave spectrum is shifted towards
¢ long wavelength by about a factor of two from the linearly most unstable
§ mode. In the experiment data were taken for three different filling
pressures, corresponding to three values of V4;/vy. We have found that
classical electron-ion collisions have a significant influence on the
growth rate of the lower-hybrid-drift instability in this experiment
- 'oopocillly for the two highest filling pressures. In Table 1 we summarize
i some of the parameters of their experiment including the racic of the

electron—-ion collision frequency Ve to the critical collision frequency,

i

- 2
Ve = +814(Vy, /v )2 w)y .

required to completely stabilize the lower-hybrid-drift wave. In calculat-

MY I g

ing Vei v have ignored impurities by taking Z.e¢ = 1. The highest
pressure case (8a Torr) is very close to marginal stability and, given the
uncertainty in experimental parameters, could even be stable. We have

.= K3

completed numerical computations for the three cases given in Table I. For
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Table 1
Parameters of Garching Experiment
o Po(m Torr) 10, (10'%/cm3) T.(ev) B(T) Viy/vy v (108/gec) v /v
¥ 0 e e di/ V1 e
3 1 115 .79 .52 3.3 .0067

s 2.3 74 77 .25 13.7 12
5.2 77 .13 .17 28.5 .56
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the tvo lowest filling pressures, 3 and 5 m Torr, the instability saturates
with o/n = 3.4 x 10°2 and 1.4 x 1072, respectively, compared with the
measured values of 1.4 x 1072 and 2.3 x 10™3. Our calculated saturation
levels are 2-3 times larger than measured experimentally. In the case of 8
m Torr the spectrum is close to marginal stability and as a consequence the
saturated wave spectrum is strongly peaked around the narrow band of
unstable modes at kypes ~ 0.58 Because the spectrum is quite narrow, ion
trapping cannot be neglected so that the supposition made in Ref. 5 that
ion trapping saturates the instability is probably valid for this case.

A number of computer simulations of the lower-hybrid-drift instability
have been carried out ovei the past several yurs.1°'13'32'3l‘ Before
comparing our results with these simulations, we would like to point out
several difficulties which must be overcome in simulating this instability
which are not widely recognized. The large disparity between the electron
gyro time scale, 9:1, and the growth time of the instability, (vilvd:l)z
(nilne)ll 2921, have forced the theorists to use artificially small mass
ratios, (nille)l/ 2, and high drift velocities, V4y/vy, in their codes. As
8 consequence, the parameter

1/2
R\ RR

pes/l‘n - (me/mi
which should be a small number, is of order unity. Cases with larger mass
ratios had to be run with larger drift velocities so pes/Ln has not been
varied significantly. The parameter pes/Ln is significant for our
computations for two reasons. First, the ratio of the rate of change of
the magnetic free energy to particle drift energy in a finite g plasma
scales as L:/pi ..]'5 For realistic parameters the magnetic free energy
therefore greatly exceeds the drift free energy and the lower-hybrid-drift
instability has no free energy bound. In the simulations this has not been
the case. Second, in calculations of the nonlocal structure of the lower
hybrid drift instability, it has been shown that the number of unstable
harmonics in the x direction scales as L n/p“ so that for realistic
parameters & broad spectrum of unstable modes should be excited.3> This is
again not the case in many simulations. Recently, fluid-particle hybrid
codes have been developed and simulations of the lower hybrid drift
instability have been carried out with p “/Ln << 1.]'3 In these simulations
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a broad spectrum of modes in k space 1s excited with kx < ky. The cleft in
the wave spectrum along ky = 0, as shown in Fig. 6, is also seen in the
vave spectra from these simulations. Finally, the amplitude of the
potential fluctuations at saturation as obtained from these simulations is
given by
)2

1/2
es/1, = 2.4(2m fu, ) 2(v, /v,

which is in excellent agreement with our results ([see Eq. (45)]. One ;

P A fl”y‘

. ' caveat to this comparison is that most of their simulations were carried

A

out for V,,/v, > 1 while our theory strictly applies only for V,,/v, < 1.
a1/v1 < dai’v1

Finally, we now consider two physical systems, the earth’s
. magnetosphere and ionosphere, where lower-hybrid-drift turbulence 1is

e Ll

expected to be important. The plasma in the neutral sheet of magnetotail
is essentially collisionless. The lower-hybrid-drift instability has
previously been proposed as a mechanism for dissipating magnetic energy in
this reversed field configuration.® In the most simple 1-D model of
magnetic field amnihilation the flux merging velocity Vy is simply given

13

| ”15
3
- 2
;:g ' VB pe'v/ A
where v is the collision frequency (anomalous or classical) and ) is the
} scale length of the magnetic field. The anomalous collision frequency due
a
¥

to lower-hybrid-drift turbulence is given by v = D/ pi. so that from Eq.
(48), we find

Z.
SR

2 3
AN 2.4(1:‘/-1)1/ (Vag/v4)"s

vhere Vﬁ - lebnin 1s the Alfven velocity. The rate of dissipation of
magnetic flux is quite small during typical quiet conditions when V4,/

vg ~ 0.1 while during substorm activity when substantial thinning of the
sheet has been reported (Vy4y/vy { 1), the dissipation rate can be quite

large.
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The lower—hybrid-drift instability has also been suggested as a

mechanism to generate small-scale irregularities (A {1l m) in the
ionosphere during equatorial spread F (E:.<';F),2]"36 and observational

evidence supports this mechan:lsm.37'38

An important quantity to experi-
mentalists 1s the power spectrum of density fluctuations during ESF.38'39
Recently, Singh and Szuszczewicz38 have presented a composite of ESF wave
spectra from medium to short wavelengths. They find that (1) the spectra
in the medium and intermediate wavelength domain (A ~ 50 km + 200 m) scale
as la:-l'5 * 0.4 and k-z"' * 0'2, respectively; (2) the transitional wave~
lengths (A ~ 200 m + 20 m) have a k-l"a * 0.2 dependence, presumably due to
drift waves; (3) the power spectrum breaks at kpi 21 (<20 m) to a
shallower k dependence; and (4) the shortest wavelength observations

(1 m S x S 20 m) are éonsistent with a wave-particle interaction such as
the lower—hybrid-drift instability. In order to apply the results of our
nonlinear theory to the fonosphere we show in Fig. 11 a plot of l¢k!2 -
(e¢/1'1)2(v1/vd1)2(n1/2n‘) versus n? = k2 = 9k292 after saturation for
V‘”./v‘1 = 0.56 and \:e/m"h = 0.04. Since we assume quasi-neutrality and the
ions are basically adiabatic 6n1/n ~ e¢/'1'1), Fig. 11 can be interpreted as
an instantaneous power spectrum of density fluctuations associated with the
lowver-hybrid-drift instability. The arrow at nZ -~ 9 denotes the fastest
growing linear mode (for typical ionospheric parameters B ~ 0.3 G, and
Ty ~ 0.1 ev this corresponds to A ~ 15 cm). Two important aspecté of this
figure bear comment. First, there is substantial power in the long wave-
length regime (n2 < 9) and the spectrum is relatively flat, consistent with
observational results. And second, the short wavelength spectrum (n2 > 9)
corresponds to a k-6 dependence, somewhat steeper than the transitional
regime which has a k ~4.8

vavelength power spectruam (A < 15 cm) has a k"6 behavior. Experimentalists

dependence. Thus, we predict that the very short
are unsble to resolve the power spectrum of these very short wavelength

modes so that our results cannot be verified at this time but await further
improvements in experimental techniques.
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2. Appendix

g7

B One caveat needs to be added to the discussion of the mode coupling in

2. lower-hybrid-drift turbulence presented in Sec. II. The dispersion

C&: relation in Eq. (17) was derived by keeping only the interaction of (m, k)

:;i: with its nearest neighbors (w+, v+). Unfortunately, the coupling to higher

’ order modes k + plso with p > 1 cannot be neglected in general. This can be

L most easily understood in the limit w >> w , w, [see Eq. (18)]. Since we '

ol have made no a priori assumption on k, the dispersion relation should

;;% remain invariant under the operation k + k + Pk,. The dispersion relation 1
in Eq. (17) does not have this property and therefore cannot be correct.

3 2 In this limit there is no small parameter which allows the coupling to

.:,«i higher order modes to be neglected. The coupling can be cut off, however,

ﬁg by adding dissipation to the system. When the modes k + pl‘;.o (with p > 1)

- are heavily damped, the coupling to these modes can be neglected and the

Z:Z:f dispersion relation in Eq. (17) is correct. For the parameters considered

i’: in this paper, these modes are indeed heavily damped so that the dispersion

3 relation in (17) can be justified.
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