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SOLITARY WAVES IN WATER COLLIDING HEAD.ON

When solitary waves in water collide head-on, a brief but nonlinear

interaction occurs, after which the solitary waves reform. If exactly

unchanged in form, the use of the ter "soliton,m coined by Zabusky and

Kruskal 1, is appropriate. Solitons are solutions of many model equations

that mathematically describe slightly nonlinear waves in many media, The

first equation shown to possess soliton properties is the Korteweg-deVries

Equation 2 , originally derived to describe the evolution of water waves.

Like Ref. 2, this report deals with water waves. It addresses the question

* of how closely solitary waves following a head-on collision resemble

solitons.

Canfield and Street 3 and Maxworthy 4 studied these collisions

experimentally, by reflecting a solitary wave from a rigid wall or by

running two solitary waves into each other. They find that the maximum

amplitude during the collision is larger than the sum of the initial

amplitudes, by an amount that increases with increasing amplitude.

axworthy reports that a new phenomenon occurs when the amplitudes of the

colliding waves become sufficiently large* The water near the crest

attempts to lift off the body of water and subsequently collapses back into

the rest of the water.' For a pair of equal-amplitude solitary waves

meting inside the wavetank, the transition occurs when the solitary waves

start with amplitudes near 0.5, When a wave reflects from a wall, the

effect is deferred to larger amplitudes, probably because of cohesive

forces between the water and the wall.

The theoretical models of colliding solitary waves take the water to be

inviscid and incompressible, and the flows to be irrotational. Chan and

Street s applied a modified marker-in-cell numerical method and report "In a

Mhwwp .ppowd Sepu.nbe 14, 1N3.s ,. 1



key test of the method, a wave was reflected from the wall and returned to

its initial position for the case Yo/d = 0.2. [RO is the initial

solitary wave's elevation above still water depth d.] The reflected wave

had exactly the same surface profile as the incident wave."

Analysis has been applied to this problem, most recently to third order

in wo/d by Su and 1irie.6 They find that to this order the waves

asymptote to solitary waves identical in form to the initial waves, thouqh

slightly retarded in location. They also predict, however, the existence of

a dispersive wave train generated durinq the collision. The dispersive wave

train has some enerqy (not necessarily at third order) that has to come at

the expense of the solitary waves. Consequently, the existence of a

dispersive wave train guarantees that the outqoinq solitary waves are less

energetic than the incoming solitary waves. In short, the solitary waves

are not exactly solitons.

Penton and Rienecker7 recently reported the application of an accurate

numerical method8  to colliding solitary waves. hey report substantial

chances in solitary wave amplitudes after collision, and cast

doubts on the analysis of Su and Mirie. They do not find evidence of a

dispersive wave train throuih the admittedly brief duration of their

numerical experiments.

This report describes the application of the "unified waves model" 9 to

head-on solitary wave collisions. This model uses finite difference

techniques for propaqation in one horizontal dimension. It is capable of

treating both irrotational and rotational waves in channels of gradually

varyina depth and breadth, with ambient steady currents present, and with

forced or free waves. Model results have been compared with results fron
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laboratory experiments and with those from other numerical and analytical

theories., ? date, the comparisons with theory show the model to be very

accurate; some feat'ures seen in experiments are seen in the unified waves

model, but not in other models. Features of the model are summarized

below.

I. the model uses exact prognostic equations in conservation form. 1 0 These

appear not to have been used in wave modeling before now. An integral of

the momentum equation is an extension of Kelvin's circulation theorem.

2. Higher order expansions than used in other numerical models connect the

velocity variables that appear in the governing equations. This allows the

model a) to incorporate long wave theory exactly, b) to include both shallow

water and essentially deep water waves in the same model, and c) to

represent fairly long nonlinear waves to one order better than Boussinesq -

hence the name =unified waves model."

3. IThe model employs a numerical method, pure leapfrog, that gives no

unwanted numerical diffusion. The time-stepping procedures are simple

enough to analyze in some detail and to implement efficiently on vector

computers.

4# The model can take a time step equal to a space stop (in nondimensional

units in which the linear long wave speed is unity)* This permits efficient

machine computations, unlike methods developed for the Korteweg-deVries

Equation. Moreover, this procedure removes any spurious numerical

dispersion at the lowest order.

S. Finally, the diagnostic equations are cast in a form such that only

tridiagonal matrix equations need to be solved. A very fast, fully

vectorised algorithm is then used to invert the matrices.

.o,
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The first three columns of Table 1 list properties of the solitary

waves used here. These are obtained by running an initial disturbance that

resembles a solitary wave through the computational channel, allowing the

solitary wave to outrun the rest of the disturbance, and extracting the

solitary wave from the rest to use as initial conditions for runs involving

collisions. The solitary wave properties given in Table 1 are very close to

those of exact solitary waves, as derived by Longuet-Higgins and Fenton.11

The accuracy is about that of a fourth order expansion, 12 though the formal

accuracy is limited to second order in the treatment of the diagnostic

equations. Perhaps the unwarranted accuracies are due to retaining exact

prognosis thoughout; perhaps they are fortuitous.

Figure I provides a global view of the collision of two solitary waves,

each having an initial amplitude of 0.386. The solitary waves appear to

survive the collision intact. Weak additional disturbances are visible in

the region between the solitary waves after the collision, however.

Figure 2 employs the samn data as Fig. 1, but increases amplitudes 10-

fold, and clips the profiles at 0.02. Figure 2 brings out some details of

the additional disturbance. Clearly, it is a dispersive wave train

generated by the collision, consistent with the prediction of Su and HMrie.

Figure 3 plots the amplitude and phase of the wave crest that moves

left to right in Figure I* The behavior is characteristic of all runs.

After a brief transient the crest reaches a constant value, merges with the

other solitary wave (at t 1 100), where the amplitude more than doubles,

separates, reaches a minimm amplitude (just before t - 120), and slowly

reforms to a solitary wave slightly less high than before the colliion.
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The phase curve increases at first, indicating an accelerating crest

until the two crests merge at x - 200. T he crest remains in this location

for a while, and, upon the reemergence of two crests, accelerates until

t 1 140, after which a crest decelerates.* Because the asymptotic outgoing

waves travel a little slower than the incoming ones, the phase lag will

increase as tim goes on. By extrapolating the phase line shown in Fig.3

from the region between t - 210 to t a 268 back to the collision time

t -56.*675 one obtains an estimate of the phase lag.* This turns out to be

-0.478.

Nu~merical tests were performed to determine: 1) Can truncation error

be generating the dispensive wave train, and so be responsible f or the

slightly non-soliton behavior? 2) Ts the particular second order

formulation chosen accidently giving results that are not common to other

formulations accurate to the same order? 3) Can coding errors be

introducing artificial diffusive or anti-diffusive effects? 4) Are the

quantities that should be conserved in the calculations actually conserved?

Runs at different resolutions aK vere performed to answer question (1).

Specifically# for head-on collisions between solitary waves having initial

amplitudes of 0.386 were run with three resolutions, AK - 1/4, AK - 1/8, and

ft - 1/16, each with At - &c. The results differ slightly, particularly in

the phase of the crests and troughs of the dispersive wave train. Yet if

* truncation error is responsible for the dispersive wave train, one expects

* amplitudes to be proportional to (AK) 2, or to vary by a factor the order of

16 between the Lix - 1/4 and Ax - 1/16 runs. The observed amplitude

variation is only a fey percent. Consequently, we can rule out truncation

error as being responsible for the existence of the dispersive wave train.

5



2he unified waves model is flexible in evaluating high-order linear

dispersive terms. For problem for which nonlinear and dispersive effects

are in approximate balance, such au the problem at hand, the theory is

probably accurate only to second order, no matter how accurately the

dispersive terms have been taken into account. Runs with fourth order

dispersive term included agree very well with runs that drop dispersive

terms beyond second order. Consequently, question (2) above is answered, in

that at least two partially independent second-order formulations give the

same results.

The formulation and numerical methods introduce no numerical diffusion

or antidiffusion. To check whether any coding errors introduce diffusion, a

run that involved time reversal was performed. For this run Ax - At - 1/8,

and the initial solitary wave started near x - 131, bounced off a wall at

x - 200, and returned to x - 152 over 8t - 100 (800 time steps). Time was

then reversed and the run continued for another 800 time steps (6t - -100).

Results are compared at time steps 50 and 1550. With a perfect computer,

the field. at these time levels should be identical. The elevation and

surface velocity at fixed grid points differ slightly, but by no more than

0.000024 in elevation and 0.000061 in surface velocity. These deviations

are consistent with roundoff error. Consequently, diffusive coding errors

are absent (or result in undetectably tiny effects).

The final question, that of proper conservation, is a bit complex. The

fo-ulation and numrical implementation are designed to conserve two linear

field quantities:

f f - Constant + Ness injection from ends (1)

6



f (u s + tv s)dx - Constant + Momentum injection from ends (2)

In (1-2) n is the elevation above still water level, us and v. are the

components of horizontal and vertical velocities of the fluid at the free

surface, and n' is the surface slope. The inteqrals span the computational

channel, left to riqht. q. (1) is the obvious conservation of mass;

ea. (2) is an extension of Xelvin's circulation thorem1 0 . The numerical

methods are desiqned to satisfy (1) and (2) exactly, and constant monitorina

of both sides of (1) and (2) show that the methods work perfectly to the

four significant fiqures monitored. The eneray, however, which the physics

demands be conserved, is not conserved exactly by the unified waves model.

the calculations add some energy to the computational domain during a

solitary wave collision, and remove most, though not all, of the energy as

time qoes on. The net energy addition leaves some uncertainty about the

chanqe of solitary wave amplitudes. If one takes away the artificially

introduced energy from the emerqinq solitary waves, they would have sliqhtly

smaller amplitudes. tsinq interpolations from Table 5 of the paper by

Longuet-iaqins and Penton1 1 one can relate solitary wave amplitude and

total energies. I reqrard the failure of the unified waves model to exactly

conserve enerqy as introducinq an uncertainty in the amplitude of the

emerqinq solitary waves, but not in the general conclusion, to be drawn,

that the collidinq solitary waves are not quite solitons.

Some muantitative results of the collisions of two solitary waves with

thesselves and with each other are given Table 1. One property of solitary

wave collisions not reported in other theoretical works is the

maxtmm vertical acceleration at the surfaces This exceeds that of gravity

in the calculations of the 0.4726 collision. This would imply negative

pressures inside the fluid near the surface, and the fluid there would

7-
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* attet to fly of " More precisely, it would be left behind by the faster

fA11inU fluid belov it. 1hus, new phenomena not describable by the unified

w*" spie are starting when initial solitary wave amplitudes are less than
0.4726. ' s'" s"bly, these new phenomena are those found experimentally by

bxwowthy.' A special set of calculations was performed to identify the

point at wtich the maximum vertical deceleration matches g. The initial

Conditions involved solitary waves outrunning a residual disturbance.

Calculaftmh with Ax = At - 1/16 ware run in a computational domain of 3200

grid points through the tims that the crest reached its maximm. he

calculations indicate that the transition should occur at initial amplitudes

of 0.45.

lb. other results of Table I agree well with the results of at least

am pr*Vious invetigation. lbe behavior during the collision, as measured

by the compa"is.. of roump with Fenton and Pienecker, and with experiments,

., Is aomforting, be**a m cmuiet guarantee good performance from the

Sunif %I~es odei for the extreme amplitudes encountered during the

c collision*. t646fshantlal deorease in wave amplitude at the early times

S-e. ae' " " ' n id "Mem" is confirmed.

go 90*uf tlstion to*soltary waves only slightly less energetic

tha init.1lir sad 40eoiil-f, the strong dependence of Asaon amplitude

*1 s v oih t6 ull result hA 0 given from the
am*. "nog .wy at ft Sia sWrie. hes SM11 a nge must be real,

)IguW) .4,0 eietr cerwioasme clear ThIus, the term
.+, . . . ... . .'hs tary laves in ater, for they

~ ~ ~: qW* th b~ ftewO""~daf bepid-, thou*i almost.
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All entries are in units q - N O 1. All computations

that generate the data here take Ax - 6t - 1/8. The first three

columns list solitary wave properties that have evolved to a

constant value prior to collision. The figures in brackets use

expansions or table interpoltions from Lonquet-Riqqins and

Fenton."1  Solitary wave mass is f dx.

Columns 4 and 5 are measured at the time of maximum

elevation. "Runup" is the elevation above still water level and

*Accel." is the maqnitude of the vertical acceleration of the

fluid particle at the crest. Here, and in the other entries, the

numbers in ordinary parenthases are from the third order

analytical results of Su and Mirie, 6 and the numbers in square

parentheses are interpolations of the numerical results of Fenton

and Rienecker. 7

Columns 6 and 7 indicate how far away from the center of the

collision the minimum amplitude occurs (see Fiq. 3), and by how

much this minimum amplitude is less than the initial amplitude.

Fenton and Rienecker report their numbers as a final chanqe of

amplitude, but it appears that their computational domain does

not exceed Ax min by very much (see their Fig. 4). Etries to

columns 8 and 9 come from analyzina results at very late times.

The phase is the time-lag of an outgoing wave extrapolated from

late times to the collision time. he range of amplitude changes

is set down to account for the failure of the numerical

calculations to properly conserve energy. The smaller number is

the computed amplituder the laraer number takes away from the

solitary waves all of the energy added by the numerics, usinq

enerqy-amplitude curves of Lonquet-Piqqins and Fenton. 11

10
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DIMENSIONLSS DISANCE

Fiqure 1 He Aad-on collision of an identical pair of solitary waves of

applitude 0.386. Computations are carried out in a

computational channel of 3200 equally-spaced grid points usinq

Ax - At w /8. The profiles shown are eaually-spaced in time,

starting at the bottom, with the vertical spacinq between

profiles set so that disturbances that propagate at

c imesioal would he alioned alonq ±t 45i the ficure.

dimensonal1



DIMIENSIONLES DISTANCE
Fi qure 2 -~eSap. collision as depicted in Fiq. 1, but with outout data

pout-procssed to amplify by a factor of 10, and clip wave

elevation above 0,02.
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COLLIDING WAVE AMPLITUDE
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COLILIDING WAVE PHASE
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