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£ SOLITARY WAVES IN WATER COLLIDING HEAD-ON

vwhen solitary waves in water collide head-on, a brief but nonlinear
. interaction occurs, after which the solitary waves reform. If exactly

unchanged in form, the use of the term "soliton," coined by Zabusky and

N xmskall, is appropriate. Solitons are solutions of many model equations
i that mathematically describe slightly nonlinear waves in many media. The
}, ) first equation shown to possess soliton properties is the Korteweg-deVries
i"? . n;uationz, originally derived to describe the evolution of water waves,

4 Like Ref., 2, this report deals with water waves. It addresses the question
%, of how closely solitary waves following a head-on collision resembleA
" solitons.

& Camfield and Street? and Maxworthy" studied these collisions
’ experimentally, by reflecting a solitary wave from a rigid wall or by
? running two solitary waves into each other. They find that the maximum
= . amplitude during the collision is larger than the sum of the initial
‘Q amplitudes, by an amount that increases with increasing amplitude,

'£ Maxworthy reports that a new phenomenon occurs when the amplitudes of the

colliding waves become sufficiently large. The water near the crest

% attempts to lift off the body of water and subsequently collapses back into
,‘ the rest of the water.' Por a pair of equal-amplitude solitary waves
- meeting inside the wavetank, the transition occurs when the solitary waves
:E start with amplitudes near 0.5. When a wave reflects from a wall, the
::“"‘ ) effect is deferred to larger amplitudes, probably because of cohesive
forces between the water and the wall.

‘; The theoretical models of colliding solitary waves take the water to be

" inviscid and incompressible, and the flows to be irrotational. Chan and
o Street’ applied a modified marker-in-cell numerical method and report "In a
% Manueeript approved September 14, 1983,
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key test of the method, a wave was reflected from the wall and returned to
its initial position for the case H,/d = 0.2. [R, is the initial
solitary wave's elevation above still water depth d.] The reflected wave
had exactly the same surface profile as the incident wave,"

Analysis has been applied to this problem, most recently to third order
in no/dbby Su and Mirie.6 They find that to this order the waves
asymptote to Solitary waves jidentical in form to the initial waves, though
slightly retarded in location. They also predict, however, the existence of
" a dispersive wave train generated during the collision. The dispersive wave
train has some energy (not necessarily at third order) that has to come at
the expense of the solitary waves. Consequently, the existence of a
dispersive wave train guarantees that the outgoing solitary waves are less
energetic than the incoming solitary waves., In short, the solitary waves
are not exactly solitons.

Penton and Rienecker’ r.cently reported the application of an accurate
numerical method® to colliding solitary waves, They report substantial
changes in solitary wave amplitudes after collision, and cast
doubts on the analysis of Su and Mirie. They do not find evidence of a
- dispersive wave train through the admittedly brief duration of their
numerical cxporin.nts.'

This report describes the application of the "unified waves model®? to
head-on solitary wave collisions. This model uses finite difference
techniques for propagation in one horiszontal dimension. It is capable of
treating both irrotational and rotational waves in channels of gradually

varying depth and breadth, with ambient steady currents present, and with

forced or free waves. Model results have been compared with results fronm
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laboratory experiments and with those from other numerical and analytical
theories. To date, the comparisons with theory show the model to be very
accurate; some fut;hres seen in experiments are seen in the unified waves
model, but not in other models. Features of the model are summarized
below.

1. The model uses exact prognostic equations in conservation form.!? These
appear not to have been used in wave modeling before now. An integral of
the momentum equation is an extension of Kelvin's circulation theorem.

2. Higher order expansions than used in other numerical models connect the
velocity variables that appear in the governing equations. This allows the
model a) to incorporate long wave theory exactly, b) to include both shallow

water and essentially deep water waves in the same model, and c¢) to

represent fairly long nonlinear waves to one order better than Boussinesg --
hence the name "unified waves model.”

3. The model employs a numerical method, pure leapfrog, that gives no
unwanted numerical diffusion. The time-gtepping procedures are simple
enough to analyze in some detail and to 1mp1ement‘ efficiently on vector
computers.

4. The model can take a time step equal to a space step (in nondimensiocnal
units in which the linear long wave speed is unity). This permits efficient
machine computations, unlike methods developed for the Xorteweg-deVries

Equation. Moreover, this procedure removes any spurious numerical

dispersion at the lowest order.
S. Finally, the diagnostic equations are cast in a form such that only
tridiagonal matrix equations need to be solved. A very fast, fully

vectorized algorithm is then used to invert the matrices.
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The first three columns of Table ! list properties of the solitary
wvaves used here, These are obtained by running an initial disturbance that
resembles a solitary wave through the computational channel, allowing the
solitary wave to outrun the rest of the disturbance, and extracting the
solitary wave from the rest to use as initial conditions for runs involving
collisions. The solitary wave properties given in Table 1 are very close to
those of exact solitary waves, as derived by Longuet-Higgins and Fenton.ll
The accuracy is about that of a fourth order expansion, 12 though the formal
accuracy is limited to second order in the treatment of the diagnostic
equations. Perhaps the unwarranted accuracies are due to retaining exact
prognosis thoughout; perhaps they are fortuitous.

Figure 1 provides a global view of the collision of two solitary waves,

each having an initial amplitude of 0.386. The solitary waves appear to

survive the collision intact. Weak additional disturbances are visible in
the region bet\nct; the solitary waves after the collision, however.

Pigure 2 employs the same data as Fig., 1, but increases amplitudes 10-
fold, and clips the profiles at 0.02, PFigure 2 brings out some details of
the additional disturbance. Clearly, it is a dispersive wave train
generated by the collision, consistent with the prediction of Su and Mirie.

‘tignro 3 plots the amplitude and phase of the wave crest that moves
left to right in Pigure 1. The behavior is characteristic of all runs.
After a brief transient the crest reaches a constant value, merges with the
other solitary wave (at t % 100), where the amplitude more than doubles,
separates, reaches a minimum amplitude (just before t = 120), and slowly

reforas to a solitary wave slightly less high than before the colliion.
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The phase curve increases at first, ihdicatinq an accelerating crest
until the two crests merge at x = 200. The crest remains in this location
for a while, and, upon the reemergence of two crests, accelerates until
t 2 140, after which a crest decelerates. Because the asymptotic outgoing
waves travel a little slower than the incoming ones, the phase lag will
increase as time goes on. By extrapolating the phase line shown in Fig.3
from the region between t = 210 to t = 268 back to the collision time
t = 56.675 one obtains an estimate of the phase lag. This turns out to be
@& = 0.478.

Numerical tests were performed to determine: 1) Can truncation error
be generating the dispensive wave train, and so be responsible for the
slightly non-soliton behavior? 2) Is the particular second order
formulation chosen accidently giving results that are not common to other
formulations accurate to the same order? 3) Can coding errors be
introducing artificial diffusive or anti-diffusive effects? 4) Are the
quantities that should be conserved in the calculations actually conserved?

Runs at different resclutions &x were performed to answer question (1).
Specifically, for head-on collisions between solitary waves having initial
amplitudes of 0.386 were run with three resolutions, & = 1/4, & = 1/8, and
Ax = 1/16, each with At = Ax, The results differ slightly, particularly in
the phases of the crests and troughs of the dispersive wave train. Yet if
truncation error is responsible for the dispersive wave train, one expects
amplitudes to be proportional to (Ax)2, or to vary by a factor the order of
16 between the Ax = 1/4 and &x = 1/16 runs. The observed amplitude

variation is only a few percent. Consequently, we can rule out truncation

error as being responsible for the existence of the dispersive wave train.
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™e unified waves model is flexible in evaluating high-order linear
dispersive terms. For problems for which nonlinear and dispersive effects
are in approximate balance, such as the problem at hand, the theory is
probably accurate only to second order, no matter how accurately the
dispersive terms have been taken into account. Runs with fourth order
dispersive terms included agree very well with runs that drop dispersive
terms beyond second order. Consequently, question (2) above is answered, in
that at least two partially independent second-order formulations give the
same results.

The formulation and numerical methods introduce no numerical diffusion
or antidiffusion. To check whether any codinq errors introduce diffusion, a
r\m‘ that involved time reversal was performed. PFor this run Ax = At = 1/8,
and the initial solitary wvawe started near x = 131, bounced off a wall at
X = 200, and returned to x = 152 over §t = 100 (800 time steps). Time was
then reversed and the run continued for another 800 time steps (6t = -100).
Results are co-pa:od at time steps 50 and 1550. WwWith a perfect computer,
the fields at these time levels should be identical. The elevation and
surface welocity at fixed grid points differ slightly, but by no more than
0.000024 in elevation and 0.000061 in surface velocity. These deviations
are consistent with roundoff error. Consequently, diffusive coding errors
are absent (or result in undetactably tiny effects).

The fi.nal question, that of proper conservation, is a bit complex. The
formulation and numerical implementation are designed to conserve two linear

field quantities:

f nix = Constant + Mass injection from ends (1)

L Y i.'1




v f (us + n'vs)dx = Constant + Momentum injection from ends (2)

In (1-2) n is the elevation above still water level, u_ and vy are the

s
components of horizontal and vertical velocities of the fluid at the free
surface, and n' is the surface slope., The inteqrals span the computational
channel, left to right. Fg. (1) is the obvious conservation of mass;
ea. (2) is an extension of Xelvin's circulation thorem!?, The numerical
methods are designed to satisfy (1) and (2) exactly, and constant monitoring
of both sides of (1) and (2) show that the methods work perfectly to the
four significant fiqures mgnitOted. The enerqy, however, which the physics
demands be conserved, is not conserved exactly by'the unified waves model,
The calculations add some energy to the computational domain during a
solitary wave collision, and remove most, though not all, of the enerqy as
time goes on. The net energy addition leaves some uncertainty about the
change of solitary wave amplitudes, . If one takes away the artificially
introduced enexgy from the emerging solitary waves, they would haversliqhtly
smaller amplitudes. Using interpolations from Table S of the paper by
Longuet-Ricgins and Fentonl! one can relate solitary wave amplitude and
total energies. I reqard the failure of the unified waves model to exactly
conserve enerqgy as introducing an uncertainty in the amplitude of the
emerqging solitary waves, but not in the general conclusion, to be drawn,
that the colliding solitary waves are not quite solitons.

Some gquantitative results of the collisions of two solitary waves with
themselves and with each other are given Table 1. One property of solitary
wave collisions not reported in other theoretical works is the

maxisum vertical acceleration at the surface. This exceeds that of gravity

in the calculations of the 0.4726 collision. This would imply negative

pressures inside the fluid near the surface, and the fluid there would
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" attempt to "fly off". More precisely, it would be left behind by the faster
unng fluid below it. Thus, new phenomena not describable by the unified
waves model are starting when initial solitary wave amplitudes are less than
0.4726. Présumably, these new phenomena are those found experimentally by
Maxworthy." A special set of calculations was performed to identify the
_n'“o;i,nt at vhich the maxisum vertical deceleration matches g. The initial
" conditions involved solitary vaves outrunning a residual disturbance.
Calculations with &x = 4t = 1/16 were run in a computational domain of 3200
- orid points through the time that the crest reached its paximum. The
” calculations indicate that the transition should occur at initial amplitudes
‘of 0.45. | .
- The other 'zoaults'of Table 1 agree well with the results of at least
one previous investigation. The behavior during the collision, as measured
‘by tlu comparison of runup with ronton and m.mekcr, and with experiments,

:ls endeﬂing, W m cannot mmﬁc good pc:tomnoe from the

unified vaves mx !m: the extrm uputudu cneounteud during the
i ' eolnlion._ ﬂh mmﬁn decrease in wave uputqua at the early times
ﬁ . eammined by Fynton and Menscker 1s mﬁm.
e iﬂnﬁﬁl mﬁm o muttry vaves only slightly less energetic
than tutlﬂy. m. %&uy, the ctrouq dcpmdnme of la on uputudo
o Aelbout quakio) ‘ars otusiatent with the null result M = 0 given from the
e mmmanmm.. mmmucm:mtboml.

Agure 2 ill m mﬁm sake el«r. Thus, the term
iy ﬁ o um mn Y mum uum waves in water, for they
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All entries are in units g = R, = 1. All computations
that generate the data bere take Ax = At = 1/3, The first three
columns list solitary wave propertieg that have evolved to a
constant value prior to collision. The figures in brackets use

expansions or table interpoltions from lLonquet-Higgins and

Fenton,!l Solitary wave mass is f ndx.
~o»

Columns 4 and 5 are measured at the time of maximum
elevation. “Runup" is the elevation above still water lewvel and
"Accel,"” is the magnitude of the vertical acceleration of the
fluid particle at the crest., Here, and in the other entries, the
numbers in ordinary parenthaseg are from the third order
analytical results of Su and Mirie,6 and the numbers in square
parentheses are 1nterpolations.of the numéfical results of Fenton
and Rienecker.’

Columns 6 and 7 indicate how far away from the center of the
collision the minimm amplitude occurs (see Fig. 3), and by how
much this minimum amplitude is less than the initial amplitude.
Penton and Rienecker report their numbers as a final change of
applitude, but it appears that their computational domain does
not exceed Axnin by very much (see their Fig. 4). PFntries to
column§ 8 and 9 come from anﬁlyzina results at very late times.
The phase is the time-lag of an ocutgoing wave extrapolated from
late times to the collision time, The range of amplitude changes

is set down to account for the failure of the numerical
calculations éo properly conserve gnerqy. The smaller number is
the conputcd‘anﬁlitude; the larger number takes away from the
solitary waves all of the energy added hy the numerics, using
energy-amplitude curves of Lonquet-Higgins and Penton.l!
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0 © 0 240 3% 400
DIMENSIONLESS DISTANCE

Figure 1 -~ Head-on collision of an identical pair of solitary waves of
amplitude 0.386. Computations are carried out in a
computational channel of 3200 equally-spaced grid points using
Ax = At = 1/8, 'The profiles shown are equally-spaced in time,
starting at the bottom, with the vertical spacing between
profiles set so that disturbances that propagate at

Jan )
= : .
Caimensional qﬂo would he alioned along % 45 in the fiocure
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); FPigure 2 -- The same collision as depicted in Pig. 1, but with output data
g
2 post-processed to amplify by a factor of 10, and clip wave
. elevation above 0.02.
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COLLIDING , WAVE AMPLITUDE
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DIMENSIONLESS TIME
Pigure 3 -- Time history of a crest. (a) Amplitude: The crest amplitude

goes far off scale during the collision (to 0.893). The small
r.l.gglel in the vicinity of time = 150 are not an artifact of
the machine~-drawn graphics, but may be a numerical artifact;
other second order versions do not generate them. All versions

- asymptote to amplitudes less than initial by 0.0009.
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. COLLIDING WAVE PHASE
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Figure 3 -~ Time history of s crest. (b) Phase: The data are analyzed to
give the speed and a reference location of an incoming solitary
weve. A tracer moving with this speed and lined up at the
reference location is defined. The plot shows the difference
between the position of a wave crest and the position of the
tracer. Between the times of maximum and minimum on the curve
b

the crests are merged at x = 200,
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