
HD-RI35 503 SIMPLIFICATION BY COOPERATING DECISION PROCEDURES(U) / ,q
STANFORD UNIV CR DEPT OF COMPUTER SCIENCE
G NELSON ET AL. APR 78 STAN-C-78-652 MDA903-76-C-8206

UNCLASSIFIED F/U 9/2 N*uuuuornouuiu,

MIRCOYRS1.0 O ET HR
MAUAI U~M o TA Q2C 96-

'*.%*'* % ~ *V ~'~*'L..''

F--

Stanford ArtUfoiial Intllig noe Laboratory April 1978

Memo AIM-3 1I

Computer Scienoe Department
Report No. Tr(N-c-78-ew6

SIMPLIFICATION BY COOPERATING DECISION PS

by

Greg Nelson and Derek C. Oppen.

[Stanford Verification Group]

W9ROR O ptjLIC RMLEAE

%U

Research sponsored by

National Science Foundation
and

Hertz Foundation

COMPUTER SCIENCE DEPARTMENT
Stanford University

LECTE

83 11 28 183
• "I j !, Y , ,, ?'. - k -'.- T," 7' ' . : ".

' :-'--" -" "" '" :"''"
' .

Stanford Artificial ItUgoelaboratory April 1978
Memo AIM-8 11,

Computer Science Department
Report No. STAN-S-78-652

SIMPLFEATN BY OOEANGDECIOM PrOCED U ES

by

Greg Nelsen seid Derek CQ Oppen

[Stanford Verification Group]

Ta I~tte fru in program manipul$ and verification. The simplifier finds a
normal form for any expression over he lagage ~osslgof individual variables, the usual
boolean connectives, equality, the conditional fu cn d (eoi It-al) t numerals,
the arithme- tic functions and predicab.., andith LIPc Nstn functions and Predicates
nil, car. edr, emrs and ate. the functions store and select for string Into and selecting from
arrays, and uninterpreted function symbols. Individual variables range over the union of the
ream, the set of arrays, LISP li st ructuat and thebooleans true and fable

The simplifier Is cunphe that it, It simplifies every valid formula to trw. Thus it is also a
decision Procedure for the quantilW-frs theory of reals, arrays and hes structure under the
abovie functions and predicat

The organization of the simplifier Is based on a methe. for combb ing decision procedures for
sevral theories Into a single decision procedure for a theory combining the original theories.
More precisely, given -a set S of futions and predicates over a fixed doinaln, a satisfiability

pgrmfor 9is a program Which determines the satisfiability or conjuncti~ns of "ierl (jiined
atmcformnulas) whue predicate and fucinsymbols are In &. We give a general procedure

for cmiing satifiability prrm for set S and T Into a single satisfiability pr ogramv for S u
T, given certain conditions on S and T.

Tesimplifier desribed In this -pe is currendy used in the Stanford Pascal Verifer

An farlr version of this paper appeaed in Mhe Prwedlags of the Fi*A ACM Synposums on
Prindis of Prqiwuuing Languqes, 1978. TMs resvAr uws suppored by t9e Aduanced
ResewArc P rejets Age"c of the Deportustex of Dens under CM~~c MDAVOJ-76.C.0206, by
the Nutional Scienc PFnduti~n under mutvuc MC$ 7600Y27, end by the Fannie and JeAx
Hertz Foundation.

1. Introduction

In this section we glove some examples of simplifications. We also specify the syntax and semantics of
the language accepted by our simplifier. In section 2, we give a precise definition of a satisflabiU~y
.Orogran for a set S of functions, predicates, and constants. Essentially, such a program determines
the satisfiability of conjunctions of literals (signed atomic formulas) whose predicate and function
symbols are in S. The formal definition specifies the interpretations of the elements of S in such a
way that it makes sense to "merge" satisfiability procedures for two sets S and T into one for S u T.
We give a method for doing this, based on Craig's interpolation lemma ([Craig 1957]). Section S
shows how a satisfiability procedure can be used to Implement a simplifier for general expressions.

1. 1 Examples of the Use of the Simplifier Accession For

Here are some examples of simplifications. NTIS GRA&I
DTIC TAB

5;Unannounced E

2+ S*5, Justificatio
17;

By
P P Distri-bution/

P; Availability Codes
Avail and/or

X - F(X) F(F(F(X))) *X; Dist Special

U true,

cons(X, Y) -Z *car(Z) +dr(Z) -X- Y 0,
true;

X:5Y AY +DSX A SD2*DV2*X-Y]. VEX D1
true;

A - store(store(A, 1L A(J])b J. AUJ] o All). A[JJ
true

The last formula states the theorem that if the Ith and At elem ents of A are swapped, and if
the resulting array equals the original one, then the Ith and Jth ele ments ame equal.

1.2 The ThoresZ.t and C

All of the theories which we consider are formalized in classical first-order logic with equality,'
extended to include the three-argument function cond, where cond(p. a, b) means "if p then a else
b. The log"ca sywbus are. A, v. , , cond, V and 1. A theory is determined by its non-logical
symbol (that Is. its constant, function, and predicate symbols) and its axioms.

2

The functions, predicates, and constants to which the simplifier currently gives an
interpretation are those of the theory of reals under addition, the theory of list structure with car,
cdr, cons, atom and nil, and the theory of arrays under storing (store) and selecting (select). We
call these theories 2. .1' and .A respectively.

Given a quantifier-free expression F, the simplifier tries to find the simplest F' such that
F - F' is. entailed by the axioms for , .4 and .1'. In particular, If F Is a formula entailed by the
axioms, the simplifier returns the boolean constant true.

The non-logical symbols of 2 are +, - , , and the numerals. Its axioms are

x+O-x
X+-x=O

(x + y)+ z -x + (y + z)
x+y-y+x

x 5yvyx
x syvysxx y
x SyAySXzxsz

x S y: x + z S y+ z
0-1

OS I

The numerals 2, 3, ... and <, >, and a are defined in terms of 0, 1,, - and s in the usual
way. We also allow multiplication by integer constants; for instance, 2 * x abbreviates x + x.

The integers, rationals and reals are all models for these axioms. Any formula which is
unsatisfiable over the rationals or reals can be shown unsatisfiable as a consequence of these axioms.
Thus our simplifier is complete for the rationals or reals. It is not complete if the variables range
over the integers, since there are unsatisfiable formulas, such as x + x - 5, which cannot be shown
unsatisfiable as a consequence of the above axioms. In this respect, our simplifier does not differ
from most theorem provers. The reason for the incompleteness is that determining the
unsatisfiability of a conjunction of integer linear inequalities -- the integer linear programming
problem -- is much harder in practice than determining the satisfiability of a conjunction of
rational linear inequalities. This incompleteness is not as bad as it seems, since most formulas that
arise in program verification and program manipulation do not depend on subtle properties of the
integers. Further, there are some easily-implemented heuristics (such as converting x < y into
x + I s y) for Integer variables which work well in practice.

The theory of arrays, -4, has the non-logical symbols store and select, and the axioms:

select(store(v, I, e), J) - cond(i -, e, select(v, j))
store(v, I, select(v, I)) - v
store(store(v, I, e), I, f) -store(v, I, f)
I o J n store(store(v, I, e), j f) - store(storev, J f), I, e)

TV. ..

select(v, I) is the Ith component of the one-dimensional array v. We may write vii] for
select(v, I). store(v, I, e) is the vector whose Ith component is e and whose jth component, for j o I,
is the jth component of v. Thus, if the program variable A has the value A0 before the assignment
Ali] #- e, then afterwards A will have the value store(A0, I, e). A two-dimensional array can be
treated as a vector of vectors, so A[li, j] is shorthand for A[i][j. Had the assignment above been
A[I, j) #- e, the value of A after the assignment would be store(A0 I, store(A0 i], J, e)).

The last three axioms are only needed if equalities between array terms are allowed.

The theory of list structure, 41', has the non-logical symbols car, cdr, cons, atom and nil, and
the axioms:

car(cons(x, y)) - x
cdr(cons(x, y)) - y
- atom(x) n cons(car(x), cdr(x)) - x
- atom(cons(x, y))
atom(nil)

Notice that acyclicity is not assumed; for instance, car(x) - x is regarded as satisfiable.

Finally, it is technically convenient to define the theory C whose non-logical symbols are all
uninterpreted function, constant, and predicate symbols and which has no axioms. The theorems of
C follow from the properties of equality; hence its name.

2. Merging Satisfiability Programs

In this section, we define iatitfj llty programs. We then show how to amerge" satisfiability
programs for two theories which have no common non-logical symbols.

2.1 Satisfiability Programs

If S is a theory, then a term is an S-term if each non-logical symbol occurring in the term is a
non-logical symbol of S. We define S-literal and S-formula analogously. For example, x - y and
x s y + S are Z-literals but x S car(y) is not. Notice that a term is an C-term if it contains only
uninterpreted function symbols.

If S is a theory, a satisfiability program for S is a program which determines whether a
conjunction L1 A ... A Lk of S-literals is satisfiable in S. A satisfiability program is therefore a

decision procedure for satisfiability for conjunctions of literals.

We use the name of a theory to denote both Its satisfiability program and the conjunction of
its axioms; for example, we may say that 2' A 0 > I is unsatisfiable, or that the size of 2 is S.K.

4

-- j~. . - .* -4

There are efficient satisfiability programs for 2, C and .'. For Z, the simplex algorithm is
very fast In practice ([Nelson 1978]). [Nelson and Oppen 1978] describe satisfiability programs for
.1 and C which determine the satisfiability of conjunctions of length n in time O(n2). [Johnson and
TarJan 1977] have improved the underlying algorithm to 0(n log2 n). (Oppen 1978] describes a
satisfiability program for t' which runs in linear time if list structure is assumed to be acyclic. The
satisfiability problem for conjunctions of .4-literals is NP-complete ((Downey and Sethi 1976]).

2.2 Example of the Joint Setisfiability Procedure

We illustrate how Z, .t' and C together detect the unsatisfiability of the following conjunction F:

X S Y A Y s X + car(cons(0, X)) A P(F(X)-F(Y)) A - P(O)

We call a formula homogeneous if all its non-logical symbols are from the same theory. The
first step we take is to make each atomic formula homogeneous, by Introducing new variables to
replace terms of the wrong "type" and adding equalities defining these new variables. For instance,
the second conjunct would be a Z-literal except that it contains the term car(cons(0, X)), which is
not a 2-term. We therefore replace car(cons(0, X)) by a new variable, say G 1, and add to the
conjunction the equality. GI - car(cons(0, X)) defining G . By continuing in this fashion we
eventually obtain a formula F' which is satisfiable if and only if F is, with each literal of F'
homogeneous. In our example, F' is

XSYAYSX+GIAP(G2) A-P(GS)
A G I - car(cons(G5, X)) A G2- G3 - G4
A G$ - F(X) A G4 - F(Y) A 05 - 0

We next divide F' up into three conjunctions FE, Fz and F1. FE contains all the C-literals, Fz
all the 2-literals and FL all the '-literals. Here is F'-divided up into homogeneous parts:

Fz FE FL

X s Y P(G2) - true G I - car(cons(G5, X))
Y s X + G I P(G5) = (alse
G2 - G - G4 G$ - F(X)
G5 - 0 04 - F(Y)

These three conjunctions are given to the three satisfiability programs 29, C, and .t. Since
each conjunction is satisfiable by itself, there must be interaction between the programs for the
unsatisfiability to be detected. The interaction takes a particular, restricted form. We require that
each satisfiability program deduce and propag e to the other satisfiability programs all equalities
between variables entailed by the conjunction it is considering. For example, if X s Y and Y s X
are asserted to 2, it must deduce and propagate to the other satisfiability programs the fact that
X - Y. The other satisfiability programs add X - Y to their conjunctions and the process continues.

i5

U. .C * .- - - - -...

l , " # ' :* -."......................' ""c""" .,.,,. .,/;,.,... .. .,

In our example, neither FZ nor FE entail any equalities between variables, but FL entails
G I - 5. .' propagates this equality. 2 uses this equality to deduce and propagate X = Y. C then

£ propagates G3 - 04. Z then propagates G2 - GS. Now C has an inconsistent conjunction, and
signals unsatisfiable. The following shows the literals received by the satisfiability programs, and
the propagated equalities, listed in the order in which they were propagated.

X S Y P(G2) - true G I - car(cons(G5, X))
Y s X + G I P(G5) - false
G2 - GS -G4 GS -F(X)
G5 - 0 04 - F(Y)

GI - G5

GS - G4I
G2 - G5

unsatisfiable

If one of the conjunctions F Z' F E, and FL becomes unsatisflable as a result of these
propagations, the original conjunction must be unsatisfiable. For Z,C , and X , the converse holds

as well; that is, if the original conjunction is unsatisfiable, then one of the conjunctions FZ , F EP and
FL will become unsatisfiable as a result of propagations of equalities between variables. For some

~other theories, such as -4, the converse does not hold. for these theories, a final "case-splitting" step,

_]described in the next section, is required.

It Is important to realize that it is never necessary to propagate disequalltles, nor equalities
other than those between variables. For instance, after receiving G I - G5, there was no need for Z -

• to rpropagate that Y % X or that X - Y + 05, 'even though these were deducible facts. None of the

Sother ' atlsflability programs could make use of this information -- none of them knows anything
about s or +. Further, no disequdlity need be propagated, even though every theory shares - and -.

IL, .A disquality x o y Is needed to prove Inconsistency only it x -y is deduced. It some program

deduces x a y, it will propagate this fact to the other programs, and the one that has deduced x ,o y
will detect the inconsistency.

Notice that the only satisfiability programs that can make use of a propagated equality
between two variables are those whose conjunctions contain occurrences of both variables. For
instance, when f/ propagated G I - G5, only Z' ever made use of this equality. When equalities are

propagated, the only satisfiability programs that need to receive the equality are those which already
"know" about both variables in the equality.

6

,.'..' .'-.- 0-. -"-.. 0 .-5 -. .". °. -, " .'. ' , .'. -. , 1, ..

2.3 Joint Satsfiebility Procedure

In this section, we present the Jaoit salh lit, procedure illustrated in the previous section. We
assume that we have two theories S and -9 with no common non-logical symbols. The case for
more than two theories follows easily.

Given a conjunction F of literals whose non-logical symbols are among those of S and -9, the
joint satisfiability procedure determines whether F is satisfiable in the theory axiomatized by
S A -9. FS and FT are program variables containing conjunctions of literals.

I. [Make F homogeneous.] Assign conjunctions to Fs and FT by the method described in
section 2.2 so that FS contains a conjunction of S-literals, FT a conjunction of 3-literals, and
FS A FT Is satisfiable If and only if F Is

2. (Unsatisfiable?] If either Fs or FT are unsatisfiable, return unsatisiable.

S. [Propagate equalities.] If either FS or FT entail some equality between variables not
entailed by the other, then add the equality as a new conjunct to the one that does not entail
it. Go to step 2.

* 4. [Case split necessary?) If either Fs or FT entail a disjunction uI - v, v ... v uk - vk Of

equalities between variables, without entailing any of the equalities alone, then apply the
procedure recursively to the k formulas F A FAUJ v FS A FT A uk - vk. If any of
these formulas are satisfiable, return satisfiabe. Otherwise return unsatisfiable.

5. Return satisfiable.

If the procedure returns unsatisfiale, it is clear that F is unsatisfiable. We will prove in the
next section that the procedure is also correct if it returns satisfiable. The procedure always halts,
since each repetition of step $ or recursive call In step 4 conjoins an equality to one of the
conjunctions Fs or FT not previously entailed by the conjunction. This can happen at most n - I
times, where n is the number of variables appearing after step 2, since there can be no more than
n - I non-redundant equalities between n variables.

We have not implemented the joint satisfiability procedure. It is subsumed by the
simplification algorithm described in section S.

[Kaplan 19681 proves that the quantifier-free theory of arrays with constant indices is
decidable. [Shostak 19781 proves that quantifier-free Presburger arithmetic with uninterpreted
function symbols is decidable. (Suzuki and Jefferson 1977] prove that quantifier-free Presburger
arithmetic with arrays is decidable. The joint satisfiability procedure provides practical decision
procedures for each of thes theories.

7

24 Convex~ty and Case Splitting

In thi seaction, we characterize the theories which require case splitting.

A formula F is uueu-couuex it there exist 2n variables x,, ye. ... Xn. y1n n k 2. such that
F=ox I - yI v...xn -Ynbut for nobetween I and ndoes F :)x,- yrOtherwse,F s conex.

A theory S is convex if every conjunction of S-lterals Is convex. If the satisfiability
program mnerge by the joint satisfiability procedure are satisfiability programs for convex theories,
case splitting never occurs. Cane splitting may occur if one ormore of the theories are non-convex.

2is convex, since the solution set of a conjunction of Z-literals Is the intersection of a
convex set with a finite number of complemrents of hyperplanes. Such a set cannot be a subset of a
union of finitely many hyperplanes unless it is a subset of one of them.

C and et are convex; this follows from the characterization In [Nelson and Oppen 1978] of
the set of equalities entailed by a conjunction of C- or st-lterals.

-4 is not convex, as shown by the following example. Suppose that the theories merge by the
joint satisfiability procedure are 4 and 2, and that after step I the two formulas arm

FA: store(v. I, eXj1u -X A v~jJ.a y

Each formula is satisfiabe the whole conjunction is unsatisfiable, but there are no equalities
to propagate in step &. In step 4, -A propagates the disjunction x a e v x - ;each case leads to a
contradiction in .I

We plan to extend Z to be complete for the Integers. It will then no longer be convex, since
for eXample X - I A Y - 2 A i 5 1 A I S 2 entails the disjunction x - a v y - z without entailing
either disjunct alone However, since we need only propagate equalities between variables, not
between variables and constants, literal such as I s z s 100 will not cause splits (unless there are
100 variables equal to 1, Z. .. , 100 respectivelyl).

The theory of set% which we intend to add to the simplifier, Is another example of a
non-convex theorry for example, x 4 (y, z) causes the case split x - y v x - zL

Non-convexity complicates simplification. If a case split occurs for which some, but not all,
cases are satisflabek a good simplifier must determine which of the case are satisfiable. To see this,

I.consder the problem of simplifying x (4 -6 AX:-0 to x-4.Ths conjunction of terah s
satisfiable, as the joint satisfiability procedure determines by doing the case split x - 4 v x --6. The
simplifier must discoer that the satisfiable branch of the split is the one in which x - 4.

8

2.5 Correctness of the Joint Setleflabity Procedure

The proof of correctness requires several lemmas. Our first goal is to define the residue of a
formusla. Essentially the residue is the strongest boolean combination of equalities between variables
which the formula entails. For example the residue of the formula x - f(a) A Y - f(b) is
a - b * x - y. and the residue of x S Y A 7 S X IS X a y.

We make the following assumptions about the underlying formal system (1) Individual
variables are distinguishable from function variables. (2) There is no quantification over functions
or predicates. (3) There ire no propositional variables. The third restriction Is not essential, but it
simplifies the statement of the proof.

A Parmaeer of a formula is any non-logical atomic symbol which occrs free in the formula.
Thus the parameters of a w b v VX P(x, f(x)) - c are a, b. P. f, and c.

We define a simpit formula to be one whose only parameters are Individual variables. For
instance, x o y v x - y and Vx x o y are simple, but xa< y and *~) a y are not. Thus an unquantified
simple formula is a propositional formula whose atomic formulas are equalities between individual
variables. The next lemma characteizes quantified simple formulas.

Lemma 1: Every quantified sipe formula F is equivalent to some unquantifled simple
formula 0. 0 can be chosen so that its variables are all free variables of F.

PProof Suppose Fis of the form 3ax f). Let IVObe the formula-resulting from IFby frst
replacn any noccrrfences of x -a xand x o by true and false respectively, and then replacing any
remaining equality involving x by false. Then, if vi, ... I Vk are the parameters of IF. F is
equivalent to 9ro v 9(v,) v ... v V(vk). since in any, interpretation, x either equals one of the vi or
els differs from all of them By repetely eliminating quantifiers in this manner, we eventually
obtain an equivalent quantdfler-free formula whose only variables are free variables of F.

Any Inepaaln*for a formula, F determines an equivalence relation o n the free
variables of F by the rul a vif and only if #(u) - #(Y). It follows from lemma I that if F is
SlMpl - compltel.detembws whetme * saife F.

LMIM a (Craig's Interpolation lemma) If F entails, 0. then there exists a formula H such
that F entails H and H entalls 0. uM each parameter of H Is a parametof both F and 0.

Proof:. see (Craig, Inn7

Laei ea. F Is any frmula, thnthere eistsa smple formula Res(F), the rtsiduof F.
* wisich is the atrn, et simpl fbrmula that F entails; that is, If H is any simple formula entailed by F.

d t sM wF)etal H. Res(P con be w. mN so that its only variables are free variables of F.

Preod: Let fGs) be she se of all simple foumalas which F entails For each G., choose H. so
th Fa a tXhe w onl sunemn of ane paransm of bot F and G~ and HX is

unquantified. The existence of H. is guaranteed by lemmas I and 2. Now, each H is a
propositional formula whose atomic formulas are equalities between individual parameters of F. It is
easy to show that an infinite conjunction of propositional formulas over a finite set of atomic
formulas is equivalent to some finite propositional formula over these atomic formulas. Therefore
the conjunction of the H, is equivalent to some finite subconjunction H. Any simple formula G.
entailed by F is entailed by some H., and so by H. The only parameters of H are free individual
parameters of F. Thus H is the residue of F.

Here are some examples of residues.

Formula Residue

x-f(a) Ay-f(b) a-bnx-y
x + y- a- b 0 -,(x- aAy- b)A-,(x b y - a)
x - store(v, I, e)(j] i -j X -e
x - store(v, i, eXj] y - v(j cond(i j,x -e, x -y).

Notice in the last two formulas how the addition of an individual variable as a "label" affects
the residue.

As a final example to relate the notion of residue to that of joint satifiability, here are the
residues of the formulas which appeared in the example of section 2.2:.

X s V P(G2) G I car(cons(G5, X))
s Y X+GI - P(G5)

G2 -G - G4 GS - F(X)
G5 - 0 G4 -F(Y)

G-GI N X-Y A GS-G4 s G2-G5

G2 , G5 A X - Y GS - G4

, GI -'G5

As we found In section 2.2, the residues are inconsistent. An essential fact needed for proving
the correctness of the joint satisfiability procedure is that these residues are always Inconsistent if the
original formula is. This fact is a consequence of the following lemma.

Lemma 4: if A and B are formulas whose only common parameters are individual variables,
then Res(A A B) a Res(A) A Res(B).

*" Proof: Obviously the left side of the equivalence entails the right side, so we need only show
the converse.

10

V L%*I

From A A B :)Res(A A B) we get A P (B 2 Res(A A B)) and so, by Craig's interpolation
lemma, there is a formula H entailed by A which entails B D Res(A A B) and whose only
parameters are parameters of A and B. But these must be individual variables, so H is simple and
therefore Res(A)) (B m Res(A A B)). Writing this as B (Res(A) : Res(A A B)), and observing that
the right hand side is simple, we have Res(B) * (Res(A) Res(A A B)), or, equivalently.
Res(A) A Res(B) 2 Res(A A B), which proves the lemma.

Lemma 5: Let F, F2 Fn be simple, convex formulas and V be the set of all variables
appearing in any Fi. Suppose that for all x, y in V and for all I, j from I to n, either both F. and F.
entail x - y, or neither do. Then F1 A F2 A ... A Fn is satisfiable if and only if each F i is satisfiable.

Proof: The "only if" part is obvious. To prove the "if" part, assume that each F is satisfiable.
Let S be the set of equalities between variables in V entailed by some (hence all) of the F. and T be
the set of all other equalities between variables of V. We claim that any Interpretation which makes

every equality in S true and every equality in T false satisfies each F . If It does not satisfy F, then
F i entails the disjunction of all equalities in T. Now we consider three cases. If T is empty, F i is
unsatisfiable. If T contains only one equality, it is entailed by F. and so it Is in S. If T contains more
than one equality, F. is non-convex. Each case contradicts our assumptions.

We can now complete the proof of correctness of the joint satisfiability procedure by showing
that if it returns satisfiable, F is satisfiable. To show that F is satisfiable, it suffices to show that
Res(S A Fs A 7 A F) is not the constant false. But by lemma 4, this residue Is equivalent to
Res(S A FS) A Re(A FT). If step 5 of the procedure is reached, each of these residues must be
convex, since step 4 did not cause a case split. Furthermore, the residues entail the same set of
equalities and are each satisfiable, since steps 2 and 3 were passed. By lemma 5, the conjunction of
the residues is satisfiable. Thus F is satisfiable if the algorithm returns from step 5. It follows, by
induction on the depth of recursion, that F is satisfiable whenever step 4. returns satisfiable.

3. Simplification Based on Satisfiability Programs

In section S.1 we describe cond normal form for boolean expressions. In section 3.2 we give a
simplification algorithm for formulas in cond normal form. In section 3.3 we discuss some aspects of
the efficiency of our simplification algorithm, and in section 3.4 discuss some of its deficiencies.

3.1 Cond Normal Form

For convenience we use LISP list notation in this section. That is, the term f(a, b) is denoted (f a b).

Our simplifier first puts expressions into cond normal form. This is similar to the cond normal
form in (McCarthy 1961 An expression is in cond normal form if:

; :,7 Z .. -.- ,::. '.,: ., ., .. ,, ,,. ,...-.... , . • ,-... ,..,..

J' .l~.

(I) The expression does not contain any boolean connectives other than cond. Thus A A B is
replaced by the equivalent (cond A B false), and -A by (cond A false true).

(2) No first argument to a cond is a cond. Thus (cond (cond P A B) C D) is replaced by
(cond P (cond A C D) (cond B C D)).

(3) No expression of the form (cond P A B) is the argument to any function other than cond;
thus (F (cond P A B)) is replaced by (cond P (F A) (F B)).

(4) Every boolean subexpression, other than constant subexpressions true and false, is the
first argument to a cond. For instance, a single atomic formula P which is not the first argument to
a cond is replaced by (cond P true false). F(X-Y) is successively replaced by (F (cond (. X Y) true
false)) and (cond (. X Y) (F true) (F false)).

(in practice, the transformation required by (4) is not carried out if the subexpression is a
second or third argument to cond, since this would waste space. If A and B are boolean, the cond
normal form of (cond P A B) is (cond P (cond A true false) (cond B true false)) but we store it
as (cond P A B).)

Cond normal form is not a canonical form, since two syntactically different expressions, each
in cond normal form, may be logically equivalent.

An expression in cond normal form corresponds naturally to a binary tree whose nodes are
labelled with atomic formulas. We call this tree the cond tree for the expression. To the expression
(cond P A B) corresponds the tree whose root is labelled with P, whose left son is the tree for the
expression A, and whose right son is the tree for the expression B. The tree for any non-cond
expression E Is a node with no sons labelled with E. Thus every node In a cond tree is either an
internal node with two sons and a boolean expression as label, or a leaf node whose label is either
non-boolean or one of the constants true or false.

The maximum number of nodes in the cond tree for an expression of length n is exponential
in n. But, by sharing structure, the tree can be represented as a directed graph; the amount of
storage required is linear in n.

Let N be a node of the cond tree for some expression. Then <N 1 N2 ... Nk> Is the branch to
N if N1 is the root of the tree, Nk - N, and, for each 1 l i < k, Ni+1 is a son of Ni. The contextat
N is the conjunction L1 A... A Lk-, where each L i is the label of N i If N i+ is the left son of N i,
and the negation of the label of NI otherwise.

The context of a node is exactly the condition that must hold for an evaluator to reach the

node during evaluation of the expression. That is, if the conditional expression is regarded as a

program fragment, the context of a node is the strongest "invariant assertion" on the arc leading to
the node. For example, consider the following expression in cond normal form: (cond P (cond QA
B) (cond R C D)). The context of the node for B, that is, P A -'Qo Is the condition that B would be
evaluated if the whole expression were evaluated.

12

7*%**

It follows that the disjunctive normal form of a formula is the disjunction of the contexts of
the leaves labelled with true in the cond tree for the formula. Cond normal form Is more compact
than traditional disjunctive normal form because, in cond normal form, disjuncts are represented as
branches in a tree (or paths in a directed graph) and thus may share structure.

3.2 The Simplification Algorithm

To simplify an expression, the simplifier traverses its cond tree, maintaining as it does so a
representation of the context of the node it is visiting. When a node Is reached with an inconsistent

. context, the node and the subtree below it are ignored. Thus the simplifier "prunes" away all
inconsistent branches in the tree. The simplifier also collapses together branches to leaves with
equivalent labels by replacing expressions of the form (cond p x x) by x. If the expression is a valid
formula, every leaf which is reached will be labelled true; all these branches will be collapsed, and
true will be returned. Similarly an unsatisfiable formula simplifies to false.

If the context of a node N is non-convex, the simplifier traverses the subtree rooted at N once
for each branch of the case split.

SIMPLIFY takes two arguments: F, an expression in cond normal form, and CONTEXT, a
conjunction of literals. It returns the simplest F' such that CONTEXT =o F - F'. If CONTEXT is
unsatisfiable, it returns the atomic symbol omega. We assume that omega does not appear in F. The
algorithm uses the auxiliary function SIA(PATObf; if T is a term, SIMPATOM(T, CONTEXT)
returns the simplest term T' such that CONTEXT 2 T -T'.

SIMPLIFY(F, CONTEXT)

I. If CONTEXT is unsatisfiable, return omega.

2. If F is not of the form (cond P A B), return SIMPATOM(F, CONTEXT).

3. If CONTEXT is not convex, let El v ... v Ek be a disjunction of equalities entailed by
CONTEXT no disjunct of which is entailed by CONTEXT.

Set F *- (cond E1 F (cond E2 F ... (cond Ek F omega) ...

4. F is of the form (cond P A B). Set A 4- SIMPLIFY(A, P A CONTEXT), B ,-
SIMPLIFY(B, - P A CONTEXT). If A - omega, return B. If B - omega, return A. If
A - B, return A. Otherwise, let P - SIMPATOM(P, CONTEXT). If A - true and
B - false, return P. Otherwise return the expression (cond P A B).

The proofs of termination, correctness, and completeness of this procedure are straightforward.

i,

F.1

In the remainder of this section, we describe our implementation of this simplification
algorithm.

The implementation uses a function ASSERT, which conjoins an arbitrary literal to a global
context representing a conjunction of literals. The value returned by ASSERT indicates either that
the resulting conjunction is convex and satisfiable, or that the conjunction is unsatisfiable, or that
the conjunction has become non-convex. In the last case, ASSERT also specifies the case split to be
done.

In order to implement ASSERT efficiently, we require that the individual satisfiability
programs have certain properties. An wcremntal satisfiability program is one which accepts literals
one by one and which can determine at any time whether their conjunction is satisfiable. If in
addition it can mark its state, accept more literals, and later return to the marked state by "undoing"
the literals asserted after the mark, it is called reslttabe. To be used in our simplifier, a satisfiability
program must be resettable and must propagate the equalities and disjunctions of equalities which
are entailed by the conjunction is has received.

More precisely, a satisfiability program for a theory S consists of a global data structure,
CONTEXT S, for representing conjunctions of S-literals, together with the following functions for
manipulating it.

ASSERTs(P) where P is a literal, changes CONTEXT 9 to represent Q.A P, where 0 is the
conjunction currently represented by CONTEXT S. If Q A P is unsatisfiable, ASSERTs(P) returns
false. Otherwise, if there are any equalities between variables which are entailed by QA P but not
by 4% then ASSERTs(P) returns the conjunction of all such equalities. Otherwise, if 0Q A P is
non-convex, ASSERTS(P) returns a disjunction of equalities between variables entailed by A, A P
no disjunct of which is entailed by 4,A P. Otherwise, ASSERTs(P) returns the constant true.

PUSHSO saves the current state of CONTEXT S.

POPs) restores CONTEXT S to the state it was in just before the last call to PUSHsO.

SIMPATOMs(F), where F is an S-term or S-literal, returns an expression F' equivalent to
F in CONTEXT 9 . F' is the normal form for F in this context. For example, SIMPATOMz(x + 0)
returns x and SIMPATOMz(x - y) returns 0 if x - y is entailed by CONTEXT S. (SIMPATOMS
will only be called when CONTEXT S is consistent).

Now we are ready to define ASSERT. ASSERT accepts an arbitrary literal, splits it into
homogeneous pieces, and calls the appropriate assertion functions of the individual satisfibility

,, programs. We define it for the case where there are two theories S and .7. The case where there
are more than two theories is analogous.

In this program, PS, PT' QS' and Q,. are variables containing formulas.

14 NI

. .. , ,i , ,.. -, , - - - 1 . -. - . .

ASSERT(Q,:

I. Divide Qinto homogeneous pieces S and as described in section 2.

2. Set PS e" ASSERTs(Q) PT , ASSERTT(QT)"

S. If either P or PT are false, return false.

4. It either Ps or PT are disjunctions, return one of these disjunctions.

5. If both PS and PT are true, return true.

6. (One or both of the formulas is a conjunction of equalities. This step propagates the
equalities.) Set each of the variables .S and % to be the formula P. A PT' and go to step 2.

ASSERT propagates equalities between the satisfiability programs until one of them
propagates false, or one of them splits (by returning a disjunction), or both of them stabilize.

Notice that a term t in an inhomogeneous literal which has been replaced by a new variable v
in step I of some call to ASSERT may in a subsequent call be replaced by another new variable w.
This is all right, since both t - v and t - w are sent to the same satisfiability program, which will
propagate v - w.

, It is not necessary to send all the equalities to all the satlstlability programs In step . As
mentioned in section 2.2, an equality need only be sent to a satisfiability program if both variables
in the equality are parameters of the conjunction represented in the program.

There is one feature of our the simplification algorithm described above which makes it
unsuitable for implementation. If CONTEXT is represented by CONTEXTS and CONTEXT T,
then the tests in steps I and S require a case split if either CONTEXTS or CONTEXT T is
non-convex. If two or more of the cases are satisfiable, the simplifier will repeat the case split. A
better approach is to return omega from step I if CONTEXTs or CONTEXTT is unsatisfiable,
and to split in step S if CONTEXTS or CONTEXTT is non-convex. Using this approach, the tests
can be made without a case split, since a case split is not necessary to determine if an individual
context is unsatisfiable or non-convex. ASSERT avoids redundant case splits by returning
immediately if one of the satisfiability programs splits, without checking if any of the branches of
the case split is satisfiable.

In addition to ASSERT, the second simplification algorithm uses the functions PUSH, POP,
and SIMPATOM. PUSH and POP simply call the push and pop functions for each of the

A, satlsfiability programs. SIMPATOM takes an arbitrary term or literal and simplifies it using the
information in CONTEXTS and CONTEXTT by calling the appropriate SIMPATOM functions.
A record is kept of the individual variables generated as labels for terms in a 1, so that
SIMPATOM can put the literab back together, replacing generated labels by the terms they
represent. We omit the details.

1,

The following simplification algorithm is a refinement of the one given above.

SIMPLIFYF)

1. If F is not of the- form (cond P A B), return SIMPATOM(F).

2. F is of the form (comd P A B). Call PUSHO. Set Out- ASSERT(P).

If Q. - false, then POPO and return SIMPLIFV(B).

If 0L. true then set A .- SIMPLIFY(A), POPO and go to step S

Otherwise, QIs a disjunction E, v ... v Ek.

Set A . SIM PLIFY((cond El A ... (cond Ek A omea) ...)). POPO and go to step S.

&. Call PLJSHQ. Set Qv- ASSERT(-P).

If 0. -false, then POP() and return A.

If Qe true then set B + SIMPLIFY(S). POPO and go to step 4.

* Otherwise, Q.Is a disjunction E1 v... v F

Set B +. SIMPLIFY((cond E, B . (cond Ek, B. *a)...)), POPO and go to step 4.

4. If A - omegareturn B.Ifi B omega, return A. If A -B, return A. Otherwise, let
P - SIMPATOW(P). If A - true and B . false, return P. Otherwise return the expression
(cond P A B).

We sketch the proof of the completeness of the algorithm. Whenever CONTEXT 9 or
CONTEXTT are non-convex, SIMPLIFY calls Itself recursively on some cond expression. Thus
whenever its argument is not a cond expression, CONTEXTS and CONTEXTT are convex. By
the definition or ASSERT, CONTEXTS and CONTEXTT entail the same set or equalities when
ASSERT reUrns It follows from lemma 5 that if CONTEXT S and CONTEXTT are covex,
satisfiable, and entail the same set of equalities, then their conjunction Is satisfiable. Therefore
whenever SIMPLIFY returns from step 1, the context Is consistent. if F Is valid, every lea of its
cond tree with a consistent cnet Is labeld with true, so every term returned In step I is true. It
follow by induction that A and B are always true, and therefore that the algorithm Is complete.

I6

ING~~ 51F!1

3.4 Comparison with DW-stylo Theorem Proving

We do not know how to give an adequate analysis of our simplifier. Its behaviour in practice is
much better than its worst case behaviour. Instead, we will compare our approach, using cond
normal form, with an obvious alternative approach, using disjunctive normal form, which we call a
DNF-style approach. The DNF-style approach is net suited to arbitrary simplification, but only to
proving the validity of formulas.

Let F be a formula represented as a cond tree with n Internal nodes. The most obvious
algorithm to determine If F is provable is to put Its negation into disjunctive normal form and test
each disjunct for unsatsfiabllity. This corresponds to testing that the context of each leaf labelled
with false Is unsatisfiable. The standard DNF-style approach builds up the context for each leaf
from scratch, that Is, from the root of the cond tree. The number of calls to ASSERT equals the
sum, taken over all leaf nodes labelled with false, of the length of the branch to the leaf. This sum
varies from O(n) to O(n2), and has an average value of O(nl h), if one considers all binary trees
with n Internal nodes and all external node labellings with true or false to be equally likely. There
are no calls to PUSH or POP. A non-resettable satisfiability program can be used.

Our algorithm makes n calls to PUSH, n calls to POP, and 2n calls to ASSERT. Therefore,
DNF-style algorithms minimize (to zero) the number of calls to PUSH and POP, while our
algorithm minimizes the number of calls to ASSERT. To determine which method is better, we
would need to know the expected number of calls to ASSERT which each algorithm makes on
realistic Input distributions and the relative costs of resettable satisflability programs and
non-resettable ones.

The formulas which arise in the Stanford Verifier are often Implications between
conjunctions of literals, (Formulas with this structure arise in program verification whenever the
Invariant assertion on a simple loop Is a conjunction of literals.) If there are n conjuncts in the
antecedent of such a formul and m conjunct% in the consequent, then the disjunctive normal form
of the negation of the formula has length m(n + 1), while the cond tree has only m + n internal
nodes. A DNF-stye algorithm can therefore make as many as m(n+ 1) calls to ASSERT, while our
algorithm can make at most m n calls to ASSERT. PUSH and POP.

3.5 Finding the Simplest Form

In this section, we note some problem with our simplifier. The problem do not arise when our
simplifier is used as a theorem prover, but only when it is being used to simplify expressions which
do not simplify to an atomic symbol such as true. These problems arise in the design of any
simplifiation algorithm

First, a problem common to all normal forms Is that they may lse some of the structure of the
original expression. It Is hard to recover this structure if the expression does not significantly
simplify. For Instance, using cond normal form, the formula (A v B v C) A (D v E v F) is
"simplified* to

17

(cond A (cond E true (cond D true F))
(cond B (cond E true (cond D true F))

(cond C (cond E true (cond D true F))
false)))

and (cond E true (cond D true F)) is duplicated in three places. Our simplifier converts this
formula back to a formula involving the usual boolean connectives, but the present version of the
simplifier does not find the original, simplest form of the expression.

Another problem occurs when simplifying conjunctions like x S y A y s x A x - y. The
simplifier discovers that the last equality is redundant and simplifies the conjunction to
X s y A y s X instead of to x - y. (Had the equality appeared first, both inequalities would have
been removed as redundant.) Handling this problem requires extending the set of primitives for
manipulating contexts. For example, if a call to ASSERT made earlier conjuncts in the context
redundant, this might be detected and exploited.

A significant problem concerns implementing the test A - B in step 4 of our simplification
algorithm. This is intended to collapse branches of the cond tree which lead to identical results. If A
or B are atomic symbols, there is no problem. If they contain conds, testing for logical equivalence is
possible but probably impractical If they contain no conds, then testing them for equality (using the
lisp EQUAL) will usually be sufficient, if SIMPATOM puts expressions into a canonical form.
There is, however, a difficulty: consider (eond (- X i) (F 1) (F X)), which we would like to simplify
to (F X). Our SIMPATOM chooses (F); not (F X). as the canonical form when X I is known, so
in step 4 A is (F I) and B is (F X). A completely adequate test for collapsing the two branches
would require testing whether Q A P entailed A - B, in which case B should be returned, otherwise
whether OA -P entailed A - B, in which case A should be returned. (0,is the context of F, which
is of the form (cond P A B).) Again the overhead may be prohibitive. This problem actually arises
frequently and is more troublesome in practice than any of the other problems we have mentioned
in this section.

4. Notes

The language accepted by the simplifier is richer than that described in section I. All predicates
(including ,) and boolean connectives are considered boolean-valued functions (that is, functions
which evaluate to the booleans true and false). Terms are allowed to contain arbitrary
booean-valued expressions. Expressions are allowed as functions. The following simplifications
illustrate this generality.

F(true) * F(X v - X,
true;

cond(true, F, OXX)

18

..- !.- -~*~&.~BIi ~~:~

Our simplifier does not enforce strict typing. For instance, cons(X, Y) + store(V, 1, E) is an
acceptable expression (that the simplifier will simplify to itself). We plan to add type predicates (or
type constants and a type function) to the next version of our simplifier.

The simplifer does not store conjunctions of atomic formulas as strings or LISP s-expressions,
but Instead in a graph with one vertex for each term and subterm in the conjunction. Another data
structure is used to represent an equivalence relation on the vertices. Two vertices are equivalent if
the terms they represent are known to be equal In this context. To propagate an equality, a
satisfiability procedure merges two equivalence classes; this can be done very efficiently. More details
of this representation are given in [Nelson and Oppen 19781

Using this representation, it is not necessary to generate "labels" for terms which appear in
inhomogeneous literals.

This representation also allows the implementation of other routines in our simplifier to be
more efficient, such as PUSH and POP. Obviously, one way to implement PUSH would be to have
it make a physical copy of the existing contexti this is not very satisfactory. The approach we take is
to keep a histor, of all changes we make to our global data structure; popping then involves undoing
these changes until we reach the context of the last call to PUSH.

Our simplifier is hot a general purpose theorem prover, it cannot prove quantified theorems
of the predicate calculus. However, in the Stanford Verifier, it is used in conjunction with a

* program called the nidkendfer which accepa user-supplied lemmas. During a simplification, the
rule handler instantiates the free variables of the lemmas and sends the Instantiated lemmas to the
simplifier. In our sysem, the rule handier stands in the same relation to the simplifier as the
satisfiability programs. The rule handler can be viewed as a satisfiability program driven by
user-supplied axioms.

Acknowledgment

We thank the Stanford Verification group for their patience in waiting two years for this simplifier.

Referencee

[Craig 1957] W. Craig, OThree Uses of the Herbrand-Gentzen Theorem in Relating Model Theory
and Proof Theory, Journal of Symbolic Logic, volume 22.

[Downey and Sethi 1976] P. Downey and R. Sethi, "Assignment Commands and Array Structures",
manuscript.

(Johnson and Tarjan 19771 D. S. Johnson and R. E. Tarjan, 'Finding Equivalent Expressions",
manuscript

19

/1

[Kaplan 19681 D. M. Kaplan, "Some Completeness Results in the Mathematical Theory of
Computation", Journal of the ACM, volume 15.

[McCarthy 1963) J. McCarthy, "A Basis for a Mathematical Theory of Computation", in Computing
Programming and Formal Systems, edited by P. Braffort and D. Hirshberg, North-Holland.

(Nelson 19781 C. G. Nelson, "The Simplex Algorithm in Mechanical Theorem Proving", in
preparation.

[Nelson and Oppen 1978] C. G. Nelson and D. C. Oppen, "Fast Decision Algorithms based on
Congruence Closure", AI Memo AIMS09, CS Report No. STAN-CS-77-6,6, Stanford University.
(An earlier version appeared in the Proceedings of the 18th Annual IEEE Symposium on
Foundations of Computer Science, October 1977.)

(Oppen 1978] D. C. Oppen, "Reasoning about Recursively Defined Data Structures", Proceedings of
the Fifth ACM Symposium on Principles of Programming Languages, January 1978.

(Shostak 1978] R. Shostak, "An Efficient Decision Procedure for Arithmetic with Function Symbols",
to appear JACM.

(Suzuki and Jefferson 1977] N. Suzuki and D. Jefferson, "Verification Decidability of Presburger
Array Programs," Proceedings of a Conference on Theoretical Computer Science, University of
Waterloo, August 1977.

20 d

_-.
-.

FILMED

1=84

DTIC

