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Notation

Indiclal notation is used when dotivenient:

Repeated indices indicate sumtion.

A commna followed by an index indicates

differentiation with respect to the index.

e Ug.: ,1 .d!! + dU, +..AQi.
dx1  dX2  dxs

vgradient operator

e..g.: 14 - (Ijj equations)

*Indicates derivative when function only depends on 4

one variable (usually z).

e.g.: U'- dU if U is a function of z only

D Material ::rivative z dL +i
dtT dx1

e.g.: DO dO+ 1 + U2 _dU ,U3AU
Dt dt dx, dx~2 dUS
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2. introduction

Theoretical and experimental studies on the rapid

flow of granular materials have increased in number and

significance during the past ten years. This is due in part

to the relevence of these flows to a variety of problems of

industrial and geophysical significance. Landslides and

snow avalanches, the bedload transport of coarse grained

sediments, and the saltation of sand grains in air

(Owen,1964) can all be treated as flowing granular

materials. Analogously, the flow of seeds and grains in

hoppers, pharmaceutical powders, and slurries of coal in air

or water are examples of important granular flows in

industrial processing.

The surge in interest is presumably due also to the

intriguing nature of rapid granular flows. The study of

these flows cuts across traditional disciplinary boundaries,

with contributions being made by applied and theoretical

mathematicians and mechanicians, chemical engineers, geo-

scientists, numerical analysts, and others.

Although there has been much progress made in

understanding the flow of granular materials, there are

still many conflicting theories, few consistent

observations, and several unaddressed questions.

t I
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1.1 Definitions and characteristics of a

granular-fluid material

A granular material can be defined as an assembly of

discreet particles confined by either a body force or

physical boundaries. The voids between individual grains

may be filled with a fluid such as air or water, or by a

vacuum as In the ice rings of Saturn. When subjected to the

proper forces and boundary conditions the material may

deform in a manner similiar to a fluid. Hence this two-

component mixture has been called a granular-fluid material

(Inman et.al.,1966), although under some conditions the true

fluid component may be inconsequential to the granular flow.

A principal property of granular-fluid materials is

that the volume concentration is related to the deformation

of the material. The volume concentration is defined as the

portion of the total volume which is occupied by the

granular component. The importance of the volume

concentration was first identified by Reynolds(1885).

Reynolds observed that a packed granular material must

undergo volumetric expansion in order to deform. He

referred to this behavior as dilatency. The term dilatency

has subsequently been extended to describe those materials

in which the rate of deformation and the volume

concentration or density are inversely related for a given

stress state.

im
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3

As implied above, a granular material may deform in

a variety of ways in response to applied stresses. The

nature of this deformation is governed by the granular

concentration, N, and by the ratio of the shear stress to

the normal stress (Terzhagi,1943), which will be referred to

as the stress ratio (Txz/Tzz).

At high concentrations and low stress ratios the

material behaves elastically, with all grains Initially in

contact remaining in contact. As suggested by

Coulomb(1773), when the stress ratio reaches the critical,

or static yield value, denoted as tan.i the material begins

to undergo a slipping and rolling type of deformation, in

which grain 2ayers may override one another for large

distances at low shear rates. At higher shear rates and

lower volume concentrations, the stresses become dependent

upon the rate of deformation. Collisions between grains

play a dominant role, and the interstitial fluid may be

inconsequential to the dynamics. This corresponds to the

grain-inertia regime first described by Bagnold(1941,1954),

and this rapid flow regime Is the primary area of interest

in this work.

1.2 Previous theoretical aoroaches

There is a large body of literature dealing with the

slow deformation of granular materials at relatively high

concentrations (e.g. Vermeer, 1982). Since Drucker and

7m~w7
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Prager (1952) applied the associated flow rules of

plasticity to soil mechanics, there have been many attempts

to treat granular materials as plastic media. Non-

associated flow rules have also been proposed by de Josselln

de Jong (1959,1971), Spencer(1964), and others. The various

advantages and shortcomings of these theories are discussed

in Mandl and Luque (1970) and Mehrabadi and Cowin (1978).

Although several of these theories have value for the quasi-

static flows expected in soil mechanics and for the flow of

grains in bins and hoppers, they are not applicable to rapid

flow conditions where the stresses are expected to depend on

the rate of deformation of the material.

In this work the discussion will be restricted to

rapid shear flows of granular materials in which dilatency

and shear rate dependence of the stresses are important.

The theories describing rapid granular flows which account

for dilatency and rate dependent stresses can be

conveniently divided into those which are derived from

consideration of particle interactions and those which are

deduced from continuum mechanical and thermodynamic

considerations.

The continuum approach is exemplified by Goodman and

Cowin (1972), McTigue(1979), and Passman et.al.(198h). In

these theories the volume concentration is considered as an

independent field variable. Forms for the free energy,

entropy, etc., are postulated and the constitutive behavior

Is subsequently deduced from thermodynamic constraints or,
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at times, suggested in an ad-hoc manner. A common feature

of theories utilizing this approach is that there are

generally several undetermined parameters, and sometimes

undetermined functions. This makes experimental

verification extremely difficult (see Bailard(1978), for

example). A strong supporting feature of these theories, on

the other hand, is that they either incorporate or predict

a Coulomb yield condition for initial failure.

For the particle interaction approach, the

constitutive behavior of the assembly is formulated by

examining the interactions between individual grains. The

primary mechanism for stress transfer is a granular

collision. Bagnold (1954) considered the mean paths of

particles undergoing simple shear deformation in order to

formulate the stresses resulting from Intergranular

collisions. More recently, McTigue(1979), Ogawa(1978;1980),

Savage and Jeffrey (1982), and Jenkins and Savage (1983)

have included the fluctuating component of velocity in

modeling the collisional stress transfer in a manner

analogous to kinetic theory of gases. Ackermann and Shen

(1982) also consider the stresses resulting from particle

and fluid translations.

The particle interaction approach is more satisfying

than the present state of the continuum approach from a

physical point of view. Furthermore, it predicts stresses

which are quadratic in shear rate, in agreement with several

observations.

i ,
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1.3 Previous experimental work

The experimental observations of rapid granular

flows have primarily been concerned with two types of flow:

shear flow between concentric cylinders or parallel plates,

and gravity flow down inclined chutes and channels. The

earliest , and still the most consistent measurements of

granular fluid flow between concentric cylinders were made

by Bagnold(1954). Savage and McKeown (1983) have

subsequently repeated and extended Bagnold's work. Savage

and Sayed(1983) have studied similiar flows between parallel

plates in an annular shear cell. There have been many

attempts to experimentally study gravity flow down inclines,

including Savage(1978), Sailard(1978), and Ishida and Shiral

(1979). A good review of these flows is presented in Savage

(1982). Numerical simulations of rapid granular shear flows

have been carried out by Cambell(1982).

For the case of shear flow between moving

boundaries, accurate point measurements of velocity and

concentration have proven to be quite elusive. Researchers

have been consequently forced to accept the standard

rheological techniques of measuring stresses and velocities

at the boundaries of the flow, and the average concentration

within the flow.

Bagnold(1954) studied the flow of neutrally bouyant

spheres immersed in fluid and sheared between concentric

• % /4
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cylinders. He demonstrated the existence of a normal

dispersive pressure which was proportional to the shear

stress. The data also strongly supported the concept that

stress transfer is due to collisional interactions between

grains. Both of these observations have been duplicated by

Savage and McKeown(1983). Savage and Sayed(1983)

experimentally studied the rapid flow of granular materials

(in air) in an annular, parallel plate shear cell. Their

results further confirmed the quadratic rate dependence of

the stresses. Savage and Sayed's measurements of the stress

ratio were higher than Bagnold's, and showed some dependency

upon the volume concentration.

The steady flow of granular material down Inclined

chutes and channels has prompted considerable discussion,

with several apparently contradictory observations being

published. ost of these contradictions have been explained

by considering the effects of different materials and

boundary conditions. On the basis of Bailard's and Savage's

works, it Is safe to conclude that steady flows are indeed

possible over a range of inclinations. Beyond this

conclusion these experiments have added little to the

general understanding of granular flows. They do, however,

illustrate the lack of understanding for those flows in

which the body force (usually gravity) plays an important

role in determining the velocity and concentration structure

within the flow.

_ _ _ _ _ _ -4 4
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This Is an important consideration for almost all

geophysical flows because the flow thickness is generally

limited in some maner by gravity. The question of the

thickness of notion is a central question which will be

addressed in this York.

1.4 The thickness:of notion

One-of the'least understood parameters determining

the bedload transport of granular sediments is the thickness

of notion in the bed (Komar and lnuan, 1976; Inman and

Hanes,1980). There Is an analogous uncertainty vith

avaanches, debris flow.', mud flows, and the slip faces of .9

sand dunes. The thickness of motion in- these granular-fluid

flows would be predictable if the complete constitutive

behavior of the material were knewn. jiwsver, the

constitutive behavior is not known over all ranges of the

stress ratio and the volume concentration, hence the

prediction of a thickness of motion based upon the equations

of motion is quite unlikely. This is because the mechanisms

for stress tranfer are likely-to oeange as thelevel of no

motion is approached. Coillisions.betwemen grains probably

become less'domitiant iso slidIng frietAnodue to rubbing

contact inorea*sei

Sagnold's oiutie to,. this problem was to Impose a

yield criterion at the boundary between olw*i and

stationary grains. le suggested a Coulomb yield criterion,
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much like the residual angle of sliding friction in soil

mechanics. Bagnold used this fundamental assumption in the

derivation of nearly all of his sediment transport theory

(1956,1966), as did Bailard and Inman(1979) in their

rederivation of Bagnold's results.

Despite the acceptance and use of the assumption of

a dynamic yield criterion for granular shear flows, the

yield criterion had not been experimentally tested for these

flows prior to the present study.

1.5 Guide to this dissertation

In the next section the deformation of a granular

bed subjected to gravity and to traction applied to its

surface is considered. It is demonstrated that as a

consequence of momentum conservation, the stress ratio

(shear stress/normal stress) must decrease with increasing

depth in the bed, resulting in an internal boundary

separating a shearing region (above) from a rigid

region(below) Constitutive theories for rapidly flowing

granular-fluid materials are presented and applied to this

flow. Original analytic solutions corresponding to

McTigue's constitutive theory and numerical solutions

corresponding to Jenkins and Savage's constitutive theory

are presented. An approximate analytic solution to Jenkins

and Savage's theory is also presented, following the

developments of Jenkins and Savage(1983). The analytic and

SIf
"" _ . : : ., .. .. . , ... i
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numerical solutions suggest a finite thickness of motion.

)They also demonstrate the dilatant nature of granular-fluid

materials, the effects of the kinetic energy involved in the

velocity fluctuations, and the importance of the boundary

conditions upon the flow.

Section 3 describes the experimental considerations.

Experiments are performed in an annular shear cell of mean

radius 12.4 cm. The granular materials included two sizes

(1.1mm and 1.?5mm) of spherical glass beads, and natural

sand(0.55 mm). Both water and air are used as interstitial

fluids. The approximations involved in interpreting the

experimental data are examined. These include the effects

of rotation, measurement accuracies, and unsteadiness in the

flow.

Section 4 presents the results of the experiments

and compares these results to the constitutive theories.

The stresses are found to be quadratically dependent upon

the shear rate, in agreement with the collisional models of

momentum transfer. Stresses are also found to be weakly

dependent upon the volume concentration at low

concentrations, and strongly dependent at higher

concentration. The existence of an internal boundary is

repeatedly observed. The thickness of the shearing region'I
varies between 5 and 15 grain diameters. The stress ratios

are approximately constant, with a slight dependence on the

shear rate and volume concentration. The total immersed

weight of the grains in the shearing region is caculated by

.0 1 1 1

(4



applying a dynamic Coulomb yield criterion at the internal

boundary. Measurements are in fair agreement with the

predicted values.

_40



2. Theoretical considerations

Several theories for the constitutive behavior of

rapidly flowing granular-fluid materials are presented here.

These, along with the basic balance laws for mass, momentum,

and energy are applied to the steady, rapid, shear flow of

a cohesionless granular bed subjected to gravity and surface

traction. The results show why there is a level, called the

level of no motion, below which grains remain rigidly locked

together.

The granular material will sometimes be considered

as a continuum, and sometimes as an assembly of particles.

Physical descriptors at a point, such as bulk density or

velocity, must be considered in the continuum context as

properties averaged over the scale of several grains. The

velocity will be treated as the sum of a mean translation

and a fluctuation about the mean. The spin of individual

grains in not explicitly considered. The grains are assumed

to be cohesionless, with no chemical or electrostatic

interactions.

The effects of an interstitial fluid are neglected

in this analysis. This is a valid approximation when the

forces resulting from grain-to-grain interactions are much

greater than those resulting from fluid-to-grain

interactions, and the influence of the fluid upon the grain-

to-grain interactions is unimportant. The conditions under

12
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which this approximation is valid are discussed in greater

detail in section 3.5.3.

2.1 The balance laws

The balance laws for mass, linear momentum, angular

momentum, and energy can be written as:

+ pU i  = 0 2-laDt ,

P DUi - 2-2

F Tij,J + pbi

T T 2-3

Yt- Tij Tij - qi,i + py 2-4

where:

iP " PsN (bulk density) 2-5a

2T U + Uj,i ("rate of deformation" 2-5b
' j " tensor)

b is a body force

e is the internal energy

q is the heat flux

f is a heat source

The mass conservation equation, 2-1, can be

rewritten for materials with incompressible grains by

substituting the definition of bulk density, giving:

~DN
-+ i 0 2-1b

I" 
U
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The momentum equation, 2-2, is a balance between

accelerations, on the left side, and the combined forces

represented by the divergence of the stress tensor and a

body force, both on the right side. The absence of coupled

stresses is evidenced in the conservation of angular

momentum, indicating a symmetric stress tensor (equation 2-

3).

From the energy equation (2-4) it can be seen that

there are three mechanisms by which the internal energy can

be altered. The first is via dissipation due to the

deformation, the second is a net flux of heat due to heat

flux gradients, and the third is some unspecified heat

source (or sink).

2.2 Flow in a semi-infinite. granular bed

Consider a bed of cohesionless grains oriented with

Its surface perpendicular to the gravity field, as shown in

Figure 2-1. If traction, TfT 0 + T n , is applied to the

surface of the bed, the granular material will deform.

Consider the case of steady shear deformation in which the

mean paths of all moving grains are horizontal, and there

1are no gradients in the direction of mean flow. In this

case the mass balance is identically satisfied, and the

"" linear momentum conservation equation reduces to:

T " pSNb i  2-6a

__all

IL/
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Figure 2-1. Definitions for a semi-infinite

granular bed subject to surface traction and gravity forces.

4/
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Expressing this in terms of the x,z coordinate

system depicted in Figure 2-1:

Tx = 0 2-6b

T zzz = -psNg 2-6c

Integrating these equations and applying the boundary

conditions:

xz =0 2-7a
at z 0

T1 T'~ 2-lbTzz n  Z7

gives:

T xz T 0  2-8a
z

Tz (Z) - n + $psNg dz 2-8b

0*

The shear stress remains constant at all depths,

equal to the applied shear stress. If the shear stress were

to change with depth, the deformation would be unsteady.

The normal stress is an increasing function of depth. This

is due to the weight of the grains. The ratio of the shear

stress to the normal stress decreases with increasing depth

in the bed, and eventually the flow presumable must cease.

As the depth increases, the situation is analogous to piling

more logs on a horse-drawn sled. Eventually the load becomes

too heavy for the horse to pull.

Following the well established Coulomb yield t

criterion for static yield, It is useful to define a Coulomb

yield criterion for dynamic yield, corresponding to the

limiting value of the stress ratio at which motion ceases.

If this concept is valid, then at the boundary between

f 4
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mobile and immobile grains, the stress ratio should be

constant for a given material. The stress ratio can be

expressed as a dynamic friction angle:

shear stress/normal stress - tanr 2-9

A simple physical argument supporting the concept

that the stability of a stationary grain is determined by

the ratio of the shear and normal forces exerted on the

grain is shown in Figure 2-2. Grain A is subjected to a

normal stress, Fn, and a shear stress, Fo. If the applied

stresses combine to result in a net torque about the point

of contact, c, the grain will begin to roll. In terms of

the stresses and the angle B , this condition is simply:

F0  2n(0) 2-10

The angle 8 , and analogously, the angle of dynamic

friction, 0, are expected to be functions of the packing

and material characteristics.

This approach is somewhat simplistic since one must

consider the mechanics of the actual forces which act on an

individual grain and not simply the continuum quantity of

stress. In fact, the forces acting on a grain depend upon2'. the nature of the packing, the deformation, and the

properties of the granular-fluid material. The forces which

one grain can exert on a second grain can be transmitted in

three ways: grains may collide and impart momentum to one

another, they may push against each other in response to a

7 .



Figure 2-2. Stability diagram for grain A. Grain

A will'begin to roll about point C if:
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body force or an applied stress, or they may frictionally

stress each other by sliding over one another while

resisting relative motion. The second two processes usually

occur together and require approximately continuous contact.

If material at rest is packed in a rigid or near

rigid state, as it is prior to static yield, then the

frictional forces acting on a grain are probably well

represented by the average stress state. The resistance to

relative motion arises from static friction, and the well

established Coulomb yield criterion thus is consistent on a

macroscopic scale. After, but still near the initial yield

point, the frictional forces are still well represented by

the average stress state, and resistance to relative motion

arises from sliding friction. This resistance is generally

less than that of static friction, so the coefficient of

friction is lower. Thus the residual angle of internal

friction in soil mechanics is less than the static angle as

discussed by Bagnold (1966).

In flows where the moving grains are no longer

tightly packed, contact between grains is intermittant

because of collisional interactions. The forces acting on a

grain can momentarily be greater or less than those

described by the average stress state. The stress ratio

could vary considerably, depending on the concentration and

shear rate.

It is interesting to note that a knowledge of tanr

allows for the prediction of the total immersed weight of

--- .- .7.. .... . . .. . ..... .._ _ _ _ _ q
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the moving grains. Combining equations 2-8 and 2-9 and

modifying the density to allow for possible buoyancy effects

of the immersing fluid gives:

(- Pf) Ng dz a -n( r) - n 2-11

where Z° Is the depth in the bed at which motion ceases.

In the case where the applied stress is purely shear

and the normal force is due solely to the immersed weight of

the grains, equation 2-11 is a very simple relation relating

these two quantities. As mentioned previously, this

relation is a fundamental assumption underlying much of

Bagnold's work on sediment transport.

2.3 Constitutive models for rapidly flowing,

granular-fluid materials

The first model to be presented was formulated by

R.A. Bagnold (1954), when he published the results of a

remarkable set of experiments investigating the simple shear

flow of a granular-fluid suspension. Bagnold demonstrated

the importance of granular collisions, particularly for

rapid flows. In the second model presented, McTigue(1979)

modifies Bagnold's theory by adding a frictional stress

which is expected to be important for flows near the initial

yield point. In the third formulation discussed, Savage and

Jeffrey(19$1), and Jenkins and Savage(1983) approach the

I IU
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collisional problem in a manner analogous to the kinetic

theory of gases. Their results are shown to be consistent

with Bagnold's for the simple shear flow of neutrally

buoyant spheres.

2.3.1 The grain-inertia regime of Bagnold

Bagnold(1941,1954) was first to discover and explain

the non-Newtonian nature of rapid granular-fluid shear flows

when he recognized the importance of granular collisions.

By considering the mean paths of grains undergoing rapid,

shear deformation, Bagnold recognized that both the momentum
10

transferred per collision and the frequency of granular

collisions are proportional to the mean shear rate (see

Figure 2-3), resulting in tangential and normal stresses

quadratic in the mean shear rate. Bagnold experimentally

verified this quadratic dependence of the stresses, as well

as the dependence of the stresses upon the volume

concentration, by studying the flow of neutrally buoyant

spheres sheared between concentric cylinders, as shown in

Figure 2-4. The apparatus was cleverly constructed to allow

for measurements of the shear stress and also of the normal

I: stress as a function of the mean granular concentration and

the mean shear rate. Combining theory with observations,

Bagnold proposed the following constitutive relations for

the grain-Inertia regime:

I

i iI i -- I I I -"i -
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RIGID ROTATING STATIONARY
CYLINDERDEFORMABLE WALL OF

SHE~ET RUBBER

DISPERSED
GRANULAR SOLIDS

Figure 2-4. Schematic of Bagnold's apparatus.
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Txz =.013 PS (XDU' )2 2-12a

Tzz =.041 Ps (XDU' )2 2-12b

where U' (=S is the mean shear rate and

where X, the linear concentration, is the ratio of the

grain diameter to the mean free separation distance between

grains (D/s in Figure 2-3). X is given as a function of the

volume concentration by:

IL -1

( ) 2-13

where N is the maximum possible concentration.

These relations were experimentally verified for

B > 450 and .14 < N S,.60 (1.4 < X < 14) 2-14

1

where 12 pSD U 1 2-15

is the Bagnold rumber, and is analogous to a Reynolds

number. The stress ratio, Txz/Tzz or tan(Or)is equal to

about 0.32, or tan(18*). Begnold suggested that this ratio

is constant in the grain-inertia regime. At lower values of

B, the stress ratio increased, reaching a maximum value of

0.75 in the macro-viscous regime.

Bagnold's results have stood for nearly 30 years for

the conditions under which they were formulated: steady,

uniform, simple shear flow of neutrally buoyant granular

S-. - 7
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materials. In several situations involving more 
complex

flows or boundary conditions, the application of Bagnold's

relations leads to unrealistic constraints. Complications

arise from one of two sources. First, the stress ratio was

found to be constant in Bagnold's grain-inertia regime

(using neutrally buoyant particles), conflicting with later

observations of flows (of non-neutrally buoyant particles)

in which the stress ratio varies. Second, and more

importantly, the stresses vanish for vanishing mean velocity

gradient because in Bagnold's apparatus there was no source

for granular velocity fluctuations other than the mean

shear.

To demonstrate these limitations we consider three

flows: gravity driven flow down an inclined channel,

gravity driven flow down a vertical chute, and the simple

shear flow described in the previous section.

As presented in Bailard and Inman(1979), for gravity

driven flow down an inclined plane (see Figure 2-5) the

momentum equation for steady flow is simply

V =-psN 2-16a

or in terms of the coordinates of 'gure 2-5

T = -psgN sin($) 2-16b

Tzz,z = "PsgN cos(S) 
2-16c

Integrating these equations and applying a stress free

boundary condition at the upper surface yields:

"16
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Z
T =-pg sin(e) iN dz' 2-17a

Z

Tzz = P -pg cos(8) iN dz' 2-17b
0

T
and = tan() 2-17c

ZZ

The stress ratio is constant throughout the flow, and equal

to tana for any slope S. This is in accordance with

Bagnold's relations if and only if B = 180. In contrast,

steady flows of this nature have been reported by

Bailard(1978), Savage(1980,1982), and Ishida and

Shirai(1982) over a range of inclinations.

A similiar problem arises in the horizontal flow of

a granular bed due to traction applied to its upper surface,

as discussed previously. It was shown that as a direct

result of the conservation of momentum, the stress ratio

varied with depth in the flow. Once again, this is

Inconsistent with Bagnold's observation of a constant stress

ratio in the grain-inertia regime.

A third flow, which illustrates the most important

shortcoming of Bagnold's relations, is the steady, gravity

driven flow down a vertical chute as seen in Figure 2-6.

4The momentum equation is again

-P -p 2-18a

Because aino for uniform flow, the stresses, velocity, and
rI

concentration are fuctions of x only, and equation 2-18a

becomes:

4_
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TzxJx= -PsNg 2-18b

Txxx0 2-18c

Because the geometry and forces are completely symmetric

about the centerline, symmetry forces U1 to vanish at the

centerline. But, according to equations 2-12 and 2-18c, if

U' vanishes anywhere, it vanishes everywhere, and the flow

is inconsistent with equations 2-12 and 2-18.

These obvious limits to Bagnold's relations arise

primarily because Bagnold considered the mean paths of the

grains, but did not directly consider the fluctuating

component of velocity. He was clearly aware of the

fluctuating component, as he assumed grain oscillations

about the mean path resulted in granular collisions. In

fact, if one considers the fluctuating velocity to be driven

by the mean velocity gradient, then Bagnold's theory does

implicitly consider the fluctuations in a qualitative way.

However, by not explicitly treating the velocity

fluctuations, there is no clear way to account for the

diffusion of fluctuation velocity or the generation of

fluctuation velocity by mechanisms other than the mean

shear.

The fact that Bagnold's model agrees well with his

experiments should not be overlooked. A more sophisticated

theory must agree with Bagnold's results for the simple

shear flow of neutrally buoyant grains.
I
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2.3.2 McTigue's modification

McTigue(1979,1982) placed the collisional arguments I

: !bf Bagnold in a more rigorous framework by formulating the

stresses resulting from granular collisions as an integral,

over all possible collisions, of the momentum transferred in

any single two particle (binary) collision. He further

suggested that the model could be improved by adding an

equilibrium stress to represent the quasi-static stresses

which occur when the material is near the initial failure

state.

The inclusion of an equilibrium stress is

reminiscent of the work of Goodman and Cowin(1970,1971) and

Savage(1979). lcTigue divides the total stress T, into TO,

the equilibrium stress, and i* , the dissipative %tress due

to granular collisions. The form for each of these

components of the stress tensor is given below for a

cohesionless granular material composed of incompressible

spheres:

-K 1 (NM-N) 2 ' - K2 (NM-N)'2 f 2-19a

To = -o (N2-Nc2)1 + csin*(N2-Nc2 ) lT' 2-19b
C c

where trace(f2) 2-19c

I = trace () 2-19d

1f a I ((trace T)2 - trace (2)) 2-19e

K1 , K2 , and a are non-negative constants of the flow, Nc

is the critical value of N at which the free energy of the

_ _ _ _ _ I
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material Is a minimum ( see Goodman and Cowin, 1971, 1972,

and Passman, et al., 1980), and - *s the internal angle of

static friction. The function (Nm- N)- 2 is an empirical fit

to Bagnold's(1954) data, where N represents a maximum

possible concentration. The dissipative part of the stress

tensor is quadratic in the shear rate in accordance with

Bagnold's model.

In the limit %0 the equilibrium stress describes

2 2an isotropic pressure p(N)- -A(N2-N ) and stress components

T xzM-p, and Tzz=-p sine. These components satisfy a

Coulomb yield criterion on the plane inclined * as seen in

Figure 2-7. On the plane :

To a p sin(O) cos(o) 2-20a

a -P(l-sin 2 (0)) -pc s2 (0) 2-20b

IT. rantO) 2-20c

in

For simple shear flow the total stress components

are:

T .osin( )(N2 Nl2) ) 2-21a

xz c 1INm

T zz .Q(N2 Nc2) - K2(Nm-N)
2(U')2  2-21b

Although there Is little physical justification for

the form of the equilibrium pressure term, the theory does

have several desirable features. The addition of an

equilibrium stress alleviates two of the shortcomings of

I
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Bagnold's original constitutive relations by allowing for a

varying stress ratio, and non-zero stresses in the limit of

vanishing deformation. Furthermore, in the limit of

vanishing deformation, the equilibrium stress is in

agreement with a Coulomb criterion for static yield, which

is in accordance with many observations of the behavior of

real granular materials.

One of the major drawbacks of this theory is that it

is nearly impossible to test experimentally because of the

large number of unknown constants and parameters. For

example, the theory is incomplete in its determination of a.

Clearly o is related to the pressure, and its variation

between flows Is probably related to the energy tied up in

the random fluctuations in velocity. But since a is not

determined within the theory, it is just another unknown

constant which must be fit to the data.

2.3.3 The "kinetic' theory of Savage, Jeffrey, and Jenkins

Savage and Jeffrey(1981) and Jenkins and

Savage(1983) derive constitutive relations for the rapid

shear flow of coheslonless spheres by explicitly considering

the fluctuating component of velocity in calculating the

momentum transfer due to binary granular collisions.

Following the examples of Ogawa(1978,1980), they consider

the fluctuating component of the velocity to be a

mechanical, or Imacroscopic" temperature, which will be

A I
| -___________|_
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referred to as the pseudo-temperature. The development is

analogous to the kinetic theory of gases, with the primary

differences being that in a granular-fluid the collisions

are "driven by the inhomogenelty In the mean flow, and energy

is lost via internal dissipation during imperfectly elastic

granular collisions.

One of the essential ingredients in the development

of these theories was the recognition that the distribution

of collisions is anisotropic in a shear flow even though the

distribution of grains may be homogeneous. The simple

explanation for this is that grains being pushed together by

the mean flow are more likely to collide than grains which

are being separated from each other by the mean flow.

Savage, Jenkins, and Jeffrey's basic approach is to

define the stresses and energy dissipation in terms of

integrals over all probable collisions. By assuming a

single particle velocity distribution function, and a

complete pair distribution function for two particles at

contact, these integrations can be carried out.

Savage and Jeffrey assume the single particle

velocity distribution function to be MIaxwellian about the

mean velocity. They derive a complete pair distibution

function to be a function of:

R-D- (V 1 = the mean shear characteristic velocity divided
dz

by the rms precollisional velocity perturbation.

They can then numerically integrate the collision integrals

14 1"M 4%w.
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for arbitrary R. Unfortunately, R is not determined, but

must be guessed or measured for a given flow of any granular

material.

, o Jenkins and Savage modified the theory by assuming

the collision distribution function, A, to be linear in the

velocity gradient. They suggest using the form:

A = 1 a 2 2-22

where D 1 2 is the relative velocity of colliding grains, K is

the vector connecting the center of the two grains at

collision, and a(N) is an unknown function. This is a

simple form which captures the ideas about collision

anisotropy expressed above. After carrying out the.

necessary integrations the following expressions are

obtained by Jenkins and Savage:

A K (tr(T)1 * 2;) 2-23

- - KVe 2-24

2 - + 4a)D tr(l)) 2-25
2D2

where K- 2psN 90(N)C(l+e) 2!. 2-26

(N) I + 3N + N' 2-N) 2-27

1-N 2(1-N)2 2(1-N)l (1-N)'

e is the coefficient of elasticity of the granular material,

and 0 is the pseudo-temperature.

-MW
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The relative importance of the interstitial fluid

can be estimated in the context of this theory as the ratio

between the ieffectivew granular viscosity (the ratio of the

shear stress to the shear rate) to the interstitial fluid

viscosity.

S(l+e) (2+z)DN 2 VS
R S 2-28

1p~-N) Irv

This ratio, given by equation 2-28, is analogous to the

Bagnold number in the sense that it represents the relative

importance of grain-to-grain forces compared to fluid-to-

grain forces.

The set of equations 2-23 to 2-27 is closed by

formulating a conservation equation for mechanical energy.

For simple shear flow the energy balance is:

(K') +T u U 6(1-e)K.9 0 2-29

and the stresses are:

-( 2 +) U1 2-30a

Tzz -w 2-30b

and Txz S 2 2-30c
T 2zz

In equation 2-29, the first term represents the

diffusion of mechanical heat, the second term is the

generation of mechanical heat by the mean shear, and the

last term is the dissipation into actual heat due to

imperfectly elastic granular collisions. Somewhat analogous

4OV'
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to the generation of turbulence in a fluid, there is a

cascade of energy from the mean shear into fluctuating

kinetic energy, and finally Into true heat, as suggested by

McTigue(1979) and Jenkins and Cowln(19'9).

This theory is physically sound, and experimentally

testable since there are relatively few empirical constants.

The only unknown quantity which can be experimentally

determined is the function (I(N). This is simple,

particularly for the case in which it is assumed constant.

Jenkins and Savage's treatment of the granular collisions is

idealistic in the sense that rotation of the grains,

frictional forces, and multiple collisions are all ignored.

The collision anisotropy is also parameterized in a simple

manner. Nevertheless, the approach is rational, physically

reasonable, and amenable to inclusion of more complicated

granular interactions.

2.4 Application of constitutive theories to shear flow

The constitutive relations of McTigue and those of

Jenkins and Savage will now be applied to the flow of a

granular bed subjected to gravity and traction to its

surface, as discussed previously in section 2.1.

An analytic solution using McTigue's constitutive

theory is derived. The solutions closely resemble McTigue's

solutions for inclined plane flow. The solutions predict a

finite thickness of motion, with the concentration

J/

,!I
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increasing linearly with depth from a minimum (N) at the
0

surface to a maximum (Nb) at the bottom of the moving layer.

The velocity is shown to decrease from its maximum (U n) at

the surface to zero at the bottom.

An analytic solution presented by Jenkins and Savage

(using their constitutive theory) is given because it

represents the solution of the granular bed flow in the

limit of vanishing gravity. This solution is testable using

a parallel plate shear apparatus, as will be discussed in

sections 3 and 4. The exact equations of motion using

Jenkins and Savage's constitutive theory are solved

numerically. The solutions demonstrate the importance of

the boundary condition for the pseudo-temperature. It is

also shown that there Is a depth In the bed at which the

pseudo-temperature reaches a minimum, corresponding to a

thickness of Ithermalization'.

2.4.1 Solutions using McTique's constitutive relations

Combining McTigue's constitutive relations, equation

2-21, with the momer~tum conservation equations, 2-6, the

following equations of motion are obtained:

Tz 0 *a NN'sin(¢) + K1[(N.-N)'2(U')2 ]' 2-31a

T piNg * s UNN' + K2[(Nm-N)'2(U')2]  2-31b

Combining these equations in order to obtain an independent

,..........4
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equation for the volume concentration yields

N' = r 2-322a~ -( , sin(O)
" K1

The gradient of N is constant, so the volume

concentration is a linear function of depth in the bed.

Applying the boundary condition

N = N0 at z=O 2-33

gives

N -N 0 + rz 2-34

The volume concentration increases linearly from N at the

sur face.

The velocity gradient, U', can be solved for by

combining equations 2-31 with 2-34 and integrating:

U ,m + Nc 2 N2 .

2rNz - r2Z2)i 
2-35

The magnitude of the velocity gradient is a maximum

at the surface and decreases with depth, as the

concentration increases. The equilibrium stress increases

with depth as the dynamic, or dissipative stress, decreases.

At some depth the dynamic stresses vanish due to a vanishing

iIIvelocity gradient. Noting that

2rN Z + r2 Z2 a N2 - N2  2-36

0 e0

and combining equations 2-35 and 2-36 (for N<N) reveals:I_ _
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U, -> as N2 -> + N2
(% sn( C N2-37

Thus there is a level of vanishing dynamic stress, denoted

by , at which

No )+ 2-38
Nb= NIzZ ( sin(+ N

To obtain the velocity profile, e tatlon 2-35 can be

directly integrated with the application o. the boundary

conditions:

U-Um at z-0 2-39a

U-0 at Z- 2-39b

40

to give: N

N b 2 Nb 2 NT

UM MN R sin1'(V)) -2 +
N (T- b -[F(O)]+- NmNoF(O)]

where:

F - N2 - N2  2-41
b

N W N + rz 2-420

U/Um , (N - No)/(Nb - NO), T* /(T Z+%), and Txz/(Tx2+ Txz)

are plotted against nondimensional depth, z/Z o , for various

values of N0 and Nb in Figure 2-8. It should be noted that
neither N nor N are known a priori.

0 c
As the concentration becomes greater with depth, the

velocity gradient decreases, maintaining a constant shear

stress. The dissipative stress is a maximum at the surface

'_________
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and approaches zero at zo , the level of no motion. The

equilibrium stress varies in the opposite sense, and the

total shear stress remains constant.

This solution, indicating that the concentration

increases linearly with depth in the flow, is similiar to

the solutions for inclined plane flow presented by

Mctlgue(1979). It should be noted, however, that the neither

the measurements of Sailard(1978) nor those of Savage(1978)

support this theory. Rather, these observations suggest that

the concentration is a minimum at the top and bottom of the

flow, and a maximum near the middle of the flow.

At the level of no motion the stresses are

TN ) sn( ) 2-43a

T -c%(N2 - Nc) 2-43b

and T x - sin(O) 2-43c
zz

As suggested by McTigue(1979) when he analyzed inclined

plane flow, one could define a dynamic friction coefficient,

tano # such that

sin(O) a tan(€d) 2-44

S1as suggested by equation 2-43c. This is in agreement with

the suggestion earlier of a dynamic Coulomb yield criterion.

2.4.2 Solutions using the 'kinetic' theory

of Jenkins and Savage

7 ..
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Nondimensionalizing terms by D, p s and g, the

momentum equations 2-30 become

(2 + a) KU' 2-45a

) N 2-45b

where K =

The energy equation, 2-29, becomes

(Ke')' - rgU' - 6(1 - e) e- = 0 2-46

Equations 2-45 and 2-46 are four equations with four

unknown functions of depth, z. These equations are subject

to the following boundary conditions at z=

U = Um 2-47a

N a N 2-47b
0

V ' K 'rn 2-47c

G' a 0 2-47d

Boundary conditions a and b are the velocity and

concentration at the upper surface of the bed. Boundary

condition c indicates the balance between the applied normal

' 4  stress and the normal stress generated by the deformation of

the material. Boundary condition d states that there is no

diffusive flux of mechanical temperature at z-0. There is

some uncertainty associated with this boundary condition, as

discussed by Jenkins and Savage(1983). Since the applied

4'
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stresses must result from the interaction of the granular-

fluid material with a boundary, the nature of this

interaction should strongly effect the flux of mechanical

temperature at the boundary.

Possibly a more appropriate boundary condition is:

S- D(U' )2  2-47e

Equation 2-47e is essentially a dimensional argument that

and U' should be of the same order.

2.4.2.1 Analytic solutions using 'kinetic' theory

The set of equations 2-45 to 2-47 can be solved

numerically using standard integration techniques. These

solutions will be presented below, but first analytic

solutions will presented for the limiting case in which the

applied normal stress is much greater than the self weight

of the granular-fluid material undergoing shearing. This is

equivalent to ignoring gravity, thus reducing the problem to

be identical to Bagnold's formulation and experiments. The

development follows 3enkins and Savage(1983).

The boundary condition 2-47c applied to the integral

of equation 2-45b indicates the normal stress is everywhere

.2 equal to the applied normal stress as indicated below:

K r 2-48

The energy equation 2-4f is transformed by

substituting K from equation 2-48 and combining equation 2-

_ _ Ii
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T n f 5 r I 6 ( -e ) T M 02 -4 9

"lking the variable substitution I

H 2 .= 0 2-50

transforms this equation into

H" + KH = 0 2-51a

where

5K .._.. 3(l -e) 2-51b

Because gravity has been ignored, there is no -limit

to the amount of material which can be sheared. The problem

can be reformulated at two parallel boundaries moving in

opposite directions. The separation distance between the

boundaries is 2L, and z= is centered midway between the

boundaries. The boundary conditions now become:

SU= U(L) - -U(-L) 2-52 4

If K=n, then there is no (mechanical) heat flux

through the boundaries, and equations 2-51 have solutions:

Um= "1' - 2-53

N a No 2-54

H M 2i+a 1/2
H • - (2-5530(1-.2e)

The flow is simple shear flow, with constant volume

concentration,temperature, and shear rate. The stresses are

... J_____________________________ - " ..
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given by:

T .F(U' )2 (2+c)T(l+e)2-6
xz " u(-e)2-56a

Tzz = F(U')6(2+a)(b+e)30(1-e)2-6

where

F z -) 2-57

These results are completely consistent with Bagnold's. The

primary difference is that the empirical functions of

concentration determined by Bagnold have been replaced by

the analytic expressions of equations 2-56 and 2-57.

The stress ratio is also constant, and given by

xz 6(1-)( 2-58

For the more general case of K>0 equations 2-51 and

boundary condition 2-52 have solutions

U U M nsin(A 2-59

U (2+a)A -r Cos (VTz)t H- 5m snv1L 2-60

In order to determine the stress ratio it is

necessary to specify the heat flux at the boundaries:

q(L) -q(-Li'-" 2-61

w nj' from equation 2-48 2-62
' where q KG - #a, 77

From equations 2-46 and 2-61

AM-
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"T2 Um 2(2+0{)K
Qz - n 2 2-63

so To/ n is given by:

2 To z _Q+ (, + 24(1-e)(2+a) 2-64
Tn Um n m

Expressing H and U in terms of Q, Tn , and U gives:

U . U sin ) 2-65Msin(AlL) 26

H z Hm cos(vAz) 2-66a

where H. - g 2-66b

and where K is defined by equation 2-51c. For K>0, Q is

positive, indicating fluctuation energy is lost through the

boundaries. Energy enters th* flow as the moving boundaries

do work on the mean flow. The energy is converted via

granular collisions into fluctuation (kinetic) energy, which

in turn is either dissipated into true heat or diffuses

through the boundaries. From equations 2-40c and 2-46, for

increasingly elastic (higher e) collisions, Q increases.

Since less kinetic energy is dissipated during collisions,

more is lost through the boundaries.

For K< 0, equation 2-51 has solutions:

U sh(Az) 2-67U * m s1nh(,,..)-

* 4'
..-- - w,.. ,,m m nmm ulll na mlmnnnl I I 4-
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H *H m ch,/l)2-68a

w Hm e reA tanh(,) 2-68b

These solutions correspond to the case where fluctuation

energy is highly dissipated by granular collisions, and the

boundary must act as a direct source of fluctuation energy.

Examples of the velocity, concentration, and

temperature profiles are plotted for the cases of K-0, K>O,

and K C, in Figure 2-9.

For K>0, the temperature and shear reach their

maximums at the center of the flow, where N is at its

minimum. The collisions between relatively inelastic grains

dissipate more energy than is available from the mean shear,

so macroscopic heat must diffuse inward from the boundaries.

For K<O, the situation is the opposite: collisions between

highly elastic grains generate more fluctuation energy than

they dissipate, so macroscopic heat diffuses outward towards

the boundaries.

At this point it is useful to consider the function

O(N) which parameterizes the collision anisotropy discussed

earlier. As mentioned, the theory of Savage and

Jeffrey(1981) is consistent with that of Jenkins and

Savage(1983) for the case where the precollisional velocity

fluctuation is large compared to the mean velocity. Savage

......ms. m-- . S as II



and Jeffrey derive the anisotropy function to be

Au erfc (K~)2-69a

,:where

2
erfc(x) -fe d I-erf(x) 2-69b

Ix
2 e'X2  2x2n-

- .3.•.2n+1

Assuming the argument is small, a linear form is

adopted for erfc(x) retaining only the first term in f.U/,,

KA=1- U 2-69c

In this approximation we find a = 2. Although R.0 is not 40

always much less than V/ this approximation gives some idea

of the order of magnitude of a.

Using a value of a-5,T/ zh can be calculated from

equation 2-58 for the gravity free shear flow discussed

earlier. For glass grains, e is approximately 0.9, giving:

' 6(1-.9)(2+5) . 0.52 2-70
zn  51

This value is close to measurements of the stress ratio to

be discussed is section 4.

2.4.2.2 Numerical solutions using 'kinetic' theory

Returning now to the semi-infinite granular bed

described earlier, equations 2-45 and 2-46 can be combined

Ink- .. ..- , .__
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I I g '

# .. " 0.
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U/......** a/G

! f L ~3 . .. "

-I. .

Figure 2-9. Analytic solutions for the velocy,

volume concentration, and pseudo-temperature based upon the

constitutive theory of Jenkins and Savage (in the limit of

g-*-I). Values are normalized by the maximum values, a) no

heat flux through the boundary, b) heat flux out of the

material(IC)3), c) heat flux Into the aaterial(K(I).
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and simplified by redefining K as:

K BCF 2-71a

where c - e 2-71b

and F N 2-71c

By introducing the definition:

1 -6' 2-72

the following equations are obtained:

-'e( Fl) 2-73

S+ + + -6(1-e)e - 0 2-74
(2+Q)c2F2e

~-5To
u' a - 2-75

Equations 2-73 to 2-75 can be numerically integrated

with the application of appropriate boundary conditions

(equation 2-47) at the upper surface of the flow. As

mentioned earlier, the energy flux through the boundary and

hence boundary condition for (' is not well understood. For

this reason solutions are presented for both boundary

conditions 2-47d and 2-47e.

Some examples of the numerical solutions for U,N,

and 9 are given in Figure 2-I . In this figure, a-5 and

e=6.9. The integration was stopped at a depth of ten grain

diameters.

. ... , .-- . ....... ... ... .•_ .. .. . T . ... _ , _ -/ > 1 i
- ~.~..
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Figure 2-10. Numerical solutions for the velocity,

volume concentration, and pseudo-temperature based upon the

constitutive theory of Jenkins and Savage. The velocity and

pseudo-temperature are normalized by their maximum values.

Depth in the bed is nondimensionelized by the grain

diameter. In all solutions a=S. For a):r~w5,Tn.l91 ''= at

Z0,; b): Tow.s, Tno 1, W-WFat zw~i c):-r.5.8rnulI'

6'so at Zoe.
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As illustrated earlier in the analytic solutions,

there is a positive correlation between U' and e , and a

negative correlation between U' and N. The first condition

arises because the mean shear is the source of energy for

velocity fluctuations. The second correlation simply

reflects the dilatent behavior of granular materials.

Figures 2-10a and 2-10b illustrate that the nature

of the flow depends upon the stress ratio and energy flux at

the upper boundary. With e'-0 and N kept constant, a high
T0

value of- 2 - results in (Figure 2-10c) N increasing withT n T

depth, while U' and 0 decrease with depth. A lesser O
n

(Figure 2-10a) results in the opposite trends.

This is explained by examining the amount of energy

converted from the mean shear into fluctuation energy,

relative to the amount of energy dissipated in the

collisions. Taking the ratio of these two quantities (from

equations 2-74 and 2-75) gives

(2+01)(U , 2 'ST o "

S30(1-e)e 6(1-ej2+a)czF ez 2-76

If AEfl, then in order to conserve energy, there must be a

vertical diffusion of fluctuation energy. Rewriting LE in

terms of the applied stresses it is found that at the upper

boundary:

5 ()2 2-77
'6Tf+T

z.O ((x)h(1-e) T) I

if &E is greater than I (high- -), then there is an
.n

excess of fluctuation energy which diffuses downward into

"/- • " l A 'q
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the material. As a consequence, the pseudo-temperature and

shear must decrease with depth, and the concentration must

increase, as seen in Figure 2-10c. If AE is less than one,

then the opposite effects must occur, as in Figure 2-10a.

Figure 2-10b demonstrates that a low stress ratio at the

boundary can be compensated for by allowing the boundary to

act as a source of fluctuation energy (9'<).

It is interesting to note that AE is proportional to

the stress ratio (see equation 2-30c), and must therefore

decrease with depth as a consequence of the self-weight of

the grains. Eventually AE will reach a value less than

one, and fluctuation energy will have to be conducted into

this region. For any given flux at the surface, there is a

finite depth to which the energy can be conducted, since it

will continually be lost (below the depth where AE=1). At

this depth the pseudo-temperature will be at its minimum.

Below this depth, the energy conservation equation can only

be satisfied if there is a source of energy somewhere below.

This is unreasonable for the semi-infinite granular

bed, so it must be assumed that the equations of motion are

no longer valid below the maximum depth toward which

fluctuation energy can diffuse. Physically, this is due to
the concentration increasing and the pseudo-temperature

decreasing to such an extent that the grains are 'frozen'

into a rigid packing. This depth is clearly analogous to the

level of no motion, but in the context of this theory, it is

the depth at which e' =0, or the level of 'thermalization'.

. a.



3. Experimental considerations

An apparatus capable of measuring the large stresses

and dilatency effects typical of granular-fluid materials

undergoing rapid shear deformation was constructed in order

to experimentally study the validity of a dynamic yield

criterion and evaluate the constitutive theories of section

2.3.

The granular materials chosen for study in this

apparatus were spherical glass beads and natural sand. In

accordance with the theoretical developments previously

presented, the majority of the experiments involved the

shearing of spherical glass beads in air. However, because

many granular flows of interest involve nonspherlcal grains,

and immersing fluids with densities comparable to that of

*he grains, series of experiments were also run using water

as the immersing fluid, and sand as the granular material.

3.1 Apparatus

An annular, parallel plate shear cell, sometimes

called a ring, annular ring, or torsional shear cell, is

shown schematically in Figure 3-1. The design closely

follows that of Carr and Walker (1868), and Savage (1978).

The primary modification is that the outer wall Is clear,

allowing for direct visual observations.

55
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*Shearing takes place in a 4.4 centimeter wide

annular gap centered at a radius of 12.4 centimeters. The

area of a horizontal slice through the annulus was 341

square centimeters. The at rest volume of the material

studied ranged from about 2M to 1000 cubic centimeters.

The upper and lower plates were roughened by

cementing with epoxy one to two grain layers of the material

being sheared to each surface. The side walls were smooth,

and rotated rigidly with the lower plate, which was belt

driven by a variable speed motor. The upper plate was free

to move vertically, but restrained from rotating by a

linkage to a strain gage. A counterweight system allowed

variation of the applied normal stress.

The outer wall was clear acrylic, protected by a

thin, replaceable, clear polycarbonate inner lining. This

allowed for direct visual observation of the boundary

between the shearing and nonshearing regions, when such a

boundary existed.

K. For any given experiment the independent variables

were: the applied normal stress, 'n; the rotation rate of
the bottom plate with its annular ring; and total mass of

the granular-fluid material. The measured dependent

variables were: the force exerted by the upper plate on the

strain gage, F; the displacement of the upper plate; and the

location of the boundary between the shearing and

nonshearing regions, if it existed. Calculated variables

include: the normal stress at the boundary betweon the

t{i
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shearing and nonshearing regions (from eq. 2-8b); the mean

shear stress, To,(from eq. 4-2); the average, or nominal

volume concentration in the shearing region, N, defined as

the mass of material in the region divided by the volume of

the region; and the nominal shear rate, defined as the

difference in velocity between upper and lower plate divided

by the thickness of the shearing region.

3.2 Material description

The granular materials used in this study were

spherical glass beads and natural sand. The sand was

obtained from Boomer Beach in La Jolla, California. The

sand is a well rounded, quartz sand, and is described by

Inman(1953). The sand was washed and sieved into the size

fraction which was used in the experiments. The upper and

lower sieve mesh sizes were .594 mm and .50F mm, giving the

sand a nominal diameter of .55 mm. The glass beads were
t purchased from Potters industries of New Jersey and the

Ferro Corporation of North Carolina. Because the beads had

a large variation in the degree of their sphericity, only

the most spherical grains were used. These grains were

separated from the less spherical ones by rolling them down

a smooth plane inclined at approximately two degrees from

horizontal. The beads were also sieved to obtain nearly

uniform sizes. The upper and lower mesh sizes for the

nominal 1.1 -m spheres were 1.189 mm. and 1.F on. The upper.4

- - - - - - - --.-------i-------- t -
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and lower mesh sizes for the nominal 1.85 mm spheres were

2.0 mm and 1.7 mm.

The densities of the various materials were

determined by measuring the amount of water displaced in a

100 ml. graduated cylinder by a known mass of material.

The physical characteristics of the materials are

given in Table 3-1.

3.3 Experimental plan

Given three different materials and two immersing

fluids, there were six possible combinations of granular

material and interstitial fluid. Depending upon the amount

of material and the conditions to which it was subjected,

two types of flow were observed. In one case, all of the

material in the annulus sheared. In the second case, only

a portion of the material sheared, while the rest of the

material remained locked in rigid body rotation below the

shearing grains. These two cases are referred to as fully

and partially shearing. The differences between them will

Vbe discussed in section 4. For each type of flow, the

applied normal stress and the velocity of the lower boundary

could be independently controlled, as described above.

The basic procedures for the experiments are as

follows:

A pre-weighed amount of granular material was placed

in the shear cell. For the partially shearing experiments,

11
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Mate IalNominal Dons ity

Diameter (gm/cm

(mant)

Spherical 1.1 2.5

glass

beads 1.85 2.8

Natural, well rounded 0.55 2.6

quartz sand

To bl e 3 -1. Characteristicsof the granular materials.

.4;45
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chalk dust was placed on the side wall. After applying a

known normal stress, the material was pre-stressed and

consolidated by slowly shearing it back and forth for five

cycles. The initial at rest volume of the material was

recorded along with the zero offset of the strain gage. The

shearing was begun by slowly increasing the speed of

rotation of the bottom assembly to the desired level. After

steady state was reached ( about 5-15 seconds), the period

of rotation, the output of the strain gage, and the

displacement of the upper plate were recorded. The motor

speed was then reduced slowly to zero. The level of no

motion was recorded for the partially shearing experiments

by measuring where the chalk dust had been rubbed off of the

side wall. The material was then post-stressed and

consolidated as before. The final at rest volume of the

granular material and the zero offset of the strain gage

were recorded again. If these values deviated from the

initial values, then the averages of the two were used in

later calculations.

The entire process was repeated for a variety of

applied normal stresses and speeds. For the fully shearing

experiments the speed was adjusted to maintain the same

volume concentration over a range of applied normal

stresses. For these experiments, the normal stress and the

associated speeds of rotation were changed without bringing

the system to a halt after it was determined the results

thus obtained were the same as when the shearing was stopped

•-. -- , , ___,,_... .. ____
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after each run.

For the experiments in which water was the

interstitial fluid, water was added to the system as the

material dilated. This was done in order to maintain the

fluid level even with the surface of the upper plate, and

thus avoid any buoyancy effect on the plate (which would

introduce uncertainty in the applied normal stress).

3.4 Measurment systems

The variables which were directly measured were the

mass and the initial, at rest volume of the granular

material, the change in volume of this material during

shear, the torque transmitted by the granular material from

the lower rotating plate to the upper fixed plate, the

rotational period of the lower plate and attached side

walls, and the thickness of the shearing region while shear

was occuring and afterwards, when it was at rest.

The total mass of the granular material was measured

using a pan balance accurate to 0.1 grams. The at rest

volume of this material was calculated from measurements of

the height of the material in the annulus of the shear

apparatus. The resolution of this measurement was 0.05

centimeters, corresponding to a volume of 17 cubic

centimeters. The change in volume during shearing was

calculated by measuring the vertical displacement of the

upper plate with a machinist's gage accurate to 0.1613

/+
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centimeters. Note that this measurement was made without

stopping the rotation. The torque exerted on the upper

plate was measured be means of a strain gage mounted on a

steel beam. This instrument, with its associated

electronics, produces a signal linearly proportional to the

transverse force applied to the beam. A calibration curve

is shown in Figure 3-2. As seen, the instrument is quite

linear, with a correllation coefficient of 0.99996. The

mechanical linkage between the shear apparatus and the

strain gage is shown schematically in Figure 3-3. Referring

to Figure 3-3, the force applied to the strain gage beam, F,

is:

F-Torque x R 3-1

where:

Torque - 4 Tx(r)2wr rdr 3-2

In performing this calculation t was assumed T (r) was

constant across the annular gap for a given experiment. If,

in fact, Txz(r) was a linear or quadratic function of r, the

assumption of a constant TXz results in errors of 2 and 4

per cent, respectively, for T., at the mean radius. The

resolution in measuring Txz was 0.001 volts, corresponding

to approximately 10 dyne/cMa for T
xz

The speed of rotation of the lower plate, and hence

the maximum velocity, was measured by a frequency counter

coupled to a magnetically actuated switch. A magnet was

attached to the rotating disk. Each time the magnet passed

the switch, the counter triggered and counted the time until

. . . . . . . .. . . ... ... , _ a
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Figure 3-2. Strain gage calibration curve.
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R: 18.2 cm

STRAIN GAGE
LINKAGE

STRAIN
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.4 1Figure 3-3. Plan view of linkage to strain gage.

The force measured by the gage is equal to the torque4 exerted by the upper plate times the moment arm, R.
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the next trigger. The accuracy of this method was 2.001

seconds, corresponding to a speed resolution of 0.1 cm/sec.

In order to visually record the thickness of the

shearing region, the outer wall of the apparatus was made of

clear plastic. The method used was to apply chalk dust to

a section on the inside of the outer wall. The shearing

grains wiped the chalk dust off the wall, while the

nonshearing grains left the chalk dust unaltered. The

method was verified by placing columns of dyed grains at

various positions inside the annulus and, subsequent to

shearing, excavating to examine for the depth at which the

column of dyed grains remained intact. Both methods gave

the same results, indicating the side wall effects were

probably quite small for this type of flow. The resolution

of this method was approximately one grain diameter.

The accuracies of all of these measurement systems

are summarized in Table 3-2. The accuracies are also

expressed as a fraction of a typical measurement.

3.5 Approximations and assumptions

In attempting to experimentally study the flow

described in section 2 there are several assumptions made

and approximations used. The primary areas of concern are

. the effects of rotation, the local influence of the side

wall boundaries, the effects of the interstitial fluid, and

unsteadiness in the flow.

l =I I I I I I |i i ' "* K
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Measurement Resolution Accuracy %

Mass of granular

material 0.1 gram 0.001

Displacement of

upper plate 0.0013 cm 1.7

Location of

internal boundary 0.05 cm 1.25

Shear stress 10 dyne/cm2  0.2

Normal stress 70 dyne/cm2  1.4

Nominal shear rate 0.5 cm/sec 1.4

Nominal volume

concentration 0.0117 3.8

Table 3-2. Maximum errors in the measurement systems.

t/
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3.5.1 Effects of rotation

The flows considered in section two were purely two

dimensional, that is, there was no dependence upon the cross

stream direction. The experimental apparatus, however,

because of its rotational nature, introduces the possible

complications of radial dependence of the field variables.

The two most worrisome complications are centrifugal

effects, and a non-uniform shear rate across the gap.

The tendency for a non-uniform shear rate is reduced

by decreasing the ratio of the width of the annular gap to

its mean radius. For this apparatus the ratio was 0.35,

giving a maximum deviation in velocity from that at the mean

radius of 15 percent. It would have been desirable to

either reduce the width of the annular gap or increase the

mean radius. Unfortunately, both of these options were

precluded by other considerations. The gap width could not

be further reduced because a narrower gap would limit the

number of grains in the cross flow direction to such a small

number that the continuum assumption would be questionable.

Furthermore, since it was unknown whether or not the side

walls influence the local flow, it was desirable to have as

wide a gap as possible to minimize such effects on the

overall flow. The mean radius could not be increased

because the funds available were insufficient to cover the

costs of manufacturing a larger unit.

... .. . .... . ' I L -" " " ' '
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The effects of radial accelleration, or so called

centrifugal effects, were always present to some extent, but

rotational speeds and applied normal stresses were selected

to insure that the centrifugal stress was always much less

than the normal stress. This imposed an upper limit on the

maximum velocity for each applied normal stress. This limit

is shown in Figure 3-4, where the centrifugal stress is 25

percent of the normal stress.

Savage and Sayed (1983) measured secondary (radial)

flows of granular-fluid materials In a nearly identical

apparatus. They concluded these flows were quite small

compared with the primary flow, and did not effect the

stress measurements.

Since the interstitial fluid does not support an

anisotropic normal stress, the centrifugal forces could have

a significant upon the dynamics of the interstitial fluid.

This will be discussed futher in section 3.6 on data

quantity and quality.

3.5.2 Boundary wall effects

iI
The mechanics for stress transfer at a solid wall

boundary are probably different from those in the interior

of the flow, because the wall is relatively massive and

unmovable compared to a grain. In fact, the influence of

the boundary is expected to be related to its surface

roughness, as well as its rigidity. For a rough boundary,

f f
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one might expect the traditional 'no slip" condition to be

valid. But at a smooth boundary it is much more likely that

slip occurs between the wall and the nearest grains. In this

case a *no stick" condition may be more appropriate. The

distinction between the no slip and no stick conditions

depends upon the frictional nature of the granular-fluid

material and the wall material.

For these experiments the side walls were smooth

aluminum and smooth polycarbonate, both coated with a thin

layer of teflon. The upper and lower boundaries, on the

other hand, were roughened with one to two layers of the

granular material being studied.

It is assumed that the side walls are slippery, and

the upper and lower shearing surfaces do not allow slip.

Thus the boundary conditions applied at the top and bottom

of the flow are that the flow velocities approach the

boundary velocities. The validity of the assumption that

the side wall is slippery is supported by the measurements

I of the thickness of motion which were discussed in the

previous section.

3.5.3 Interstitial fluid effects

As discussed in section 2, the effects of the

interstitial fluid on 'the dynamics of rapidly flowing

granular-fluid materials have been assumed to be negligible.

The validly of this seemingly gross assumption can be judged

7 .U/
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by considering the work of Bagnold(1954). Bagnold found

that for granular concentrations greater 'an approximately

10 per cent, the granular-fluid resistance to shear was

always much greater than the viscosity of the purely fluid

phase. Bagnold separated the behavior of a granular fluid

into two limiting cases, the macro-viscous regime, and the

grain-inertia regime.

In the macro-viscous regime, stresses are

transmitted by interstitial fluid friction, and are

therefore dependent upon the fluid viscosity. In the grain-

inertia regime, stresses are transmitted by intergranular

collisions and are independent of the fluid viscosity. The

Bagnold number, defined by equation 2-15, and representing

the ratio of the Inertial to the viscous forces, can be used

to characterize the flow as either viscous, collisional, or

-intermediate. Sagnold found that for B <40 the flow is

entirely in the macro-viscous regime, and for B>450 it Is in

the grain-inertia regime. Bagnold refers to the region

between ranges as the transition region.

In the present experiments, granular concentrations

are always greater than 0.2. Bagnold numbers can be

computed based upon mean granular concentration and nominal

shear rates. These numbers are given in Table 3-3

Clearly all the flows involving air as the immersing fluid

are in the grain Inertia regime. On the other hand, flows

involving water an the Interstitial fluid range from the

transitional to the grain inertia regimes, as will be shown

T* 7-M 7
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Bagnold numbers

In air 14, 00-161,00

In water

1.1 mm spheres

fully shearing 348-2500

partially shearing 273-882

1.85 mm spheres

fully shearing 870-3422

partially shearing .247-1186

0.55 mm sand 280-666

partially shearing

Table 3-3. Range in Bagnold numbers for the various

sets of experiments, where

For B>450, the data lie in the grain inertia region.

A
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in section 4.

3.5.4 Unsteadiness

In general, the flows reached a steady state after

a few seconds of shearing. However, there were two

identifiable sources of unsteadiness. The first resulted

from an imperfectly designed apparatus, the second is

believed to be a consequence of the mechanics of deformation

of some granular-fluid materials.

The first source of unsteadiness was the insertion

of a grain or grain fragment between the fixed upper plate

and the rotating side wall. This caused a temporary jamming

of the apparatus, and a subsequent "ringing" type of

behavior after the grain was fractured or dislodged. If

this behavior was observed, the experiment was stopped, the

grain fragment removed(if it could be found), and the

experiment repeated.

The second observation of unsteadiness resembled a

"stick-slip" behavior, and occured at low shear rates. When

this behavior occured, the rotation rate alternately slowed

down and speeded up. This sort of behavior has been

reported by Cheng and Richmond (1978) for suspensions of

grains, but it is not completely understood. In the present

experiments, it is believed this behavior results when the

material elternately dilates and compresses, causing a

decrease or increase in the material's resistance to shear.

i i.... . .... ... I o
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This behavior was observed for glass spheres only

near the threshhold stress for initial yield. For sand,

however, the behavior was observed from the yield point up

to shear rates of approximately 40 seconds. Presumably

this is related to the angularity of the sand, and the

preferred orientation, or fabric, which the material

develops during shearing. This interesting phenomenon

merits future study, but since it complicates the

interpretation of the steady flow problem, the shear rates

were restricted to avoid this unsteady complication.

3.6 0uantity and quality of data

A summary of the quantity of the various experiments

is given in Table 3-4. In general, the experiments involving

glass spheres were consistent and repeatable. These data

reveal clear trends and form the basis of most of the

discussion in the next section.

In contrast, the experiments on sand, and those on

1.1 mm glass spheres with water, were less consistent. Due

to both a lack of foresight and financial restrictions, the

shear cell was designed to study only those granular-fluid

materials having diameters ranging from 0.5 mm to 3 mm.

Natural beach sand, being somewhat angular, has some cross

sections much less than .5 mm. In order to prevent the sharp

edges of the sand grains from jamming into the gap between

the Delrin lip and the side wall (see Figure 3-1), the

. . .--~ - .............
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Delrin was replaced with a-tighter fitting- and more durable

stainless steel lip. This worked satisfactorily for dry

sand, but caused a secondary problem for the wet

experiments. Normally when shearing begins, the granular-

fluid material dilates and the upper plate moves upward.

Air or water flows downward between the lip of the upper

plate and the side wall to fill the voids created between

the grains. FMr-the experiments on wet sand, water could

not flow freely between the stainless steel lip and the

replaceable polycarbonate lining on the inside of the outer

wall. The result was that the lining deformed, creating a

tight seal with the steel lip. This caused a pressure

deficit within the granular-fluid material, and prevented

any dilation. This Introduced a great uncertainty In the

value of the normal stress, and lesser uncertainties for the

shear stress and volume concentration. This set of

data(sand-water) must be considered to be of very poor

quality, and therefore of little value in evaluating the

constitutive behavior or the yield criterion.

Experiments on sand in air had simillar problems

related to the frictional nature of angular, quartz grains.

The interaction with the side wall was frictional, so the

'slippery' boundary condition at the side walls Is suspect.

The measurents of the shear stress could have been biased by

this effect1 sLine .trqss oould be transferred from -th side

walls to the qrOaulr , tefi10.

_ 0,



77

The second set of experiments in which the quality

is suspect involves the full shearing of 1.1 mm glass

spheres in water. In order to fully shear the material the

minimum depth of the annular gap had to be decreased by

raising the lower boundary. This was done by inserting into

the annulus a 2 cm thick plexiglass torold. This insert

could have had some subtle effects upon the flow. For

example, if the toroid surface was not exactly parallel to

the upper plate, then the material would be forced to

alternately compress and dilate. A second problem for this

set of experiments could be the effect of radial forces on

the interstitial fluid. Although the centrifugal forces

were small compared to the intergranular forces, they were

large compared to the interstitial fluid pressure. In

response to the centrifugal force, the fluid should flow

outward to develop a radial pressure gradient as seen in

Figure 3-5 . This could have provide some bouyancy to the

upper plate, and consequently some error in the normal

stress calculation. Furthermore, it is possible as air gap

existed in the shearing region as shown in Figure 3-5. For

these reasons, this data set should be regarded with some

suspicion.

I In summary, the 124 experiments involving glass

spheres in air, the 29 experiments involving 1.85 m glass

spheres in water, and the 10 partially shearing experiments

involving 1.1 mm glass spheres in water are thought to be of

good quality. The 41 experiments involving sand and the 18

" / . .
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INNER OUTER
WAL L WALL

Figure 3-5. A possible effect of rotation on the

interstitial fluid would be to create an air pocket near theI4 inner wall.

.
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fully shearing experiments involving 1.1 mm glass spheres in

water are of lower quality.
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Number of Range in N

In Air Experiments

1.1 mm fully shearing 36 0.37-0.56

1.1 mm partially shearing 50 0.29-0.61

1.85 mm fully shearing 18 0.44-0.49

1.85 mm partially shearing 20 0.30-0.53

0.55 mm sand 22 0.43-0.58

subtotal 146

In Water

1.1 mm fully shearing 18 0.55-0.58

1.1 mm partially shearing 10 0.64-0.67

1.85 mm fully shearing 12 0.50-0.51

1.85 mm partially shearing 17 0.50-0.53

0.55 mm sand 19 0.56-0.59

subtotal 76

total 222

Table 3-4. Summary of the number of experiments of each

type, and the range in volume concentrations in

" the experiments.
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m um S m iq~i llm nn e i I P nns i~u dal] II . iII I -...



AD A135 463 STUDIES ON THE MECHANICS OF RAPIDLY FLOWING
GRANULAR-FLUID MATERIALSIUI CALIFORNIA UNIV S AN DIEGO

(INCASSIIEDLA JOLLA D M HANES 1983 N00014-83-C 0182 /204 N

IF



111111. 0 128 2.

/.6- '' L .2._-

Iw. EI Igo

MICROCOPY RESOLUTION TEST CHART
NATIOCN. kD[AU OP STANDOAOS-'Np5 -A

i 44w



4. Results and discussion

The experimental results have application to several

aspects of granular-fluid flow, including the constitutive

behavior, and the applicability of a dynamic Coulomb yield

criterion in predicting the location of the boundary between

shearing and nonshearing grains. These data can also be

examined with regard to the differences between fully

shearing flows and flows in which there is an internal

boundary separating shearing and nonshearing regions

(partially shearing flow). Lastly, effects of the

interstitial fluid, and an effect of grain shape are

suggested by the experimental observations.

The data support the concept that the stresses are

nonlinearly dependent upon the shear rate, for flows in

which the effects of the interstitial fluid are negligible.

The stresses were found to be weakly dependent upon the

volume concentration up to approximately 0.45. Above this

concentration the stresses were found to be strongly

dependent on the volume concentration. These results are

consistent with Bagnold's (1954) measurements, although the

material constants are slightly different. The theory of

Jenkins and Savage(1983) correctly predicts the dependence

of the stresses upon the shear rate. Their predicted

4 functional dependence of the stresses upon the volume

concentration has the proper trend, but it underpredicts the

81

/ -



82

stresses for volume concentrations greater than

approximately 0.5, unless the influence of the volume

concentration on the collision anisotropy is empirically

determined from the data.

The stress ratios were found to be approximately

constant, with a weak dependence upon the shear rate, and

the volume concentration. The application of a dynamic

Coulomb yield criterion appears to be valid, although there

is significant spread in the data related to the immersed

weight of the moving grains.

The stress ratios measured for the fully shearing

flows were found to be consistently higher than those

measured for the partially shearing flows. Flows in water

tended to have higher stress ratios than flows in air,

possibly because of the effects of fluid viscosity.

Observations that prior flow history affects the subsequent

yield for experiments involving sand suggest that angular

grains develop a preferred fabric during shearing.

4.1 Constitutive behaviour

The constitutive behavior for the fully shearing

experiments is well defined because in these experiments the

volume concentration and the shear rate were varied

separately. This makes it possible to independently assess

the influence of either variable upon the stress state.

*1I
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The shear stress and the normal stress are shown as

a function of the nominal shear rate, U /Zo , in Figures A-

1 to 4-2. As expected, the stresses are increasing

functions of both the volume concentration and the shear

rate.

The 1.1 mm glass spheres in air have the curious

behavior that the stress appears to be nearly independent of

the volume concentration for N<0.45. Savage(1978) observed

the same phenomenon, and explained it as resulting from an

air gap in the shearing region. Although no such gap was

observed for the present experiments, it is possible one

existed internally, as diagramed in Figure 4-3.

According to the collision theories discussed in

section 2.3, the stresses should have a quadratic dependence

upon the shear rate. In Figures 4-4 and 4-5 the natural

logarithm of the shear stress (or normal stress) is plotted

against the natural logarithm of the shear rate for the same

experiments shown in Figures 4-1 and 4-2. In the

experiments for which air is the interstitial fluid, the

slopes (for constant N) are approximately 2, supporting the

predicted quadratic relationship. For the experiments in

which water is the interstitial fluid, the slopes vary

- Ibetween I and 2. This is consistent with earlier

calculations showing that some of these experiments lie in

Bagnold's transition regime, where fluid stresses play an

important role. The open points in Figure 4-5 indicate the

data are in the transition region. In terms of the kinetic

Ls
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POSSIBL E
AIR GAP

INNER OUTER
WALL WALL

J Figure 4-3. Schematic of an gap in the granular

material which may have formed at high shear rates and low

volume concentrations.
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models discussed, it appears that the water partially

dampens the grain trajectories, and hence the velocity

fluctuations of the grains, thus decreasing the impact

during collisions.

The 18 experiments on fully shearing flows of 1.85

mm glass spheres in air are quite similiar to the

experiments reported by Savage and Sayed (1983). The only

significant difference between the experimental arrangements

is that Savage and Sayed roughened the shearing surfaces

with sandpaper, rather than cementing the actual grains

being studied onto the surfaces as in the present

experiments. Because both sets of data indicate the

quadratic relationship between shear rate and stress which

was originally observed by Bagnold, it would appear that the

different surface characteristics both resulted in

collisional type flows. However, it should be noted that

the actual stress levels were greater in the present

experiments than they were in Savage and Sayed's experiments

(at equivalent concentrations and shear rates). For C

example, the shear stress developed by shearing 1.85 mm

glass spheres at a concentration of 0.49 were about 3 times

higher in the present experiments than those reported by

Savage and Sayed for 1.8 mm glass spheres at the same

concentration and shear rates. This difference is believed

to result from the difference in materials at the upper and

lower boundaries of the flow.

/ ~1
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The dependence of the stresses upon the volume

concentration is shown in Figures 4-K to 4-8 as plotted

points, together with the prediction curves of Bagnold, and

Jenkins and Savage (superimposed), for all of the

experiments in which air is the interstitial fluid. For

Bagnold's relationship, N is the measured maximum volume

concentration. For the 1.1mm spheres, N -0.64; for the 1.85m

mm spheres, NM-0.55 ;for the sand, N -0.41. The

proportionality constants in Bagnold's model and a (assumed

constant) in Jenkins and Savage's model are empirically

fit, using a minimum squared error criterion. The

coefficient of restitution, e, used in Jenkins and Savage's

prediction is 0.9.

As seen in Figures 4-6 to 4-8, the stresses are only

weakly dependent on the concentration up to approximately

N-8.5 for the 1.1 m spheres, and NuO.45 for the 1.85 cm

spheres. Above these concentrations the stresses increase

rapidly. The Bagnold curves describe this behavior quite

well. The Jenkins and Savage curves predict the proper

trend, but the curvature at N=9.4 to N-0.5 is not sharp

enough. It is important to realize that Bagnold used his

experimental results to determine the dependence of the

stresses upon N, where Jenkins and Savage derive the

dependence on N In the context of their 'kinetic' theory.

A& The stress ratio

pJ..
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Figure 4-6. Nondimensional stress vs voliume

concentration for experiments on 1.1 mm glass spheres in

air. The stresses are nondimensionalized by i4UI2n

order to isolate the influence of the volume concentration.

Curves repreasent the predictions of lagnold and of Jenkins

and Savage.
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The stress ratio, T zz , evaluated at the lower
xz zz

boundary of the flow, reveals several consistent trends.

The mean stress ratios, and their standard deviations, are

given in Table 4-1. The standard deviations are

approximately 10 percent of the mean, supporting the concept

of a nearly constant stress ratio (over a range of shear

rates and applied normal stresses) for a given material.

Still, the variation from the means is not random. It

correlates well with the shear rate, as will be shown.

Perhaps the most noticeable result is that the

stress ratios for the fully shearing experiments are

significantly higher than those resulting from the partially

shearing flows. In terms of the momentum arguments

presented in section 2, this observation indicates that if

there were erodable grains at the lower boundary of the

fully shearing flow, they would be mobilized into the shear

flow. The solid lower boundary, although fully stressed

from above, cannot partake in the granular fluctuations

which would result in a higher normal stress. Thus there is

a deficiency in the normal stress, and the stress ratios for

the fully shearing flows are higher than the ratios for

partially shearing flows.

" This observation explains why Savage and Sayed's

(1983) measurements of the stress ratio were higher than the

dynamic angle of repose of the material. Because all of

their experiments involved fully shearing conditions, the

values of the stress ratio were higher than expected for a

1 ] . T
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Stress Ratio (mean (standard deviation)

In air In water

1.1 mm spheres

fully shearing 0.63 (9.9%) 0.64 (13.1%)

partially shearing 0.44 (12.5%) 0.44 (17.8%)

1.85 mm spheres

fully shearing 0.53 (3.9%) 0.59 (5.9%)

partially shearing 0.41 (8.51) 0.53 (5.3%)

0.55 mm sand

partially shearing 0.68 (13.7%) 0.89 (15.8%)

Table 4-1. The measured stress ratios

I
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stress state close to the yield point. The measured stress

ratios, expressed as the inverse tangent of the stress

ratio, are compared to the dynamic angle of repose for the

various materials used In the present experiments in Table

4-2. The angle of repose consistently lies between the

friction angle for the partially shearing flow and the

friction angle for the fully shearing flow.

A second trend noticeable in the measurements of the

stress ratio is that the ratios for experiments in which

water is the interstitial fluid are sometimes higher (and

never lower) than those measured for experiments in which

air was the interstitial fluid.

There are at least two explanations for this

observation. The simplest explanation is that the

deformation of the interstitial water itself generates a

much higher shear stress than that generated by the

deformation of air. This stress adds to the shear stress

generated by granular interactions, resulting in a higher

stress ratio. However, because the fluid generated stresses

are much smaller thsn the granular stresses, this

explanation is not completely adequate.

A second explanation is is offered in the context of

the kinetic theories discussed in section 2. It follows

from equations 2-30 and 2-26 that the normal stress varies

directly with the pseudo-temperature, while the shear stress

depends upon the product of the shear rate and the square

root of the pseudo-temperature. One of the effects water.4
.
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ta5 1l(mean stress ratio) Dynamic angle of

(degrees) repose (degrees)

in air in water

1.1 mm spheres

fully shearing 32 33 26

partially shearing 24 24

1.85 m spheres

fully shearing 28 31 28

partially shearing 22 28

0.55 mm sand

partially shearing 34 42 36

Table 4-2. The measured friction angles and the dynamic

angle of repose for the various materials.
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has on the flow is that it decreases the pseudo-temperature

by damping out vibrational motions, while maintaining the

same mean velocities. Thus the stress ratio, which varies

as the inverse of the square root of the pseudo-temperature,

is higher when water is the interstitial fluid. Probably

both the additional shear stress and the damping of granular

vibrations due to the Interstitial fluid viscosity

contribute to the higher stress ratios measured when water

was the interstitial fluid.

The dependence of the stress ratio upon the shear

rate and volume concentration is shown in Figures 4-9 to 4-

11. The ratio tends to increase with increasing shear rate,

or decreasing volume concentration, particularly for the

partially shearing experiments. This result will be used in

the prediction of the immersed weight of the moving grains,

in the next section.

4.3 Immersed weight of the shearing grains

In section 2 it was shown that the boundary between

the nonshearing grains and the shearing grains In the

I, partially shearing experiments can be explained by the
fI

conservation of momentum combined with a dynamic Coulomb

'4 yield criterion. The immersed weight of the moving grains

Jwas found to be described by:

(0 Pf) Ng dz a -n(r) - 4-1

We will refer to the quantity on the left as the bedload,
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because of its similarity to the concept of bedload in

sediment transport theory.

Unforunately, the bedload is generally a small

difference between the relatively large stresses, making Its

direct calculation somewhat unstable to slight errors in the

stress measurements. Nevertheless, the data indicates there

is clearly a predictive capability in estimating the

bed load.

In applying equation 4-1 to predict the bedload, the

results of the previous section are used to empirically

express tan(O ) as a linear function of shear rate:

tan Ortan(r,) + K U' 4-2

The constants tan(¢r ) and K can be determined by means of a

regression analysis of the measurements of the stress ratio

described in the previous section. These constants are

given in Table 4-3, along with the regression coefficients.

The measured bedload is compared to equation 4-1 in

Figure 4-12. The correlation between equation 4-1 and the

measured bedload is 0.664. For comparison, r-0.218 is

significant at the .995 level for two random variables with

* an equivalent number of degrees of freedom. The symbol 'F'

in Figure 4-12 represents data obtained under the highest

applied normal stress. rt is believed that the grains were

.* abrading under these high stresses. The solid circles and

numbers represent data obtained with sand, and have large

* errors associated with them.

!1
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r r(99%) tanr K

In air

1.1 mm spheres

fully shearing 0.86 0.38 0.49 0.068

partially shearing 9.75 0.32 0.34 0.081

1.85 mm spheres

fully shearing 0.78 0.52 0.46 0.045

partially shearing 0.87 0.49 0.32 0.069

0.55 mm sand

partially shearing -0.42 0.47 0.75 -0.060

In water

1.1 m spheres

fully shearing 0.66 0.52 0.50 0.076

partially shearing 0.94 0.66 0.26 0.442

1.85 mm spheres

fully shearing 0.80 0.61 0.53 0.060

partially shearing 0.02 0.53 0.53 0.004

0.55 mm sand

partially shearing 0.61 0.50 0.60 0.49P

Table 4-3. Results of regression analysis between the

measured stress ratios and the shear rates.

Terms are defined as:

tan r -tanr + /D g K
r dz

1-Norm
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Figure 4-12. Measured bedload vs predicted bedload.

Prediction (equations 4-1 and 4-2) is based upon the

measurements of the stress ratio, and the application of a

dynamic Coulomb yield criterion.
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The mean (for each material) predicted bedload is

graphed against the mean measured bedload in Figure 4-13.

The agreement is very good, as it should be, because the

values of tan(O r) used in equation 4-1 are determined by

averaging the actual measured values.

The correlations between the shear rate, the volume

concentration and the bedload for the partially shearing

experiments involving glass spheres are given in Table 4-4.

For the dry experiments, the shear rate and the bedload are

negatively correlated. This is consistent with the earlier

observation of the positive correlation between the shear

rate and tan Or " However, for the wet experiments, a

positive correlation was observed between the shear rate and

the bedload, even though the shear rate and tanOr were still

positively correlated (Table 4-3). This apparent paradox is

explained by considering the relative importance of the

shear stress transmitted by the interstitial fluid. As

explained earlier, a more viscous interstitial fluid tends

to decrease the pseudo-temperature. Hence both the normal

stress, and the component of the shear stress which is

generated by granular collisions are lower. The decrease in

granular shear stress, however, is partially counterbalanced

by an increase in interstitial fluid shear stress. So, as

the shear rate increases, more grains can be moved by the

increasing interstitial fluid shear stress, and the stress

ratio can increase.

I/
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al

I : , • I I •. iH - " ' - - , ,, ., _



106

E25C

1 000 k,

00

w' 500
to SYMOLff foo e'PherP 'rtD elf, .

~ 10000 3~ :~, loss soft* , A' IF,#

0 001500 200 2500 gess~eea ce 4

V %! PR 0 C T ED BEDLOAD, d -z

Figure 4-13. Mean measured bedload vs mean

predicted bedload (for Same data as Figure 4-12).

- a m mi



107

Dia = 1.1 mm Dia=1.85 mm

U' N U' N

Bedload -0.31 0.46 -0.57 0.65

IN

U' / -0.86 / -0.83

AIR

r(99%) - 0.32 r(99%) = 0.49

Bedload 0.80 -0.64 0.55 -0.25

IN

U' / -0.56 / -0.85

WATER

r(99%) a 0.66 r(99%) = 0.53

Table 4-4. Correlations between the measured bedload,

shear rate, and volume concentration. The

99* significant correlations are also given.

A -
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4.4 The effects of grain angularity

The primary difference between glass spheres and

coarse grained sands, in the context of these experiments,

is the angularity of the grains. As seen in Figures 4-6 to

4-8 (note different scales), at constant N, the sand

develops higher stresses than the spheres, particularly

higher shear stresses. The stress ratio (Table 4-1) is

significantly higher for sand, as is the angle of repose

(Table 4-2).

An interesting effect of angularity was observed

while prestressing the material by slowly shearing the

material back and forth in an oscillatory manner.

As expected, when glass spheres were sheared in one

direction, brought to a stop, and shearing started again in

either the same or the opposite direction, the results were

completely symmetric with respect to the direction and the

sequence. The fact that shearing took place has no

observable effect upon subsequent shearing as long as the

motion comes to a complete stop between cycles.

For sand,however, some interesting effects of the

deformation history on the static yield stress were

* I observed. Furthermore, the effect was different for air or

water as the interstitial fluid. In air, the static yield

.* stress required to shear sand in the direction opposite to

that in which it was just sheared was the same as the

initial yield stress. The static yield stress required to

II

I -.
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begin shearing in the same direction as the previous

shearing was higher than the intitial yield stress!

Presumably, as shearing ceases, the sand grains align into

an imbricated fabric which resists relative motion in the

direction of shearing, as shown schematically in Figure 4-

14. Resumed shearing in the same direction is inhibited by

the anisotropically aligned grains; in contrast, motion in

the opposite direction need overcome only the usual sliding

friction.

When the sand was immersed in water, a different

behavior was observed. Resumed shearing in the same

direction required the same, or slightly less, stress than

the initial yield. Resumed shearing in the opposite

direction, in constrast, required a lesser stress to yield,

but then the yield was accompanied by a compaction of the

material (rather than the usual dilation), and a stress

equal to the initial yield stress was required to continue

shearing. This can be explained if the grains are left in

a loosely packed, but imbricated, state as shearing stops,

as shown schematically in Figure 4-15. Resumed shearing in

the same direction causes granular contact to steadily

increase, so the static yield stress will be required to

continue shearing. Resumed shearing in the opposite
direction initially has little resistance, until the grains

collapse back into a more densely packed state. The yield

stress will again then increase to Its standard Initial

value.

I
I
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DIRECTION OF DIRECTION OF

ACCELERATION MOTION

cAL IGNMEN T
AFTER

S HE ARING STOPS

Figure 4-14. illustration of hypothesizedj imbrication developed for sand being sheared in air.
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Figure 4-15. Illustration of hypothesized

imbrication developed for sand being sheared in water.
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5. Conclusions

This work addresses the subset of flows of granular

materials known as rapidly flowing, granular-fluid

materials. Experiments were conducted in an annular,

parallel plate shear cell with two primary goals in mind.

The first was to investigate the existence of an internal

boundary above which the material deformed rapidly, but

below which the material remained rigidly locked in place.

The second goal was to examine the constitutive behavior of

rapidly flowing granular-fluid materials bounded by

parallel, roughened plates. The constitutive theories of

McTigue(1979) and Jenkins and Savage(1983) are applied to

study the steady, rapid flow of a semi-infinite granular bed

under the influence of gravity and traction applied to its

surface. Analytic solutions based upon McTigue's theory and

numerical solutions based upon Jenkins and Savage's theory

both suggest that there is a finite thickness of motion In

the bed For the limiting case where gravity is negligible

and the ' terial is fully shearing between parallel plates,

the experiments can be directly compared to the analytic

solutions given by Jenkins and Savage.

The experiments clearly demonstrate the existence of

an internal boundary resulting in a finite thickness of the

shearing layer. The thickness was measured to be between 5

and 15 grain diameters. This phenomenon occurs as a simple

I a
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result of momentum conservation in a gravity field. The

stresses at the boundary between the shearing and the

nonshearing regions conform to a dynamic Coulomb yield

criterion. For each of the granular-fluid materials, the

stress ratios at the boundary, T, /Tz , were measured to be

nearly constant, with only a slight dependence upon the

shear rate and volume concentration.

The finite thickness of the shearing layer

illustrates an important problem in the mechanics of

granular materials which should be addressed: the rapid flow

regime needs to be systematically related to the less

intense quasi-static, or plastic regime of deformation in a

continuous and physically meaningful way. This is a

difficult task because of the very different mechanisms for

momentum transfer and energy dissipation in the two regimes.

Nontheless, most geophysical flows, and many industrial

flows involve a transition between the two regimes.

Matching the limits of these regimes is therefore of

paramount importance to understanding these granular flows.

The present experiments on the constitutive behavior

of rapidly flowing granular-fluid materials demonstrate that

when the interstitial fluid has no effect upon the

deformation, the stresses are quadratically dependent upon

the mean shear rate (at constant volume concentration).

These measurements confirm many of the observations of

Savage and Sayed(1983), which in turn support Bagnold's

hypothesis that granular collisions comprise the primary

. / a
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mechanism by which momentum Is tranferred in these flows.

The stresses were found (in the present study) to be

weakly dependent on the volume concentration up to values of

about 0.45 or 0.5. Above these concentrations, the stresses

were strongly dependent on the volume concentration;

sometimes the stresses increased by an order of magnitude

with less than a 10% increase in the volume concentration.

These observations are in agreement with those of Bagnold

(1954). The kinetic theory of Jenkins and Savage (1983)

correctly predicts an increase In the stress levels with

increasing volume concentration, but the predicted increase

Is smaller than observed for volume concentrations greater

than about 0.45.

The kinetic approach to rapidly flowing granular-

fluid materials is rational and physically plausible. The

theory of Jenkins and Savage(1983), although simplistic in

its assumptions regarding granular interactions, predicts

the dependence of the stresses upon the shear rate properly,

and also predicts the trend of the dependence on the volume

concentration. The kinetic approach will undoubtedly be

improved by including such phenomenon as particle spin and

friction. Further work is also needed in determining the

exact nature of the collision anisotropy present in rapid

shear flows. The effects of multiple collisions at high

volume concentrations would also make a substantial

improvement in the theory. As these improvements are

implemented, the predicted dependence of the stresses upon

"iV
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the volume concentration should improve.

The measured stress ratios, T xz/Tzz, are higher for

fully shearing flows than they are for partially shearing

flows. This is a consequence of the rigid lower boundary of

the fully shearing flows. Had there been erodable grains at

this boundary, they would be mobilized into the flow,

resulting in a greater mass of material in motion, and a

lower stress ratio at the bottom of the flow.

Measurements of the stress ratios and of the

constitutive behavior indicate that the interstitial fluid

probably has a significant influence in many flows of

interest. This is evidenced by the relatively higher stress 4

ratios and the more linear dependence of the stresses on the

shear rate for experiments in which water was the

interstitial fluid. Probably both the shear stress

supported by the deformation of the interstitial water, and

the damping of grain trajectories by the water have a

significant influence upon the mechanics of the granular-

fluid, as suggested by Bagnold. A more rigorous theoretical

basis for flows of this nature, where both granular

collisions and interstitial fluid effects are important,

needs to be developed. The limiting cases of a suspension

of grains on the one hand, and the rapid collisional flow on

the other, are fairly well formulated, and provide the

asymptotic limits for future theories.

The experiments reported here provide new insights

which aid in understanding some fundamental aspects of the

f! +..
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bedload sediment transport phenomenon.

Measurements of a nearly constant stress ratio at

the level of no motion indicates there must always be a

region of bedload transport if the fluid stress exceeds the

threshold for motion. This follows from the fact that the

fluid pressure is Isotropic, so any normal stress at the

level of no motion must be generated and transmitted by

grain-to-grain interactions. Furthermore, as previously

demonstrated, if the tangential component of the fluid

stress on the bed is known, then the Immersed weight of the

grains participating in the bedload transport is

predictable.

The present experiments suggest that a momentum

based bedload transport model is close to being developed.

Both the stresses at the lower boundary of the granular-

fluid flow, and the constitutive behavior of the rapidly

flowing region have been confirmed in this work. Once the

rapidly flowing granular-fluid regime is tied smoothly into

the dense suspension regime, the equations of motion will be

well posed, and at least numerically solvable.

4
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Fully shearing 1.1 mm glass spheres in air

Exp N Um/Zo Shear Applied Normal Stress Zo
(1/sec.) stress normal stress ratio (mm.)

stress at z=Zo
(dyne/cm/cm)1 0.56 41. 1443. 2191. 336e. 0.43 8.6

2 0.56 66. 2418. 3627. 4796. 0.50 8.6
3 0.56 77. 3295. 5063. 6232. 0.53 8.6
4 0.56 88. 4143. 6499. 7668. e.54 8.6
5 0.56 103. 4933. 7935. 9104. 0.54 8.6
6 0.56 111. 5733. 9371. 10540. 0.54 8.6
7 0.54 101. 1784. 2191. 3360. 0.53 9.0
8 0.54 140. 2896. 3627. 4796. 0.60 9.0
9 0.54 185. 3929. 5063. 6232. 0.63 9.0

10 0.54 214. 4806. 6499. 7668. 0.63 9.0
11 0.54 242. 5762. 7935. 9104. 0.63 9.0
12 0.54 267. 6659. 9371. 10540. 0.63 9.0
13 0.49 136. 2106. 2191. 3360. 0.63 9.8
14 0.49 180. 3149. 3627. 4796. 0.66 9.8
15 0.49 214. 4134. 5063. 6232. 0.66 9.8
16 0.49 246. 5099. 6499. 7668. 0.67 9.8
17 0.49 272. 6054. 7935. 9104. 0.67 9.8
18 0.49 298. 7000. 9371. 10540. 0.66 9.8
19 0.46 136. 2923. 2191. 3360. 0.60 10.5
20 0.46 178. 3134. 3627. 4796. 0.65 10.5
21 0.46 216. 4178. 5063. 6232. 0.67 10.5
22 0.46 245. 5123. 6499. 7668. 0.67 10.5
23 0.46 274. 6079. 7935. 9104. 0.67 10.5
24 0.46 300. 7093. 9371. 10540. 0.67 10.5
25 0.42 136. 2033. 2191. 3360. 0.61 11.5
26 0.42 179. 3164. 3627. 4796. 0.66 11.5
27 0.42 215. 4187. 5063. 6232. 0.67 11.5
28 0.42 245. 5162. 6499. 7668. 0.67 11.5
29 0.42 272. 6118. 7935. 9104. 0.67 11.5
30 0.42 299. 7112. 9371. 10540. 0.68 11.5
31 0.37 140. 2111. 2191. 3360. 0.63 13.0
32 0.37 le0. 3222. 3627. 4796. 0.67 13.0
33 0.37 214. 4304. 5063. 6232. 0.69 13.0
34 0.37 243. 5279. 6499. 7668. 0.69 13.0
35 0.37 267. 6225. 7935. 9104. 0.68 13.0
36 0.37 288. 703. 9371. 10540. 0.67 13.0
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Partially shearing 1.1 mm glass spheres in air.

Exp N Um/Zo Shear Applied Normal Stress Zo
(1/sec.) stress normal stress ratio (mm.)

stress at z=Zo
(dyne/cm/cm)

37 0.58 48. 3503. 6499. 7748. 0.45 7.3
38 0.56 87. 4009. 6499. 7926. 0.51 8.7
39 0.56 100. 4141. 6499. 8194. 0.50 10.4
40 0.56 99. 4249. 6499. 8551. 0.50 12.5
41 0.56 118. 4107. 6499. 8551. 0.48 12.5
42 0.55 132. 4063. 6499. 8551. 0.48 12.8
43 0.52 147. 4102. 6499. 8461. 0.49 12.8
44 0.47 169. 4097. 6499. 8194. 0.50 12.3
45 0.37 200. 4230. 6499. 7748. 0.55 11.5
46 0.29 196. 4303. 6499. 7570. 0.57 12.7
47 0.58 34. 2600. 5063. 6242. 0.42 6.9
48 0.58 37. 2595. 5063. 6591. 0.39 9.0
49 0.58 50. 2648. 5063. 6634. 0.40 9.3
50 0.57 62. 2755. 5063. 6722. 0.41 9.9
51 0.57 87. 2755. 5063. 6547. 0.42 9.0
52 0.56 107. 2794. 5063. 6634. 0.42 9.7
53 0.55 116. 2930. 5063. 6678. 0.44 10.1
54 0.53 144. 2891. 5063. 6460. 0.45 9.0
55 0.53 146. 3312. 5063. 6656. 0.50 10.3
56 0.51 158. 3111. 5063. 6656. 0.47 10.8
57 0.46 153. 3096. 5063. 6745. 0.46 12.5
58 0.39 153. 3175. 5063. 6628. 0.48 13.9
59 0.60 33. 1954. 3627. 5385. 0.36 10.0
60 0.61 28. 1793. 3627. 5250. 0.34 9.2
61 0.60 43. 1934. 3627. 5430. 0.36 10.3
62 0.58 73. 1978. 3627. 5520. 0.36 11.2
63 0.58 75. 2104. 3627. 5746. 0.37 12.6
64 0.54 109. 2216. 3627. 5385. 0.41 11.2
65 0.53 122. 2211. 3627. 5340. 0.41 11.1
66 0.56 101. 2128. 3627. 53S5. 0.39 10.7
67 0.51 140. 2390. 3627. 5220. P.46 10.8
68 0.43 168. 2233. 3627. 4866. 0.46 9.9
69 0.35 167. 2296. 3627. 4778. 0.48 11.3
70 0.57 64. 1497. 2909. 3750. 0.40 6.1
71 0.58 69. 1492. 2909. 4262. 0.35 9.?
72 0.54 109. 1585. 2909. 4116. 0.38 9.2
73 0.52 128. 1688. 2909. 4168. e.40 9.9
74 0.47 160. 1786. 2909. 4020. 0.44 9.7
75 0.37 180. 1855. 2909. 3798. 0.49 9.9
76 0.39 165. 1536. 2191. 3M8e. 0.50 9.4
77 0.49 157. 1457. 2191. 3154. 0.46 8.2
78 0.52 130. 1438. 2191. 3302. 0.44 8.9
79 0.54 118. 1330. 2191. 3302. e.40 8.6
8 0.55 97. 1310. 2191. 3376. 0.39 8.9
81 0.57 81. 1241. 2191. 3302. F.38 8.1
82 0.58 46. 1138. 2191. 3362. 0.34 7.8
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83 0.53 120. 962. 1473. 2214. 0.43 5.7
84 0.52 128. 942. 1473. 2362. 0.40 7.1
85 0.46 165. 976. 1473. 2214. 0.44 6.7
86 0.36 196. 1060. 1473. 2066. 0.51 6.7
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Fully shearing 1.85 mm glass spheres in air.

Exp N Um/Zo Shear Applied Normal Stress Zo
(1/sec.) stress normal stress ratio (mm.)

stress at z=Zo
(dyne/cm/cm)

87 0.49 59. 3802. 5063. 7215. 0.53 16.2
88 0.49 90. 4290. 6499. 8651. 0.50 16.2
89 0.49 102. 5070. 7935. 10087. 0.50 16.2
90 0.49 107. 5947. 9371. 11523. 0.52 16.2
91 0.49 112. 6824. 10807. 12959. 0.53 16.2
92 0.49 122. 7604. 12243. 14395. 0.53 16.2
93 0.46 89. 3656. 5063. 7215. 0.51 17.0
94 0.46 104. 4533. 6499. 8651. 0.52 17.0
95 0.46 114. 5411. 7935. 10087. 0.54 17.0
96 0.46 125. 6288. 9371. 11523. 0.55 17.0
97 0.46 134. 7068. 10807. 12959. 0.55 17.0
98 0.46 144. 7653. 12243. 14395. 0.53 17.0
99 0.44 110. 3851. 5063. 7215. 0.53 18.0
100 0.44 120. 4728. 6499. 8651. 0.55 18.0
101 0.44 133. 5508. 7935. 10087. 0.55 8.0
102 0.44 144. 6288. 9371. 11523. 0.55 18.0
103 0.44 154. 7166. 10807. 12959. 0.55 18.0
104 0.44 172. 8433. 12243. 14395. 0.59 18.0

Partially shearing 1.85 mm glass spheres in air.

105 0.53 35. 2624. 5063. 7267. 0.36 15.4
106 0.52 50. 2727. 5063. 7414. 0.37 If.4
107 0.52 61. 2796. 5063. 7414. 0.38 16.7
108 0.50 73. 2732. 5063. 7414. 0.37 17.1
109 0.45 118. 2879. 5063. 6973. 0.41 15.5
110 0.41 128. 3021. 5063. 6900. 0.44 16.3
111 0.51 49. 2061. 3627. 5243. 0.39 11.6
112 0.50 70. 2086. 3627. 5243. 0.40 11.9
113 0.50 69. 2140. 3627. 5243. 0.41 11.8
114 0.49 85. 2086. 3627. 5317. 0.39 12.6
115 0.47 106. 2169. 3627. 5207. 0.42 12.3

116 0.45 119. 2164. 3627. 5170. 0.42 12.6
117 0.40 137. 2282. 3627. 5023. 0.45 12.8
118 C.49 56. 1283. 2191. 3535. 0.36 10.1
119 0.48 86. 1386. 2191. 3514. 0.39 10.1
:20 0.47 101. 1435. 2191. 3587. 0.40 10.9
121 0.43 122. 1528. 2191. 34C3. 0.45 10.4
122 0.36 123. 1498. 2191. 344e. 0.44 12.7
123 0.44 111. 1537. 2191. 3514. 0.44 11.1
124 0.30 130. 1621. 2191. 3293. 0.49 13.6
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Partially shearing 0.55 mm sand in air.

Exp N Um/Zo Shear Applied Normal Stress Zo
(1/sec.) stress normal stress ratio (mm.)

stress at z-Zo
(dyne/cm/cm)

125 0.47 93. 1332. 1333. 1673. 0.80 2.8
126 0.47 98. 1418. 1333. 1749. 0.81 3.4
127 0.47 125. 1373. 1333. 1753. 0.78 3.5
128 0.46 160. 1302. 1333. 1753. 0.74 3.5
129 0.43 217. 1166. 1333. 1753. 0.67 3.8
130 0.56 55. 2609. 2769. 3373. 0.77 4.2
131 0.54 81. 2624. 2769. 3341. 0.79 4.1
132 0.53 101. 2629. 2769. 3341. 0.79 4.2
133 0'.51 130. 2422. 2769. 3341. 0.73 4.4
134 0.50 182. 2326. 2769. 3341. 0.70 4.4
135 0.58 78. 2563. 4205. 4701. 0.55 3.3
136 0.58 102. 2488. 4205. 4701. 0.53 3.3
137 0.56 177. 2508. 4205. 4739. 0.53 3.7
138 0.51 213. 2493. 4205. 4778. 0.52 4.4
139 0.56 77. 4567. 5641. 6136. 0.74 3.5
140 0.48 246. 3916. 5641. 6049. 0.65 3.3
141 9.48 280. 3926. 5641. 6123. 0.64 3.9
142 0.50 313. 4047. 5641. 6271. 0.64 4.9
143 0.55 74. 6091. 8513. 9004. 0.68 3.4
144 0.50 236. 5702. 8513. 8962. 0.64 3.5
145 0.50 232. 5818. 8513. 9074. 0.64 4.4
146 0.49 350. 5727. 8513. 9037. 0.63 4.2
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Fully shearing 1.85 mm glass spheres in water.

Exp N Um/Zo Shear Applied Normal Stress Zo
(1/sec.) stress normal stress ratio (mm.)

stress at z=Zo
(dyne/cm/cm)

175 0.51 34. 3802. 5063. 6527. 0.58 16.6
176 0.51 42. 4582. 6499. 7963. 0.57 16.6
177 0.51 54. 5362. 7935. 9399. 0.57 16.6
178 0.51 54. 5850. 9371. 10835. 0.54 16.6
179 0.51 56. 6727. 10807. 12271. 0.55 16.6
180 0.51 62. 7507. 12243. 13707. 0.55 16.6
181 0.50 75. 3948. 5063. 6527. 0.61 16.9
182 0.50 84. 4728. 6499. 7963. 0.59 16.9
183 0.50 98. 5898. 7935. 9399. 0.63 16.9
184 0.50 111. 6873. 9371. 10835. 0.63 16.9
185 0.50 125. 7751. 10807. 12271. 0.63 16.9
186 0.50 136. 8531. 32243. 13707. 0.62 16.9

Partially shearing 1.85 m glass spheres In water.

187 0.53 9. 3753. 5063. 7037. 0.53 21.2
188 0.53 22. 3997. 5063. 7131. 0.56 22.5
189 0.52 35. 3948. 5063. 7225. 0.55 23.8
190 0.52 44. 4192. 5063. 7413. 0.57 25.9
191 0.51 50. 3802. 5063. 7413. 0.51 26.2
192 0.53 13. 2876. 3627. 5507. 0.52 20.4
193 0.52 26. 2876. 3627. 5695. 0.50 22.8
194 0.52 38. 3169. 3627. 5883. 0.54 25.1
195 0.51 39. 3120. 3627. 5883. 0.53 25.1
196 0.51 44. 3120. 3627. 5977. 0.52 26.2
197 0.53 16. 2145. 2191. 3883. 0.55 18.3
198 0.52 27. 2096. 2191. 3977. 0.53 19.8
199 0.51 39. 2242. 2191. 4071. 0.55 21.1
200 0.51 41. 2340. 2191. 4259. 0.55 23.3
201 0.50 46. 2194. 2191. 4259. 0.51 23.6
202 0.52 19. 4192. 6499. 8849. P.47 25.7
203 0.52 38. 4192. 6499. 9037. 0.46 28.1
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Partially shearing 0.55 mm sand in water.

Exp N Um/Zo Shear Applied Normal Stress Zo
(1/sec.) stress normal stress ratio (mm.)

stress at z-Zo
(dyne/cm/cm)

294 9.57 53. 2947. 2769. 3153. 0.94 4.2
205 0.58 57. 3113. 2769. 3201. 0.97 4.7
206 0.58 90. 3943. 2769. 3201. 0.95 4.7
297 0.57 92. 3658. 2769. 3345. 1.09 6.3
208 0.57 99. 4097. 2769. 3393. 1.21 6.9
299 0.59 68. 3653. 4295. 4541. 0.81 3.6
210 9.58 78. 3785. 4295. 4637. 0.82 4.6
211 9.59 85. 4097. 4295. 4733. 0.85 5.6
212 0.58 104. 4037. 4295. 4733. 0.85 5.7
213 0.58 107. 4975. 4205. 4877. 1.02 7.2
214 0.58 55. 4728. 5641. 6973. 0.78 4.7
215 0.57 61. 4557. 5641. 6160. 0.74 5.7
216 9.58 95. 5187. 5641. 6169. 0.84 5.7
217 0.57 101. 6539. 5641. 6301. 1.94 7.3
218 9.56 127. 6559. 5641. 6349. 1.93 7.9
219 0.57 49. 6247. 8513. 8985. 9.69 5.2
229 0.57 54. 6666. 8513. 8985. 0.74 5.2
221 9.57 58. 6676. 8513. 9079. 0.74 6.2
222 0.57 192. 7599. 8513. 9221. 9.82 7.7
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Fully shearing 1.1 mm glass spheres in water.

Exp N Um/Zo Shear Applied Normal Stress Zo
(1/sec.) stress normal stress ratio (mm.)

stress at zuZo
(dyne/cm/cm)

147 0.57 35. 941. 1473. 2252. 0.42 9.5
148 0.57 47. 1428. 2191. 2970. 0.48 9.5
149 0.57 66. 1964. 2909. 3688. 0.53 9.5
150 0.57 140. 3027. 3627. 4406. 0.69 9.5
151 0.57 200. 3612. 4345. 5124. 0.70 9.5
152 0.57 216. 3866. 5063. 5842. 0.66 9.5
153 0.58 131. 1497. 1473. 2252. 8.66 9.3
154 0.58 172. 2189. 2191. 2970. 0.74 9.3
155 0.58 198. 2608. 2909. 3688. 0.71 9.3
156 0.58 218. 2998. 3627. 4406. 0.68 9.3
157 8.58 231. 3299. 4345. 5124. 0.64 9.3
158 0.58 243. 3554. 5663. 5842. 0.61 9.3
159 0.55 155. 1569. 1473. 2252. 0.69 9.9
16 0.55 166. 2057. 2191. 2970. 0.69 9.9
161 6.55 208. 2566. 2909. 3688. 0.68 9.9
162 0.55 .227. 2964. 3627. 4466. 0.67 9.9
163 6.55 245. 3315. 4345. 5124. 0.65 9.9
164 0.55 264. 3607. 5063. 5842. 0.62 9.9

Partially shearing 1.1 - glass spheres in water.

165 6.66 26. 882. 1473. 2657. 0.33 12.4
166 0.65 40. 1258. 1473. 2855. 0.44 14.7
167 0.64 51. 1521. 1473. 3052. 0.50 16.9
168 0.64 64. 1843. 1473. 3151. 0.58 18.1
169 0.67 17. 1365. 2909. 4093. 0.33 12.3
170 0.65 33. 1784. 2909. 4389. 0.41 15.6
171 0.65 47. 2208. 2909. 4587. 0.48 17.8
172 0.65 17. 2506. 5063. 6357. 0.39 13.8
173 0.64 28. 2744. 5063. 6645. 0.41 17.1
174 0.66 46. 3193. 5063. 6741. 0.47 17.7
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