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A DISTRIBUTED PROCEDURE TO DETECT AND/OR DEADLOCK

ABSTRACT
r t o et c-

-d" present a procedure to detect deadlock in a
distributed system. The procedure is dynamic and
distributed. Deadlock will be correctly detected
for general resource requests of the form: - eck
file A and file B at NY or lock file A and file B
at LA . The contribution of this paper is that it
presents a distributed solution to the deadlock
detection problem when requests have AND/OR form.
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uted Systems -- Distributed Databases; D.4.1 [Op-
erating Systems]: Process Management -- Deadlocks;
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data bases, deadlock detection.
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1.0 INTRODUCTION

Deadlock detection is an important and interesting
problem. It is important to detect and break up
deadlock situations in the interest of system
throughput. The detection problem is interesting
in a graph-theoretic sense, and also because dis-
tributed and parallel processing techniques are
applicable.

A deadlock situation is the possible result of
competition for resources, for example data base
transactions requesting exclusive access to files.
Deadlocks can be prevented when resource requests
are always granted with system-wide atomicity, but
in a distributed system such a guarantee is not
practical: There are time delays in the inter-
action of sites of a distributed system.

1.1 Organization

This paper is divided Into six parts. Part 1 is a
review of prevalent terminology and deadlock
detection algorithms. Part 2 defines the model
used for this paper. Part 3 presents the deadlock
detection procedure. Part 4 discusses some imple-
mentation issues, and Part 5 is the concluding
section. Part 6 is an appendix devoted to the
correctness proof of the detection procedure.

The remainder of Part 1 defines and classifies the
subject of deadlock detection. Section 1.2 is a
review of the terminology for deadlock detection
in the distributed data base environment. Section
1.3 contains a classification of deadlock models.
Section 1.4 completes the Introduction with a
review of some related solutions to deadlock
detection.

1.2 Transaction Model

The paradigm used in this paper for discussion of

deadlock detection is due to Menasce and Muntz
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[2]. Briefly, data base transactions present
resource requests to controllers. A resource
request may be a request to lock fi les or may have
more abstract meanings. A transaction is blocked
from the time it presents a request to a control-
ler until the control ler grants the request, and
the transaction becomes active. A resource
request can be local, or refer to a resource at
another site, in which case the transaction is
distributed. A distributed transaction is imple-
mented by transaction agents, each of which is the
local agent for a given transaction at one site.
Inter-site resource requests are always between
two agents of the same transaction.

A transaction wait-for graph (TWFG) is a model of
resource requests. The vertices of the graph are
associated with transaction agents. Directed edg-
es in the graph represent "wait-for" relationships
between transactions agents. A vertex with outgo-
ing edge(s) is a blocked transaction agent. A
cycle in the graph indicates deadlock -- If a
cycle is defined carefully, as wd do in Section
2.4.

1.3 Request Models

Figure 1 is a TWFG graph representing a deadlock
situation. This example has four transactions,
T1-T4, implemented by seven transaction agents.
The directed edge from vertex T11 to vertex T21
shows that agent Ti1 is blocked. Vertex T22 has
no outgoing edges, and therefore is an active
(non-blocked) transaction. Vertex Ti1  has two
outgoing edges, and this indicates that trans-
action T1 has two outstanding resource requests,
and both must be satisfied before transaction Ti
becomes active. This type of resource request is
called an AND-request, because transaction Ti must
have resource 1 and resource 2.

Accession
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Figure 1. Example of TWFG.

The AND-model is a term used to signify that all
resource requests are AND-requests. The AND-model
has been the traditional view of resource requests
in distributed data base systems.

An alternative model of resource requests is the
OR-model. A request for numerous resources is
satisfied by the granting of any requested
resource. For example, assume that a transaction
waits for resource 1 or resource 2. Suppose
resource I is granted to this request; then the
transaction becomes. active, and the request for
resource 2 is cancelled.

In the OR-model, a cycle is insufficient for dead-
lock detection. To see this, suppose all requests
in Figure 1 are OR-requests; then transaction T1
Is not deadlocked because T2z has no outgoing edg-
es. In terms of the TWFG, a knot will indicate
deadlock. A knot Is a structure defined as fol-
lows: Vertex X Is in a knot iff a path from
vertex X to vertex Y Implies that there is also a
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path from Y to X. In other words, in a knot
there are no "dead-ends" in the graph.

The AND/OR model, also called the communication
model, is a generalization of the two previous
models. An AND/OR-request may specify any combi-
nation of "and" and "or" in the resource request.
For example, a request for "(S and (T or U)) or V"
is possible, and S, T, U and V may exist at dif-
ferent sites in the system.

1.4 Related Work

The solution to deadlock detection in a
non-distributed system is well studied [10]. It
is possible to directly implement this solution in
a distributed system if a central scheduler is
used, but a central scheduler is not practical.
The centralized strategy could theoretically be
implemented by broadcasting resource events (re-
quests, grants) with time-stamps as In Lamport
[9]. All controllers would have updated global
views and deadlock could be detected.

A variation of the time-stamp strategy is proposed
in [1]: One controller is designated as the dead-
lock detector, and all other controllers send
pieces of the TWFG, which are time-stamped, to the
designated central controller. A consistent, glo-
bal TWFG is assembled to detect deadlock. The
drawbacks associated with a central contoller are
ameliorated by structuring the controllers into a
hierarchy, which reduces the message traffic, as
in [2]. To some extent the
hierarchy-of-controllers achieves distribution of
processing, although the central ized strategy
remains.

A completely distributed algorithm to detect dead-
lock by construction of a TWFG is non-trivial, as
numerous counter-examples show [1,3,5]. The coun-
ter-examples typically show that, due to time
delays in the transfer of information between con-
trollers, an Incorrect TWFG may be constructed.

TRH83a-4
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In this way, deadlock may go undetected or be
falsely detected.

The deadlock detection procedure in this paper
does not follow the strategy of assembling and
manipulating graph structures. Instead, the
underlying graph structure is incorporated in the
way the program is distributed. Two previous
papers employed this theme: A deadlock detection
procedure specific to the AND-model appears in
[6). Unlike earlier solutions, the procedure does
not construct a TWFG, even in reduced form. In a
related work [7], an AND/OR model deadlock
detection procedure is developed. This AND/OR
deadlock detection procedure is distributed, mes-
sage-based, and does not construct a TWFG. The
procedure efficiently detects deadlock in the
OR-model, but is less efficient in an
AND/OR-model: Deadlock in the AND/OR-model is
detected by repeated application of a test for
OR-model deadlock, which will eventually result in
detection of deadlock for the AND/OR-model.

A non-distributed solution to the AND/OR model,
which contains several interesting examples of
AND/OR resource requests, is given by Beeri and
Obermarck [4]. The expressive power of the AND/OR
model is greater because "non-specific" requests
are permitted. For Instance, a request for any M
available resources, from a pool of size N, can be
represented by an AND/OR request. In a
multiple-copy distributed data base, a transaction
may request the locking of any available copy such
as the example in the abstract of this paper sug-
gests. Our contribution is to present a
distributed solution to the problem defined by
Beer and Obermarck.

TRH83a-5
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2.0 PROCESS MODEL

This section contains definitions that enhance the
basic model presented in Section 1.2. The revised
model definition is used to accurately define
deadlock and support the discussion of the proce-
dure in Part 3. Sections 2.1 and 2.2 define proc-
esses and messages, which are the basic language
for the deadlock detection procedure. Section 2.3
describes the wait-for graph for processes, and
assigns color attributes to the edges. In Section
2.4 is a definition of deadlock in terms of col-
ored edges. Section 2.5 details the relationship
between transactions and processes and Section 2.6
is a list of behavioral axioms for processes.

2.1 Processes

In this paper, the deadlock detection procedure
does not directly refer to transactions or
agents, but instead to processes. We use the term
"process" to extend the idea of transaction
agents. Like transaction agents, processes repre-
sent transactions. A process can be thought of as
a logical entity, manipulated by the controller,
much as an operating system manipulates internal
tables in the service of jobs. The reason for the
distinction is that the mapping from processes to
transaction agents is many-to-one, not one-to-one,
i.e., the mapping may require that a transaction
be represented by numerous processes at a single
site, as we will illustrate in Section 2.5.

To simplify the following discussion, the language
is "a process does some action"~ or "a process
waits". In fact, it should be understood that the
controller is performing actions on behalf of
transactions, or to detect deadlock. "A process
sends a message to another process" means that a
controller sends a message to another controller,
only if the processes are at different sites.
Sending messages between processes at a single
site is an Internal operation for a controller.

TRH83a-6
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2.2 Messages

Resource requests and the grants of resources are
modeled by messages. To request a resource, a
process sends a request (message) to the process
that holds the resource. After sending the
request the process waits until a grant (message)
is received from the relinquishing process. An
Important assumption about messages is the order
of arrival. We assume that all messages sent from
one process to another will definitely arrive, and
In the order sent (FIFO, loss-free channels
between processes). No assumption about the rate
of message traffic is made. Other messages will
be defined in Part 3 as part of the detection pro-
cedure.

2.3 Process Wait-For Graph

Although a wait-for graph is not constructed by
the deadlock detection procedure, it will simpli-
fy the discussion to refer to this framework. The
Process Wait-For Graph (PWFG) is a theoretical
construct which reflects the true, instantaneous
state of the distributed system. Operations on
the PWFG are always theoretical operations. Each
vertex in the PWFG represents a process. Assume
that each process has a globally unique name,
called the process-ID, which is used as the vertex
Identifier in the PWFG. A directed edge In the
PWFG indicates that a process is waiting for a
grant message. Edges have colors, attributes that
define the state of an edge.

Given processes v and w, edge (v,w) Is:

gray Edge (v,w) is gray from the time v sends
w a request message until w receives the
request.

black Edge (v,w) Is black from the time w has
received a v's request until w sends a
grant to v.

TRH83a-7
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white Edge (v,w) is white from the time w
sends a grant to v until v receives the
grant.

This notation is fully developed In [6]. To sum-
marize some properties of edges,

" Edges are gray when created.
" A gray edge will turn black after a finite,

arbitrary time.
- A white edge will disappear after a finite,

arbitrary time.

The normal course of coloring for an edge, over
time, is the sequence: non-existence - gray 6
black 3 white o non-existence. Attaching colors
to edges permits a precise definition of deadlock,
as the following section shows.

2.4 Deadlock Situation

In the AND-model, a deadlock is identified as a
cycle of black edges in the PWFG. More precisely,
any combination of gray and black edges in a cycle
is deadlock because gray edges turn black [6]. In
the OR-model, a deadlock is a black knot. There
does not appear to be a familiar term to categor-
ize deadlock in the AND/OR-modet, but the idea is
similar: A static, black, component arises in the
PWFG, which will persist until broken externally.

2.5 Mapping: Transaction s Process

To simplify the presentation in this paper, the
PWFG is restricted as follows: A process may have
an OR-request or an AND-request. This limitation
does not restrict the power of the AND/OR model
for the following reason. Although a transaction
may submit any type of AND/OR-request, the
AND/OR-request can be represented as a network of
processes restricted to AND-requests and
OR-requests. The mapping is a representation of
the AND/OR-request in a regular form, such as dis-
junctive normal form. Figure 3 shows a TWFG and

TRH83a-8



the corresponding PWFG as an example of this map-
ping.

rA

TWFO

PWFO

Note: The dashed line between edges
is used to indicate an AND-request.IIn the TWFG, transaction A waits on

B or (C and D).

Figure 3. TWFG and PWFG Mapping.

2.6 Process Behavior

This section illustrates the effect of process
behavior on the PWFG. An active process is a ver-
tex with no outgoing edges in the PWFG. A blockedi

i. process i s a vertex w ith outgo ing edges . A

; blocked process may send neither grant nor request
messages. No process, active or blocked,' may

r" , TRH83a-9
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receive more than one message at any instant.
When a blocked process receives a grant message,
an edge in the PWFG disappears and there are
several possibilities for the blocked process:

" No outgoing edges remain and the process is
active by definition.

" Some outgoing edge(s) remain. There are two
cases:
- The blocked process has a,, AND-request.

The process remains blocked.
- The blocked process has an OR-request.

All of the remaining outgoing edge(s) are
deleted from the PWFG, and the process is
active.

All of the vanishing edge scenarios listed above
are considered to be instantaneous state transi-
tions for the PWFG. That is, all of an
OR-request's edges disappear simultaneously in the
PWFG (cancellation).

I
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3.0 DEADLOCK DETECTION PROCEDURE

A basic description of the deadlock detection pro-
cedure follows. The correctness proof is found in
Part 6, and some implementation considerations are
in Part 4. Section 3.1 presents notation used to
describe the procedure. An informal description
of the detection procedure appears in Section 3.2.
Section 3.3 is divided into sub-sections that spe-
cify the procedure by process behavior rules. In
Section 3.4 is an example sequence of an execution
of the detection procedure.

3.1 Preliminaries

The deadlock detection procedure is a distributed
program. The components of the program are:

" Messages: grants, requests, queries and
replies. Grants and requests are discussed in
Section 2.2. Queries and replies are used
only by the detection procedure and are dis-
cussed below.

" Local Memory: Associated with each process are
two lists, the outgoing query list (OQ-Iist)
and the incoming query list (IQ-list). These
lists will hold images of queries during the
deadlock detection procedure. Initially, both
lists are empty.

Each query and reply message has a variable length
label. The label is a string of process-IDs.
Suppose fs,t,u,v,w} are process IDs. A possible
label is <twsu>. Some operations on labels are
defined:

Catenation: Given two labels, A and B, then A*B
denotes the catenation of the strings.
Example: A <uvt>, B = <sw>, A*B =
<uvt>.<sw> = <uvtsw>.

Prefix: Given two labels, A and C, then A is
prefix or equal to C, A 2 C, iff A = C

TRH83a-li
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or C can be written as C : A*B, for
some label B. Example: A = <uvt>, C =
<uvtsw> * A w C.

The notation for a query is Q(B,s), where B is the
label of query Q which was sent by process s.
Query messages are sent in the direction of edges
in the PWFG. R(C,t) denotes reply R with label C,
sent by process t. Reply messages are sent in the
reverse direction of edges in the PWFG.

3.2 Procedure Overview

A controller initiates the procedure, and some
period of detection activity follows (sending mes-
sages, updating lists and so on). When and how
often the procedure is initiated is the topic of
Section 4.1. When the activity subsides, the pro-
cedure will either have detected deadlock or not.

Queries are used by the procedure to search the
PWFG for non-blocked processes. Replies are
returned to the senders of queries to say "search
failed." When all searches fail, then all replies
are returned and deadlock will be detected.

If grant messages or non-blocked processes are
encountered in the execution of the detection pro-
cedure, then the system is not deadlocked, and
therefore the procedure will not detect deadlock.

When a query arrives at a process, then some
search is to be extended: The IQ and OQ-Iists are
updated, and a new query is sent on outgoing
edges. The IQ-list is a record of the queries
received by a process. The OQ-Iist is a record of
queries sent by a process. Both lists are lists
of "on-going" searches: A global, instantaneous

view of all IQ and OQ-lists in the distributed
system would describe the state of the detection
procedure at any instant.

The propagation of queries continues until a cycle
is detected. The cycle will be detected because a
process wi II match an arriving query with some

TRH83a- 12

.....................
-. "~3 **~*.3 - . . *.,~. .



entry in its IQ-list. In a sense, that query has
been "seen before" at that process. At such
times, reply messages are generated and returned
to the query senders.

The queries can be distinguished by their labels
for matching purposes, i.e., to generate the "seen
before" condition. The query propagation step
creates new queries with new labels so that each
label carries a "propagation history."
Eventually, this history will become exhaustive,
giving rise to "seen before" for any process.

When a process receives a reply, then the IQ and
OQ-lists are updated (entries removed). The reply
signals a "search failed" for activity in the
PWFG, and the process propagates the reply to oth-
er processes. Each reply is given a label to
match a corresponding query label, that is, the
"seach failed" message specifies which search
failed, and which entry of the OQ-list must be
deleted.

3.3 Process Behavior

In the following sections, there is frequently a
bifurcation of process actions, depending on
whether a process has an OR-request or an
AND-request. For convenience, the action for an
OR-requesting process will be prefaced with (OR),
and for an AND-requesting process, (AND).

Only idle (blocked) processes take part in the
deadlock detection procedure. Active
(non-blocked) processes may simply ignore all
request and reply messages, which is implicit in
the statement of the following rules.

3.3.1 Initiation of the Procedure

When a controller suspects a deadlock situation,
then an artificial process, called the initiator,
is created to detect deadlock. Assume that each
time a controller creates a new initiator, it is
with a different process-ID from all previous ini-

TRH83a- 13
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tiator or other process-IDs. The initiator has no
edges in the PWFG.

Suppose process i is the initiator, and process w
is suspected of being deadlocked. Initiation con-

sists of process i sending Q(<i>,i) to process w.
Process i will take no further action during dead-
lock detection. Later, when R(<i>,w) is received
by process i, then the controller declares dead-

lock for process w.

3.3.2 On Receiving a Query

If a given query has been "seen before" at a proc-
1 ess then a reply is generated, an action we call

reflection. Queries not "seen before" cause new
queries to be generated, an action called exten-
sion. Suppose an arbitrary process v receives

query Q(Bw). Process v then searches its IQ-list
for an entry Q(T,s) such that T z B. There are

two outcomes of the search:

1. f This action is called reflection. }
There is some Q(T,s) that satisfies the
search. Process v takes the following action:

Send R(B,v) to process w;

2. ( This action is called extension. }
The search for Q(T,s) fails. First, Q(B,w) is

added to process v's I9-list. Suppose edges
(v,x 1), (v,x 2 ), ... (v,xK) exist in the PWFG.
Process v now takes one of the following
actions:

a. (OR)
FOR j:= 1 TO k DO

BEG IN

Send Q(B,v) to xj;
Add Q(B,v) to the 09-Iist;
END;

Notice that Q(B,v) may be added to the
O-Iist numerous times. This is inten-
tional: It is important that Q(B,v)

appear k times in the 09.-Iist as a result
of this step.

TRH83a- 14
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b. (AND)
FOR j:= I TO k DO

BEG IN
Send Q(Bt<xj>,v) to xj;
Add Q(Bo<xj>,v) to the OQ-list;

END;

3.3.3 On Receiving a Grant

Section 2.6 specifies process behavior upon
receiving grant messages. In this section, the
rules are extended to accomodate the deadlock
detection procedure. Suppose process v receives a
grant from process w. In addition to the actions
given in Section 2.6, one of the following steps
is taken:

1. (OR) The OQ-list is made an empty list.

2. (AND) Entries of the form Q(T'<w>,v) are
deleted from the OQ-list. That is, all record

of queries sent to w is erased.

3.3.4 On Receiving a Reply

When a process receives a reply message, it is in
response to some query sent earlier. The reply
will be propagated only if no grant messages
arrived since the query was sent, otherwise the
reply is invalid. At an AND-requesting process,
any valid reply causes immediate propagation. At
an OR-requesting process, the reply propagation is
delayed until all valid replies have arrived.

Suppose process v receives R(Cs). Then process v
searches its O-list for an entry of the form
Q(C,v). If the search fails, then no action is
taken by process v, and the reply is ignored.
Otherwise process v takes one of the following
steps, which are collation actions:

1. [OR) The entry Q(C,v) is deleted from the
OQ-list. After this deletion, Process v again
searches its OQ-list for an entry of the form
Q(C,v):

TRH83a-15



* If the search fails, then process v
locates the entry Q(C,x) in process v's
IQ-list. Process v deletes the entry
Q(C,x) from the IQ-list, and sends R(C,v)
to process x.

" If the search turns up some Q(C,v) in the
O*-list, then process v takes no further
action.

2. (AND) The entry Q(C,v) is deleted from the

OQ-list. Now process v searches its IQ-list
for an entry Q(B,x) such that C = Bo<s>:

" If the search fails, then process v takes
no further action, i.e., R(C,s) is
ignored.

" If the search found Q(B,x), then process v
deletes Q(B,x) from the I9-list, and sends
R(B,v) to process x.

3.4 Example of Procedure Execution

In figure 4 Is the PWFG used for this example.
Process I is the initiator of the deadlock
detection procedure. Process x has the only
AND-request in the PWFG.

I0
II

X I
II

-- I I'

II
II
I Figure 4. Example PWFG Showing Deadlock.
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Figure 5 illustrates a trace of one possible exe-
cution of the procedure. Each element in the
table shows an event for a process. All of the
actions described within an event are considered
to happen concurrently. The notation "Q(B,x)o.y"
means that query Q(B,x) is sent by process x to
process y. "Q(B,x)uy" means that query Q(B,x)
arrives at y. The sequence does not show the sup-
porting updates to the IQ and OQ lists by the
processes.

i
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Event IProcess
I y z

1 Extension
Q(<1 I )ov
Q(<i->,v)+x
Q(<I>,V)4 _______

2 Extension Extension

Q(<Iz>,x)+Z

3 Reflection Extension Extension
Q(<d>,v)mv Q(<iy>,x~ey Q(<iz>,x)uz

R(<>,V-bwQ(<iy>,y)+S Q(<Iz>,z)+s
Q(<iz>,z)-*v

4i Reflection Collation Extension

SCollation Extension collation Extension

Q( Iz>,v)+v Q(ciy>, s).,

6 Reflection Extension
Q(ciz>.v)mv Q(ciy>ps)ov
R(<Iz>Dv)4Vw Q(<Iy>,w)+v ______

7 Reflection Collation
Q(<Iy),w)ov R(<lz>,v)ow
R(<Iy>,V)4vw R(<iz>,w)+s

SCollation Collation
R(<Iy>,v)ow R( <Iz>,W).s
R( cIy>,w)+s R( cir>, s)+Z

9 Collation Collation
R(< 12,B ).z R(<iy>,w)os

_________R(<Iz>,Z)+x R(<Iy>,s)4*y

10 Collation Collation
R(<Iz>,z)sx R(<ly>,s)uy
R(<I>,x)+v R((iy>,y)+x

11 Collation Ignored
R(<1,x)uv R(<'Y>,y)mx
R(<l>,v)41
(Deadlock)______ ____________ __ ____

figure 5. Example Execution Sequence.
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Notes on the sequence: In event 3, two messages
are sent to process s: Q(<iy>,y).s and
Q(<iz>,z).s. Because of the process model
restriction on message arrival, process s receives
only one message at a time. Accordingly,
Q(<iy>,y)ns in event 5, and Q(<iz>,z)ns in event
4. Both messages cause extension at s because the
queries have different labels.

After event 4, process w has experienced extension
and collation (on behalf of process v's query) and
we IQ and OQ-lists are again empty. Then in
event 5, process w again is extending, this time
on behalf of Q(<iz>,s)=w.

Different cases of collation appear in this
sequence. In event 4, collation at w is a case of
one reply triggering another reply. Event 5, col-
lation at z, is a case of a reply causing update
to an OQ-list, but no further message action.
Event 11, "ignored" at x, is explained in Section
3.3.4.

Here is a list of the contents of the IQ and
OQ-lists aft,4r event 5 and before event 6. The
"0" indicat.is a message that is also en route
between events.

Process v Process w

---IQ ---- .--- ..... ...-- IQ ---- .- - . .-- .
Q(<i>,i) Q(<i>,v) Q(<iz>,s) Q(<iz>,w)*

Process x Process y

--- IQ ------- o9 ---- --- ' ------- o----
Q(<l>,v) Q(<iy>,x) 9(<iy>,x) Q(<iy>,y)

Q(<iz>,x)

Process z Process s
---Ig ---- --- 09---- --- ---- --- 09----
Q(<iz>,x) Q(<iz>,z) Q(<iz>,z) Q(<iz>,s)

Q(Ciy>,y) Q(<iy>,s)u

In event 6, process v will reflect g(<iz>,w)uv
because Q(<i>,i) is in v's 1Q-list, and <I> s
<iz>. Also in event 6, process w will extend
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because Q(<iy>,s).w, and it is not the case that
<iz> 2S <y>. Therefore Q(<iy>,s) will be added to
process w's IQ-list and Q(<iy>,w)eov.
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4.0 IMPLEMENTATION ISSUES

The following sections show how the basic deadlock
detection procedure can be enhanced. Section 4.1
suggests how initiation of the procedure should be
controlled. In section 4.2 some concurrency
restrictions are given. Sections 4.3 and 4.4
offer efficiency improvements.

4.1 Initiation

Suppose that a process has been blocked contin-
uously for some time T, where T is a performance
parameter. That process is therefore suspected of
being deadlocked, and the controller initiates the
detection procedure for that process. There may
be many processes that qualify as suspects, and
the controller could initiate the detection scheme
for each of the suspects. However, within each
"deadlock component" of the PWFG, it is sufficient
for a controller to find one of the deadlocked
processes, and it is desirable to limit the number
of initiations to reduce message traffic. The
controller should use a performance parameter K to
limit the rate of initiations of the detection
procedure. If this rate is too large, then much
of the message traffic will be redundant, because
the PWFG will not be changing faster than the
detection procedure executes.

There is no conflict for several initiators to
concurrently attempt to detect deadlock: Proc-
esses serve any number of deadlock detection com-
putations by maintaining the IQ and O-lists. If
an execution of the procedure does not detect
deadlock, one result Is that, for some processes,
the IQ-list and 0-list will retain useless
entries. The following scheme will clean up the
IQ and O-Iists. Suppose some Initiator is cre-
ated to detect deadlock for susperted process w.
Let the new Initiator be named wK, which means
initiator for process w, version k. The previous
(if any) Initiator for process w was named WK-1,
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and successive initiators will have increasing
version numbers. Then each time a process
receives a query, the obsolete IQ and 09-list
entries can be expunged, for they all have labels
of the form <wj ... >, j < k.

4.2 Concurrency of Process Execution

Concurrency of processing at different sites is
expected for a distributed program. The procedure
in this paper also permits concurrent execution
within a site, subject to the following
restriction: Each process must receive a message
and execute an action (reflection, collation,
extension) sequentially. This restriction main-
tains the integrity of the I9 and 09-lists, as
well as insuring that a process receives only one
message at a time. Interleaving the actions of
different processes, and parallel execution of
different processes are allowed.

4.3 Sharing Deadlock Status

The procedure may be improved by allowing proc-
esses to propagate deadlock status. Once a con-
troller makes the determination that a process is
in deadlock, all queries sent to that process may
be immediately reflected (all queries would even-
tually be reflected anyway). This modification
improves the performance of the detection proce-
dure under concurrent initiations of the procedure
by different processes.

4.4 Reducing Message Traffic

Processes communicate without regard to site
location. The execution of the detection proce-
dure amounts to controllers sending and receiving
many small messages. In order to reduce the mes-
sage traffic, controllers may elect to "batch"
communication, i.e., retain process messages and
accumulate packets. This consideration may be
automatically handled as part of the communication
protocol, as long as the order of messages is log-
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ically preserved for inter-process communication
(c.f. Section 2.2).

Controllers should give priority to message traf-
fic within a site. These are internal operations

for a controller. By preferring the internal mes-
sage traffic, the controller will detect local
deadlocks without outside communication.

..
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5.0 SUMMARY

We have presented a scheme to detect deadlock in
distributed systems. A sophisticated model of
resource requests was used. The structure of the
procedure is distributed, and the granularity of
the distribution is of the same order as the
resource requests. The scheme is dynamic, and

does not require that graph structures be main-
tained. The procedure specifies that controllers
concurrently execute the detection procedure, and
that concurrency within a controller is permitted.
The procedure is not susceptible to "false dead-
lock" detection, and we prove that the procedure
is correct.
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6.0 APPENDIX: PROOF OF DEADLOCK DETECTION PROCE-
DURE

The goal of the proof is defined in Section.6.1,
and a local definition of deadlock is specified.
Some auxiliary definitions are found in Section
6.2. As well as supporting the proof, these defi-
nitions are useful intuitive bases for understand-
ing the procedure. The subject of Section 6.3 is
the termination of a tree computation. Section
6.4 assigns a semantic meaning to reply messages
and proves that this meaning is upheld by the
detection procedure. In Section 6.5 the proof is
completed by verifying correctness conditions.

6.1 Criteria for Correctness

The deadlock detection procedure is not an algo-
rithm. That is, the deadlock situtation will be
detected, if it exists, but the procedure will not
detect "no deadlock" situations. Correctness
means that the deadlock detection procedure must
satisfy the following conditions:

PO If process w Is deadlocked prior to v's

initiation of the detection procedure,
then process v will detect deadlock for
process w after a finite time.

ZIP1 If process v detects deadlock, then a
deadlock situation truly exists.

PI is a partial correctness condition, and P0 is a
I termination condition.
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For the purpose of this proof, the following local
definition of deadlock is employed: Process v is
deadlocked 1ff it is permanently blocked in the
PWFG. More precisely:

Definition: Process v is deadlocked iff

" Process v has an AND-request, has sent a
request for each outgoing edge, but for at

.1 least one of these edges, no grant will ever
be received by process v.

" Process v has an OR-request, has sent a
request for each outgoing edge, but no grant
will ever be received by process v.

We call this a local definition because it does
not contain the definition of the underlying stat-
ic graph structure in the PWFG that causes dead-
lock. The local definition also includes the
possibility of a process permanently blocked due
to starvation, or because another process is in an
infinite loop. We exclude these possibilities
from consideration: They are beyond the scope of
deadlock detection.

6.2 Auxiliary Definitions

6.2.1 Tree Computation

A tree computation is a distributed computation.
The tree computation grows by sending queries and
shrinks by receiving replies. When a tree compu-
tation shrinks back to its root, it terminates.
The deadlock detection procedure uses tree compu-
tations to search for active processes in the
PWFG. The paradigm for this type of distributed

* computation is due to Dijkstra and Scholten [81.

In the deadlock detection procedure, the tree com-
putation has an additional aspect. It can be
viewed as a distributed data structure. The tree
computation consists of the set of all IQ and
Og-list elements having a common label.
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Each tree computation is uniquely associated with
a label. A query or reply's label identifies a
tree computation. When a label is first generated
by a process then a tree computation is created.
Creation of a tree computation happens in two
ways: When a process initiates the detection pro-
cedure, and when extension occurs at an
AND-requesting process. The latter event causes
new, offspring trees to be generated. The next
section formalizes this relationship.

6.2.2 Label Descendancy

A descendancy relation Is defined for labels.
Label B Is descended from, or equal to, label C
iff C s B. Instead of the prefix operator, the
notation BGC will be used to mean that B is
descended from or equal to C. Note that all
labels for an execution of the detection procedure
have a common ancestor, the root label, which
identifies the initiator of the detection proce-
dure. Given labels B and C, any process can
determine whether or not BGC.

Since labels identify tree computations, and que-
ries and replies have labels, we will also say
that tree computations are related by descendancy.

6.3 Termination of Tree Computations

Tree computation T terminates when v, the process
that created T, obtains a reply for each query
that v sent with T's label, with no intervening
grants. That is, between the sending of a query
Q(T,v) along edge (v,w), and the receiving of
reply R(T,w), v did not receive a grant from w.

6.3.1 Tree Computation Termination Lemma

Tree computation T terminates iff for every x and
y such that Q(T,x) Is sent to y, then R(T,y)
arrives at x with no intervening grants.

Proof: First we show that non-termination * (In-
tervening grants or missing replies): Suppose T

TRH83a-27

Z7 . . . . . .



will not terminate. Then v0 , the creator of T,
sent some queries Q(T,v), and

1. vs will not obtain all replies corresponding
to the queries, or

2. vs receives a grant on some edge (v@,vl)
before R(T,v1 ) is received, although all
replies are received by v0 .

This is one half of the desired equivalence.

Second, we show that termination * (no intervening
grants or missing repl ies): Now suppose T termi-
nates. Then v,, the creator of T, sent some set
of queries Q(T,v0), and obtained corresponding
replies with no intervening grants, by definition
of T's termination. Consider some arbitrary proc-
ess v, that did not reflect v@'s query to v,
(reflection trivially satisfies the result). v,
therefore collated to produce a reply R(T,vl) sent
to vs. If v, had an AND-request, no additional
queries on T's behalf were sent, and the result is
complete. Otherwise v, had an OR-request, and
replied to vs because it sent some queries Q(T,v1 )
and obtained corresponding replies. Moreover, if
a grant was received on edge (vl,vj) between the
sending of Q(T,vl) and receiving R(T,vj), then
collation would not have occurred (grants diminish
the Og-list and cause replies to be ignored). An
intervening grant is ruled out.

Now consider some arbitrary process v, that did
not reflect vt's query to v2 . The argument may be
repeated until some process vK is reached, and vK
obtained all of its replies by reflection. Since
the path vs, v1 , V2 , ... VK was arbitrarily
chosen, all queries did lead to replies for tree
computation T, with no intervening grants. 3

6.4 The Meaning of Reply

The following assertion can be made at the point
when and where process v sends reply R(T,v) to
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process w in response to Q(T,w), previously sent
from w to v:

1. w will never receive (or have received) a

grant from v after w sent Q(T,w) to v, or

2. Tree computation T, or some ancestor of T,
will not terminate.

As shorthand for this rather complicated
assertion, the notation fv\w\T} will be used.
Using the notation of Section 3.4,

LO R(T,v)-*w * fv\w\T)

is an Invariant assertion for the deadlock
detection procedure. Before we prove this invari-
ant in the next section, some smaller results are
given below.

Li R(T,v)mw * fv\w\T}

LI follows from LO, because R(T,v)'w must be in
response to some Q(T,w) sent previously from w to
v. If a grant was received by w from v between
Q(T,w)-'v and R(T,v)uw then T will not terminate by
the tree computation termination lemma. LO
asserts that no later grant will be forthcoming
unless T (or ancestor) fails to terminate, so Li
is Implied.

L2 R(T,v)nw and w has AND request =
fv\w\UI, where TcU.

R(T,v)mw is in response to Q(T,w)+v. If, in
between these two events, w received a grant from
v, then T will not terminate. Otherwise T must
terminate because w created T exclusively for edge
(w,v). By L1, fv\w\T) holds, but now that T has
terminated the assertion is fv\w\U), where U is
the parent of T.
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6.4.1 Verification of Invariant

Replies are generated by reflection and collation.
Collation will first be considered.

6.4.1.1 Collation

Suppose process v is about to send process w a
reply, R(Tv). We wish to show fv\w\T). There
must have been a query, Q(T,w), previously sent
from w to v. There are two cases to consider:

1. v has an AND-request. Since v is collating to
produce a reply, v must have sent a query
Q(S,v) to some process z, and subsequently
obtained a reply R(S,z) from z, where ScT.
There cannot have been any grant from z to v
between the sending of Q(S,v) and receiving of
R(S,z), or else the collation would not occur.
By L2, R(S,z)mv * (z\v\T), because T is the
immediate ancestor of S.

In turn, v will not send a grant to w until v
gets a grant from z (recall v has an
AND-request). This would imply
non-termination of T or some ancestor of T
because of fz\v\T). If v has already sent a
grant to w then it will arrive before R(T,v)
and T will not terminate due to the tree com-
putation termination lemma. It is safe to
assert fv\w\T).

2. v is an OR vertex. Since v is collating to
produce a reply, v must have sent queries
Q(Tv) to some processes z,• zz, ... Zn, and
subsequently received replies R(T,zl),
R(Tz2), ... R(Tzn). Any grant from a proc-
ess zj cannot have been received at process v
between the sending of Q(T,v) and receiving
R(T,zj), or collation would not occur (this
also rules out cancellation of any (v,zK)). v
will not send a grant to w unless v receives a
grant from some ZK. But (zK\v\T} holds
because R(T,zK) has been received, with no
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intervening grants, so it is safe to assert
(v\w\T). I

6.4.1.2 Reflection

Suppose process v is about to sent R(T,v) to proc-
ess x by reflection. We wish to show fv\x\T}.
There must have been a query Q(T,x) sent by proc-
ess x. This is the situation (see figure 6):

Process w sent query Q(Uw) to process v. Process
v did not reflect Q(U,w), and has not yet sent a
reply R(Uv) to w. Now v has received query
Q(T,x), which is to be reflected because TGU.

-II

I

Ir

III Reflection w
II

SII

I Q(V,v) Extension

II

I Note: TGU and VGU; First extension
occurred at v, and now reflection is to

I take place.II
I Figure 6. Situation for Reflection.

If process x receives a grant from v before
R(T,v), then T will not terminate. In order to
send a grant to x after v sends R(Tv), v must
become active. There are two cases:

1. v becomes active before sending R(U,v) to w.
In this case U will not terminate.
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2. v becomes active after sending R(U,v) to w.
But this implies that v received a reply,
R(Vz) from some process z before a grant from
z was received by v. The assertion fz\v\V),
and the grant from z now imply that U, or some
ancestor of U, will not terminate.

In either case, it is safe to assert fv\x\T). I

6.5 Verification of Correctness Conditions

6.5.1 Verification of P1

Suppose process i is the initiator and declares
deadlock for process v as the result of collation
that produced R(T,v).i. Any reply R(S,zk)uv that
led to v's collation implies [zK\v\S}, where SET.
But S has terminated, T has terminated, and T has
no ancestors. ZK Wi Il therefore never send a
grant to v. The conclusion is that v Is truly
deadlocked. i

6.5.2 Verification of P0

We verify P0 by assuming that the deadlock
detection procedure will fail to detect deadlock
and proving a contradiction by construction.

Suppose process v@ is deadlocked and receives an
initiator's query, but deadlock will never be
detected. Consider two cases:

1. If vs has an AND-request, numerous tree compu-
tations were created, but none of them will
terminate because, by hypothesis, deadlock
will never be detected. It is possible that a
tree computation will not terminate because vs
received a grant between the times of sending
a query and getting a reply; this cannot be
true of all of ve's tree computations -- the
deadlock assumption would be violated. ve
therefore sent some query Q(Tl,v,) to vi, and
will never receive a message from vj.
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2. If vs has an OR-request, one tree computation
was created. Under the deadlock assumption
and the non-detection hypothesis, v, sent some
query Q(T@,ve) to v, and will never receive a
message from v1 .

In both cases, it is asserted that some v, will
send neither a grant nor R(T.,v1 ) to vs.

Now consider v1 , which received Q(To,v0) after a
finite time and will will never send R(T0,vl) to
vs. v, cannot be active, since activity might
lead to v, sending vs a grant. That Is, with this
deadlock detection procedure, starvation will not
be detected. There are now two cases for v1 :

1. v, has an AND-request, and will never collate
to produce a reply for v0 . v, therefore sent
some query Q(Tl,vs) to some V 2 and v, never
received R(Tt,vz). We may also assert that v,
never gets a grant from vz, by an appropriate
choice of v2 . Contradiction of this assertion
violates the hypothesis. TroT$.

2. v, has an OR-request and will never collate to
produce a reply for v0. v, therefore sent

4 some query Q(Tl,vl) to v2 , and v2 will never
send R(Tl,v 2 ), nor will v2 send v, a grant,
by hypothesis. Tt=T@.

In both cases, It is asserted that some v2 will
send neither a grant nor R(Tt,v 2 ) to v1 , T1RTs.

Now consider v2 , which received Q(Tl,vl) after a
finite time and wilt will never send R(T1 ,v2 ) to
v1 . v2 cannot be active, since activity might
lead to v2 sending v, a grant. Nor can v, be part
of T, (or any ancestor of TI), because reflection
would occur and v, would get a reply in finite
time. Therefore, v2 will not reply to v, because
collation did not occur at v2 . The case argument
for v2 is repeated, as above.

Eventually some vK will be reached, and all of
VK' s queries must be reflected, simply because the
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number of processes is finite. If VK will never
send a reply, then it cannot be because of grants
interfering with the reflection of vK's queries,
for then deadlock would be contradicted by the
choice of vt, V 2 , ... , VK, and hypothesis. But
all of vK's queries will be reflected in finite
time, so VK will obtain replies in finite time.
Therefore VK will collate to reply in finite time,
but this violates the assumption about VK. Con-
tradiction. I

9

II
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