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Abstract
Conaflicts ariing in distributed systems, as in contentions for shared resources, ane
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known monprobabilistic solution to the conflict resolution problem are asymmetric in the
seame that they distinguish between processes by ordering process is or by haying some
processes carry out special functions. We propose an efficient, fair, symmetric solution
for this problem: asymmetry is present initiafly by judicious placement of shared
resources and asymmetry is preserved in a fair manner by our solution. To provide a
concrete framework for our discussion of conflict resolution we couch our discussion in

N terms of a generalization of the classical dining philosophers' problem.
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Asymmetry In Message Pausing Systems

Conflicts wine in distributed systems because two or more processes cannot take
arbitrary actions simultaneously. For instance, some resources, such as 6write locks,8
cannot be exercised simultaneously by 2 or more processes. Exclusive access to a shared
resource introduces "asymmetry" among processes who wish to share the resource in the
sense that at any given point in the computation, the process holding the resource may
behave differently from those which don't. Usually, it is desired that though some
processes are treated preferentially in the short term, all processes are treated fairly in the
long term: this desideratum may be thought of as "short-term asymmetry and long-term
symmetry." Lehmann and Rabin III have proved that it is impossible for an ensemble of
perfectly symmetric processes in a symmetric global state to create asymmetry without
resorting to probabilistic decision making. We argue that processes in a measage-paeaing
network can never be in identical states, with respect to resources because the locations
of the indivisible resources (either at a process, or traveling towards a process) introduce
wymmetr. We exploit this resource location asymmetry to resolve conflicts for
resources and ensure long-term symmetry despite inherent short-term asymmetry. To
provide a concrete framework, we couch our discussion in terms of the distributed
drinking philosopher.' problem, described next; we propose an efficient fair solution to
this problem. Our solution makes use of a novel solution to the distributed dining
philosophers' problem, which was frst defined in 121.

The Distributed Drinking Philosophers' Problem

The following problem is a variant of one due to E. W. Dijkstra 121. Dijkstra's
original problem 141 has achieved the status of legend since it captures the essence of
many synchronization problems. A far-flung network of philosophers is represented by a
rmite undirected graph G with one philosopher at each vertex. A philosopher is in one of
3 states: (1) tranquil (2) thirsty (i.e., waiting to drink) or (3) drinking. Associated with
each edge (vjvj) in G is a bottle.1 A philosopher can drink only from bottles associated
with his incident edges. Each philosopher chooses a subset of bottles that he wishes to
drink from, when he becomes thirsty. He may choose different subsets of bottles for
different drinking sessions. A philosopher is thirsty if he desires to proceed to drinking
state but is unable to do so because he does not have all the bottles be needs. On
receiving all needed bottles a thirsty philosopher starts drinking; a thirsty philosopher
remains thirsty until he gets all bottles he needs to drink. On entering the drinking state,
a philosopher remains in that state for a finite period, after which he becomes tranquil. A
philosopher may be in the tranquil state for an arbitrary period of time.

Philosophers v, and vj are neighbors if and only if edge (vj,vj) exists in
G. Neighbors may mail paekages to one another. Philosopher v, has a mailbox which can
hold an arbitrary number of packages; we show later that only a bounded number of
packages will ever be in any mailbox. The postal service guarantees that it will deliver all
mailed packages in finite time without mutilating the contents. A package is delivered to
(the addreus of) a philosopher vi if and only f the package was mailed to vi by another
philooplher; th postal service does not duplicate or create packages. The bottle
asocied with an edge (vjvj) is either at vi or at vj or in the mail from vi to vj or from

1 alut ee 8vet is t paper p lo apples to muliple bottle. o every edge. The a.umpto fr out
bml. Pi" edge Is mae for "P=llin exposin
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vj to v1.
The problem i to devise a non-probabilistic solution which satisfies the following

constraints.

jfurn@: No philosopher remains thirsty forever.

*pmuseJr. AN philosophers obey precisely the same rules for acquiring and
releasing bottles. There is no priority or any other form of externally
specified static partial ordering among philosophers or bottles.

4"om. A philosopher seeds and receives a fimite number of packages in every
state (tranquil, thirsty, drinking). In particular, permanently tranquil
philosophers do sot send or receive as infinite number of packages.

*snsw.me The solution does ot deny the possibility of simultaneous drinking

from different bottles by nay two philosophers.

Importance of the Distributed Drinking Phllosophers' Problem

The distributed drinking philosophers' problem is a general paradigm for modelling
conflicts between processes. This paradigm has the following features: (1) two
neighboring philosophers may be prevented from simultaneously drinking in some cases,
i.e. drinking from the same bottle, which corresponds for instance, to writing into shared
a file, () two neighboring philosophers may drink simultaneously in some cases, i.e.
drinkinS from different bottles, which corresponds for instance, to writing into different
res or reading from the same rib.

Therefore the drinking philosophers' problem models dynamic conflicts, i.e.,
conflicts that may be determined by the data on which a process operates. A
conservative solution to this problem may always avoid conflicts among .11 neighbors;
this hdwever leads to los in cocurreancy.

The paradigm can abo model N-way conflicts arising, as in distributed resource
allocation problem, where there are mi indivisible units of resource ri to be shared among
N processes. A proces wishing to enter its critical section specifies the set of resources it
needs. Thus there is an N-way conflict for a resource. N-way conflicts may be modelled
as a set of N2 2-way conflicts: two processes are neighbors if it is possible that they may
conflict.

PrMvou Work
If a philosopher requires .U bottles from its incident edges for all drinking sessions,

then our problem reduces to Dljkstra's distributed dining philosophers' problem 121; in this
problem, there is a single sfork, on each edge and a philosopher seats, (corresponding to
drinking) oly N be holds forks for nl incident edges. Therefore the drinking
philosophers' problem is a geeralisation of the distributed dining philosophers' problem.
The diMbted dAin philosophers' problem is a generalization of DUksfta's clakal
dinn philosophers' problem 141; in the latter problem the philosophers sit around a table
(Le. thea we arranged in the form of a ring). The wealth of literature on the classical
dini philhophehm problem shows that It is a fundamental paradigm of concurrent
proesasi. Dijktra's solutions to the distributed dining philosophers' problem 121 mume
instnaneoss transmission of packages or a static ordering of forks (which is
asymmn tri). Lynch jj ho carried out an extensive nalysis of static reesure ordering

.V . .~ . . . ..0
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The problem of mutual exclusion among a group of processes in executing their
critical sections, is a special ase of the distributed dining philosophers' problem : every
ponem in a neighbor of every other proem and execution of a critical section corresponds
to eating. Distributed solutions to mutual exclusion using process id's to break ties,
appu in Lamport 161, Ricart and Agrawala [61.

A symmetric distributed solution to the dining philosophers' problem appears in
Frances and Rodeh 171. They us an extended form of CSP 181, in which both input and
output comnands e used in guards. Lehmann and Rabin [II give a perfectly symmetric
probabilistic algorithm and show that there is no perfectly symmetric non-probabilistic
solution to the dining philosophers' problem. Therefore it follows that the extended form
of CSP cannot be implemented by a symmetric protocol.

We first present a solution to the distributed dining philosophers' problem and then
use this solution in solving the distributed drinking philosophers' problem.

A Hygienic Solution to the Distributed
Dining Philosophers' Problem

In the distributed dining philosophers' problem, a philosopher is either thinking,
bunt7 or eating. Associated with ewcb edge of the graph is a fork and a hungry
philosopher needs forks of ail incident edges, to est. We begin by presenting a solution to
the distributed dinis philosophers' problem with the properties of fairness, symmetry,
economy and concurrency. We consider th more general, drinking philosophers' problem
in the next section.

A fork is either clean or dirly. A fork that isbeing used to eat with, is dirty and
remain drty ntl it is cleaned. A philoeopher cs only clean forks tbat e holds. A
leam fork remains clm until it i used for eating. A fork is said to be free if the

philosopher holding it is either thinking or hungry, i.e. not eating. A.philosopher cleans a
fork prior to mailing it (because he is hygienic). The key issue in the dining philosophers'
problem is: which requests should a philosopher defer till he has next eaten? In our
algorithm, a philosopher defer satisfying requests for forks that are clean (because his
altruism is limited) or not free (because e is eating with it). A philosopher satisirms
requests for free, dirty forks immediately.

We now state the algorithm in detail, for a philosopher vj. In this description
"atly a request" means clean sad send the requested fork and "forks vi needs" denotes
the set of forks associated with the edges Incident on vj.

Thlklng State (all forks held by v, are free and dirty.)
Satisy all rquelss received.

Hmup @I% (d forks bht by v, un free; forks received in the mald by v, giinc hot
entering hunMry state we :bua; all the remaining forks held by v, are

dimt.)
Request every fork that v, needs and does not hold. (Therefore, vt

mu requt a fork that is released in this state.) Enter eating state
when vi holds all forks t nds. Satify requests in the hungry state if
they on for dirty forks, soe defer request.

" . .r ' Y ' ,,,. ",,./ . _," ,":.'..'*...' .-'..." ...-. '. .. ,,...'....'.-....,..
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dag State (forks for all incident edges are held by v1; none of these forks is free.)
Defer all requests received in this state. Eat. Upon completion of
eating fall forks are dirty and free) satisfy all deferred requests and all
requests in the mailbox.

The proof of correctness of the algorithm and the specification of initial conditions
require the definition of a directed graph H; this definition and the initial condition are
gives next. Observe that our solution satisfies the constraints of fairness, symmetry,
economy and concurrency.

The Graph H
We shall derive a directed graph H from G and the states of forks, as follows:

direct each edge (vi,vj) in G from vi to vj if and only if the fork associated with the edge
is: (1) at v, and dirty or (2) in transit from v, to vi or (3) at vj and clean.

Initial Condition

All forks are dirty and H is acyclic.

Proof of Correctness

We trt show that H is always acyclic. The only change to H occurs when a
philosopher dirties a clean fork (since cleaning a dirty fork and sending it does not change
the direction of the edge). A fork is dirtied only when a philosopher, say vi eats, in whkh
case be must be holding all forks which must all be dirty. Therefore vi cannot belong to a
cycle on eating, because all edges incident on vi are directed away from it (since all forks
held by vi are dirty). It is given that H is acyclic initially. Since all changes to H
preserve acyclicity, H must always be acyclic.

We show that if (v1,vj) is an edge in H and v5 is hungry, then v, either holds now or
will hold later, the clean fork associated with this edge. Since (vY,vj) is an edge in H, then
either (1) vj holds a clean fork, (2) a clean fork is in the mail from vi to vj or (3) vi is
holding a dirty fork. The result is trivial for the frnt two cases. In the third case v, will
receive a request from vj in finite time. vi must mail vj the fork after cleaning it, when
the fork is dirty and free; the fork remains dirty until v, cleans it and mails it to vi.
Therefore v, must mail the fork to vj when it becomes free. The fork is free unless vi is
eating. Since an eating session lasts for finite time, the fork must become free in finite
time. Therefore vj will hold the clean fork in fmite time.

We show in theorem 3 that every hungry philosopher will (bold all forks it needs
and) eat in finite time. We have observed that for each incoming edge (vi,vj) to vi, if vJ is
hungry, then vj will hold the clean fork associated with this edge. Now we must show
that for every outgoing edge (vJ,vk) of vj, either (1) vj holds the dirty fork for this edge
and receives no requests from vk or (i) vk eats and then sends vj the clean fork associated
with this edge. In either case vj will hold the fork for this edge and continue to hold it at
least until it next eats. The result is proved by induction in theorem 3 (below).

Lmma Is H is always acyclic.
Proeft See above discusion.
Lemma 21 If vj is hunsry and has an incoming edge (vj,vj) in H then vj

holds, or will hold the clean fork for this edge in finite time.
PFroft See above discussion.
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Tbnorem St A hungry philosopher will eat in finite time.
Pwooft Let H* be the graph H at the point in computation when the

given philosopher i hungry. (H* is a specific, static graph referring to a
partiular point in the computation whereas H is a dynamic graph which
chates with transmission of forks.) We shall show that all philosophen who
we hungry at thi point in the computation will eat in finite time.

We define the height of a vertex as follows: the height of a vertex with
no outgoing edges in HO is 0; the height of a vertex with outgoing edges is the
length of the longest path from it to a vertex of height 0, where length is
defined as the number of edges along the path.

We show by induction on k that a hungry philosopher at height k will
eat in finite time. Thi is certainly true of hungry philosophers at height 0
sinct they have only incoming edges and lemma 2 applies for each incident
edge. Now assume that the claim is true for philosophers at heights 0,1,..,k-1.
Consider a hungry philosopher vj at height k (k-1,2,..) and a neighboring

philosopher vi. If (vi,vj) is an edge then vj holds or will hold the clean fork for
this edge, from lemma 2. If (v,vj) is an edge, either vj holds the (dirty) fork
for this edge or v1 is hungry (since all edges incident on thinkers and eaters are
directed away from them). If v, is hungry then be eats in rmite time,

according to the induction hypothesis. Since vi must stop eating in finite time,
the forks for all edges incident on v1 become dirty and free in fnite time.

Therefore vj will receive (a clean) fork from vi in mite time. No clean fork

that holds will be released until vj eats. Hence vj holds all forks in finite

time mad eats.

Efficiency of the Algorithm

A thinking philosopher who has M neighbors and F (dirty) forks, on becoming
hungry, must send M-F requests and receive a fork corresponding to each request; in
addition, in the worst co e may lose all F forks he held initially and therefore have to
request and receive them. In the latter case, the philosopher may send the fork and the
request for it in one mesage. Therefore no more than 2M messages are needed for
entering one eating state. In the best cae, a philosopher may receive no requests for
forks and therefore he may live his life (think and eat) free of interaction with others.

A Solution to the Distributed Drinking
Philosophers' Problem

The drinking philosophers' problem is a significant generalization of the distributed
dining philosophers' problem. We seek a distributed non-probabilistic solution satisfying
the same conditions - fairnes, emmetry, economy, concurrency - as for the distributed
dining philosophers' problem. Every solution to the drinking problem is a solution to the
dining problem, though the converse s not true. In particular, our solution to the
distributed dining philosopher' problem does not solve the drinking philosophers'
problem. Fer example, suppose two or more philosophers are arranged in a ring each
with two ineident edes, llf sad right , and all of them are now drifking with their lef
bottles. If they all require both botles for their next drinking session, them our dining
philosophe' solution results In a deadlock. The reason for deadlock is that the
deadlocked stae is egrnmetrie, because the philosophers are arranged in a ring and each
bolds his left bottle. The system can leave a symmetric state only by resorting to

.r = F .. F t. . . : ,, . .,. .- .. . ,-. .- ... .,. . . . .. •..,. . . .. . . . .6 - - .
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probabilistic decision making. Since we seek non-probabilistic algorithms, we must
prevent the system from entering symmetric states. However, it is certainly, feasible for
all philosophes sitting in a ring to hold their left bottles. If we were to disallow this state
we would be disallowing a feasible state merely to solve our problem; disallowing feasible
stat. violates our constraint of concurrencg. We appear to be in a quandary because the
coastraints of symmetric processes, non-probabilistic solutions and concurrency are
incompatible. We resolve this quandary by introducing artificial indivisible resources and
ensuring that ever state that the estem nter is asymmetric with respect to the
artl'ciaa reources though the state may be symmetric with respect to the genuine
resources (via. bottles). We shall ensure that the sharing of artificial resources is such
that long-term symmetry with respect to the artificial resources (and genuine resources as
weft) is achieved despite inherent short-term asymmetry.

The artificial resource we introduce are forks in the distributed dining philosophers'
problem. We have a solution to the dining philosophers' problem which ensures that forks
are shared in a fair manner. We shall use the locations of forks to resolve conflicts for
bottles. Our philosopher can eat and drink simultaneouly and we emphasize that eting
iean arifatd of our eoution, used only to guarantee fair drinking. In our solution, the
state of a philosopher is a pair (dining philosopher's state, drinking philosopher's state),
where a dining philosopher's state is one of thinking, hungry and eating and a drinking
philosopher's state is one of tranquil, thirsty and drinking. Our next step is to define the
dining characteristics of our philosophers: the drinking characteristics are specified by the
problem. We shall give rules for dining which ensure that all thirsty philosophers drink in
finite time.

Consider the state trasi|tios of a dining philosopher. The only transitions that are
decided by the philosopher are tbinking-to-bungry and eating-to-thinking; the only
transition completely specified by the dining philosophers' problem. In hungry-to-eating
(which occn when the philosopher holds all forks he needs). We will now give rules for
the dining philosopher to decide the point of the first two transitions.

DI (27tinkinl4o-Hangr Transition)
A thinking philosopher becomes hungry on becoming thirsty. A
philosopher cannot stop thinking until he becomes thirsty.

D2 (Eating-io-"7Thiing Transition)
An eating non-thirsty philosopher starts thinking. A philosopher
cannot stop eating as long as he is thirsty.

This solution requires a philosopber to check his mailbox while eating because a
thirsty, eating philosopher will never get to drink (and thus terminate eating) unless he
checks his mail and get the bottles he desires. In the distributed dining philosophers'
prolhim, a pbilosopher can think for arbitrary time though he must eat for finite time.
Therefore our obligation, arising out of rules (DI) and (D2), is to ensure that each eating
period is finite. This can be accomplished (see lemma 4) by (D) given below. Nose that
a plsopher eannt give up a touls from which he is current drinking; thus analogous
to freeforks, we defi a bo k to be free f the phiosopes olding t isnot drinking
from It.

DO (Ruhe of Battle Vsanision)
Philsoph vi mds a bottle be holds to vj in response to a request

- i I i i ,



from vj, if ad only if the bottle is free and (y, does not need the bottle
Of vi does not hold the fork for the edge {vi'vj)).

These rmin lead to the following algorithm for philosopher Y,.

Algorithm for vi

(DO) If thisty:: Send requests for all needed bottles that vi does not hold, (and for
which requests have not already been sent since last becoming thirsty).

(DI) If thirsty and thainking ::
Become hungry. (Take action appropriate to a dining philosopher when
he becomes hungry.)

(DO) If not thirsty and eating::
Stop eating and trasit to thinking state.

(W3) if there is a repast from a philosopher v, for.a botle 1 and the bottle is free and
(te bottle is not needed 3y vi or vi does not hold the fork for the e

SelOttle to Ti.

(W4) If thirsty mnd holding eli needed bottles::
Drink. On completion of drinking become tranquil. (At this point all
bottles held by v, are free and from rule D3 all pending requests for
bottles will now be satisfied.)

Note: vi must also obey the algorithm for a dining philosopher. Initial locations of

bottle are irrelevant.

Proof of Correctness
We will now show that every thirsty philosopher drinks in rinite time. We will use

theorem 3 from the Int section to show that every hungry pbhlosopher will eat in finite
time; however in order to do so we most prove that every eating period is finite. This is
next proved in lemma 4.

Lemm 4s Every eating period is finite.
Prooft If v, is eating and not thirsty, he completes eating. Assume

teeore that v, is eating and thirsty. We will show that vi will receive every
bottle he needs.

A neighbor vj of vi will send the bottle needed by v, (if vj holds it) In
finite time (uing 133) because drinking periods are finite and vi does not hold
the fork for (vjivj).

vi will not release spy bottle that he need, because he holds all forks.
Thereore v, will drink In finite time and become not thirsty, thus terminating

Sinm every eating period is finite, theorem 3 appies and we have,
Coeilnay Is Every hungr philosopher starts eating in Rafts time.
Coe~auy ft A thirsty, eating philosopher must drink In finite time.
PFs Eatin period are flaite and are terminated only by drinking.



Theorem Ts Every thirsty philosopher drinks in finite time.

Prooft When a philosopher becomes thirsty he is either thinking, hungry
or eating. A (thirsty,thinking) philosopher becomes hungry in finite time (from
DI); a hungry philosopher starts eating in finite time (from Corollary 6).
Therefore every philosopher that remains thirsty must be eating in finite time.
The theorem follows from Corollary 0.

* Efficiency of the Algorithm

Foi the analysis of the algorithm, we assume that the packages a philosopher sends
to a neighbor are received in the order sent. We show that a bottle can travel at most
twice between two neighboring philosophers Yj and vj before one of them drinks.
Consider the two cases corresponding to whether the fork for (vivj) is dirty or clean.

Case 1 One of the philosophers, say vi, holds the dirty fork for the edge
(vi,vj): if vi mails the bottle to vj (in response to a request), he must
also mail the fork. Therefore on receipt of the bottle, vj will have a

clean fork and hence will not mail the bottle again until he drinks.
Therefore the bottle travels at most once from vi to vi before vj drinks.

Case 2 vi holds a clean fork or a clean fork has been mailed to vi: the bottle
may travel at most once from vj to vi and will not travel from vi to vl

until vi drinks.

Lemma St There are at most 4d message transmissions for d drinking
sessions among all philosopher.

Proofs There is at most one request (for fork and/or bottle), one
transmission of a fork and two transmissions of a bottle between neighbors
before one of them drinks.
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