HD-A135 458

PRESERYING RSYMMETRY BY SYMMETRIC PROCESSES AND 1/1
DISTRIBUTED FAIR CONFLICT. . (U) TEXAS UNIY AT AUSTIN
DEPT OF COMPUTER SCIENCES K M CHANDY ET AL. APR 83
UNCLARSSIFIED AFOSR-TR-82-8938 AFOSR-81-8285 F/G 9/2

SN N A T b R 2 o2, e, sy g AR ST LA S SN NCR A LT VL R ST A B & P
4 (
&

AT

Sl sl

il
i Bk

pa

1

o
EF

EEEE
RE

pas
E]

.
A

]

H

[1]

Bl
(o}

b s

O

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

AR,

i T e

L

R 2 Lat

e

T T R T
R Y %

Y AROEY
-

LRRT

Rt s

R

A135958

-
<N
g
3
¥
-

P s

RS

B
3
3

o |
§ =
|

e iy it b 5 20 Tl 3040 RSN AR A B S & S ol WM SN, A N A A LA e e S Rat Dt Tt Rt ¥ St A RS S I . |

AFOSR-TR. 838-0990 ' 3

Preserving Asymmetry by Symmetric Processes and
Distributed Fair Conflict Resolution

K. M. Chandy
J. Misra
Department of Computer Sciences
University of Texas At Austin J
Austin, Texas 78712
~~
April 1083 ’ i DT! L~

This work was supported by the Air Force Office of Scieatific Research uader Graat
AFOSR-81-0208.

--PProved 104 puvliic release;
distribution unlimited,

TR YT Y LYLFUTRTT I CRACYEE AL AN LI I N I N B e L T A NE P A R R N

SN sgcuRiTY CHASMFL 1S PAGE (When Data Entered) '
_ REPORT DOCUMENTATION PAGE BEF e o O oM
M . N NUMBER 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
AFOSR-TR- 83-0990 13
§. TITLE (and Sublitle) T . TYPE OF REPORT & PERIOD COVERED
interim
Preserving Asymmetry by Symmetric Processes
and Distributed Fair Conflict Resolution 8. PERFOAMING ORG. REPOAT NUMBER
7. AUTHOR(®) : 3. CONTRACY OR GRANT NUMBER(s)
K. M. Chandy and J. Misra AFOSR-81-0205
The University of Texas at Austin G//OALF
Austin, Texas 78712 2304/A2
1. CONTROLLING OFFICE NAME ANO ADDRESS 12. REPORY DATE
' Apri\ 23
AFOSR/NM : ' 13. NUMBER OF PAGES

in 11 pages

WT%M%W:M‘ from Controlling Office) | 8. SECURITY CLASS. (ef thie report)

18, o:c&.i's'sa'incAﬂouhovncno‘m‘c J
SCHEDULE

| e
16. DISTRIBUTION STATEMENT (of thia Report)

Approved for publig release;}
distribution unlimited.,

-
wl

. DISTRIBUTION STATEMENT (of the abatrect entered in Block 20, i1 dilferent from Repert)

1. SUPPLEMENTARY NOTES

19. KLY WORDS (Continue on reverss slde if necoasary and identily by block number)

20. ABSTRACT (Continue an roverse side If necessary and identily by block number)

Conflicts arising in distributed systems, as in contentions for shared
resources, are resolved either (i) by a central process or (2) by resorting
to probabilistic decision making by individual processes or (3) by assigning
a static global priority to each process. A1l known non-probabilistic
solutions to the conflict resolution problem are asymmetric in: the sense
that they distinguish between processes by ordering process ids or by having
some processes carry out special functions. We propose an efficient, fair

(1) ':m’ 1473 =oimion oF 1 NOV 8813 OBSOLETER UNBM

$/M 0102-LF-01 4660} SECURITY CLASSIFICATION OF THIS PAGE (When Date Bntored)

.v.:ng:,pﬂ 's,:;-*.:gﬂ- 9..‘9.@-:.;'41*.-:(-«-.. B30 :sepers

.. ° > ‘e ? e
OB e’e MR e VS BBt o P an. .0 2% o°s 2%e olate

R

M-
‘Lo adr.

.

SECURITY CLASSIFICATION OF THIS PAGE (When Dare Entored) m'n' 8 _3L -) 9 90 |

P T
NI A "
-

symmetric solution for this problem: asymmetry is present initially by
Judicious placement of shared resources and asymmetry is preserved in a
fair manner by our solution. To providea concrete framework for our
discussion of conflict resolution we couch our discussion in terms of a
generalization of the classical dining philosophers' problem.

man

2

t
N
i
M
i

UNCLASSIFIED

SECURITY CLASIIFICATION OF THIO PASE(Then Date Bntered)
- . Rl BETRRTUSYRR T T T T R

. LR W, " e .".1' A D% I '-','- A I \..-‘)4'{'.- ‘.-.'.A "r"'('.'.:.' IR AT .'_.-'_..' - l.‘_'.‘.'. PR -'..-’_..' IS
By PRt S8 A . gt g 1 4 ! A)

- . LF - - b S A ety et it i L A S s
Dt A R a T VUM G ¥ 8T .., T e w. e W g S PR - o Pl al i gl .. Sl

g . .

b 1

3 Ab

B \ stract

i} Conflicts arising in distributed systems, as in contentions for shared resources, are
% resolved either jl)r by a central process or m by resorting to probabilistic decision making
B by individual processes or 9) by sssigning s static global priority to each process. All
‘ kaowa noa-probabilistic solutions to the conflict resolution problem are asymmetric in the
:, sense that they distinguish between processes by ordering process ids or by having some

processes carry out special functions. We propose an efficient, fair, symmetric solution
s for this problem: asymmetry is presest initially by judicious placement of shared
resources and asymmetry is preserved in a fair manner by our solution. To provide a
coacrete framework for our discussion of conflict resolution we couch our discussion in
terms of a generalization of the classical dising philosophers’ problem.

PR

R D che o i o il

i e e A 'y
PRI R I . W, 5

k3
> AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AKS;
= NOTICE OF TRANSMITTAL TO DTIC

This teahniocal report has been reviewsad and i
approved for public release IAW AFR 190-12.
Distribution is unlimited.

MATTHEW J. KERPER

Chief, Technical InformationDivision

i R . e o R - - T - PG PR ORGSR R, LU
s "‘fn‘:‘i‘" : - ; A:‘Y‘ -‘f ‘.»1 b 1\. \.. “" :". :-. ~ -.: W £ ‘.(.'(.(. \‘.\. .." "... :,f 14 " \1\.‘ N -~ \¢$ \n..“' } ‘,.\-\\\ ."\.-

. SN L e s

o W T

ey

S s

-

PTRCE

Y
a

ok T

o o e

A

e 1

R

Asymmetry in Message Passing Systems

Conflicts arise in distributed systems because two or more processes cannot take
arbitrary actions simuitsneously. For instance, some resources, such as *write locks,®
cannot be exercised simultaneously by 2 or more processes. Exclusive access to a shared
resource introduces *asymmetry® among processes who wish to share the resource in the
sense that at any given point in the computation, the process holding the resource may
behave differently from those which don’t. Usually, it is desired that thowgh some
processes are treated preferentially in the short term, all processes are treated fairly in the
long term: this desideratum may be thought of as "short-term asymmetry and long-term
symmetry.® Lehmsan and Rabin {1} have proved that it is impossible for an ensemble of
perfectly symmetric processes in a symmetric global state to create asymmetry without
resorting to probabilistic decision making. We argue that processes in a message-passing
network can never de in identical states, with respect to resources because the locations
of the indivisible resources (either at a process, or traveling towards a process) introduce
asymmetry. We exploit this resource location asymmetry to resolve coaflicts for
resources and ensure long-term symmetry despite inherent short-term asymmetry. To
provide » concrete framework, we couch our discussion in terms of the distriduted
drinking philosophers’ problem, described next; we propose aa efficient fair solution to
this problem. Our solution makes use of a novel solution to the distributed dining
philosophers’ problem, which was first defined in [2].

'The Distributed Drinking Philosophers’ Problem

The following problem is a varisat of one due to E. W. Dijkstra [2]. Dijkstra’s
original problem (4] bas achieved the status of legend since it captures the essence of
many syschronmization problems. A far-flung network of philosophers is represented by a
finite undirected graph G with one philosopher at each vertex. A philosopher is in one of
3 states: (1) tranquil (2) thirsty (i.e., waiting to drink) or (3) drinking. Associated with
each edge {v,v;} in G is a bottle.! A philosopher caa drink only from bottles associated
with his incident edges. Each philosopher chooses a subset of bottles that he wishes to
drink from, when he becomes thirsty. He may choose different subsets of bottles for
different drinking sessions. A philosopher is thirsty if he desires to proceed to drinking
state but is unable to do so because he does not have all the bottles he needs. On
receiving all needed bottles a thirsty philosopher starts drinking; a thirsty philosopher
remains thirsty until he gets all bottles he needs to drink. On entering the drinking state,
a philosopher remains in that state for a finite period, after which he becomes tranquil. A
philosopher may be in the tranquil state for an arbitrary period of time.

Philosophers v; and v; are neighbors if and only if edge {vl,vJ} exists in
G. Neighbors may mail packages to one another. Philosopher v; has a mailbox which can
bold an arbitrary aumber of packages; we show later that only a bounded number of
packages will ever be ia any mailbox. The postal service guaraatees that it will deliver all
mailed packages in finite time without mutilating the contents. A package is delivered to
(the address of) a philosopher v, if and oaly if the package was mailed to v; by amother
philosopher; the postal service does not duplicate or create packages. The bottle
associsted with sa edge {v,v} is either at v; or at v; or in the mail from v, to v; or from

1
The solution gives ia this aleo spplies to multiple bottles on every edge. The assumption of one
bottle per odge b“:m !onﬁl’l;mty in exposition.

UL T AR Y N

i

B Rt
o,

s

« ;4‘«

,;'f" 1:"%:# t"fl‘

o
AL,

e
-

2R

.

AT

3
'J to 'i'
The problem is to devise a non-probabilistic solution which satisfies the following
coastraints.
Jairness: No philosopher remains thirsty forever.

symmetry: All philosophers obey precisely the same rules for acquiring and
releasing bottles. There is no priority or any other form of externally
specified static partial ordering among philosophers or bottles.

cCOnOMY: A philosopher seads and receives a finite number of packages in every
state (tranquil, thirsty, drinking). In particular, permanently tranquil
philosophers do not send or receive an infinite number of packages.

concurrency. The solution does not deny the possibility of simultaneous drinking
from differeat bottles by any two philosophers.

Importance of the Distributed Drinking Philosophers’ Problem

The distributed drinking philosophers' problem is s geaeral paradigm for modelling
conflicts between processes. This paradigm has the following features: (1) two
peighboring philosophers may be preveated from simultaneously drinking in some cases,
i.e. drinking from the same bottle, which corresponds for instance, to writing into shared
a file, (3) two neighboring philosophers may drink simultaneously in some cases, i.e.
drinking from differeat bottles, which corresponds for instance, to writing into differeat
files or reading from the same file.

Therefore the drinking philosophers’ problem models dynamic conflicts, ie.,
conflicts that may be determimed by the data on which a process operates. A
coaservative solution to this problem msy always avoid conflicts among all meighbors;
this hdwever leads to loss in concurreacy.

The paradigm can slso model N-way conflicts arising, as in distributed resource
allocation problem, where there are m; indivisible units of resource r; to be shared among
N processes. A process wishing to enter its critical section specifies the set of resources it
needs. Thus there is an N-way conflict for a resource. N-way conflicts may be modelled
as a set of N? 2-way conflicts: two processes are neighbors if it is possible that they may
conflict.

Previous Work

If s philosopher requires all bottles from its incideat edges for all drinking sessions,
thea our problem reduces to Dijkstra's distributed dining philosophers’ problem [2); in this
, problem, there is a single "fork® on each edge and a philosopher ®eats® (corresponding to
dmkiu) oaly if he holds forks for oll incident edges. Therefore the drinking
pliluopheu problem is a generalisation of the distributed dining philosophers’ problem.
The distributed dining philosophers' problem is a gemeralization of Dijkstra’s classical
dining philosophers' problem [4]; in the latter problem the philosophers sit around s table
(i.e. they are arrsaged in the form of a ring). The wealth of literature on the classical
diniag philosophers’ problem shows that it is a fundamental paradigm of coacurreat
processing. Dijkstra’s solutions to the distributed dining philosophers’ problem [2] assume
instsataneous transmission of packages or a static ordering of forks (which is
ssymmetric). Lynch [3] has carried out an extensive aaalysis of static resource ordering

o Ve vy M Ve L.

The problem of mutual exclusion among a group of processes in executing their
critical sections, is a special case of the distributed dining philosophers’ problem : every
process is & neighbor of every other process and execution of a critical section corresponds
to eating. Distributed solutions to mutual exclusion using process id's to break ties,
appear in Lamport (5}, Ricart and Agrawals [6].

A symmetric distributed solution to the dining philosophers’ problem appears in
Frasces and Rodeb [7]. They use an exteaded form of CSP [8], in which both input and
output cominands are used in guards. Lehmana and Rabin [1] give a perfectly symmetric
probabilistic algorithm and show that there is no perfectly symmetric non-probabilistic
solution to the dining philosophers’ problem. Therefore it follows that the extended form
of CSP caanot be implemented by a symmetric protocol.

R S

We first preseat a solution to the distributed dining philosophers’ problem and then

h:s'?;i’i"&< e

use this solution ia solviag the distributed drinking philosophers’ problem.
A Hygienic Solution to the Distributed
Dining Philosophers’ Problem
% In the distributed dining philosophers’ problem, a philosopher is either thinking,
3 buagry or eating. Associated with each edge of the graph is a fork and a hungry
»Tn philosopher needs forks of all incident edges, to eat. We begin by presenting a solution to
the distributed dining philosophers’ problem with the properties of fairness, symmetry,
_ ' economy sad concurrescy. We coasider the more general, drinking philosophers' problem
x in the mext section.
X
o A fork is either clean or dirty. A fork that is being wsed to eat with, is dirty and
il remains dirty ustil it is cleaned. A philosopher caa only cleaa forks that he holds. A

clean fork remaiss clean until it is wsed for eating. A fork is said to be free if the
philosopher holdiag it is cither thinking or huagry , i.c. not eating. A philosopher cleans »
fork prior to mailing it (because he is hygienic). The key issue in the dining philosophers’
problem is: which requests should a philosopher defer till he has next eaten? In our
algorithm, a philosopber defers satisfying requests for forks that are cleaa (because his
altruism is limited) or not free (because he is eating with it). A philosopher satisifies
requests for free, dirty forke immediately.

v We aow state the algorithm in detail, for » philosopher v;. In this description
satisfly a request® means clean and send the requested fork and *forks v; needs® demotes
the set of forks associated with the edges incideat on v;.

Thinking State {all forks held by v; are free and dirty.)
Satisfy all requests received.

Hungry State {all forks held by v, are free; forke received in the mail by v; since last
entering huagry state are “lean; all the remaining forks held by v; are
dirty.)

Roquest every fork that v, nceds sad does mot hold. {Therefore, v,
must request s fork that is relessed in this state.} Eater eating state
whea v; holds all forks it needs. Satisfy requests in the hungry state if

they are for dirty forks, elos defer request.

S LA SRS PR AR R S L e & A T SRl Bl iy ‘\"('W

H E : :

L,

Bating State {forks for all incident edges are held by v;; none of these forks is free.}
Defer all requests received in this state. Eat. Upon completion of
eating {all forks are dirty and free) satisfy all deferred requests and all
requests in the mailbox.

The proof of correctness of the algorithm and the specification of initial conditions
A require the definition of a directed graph H; this definition and the initial condition are
<0 given next. Observe that our solution satisfies the constraints of fairpess, symmetry,
economy aad concurrency.

§ The Graph H

iy R

,‘, We shall derive a directed graph H from G and the states of forks, as follows:

b ' direct each edge (vi,vj} in G from v; to vj if and oaly if the fork associated with the edge
ia: (1) at v; and dirty or (2) in transit from v; to v; or (3) st v; and cleaa.

9 Initial Condition

, All forks are dirty sad H is acyclic.

;'::f Proof of Correctness

We first show that H is slways acyclic. The only change to H occurs when a
philosopher dirties a clean fork (since cleaning a dirty fork and seading it does not change
k' the direction of the edge). A fork is dirtied only when a philosopher, say v, eats, in which
ﬁg case he must be bolding all forks which must all be dirty. Therefore v; cannot belong to a
'*ff cycle on eating, because all edges incident on v, are directed away from it (since all forks

held by v; are dirty). It is given that H is acyclic initially. Since all changes to H

4 preserve acyclicity, H must always be acyclic.
A% We show that if ('i-"j) is an edge in H and v; is hungry, then v either holds now or
7,,‘ will hold later, the clean fork associated with this edge. Since (vi,vj) is an edge in H, then
ik cither (1) v; bolds a clean fork, (2) a clean fork is in the mail from v; to v; or (3) v; is
v bolding a dirty fork. The result is trivial for the first two cases. In the third case v; will
s. receive a request from \/ in finite time. v; must mail \J the fork after cleaning it, when
R, the fork is dirty and free; the fork remains dirty watil v; cleans it and mails it to v
; Therefore v; must mail the fork to v; when it becomes free. The fork is free unless v; is
X eating. Since aa eating session lasts for finite time, the fork must become free in finite
bl time. Therefore v; will hold the clesa fork in finite time.
j We show in theorem 3 that every hungry philosopher will (hold all forks it needs
A and) eat in finite time. We have observed that for each incoming edge (vi,v’) to v, if vjis
A hungry, thea /] will hold the clean fork associated with this edge. Now we must show
E that for every outgoing edge (vj,vk) of v;, either (1) v; holds the dirty fork for this edge
" and receives no requests from v, or (ii) v, eats and then sends v; the clean fork associated
[with this edge. In either case v; will hold the fork for this edge sad continue to hoMd it at
b least uatil it next eats. The result is proved by induction in theorem 3 (below).
& Lemma 1: H is always acyclic.
* Proofs See above discussion.

Lemma h If v} is hungry aad has an incoming edge (vi,vj) in H then v
’ - holds, or will hold the clean fork for this edge ia finite time.
»* Proofs See sbove discussion.

i

! Theorem 3: A hungry philosopher will eat in finite time.

Proof: Let H* be the graph H at the point in computation when the
givea philosopher is hungry. (H® is a specific, static graph referring to a
particular point in the computation whereas H is a dynamic graph which
changes with transmission of forks.) We shall show that all philosophers who
are huagry at this point in the computation will eat in finite time.

S

|

J

We define the Aeight of a vertex as follows: the height of a vertex with |

vo outgoing edges in H® is 0; the beight of a vertex with outgoing edges is the ‘
length of the longest path from it to a vertex of height 0, where length is |
defined as the aumber of edges along the path.

2 oA

We show by induction on k that a hungry philosopher at height k will
eat in finite time. This is certainly true of hungry philosophers at height 0
since they have only incoming edges and lemma 2 applies for each incident
edge. Now assume that the claim is true for philosophers at heights 0,1,.. k-1.
Consider a hungry philosopher v; at beight k (k=1,2,..) and a neighboring
philosopber v,. If (v,,v;) is an edge then v; bolds or will bold the clean fork for
this edge, from lemma 2. If (v;,v)) is an edge, either v; holds the (dirty) fork
for this edge or v; is bungry (since all edges incident on thinkers and eaters are
directed away from them). If v; is hungry then he eats in finite time,
according to the induction bypothesis. Since v; must stop eating in finite time,
the forks for all edges incident on v; become dirty and free in finite time.
Therefore v. will receive (a clean) fork from v; in finite time. No clean fork
that vy holds will be released until v; eats. Heace /] holds all forks in finite
time aad eats.

Efficiency of the Algorithm

A thinking philosopher who has M neighbors and F (dirty) forks, on becoming
hungry, must send M-F requests and receive a fork corresponding to each request; in
addition, in the worst case he may lose all F forks he held initially and therefore have to
) request and receive them. In the latter case, the philosopher may send the fork and the
4 request for it in one message. Therefore no more than 2M messages are needed for
il entering one eating state. In the best case, a philosopher may receive no requests for
N forks and therefore he may live his life (think and eat) free of interaction with others.

- A Solution to the Distributed Drinking
= Philosophers’ Problem

X The drinking philosophers’ problem is a significant generalization of the distributed
} dining philosophers’ problem. We seek a distributed non-probabilistic solution satisfying
- the same conditions - fairness, symmetry, economy, concurrency - as for the distributed
- dining philosophers’ problem. Every solution to the drinking problem is a solution to the
dining problem, though the converse is not true. In particular, our solution to the
. distributed dining philosophers' problem does mot solve the drinking philosophers’
problem. For example, suppose two or more philosophers are arranged in a ring each
- with two incident edges, left and right , and all of them are now drinking with their left

bottles. If they sll require both bottles for their next drinking session, thea our dining

philosophers’ solution results in s deadlock. The reason for deadlock is that the

desdlocked state is symmetric, because the philosophers are srranged in a ring aad each

holds his left Dottle. The system cas leave » symmetric state only by resorting to

R o
T st 7

A

AR

;."--,-'7 4.‘;7}@:1

probabilistic decision making. Since we seek non-probabilistic algorithms, we must
preveat the system from entering symmetric states. However, it is certainly. feasible for
all philosophers sitting in a ring to hold their left bottles. If we were to disallow this state
we would be disallowing a feasible state merely to solve our problem; disallowing feasible
states violates our constraint of concurrency. We appear to be in a quandary because the
coastraints of symmetric processes, non-probabilistic solutions and concurreacy are
incompatible. We resolve this quandary by introducing artificial indivisible resources and
ensuwring that every state that the system enters is asymmetric with respect to the
srtificial resources though the state may be symmetric with respect to the genuine
resources (viz. bottles). We shall ensure that the sharing of artificial resources is such
that long-term symmetry with respect to the artificial resources (and genuine resources as
well) is achieved despite inherent short-term asymmetry.

The artificial resource we introduce are forks in the distributed dining philosophers’
problem. We have a solution to the dining philosophers’ problem which ensures that forks
are shared in & fair manner. We shall use the locations of forks to resolve conflicts for
bottles. Our philosopher can eat and drink simuitaneousiy and we emphasize that eating
is an artifact of our solution, used only to guarantee fair drinking. In our solution, the
state of a philosopher is a pair (dining philosopher's state, drinking philosopher's state),
where a dining philosopher's state is one of thinking, hungry and eating and a drinking
philosopher’s state is one of tranquil, thirsty and drinking. Our next step is to define the
dining characteristics of our philosophers: the drinking characteristics are specified by the
problem. We shall give rules for dining which ensure that all thirsty philosophers drink in
finite time. :

Consider the state trapsitions of a dining philosopher. The only transitions that are
decided by the pbilosopher are thinking-to-bungry and eating-to-thinking; the only
transition completely specified by the dining philosophers’ problem is hungry-to-eating
(which occurs when the philosopher holds all forks he needs). We will mow give rules for
the dining philosopher to decide the point of the first two transitions.

D1 (Thinking-to-Hungry Transition)
A thiuvking pbilosopher becomes hungry om becoming thirsty. A
philosopher cannot stop thinking until he becomes thirsty.

D3 (Eating-to-Thinking Transition)
An eating non-thirsty philosopher starts thinking. A philosopher
cannot stop eating as long as he is thirsty.

This solution requires a philosopher to check his mailbox while eating because a
thirsty, eating philosopher will never get to drink (and thus terminate eating) unless be
checks his mail and get the bottles he desires. In the distributed dining philosophers’
problem, a pbilosopher can think for arbitrary time though he must eat for finite time.
Therefore our obligation, arising out of rules (D1) snd (D2), is to ensure that each eating
period is finite. This can be accomplished (see lemms 4) by (D3) given below. Note that
s philosopher cannot give up a bottle from which he is curreatly drinking; thus analogous
to free forks, we define 2 boltle to be fres if the philosopher holdiag it is not drinking
from it.

D8 (Ruls of Bottle Transmission)
Plihopb«v,mdnabomchelom»v,hmmtosn«m

iy

i

o
L

PR

4 ey

R oA

from v;, if aad only if the bottle is free and (v; does not need the bottle
ot v; does not bold the fork for the edge {v;,v;}).

These rules lead to the following algorithm for philosopher v;.
Algorithm for v,

(DO) If thiraty :: Send requests for all needed bottles that v; does not hold, (and for
which requests have not already been sent since last becoming thirsty).

(D1) If thirety and thinking ::
Become bungry. {Take action appropriate to a dining philosopher when
he becomes hungry.}

(D3) If not thirsty and esting ::
Stop eating aad tramsit to thinking state.

(D3) If there is a request from a philosopher v; Jor o bottle and the bottle is free and
(the bottle is not needed Sy v; or v; does not hold the fork for the edge

;e'::’g'me tov;

(D4) If thirsty and Aolding all needed botties::
Drink. On completion of drinking become traaquil. {At this point all
bottles held by v; are free and from rule D3 all pending requests for
bottles will now be satisfied.}

Note: v; must aleo obey the algorithm for a dining philosopher. Initial locations of
bottles are irrelevant.

Proof of Correctness

We will now show that every thirsty philosopher drinks in figite time. We will use
theorem 3 from the last section to show that every hungry philosopher will eat in finite
time; however in order to do s0 we must prove that every eating period is finite. This is
next proved in lemma 4.

Lemma 4: Every eating period is finite.

Proofs If v, is eating and not thirsty, he completes eating. Assume
therefore that v; is eating and thirsty. We will show that v; will receive every
bottle he needs.

A neighbor v; of v; will send the bottle needed by v; (it v; holds it) in
finite time (using D3) because drinking periods are finite and v; does ot bold
the fork for {v,v,}.

v; will not release any bottle that he needs, because he holds all forks.
Therefore v; will drink ia finite time sad become not thirsty, thus terminating

esting.

Since every eating period is finite, theorem 3 applies and we have,
Corollary §: Every hungry philosopher starts eating in finite time.
Covrollary 6: A thirsty, eating philosopher must drink in finite time.
Proofs Eating periods are finite and are terminated oaly by driaking.

Theorem 7: Every thirsty philosopher drinks in finite time.

N Proofs When a philosopher becomes thirsty he is either thinking, bungry

or eating. A (thirsty,thinking) philosopher becomes hungry in finite time (from

e D1); s hungry philosopher starts eating in fimite time (from Corollary 6).

3% Thetefore every philosopher that remains thirsty must be eating in finite time.
-‘é The theorem follows from Corollary 6.

Efficlency of the Algorithm

Fo: the analysis of the algorithm, we assume that the packages a philosopher sends

b3 to a neighbor are received in the order sent. We show that a bottle can travel at most

;:% twice between two neighboring philosophers v, and v before one of them drinks.
o Consider the two cases corresponding to whether the fork for {V;.Vj} is dirty or clean.

K.
Case 1 One of the philosophers, say v;, bolds the dirty fork for the edge
. {vi,vj}: if v; mails the bottle to v; (in response to a request), he must
" also mail the fork. Therefore on receipt of the bottle, Vi will have a
o2 clean fork and bence will not mail the bottle again until he drinks.
“' Therefore the bottle travels at most once from v; to \J before v drinks.
: Case 3 v; holds a clean fork or a clean fork has been mailed to v;: the bottle
5 may travel at most once from v; to v; sud will not travel from v, to Y
g until v, drinks.
" 23 Lemma 8: There are at inost 4d message transmissions for d drinking
: '}' sessions among all philosophers.
Proof: There is at most one request (for fork and/or bottle), one
e transmission of a fork and two transmissions of 3 bottle between neighbors
Py before one of them drinks.
oo
£
XN
B3
2 XY
e
YA
ey
e
144
2
33
lﬁé’ 3
ol

10

References

1. Lehmans, Daniel and Rabin, Michael, "On the Advantages of Free Choice: A
Symmetric aad Fully Distributed Solution to the Dining Philosophers
Problem,® Proceedings of the Eigth Annual ACM Symposium on Principles
of Programming Languages, Williamsburgh, Virginia, January 26-28, 1081,

. Dijkstra, E. W,, *Two Starvation Free Solutions of a General Exclusion
Problem,* EWD 0625, Plataaastraat 5, 5671 AL Nuenen, The Netherlands.

. Lynch, Nancy A., *Fast Allocation of Nearby Resources in a Distributed
System,® Proceedings of the Twelfth Annual ACM Symposium on “eory of
Computing, Los Angeles, California, April 28-30, 1980.

. Dijkstra, E. W., "Hierarchical Ordering of Sequential Processes,® Operating
Systems Techuniques, Academic Press, 1972.

. Lamport, L., *Time, Clocks, sad the Ordering of Events in a Distributed
System,® Communications of the ACM, Vol. 21, No. 7, July 1978, pp.
558-565.

. Ricart, Glenn, and Agrawala, Ashok, "An Optimal Algorithm for Mutual
Exclusion in Computer Networks,® Communications of the ACM, Vol. 24,
No. 1, January 1981, pp. 9-17.

. Frances, N. and Rodeb, M., *A Distributed Abstract Data Type Implemented
by a Probabilistic Communicstion Scheme,® IBM lsrael Scieatific Center,
TR-080, April 1980 (presented at the 21st Aanual Symposiem on F.O.C.S,,
Syracuse, NY, October 1980).

. Hoare, C. A. R., *Communicating Sequential Processes,® Communications of
the ACM, Vol. 21, No. 8, August 1978, pp. 666-676.

FILMED
-84

DTIC

