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Abstract

The problem of selecting populations, from two-parameter exponential

populations, which are better than a standard under an ordering prior is

investigated. If the negative exponential distribution is the model for

lifetime, then the problem is to select all those populations for which the

guarantee lifetimes are larger than that of a standard. Comparisons of

these procedures based on the expected nuner of bad populations in the

selected subset is investigated. Tables of associated constants for the

proposed procedures are glveniln Table I through Table IV.
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ISOTONIC PROCEDURES FOR SELECTING POPULATIONS
BETTER THAN A STANDARD:

TWO-PARAIETER EXPONENTIAL DISTRIBUTIONS*
by

Shanti S. Gupta and Lii-Yuh Leu
Purdue University

1. Introduction

The problem of selecting populations better than a standard under an

ordering prior has been considered by Gupta and Yang (1981) for the normal

means problem and by Gupta and Huang (1982) for the binomial parameters

problem. In this paper we consider the case of two-parameter exponential

populations for which an interest lies in comparing location parameters

(guarantee times).

In Section 2, notations and definitions used in this paper are intro-

duced. Isotonic selection procedures are considered in Section 3, according

to the control parameter and the common scale parameter which may be known

or unknown. In Section 4, some other procedures for this problem are also

considered. Comparisons of these procedures based on the expected number of

bad populations in the selected subset is investigated. Tables of associated

constants for the proposed procedures are given in Table I through Table IV.

2. Notations and Definitions

Let E(v,e) denote the two-parameter exponential distribution with

probability depsity function

Seexp{-e'(X-0), if x > V
(2.1) f(x; U.e)

*This research was supported by the Office of Naval Research Contract
NOOO4-7S-C-0455 at Purdue University. Reproduction in whole or in part
Is permitted for any purpose of the United States Government.
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where -. < < - and e > 0. The parameter p is called the guarantee time and

e is the scale parameter'which in this case is the standard deviation.

Suppose that lf 0'1,...,-rk are (k+l) independent populations. It is

assumed that the observations from wi follow a E(p,o) distribution,

i = 0,1,...,k. The guarantee time is the parameter of interest. It is

assumed that 11 p 2 **" Pk; however, the true values of these pi's are

, not known. We consider w0 as a control (or standard). We say that

population wi is "good"if vi I p0" Our goal is to select a subset of

these k populations so that all "good" populations are included in the

selected subset.

Let a = = (Ol,..., - < P1 . P.2 '1 Ilk<w' - < po < cc) be

the parameter space. Let us denote the sets ai = {i, i+l,...,k), 1 < i < k

and a0 = * (the empty set). If action a. is taken, it means the subset

{wi,wi+l,...,wk} of the k populations is selected. Since by our assumption

U is are ordered according to an ascending ordering prior, it is, therefore,

appropriate to restrict our attention to the action space a = faosa1,...,ak).

Let Xi, J = 1,2,...,n be a random sample from population w1, I = 0,1,...,k.

The sample space is denoted by z = {x = (xOl,...,Xonxll,.Xln,...,Xkl,...,XknM

p liij <  q j  1929...,ni=0,1,...,k).

Definition 2.1. A selection procedure 6 is isotonic if it selects i with

parameter pi and if -p < pj, then it also selects wj. We will restrict our

attention to isotonic selection procedure 6 which satisfy the P*-condition:

inf P (CSI6) > P*

where P* is a pre-assigned value, and a correct selection (CS) means the

selection of any subset which contains all good populations.

,.. ' :: ,S -* '" . ""'''''"'"-'"' '"".".""""'-"""""""'
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Definition 2.2. A poset (S, f) denotes a non-empty set S with a binary partial

order < defined on it.

Definition 2.3. A real-valued function f defined on a poset (S, f) is called

isotonic if f preserves the order on S, i.e. x < y, implies f(x) < f(y).

Definition 2.4. Let g be a real-valued function and let W be a positive-valued

function, both defined on a poset (S, <). An isotonic function g* on S is called

an isotonic regression of g with weight W if I [g(x)-g*(x)]2W(x) attains its
xES

minimum values over set of all isotonic functions on S.

It is well-known (see Barlow, Bartholomew, Bremner and Brunk (1972)) that

there exists one and only one isotonic regression of a given g with a given

weight W defined on S..

Let Y = min Xj. where ", E(tse) J = 1,2,... ,n, I = 0,1,... k.

Let S = {l,...,PkiPl _<.1 'k}. Consider the functions g( ) = Yt and

W(Pi) n/e - Wi, t = 1,...,k. Then by the maximin formula, the isotonic regres-

sion of g with weight W is g*, where
Y+..,+ y,

= max min (Ys t

1<s<i s<t<k

The isotonic estimator of i is denoted by Xi:k t = 1,2,...,k, where

(2.2) Xi:k max Xs:k
l<s<i

and

^2 Ys s+Ys+1 Ys +"'+ Yk}
(2.3) Xs:k " m ""' ""k-s+1 I

It is known that the isotonic estimators Xi:k, i a 1,...,k are also the maximum

likelihood estimators of ' I - 1,2,...,k, for the two-parameter exponential

distributions.
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3. Isotonic Seletion Procedures

3.1. Po and e are known

Let us define

t 
• { l "k- 0 0 .1 "k-i+l }, t =

ank a {U C hi0  _< 1 11,

and
a 0 aO "P F' O N < u0}"

k
Then at are disjoint and a - U at" Furthermore,, 1-0

Inf P (CSIS) - min inf P (CS16), for any a,

and

inf P (CSI6) _ P* 1ff inf P (CSI6) _ P*, i - 1,2,...,k.

If I0 is known, no samples are drawn from w0 and X a (Xll,...,Xln,...,I

Xkl,...,Xkn). We propose a selection procedure I1) as follows:
]1

(3.1) 111X1 a(X). where g(X) = minilXt:k - '0 + d  l *)

here Xi:k is defined by (2.2) and dl), - 1,2,...,k are determined to satisfyi~k i:k'
the P*-condition.

Lem 3.1. For any E C 1 < I < k, P (CSI16 1 )) is increasing inu,

I <,j1 < k.

Proof. If v ( oil then

-.(S8) - P U ( ll )

k-k++ j d(
Up U U (Xr :k 0+• ,{Jul r-1 U

EM{IA(X)),
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k-i+1 1
whorem u u (x > +d'1' e

~ ~ r:k - "0 j:kn

Since IA(X) fs increasing in (xj1 < < k, and the distribution
of Xii has stochastically increasing property, hence E {is increasing

in vj. 1 . . k. This completes the proof of the lemma.

It follows from Lemma 3.1 that inf P (CSI0)), .P*(cS6(l))' where

69" ( '...,--,UO,.. ",O) , and

i terms

V* I ) = P k-i+l:k >  O k-i+l:k n
-( k-il~kl dk l)

*k.i+l:k; ~= P(Zk 1+1k > dk1 t+l k,

where Zl,...,Zk are i.i.d. E(O,1).
R^

Now Zki+l:k has the same distribution as ZI1 t. If we let

(3.2) V1  Zi n I 11

then we have

(3.3) inf P (CS14l)) = P{Vt > k I-+l:k} '  = .,

and the following theorem follows.

Theorem 3.2. For given P*(O < P* < 1), if d( 1 )  is the solution to thek-i+1:k
equation P(Vt I x) a P*, where V1 is defined by (3.2). Then s(1) defined by1 1
(3.1) satisfies the P*-condition.

Remarks:

(1) If x < 0, then P(V > x) = 1, hence we restrict our attention to

i:k
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(2) It is clear that d(l)  d(1) for all I < i < k. Furthermore,k-i+l:k 1:1

V V implies dl) is decreasing in i.

In order to find the d~1 k's we deed to find the joint distribution of

i:k
,l'z + 2 and Z1 +...+ Z1, 1 < i <_ k. Theorem 3.3 gives an explicit

form to find d( 1 ) '
i:k

Theorem 3.3. For x > 0, P(V1> x) = e- ix b xj1, 1 < i < k, where
j=l J

(3.4) bj = i(J2)(i-j+l)/(j-1)!.

Proof. Consider the transformation UI = Zi , U2 = ZI+Z 2,..., Ui = Z +...+ Z I
-u 1

t hen U,...,Ui have joint pdf e , 0 < u1 <u 2 <...< ui < -. Hence

P{V i 1 x}=le ui i-2=" ((1-2. ) u

Su i u 1-2

(ix) -1 • " I x (x-l)i e du i

i x b xj-l x

where b. Is defined by (3.4).

From Theorem 3.3, for 1 < t < k, d( 1l)  is the solution to the equation
(35 e- ix -- Jk P* 1

(3.5) eix tbjxil = P*, where b is defined by (3.4).

The values of d() d~+l:k), for k = 1(1)20, and P* = 0.800(0.025) 0.975

and 0.990 are tabulated in Table I.

3.2. Po known, e unknown

k n
If the coamon value of e is unknown, let I I i (Xtj-Yi)/v, where

v k(n-1). Then 2v/e is distributed as chi-square with 2v degrees of
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ofa '0i t-~n - ( Epstein &uO. Sobel (1954)). We

A' -- 0

1%Of 3.2, We hmv the followtn esult.

To 'fvi P*010; (p) .1,1?d3j11k the solution to the
2X(1 )w* Of s V10.14m is 4eflned'by (3.2) qand 2vi/eX

S4)deft":i by (3.6) satisfies the P*...0ndtlon.

7.i i~~12x
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* .- ' * ~T§.u:; ..
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selection procedure 6 by

(3.8) 43)(X) = a(X) where c(X) = min{ilx:k >Yo-d(3 )n

Theorem 3.6. For given P* (0 < P* < 1) if (3) is the solution to the- ' dk-i+I :k

equation

iiz i x I39 zJ l)Zdz = P*, x < ,

or the equation

(3.10) 1-e'X( b W = P*, x > 0,
0m (+1)

where 1 < i < k and b is defined by (3.4). Then 6(3) defined by (3.8)

satisfies the P*-conditlon.

Proof. If R E Q P (CS1( 3)) is increasing in j, 1 < j k and is decreasing

in Po. Hence

tnf P (CS 3)P 3))

where.,* -. 1-0"""" quo"0

I terms

and is Independent of 0. Therefore

(3) ) {

inf PI (3),1 . k-I+I k -
n V k-i+l:k

i -d 3)~ v

dk3) "k (3) •O

l-~e k-+l:.k jI J -l-iIZ r ,if P)l~~

1 ( j) k-"+:k

tI -

'd 
k-•~

• tr'"irt"--'M- - Ir( ,'I-d(3) %, "i ".; . <' .-. ' '/...-.--":. ",.L, . -. ''''.. '.,-',' ."
-- ~ ~ ~ ~ -m- i

+
f l Ir

+

. .. . , .. .p . r; p , . i +i. i l)+ - i f .lP). . . P " i I 
!

"l . .
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Remarks:

(1) If d 0,:<O then P(V1 zZod 1:k < P(V1  Z0) <P(Vl > Z0 ) = 1/2.

Hence, for P* > 1/2, there is no solution in the case when di1: (30)W

should restrict attention to d (3)n ueteeqain(31)o

k-i~l~k -i+1P)/I :k (~~
= Ji

The~ ~ 1k vleofd()or k -1(1)20, and P* = 0.800(0.025)0.975 and 0.990 are

tabulated in Table III.

(2) =) d (3) is increasing in 1,1I<1i< k.k-i+!:k 0.1:1

(3) If P* > 1/2, then 0 < (1-P*)/(1- b. .j(1). <1 and hence

*4 k-il:k

(4) x () t=0 lxl-(~~

(3.) 7z ( .+ b . dz = jj t -l = RA x > 0.

j1 (1+1) s to

id(3) th-d(3)
k-i~~lk < 9kiAi h ouinkt the eqution

whre V Jk1( - 1 ((~l x t )e ix = P)x > 0

The. ore 3.7.norn givenknown c1,ifdi h sltont h

equationelcto poedre64)b

I '.-'-,-0,''.,.*

~fl****. *~**~* k n****** . *~
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(3.13) b P*
J ~ (i+l)i X=0 t'r(v,)(1-2ix)v1

or the equation

(3.14) 1-(1- 1bj )(+x p*' x > 0,

where b. is defined by (3.4). Then 6 4)defined by (3.12) satisfies the

P*..condition.

Proof. inf P (csj6 (4)) = p(V1 > Z (4)+ 2v 1el)

rb. ) (il-(i~+l:k)r(vl+9) if (4)
- j :i~t0 j~ ~l(~i~~lk V11 k-i+l:k<

1(-Ib. .rJi),)(+2d(4.l if d(4 0.

L IJ(~~ k-i+l:k) k-i+lk >k

Remrk: If -i+l:k < 0, then inf P (CSI 4) 1/2. Hence, if

P* 1/, dk-i+l:k is the solution to the equation (3.14) or

d(4) {{(l-P*)/(l.. i b~ r~j 1,/v11)2
k-i+l:k J=l (P.1)3  .112

The values of d (4) for k = 2(1)6, P* = 0.900(0.025)0.975 and 0.990, with
-~ i:k

commovn sample size n = 5(5)20 are tabulated in Table IV.

4. Some Other Proposed Selection Procedures

4.1. voand e known

(1) In Section 3.1, if we take d =d~l) and define a selection procedurel:k

6(l) by2

(4.1) 601): Select wi ff XIk>~ +d -t* i 19l2,...,k.

2 t"

* . 4 . ... - . ..



Snedl)k mi ) it is easy to see that inf P '2'6(1)l<kMIPE 2

Furthermore, Xi~ ~X~ for i > j implies 6(l) is an isotonic selectioni: k-? j~k2
procedure.

5(2) Let = a { 1  . . Y3 .1' j <k and define a selection procedure

(4.2) a~1)(X) = a,(,), where =min~iIX1 > p0+d1  -}

Then, for any 1, 1 < I < k

inf P (CSJs0") = P(Zk+ d k-i+l.

Ifd kli+l -Ln P* for all I, then 63) satisfies the p*..condition.

Remark: 6(l) isequivalent to:

6(): Select rW -2- i * * = l,2j,..k.
3 T 'f i1 0.fnP n

(3) Gupta and Sobel (1958) proposed a selection procedure without assuming any

ordering prior. If we define a similar selection procedure 6(l) b

44

then

int P (l)) =e~d if d > 0.

-~Hence inf P (CS I6l) e ekd and d- 1 t *

Note that the selection procedure 64l is not isotonic.

.J~4

(1) Similar to Section 3.2, we can define a selection procedure 4 2) b

2 by

I~tz
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(4.4) 6(2): Select ff X > + d ...,k,2 tn f i:k >F u'+ n

where d d(2)
1:k*

(2) We define a selection procedure 3 2) by

(4.5) 6(2) Select vi iff > 0 i

where d = ((P*)-l/V-1)/2.

(3) We define a selection procedure 6(2) by
4 b

(4.6) 6(2): Select iri iff Yi> 0+d -v i = 1,2,...,k,4 ni--

where d = ((P*)-l'/v-l)/2k. Then 6a2 ) i = 2,3,4 satisfy the P*-condton.

4.3. uO unknown, e known

(1) If we define 623) by

(4.7) a 3): Select 1ff > YO-d i =1,2,...,k,

where d = I:K

(2) If we define 3) by

(4.8) 6(3 ): Select wi iff Xi > Yo-d I, : 1,2,...,k,3 n0-

where

2P* , if P* < 1/2

d

I-t1 2(1-P*), if P* > 1/2.

(3) If we define 64 by

(4.9) 6 Select 1i iff Yi > YO-d 1,  = ,2,...,k,

where
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L (k+l)P* , if P* 1/(k+1)

- (I-P*), if P* > 1/(k+1).

Then 6(3),  = 2,3,4 satisfy the P*-condition.

4.4. P. unknown, e unknown

(1) We define 64) by

(4.10) a : Select ir 1ff X Y > YO d 1d-. =ski

2 1 i:k- 0- n

where d = d(4
).

l:k*

(2) We define 6(4) byI3
(4.11) s(4): Select it 1ff X> YO-d v. 1 =L

where

{1-(2P*) 1/v1)12 if P* < 112
d4 =-1/v 1 _

{{2(1 -P*)) -/2, if P* > 1/2.

(3) We define 44) by

(4.12) 4(4): Select wi 1ff Yi > Yo-d----- i a 1,2p ... ,k,

where

(1.((k+l)P*). /Vl1/2k if p* _ 1/(k+1)
d P* 1

Then 6 4) I = 2,3,4 satisfy the P*-conditton.

r .:.,,, : L,',- = . . . . .. , .. .. , . .. ... ,.. .. -, , * 4.-.. 4 ....... , .. ' . , , w...,... -....
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5. Expected Number (Size) of Bad Populations in the Selected Subset

In this section, we assume that U0 and B are known. Let E(S')6)

denote the expected number of bad populations in the selected subset when

the selection procedure a is used. For the procedure satisfying the P*-

condition, usually we want the procedure with small expected number of bad
populations in the selected subset. For procedure (1) we have the following

theorem:

Theorem 5.1. For any J, 0 < j < k, sup E (S'J60 ) )
J r Itnk _j Y

= XP( U (Zh:j - (()l where Zh:j is defined as in (2.3) and Z1,.. .Z k
r-I hm1

are i.i.d. E(0,1).

• .Proof. For any J, 0 < J_ _k, if V E Qk-j , we have

E P(S'I(7))r= Ilpl(r is selectedJ6 M)

j r r ()

= P { U {X k > O+ d }) el).

-hh=l k" 0 h:kn

Using the property similar to Lemma 3.1, we have

sup E (SOIsV)) = P **{ U {Xh:k uO nh:k n
IEnk' j D ral hol

j r . d (1)
• r 1 h=l -

" where Y** = (OuO,'" ,0Oo,... ,M).

J terms

For procedure 6(1), it is easy to show that

sup E (S'a { 2 U h(hZ > di~l) and2 I hul -.j A
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E (S'16(1)) < sup E (S'16(1)), for 0 _ I k.UPn.: fo- Uj~kk

ence 6 1) is uniformly better than d4l). Furthermore,

sup E(S'1 ( 1)) - sup E (S'16(I)), since

J+l r 2 J+l r

SP{U{Zhl >d > P{U{Z d}
r l h l h " - r=2 h h:j+ -

- LP( U (Zh.j > d}}.

For procedure (), we have the following theorem:

Theorem 5.2. For any J, 0 <1 j < k, sup E(S'I4 1 )) = J-q(l-qi)/P* and
VEnk.j

sup E(S' j41)) - k-q(1-qk)/p*, where q a 1-P*.

Proof. sup E(S' 141)) sup P { max Y> o+d i)
VEkE 1Qk-j YN1  < ls<c

1 {l-P{ max Zs < d}} J-q(lq )/P*,
r 1 I <s<r

and sup E(S' ,(l)) is Increasing in J.

In order to compare the procedures 61) and X), we need the following

1(13
1 emm:

Lemma 5.3. For I 1,...,k, let A= >k > : enl

P{ UA n Aj+I } > P( U Ai)P* for all J, I < < k-1, k > 2.

t=1,~ * '* 4 *" t=1.. .. " * 4 ... ~, - * - '
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Proof. If z 1) Z d(1 for some 1, 1 < i < J, thenJ+l:k J+l:k n :j :k

zi +...+ z , _ (J't+I)(z+'"_+z I /IJt+ll+('JI(zl+"'+z I/(L'J)

JT,-- " +1-i+l

(J-i+l)d~1 ) + (I-J)d~l)
i;k i>k d~l= for J+l < I < k.-- 1+1 t:k'- -

Hence

P( U A n Ai+ l) = P( u 1z d(>) n Aj, ):=I 1=1 ij -i:k

P( u {1 :j i:k))P(A 41 )t=1 -111

a
> P( U A1 )P*.

1=1

Theorem 5.4. For all k > 2, sup E (SI6'16) < sup E (S1160)).

Proof. By Lemm 5.3 and the induction principle, we have

4i

P( U Ai) < I-(I-P*)J for all J, 1 < j.1 k.
i=-

Hence

sup E(S'l8 I>) p dr())
' r=l h=l"k -

kEO ril sphU{

I l{l(lp*)r sup E(S'f60)).

rM en 3

Remark: Theorem 5.4 tells us that procedure 611) is better than 61) in the

sense that in a0 it tends to select smaller number of bad populations, however,

procedure 81 is not uniformly better than S1)
3



17

In order to compare the procedures a(1) and a('), we need the

following lemim.

Lea 5.5. k(l(P*)l/k)-+tn P*, 0 < P* < 1.

Proof. Let f(k) - k(l-(P*)l/k), then

! f c) 1(-1/k  1 €. ) )l/k
f -(k) - 1-(P*)Ik + V (t *(*

f'(k) > 0 1ff - I KP* Li(1- U P

11/
The result follows since -vn P* > 0 and lim k(l-(P*) l/k) = P*.

Theorem 5.6. If k > 2 and P* > 1/2, then sup E(SI14l)) < sup E(S'1( 1 )).
pen 3 EO

Proof. It is easy to show that sup E (S(1)) = j(p*)l/k and hence

sup E~° (S 10 )) - k(P*)1/k.

sup E CS 16( 1)) < sup E CS110 1 )) iff

k(1-(p*) l/k).< (1-P*)(1-(1-p*)k)/P * .

If P* > 1/2, then -tn P* < (1-P*)(2-P*). By Len=n 5.5, we have

k(l-(P*)lI/k) < -u P*.

sup E (S Ij11) <sup E (S IS(1)) since

3.4

(I-P*I(2-P*) - P*)(1 (1-P*))/P*

i! <(1-P*)(1-( ( *))/P*.

Runrk: Theorem 5.6 tells us that procedure 6(1) is uniformly better than

procedure 41).
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Table I

Table of d1) values associated with procedure 60)"

1

0.990 0.975 0.950 0.925 0.900 0.875 0.850 0.825 0.800

1 .0100 .0253 .0512 .0779 .1053 .1335 .1625 .1923 .2231
2 - .0250 .0500 .0752 .1006 .1261 .1520 .1781 .2046
3 - - - .0750 .1000 .1252 .1504 .1757 .2012
4 - - - .1250 .1501 .1752 .2004
5- .- .1500 .1750 .2001
6 M.0249 . . . . .2000
7-20* -

The -. inTable I means that the value is the sam as the preceding

one in the same column.

For k - 7(1)20, values of d 11 are the same for any given P* in the

above table.

*.i . -

. . . . . . . . . . . . . . . . ..'. * .
4.N4..
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Table II

Table of d (2) values associated with procedure S(2).i:k1

n-5 n-l0

k 0.990 0.975 0.950 0.925 0.900 0.990 0.975 0.950 0.925 0.900

S1 .0006 .0015 .0031 .0047 .0063 .0002 .0006 .0013 .0020 .0027
2 - - .0032 .0048 .0066 - .0007 .0014 .0021 .0029

3 1 .0004 .0010 .0020 .0031 .0041 .0001 .0004 .0009 .0013 .0018

3 - --. 0021 .0032 .0044 - - - .0014 .0019

1 .0003 .0007 .0015 .0023 .0031 .0001 .0003 .0006 .0010 .0013*1 2 -_00 .( .- 1 -01 .0- -00 .00 .0 -00 .01

4 - - .0016 .0024 .0033 - - .0007 - .0014

1 .0002 .0006 .0012 .0018 .0025 .0001 .0002 .0005 .0008 .0011

5 - - - .0019 .0026 - - - - -

1 .0002 .0005 .0010 .0015 .0020 .0000 .0002 .0004 .0006 .0009

6 - - - .0016 .0021 - - - .0007 -

The '- In Table 11 means that the value is the same as the preceding

one in the same column.

AIL
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Table II (continued)

table of d(2) values associated with procedure 612)41:k 62

n a 15 n =20

k .9M 0.975 0.950 0.925 0.900 0.990 0.975 0.950 0.925. 0.900

21 .0001 .0004 .0008 .0013 .0017 .0001 .0003 .0006 .0009 .00132 g .0009 - .0018 - - - .0010 -

1 .0001 .0002 .0005 .0008 .0011 .0000 .0002 .0004 .0006 .0008

3 0003 MOO0 .0009 .0012 - - - - .0009

I .000 .0002 .0004 .0006 .0008 .000 .0001 .0003 .0004 .0006

4 - - - - .0009 - - - .0005 -

I .0000 .000 .00.03 '.0005 .0007 .0000 .0001 .0002 .0003 .0005

5 - - -* - - - - .0004 -

1 .0000 .0001 .0002 .0004 .0005 .0000 .0001 .0002 .0003 .0004

6 - - .0003 a .0006 a - - - -

The 0-0in Table J1 maits that the value is the same as the preceding one

in the sam col um.
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Table III

Taleofd 3)values associated with prcdr 3

0.990 0.975 0.950 0.925 0.900 0.875 0.850 0.825 0.800

1 3.9121 2.958 2.3026 1.8972 1.6095 1.3863 1.2040 1.0499 0.9163
2 4.0574 3.1011 2.4080 2.0025 1.7148 1.4917 1.3094 1.1552 1.0217
3 4.0783 3.1410 2.4478 2.0424 1.7547 1.5315 1.3492 1.1951 1.0615
4 4.0913 3.1620 2.4688 2.0634 1.7757 1.5525 1.3702 1.2161 1.0825
5 4.0913 3.1750 2.4818 2.0764 1.7887 1.5655 1.3832 1.2291 .0955
6 4.1001 3.1838 2.4907 2.0852 1.7975 1.5744 1.3920 1.2379 1.1044
7 4.1065 3.1902 2.4971 2.0916 1.8039 1.5808 1.3984 1.2443 1.1108
8 4.1113 3.1951 2.5019 2.0964 1.8088 1.5856 1.4033 1.2491 1.1156
9 4.1151 3.1989 2.5057 2.1002 1.8126 1.5894 1.4071 1.2529 1.1194
10 4.1182 3.2019 2.5088 2.1033 1.8156 1.5925 1.4102 1.2560 1.1225
11 4.1207 3.2044 2.5113 2.1058 1.8181 1.5950 1.4127 1.2585 1.1250
12 4.1228 3.2065 2.5134 2.1079 1.8202 1.5971 1.4148 1.2606 1.1271
13 4.1246 3.2083 2.5152 2.1097 1.8220 1.5989 1.4166 1.2624 1.128
14 4.1262 3.2099 2.5167 2.1112 1.8236 1.6004 1.4181 1.2640 1.1304
15 4.1275 3.2112 2.5180 2.1126 1.8249 1.6018 1.4194 1.26S3 1.1318
6 4.127 3.2124 2.5192 2.1138 1.8261 1.6029 1.4206 1.2665 1.1329

17 4.1297 3.2134 2.5203 2..1148 1.8271 1.6040 1.4216 1.2675 1.1340
18 4.1306 3.2143 2.5212 2.1157 1.8260 1.6049 1.4226 1.2684 1.1349
19 4.1314 3.2152 2.5220 2.1165 1.8289 1.6057 1.4234 1.2692 1.1357
20 4.1322 3.2159 2.5228 2.1173 1.8296 1.6065 1.4241 1.2700 1.1365

- ._
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Table IV

Table of associated with procedure 8

n 5 n 10

k o.990 0.975 0.950 0.925 0.900 0.990 0.975 0.950 0.92S 0.900

2 1 .1989 .147S .1112 .0909 .0769 .0803 .0609 .0467 .0385 .0328
2 .1928 .1418 .1058 .0857 .0718 .0780 .0587 .0446 .0364 .0308

1 .1444 .1085 .0 7 .0681 .0580 .0597 .0456 .0352 .0292 .0250
3 2 .1428 .1070 .0813 .0667 .0566 .0591 .0450 .0346 .0287 .0244

3 .1386 .1030 .0774 .0630 .OS30 .0574 .0434 .0331 .0271 .0229

1 .1131 .0857 .06S7 .0544 .0465 .0475 .0364 .0282 .0235 .0202
42 .11t8 .0861 .0651 .0638 .0459 .0472 .0362 .0280 .0233 .0199

3 :1113 . o, .060.527 .0448 .0467 .0357 .0275 .0228 .0195
4 .1081, O808 .0611 .0498 .0419 .0455 .0345 .0263 .0216 .0183

I . ic .M0708 .0045 .04 2 .0387 .0394 .0303 .0236 .0196 .0169
2 .027 .070 .OW .W9 .034 .0393 .0302 .0234 .0195 .0168

5 3 .0921 .0700 '0537 .0445 .0380 .0391 .0300 .0232 .0193 .0166
4 .0,12 .0 .O08 .0436 .0371 .0387 .0296 .0229 .0189 .0162
5 .0886 .066 .o4 .0412 .034 .0376 .0286 .0218 .0179 .0152

1 .0700 .0603 " 0381 .0332 .0337 .0260 .0202 .0169 .01451 .07W7 .0601 : 0 O .0330 .0336 .02S9 .0201 .0168 .0144
6 3 .0784 .05N .0461 .0383 .0328 .0335 .0258 .0200 .0167 .0143

4 .0780 .014 .047 .0379 .0324 .0333 .0256 .0199 .0165 .0142
* 5 .07fl AM58 .0480 .0371 .0316 .0330 .0253 .0196 .0162 .0138

6 .0760 .0666 .0429 .0351 .02961 .0321 .0244 .0187 .0153 .0130

L ." ,
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Table IV (continued)

Table of d (4) values associated with procedure 8(
4)

n - 15 n = 20

k 0.990 0.975 0.950 0.925 0.900 0.990 0.975 0.950 0.925 0.900

2 1 .0502 .0384 .0296 .0245 .0209 .0366 .0280 .0216 .0179 .0153
2 .0489 .0310 .0282 .0232 .0196 .0356 .0270 .0207 .0170 .0144

1 .0376 .0289 .0224 .0186 .0160 .0275 .0211 .0164 .0137 .0117
3 2 .0372 .0285 .0220 .0183 .0156 .0272 .0209 .0161 .0134 .0115
3 .0362 .0275 .0210 .0173 .0146 .0265 .0202 .0154 .0127 .0108

1 .0300 .0232 .0180 .0150 .0129 .0220 .0170 .0132 .0110 .0095
2 .0299 .0230 .0178 .0149 .0127 .0219 .0169 .0131 .0109 .0094
3 .0296 .0227 .0175 .0146 .0124 .0216 .0166 .0129 .0107 .0092
4 .0288 .0219 .0168 .0138 .0117 .0211 .0161 .0123 .0101 .0086

1 .0250 .0193 .0150 0126 .0108 .0183 .0142 .0111 .0092 .0080
2 .0249 .0192 .0150 .0125 .0107 .0183 .0141 .0110 .0092 .0079

5 3 .0248 .0191 .0148 .0124 .0106 .0182 .0140 .0109 .0091 .0078
4 .0245 .0189 .0146 .0121 .0104 .0180 .0138 .0107 .0089 .0076
5 .0239 .0182 .0139 .0115 .0097 .0175 .0134 .0103 .0084 .0072

1 .0214 .0166 .0129 .0108 .0093 .0157 .0122 .0095 .0080 .0069
2 .0214 .0165 .0129 .0108 .0093 .0157 .0121 .0095 .0079 .0068
6 .0213 .0164 .0128 .0107 .0092 .0156 .0121 .0094 .0079 .0068
4 .0212 .0163 .0127 .0106 .0091 .0155 .0120 .0093 .0078 .0067
5 .0210 .0161 .0125 .0104 .0089 .0154 .0118 .0092 .0076 .0065
6 .0204 .0156 .0119 .0098 .0083 .0150 .0114 .0088 .0072 .0061

rI
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