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ABSTRACT

Delorenzo, Michael L. Ph.D., Purdue University, August 1983. Selection
of Noisy Sensors and Actuators for Regulation of Linear Systems.
Major Professor: Robert E. Skelton.

i
This research has developed and tested an algorithm which aids the

controls engineer in placing sensors and actuators in a linear system
to est‘achieve’>;’set of variance specifications on the outputs and
inputs of the system. The term ?;;st achieve' has been defined to be

the sensor and actuator configuration which enables a controller to do

- efther of the following: Meet the input specifications while minimizing

a sum of output variances normalized by their specification (i.e. input-
constrained solution), or meet the output specifications while minimiz-

ing a sum of input variances normalized by their specification (i.e.,

outqgt-constrained solution). /ljneb, <?uAjr~$:i Geussian )

The approach taken to sol#e this sensor and actuator selection
(SAS! prgBIem was to use LQGjitheory to specify a structure for the
controller, and then develoé an algorithm (SASLOG) that places sensors
and actuators in this controller structure to achieve either the input-
constrained or out&ut-constrained solution. The main advantage of this
approach is the matheﬁatica1 ease with which LQG theory addresses

variance constraints, and the main disadvantage is that there may be

-

other controller structures which do better.

A‘\\\\




xii

In applying LQG theory to solve the SAS problem two specific

extensions of the theory resulted. The first was development of sensor

Sen and V1°Ct) which determine

and actuator effectiveness values (vi
the importance of each sensor and actuator to the LQG controller when
both the sensors and actuators are assumed noisy. The second extension
was the development of the algorithm LQGWTS which provides a systematic
method for adjusting the weighting natrices in the LQG cost functional

V so that the controller which minimizes V also satisfies either the
input-constrained or output-constrained variance requirements.

These two extensions were combined to form a sensor and actuator
selection algorithm (SASLQG). The algorithm was applied to two substan-
tial models of large space structures and the resulting configurations
although not guaranteed to be optimal achieved better performance than
any alternative configuration tested. The algorithm also provides
insight into the sensitivity of the controller design to sensor and
actuator deletions and therefore, insight into an optimal number for
both sensors and actuators. Lastly, the algorithm provides information
which identifies the most demanding outputs and the critical actuators

for the final sensor and actuator configuration.
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1.0 INTRODUCTION

Our ability to make the behavior of a physical system (human or
not) conform to an unnatural but necessary standard (i.e. regulate it)
is directly proportional to our influence on the system, our understand-
ing of how the system responds to this influence, our perception of
current system behavior, the way we exert our influence (friendly
persuasion, brute force etc.), and of course the severity of the neces-
sary standard. From an engineering perspective, the standard of system
performance is usually defined by a set of specifications (constraints)
on system output(s) and/or input(s). Systems normally receive inputs
(influence) through physical devices called actuators. The understand-
ing of how a system responds to inputs is represented, in most cases, by
a set of differential equations referred to as a system model. Currant
system behavior is normally monitored by devices called sensors and the
technique for combining sensor and model information into a set of rules
for issuing actuator commands is referred to as a control or regulation
law. Control laws which use sensor information are called closed-loop
control laws and are, in general, less sensitive to unexpected distur-
bances and implementation errors than are open-loop control laws which

do not use sensor information.

Basically then, the problem of regulating physical systems has

five elements :




.................................

L . 8,
LLSS
-

- (1) Specifications

2 (2) Actuators
. (3) System Model
'SE (4) Sensors

’-35 (5) Control Law
- When these elements interact during regulator design, experience has
;2 shown that the following situations arise:
fﬁ (i) The mathematical models used to represent physical
‘ systems are never exactly right and sometimes the
, real system is offended by actuator commands based
'; on an imitation. (i.e. our control laws are right
t in theory but wrong in practice).

‘: (i1) There are many techniques for developing control
s laws and the resulting regulators can have a wide
:3 range of complexity. In addition to relative

. complexity, each technique has other advantages

) and disadvantages and no one technique always

3? does the 'best' job.
 § (i11) It is sometimes impossible to meet the given set

é of specifications and it is often not clear what
- specifications are achievable with 'he given

2 control elements.

é (iv) Actuators have physical limits to the amount of

v push, pull, torque, etc. that they can generate

,ﬁ and control laws sometimes forget this. (i.e. Input
; constraints are a physical reality in most

3 practical control problems).
f% (v) When a large number of admissible locations exist
- for sensors and actuators, some locations do

‘5 better than others in achieving the regulation

specifications, and systematically comparing
regulator designs for every admissible sensor
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and actuator configuration is impossible. (For
instance, when a design problem requires choosing
6 out of 12 actuators and 12 out of 39 sensors,
there are ~ 3.61x10]2 possible configurations!).

(vi) Sensors and actuators also have unmodeled bzshavior
(noise) which always degrades regulator performance.
This noise can significantly effect the locations
sought in (v) and can invalidate the design theory
which states the more actuators used the better.

This research has focused on the Sensor and Actuator Selection (SAS)
questions raised by situations (iii)-(vi). Before introducing these
questions further a brief discussion of the assumed system model and

regulation specifications is in order.

1.1 System Model and Specifications

The modeling problem of situation (i) is present in every area of
control theory and is currently a very active topic of research. For
the most part our system models are based on linear constant coefficient
differential equations for which a great wealth of solution techniques
and control theory exist. However, physical systems are by nature,
non-linear and are most accurately represented by non-linear differen-
tial equations. The problem with these type of equations is that no
general procedure exists for obtaining their closed form solutions, and
our ability to analyze non-linear system behavior to various forms of
inputs is therefore 1imited. This limitation carries over to the
design of regulators for non-linear systems and manifests itself in the
fact that the wealth of design techniques for linear systems currently
has no parallel in non-l1inear control theory. Fortunately, most physi-

cal systems do have 'nearly' linear behavior over limited ranges of
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response. The regulators which are based upon a model of this linear
behavior are, for a large number of practical cases, able to keep the
system operating within its linear range and therefore maintain the
validity of the linear model and the designed regulator. In some
situations, adding white noise processes to the linear models can
account for unmodeled non-linear behavior of the system and its sensors
and actuators thus enhancing the validity and range of the linear models.
These models then become linear stochastic models and they are the sub-

Ject of this research.

1.1.1 The Model

The specific type of 1inear stochastic model considered in this
research uses a set of ordinary differential equations with constant
coefficients driven by random processes that are at least wide-sense
stationary. This type of model is called a Lumped Parameter Model (LPM)
since it represents the motion of a physical system whose mass or col-
lection of masses can be attributed (Tumped) to specific points in the
system. A considerable number of physical systems can be represented
by an LPM. One of these is the Large Space Structure (LSS) which was
choosen for the practical application of this research. The specific
LSS model development is the subject of Chapter 4. Shown below is the

state space form of the LPM used in this research.

x(t) = Ax(t) + Bu(t) + Dw(t) ; xeR" , ueR™, weRP

x(to) = X,

(1.1) D=1[8 D]
y(t) = Cx(t) yst (system outputs)

z(t) = Mx(t) + v(t) ;3 zeR (system measurements)

.......................
............................
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with noise characteristics:
Exo =0; Ew(t)=0; Ev(t) =0

SOALUL L4

(1.2) X, X, 0 0

Je<lwe)] (I W), vT)b = [0 wWe(t-r) 0 |5 uws o0

s

v(t) ‘B 0 0 Vé(t-t

2. 222 02

™~

o A

Where the notation Ri implies a real vector space of dimen-
sion i, E represents the expectation operator, T represents
matrix transposition, § is the Dirac delta function and

W >0 implies W is a positive definite matrix.

L

- 8. el

d The n-dimensional vector x(t) represents the state of the system, while
the m-dimensional vector u(t) contains the actuator signals. The system
"! outputs which are to be regulated are defined by the k-dimensional
vector y(t) and the 2 dimensional vector z(t) represents the measure-
ments (sensor information) available from the system. The white noise

vector process w(t) is used to represent unmodeled system behavior

R N A,

(Dow(t)) and unmodeled actuator behavior or noise (Bw(t)), while unmodel-
ed or noisy sensor behavior is accounted for by the white noise vector

process v(t). The matrices A,B,C,D,M,W, and V are assumed to be

time-invariant and appropriately dimensioned. It is further assumed
that the matrix B has no zero columns, the matrices C and M have no

zero rows and the matrices A,B,C,D, and M satisfy the following

Ry,

detectability and stabilizability conditions: [1]

t3

(A, B) (A, D) stabilizable
(A, C) (A, M) detectable

(1.3)

B A A

For the purposes of notation the LPM described by (1.1)-(1.3) will be
identified by S(n,k,m,2) where n is the number of states used to

LAl ag .
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represent the system, k is the number of outputs, m is the number of

actuators and ¢ is the number of sensors.

1.1.2 The Specifications
As noted earlier, the goal of the regulation process is to keep the
outputs and/or inputs (actuator signals) of a physical system within
some desired range. For the system S(n,k,m,2) these specifications

could take the following form:

-Uiiyi(t)ici V‘t>t°; i'], ... k
(1.4)
'°ii"i(t)i“i ¥t>t s i=1,...m

where F and Wy are constants representing the specifications (constraints)
on the 1th output and input respectively. Since S(n,k,n,2) is driven

by white noise processes, both x(t) and y(t) will be random vector
processes. Therefore (1.4) can become a very severe requirement and in
reality could never be guaranteed. From a probabilistic view, Eyi(t)

might make more sense for a regulated quantity, however, we know that

yi(t) can be expressed as follows: [1]

A(t-t t t
(1.5)  y,(t) = ce ( °)x° + cf ePlt=T)g (1)d + cf At~
t t

0 0

T)DW(T)d‘t

WA T W

and, given the noise characteristics of S(n,k,m) along with removing all

controls (i.e. actuators turned off),

(1.6) Eyi(t) =0 ¥t> t, s i=1, ...k

which produces a meaningless regulation problem.




.
2
3

The preceding discussion leads quite naturally to the use of the

variance constraints shown in (1.7).

B, 2(t) <o ¥ts>t ,i=1, ..k
(1.7) and

Euiz(t)‘g ¥y ¥t> ty, i=1,...m

2 now represent the variance constraints

The constant quantities °i2 and My
on the ith output and input respectively. The constraint on ui(t) is
necessary since only closed-1oop regulation will be considered and ui(t)
must then be a function of noisy sensor information which is further a
function of the random vector process x(t). For systems of type
S(n,k,m,2) control laws are known to exist which produce steady state
values for Eyiz(t) and Euiz(t) and since a great many practical regula-
tion problems require the outputs to be regulated for long periods of

time the following specifications have proven to be a very desirable

alternative to (1.7):

2 A 2 2
1im E t)=E s 1=1, ...k
(1.8) and
Tim uiz(t) : E“ui2 < uiz , 1=1,...m
-+

The specifications of (1.8) were used in this research and the expres-

sion (02, uz) will be used to imply (1.8).
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1.2 The SAS Problem

With the background of Section 1.1 it is now possible to formulate
situations (i1i)-(vi) as a specific SAS problem for systems of type
S(n,k,m,2). To begin, assume that only m out of m actuators and
L out of zAsensors are available for designing a regulator with specifi-
2)

cations (oz, u®). The goal is to find S(n,k.,m,2) and its resulting

closed-loop controller u(Z, m) such that (oz. Gz) is 'best achieved',

2 is the specification for the reduced set of actuators. The term

where u
‘best achieved' warrants further explanation. If it is possible to
achieve the specifications (02 ﬁz). the combination [S(n,k,m,2), u(m,2)]
which 'best achieves' (o2 i2) is defined as that combination which

produces the smallest possible value for one of the following normalized

sums:
K 2, 2 2 .2 .
(1.9) 213 izl Ey /o, subject to Eu’ = WS ¥i=1, ..M
or
m 2,- 2 2 2
(1.10) 213 121 E_uy /vy subject to Ey.© =0 ¥i=1, ..k

If it is not possible to achieve (az, ﬁz) the combination [S(n,k,m,2),
u(m,2)] which 'best achieves' (02. ﬁz) is defined to be that combination
which minimizes one of the following normalized sums of outputs above

specification or inputs above specification:

k
Min § EyZe? w1 £yl ol

S,u i=]
(1.11)

subject to Eoui2 = E12 ¥i=1, ...m
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(1.12)
subject to E_yi2 = aiz ¥i=1, ... k

The [S(n,k,m,Z) , u(I.ﬁ)] which satisfies either (1.9) or (1.11) will

be called the imput-constrained SAS solution and the combination which

satisfies (1.10) or (1.12) will be called the output-constrained SAS

solution. The above discussion may be summarized in the follcwing

concise SAS problem statement:

SAS Problem Statement

Given: a system of type S(n,k,m,2) with only m out of m
actuators and % out of ¢ sensors available for
designing a regulator to achieve the specifications
(%, W2).

Required: Specify the system S(n,k,m,2) and the closed-loop
controller u(Z, m) which satisfies either the
input constrained requirements of (1.9) and (1.11)
or the output-constrained requirements of (1.10)
and (1.12).

1.3 General Objective and Approach

The objective of this research has been to develop and test an
algorithm which aids the controls engineer in finding a solution to the
SAS problem. There are different ways to achieve this objective but
they all must have at least the following ingredients.

(1) A specific structure for the closed-loop control law.
(2) Some technique for adjusting the parameters of the
control law to achieve (02, iz).
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(3) Some means other than a direct search technique to

evaluate the effectiveness of the various possible
sensor and actuator configurations in achieving

(o2, 32).
The approach in this research was to use the well documented theory of
Linear-Quadratic-Gaussian (LQG) control to specify the structure of the
closed-loop controller. Using the concept of component cost analysis
developed by Skelton and co-workers, [ 4]-[ 7], a technique was develop-
ed for determining the effectiveness of individual sensor and actuators
in the minimization effort of the LQG cost functional. Then, a method
for adjusting the weights of the cost functional to achieve (az, uz) was
developed. With this link between the cost functional and (02, uz)
established, the actuator and sensor effectiveness values were used
along with the weight specification technique to develop an iterative
design algorithm for the SAS problem.

1.4 Organization
The presentation of the design algorithm is organized as follows:

a survey of past approaches to SAS is presented in Chapter 2,

while Chapter 3 contains the specific details of LQG theory, the
advantages and disadvantages for its use in solving the SAS problem and
a redefinition of the research objective in terms of the mathematics of
LQG theory. In Chapter 4 the two substantial LSS models used to test
the design algorithm are defined. Also included in Chapter 4 is a
development of the model of type S(n,k,m,z) from finite element data for
one of the structures. The theory and development of the actuator and

sensor effectiveness values are presented in Chapter 5, while the theory




Lt E P o L R O pi S A Gt e et i - Lo NG Clg ¢ T e D iR A A Rt SRS B i

and development for the weight selection technique is discussed in
Chapter 6. The results of Chapters 5 and 6 are combined in Chapter 7

to develop the algorithm for solving the SAS problem. Chapter 7 also
contains the results of the algorithm when applied to the LSS models of

L 2 i

Chapter 4. The conclusion is presented in Chapter 8.
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2.0 PAST APPROACHES TO SAS

AFYF L F 5
2

Several approaches to SAS have been presented in the literature.

None directly address the SAS problem as defined in Chapter 1;

A AP
.

however, major components of the problem are addressed for both the
LPM and the distributed parameter model (DPM). Before reviewing these

SAS approaches, a brief discussion of the DPM is in order along with a

AP FY:

description of the most used SAS criteria and the general approach

PR

choosen for SAS.

gy Jed

- LW

2.1 The DPM
A DPM is used to describe the motions of a physical system when

the system mass is allowed to exist as a continuum throughout the

B O oty S

spatial domain of the system. Therefore a DPM consists of a set of
partial differential equations with independent variables both in time

and space. The literature considered a linear stochastic DPM which

- can be written in a form that closely parallels (1.1).

axatf 2 - Asx(t,s) + B(t,s)u(t) + D(t,s)w(t,s) - xeR", uer™,
weRP

! e el R

x(to.s) = xo(s)
(2.1) K
y(t,s) = C(t,s) x(t,s) ; yeR (system outputs)

-
g ki
o

7

§

bt vt o wis g e Ay
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z(t,s) = M(t,s) x(t,s) + v(t,s)  (system measurements)
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The spatial coordinates are represented by the s dimensional real
vector s which is defined on a connected open domain labeled S. As
is defined to be a matrix differential operator (i.e. As[-] = Ao[-] +

A] §£é1-+ A2 3%551 + ....) and B(t,s), D(t,s), C(t,s) and M(t,s) are
known time and space dependent linear operators. As in the LPM, v(t,s)
and w(t,s) represent white noise processes used to account for modeling
inaccuracies and xo(s) is a random vector process in S which is indepen-
dent of v and w.

For most physical systems it is currently not possible to generate
independent control forces at every point in S or to simultaneously
measure the movement of each point in S. Therefore, the literature
adopted the following ‘'point-wise' representation for the m admissible

actuators and £ admissible sensors of (2.1):

a M
B(t,s)u(t) = } bi(s) G(S-Si) ui(t)

i=1

(2.1a)
L
\ z(t,s) 4 jZ] {M(t,sj) x(t,sj) + v(t,sj)}

th

Where S5 represents the spatial coordinate for the i~ actuator, and

sj represent the spatial coordinate for the jth sensor. It should also
be noted that the numerical examples presented in the literature further
assumed the linear operators B(t,s), D(t,s), M(t,s) and C(t,s) to be

time-invariant matrices of appropriate dimensions.

2.2 SAS Criteria and General Approach

For this selection of literature, there were two SAS criteria which

were commonly used. One involved the trace of the covariance matrix
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(or DPM operator) for the estimation error in the well known Kalman-
Bucy filter.[1] The other was a weighted quadratic cost functional of
the system state and control. Shown below are mathematical expressions

of these criteria for both the LPM and DPM:

t
(2.2a) f tr(P(t)}dt
tO

t
(2.2b) f I f tr{P(t, s,, S,)}ds, ds, dt
to s g 1 2 1 2

where tr{-} represents the trace of a matrix and

(2.2¢) P& E{(x-x)(x-x)T}

The vector ; represents the estimate of the state vector as determined

from the Kalman-Bucy filter. The quadratic criteria are:

t
(2.32) E [[t T (2)Kpx(x) + uT()Ru(e) e + xT(£)K x(t)]
(o

t
(2.3b) E [[t fs{xT(r,s)szT(r,s) + uT(x)Ru(x)} dsdr + xT(t,5)K;x(t,s)]
0

where R > 0 and K, > 0, Ky 20 (i.e. positive semi-definite). With
these criteria the goal for SAS becomes finding the set of sensors which
minimizes (2.2) over all possible sets of sensors, or finding the set
of actuators and/or sensors which, for a given controller structure,
minimizes (2.3) over all possible sets of actuators and/or sensors.

Then general approach of the reviewed literature to SAS may now

be summarized

v T AT W Vet ., N . e et T e T R .. e
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(1) Develop an analytical expression (criterion) which
reflects some desired goal for SAS (usually minimi-
zation of (2.2) or (2.3)).

(2) Use this criterion in a parameter optimization problem,
a minimum principle formulation or a variational tech-
nique in order to derive the necessary conditions for
the sensor and/or actuator configuration to achieve
the SAS goal.

(3) Use some form of gradient, successive approximation
or direct search technique to select the sensor and/or
actuator configuration which satisfies the necessary
conditions.

2.3 Literature Survey

The literature survey will be divided into three distinct sections.
The first section will summarize the techniques for selecting actuators
and/or sensors to minimize (2.3). The second section will survey the
literature on selecting sensors to minimize (2.2) and the last section
will discuss sensor and actuator selection techniques for minimizing

criteria other than (2.2) or (2.3).

2.3.1 SAS Based on a Quadratic Cost Functional
In [8], Johnson et al. propose a technique for locating a fixed
number of noiseless control surfaces (actuators) on a flexible aircraft
such that the controller designed to minimize an infinite time version
of (2.3a) (see Chapter 3) achieves the smallest possible value of (2.3a)
for the given number of control surfaces. It is assumed that the control
surfaces can be located across a continuum, and the desired locations

are sought by using a second order Newton-Rhapson technique to
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update the actuator locations. The technique uses closed-form expres- !
: sions for the first and second variations of the cost functional with
respect to the control surface locations, and these expressions are
= developed in the paper.

Aidarous, in [9], proposes a method for locating a fixed number

Rt

of noiseless actuators in a continuous stochastic DPM such that a
functional of type (2.3b) is minimized. The technique involves approxi-

mating the general control functions (i.e. u(t) in (2.1)) by a linear

'é combination of a finite number of coordinate functions. The cost

;5 functional then becomes a function of the coefficients in this linear

'; expansion of u(t) and the spatial coordinates of the actuator locations.
'3 The coefficients and spatial coordinates which minimi%e the cost func-

?; tional are then identified by applying a gradienfféyﬁe algorithm. The .
N algorithm uses a finite approximation of the sysgém;s Green function ..
é (very similar to the impulse function for an LPM) and first order

; variations of the cost functional with respect to the coefficients and

;, spatial coordinates in order to develop gradient-type update equations

;é for the coefficients and spatial coordinates. In [10] Aidarous et al.

: present the discrete time version of the algorithm just discussed.

; The question of locating a fixed number of noisy sensors and :
< noiseless actuators so that the controller designed‘%o minimize a X
5 functional of the form (2.3b) achieves the smallest possibie value of

"3 (2.3b) is addressed by Ichikawa and Ryan in [11]. Their technique ‘

for finding'fhe optimal locations is to adopt a finite dimensional

* ¢ by

eigenfunction expansion for the operator As in (2.1) and then plot the

value of the cost functional for all admissible sensor and actuator

e’aPabe’s’s
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configurations. The paper presented an SAS example for the stochastic

B N "
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diffusion equation where measurement noise was assumed but process

. -+ LA AR

noise was not (i.e. v (t,s) # 0, w(t,s) = 0 in (2.1)). The problem
was to select 1 out of 16 possible actuator locations and 1 out of 16
possible sensor Tocations (i.e. m= 2 =1, m= 2 = 16). The interesting

result from the example was that different optimal locations occurred

RN TP P A Ry

when the sensor and actuator problem was solved simultaneously as opposed

to separately and the lowest cost value was associated with the simultane-

ous solution.

LA D DR s 4

Juang and Rodriguez, in [12], further demonstrated the effect that

K

actuator location can have on the performance of a closed-loop regulator
designed to minimize a quadratic cost functional of type (2.3). The

chosen model was an LPM for a simply supported beam with no process

noise (i.e. D =0 in (1.1)). One actuator along with one noisy sensor

were used in the regulator design. As in the case of [11], the optimal

PR

actuator location was determined by plotting the value of (2.3a) versus
x the admissible actuator locations. The results showed that the optimal

) actuator location was a function of both model complexity (i.e. the

A

< dimension of the LPM used to approximate the DPM), and the weights

A
"

choosen for the quadratic performance index.
The theory of Input Cost Analysis (ICA) and Output Cost Analysis
(OCA) was used in references [13]-[16] to pose algorithms for the selec-

« "Id ‘ LR NS

tion of m and of m actuators and  out of % sensors to minimize cost
functionals of type (2.3a). The fundamental concept behind (ICA) and
;: (OCA) is to determine the contribution that each admissible input and

" output is making to the cost functional, and then use this information




to make sensor and actuator selection decisions. The specific details

of ICA and OCA are fundamental to this research and are presented in
Chapter 5. In [13] and [14] Skelton and Chiu lay the ground work for
ICA and OCA. Analytic expressions are developed in [13] (for u(t) = 0)
which specify the contributions that the columns of D(dl, d2, cen dp)
and columns of CT(c], ceo ck) are making to the cost functional. These
expressions have been labeled ‘parametric' ICA and OCA since they involve
the coefficients associated with the inputs and outputs. In [14] analy-
tic expressions are developed (for u(t) = 0) which specify the contribu-
tions that the individual inputs ("i’ i=1, ... p) and outputs
(yi, i=1, ... k) are making to the cost functional. The application
of these results to the more meaningful closed-loop (i.e. u(t) # 0) SAS
questions was achieved by Chiu, Skelton, and DeLorenzo in [15] and [16].
Under the assumption that the actuators have no noise, Chiu in
[16] shows that increasing the number of actuators will never increase
the cost functional. [Theorem 1, 15] He also states that increasing
the number of sensors will never increase the cost functional [Theorem
2, 15]. Given these results, Chiu develops an SAS algorithm which
suggests a specific number of sensors and actuators as well as specifies
their desired locations. The algorithm uses closed-loop 'parameteric'
versions of ICA and OCA to determine a suggested number of actuators
and sensors and then an iterative search routine is used to determine
the sensor and actuator locations which satisfy the necessary conditions
for minimization of the cost functional as derived from the matrix mini-
mum principle of Athans.[46] The {terative search routine is an

‘extended’ version of the search routine proposed by Chen and Seinfeld

which will be discussed shortly.
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In [16], Skelton and DelLorenzo developed closed-loop (u(t) # 0)

analytical expressions for the contribution that each actuator (“i)’
process noise source (wi), sensor noise source (Vi) and output (yi)
makes to the cost functional. These expressions were combined to form
the actuator and sensor effectiveness values mentioned in the introduc-
tion and discussed in Chapter 5. The SAS algorithm based on these effec- <
tiveness values will also be discussed in detail in Chapter 5 and is
not be repeated here. The main differences between [16] and the work
of Chiu in [15] are that noisy actuators are considered in [16] which
invalidates [Theorem 1, 15], the ‘'parametric' version of ICA and OCA
which is applied to the closed-loop situation in [15] produces calcula-
tions which are mathematically complex and computationally burdensome
compared to the non-parametric calculations of [16], and the iterative
search routine of [15] involves calculations beyond the closed-loop
'parametric' ICA and OCA calculations while the search routine in [16]

involves no calculations beyond the closed-loop ICA and OCA calculations.

2.3.2 SAS Based the Error Covariance Matrix

References [17]-[24] are concerned with locating a fixed number of
sensors in an LPM or DPM so that either (2.2a) or (2.2b) is minimized
over all possible configurations. In [17] Yu and Seinfeld discuss this
problem for a DPM whose state vector x(t,s) can be represented by a
finite number of eigenfunctions of As' The system then becomes essen-
tially an LPM and it is possible to develop an ordinary matrix differen-
tial equation for the error covariance matrix P in terms of the spatial

coordinate s. Yu and Seinfeld then propose a sub-optimal algorithm

which sequentially locates sensors so that the trace of the steady state
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P matrix is minimized subject to the constraint that only the location
of the next sensor to be added may be varied: the previously located
sensors being assumed fixed. The optimal location, for the next sensor
is determined from the integration of the ordinary differential equation
for P in terms of s. The sub-optimality of this algorithm was verified
by the work of Colantuoni and Padmanabhan in [25].

Chen and Seinfeld develop an algorithm in [18] which locates 2
out of % sensors to minimize criterion (2.2.b). The algorithm is,
iterative and searches for the % sensor locations that satisfy the
necessary conditions for minimizing (2.2b) as derived from a distri-
buted parameter formulation of the matrix minimum principle. The
search routine requires no gradient calculations, but does require the

solution of a partial differential Riccati equation at each iteration

and the calculation of a switching function for all g sensor locations.
The switching functions are based on the spatial integration of a
functional which is quadratic in the P operator specified by the cur-
rent set of ¢ sensors.

In [19] Aidarous et. al. propose using a finite coordinate func-
tion expansion for P and the DPM Green's function along with a modified
conjugate gradient algorithm to develop update equations for the m
sensor locations which minimize (2.2b). The algorithm is essentially
the dual of the actuator selection algorithms of [9] and [10]. The
necessary conditions for the convergence of the algorithm in [19] is

presented in [20].

Kumar and Seinfeld in [21] propose choosing sensors to mini-

mize the trace of an upperbound of P where the calculation of this




upper bound does not involve the solution of a partial differential

Riccati equation. However, it does involve an orthonormal approximation
to the systems Green's function. A gradient type algorithm based upon
this upper bound expression is proposed to update the sensor locations.
An example which placed two sensors in a onevdimensional heat conduction
equation fs presented,and the results and compared with the algorithm
of [18]. The answers compared favorably, and a significant savings in
computation resulted when the upper bound criterion was used in place
of P.

Omatu et al. in [22] recommend adopting the following approximation
for P:

N
2.4)  Pltispsg) 3L P(e) y(sy) aysp) s W

where the functions $5s ¢j are eigenfunctions for AS. Using this
approximation and the comparison and existence results for Riccati
equations derived in the paper, a set of necessary and sufficient con-
ditions are developed for locating % out of % sensors in a DPM of type
(2.1), (2.2) so that tr{P(t)}is minimized. These conditions essentially

involve definiteness comparisons of the matrix product:

g T -1
(2.5) *'M' (t,s,) V' (t,s;,5;) M(t,s.)o
1,31 ‘ 3 ]
for each admissible set of % sensor coordinates, s. The matrix ¢ is an

Nxt matrix of eigenfunctions evaluated at the % spatial locations. The

necessary and sufficient conditions based on (2.5) do not require the
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calculation of a partial differential Riccati equation or complex
gradients but, as posed, do require a direct search of all admissible
sensor configurations.

In [23] Wei and Wu address the problem of locating 1 out of 2
sensors for an LPM of type (1.1) to minimize criterion (2.2a). The
matrix maximum principle is used to derive necessary conditions for
the sensor locations. A sufficient condition which involves the

definite comparison
(2.6) P M TV TMp, > Pijij"Mij

is then derived where the subscripts k, j represent admissible con-
figurations of % sensors. If (2.6) holds for some k over all possible
configurations then k is the optimal configuration. A direct search
algorithm is proposed to find k. The results of this paper are in
many respects the LPM version of the results of [22]. Finally, the

paper also suggested minimizing the trace of an upper bound on P

- instead of (2.2a) in order to avoid solving a Riccati equation at

iteration.

A technique for adjusting the elements of the measurement matrix
M in (1.1) was suggested by Arbel in [24]. The goal of the technique
is to adjust the elements of M so that a weighted trace of the error
covariance P is minimized subject to location constratins on the
elements of M. The first order variation of P to each element M is
calculated via a Lyapunov type equation and these variations are used

to adjust the elements of the M matrix as long as the constraints on

M are not violated.
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2.3.3 Other SAS Criterion

References [26]-[43] pose SAS questions for criterion other than
the minimization of (2.2) or (2.3). In many cases the criteria are
minor modifications of (2.2) or (2.3), while the criteria choosen by
some references ([31]-[35]) do not apply to the context of this research.
These references are included, however, for completeness.

In [26], Curtain and Ichikawa propose the selection of sensors to
minimize both the cost of taking a measurement and the trace of the
covariance of the estimation error for distributed systems. No speci-
fic form for the cost of taking a measurement is offered, and a direct
search technique is used for those distributed systems whose solutions
may be expressed in terms of eigenfunctions of As‘ Amouroux et. a].
in [27] add a term which includes certain variables in the control law
to the criterion (2.2b). Given a fixed number of sensors in a linear
stochastic DPM, these sensors are then located to minimize the cost
functional of the choosen control law variables and the error covariance
integral. A modified gradient algorithm is suggested to update the
sensor locations.

In [28] Morari and 0'Dowd pose a sensor selection problem for a
DPM driven by non-stationary noise. It is shown that, in general, the
presence of non-stationary noise makes the system unobservable. A
projection technique is derived which yields an observable system and
a Kalman-Bucy filter for the observable system is constructed. The
sensors are then selected to minimize the error caused by the unobserv-
able non-stationary noise components. The criterion which accomplishes

this is shown to be the trace of spatial integral of P for
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the steady state Kalman filter of the projected,system. The criterion

X is applied by using a direct search of the sensor locations.

7{: Kosut et. al. discuss an SAS reliability question for a general

8 LPM with a fixed set of sensor locations in [30]. The "reliability"
question is approached by introducing a parameter representing sensor

13 ‘ systematic error (i.e. axes misalignment, scale factor and bias error,

- ‘ etc.) into the measurement equation. An optimization problem is formu-
lated which places the sensors, with varying degrees of systematic

4 error, in the fixed locations such that a lower bound on P(t) is mini-

i? mized. Necessary conditions for the optimization are derived, but no

technique of solution is offered.

g The problem of selecting at each instant of time, one measurement

. provided by one out of many sensors in a linear stochastic LPM is

addressed by Athans in [31]. The criterion for selection is the minimi-

4
.
ravl

zation of a weighted combination of P(t) and a term reflecting observa-

e

= tion cost. The observation cost term is expressed by functions which

denote the per-unitfof-time cost of making an observation. The problem

e

AL L=

is transformed into a deterministic optimal control problem and the
matrix maximum principle is used to derive the necessary conditions for
optimality. A specialized gradient algorithm is used in obtaining the
3 solution. In [32], Herring and Melsa extend the results of Athans

[31] to the selection of a best combination of measurement devices
instead of selection of a best single device. A similar situation is
addressed in [33] where a measurement subsystem for a discrete time

Y Co linear decentralized LPM is chosen from a number of subsystems. An

-t O
ot b

"{deal" subsystem which minimizes the trace of the steady state P

. e
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matrix is found and then the existing subsystem which is closest to
this ideal subsystem, as determined by a certain information measure,
is choosen.

In [34] and [35] the problem of selecting at each instant of time
one out of many actuators or sets of actuators to achieve a desired
result is addressed. Vanbeveren and Gevers, in [34], consider a dis-
crete deterministic linear LPM and the minimization of a criterion
(2.3a). Propositions which specify when certain possible sequences of
actuator choices can be ignored are proved and these propositions are
combined with a proposed "decision tree" method to arrive at a solution.
The computational burden of this method for large systems is noted and
a suboptimal "forward-backward" algorithm is proposed for this case.

In [35] Martain uses the theory of relaxed controls to solve the problem
posed in [34] for both an LPM and DPM. For the LPM, the existence of

a solution is established and necessary conditions for optimality are
derived. A steepest decent gradient algorithm is proposed to find the
solution to the necessary conditions.

In [36], Mehra discusses placing a fixed number of sensors in a
linear stochastic OPM. The problem is to select the sensor locations
that minimize a norm of the inverse of the Fisher information matrix
subject to a norm constraint on the measurement matrix (M). The
necessary conditions for optimality are derived through the lagrange
multiplier technique. However, a procedure for determining an appropri-
ate measurement norm constraint is not given.

Placing a fixed number of sensors in a matrix second order LPM

which is written in modal form (i.e., mass matrix is identity, stiffness

.............................................




matrix is diagonal) is considered by Buhariwala in [37]. The minimiza-

tion criterion is a weighted sum of each mode's observability norm, and
the sensor locations that minimize this sum are solved for by a psuedo-
random search algorithm.

In [37] and [39] the problem of locating sensors in a DPM is again
considered. Ewing and Higgins, in [38], recast the partial differential
equation for the system in the form of a variational functional. The
senﬁors are then placed in optimal locations by choosing the set of
locations that minimizes the derived variational functional. A steepest
decent gradient algorithm is used to find the minimizing sensor loca-
fons, and if only discrete locations are available for the sensors, a
location constraint must be developed. In [39] Caravani and Phillo
approximate the DPM by a finite eigenfunction expansion. They then
propose finding the sensor locations that minimize the expected value
of the square estimation error when the residual components of the true
initial state are allowed to vary within a sphere of given radius. An
analytical expression for the above defined criterion is derived and a
direct search algorithm is used in a simple example having one sensor.

The problem of 10cat1ng actuators (noiseless) in linear determin-
istic oscillatory systems is considered by Arbel and Gupta in [40] and
Arbel in [41]. The control objective is assumed to be open-loop minimum-
energy control and the minimum energy value is shown to depend directly
on the controllability matrix. An actuator selection algorithm is
thus proposed based upon the minimization of a measure of the control-

lability matrix. The gradient type algorithm requires the system be

placed in Jordan canonical form and makes use of the diagonal dominance
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property of the controllability matrix for systems in canonical form
[Theorem 1, 40]. |

In [42] VanderVelde and Carigan define a measure of controllability
which provides a quantitative indication of how well a deterministic
linear LPM can be controlled with a given set of actuators. The effect
of component unreliability is introduced by computing the expected value
of this controllability measure accounting for the likelihood of various
combinations of component failures. A direct search algorithm is then ,
used to locate the actuators of the system to minimize this
"controllability/reliability" criterion. The process of defining this
criterion for a large number of actuators and then applying a direct
search or integer programming (for discrete locations) type algorithm
is, as noted by the authors, computationally burdensome.

Lindberg and Longman in [43] discuss actuator placement for a
linear deterministic LPM. They use the concept of modal space control
developed by Meirovitch et. al. but eliminate the need for a large
number of actuators (i.e. one for each system mode) by introducing a
psuedo-inverse for the control distribution matrix (B+). The main
advantage of modal space control, (i.e. the elimination of the need to
solve large order Riccati equations) is retained. The goal
is to locate the actuators in the system to achieve minimum energy
control, and this is achieved by finding the set of actuators which

minimizes the largest singular value of B*. Either a direct or

gradient search technique is proposed to accomplish the minimization.
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Q% 2.4 General Relation to the SAS Probler
Ei As mentioned in the beginning of the Chapter, none of the criterion

used in the reviewed SAS literature directly addresses the specific

steady state variance constraints (oz, uz) defined in (1.8). The

criteria of (2.2) and (2.3) and the other related SAS criteria all have .
merit, and from an intuitive stand point, should indirectly attempt to

satisfy (oz, uz). However, an SAS criterion which directly encompasses
(02, uz) would be more desirable, and the LQG weight selection algorithm

in Chapter 4 provides one methcd for achieving such a goal.

With the exception of [16], none of the literature considered the
selection of noisy actuators (i.e. B also becomes a partition of D).
The results of [16] are discussed extensively in Chapter 5, but have
shown that [Theorem 1, 15] is not valid when noisy actuators are con-
sidered. Therefore, noisy actuators can significantly change the
complexion of actuator selection and merit consideration.

Most of the literature used some form of gradient or direct search
technique to determine the sensors and actuators which satisfied the
necessary and/or sufficient conditions derived from the particular
selection criterion considerec ([15], [16] and [18] are notable
exceptions). As discussed in the intrc wction, even for a modest
number of sensors and actuators a direct search of all possible sensor
and actuator locations becomes infeasible. Furthermore, when sensor
and actuator selection is necessary for large complex systems with
many admissible sensor and actuator locations the requirement for any
form of gradient calculation is severe and can easily become prohibitive,

particularly if spatial integrations are also required. A search

N
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algorithm which does not require direct search or gradient calculations
would certainly be desirable in the above situations and only algorithms
with these properties were considered in this research. The detailed
discussion of the approach this research took to the SAS problem begins

with a discussion of LQG theory.
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3.0 LQG THEORY

As noted in the Introduction, an important step in the solution

S ‘ of the SAS problem is the specification of a control law, and LQG
theory has been choosen to specify the control law in this research.
The theory originated in the 1960's with the foundational work of
Kalman, Bucy and others. Since that time, many papers and texts have
been written which further clarify and expand the theory. References
[1]-[ 3] are a few examples. Section 3.1 contains the fundamental
results of LQG theory when applied to systems of type S(n,k,m,%)

(i.e. (1.1)-(1.3)) and long periods of control are required (t-+=).
The proofs of the results are omitted but are readily available in the
previously mentioned references. In section 3.2 the LQG version of
the SAS problem is formulated and section 3.3 discusses the advantages

and disadvantages of this formulation.

3.1 The Steady State LQG Controller

For a system of type S(n,k,m,2) LQG theory guarantees a stable
closed-loop system and a closed-loop dynamical controller (u(z(t)),

0 <t < t) which minimizes the following cost functional:

t
(3.1) Vg = 1im () E Lj T (t)ay(t) + uT (t)Ru(t)}dt; Q,R> 0

The defining equations for this steady-state controller are as follows:
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(3.2a)

(3.2b)

(3.2¢)

(3.2d)

u(t) = -R-18Tkx(t) £ 6x(t)

X(t) = AX(t) + F2(t) 5 F 4 P

x(to) = X,

1,7

KA + ATK - KBR™'BTK + €'QC = 0;

PA + AP - PMTV) T

v

MP + DWD" =0 ;

L Ac3A+BG-FM

(Control Riccati Equation)
(i.e. Yim K(t) = K)

t+o

(Filter Riccati Equation)
(i.e. 1im P(t) = P)
to

Substituting this controller into S{n,k,m,2), the following 2n dimen-

sional closed-loop system results:

(3.3a)
where,
(3.3b) A
and

(3.3¢) v

e
[}

A
Cx 3 y= (yT, uT)T

<
]

ne>
'zl'l b
> 2]
29
o«
ue
o J

£ 1im

0 (t]'to)"‘”

0

1 T . -
Ty Eft M) s 0=

a+Bw;  x 2 )T wd W V)T

Given the noise characteristics of S(n,k,m,2), the steady-state variance

matrix for S(2n, k+m, m+2, 0) is known to be:

|
!
l
i
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X+ X
(3.8)  E{(x-0)0(x-0)Ty=Efxx}= | .
X X
where,

(3.5) X =lmK(t) = EL((x - 0)(x - 0)T} = E_{x X'} ,

torm
and is the solution of the following steady-state Lyapunov equation:

T

(3.6)  X(A+86)T + (A+8G)X+PMV M =0-

Also, coupling the definition of x in (3.3a) with (3.4) gives,

(3.7) X = 1im X(t) = E_ {x xT} = i + P
tom

Assuming that the weighting matrices of Vo in (3.1) are strictly
diagonal, and using the results of (3.2)-(3.6) along with some linear
albegra, the following sequence of manipulations of Vo produces a

T

useful result. First, using the fact that x Ax = tr{xxTA},v° becomes :

t
1 A
(3.8) V= Nm  heytr L [ex(t)cTQ + RTVBTK(£)X(t)K(t)BIdt

Since (t1-t°)»~, the value of Vo will be dominated by the steady state

portion of the integral in (3.8) and the LQG controller must, there-

fore, minimize the following expression also: [1]

t
A 1 1
(3.9) V= 1im W tr L:

(t]‘to)*°

1

rexc’q + R™'8Tkxkaldt

0
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The integrand of (3.9) is now time-invariant and this means (3.9)

can be written as:

1

(3.10) v = tr[cXCTQ + R™'BTKXKB]

which is directly equivaient to the following:
(3.11a) V= tr{E {yy')Q + E_{w'R] ,

or the more well known form

(3.1b) v = E_[y'ay + uRu]

Envoking the assumed diagonality of Q and R yields the following

useful expression which the LQG controller is known to minimize.

k
= 2
(3.12) v 121 Eyiay, * ‘Z Emui r. .

. represent the 1th diagonal entries of Q and R respec-

where Q4 and r

tively.

3.2 LQG Theory and the SAS Problem

The two key quantities in the SAS problem are Edyiz and Ewuiz.

As might be guessed from the results of the previous section, analytic
expressions for these quantities are readily obtained when an LQG
controller is used for the system S(n,k,m,2). The expression for
E,yi2 may be derived as follows. By definition, yi(t) can be written

as:
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(3.13) yi(t) = ciTx(t)

th

where ciT is the i~ row of C. Therefore, yiz(t) becomes

(3.18) v 2(t) = (cg"x(t)) (e, Tx(2))

or since the transpose of a scalar is still the scalar:

(3.15) yiz(t) = ciTx(t)xT(t)ci

Letting t+», taking the expectation of (3.15) and making use of (3.7),
the desired expression for E_yiz results:

(3.16) Ey.? =c (X+P) e .

The derivation for Emui2 procedes in a similar fashion by first

using (3.2a) to develop this expression for ug 2

(3.17)  uy(t) = -ri']biTKQ(t)

h

where bi is the 1t colum of B. Then, uiz(t) can be written as

(3.18) uiz(t) . ri‘zbiTKQ(t)iT(t)Kbi ,

where the fact that K = KT (i.e. matrix Riccati solutions are symmetric)
has been used. Letting t+= and taking the expectation of (3.18)

results in the following analytic expression for Eauizz

......................

----------------------------------------------
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(3.19)  Equ® = r,7% b, 'Kxkb,

It should be noted that (3.16) and (3.19) are implicit functions
of the weighting matrices Q and R and that (3.16) is an explicit func-

tion of r,. Therefore the values of E,yi2 and Ewui2

may be changed
by adjusting the components of Q and R. In fact, the following general
trends are known. Increasing (decreasing) rs will decrease (increase)

2
E U4

while causing a general increase (decrease) in the remaining
Eauj, j # 1 and a general increase (decrease) in aniz, i=1, ... k.
Similarly increasing (decreasing) q; will decrease (increase) Eﬂyiz
while causing a general decrease (increase) in the remaining anj’

J # 1 and a general increase (decrease) in "Emui2

,.i =1, ... Mm
Incorporating the LQG theory of (3.2)-(3.7) and the expressions

(3.16) and (3.19) into the SAS problem defined in the introduction

produces the following parameter optimization or non-linear program-

ming problem which will be referred to as the SASLQG problem.

SASLQG Problem Statement

Given: A system of type S(n,k,m,2) which has only m
out of m actuators and  out of % sensors
available for the design of a steady state
LQG regulator which must achieve (02, uz).

Required: Specify the closed-loop system which satisfies
the following input-constrained or output-
constrained requirements:

Input-constrained

If (o2, u?) are achievable,

. DA I e
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(3.20a) Mgn 12] EY; /9y subject to  E_u;" = u, ¥i=1, ...
else,
K 2, 2 2 2
(3.20b) M;n 121 Eyi /0" ¥i: Ey." > o,
subject to Eul= 5% ¥i=1,... 7@
Output-constrained
If (cz, uz) are achievable,
m 2,-2 2 2
(3.21a) M;n 121 Eu;°/ wy subject to Ey, = 0" ¥i=1, ...
else,
m a2 2 -2
(3.21b) Min § Eui/w" Wi EuS >y
S i=l

subject to Ey, %= 0,2 ¥1i=1, ...k

36

=

The essential difference between the SAS problem and the SASLQG problem

is that the SAS problem is requiring the best choice of sensors and

actuators and controller structure to achieve (cz, uz), while the

SASLQG problem assumes an LQG controller and looks for the best choice

of sensors and actuators to achieve (az, uz). There is no guarantee

that the SASLQG problem is the solution to the SAS problem.
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3.3 LQG Theory Advantages and Disadvantages

In light of the discussion of Section 3.2, the advantages and

disadvantages of the LQG approach to the SAS problem can be summarized.

Advantages of the LQG Approach to SAS

(1) LQG theory provides a closed-loop linear dynamical
controller and necessary and sufficient conditions
for closed-loop assymptotic stability (i.e. (1.3))

(2) The controller computations of (3.2) and (3.6) are
straight forward (non-iterative) and the constant
gain matrices are easy to implement.

(3) Analytical expressions exist for Eﬂui2 and E,yi2
and require no additional major calculations beyond
those for the controller.

(4) The values of E“ui2 and E~y12 can be changed by
adjusting the components of Q and R and those
Q and R adjustments do not effect the filter
Riccati solution P (3.2d) (i.e. the separation
theorem applies).

Disadvantages of the LQG Approach to SAS

A"

(1) The method for adjusting the elements of Q and R to
achieve desired changes in E¢“12 and E,yi2 has, in
the past, been trial and error.

(2) Solution of the SASLQG problem does not guarantee
that the SAS problem has been solved. (i.e.
another control structure might do better)

(3) The order of the controller is usually the order of
the model (for exceptions see [64]).

.
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Disadvantage (1) has been eliminated by the Q and R selection

procedure developed in this research and presented in Chapter 6. Also,
the sensor and actuator effectiveness values derived in Chapter 5 are
fundamentally rooted in LQG theory and provide another major incentive
for using LQG theory in the SAS problem. Concerning disadvantages (2)
and (3), they have been treated as 'current' necessary evils for gain-
ing insight into the SAS problem. Before continuing with the develop-
ment of the actuator and sensor effectiveness values and the weight
selection algorithm, Chapter 4 will discuss the physical systems choosen

for practical application of this research and define their models.




4

R Rl SN

XA

3
y
2
W

4.0 THE LARGE SPACE STRUCTURE (LSS)

The design algorithm developed by this research for the SASLQG
problem has been tested on two substantial LSS models. The results
are presented in Chapter 7, while the details of the models are pre-
sented in this chapter. Section 4.1 contains a general description
of an LSS and its typical mission and control requirements. The
general DPM for an LSS and an outline of a technique which generates
a matrix second order ordinary differential equation from the DPM is
presented in Section 4.2. In Section 4.3 a model of type S(n,k,m,2)
is developed for the hoop column antenna satellite from finite element
NASTRAN data, and a specific SAS problem for the hoop antenna is then
posed. The S(n,k,m,2) model for a solar optical telescope is presented

in Section 4.4 and an SAS problem is also posed for this model.

4.1 Genenal LSS Description and Mission

The recent successes of the Space Shuttle has made the large
space structure (LSS) an imminent reality. These future space struc-
tures will be measured in kilometers and, of necessity, will be
1ightweight and highly flexible (1ight damping). Standard LSS missions
will include power generation, surveillance, astronomy, and communica-
tions. These missions will require stringent pointing accuracy, shape
control and vibration suppression. To satisfy the demanding mission

requirements the LSS may require an active, regulator-type controller




with multiple sensors and actuators located throughout the structure
[67] -[72]. Furthermore, given the size of an LSS, there will be a
large set of admissible sensor and actuator locations. The controls

ﬁ engineer is then faced with the problem of determining where to locate
a limited number of sensors and actuators to 'best' achieve the LSS
mission (i.e. he must solve the SAS problem!) Therefore, the problem
of regulating an (LSS) presents an excellent proving ground for SAS ]
techniques. For this reason two LSS models have been chosen to test

A the SAS design algorithm proposed by this research. Their descriptions

follow.

4.2 The LSS Model

The problem of modeling an LSS is well discussed in the literature.

A representative example is [67]. The modeling process centers

around discretizing a system df partial differential equations of the

y following form:
- 2 m
2°a(t,s) . , 2a(t,s a
| mte) —ﬁ;;!-“ p, BLs) 4 4 q(t,s) = PRICEHIANG
l_

(4.1) y(t,s) = cpn(t,s) *+c, 39%%*51 ¥ Cpo Cre:Rk (system outputs)

an(t,sd)
z(t)J = mbj a(t, s;) + mrj'_-7ﬁfj—'; =1, ...
(system measurements)

where, as in (2.1), s represents the spatial coordinates defined in the

domain S. The quantity Q(t,s) represents the translational and rota-

tional motions for each point in S and could be a vector but for !
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notational simplicity it will be assumed scalar. The expression

? c(s-s?) fiui(t)’ where f; is a scalar influence coefficient, is
ZZLd to represent the forcing functions of m actuators located at
points sJ,and m(s) is the mass density which is positive and bounded
on S. As is a time-invariant symmetric, non-negative differential

operator and is assumed to have a discrete spectrum defined by:

As ¢1(s) = 4y (s) ; i=1,2, ... =
(4.2a)

A2 a(s) =212 0(s) s 12,2,

and the eigenfunctions ¢i(s) in (4.2) are assumed to be orthogonal with

respect to m(s; which implies the following:

m, when i = j
(8.25) [ mls) ay(s) oy(s)es =
S J :
0 otherwise

The operator Ds generates the damping term for the structure and is
currently not well understood. It usually consists of a skew symmetric
part which represents gyroscopic damping due to on-board rotors or a
constant spin of the LSS, and a small symmetric part which represents
the internal structural damping [68]. It is this symmetric part of

vs which is hardest to understand, and for mathematical convenience

it is usually modeled as:

1/2

(4.3) g (symetric) = 2z Ag (i.e. similar to 2zw for an LPM) {

....'...\.. « A" N - et e TN A
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The symbol ; is taken to be a matrix of damping ratios the components
of which are small (i.e. around .005). The vector y(t,s) in (4.1)
represents the outputs of the system which are to be regulated. They
are represented by linear combinations of position (cpsz(t,s)) and rate

(cr 32%%4510, where ¢

D and C. are assumed to be constant kxl1 vectors.
The sensor information z(t) for (4.11) is assumed to be provided by a
set of % sensors located at points s? which measure both position and
rate. For the ith position measurement, the rate influence coefficient
mri will be zero, and for the it rate measurement mpi will be zero.
It should also be noted, that for the moment, actuator and sensor
noise, along with model uncertainty have been neglected.

If the Ds operator is assumed to have no gyroscopic terms, and
(4.3) is used to represent D, the instantaneous position of the LSS can
be represented by an infinite sum of the orthogonal eigenfunctiocs of

As with strictly time varying coefficients.

(8.4)  alt.s) = ff] a;(t) o, (s) 3
]8

Substituting (4.4) into (4.1) and successively multiplying by ¢j(s) !
and integrating over S, the LSS may be represented by the following

infinite set of ordinary differential equations when the orthogonality

of (m(s) ¢i(s) ¢j(s)) along with the spectrum definitions for A, and

ASV2 are used.

--------------------------------
....................................
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(4.5) ylts) =, T oag(edag(®) e, T ag(dig(e) s

©

2y(t) = mp, P 0;(s3)ay(t) + 43 x 05(s)4;(8) 53 =1, ..

Three points of interest arise in (4.5). The first being that the
output y(t,s) is still a vector of both time and space and usually
represents such things as line-of-sight (LOS) angles, defocus lengths,
shape information etc. For practical reasons, usually from a control
design standpoint, it is necessary to discretize y(t,s) in a manner

similar to z(t). 1.e.

»

(4.6)  yy(t) = cpj 121 ¢i(sg)q1(t)'+ °rs 121 05(sY)a(t) 5 3=1, ...

The quantities ¢, and ¢, represent the jth

pj r3 element of ¢ and C,

respectively. i

The second point of interest in (4.5) is that infinite sums are
involved which again, from a practical stand point, cannot be handled.
To alleviate this problem, some form of the model analysis can be
performed to choose a finite number (N) of eigenfunctions and eigen-
values (i.e. modes) to represent the LSS. With this modal truncation,

(4.5) and (4.6) can be written as follows:
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Ma(t) + Da(t) + Ka(t) = Fu(t) ; qeR\

at) |

R

y(t) = [Cp Cl |
(4.7) ja(t) |

S R

” §(t)
N 2t) = My Ml
Hs iﬁ(tl

- Where M is an NxN diagonal matrix with "5’ J=1, ... N on the diagonal.
oy The elements of q(t) are the N qi(t)'s associated with the N choosen
modes and the matrices D and K are NxN diagonal matrices containing

the following data for the selected modes:

= 1/2 1/2
(4.8) D = diag [2 51 N cees 2 Iy AN ]

2 (4.9) K = diag [A1 e AN]

The matrix F is an Nxm matrix whose elements consist of eigenfunctions

evaluated at the actuator locations.

- PR a aye
= ¢-| (s])fl ¢](52)f2 seee ¢'| (sm)fm
! (4.10) F = .

) a
f; -¢N(S1)f~| ............

o The matrices CP, CR, MP, MR have the following structure;

- - et S R ST R S I IR I ORI T et e e e e, e e s e
AT .'- ” a ..w:\w 0y ._1\~ T A} - \,"-"-‘.ﬁ: RREETE) 1'-'.‘ RSN S R L R ORI AT




g (4.10) ¢, = : ‘
L Cpk ¢](5{) e e v Cc ¢N(5’y) !

Y i P Nk
§
’ B y y y
: e ) e, ayls) ¢ ay(s;) ]
& (@.11)  cp= | {
L" * y |
e, ¢, (sy) i
[ s s s\ |
mp] ¢1(51) mp‘l ¢2(51) . e mp] ¢N(sl)

(4.12) My =

S
", 91(sy)

s . s Sy
mr] ¢1(51) mr] ¢2(s1) e e mr] ¢N(51)

(4.13) Ma

m. 6, (s3) oo
r, 12

The final point of interest concerning (4.5) is that it requires
the exact eigenfunctions for the LSS. Even when Ds is assumed equiva-
lent to (4.3) and the LSS eigenfunctions become just the eigenfunctions
of As the exact determination of these eigenfunctions is essentially
impossible due to the size and complexity of the LSS structure. How-
ever, a very useful technique known as finite element analysis has

been developed to provide an estimate for a finite number of

......
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eigenfunctions at discrete points in the spatial domain (;i(sj)’ i=1,
...N, j=1, ...a) and corresponding eigenva]ues(ii, i=1, ... N). The tech-
niqhe basically involves approximating the spatial domain S of the LSS by
a finite number of meshes of particular shapes and well defined struc-
tural properties. These meshes are then patched together by a matching
of the individual mesh boundary conditions, and the eigenfunction
estimates at each of the nodes (mesh corners) are then derived. The
number of eigenfunctions that can be estimated and the accuracy of
the estimation is a direct function of the number and/or complexity
of the meshes; while, the number of discrete points (a) at which the
eigenfunctions are estimated is equal to the number of nodes. The
_§ finite element method is essentially a practical extension of the
3 Galerkin numerical technique for approximating the solution of a partial
differential equation. The method is particularly suited for use with
a high-speed digital computer and computer programs such as NASTRAN
have been used to provide approximate modal information for complex
structures that defy analytical solutions.

The N approximate eigenfunction ;1(sj)produced from finite element
analysis can be directly substituted for the N exactvmode shapes ¢1(s)

used to develop (4.7) and this model can, with some degree of confidence,
be used to represent the LSS for control design purposes. [73]

One last modification to the model of (4.7) is usually desirable.
Since M is known to be a positive definite matrix and K is at least
positive semi-definite a unitary transformation (T) can be applied to

M and K which produces the following result:[74]
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T'MT = IN (i.e. NxN identity matrix)
(4.14) and
TTKT s A where A = diag (wlz, ces wNz)

where mlz, cee mNZ are the frequencies of modal motion. Therefore,

using the coordinate transformation q = Tn (4.7) becomes:

; + TTDT n+Ans= TTF u(t) neRN . ueR™

n k
y(t) = [CT CTl |, yeR
n

(4.15a)
(0=t wT] " et
3 = ; 2e
MP R n
where,
T

v _T'OT = diag [2z0, ... 2]

The second order model of (4.15a) can be readily converted to a state-
space model of type S(2N,k,m,2) by defining x| = [nT ﬁT]. This con-

version is shown in (4.15b).

%(t) = Ax(t) + Bu(t) ; xeRZN , ueR™

y(t) = [Cp CRITx(t) 5  yeR®
(4.15b)
2(t) = [M; MITx(t) ; zeR*
;where
[ 0 ) To”
A 5 T l and B 5 ! T
-A -T'o1 ]_T F_




4.3 The Hoop Column Antenna

Figure 4.1 is a schematic of NASA's proposed hoop column antenna

communications satellite.

. 10
1 b 1 z
y i e— Column
A . x
3 3‘ ; |
' (O =NooE tiocstion)
2 |
A Tk [o]] !
. Hoop(64 m.dia) i
& !
; g7
Solar Array —
N
3 Figure 4.1: Hoop Column Antenna
3
) The antenna will be positioned in a geosynchronous orbit with the
3 mission of the control system being to maintain the focus and orienta-
i
! tion of the satellite. The nodes shown on the schematic identify the
; spatial locations (s{) which have been choosen to define 24 system
outputs that are critical to the antenna focus and orientation. The
- nodes also identify the spatial locations (s}) for 39 admissible
: sensors and the column nodes 2, 6, 9, 10 represent the spatial locations
L‘
z » (s:) for 12 admissible actuators. Tables 4.1-4.3 represent specific
@
7 location, type and orientation information for the outputs and admis-
« sible sensors and actuators.
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: Table 4.1: Hoop Column Output Description
: Output# Type Nodal Location Direction
: 1 Inertial Angle 2 X
. 2 " 2 Y
) 3 " 2 z
4 Relative Angle Between 10 and 2 X
5 " " Y
) 6 Inertial Angle 10 4
7 Relative Linear Disp. Between 6 and 2 X
8 " " Y
9 " 9 and 2 X
| 10 " " Y
] n " 10 and 2 X
, 12 " " Y
; 13 " 101 and 10 X
: 14 " " Y
" 15 " . z
16 " 107 and 10 X
: 17 " " Y
18 " " A
19 " 113 and 10 X
20 " " Y
21 " " z
22 " 119 and 10 X
23 " " Y
24 " " z




Table 4.2: Hoop Column Sensor Description

E Sensor# Type Nodal Location Direction

‘ ; Inertial Angle 2
. 3 n "

g Relative Lineaf Disp. Between 6 agd 2
6 i 1]

7 » 9 and 2
8 [} 1]
9 " n

10 " 10 and 2
‘l ] " 1]
12 " "
13 Inertial Angle 10
]4 n [}
]5 " 1]

16 Relative Linear Disp. Between 101 and 10

" 107 agd 10

; 113 aﬁd 10

" 119 and 10

Inertial ﬁngular Rate g
; ;
" 9

" 10

N XN <N KN XN LN LXK NECHKPNCHKNLHKNLHKN<KXN <X

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39




Table 4.3: Hoop Column Actuator Description

Actuator (Torquer)# Nodal Location Direction of Torque

1 2 X
2 2 Y
3 2 A
4 6 X
5 6 Y
6 6 4
7 9 X
8 9 Y
9 9 4
10 10 X
11 10 Y
12 10 4

The regulation specifications (02, uz) assumed for the hoop-column are

defined in (4.16).

o5 for linear displacements outputs .158 mm
(4.16) a; for angular outputs 22.8 Sec
My for all actuators 10 dn-cm

4.3.1 Hoop Column NASTRAN Data and Model
The NASTRAN data used in this research to develop the hoop column
model was generated by the Harris Corporation in early 1981. The data
consisted of an estimate of the first 18 eigenfunctions for all 6
degrees of freedom in the hoop (i.e. translations and rotations in the
coordinate directions x, y, z). The 6 degrees of freedom Ehange the

notation of section 4.2, and these changes are documented in Table 4.4.
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A 52
Y
\é Table 4.4: Multidimensional Q(t,s) notation
<3
W a(t,s), ¢i(s) become 6x1 vectors
1?@ m, » M, become m;., ml (1x6 vectors)
TN J J J J
T .
- < and c,, become kx6 matrices
i T T
& cp., Cp. become cp., cr.(1x6 vectors)
L3 . i i 3
lﬁ fi becomes a 6x1 vector
{; ¢j(s?) becomes ¢}(s?) a 1x6 vector
“y
7
- Also, the eigenfunction estimates were normalized by the mass density
;;. and this means that (4 7) automatically assumes the form of (4.15)
Y
2 without need of the transformation in (4.14). A sketch of the calcula-
N tions necessary for selected elements of the matrices F, CP, MP, and MR
3j will be provided by first noting that CP, MP, MR, and F can be written
%5 as follows:
H
"y = c J’ .
gf G =G o(s’)
5 (4.18a) g, 0 o L. | oy(sY) ()]
- ¢ P A Rt LR A
:F T
y 0 c 0
,. : CP = p2 . Q(S'y) =
:Eot 2 0 . :
X ‘T
y
. cpk | ;_¢](sk ) S |
5 and
: A
= y y y y Yy 6. (Y17
(4.180) ¢y(s}) [ey (53 ¢1y(sj), 4 (53 ¢y (9, ¢1ey(sj), SRCAH
X

s SR s £ o - R T T

ok 4
L N
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where ¢ represents the linear shape function in the x direction, and

X
¢i represents the angular shape function in the x direction.

®

)y
Ny
)
I-. 1
o

X
E
~7
r:'.‘

(4.19) My = M a(s) 5 Mg = My o(s®)

T
Py
or m{i respectively and ¢(s%) is equivalent to o(s”) with output

v Y ~ T
d
where MP and M, have the same format as Cp with ¢ changed to mpi
locations s’ changed to sensor locations s,
f

(4.20) F=0'(s®)f ; where f =
The matrix 0T(sa) is the transpose of o(s¥) in (4.18) with s¥ changed
to s2. It should be noted that no rate information (i.e. n) is requir-

0. Table

ed in the hoop-column output vector and therefore CR
T

. . P .

first four and last four rows of Mp and Mp (i.e. mp'i and mRi)’

4.5 displays the first four rows of C, (i.e. ¢, ,i=1,2,3,4), the

and the first 24 and last 6 entires of f. The first four rows of

Ep correspond to the first four outputs defined in table (4.1).
Similarly, the first four and last four rows of Mp and MR correspond
to the first four and last four measurements defined in table (4.2).
The first 24 entries in f correspond to the first four actuators and
the last 6 entires correspond to the last actuator as defined in

table (4.3).

Combining the information provided in table 4.5 and (4.18)-(4.20)
with the NASTRAN eigenfunction and eigenvalue data, a model of type

G R P W 0 N N e
el

--------
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Table 4.5: Partial Representation of Cp, Mp, M, and f

?:;] = [000700 000000
E; = [000000 000010
2

E,Is = [000000 000000

5;4 = [000-100 000000

:E; = [000100 000000
1

m, = [000000 000010

= [000000 000000

4

3
= [-100000 000000

o

4

5

1

-5

36 39

= 000000
36

204

= [000000 ....

"Rz
m, = [000000
mRss

EuR = [000000 ....
39

000000

000000

000001

000000

000000

000000

000001

000000

- ;R all zero rows
4

- ip all zero rows

000001

000000

000000

000000

000000

000000 ....

000000

000100

000000

000000 ....

000000 ....

100000

000000 000000

000100 000000

000000 000010

000000 000000

¢1 = [000100 000010 000001 0001000 ....

A g L L R Nt LR TR
ot o e WL A -s.. g o WA

o]

- .C

000000]

000000]

000000]

000000]

000000]

000000]

000000]

000000]

000000]

000000]
000000]

000001]

000001]
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(4.15b) was derived for the hoop-column where N = 15, m = 12, k, = 24
and 2 = 39. (note: since the eigenfunctions were normalized, T = I)
Only 15 instead of the given 18 modes were used because the 3 trans-
lational rigid body modes were assumed to be non-excitable do to
the satellites stable geosynchronous orbit. With this 15 mode model,
it was discovered that two surface modes (labeled #14 and #15 by the
Harris Corporation were unobservable and uncontrollable). Therefore,
these modes were also deleted leaving a total of 13 modes (i.e. N = 13)
in the hoop-column model.

For this 13 mode representation, a model of type S(n,k,m,2) was
generated by adding white noise processes to the model to account for
sensor, actuator and model uncertainties. The form of the model is

shown in (4.21):

12

x(t) = Ax(t) + Bu(t) + Dw(t) XeR26 ; ueR'© , WeR24

D=[B B]; (A,B) controllable

R24 )

‘Y(t) = Cx(t) ;3 yeR“" ; (A,C) observable

4.21
( )<j z(t) = Mx(t) + v(t) ; z;R39 R VeR39 ; (A,M) measurable

E(w(t)) = 0; E(v(t)) =0

(
; Wé(t-t) 0
f t
- / a("‘ )) Wi(t) , vi(c)} = [ ]
S v(t) 0 Vs(t-t)

' It should be noted that although D is partitioned as [B B] the second

partition is used to represent model error and will not change if the
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~ , number of actuators changes. The contents of the matrices A, B, C,
; M, W, and V are described below.
26 12
3 W Fa ey
1 pr— — — —
¥ ‘ 0 I]0 0 0 0
-2 <28, 0 0 BE | |
A= 26 ; B-= \ 26
ﬂ (4.22) o 0 0 I 0|
L0 0 0 0| | BR_ |
3 where
: I;9* I3 = 10x10 and 3x3 identity matrices
' -wz = 10x10 diagonal matrix of the squared modal
frequencies i.e.
; mz = diag [.40579, 7.2090, 7.2362, 13.277, 44.834,
{ 132.14, 142.66, 445.01, 448.69. 775.86]
! (radZ/secz)
‘ -2zw = 10x10 modal damping matrix, i.e.
2zw = diag [.0127, .053699, .0538, .07286, .26283,
B .45981, .47777, .84381, .8473, 1.1142]
., (rads/sec)
d (4.23) C=[CE 0 CR 0] } 24
: 26
(] f\_/\__—/\
‘ E 0 MR 0
' (4.24) M= 39
. .0 MER O MRR
The contents of the BE, BR, CE, CR, ME, MR, MER and MRR matrices are
7 shown in tables 4.6-4.11. The noise intensity matrices are defined as
: follows:




AP i e S Jhen Joun e aecibes SAn S Sne 2o I Sot aarihar i o g A S-St 1 L .

I (4.25) W= : s ”
{ 0 W W, = .1x10"" (dn-cm)
X 2 2
=
¥ 39
/'\M
< p— - _ -7 2
8 V] 0 0o 0 O V1 = 7.6154x10 "] (rad)
S . 71, (md
:’_: 0 VZ 0 0 O V2 2.5x10 19 (m©)

(4.26) V=10 0 V; 0 0 [\39; v 2.5x1071,, ()

3

2 - -5 2
»
% 0 0 0 0 V]|

)

! 4.3.2 The Hoop Column SASLQG Problem
b
N The hoop column model defined by (4.21)-(4.26) and tables 4.6-
b 4.11 will be labeled SHoop(26,24,12,39). The following SASLQG

.§ problem is posed for hoop column.

4

Hoop Column SASLQG Problem (H.SAS Problem)

Given: (26,24,12,39) with only 6 actuators

Hoop
and 12 sensors available for designing

=

2y an LQG regulator to achieve the (cz, u2)

Y specifications of (4.16).

'E Required: Specify the closed-loop system which satisfies
o ‘ either the input constrained specifications

N of (3.20) or the output constrained specifi-
X cations of (3.21).

A

g The H.SAS problem will be one of the examples used to test the
N

- design algorithm of Chapter 7.
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Table 4.6:

Rt A

The BE and BR Matrices

THE BE

MATRIX ¢ 10 BY 12 )

—

[

CWwONMUNHLWMN -

cCwoNOAMLsWN+-

1
-1.5880E~12
9.8045E-10
-1.6598E-03
-4.6650E~14
3.9018E-14
=-1.8443E-10
-7.3458E-03
-2.0518E-11
-2.1316E-03
1.1447E-10

[4
~-2.4578E-12
-7.790BE~10

1.3046E-03
-2.90368E~14
-9.2454E~14
7.80S6E-11
3.6726E-03
-3.9170E~-13
~2.3104E-0S
2.2502E-14

2
2.0381E-11
1.6688E-03
7.6073E-10
1.2781E~11
6.8800E-12
7.6551E-03

-4.9316E-10
2.8388E-03
S.1427E-11

3
-1.104SE-02
-4,9651E-12
-1.0812E-12
-1.3452E-02
-7.2776E-03

9.1886E-13
1.6507E-13
3.1986E-12
8.4627E-1S

=1.4643E-02 -2.2370E-11

8
1.?9965-11
-1.3052E-03
=8.13844E-10
2.2303E-12
1.2231E-12
=3.3330E-03
1.9284E-11
5.5245E-04
9.4758E-12
-9.3469E-03

9
-1.0738E~-02
-4,6410E-13
-2.8724E~13

2.1881E-02
-8.3798E-03
S.4994E-15
-1.0802E-13
-3.3571E~15
3.6610E-14
7.4532E-15

A

MATRIX (

3 BY

12)

- 2 0" 4T AT, . T Y AN AT R R T e e e,
}f F&}m&*&"n‘{k T A A+ ..5{‘!‘.'!J:‘F’.‘!i':“_.,"_s‘fdﬁ';! N

W -

W+~

1
-5.5117E-04
8.9529E-08
7.79548E~13

7
~7.1776E-04
9.8675E-08
4.3753E-13

YA Fo

2
8.8738E-08
6.5131E-04

-1.2353E-11

8
9.8472E-08
7.1774E-04

-5.2949E-12

-

3
3.3814E~11
2.3734E-10
6.0894E-03

9
3.1958E-11
2.3657E~10
6.2153E-03

-

4
-1.5494E-12
9.8S65E-10
-1.6433E-03
-1.1506E-14
-1.0665E-14
9.8361E-12
-3.5997E-04
2.2558E-12
8.0639E-04
-8.971SE-14

10
-3.6592E~12
-2.8330E-09

4.8327E-03
-1.6287E-13
~-4.6523E-13
-7.2756E-11
-3.2853E-03
-1.807SE-13
-1.2038E-03

1.3914E~14

4
-8.5118E-04
8.9528E-08
7.6575E-13

10
~7.9365E-04
1.0810E-07
1.6303E-14

IS A
NP AL N

-

ot
"
-

S
2.41228-12
1.6354E-03
1.1361E-09
-8.4481E-12
-4.5237E~12
-3.2844E-0S

2.0989E-10
-1.4116E-03
=3.4740E~11

1.0167E-02

11
2.3622E-11
-4,8232E-03
-2.8561E-09
-9.8948E~13
-6.5593E-13
3.1574E-03
-3.6427E~11
9.1035E-04
-4.8622E~12
4.5114E-03

S
B.SSOSE-08
6.5122E-04

-3.0140E-12

11
1.0807E-07
7.9356E-04

-6.8254E~13

PRSI I WA
"

]
-1.03818E-02
-1.7175E~-12

1.4252E-12
4,0239E-03
2.4678E-02
2.8411E-13
=1.1448E-13
6.5322E-15
S.26826E-15
2.5578E-1S

12
-1.077SE-02
-4,.9025E-13
-6.8225E-13

2.4630E-02
-1.360SE-02
-3.9383E-14
3.707SE-14
9.15S67E-16
1.2247€E~-15
-1.40S7E-1S

e
3.04S2E~-11
2.3745E-10
6.1338E-03

12
3.2475E-11
2.3681E-10
6.1983E-03

-, ae
A Y et




AV e Lot oW e -taw e e e B Ve R A AR A A AT A T R R R RV L

Table 4.7: The CE Matrix

THE CE MATRIX ( 24 BY 10 )

1 e 3 4 S
-1.5880E-12 9.804SE-10 -1.659SE-03 -4.6650E-14 3.9018E-14

2WONOWRSWR -

WREY

WONOALW-

2.0391E-11 1.6688E-03 7.6073E-10
-1.1045E-02 ~4.96S1E-12 -1.0812E~-12
-2.0612E~12 -3.8735E-09 6.4926E-03
3.2310E-12 ~6.4920E-03 -3.6168E-09
=1,0775E-02 ~4.902SE-13 -6.822SE-13
1.1011E-10 2.3764E-02 1.4877E-08
2.2688E~-11 ~1.4311E-08 2.3764E-02
3.7640E-10 4.3917E-02 2.6324E-08
S.1152E-11 -2.6451E-08 4.4063E-02
7.3325E-10 ~1.S98SE-02 -9.4022E-09
1.1462€-10 9.4S63E-09 -1.S5939E-02
8.2644E~-03 3.7333E-02 4.4234E-06
-1.08S0E-02 4.8142E-068 3.7289E-02
4.1SS5E-08 1.7946E-02 1.03SGE-02
1.0850E-02 3.7330E-02 ~4.8139E-06
6.2644E-03 —4.4221E-06 3.7293E-02
4.1399E-08 ~1.0361E-02 1.7938BE-02
-4,1128E-04 3.7247E-02 -6.0024E-06
?.1243E-04 -6.1S4S5E-06 3.7214E-02
~7.7130E-03 -4.4493E-03
3.7256E-02 5.7700E-06
6.4295E-06 3.7206E-02
4.4525E-03 -7.7074E-03

4 8
~7.34S8E-03 -2.0518E-11
~-4.9316E-10 2.8388E-03

1.6507E-13 3,1986E-12
4.0605E-03 2.0337E-11
4.5673E-10 -1.8285E-03
3.7079E-14 9.1S67E-16
-6.3608E-10 7.4294E-03
6.8980E-02 2.9092E-10
1.9237€~10 -1.4196E-02
-8.8818E-03 2.8761E-10
-1.006SE~10 -1.2157E~-03
6.9694E-03 2.9173E-10
=5.1044E-05 7.3548E-03
S.4072E-02 1.079SE-03
3.0688E-02 6.5278E-03
9.0S62E-05 6.9553E-03
4,1696E-05 5.4033E-02 -6.4726E-04
-2.9739€-02 5.31S7E-02 -3.7301E-03
S.1311E-02 -1.7229E-04 7.3086E-03
-2.0998E-04 S.3837E-02 S.7177E-04
-2.2569E-02 -1.3332E-02 -2.6076E-03
S.1518E-02 1.9710E-04 ?7,1797E-03
1.8871E-04 S.37S0E-02 ~-3.0086E-04

S.8020E-08

6
-1.9443E-10
?.6551E-03
9. 1886E-13
1.2167E-10
=4.4977E-03
" =3.9383E-14
6.6063E-02
1.571S5E-09
-9,7582E-03
=1.0048E~10
6.5518E-03
2.7943E-10
S. 1493E-02
=-7.5693E-05
S.1511E-02
S.1524E-02

1.2781E-11
-~1.,3452E-02
-1.1622E-13
=1.3770E-11
2.4690E-02
-3.4696E-11
3.7395€-13
-2,S766E-12
S.0362E-13
-1.2017E-12
2.4442E-12
-2.6232E-04
4.543SE-04
-1.4920E-08
-4,5439€-04
-2.6232E-04
-1.4919€-08
-3.4072E-04
S.9011E-04
-2.0848E~-08
=-5.9011E-04
=3.4072E-04
-2.0881E-08

9

-2, 1316E-03
S.1427E-11

8.4627E~1S

9.2770E-04

-5.6288E~-11
1.2247E-1S

-1,.5739E-10
9.85S76E-03

-2.4179E~12
-1.4117E-02
=3.7776E~-12
-8.2168E-04
6.4842E-04

9.2917E-03

4,2838€E-03

~-1.,0816E-03
9.6874E~03

7.4901E-03

3.3921E-04

9. 3266E-03

-1.5122E-03
-5, 1042E-04
9.496SE~03

6.8800E-12
=-7.2776E-03
-5.0425E-13
-7.5359€-12
-1.360SE-02
=-1.8507E-11
-1.3531E-13
-2.9303E-13
=-2.8334E~-13
=7.7871E-13

S.3315E-12

2.7183E-03
=4.7082E-13
-1.8021E-08

4.7082E-03

2.7183E-03
-1.8021E-08
=5.1321E-03

8.8890E-03
-2.5147E-08
-8.8830E~-03
=5.1321E-03
-2.5165E-08

10
1.1447E-10
=1 .4643E-02
-2.2370E-11
=1.1446E-10
1.9154E-02
=-1.4087E~-1S
1.6830E-04
-2.0204E-09
4,4242E-03
-2.0118E-09
2.6514E-03
=-2.0122E-09
4,.4588E-03
-1.0650E-04
-1.11S1E-02
4.6821E-03
=-9.3106E-06
6.5604€E-03
3.2006E-03
S.0883E-04
8.5958E-03
-2.87S7E-03
-5.8280E-04

>
A
N
3

1.3029E-02 -2.3094E~02 1.4526E-03 -2.7153E-03 -5.12S3E-03
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Table 4.8: The CR Matrix

THE CR MATRIX ( 24 BY 3 )

1 2 3
-8.5117E-04 8.9529%€-08 7.7548E-13
8.8738E-08 6.5131E-04 -1.23S3E-11
3.3814E-11 2.3734E-10 6.0894E-03
-1.4248E-04 1.9571E-08 -7.5918E~13
2.0332€-08 1.422SE-04 1.1670E-11
3.247SE-11 2.3681E-10 6.1993E-03
1.2908E-06 9.38S2E-03 -8.0770E-11
9.3833E-03 -1.2901E-06 -1.1069E-11
3.2972E-06 2.4006E-02 -2.3233E-10
2.4004E-02 -3.3002E-06 -2.6191E-11
S.0290E-06 3.6613E-02 -2.6876E-10
.3.6612€-02 -5.0334E~06 -2.8763E-11
-3.922SE-06 -2.8101E-02 S.8961E-03
-2.8101E-02 3.812SE-06 -1.0212E-02

- 4.,057SE-03 7.0266E-03 -1.8068E-08

-3.8071E-06 -2.8101E-02 1.0212E-02

-2.8101E-02 3.926SE-06 S.8361E-03

7.0257€-03 -4.0S81E-03 -1.79SBE-08
-3.6891E-06 -2.8166E-02 -3.4692E-03
-2.8167E-02 4.0S48E-068 6.0088E-03
-1.7160E-03 -2.9717E-03 ~-2.5163E-08
-4.053SE-06 -2.8166E-02 ~6.0088E-03
-2.8167E~02 3.6968E-06 -3.4692E-03
-2.9713E-03 1.7162E-03 -2.519SE-08
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Table 4.9:

THE ME

MATRIX ( 27 BY 10 )

WONONSLWR -

YARRUR

VNS WR -

: i e
-1.5880E-12 9.804SE-10 -1.659SE-03

3

2.0391E-11 1.6688E-03 7.6073E-10
-1.10455-02 -4.9651E-12 -1.0812E~12

1.1011E-10
2.2688E~-11
=-1.8000E-14
3.7640E-10
6.1152€~-11
=3.7000E-14
7.3325E-10
1.1462E-10
=-5.1000E-14

2.3764E-02
-1.4311E-08

1.4877E-08
2.3764E-02

6.8493E-10 -7.8300E-1S

4,3917E-02
-2.64S1E~08
-3.3290E-12

2.6324E-08
4.4063E-02
6.4320E-14

-1,5985E-02 -9.4022E-09
9.4569E-09 ~-1.5339E-02

-3.3120E-12

S.5790E-14

-3.6592E~-12 -2.8930E-09 4.8327E-03
2.3622E-11 -4.8232E-03 -2.8S61E-09
-1 077SE-02 -4.902SE-13 -6.8225E-13

6.2644E-03 3.7333E-02 4.4234E-06
-1.0850E~02 4.8142E-068 3.7289E-02

4.1SS5E-08

1.7946E-02

1.03S6E-02

1.,0850E-02 3.7330E-02 =-4.813SE-06

6.2644E-03 —4.4221E-06 3.7293E-02

4,1399E-08 -1.0361E-02 1.793BE-02
-4.1128€-04 3.7247E-02 -6.0024E-06
7.1243E-04 -6.1945E~06 3.7214E-02
=7.7130E-03 -4.4493E-03

S.7982E-08
-7.1243E-04
-4.1128E-04

S.8020E-08

6
-1.9443E-10
7.6SS1E~03
9.1886E-13
8.6063E-02
1.5715SE-09
3.1619€E-09
-9,7382E-03
-1.0048E-10
-3.2403E~-11
6.5518E-03
2.7943E-10
=3.2405E-11

5. 1433€-02
=7 .5693E-0S
S.1S511E-02

3.7256E-02
6.4295E-06

S.7700E-06
3.7206E-02

4.4S25E-03 =7.7074E~03

[4
=7.3458E-03
-4.9316E~10

1.6507E~13
-6.3608E~10
65.8980E-02
-8.4540E-14
1.9237E-10
-8.8818E-03
-2.0090E~14
=1,0085E~10
6.9694E~03
=5.0430E~14
-3.2853E-03
-3.6427E~11
3.707SE-~14
=5.1044E~0S
S.4072E-02
3.0683E-~02

S.1524E-02 9.0S62E~0S
4,1696E-05 S.4033E-02 -6.4726E-04
-2.973%E-02 S.3157E-02
S.1311E-02 -1.7229€-04
-2.0998E-04 S.3937E~02
-2.2S89€-02 -1.3332E~02
S.1518E-02 1.9710E~04

8
-2.0518E~-11
2.8388E~-03
3.1986E-12
7.4294E-03
2.9092E-10
6.0273E-10
-1.4196E-02
2.8761E-10
-1.1865E-11
-1.2157E-03
2.9173E-10
-1.1977E-11
=-1.807SE-13
9.1035E-04
9.1S67E-16
7.3548E-03
1.0799€-03
6.5278E-03
6.9553E-03

=-3.7301E-03
7.3086E-03
S.7177E-04
-2.8076E-03
7.1797E-03

1.8871E-04 $.37S0E~02 ~3.0086E-04

1.3029E-02 -2.3094E~02

“umaeas
NPT IOR

1.4526E-03

The ME Matrix

4
-4,6650E~-14
1.2781E-11
-1.3452E~02
=3.4696E~-11
3.739SE-13
3.4700E-1S
-2.5766E~12
S.0362E~-13
9.5700E-1S
-1.2017E-12
2.4442E~12
1.63S0E-14
~-1.6287E~-13
-93.8949E-13
2.4690E-02
-2,6232E~04
«S439E-04
-1.4920E-08
-4,5439E-04
-2.6232E-04
-1.4919E-08
=3.4072E-04
S5.9011E-04
-2.0848E-08
-5.901 1E-04
~3.4072E-04
-2,0881E-08

9
-2.1316E-03
5.1427E~11
8.4627E-1S5
~1.5733E-10
9.8576E-03
-8.2300E-14
-2.4179E-12
=1.4117E-02
=3.6000E-15
=-3.7776E-12
-8.2168E-04
-1.7610E-13
=1.203%€-03
-4.8622E-12
1.2247E~1S
B6.4842E-04
9.2917E-03
4.2838E-03
-1.0816E-03
9.6874E-03
7.4901E-03
3.3921E~04
9.3266E-03
-1.5123E-03
-5.1042E-04
9.4965E-03
-2.7153E-03

S
3.9018E-14
6.8800E~-12
=7.2776E-03
-1.8507E-11
-1.3S31E-13

7.2520E-1S
-2.9303E-13
-2.6354E-13

1.607SE-14

=7.7871E-13

S.3315E-12
2.4573E-14
=-4.6523E-13
-6.5593E~-13
-1.360SE-02
2.7183E-03
-4,7082E-03
-1.8021E-08
4.7082E-03
2.7183E-03
-1.8021E-08
-5.1321E-03
8.8890E-03
-2.S147E-08
-8.88S0E-03
-5.1321E~03
-2.5165E~08

10
1.1447E-10
~1.4643E-02
-2.2370E-11
1.6830E-04
~2.0204E-09
-8.4809E~10
4,4242E-03
-2.0118E-09
5.2664E-11
2.6514E-03
-2.0122E-09
S.26468E-11
1.3914E-14
4.5114E-03
=1.4087E-1S
4,.4588E-03
-1.0650E-04
=1.1151E=-02
4.6821E-03
=-9.3106E-06
6.5604E~-03
3.2006E-03
S.0883E-04
8.5958E-03
2.6757E-03
-5.8280E-04
-5.1253E-03
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Table 4.10: The MR Matrix

THE MR MATRIX ( 27 BY 3 )

OONARLWN -

1 2 3
-6.5117E-04 8,.9S29E-08 7.7548E-13
8.8738E-08 6.S131E-04 -1.2353E-11
3.3814E-11 2.3734E-10 6.0894E-03
1.2908E-06 9.3852E-03 -8.0770E-11
9.3833E-03 ~-1.2901E-06 -1.1069E~-11
=-1.0000E-13 -2.0928E-10 7.0000E-1S
3.2972E-06 2.4006E-02 -2.3233E-10
2.4004E-02 ~3.3002E-06 -2.6191E-11
S.0000E-14 2.7900E-12 2.1000E-14
S.0290E-06 3.6613E-02 -2.6876E-10
3.6612E-02 -5,0334E-06 -2.8763E-11
3.0000E~-14 2.7900E-12 2.9000E-14
~7.9365€-04 1.0910E-07 1.6303E-14
1.0807E-07 7.93S6E-04 -6.8254E-13
3.2475E-11 2.3681E-10 6.1993E-03
-3.922SE-06 -2.8101E-02 S.8961E-03
-2.8101E-02 3.813SE-06 -1.0212E-02
%,0575E-03 7.0266E-03 ~1.8068E-08
-3.8071E-06 -2.8101E-02 1.0212E-02
-2.8101E-02 3.926SE-06 5.8961E-03
7.0257E-03 -4.0S81E-03 -1.7958E-08
-3.6891E-06 -2.8166E-02 -3.4692E-03
-2.8167E-02 4.0S48E-06 6.0088E-03

. =1.7160E-03 -2,9717E-03 -2.5163E-08

-4,05S39E-06 -2.8166E-02 -6.0088E~03
~-2.8167E-02 3.696SE-06 ~3.4692E-03
-2,9713E-03 1.7162E~-03 -2.5185E-08

...........................
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Table 4.11:

........

THE

MER

MATRIX ¢ 12 BY 10 )

o uo =
N=OWONDWULWN -

o .
NN OWONNWU L WR) -

1 : 2
-1.5880E-12 9.8045E-10
2.0381E-11 1.6688BE-03
~1.1045E-02 -4.8651E-12
~1.5494E-12 9.8S6SE-10
2.4122€-12 1.6354E-03
-1.,0918E-02 -1.7175E-12
-2.4578E~-12 -7.7906E-10
1.7996E-11 -1.30S2E-03
~1.0738E-02 -4.6410E-13
-3.6592E-12 -2.8330E-09

3
-1.6599E-03
7.6073E-10
-1.0812E-12
=1.6433E-03
1.1361E-08
1.42S2E~-12
1.3046E-03
=-8.1844E-10
-2.8724E-13
4.8327E-03

The MER and MRR Matrices

4
-4,.6650E~-14
1.2781E~-11
-1.3452€-02
-1. 150&-14
-8.4481E~12
4.0233E-03
-2.9036E-14
2.2303E-12
2.1881E-02
-~1,6287E-13

2.3622E-11 -4.8232E-03
-1.077SE-02 -4.9025E-13 -6.8225E-13 2.4690E-02

-2.8561E-09 -9.8949E-13

6 [4 8 9
=1.9443E-10 -7.34SBE-03 -2.0S18E-11 -2.1316E-03
7.6551E-03 ~4.9316E-10

9.1886E-13

1.6507E-13

8.8361E-~12 -3.58S7E-04

-3.2844E-0S

2.0988E-10

2.6411E-13 -1.1448E-13

7.60S6E-11
=-3.3330E-03

3.6726E-03
1.S284E-11

5.4984E-15 -1.0802E-13
-7.2756E-11 -3.28S3E-03
3.1574E-03 -3.6427E-11

-3.9383E-14

3.707SE-14

2.8388E-93 5.1427E-11
3.1986E-12 8.4627E-15
2.2558E-12 8.0639E-04
~1.4116E-03 -3.4740E-11
6.5322E-15 5.2626E-15
-3.9170E~13 -2.3104E-05
5.5245E-04 9.4759E-12
-3.3571E-15 3.G6610E-14
-1.8075E-13 -1.2039€-03
9.1035E-04 -4.8622E-12
'8.1567E-16 1.2247E-15

A

MATRIX ( 12 BY 3 )

11
12

[
owWwoNOWMSWR -

1
-6.5117E-04
8.8738E-08
3.3814E-11
-8.5118E-04
8.9906E-08
3.0492E-11
=7.1776E-04
9.8472E-08
3.1958E-11
-7.9365E~-04
1.0907E-07
3.247SE~11

=4
8.952SE-08
6.S5131E-04
2.3734E-10
8.8528E-08
6.5122E-04
2.374SE-10
9.867SE-08
7.1774E-04
2.36857E~10
1.0810E-07
7.9356E-04
2.3681E-10

3
7.7948E-13
-1.2353E-11
6.0834E-03
7.657SE-13
=3.0140E-12
8.1338E-03
4.3753E-13
-5.2949E-12
6.2153E~03
1.6303E-14
-6.8254E-13
B.1993E-03

AN P S e

S
3.9018E~14
6.8800E-12
-7.2776E-03
-1.066SE-14
-4,5237E~12

2.4678E-02
-9.2454E-14

1.2231E-12
-8.3798E~-03
-4.6523E-13
-6.5593E-13
-1,3608SE-02

10
1.1447E-10
-1.4643E-02
-2.2370E-11
-8.9715E-14
1.0167E-02
2.5578E-1S
2.2502E-14
-9.3469E-03
7.4532E~-15
1.3914E-14
4.5114E-03
=1.4097E-15

63




R SLSL W R TR TR oow e % ARSI A A SAS S WAV e '.'\"v-fr PO WS I SR S Ll e P M -~ :'.‘:*
3 "
b 4.4 The Solar Optical Telescope
?: Figure 4.2 is a schematic of the solar optical telescope.
s
i
A
"';. @
2/
' Height = 28m
i 2
‘

]

N R gy ;‘g:;

R
o

o hig

2%; Figure 4.2: The Solar Optical Telescope

- The telescope model was developed by the Charles Stark Draper Labora-

‘% tory (CSDL) primarily for the purpose of providing a minimum complexity

,%‘ A structure for the evaluation of LSS control design techniques. The

3 outputs for the model (not shown in Fig. 4.2) are the telescope line

§ ; of sight in the x and y directions and the focal length (defocus) of

i? the lenses located at the top and bottom of the telescope. The nodes

7“ shown on the telescope represent the spatial locations for 45 admis-
sible sensors and 21 admissible actuators. Tables 4.12-4.14 provide
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is: Table 4.12: Telescope Sensor Description
s
# Sensor# Type Nodal Location Direction
1 Line of sight angle -——- X
";‘ 2 " — Y
A . 3 Defocus - -—-
E 4 Linear Displacement 1 Y
5 " -l z
6 X 2 z |
3 7 " 3 X
| . 8 n 3 Y
9 " 3 z
2 10 " 4 7
"1 " 5 x
I 12 " 5 Y
e ]3 " 5 z
# 1 : 6 7
:-"4 15 " 7 Y
< ]6 " 7 Z
A 17 " 8 z ¥
X 18 " 9 4 ‘
3 19 " 10 z
2 20 " 1 X
¥ 21 " n Y
N 22 n ]1 z |
2 23 " 12 Y
e 24 " 12 7 “
. 25 Linear Rate 1 Y |
. 26 " 1 4 |
Ly 27 " 2 7 |
28 n 3 X :
29 " 3 Y
: 30 y 3 z
& 31 " 4 7
: ‘ 32 " 5 X
r 33 " 5 Y
- 34 1 5 Z
) 35 " 6 ya
j‘ 36 " 7 Y
S 37 " 7 z
38 ) 8 z
> 39 " 9 7
B 40 " 10 Z
2 41 " n X
42 " 1 Y
< 43 " 1 z
44 " 12 Y
45 " 12 4
14
6

R

Y,
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1 Table 4.13: Telescope Actuator Description
-*3 Actuator (Force)# Nodal Location Direction
‘? 1 1 Y
% 2 1 Z
el 3 2 'z
; 4 3 X
5 3 Y
o 6 3 y4
7 7 4 Z
§ . 8 5 X
9 5 Y
10 5 4
1 6 4
"y 12 7 Y
13 7 z
3 14 8 Z
8 15 9 4
- 16 10 YA
17 n X
& 18 11 Y
i 19 n Z
; 20 12 Y
-2 21 12 4
¥
Table 4.14: Telescope Specifications
¥, Specification
4 o Optical line of sight angle (LOS,) 65.2 Sec
i o, Optical line of sight angle (LOS,) 65.2 Se¢
i: o3 defocus | .001 mm
i My force actuator O N
I
:ﬁ
;‘1
&
é\
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specific location, type and orientation information for these
admissible sensor and actuators and also a listing of the specifica-

tions (az, uz) chosen for the outputs and actuators.

4.4.1 Telescope Fodel Development

The telescope model used in this research was developed from
NASTRAN data generated by CSDL in early 1980. The data contained
estimates for the first 44 mode shapes of the structure and also
provided location information for the two sinusoidal disturbances
Sy» S, shown in figure 4.2. Using the technique discussed in Section
4.2, a 10 mode, 20 state, 1inear stochastic model coupled with a 2
mode, 4 state, 1inear stochastic model of the disturbances were adopted.
The criterion used for choosing 10 modes from the 44 modes was the
component cost algorithm developed in [4]-[7]. The technique
ranks the modes based upon their contribution to a quadratic functional
of the system outputs. A discussion of this modal cost analysis selec-
tion algorithm as applied to the CSDL NASTRAN data is provided in [75].
The end result is a system of type S(24, 3, 21, 45) described below:

x(t) = Ax(t) + Bu(t) + Dw(t) ; xeR24 . ueR21 . WeR23
(5,8) controllable
y(t) = Cx(t) ; yeR3 + (A,C) observable

(8.27) £ 2(t) = Mx(t) + v(t) ; z, VeR45 ; (A,M) measurable

Ew(t)} =9 , E{v(t)} =9

t - We(t- 0
s§<"( )> W) s VT = [( i J
. V(t) N 0 VG(t-T)

<

CHmc i

NN

A
AAaTal, ta
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i , The contents of the matricies A,B,C,D,M.,W and V are described as follows:
24
<z
0 I 0 0 0 0
8 21
B TR 0 0 0 0
' 0 ] 0 I, 0 0 BE
u}% 0 0 -uo -2, 0 0 0
B
%3 0 0 0 0 0 I, | BR
b 0 o 0 6 0 o0 |
; where S is the couang matrix between the telescope and the distur-
52 bances $4 and S, and,
N
-; Igs I, = 8x8 and 2x2 identity matrices !
y 4
-u® = 8x8 matrix of the squared modal frequencies, i.e. ‘
2 w? = diag. [.8347, 2.7356, 3.9706, 4.3776, 7.7455, |
g |
?_:?ﬁ 13.175, 13.339, 59.112] (radz/secz) |
-28w = 8x8 modal damping matrix, i.e.
2tw = diag [.001827, .0033079, .003985, .004184,
“’J“ .005566, .007259, .0073046, .015378] (rad/sec)
g
- 5 = 2x2 matrix of the squared disturbance frequencies,i.e.
%
BN 2 2,...2
W5s wg = diag 1 [3947.8, 986.96] (rad“/sec”)
fg
i -2tw, = 2x2 disturbance damping matrix, i.e.
. 2sug = diag [.1257, .0628] (rad/sec)
3
»«v""ﬁ
-

Fy
by

[




0 ME 0 0 MRR

The contents of the matrices S, BE, BR, CE, CR, ME, and MR are shown

in tables 4.15-4.18.

The noise intensity matrices are defined as follows:

23
F—A——\
i) - 2
@32) wa |0 23, O 12‘(N2)
0 W, My = (3.95) I,(N?)
45
Lo
vy 0 o7 V; = (1.0x1074)1, (rad)?
(4.33) V= [0 V5 0 |Las; V= (1.0x107)1,, (m)?
o 0 v, V3 = (1.0x1077)1,; (w/s)?
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Table 4.17:

I AN A B e

“

L e A

The ME Matrix

THE ME MATRIX ( 21 BY 8)
1 e 3
1 6,.7398E-05 -4.6154E-03 -2.SB21E-04
2 -1.5203E-03 9.3534E-04 -5.1396E-03
3 -1.5071E-03 7.9167E-04 -5.1753E-03
4 1.9461E-03 -7.8443£-03 2.3592E-06
5 -6.6280E-0S5 4.6117E-03 -2.SB14E-04
€ 1.5206E-03 -9.3542E-04 -5.1395E-03
7 1.5068E-03 -7.9106E-04 -5.17S3E-03
8 =-6.0352E-03 -1.S5745E-03 -3.4857E-08
9 8.6611E-05 ~4.9438£-03 -3.2884E-04
10 -1.5i72E-03 9.1748E-04 -5.1S20E-03
11 -1.S096E-03 8.0491E-04 -S.1720£E-03
12 -B.69SSE-0S5 4.9415E-03 -3.2893E-04
13  1.5172E-03 -9.1803E-04 -5.1S20E-03
14 1,5098E-03 -8.0495E-04 -5.1720E-03
15 -1.5215€-03 1.0421E~03 -5.1323E-03
16 1.5219E-03 -~1.0431E-03 -5.1322E-03
17 -6.3131£-03 1.4522E-02 2.SS35E-07
18 8.5420E~05 -4.94S3E-03 -3.2895E-04
18 ~-1.5036E-03 6.9308E-04 -5.1946E-03
20 -8.5364E-05 4.9448E-03 -3.2902E-04
21 1.S030E-03 -6.9042E-04 -5.1947E-03
S 6 ?
1 2.7860E-04 1.SSEEE-02 -3.7921E-04
2 7.7980E-03 2.6251E-03 ~3.4506E-03
3 .7.88S3E-03 -4.S5157E-03 -3.5444E-03
4 -7.1741E-06 -8.1490E-0S5 1.7048E-02
5 2.7837E-04 1.5S83E-02 4.8135E-04
6 7.7978E-03 2.6072E-03 3.4683E-03
? 7.88S3E-03 -4.5461E-03 3.514S5E-03
8 1.0398E-07 2.3312E-06 —-4.7891E-04
9 4.4976E-04 1.2S68E-03 -5.9158E-04
10 7.8314E-03 1.2122E-03 ~3.4728BE-03
11  7.878S1E-03 -3.0851E-03 -3.5398E-03
12 4.5023E-04 1.28500E-03 S.9857E-04
13 7.8314E-03 1.1S03E-03 3.4807E-03
14 7.8791E-03 -3.1239E-03 3.5190E-03
1S 7.78%4E-03 6.2495E-03 -3.4045E-03
16 7.78S8E-03 6.2355E-03 3.4456E-03
17 ~5.7021E-07 -1.0374E-05 1.4729E-03
18 4.S009E-04 1.25S5BE-03 -5.8276E-04
19 7.8327E-03 -8.1253E-03 -3.6105E-03
20 4.S043E-04 1.2482E-03 6.0083E-04
21 7.9330E-03 -B8.1624E-03 3.5576E-03

. et N e e Ye e e A e v s,
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-4,9274E-03
-7.3871E-04
1.4790E-03
1.0826E-06
-4,9299E-03
-7.8891E-04
1.4799E-03
=-4,4647E-09
-3,8926E-04
-3,3665E-04
1.0263E-03
-3.3960E-04
-3.3656E~04
1.0270E-03
-1.9280€E-03
-1.9286E-03
-3.9864E-07
-3.8915E-04
2.6168E-03
-3.8942E-04
2.6184E-03

8
-6.0651E-05
8.1133E-05
1.4746E-04
4,8504E-04
6.0648E-0S
-8.1247E-05
-1.4714E-04
~3.0858E-04
6.4021E-05
9.5121E-0S
1.4169E-04
-6.4624E-0S
-9.5518E-05
~1.4084E-04
6.07S0E-0S5
-6.1232E-05
-5.0878E-04
5.9931E-05
1,8241E-04
=-5.9368E-05
-1,8238BE-04
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iy Table 4.18: The MR Matrix
‘ THE MR MATRIX ¢ 21 BY 2)
9.
iyl
) 1 2
o {1 S.6320E+00 -4.5449E-07
= 2 4.4626E+00 4.0000E+00
. 3 -5.5374E+00 4.0000E+00
4 0. ~5.6320E+00
; S S5.6320E+00 4.544SE-07
6 4.4626E+00 -4.0000E+00
5 7 =-5.S374E+00 -4.0000E+00
3 8 O. 1.4368E+01
2 9 -1.436BE+01 -4.5449E-07
R 10  2.4626E+00 4.0000E+00
11 <3,S374E+0C 4.0000E+00
12 -1.4368E+01 4.S449E-07
o 13 2.4626E+00 ~4.0000E+00
W 14 -3,5374E+00 -4.0000E+00
o 1S  9.4626E+00 4.0000E+00
;. 16  9.462BE+00 ~-4.0000E+Q0
< 17 0. 1.4368E+01
> 18 =1.4368E+01 -4.5449E-07
‘ 19 <1.0S37E+01 4.0000E+00
20 -1.4368E+01 4.544SE-07
4 21 -1.0S37E+01 -4.0000E+00
o
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4.4.2 The Telescope SASLQG Problem
The telescope model defined by (4.27)-(4.33) and Tables 4.15-

4.17 will be labeled S (24,3,21,45). The following SASLQG

tele
problem is posed for the solar optical telescope:

Telescope SASLQG Problem (T.SAS Problem)

Given: Stele (24,3,21,45) with only 12 actuators and

12 sensors available for designing an LQG
regulator to achieve the specifications of
Table 4.14.

Required: Specify the closed-loop system which satisfies
either the input constrained specifications
of (3.20) or the output constrained specifica-
tions of (3.21).

The T.SAS problem coupled with the H.SAS problem will be the two
examples used to test the design algorithm of Chapter 7. With the
models of the hoop-column and solar optical telescope developed the
discussion of the design algorithm begins in Chapter 5 with the

development of the sensor and actuator effectiveness values.
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5.0 ACTUATOR AND SENSOR EFFECTIVENESS VALUES

As noted in the introduction, the approach taken by this research
to solve the SAS problem has been to use an LQG controller with a cost
functional (V of (3.11)) tailored to the specifications (02, uz) of
(1.8) by an appropriate choice of the weighting matrices Q and R in V.
Then, actuator and sensor deletion decisions are based on a determina-
tion of how effective each actuator and sensor is in minimizing V.
Those that are least effective are natural candidates for deletion.
Chapter 6 discusses the Q and R weight séIection problem while the
problem of.determining actuator and sensor effectiveness values for a
specified V is discussed in this chapter. Section 5.1 defines the
fundamental elements of these values which are produced by cost analy-
sis techniques, and Section 5.2 combines these elements into the
desired sensors and actuator effectiveness values and provides empiri-

)

cal support for their validity.

5.1 Closed-loop Input and OQutput Cost Analysis

The first step in determining the actuator and sensor effective-
ness values is to determine the contribution that each actuator (ug)s
actuator noise source ("1)' and sensor noise source (Vi) is making to
the minimization of V. The contribution that each output (yi) makes
to V is not necessary for the development of sensor and actuator effec-

tiveness values; however, it is certainly of interest and is directly

.
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related to E_y,% as will be shown shortly.

Also, it is not necessary to determine the contribution of noise
sources (wi°) associated with D in (1.1) since these noise sources
represent disturbances and/or model errors which are assumed to be
independent of the acthator noise sources. That is,the definition of

w in (1.1) can be further extended to:

? W0
(5.1) w# (:o) ;o E(w(tWT(x)) & L wJ 8(t-1)
.th

where wia represents the plant noise source associated with the i

‘actuator.

5.1.1 Closed-1oop Cost Definitions
Shown in (5.2) 1s a partial reproduction of the closed-loop
representation (3.3) for S(n,k,m,2) and the LQG regulator of (3.2)

8 Ax + Bw ;X e (xT QT)T i ws (wT vT)T

(5.2) y=Cx; y=(y uT)T

T Q0
V=EyQdy ; Q= [; ;1

The inputs to (5.2) are the white noise processes w and v, and therefore,
the technique of determiring the contributions that w; and vy make to

v has been labeled by Skelton and co-workers as closed-loop input-cost
analysis (CICA). As a matter of notation, the contribution that v,

makes to V 1s labeled V" while the contribution of v, is labeled v,".

i i
In 1ike fashion, since y and u appear in the output of the closed-loop
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: system (5.2), the determination of the contributions that ¥; and uy
* make to V is called closed-loop output cost analysis (COCA) and the
f contributions are labeled Viy and Viu respectively. The mathematical
. definitions for Vi", Viy, Viw and Viv are:
s ual angg
3 Y ol du; Y
o vy 2 e (MY J
i i °7 ay; Vi
e (5.3)
‘ T
- wil )
_‘ Vi" = 7 Bl g Wil
3 v, =3¢, {-iﬂ{?i vyd
t
5.1.2 Closed-loop Cost Formula's and Properties
:? The following theorem produces formula's for the definitions of
(5.3).
y
: Theorem 1: CICA and COCA Formulas

Given a system of type S(n,k,m,2) reguiated by the
steady state LQG controller of (3.2) and written in the
form of (3.3) the following formulas for v.%, v.¥, v.",
and Viv hold:

(5.42) ¢," = [GXGTR]11 , 1=1,...m

(5.40) v¥ = [C(P+R)CTQLyy o 1 =1, ...

T i T S Pl Vi
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W Vi ¥i=1,...m
(B.4c) U=y, W ¥i=ml
1 l..p

where,

(5.4d) vi"‘a = [BT(K+L)BNa]” ,i=1, ...m
and '

(5.4e) Viwo = [DOT(K+L)D°W°]11 s 1=1, ... (p-m)

(5.47) v," = [FTLFV]_H =21, ...8

where, the matrix L satisfies the following steady state Lyapunov

- equation

(5.45)  L(A-FM) + (A-FM)TL + GTRG = 0

" The proof of theorem 1 is presented in Appendix A, and the formulas

of theorem 1 can be used to establish the following properties for

Property 1: Cost Decomposition

m k
(5.5) v= § v+ } v,y
i=1 i=1
2
(5.5b) v = v+ v,Y
121 L 121 i

Property 2: Sign (For diagonal R, Q, W, and V matrices)
(@) vj!>0,vY>0,v">0,v,Y>0. In addition,

(b) (A,C) observable => V{" >0
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(¢) (A,C) observable, (A+BG,F) controllable = Viu. vy >0

i
(d) (A,D) controllable = viy >0

(e) (A,D) coritro'nab'le, (A-FM,G) observable = Viw, V,iv >0

Property 3: Transfonnat'lon invariance

v,“, Viy . (li and Vi" are invariant under the state
transformation x = Tq, |[T| # 0

Property 4: In ntu nature,

vi"‘ Vi'y i ¥ and vy V do not, in general, represent
the change in V when an actuator. output, noise source,
or sensor is deleted from the system. (i.e. the cost

~ contributions are non-linear functions of input, output
‘and sensing terms and are calculated under the assumption
~that all components are in place and acting).

The proof of properties 1-3 are presented in Appendix A. One other
point of interest for these cost contributions is the relationship
between 01" and Eauiz and V1y and E ‘_yiz when Q and R are assumed

diagonal. Writing out the ii element of the matrices in (5.4a,b) and

. cbmar"lng the results with (3.19) and (3.16) produces the following

mlﬂtsl:
(5.6)  Eulevir’!
5.7  Eyl=vYe

| 5.2 Derivation of Effectiveness VaIues
‘With tll preceding definitions for V1 . Vi 2 and !.'1 the actuator

e lﬂ sensor effectivensss values can now be derived. The actuator value
; '-".‘_-,ﬁﬂ‘ be discussed first.

& Aﬂ);"‘, é:‘, 3
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5.2.1 Actuator Effectiveness Value (V?Ct)
As noted in section 5.1, Vi" represents the contribution that uj

is making to V. Since the function of LQG theory is to use u; so

that V (for a given Q and R) is minimized, a 'large’ Vi" means that

the uy is important to the minimization effort. Furthermore, V.Y > V.Y

i J
implies that the ith control is more important than the jth control

in minimizing V for the given S(n,k,m,2) and Q and R. On the other

a
hand,viw represents the contribution that the io"

actuator noise
source is making to V which is clearly an undesirable result. There-
fore, Viwa > ija implies that the jth actuator is more important to
the minimization effort than the 1" actuator. (i.e. it hinders less)
In light of the preceding discussion some combination of Vi“ and

Viw could be used to form an actuator effectiveness value. The two
a a —

boou
most obvious combinations are Viu/viw » Vs -Viw » and these along with

some not so obvious combinations have been tested during the course of

this research. With the exception of a constrained input power situa-

a

tion which will be discussed in Chapter 7, viu-viw has been the best

combination. It is also intuitively appealing since a linear combina-
a

tion maintains the contributive nature of the values Viu and Viw .

Therefore,

(5.8) Viact A v.Y Viw ,

i

where viact represents the effectiveness value of the 1”' actuator. A

t

negative value of Viac means that the 1th actuator is contributing

nori noise than control action to the minimization of V and is therefore

a candidate for improved noise characteristics, but, more importantly,
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a negative value for ViaCt implies that the regulator might do better

(i.e. achieve a smaller V) if the jth

actuator were deleted! This
condition is impossible for noiseless actuators as shown by [theorem

1, 15]. However, for noisy actuators, this condition has been verified
by data in [16] and is supported by the following theorem which is

proved in Appendix A.

Theorem 2: Deletion of Noisy Actuators

~ _For a system of type S(n,k,m,2) under the regulation
of the LQG controller defined in (3.2), deletion of an
actuator is not sufficient for V(m-1,2) > V(m-2) where

A
(5,9a) V{m,2) = The value of V for a system of type
S(n,k,m,2) under LQG regulation.

(5.9b) v(m=1,2) £ the value of V for a system of type
S(n,k,m-1,2) under LQG regulation.

Given theorem 2, the following definition is important.

Definition 1: AV, act

(5.10) Aviact 2 V(m-1,2) - V(m,2) where the ™ actuator has
' been deleted in V(m-1,2)

Therefore if Aviact is negative, the LQG controller does better with a

fewer number of actuators, and a positive AViaCt implies the opposite.

At this point, it should be remembered that the role of ViaCt in

the solution of the SASLQG problem is to identify the actuator(s) which

are least important to the minimization of V. The preceding discussion




strongly alludes to the fact that the actuators with the smallest

algebraic values of ViaCt

are the candidates for deletion. The
validity of this argument rests squarely on the assumption of the fol-

lowing ordering property: §

(5.11) tiact > vjact - AViaCt > AVjact:

jact throwing away the ith actuator will

th

In other words, if ViaCt

>V
produce a less favorable perturbation in V than throwing away the j
actuator. Unfortunately, a proof for (5.11) has not been found; however |
intuition and empirical results point strongly to its validity. Figures ‘
5.1-5.3 are examples of data which provide empiricél support for (5.11).

Figure 5.1 1is a plot of V;°® for the system s, (26, 24, 12, 39)

Hoop
superimposed with Aviact (i.e. ¥(11,39) - V(12,39) for each of the 12

actuators. The Q and R matrices used in V are given in table 5.1.

Table 5.1: Hoop Column Weighting Matrices, 1
Q = d1ag [82.07, 82.07, .8207, 82.07, 82007, 08207’

400,000, ........ 400,000] x10°

) | mr—
18 entries

= 1075
R=10 xI12
It should also be noted for fiqure 5.1 that the actuator number, as
defined in table 4.3, is plotted on the horizontal scale in order of

decreasing V1°°t.
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ACTUATOR NUMBER

0 Il 8 7 2 | 4 5
1 T T 1T 1T 1T 7T

Figure 5.1: Hoop Column ViaCt Data for
Q and R of Table 5.1

Since the actuators are plotted on the horizontal scale in order

of decreasing ViaCt

» the monotonic decrease of the data in figure 5.1
is empirical support for the ordering property of (5.11). Note also
that ViaCt does have negative values which supports theorem 2 and
shows [theorem 1, 15] does not apply in the noisy actuator situation
defined for S(n,k,m,2). Figure 5.2 is another plot of actuator effec-
tiveness data for SHoop(26,24,12,39) with the choice of Q and R defined

in table 5.2.
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Table 5.2: Hoop Column Weighting Matrices, 2

Q = diag [0.8207, ... 0.8207, 0.4, .... 0.4)] x]O8
————— e——_ |
6 entries 18 entries

- 1012
R=10 xI]2

ACTUATOR NUMBER

9 3 7 5

T T | > |
o
X |
‘:s -5 H- |
o |
co- |
D |
<
S -0
©
o.—
N
d -5

Figure 5.2: Hoop Column ViaCt Data
for Q and R of Table 5.2.

The data of figure 5.2 also exhibits a monotonic decrease which agrees
with the ordering property of (5.11). A comparison of figure 5.2 and
5.1 reveals one other interesting fact which will be used later in

Chapter 7: The relative ViaCt ranking between actuator 3, 7, and §




g} changed as a function of Q and R. That is the ranking (3,5,7) in
. figure 5.1 became (5,7,3) in figure 5.2.

Fﬁ Actuator effectiveness data was also obtained for the solar

é% optical telescope (i.e. Sq,,,(24,3,21,45)). A sampling of this data
ii | is shown in figure 5.3, and the weighting matrices are defined in

S table 5.3.

N

e '

B% Table 5.3: Telescope Weighting Matrices

i Q = diag [10%, 108, 103

]

E‘ig; R = 101,

The data of figure 5.3 is presented in the same format as figures 5.1
and 5.2 where the actuator numbers are now defined by table 4.13 and
av,*°t = v(20,45) - v(21,85).

R ACTUATOR NUMBER
W A 7 7 i |

 Figure 5.3: Telescope V1aCt Data for
Q and R of Table 5.3.




Again, the monotonic decreasing nature of the data is empirical

support for (5.11).

In summary, all the pertinent data gathered in this research
excluding ihe one special case of constrained input power discussed
in Chapter 7, has supported the choice of (5.8) for the actuator
effectiveness value to be used in the SASLQG algorithm. Furthermore,

as evidenced by figures 5.1-5.3, ViaCt appears to be a 'good' estimate

of both the sign and magnitude of AViaCt.

The two major concerns for (5.8) are the lack of a proof for the

~ ordering property of (5.11), and the inability of (5.8) to account

for the possibility of the loss of controllability or stabilizability

of the system if a particular actuator is deleted. The second concern

is further addressed in Chapters 7 and 9.

5.2.2 Sensor Effectiveness Value (Visen )

It is again worth noting that the role of the actuator and
sensor effectiveness values in the SASLQG Algorithm is to identify
those sensors and actuators which are contributing the least to the
minimization of V where V has been choosen through Q and R selection
to insure that the LQG controller achieves desired input and output
variances.

As discussed in Section 5.1, V,' represents the contribution that
the ith sensor noise source makes to V. Therefore, those actuators
with larger values for Viv are contributing more noise to V than

those actuators with lesser Viv, and at first glance appear to be

candidates for deletion. However, the sensor measurements for

S(n,k,m,2) under LQG regulation are being passed through a Kalman-




Bucy filter whose function is to "de-emphasize" or "throw-out" measure-

ments which have more noise than estimation information.[1] Therefore,
any noise source that is making a ‘large' contribution to V emanates
from a sensor which is making an even 'larger' contribution to the
estimation information necessary to minimize V. This is further
supported by taking an expanded look at the formula for Viv in (5.4f).
Assuming a diagonal V:

th

(5.12) v, = miTPLPmivﬁ'l where m, is the i™h col of M'

Equation (5.12) shows that Viv is an explicit as well as an implicit

-1 which is the inverse of the variance of the ith

function of Viq
sensor noise source. Therefore, Uiv wi11 tend to be Zarger for sensors
with amaller noise variances! Of course, the estimation information
contained in m¥ PLPm1 will have a significant effect. Also, in
Appendix B, a development is presented which shows a significant
correlation between Viv and the Chen-Seinfeld Switching functions.
Chiu, in [15], has shown that sensors with Zarger values for those
switching functions are the ones which satisfy the necessary conditions
for minimizing V.

In 1ight of the above discussion an obvious choice for the sensor
effectiveness value is:

sen 4 , v
(5.13) v, v

Sensors with the smallest values for V1v are then taken as candidates

for deletion. The following definition, which is analogous to




Definition 1 in Section 5.2.1 is now germane to the discussion.

Definition 2: Avise"

(5.14) v SN 2 vma-1) - v(m,1)

where V(m,2) is defined in (5.9a) and V(m,2-1) is
the sensor dual of (5.9b)

As in the case of ViaCt the essential property that must be satisifed
by Visen is the ordering property:

sen sen sen sen
(5.15) v, 2 V7 AV 2 by

Again as in the case of V{act’ only the intuitive arguments of the
preceding discussion and empirical results currently exist to verify
the ordering property of (5.15).

Figures 5.4-5.6 contain data, which support the validity of
(5.15). meSAisamuof%“"mrmewumsm”u&uJa
39) superimposed with av, %" (i.e. v (12,38) - ¥(12,39)) for seven
sensors. The Q and R matrices used are those defined by table 5.1.
It should further be noted that sensor numbers on the horizontal
scale are defined by table 4.2, and they are ordered from left to
right in terms of decreasing v.**". The monotonic decrease of the
data in figure 5.4 is empirical support for the ordering property of
(5.15). Figures 5.5 and 5.6 show data analogous to figure 5.4 for
sHoop (26, 24, 12, 39) with the weights of table 5.2 and S

tele
(24, 3, 21, 45) with the weights of table 5.3 respectively.

--------
----------

---------




S e

52 A A,

Eng b it

LRy

I

AL

FAt

T

oy At

R A

(AV;®®"and V}Y) x 108

dn e T
4 et AT IR el AR o it £ R A M S A A A SVa e

100 -

.o
o
|

TR AT

89

0 38 37 34 29 14
SENSOR NUMBER

Figure 5.4: Hoop Column Visen Data

for Q and R of‘Table 5.1;
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(AV;3®"and V}')

37 10 17
SENSOR NUMBER

Figure 5.5: Hoop Column Visen Data for

Q and R of Table 5.2.
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Figure 5.6: Telescope Visen Data for
Q and R of Table 5.3.

The data of both figures again exhibit a monotonic decrease and offer
further support for (5.15).

Another point of interest surfaces when comparing figures 5.4
and 5.5. This comparison reveals that the relative Visens ranking of
sensors 10 and 37 changed as a function of Q and R, a matter of
importance to the development of Chapter 7. Also, in none of the data
of figures 5.4-5.7 did deleting a sensor provide better regulator
performance (1.e. Visens was never negative). This result is

empirical evidence of the following theorem which is proved in [15]
and [16] and also in Appendix A. o
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3 Theorem 3: Deletion of Noisy Sensors '

For a system of type S(n,k,m,2) under the regulation

o) of the LQG controller defined in (3.2), deletion of a
23 sensor cannot reduce V.

‘;

By

In summary, el pertinent data gathered in this research supports

...................
.....................
............

aé the validity of choosing (5.13) to represent the sensor effectiveness
N )
':3 value for the SASLQG algorithm. Also, as evidenced by the data of
' figures 5.4-5.7, Visen is a 'good' estimate for both the sign and
Py
o magnitude of Avisen. However, the same two concerns that exist for
Pl
ig viact’ also exist for visen: There is currently only empirical and
Z.A

v intuitive support for the ordering property of (5.15), and Uisen does
G

'§ not consider that measurability or detectability might be lost when
?: the ith sensor is deleted. The measurability/detectability concern

is further discussed in Chapters 7 and 9.

2,

;*; With the expressions for sensor and actuator effectiveness values
;h chosen, the next order of business is to develop an algorithm for
Vﬁ selecting Q and R so that the LQG controller which minimizes V also
¥ achieves desired variance constraints on system inputs and outputs.
> This algorithm is the topic of Chapter 6.
-
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& 6.0 LQG WEIGHT SELECTION

ﬁ | A fundamental step in solving the SASLQG problem is to adjust

i ' the elements of Q and R in V such that the resulting LQG controller,

® for a fixed set of sensors and actuators, achieves the input-constrained
§§ requirements of (3.20) or the output constrained requirements of (3.21).
: A statement of this mathematical problem will prove useful. Substitut-
! ing the definitions for E_y? and E_u,2 provided by (3.16) and (3.19)

% into (3.20) and (3.21) the following statement for a constrained

%’ variance LQG (CVLQG) problem results:

o CVLQG Problem

z Given: A system of type S(n,k,m,%) under the control

P of an LQG regulator defined by (3.2) and with
variance specifications (cz, uz) of (1.8)

S Required: Determine the diagonal elements of Q and R
3 such that one of the following holds:

Input Constrained Solution

i If the specifications (cz. uz) are achievable

S 2
Min ] (cy(P+X)c,)/a,
i=1

% Q,R

% -2 T,5 2

4 subject to ry by KXKb; = uy ¥i=1, ...m
% else,

~
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3 k . .
4 min § (c,T(P)e,) /o2 ¥i: ¢ T(PH)c, > a2
= i 17774 i i i
| Q,R i=1

subject to r, "2, TkiKb, = w2 ¥i=1, ... m
w Qutput Constrained Solution
i " If (az. uz) are achievable,

| T2 T 2

B Min T (r,""by KXKby)/uy
& - (6.22) QR =1
f% | ' subject to ciT(P+i)c1 = oiz ¥i=1, ...k

- else,
LI 2 2, T, 2
3 Min T (r, "%y KXKby)/uy® ¥4 r. "% 'KXKD, > by
v Q,R j=]

, (6.2b)
<l Tiows 2
a5 subject to ¢; (P+X)ey = o,” ¥1 =1, ... k

' The CVLQG problem is a non-linear programming problem which has
gé two distinct requirements: The first being to determine if a diagonal
2 Q and R exists to achieve (o2, u%), and the other being to adjust the
- | Q and R elements to achieve either the input-constrained or output-
§§ constrained solution. An obvious approach to this problem would be
W
;g N to apply standard, non-linear programming techniques. However, these
B techniques almost always require gradient calculations and a search
i? routine for an appropriate step size. ([46], [59]-[61]) Given the
E% possibility of a large number of inputs and outputs, a large system

order and the requirement for solution of an algebraic Riccati equa-

tion at each fteration € the al~ rithm and at each iteration of any
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step size search routine, the calculations required by these standard
gradient approaches would be prohibitive when applied to the CVLQG
problem. This chapter presents an algorithm for solving the CVLQG
problem which requires only the standard LQG calculations of (3.2)-
(3.6) and hence avoids the computational burdens of gradient calcula-
tions and a step size search routine. The algorithm also uses inher-
ent properties of the LQG controller to make update and existence
decisions. Before discussing the algorithm, a survey of past techni-
ques and motivations for Q and R adjustments is presented in Section

6.1. Then, Section 6.2 provides a general discussion of input-

constrained and output constrained solutions while Section 6.3 presents
the important theory behind the algorithm. The specific steps of the
algorithm are provided in section 6.4, and the algorithm is applied to
the hoop-column antenna model and the telescope model in sections 6.5

and 6.6 respectively.

6.1 Past Approaches to Q and R Selection

Even though LQG theory has a natural application to the problem
of satisfying variance constraints on system inputs and outputs, not
a great deal has been published on the subject. In [ 2], Bryson and
Ho suggest making Q and R diagonal such that:

4y = Vay? 2 2
(6.3) ; where o, and y, are components of the
i i

specifications (02, uz) in (1.8)

- 2
Y‘i 1/u_i
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This choice for Q and R means that V in (3.12) can be written in
the following form
k m
3 o 2, 2 2, 2
\ i (6.4) v Z] Eyi /o;" + 121 E Uy /ug
From (6.4) it can be seen that the LQG controller designed by the
weighting matrices (6.3) minimizes the sum of the output and input mean
square values normalized by their specification. Therefore, selecting

(6.4) for Q and R guarantees that the average of the normalized mean

o o€ bk B ) e B 7

square values of all components has been minimized. While this is a
step in the right direction,it does not guarantee that the LQG control-
ler will meet the requirements of the CVLQG problem. In the past, if
using (6.3) did not achieve the desired variance specification it was
necessary to resort to trial and error variation of the elements of Q
and R based upon a set of general "directional" guidelines. (See [1],
[ 2], [47]).

" Recently, in (44], [48] and [49], iterative algorithms have been

7 e e cal

proposed for adjusting elements of the Q and R matrices in order to
{ achieve desired variance specifications on system inputs and outputs.
2 In [44] the following update equations are proposed.

2.

. Eyy () N 2,. 2. ..
(6.50)  ay(*1) = —mq, () = 0, (1) + 5 (£, 205) - 5,2, (3)
9 9

Ak AN AL A

2
E_u;"(3)
(6.50)  r,(3+1) = “T- ro(5) = ry(d) + u—? (Eug?Q) - w e @)

PSR F g )




Initially, if outputs are out of specification (an12/°12 > 1), the
algorithm in [44] uses only (6.5a) to adjust the weights on those
% outputs. When all outputs are within specification the algorithm uses
; (6.5a) on all outputs and (6.5b) only on the inputs that are within
’ specification (Eauizlui2 < 1). The algorithm continues until all
specifications are satisfied or until the components that are out of
2: ) specification are no 1longer changing.

In [48], the following update equation is used: (assuming Q and
R diagonal)

(6.6) A(IH1) = a(j) + stje<j)
where

A = [q.l’ qz, cvey qk’ Y‘-l, ee e Y‘m]

Bj = scalar step length parameter at iteration j

o Lall. A

(e, - o,%1a;(3)  i=1, ... k and Ey2 > o2

e(j) = [E,Uiz - uiZ]ri(j) i=1, ... m and E@ui2 >

evata s Aol ol

0 otherwise

i Hj = Broyden approximation to the inverse of the Jacobian

of e(j) with respect to A(j), [50].

Therefore, the algorithm of [48] adjusts those components of Q and R
which correspond to outputs and inputs that are out of specification.

Neither [44] nor [48] give conditions under which the algorithms can

.......
........




be expected to converge to a solution or specify conditions under

which it is known that no choice for Q and R would exist. Also not
addressed are the input-constrained and output constrained requirements
of (6.1) and (6.2).

In [49], the following update equation for ry is proposed for each

sample time in a self-tuning, discrete time, LQG regulator:

. (k
6.1 rylk) = vy (k) +ulio) Lo (200) - )

4

where 0 < u(k) < 1 and u(k) is choosen to insure ri(k+1) is positive.

The objective is to use (6.7) to design a self-tuned LQG regulator

which has the inputs operating at their variance specifications uiz.
Other studies on the selection of weights Q and R have entirely

different motivations, but are mentioned here for completeness.

‘Considerable study has been devoted to the selection of Q and R to

achieve desired closed-loop pole locations, [51]-[54]. References

[55] and [56] relate Q and R selection to such additional frequency
domain properties as stability margin and disturbance rejection. In
[57] Sesak et al. propose non-diagonal selections for Q and R which
serve to suppress LQG controller excitation of unmodeled §ystem states.
In work related to [51]-[54] Sesak et al., in [58], propose a technique

for selecting non-diagonal Q and R so that the compensator poles

(i.e. the eigenvalues of Ac) are within some prespecified stable region.

As a final note, the algorithm presented in this chapter has been
documented in [45]. With this background for Q and R presented, the

algorithm development begins with a discussion of input and output

constrained solutions.

.......
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6.2 Input/Output-Constrained Solutions

Before presenting the theory behind the proposed algorithm, a less
technical discussion of the input-constrained and output-constrained
requirements of (6.1) and (6.2) for single input single output systems
(i.e. S(n,1,1,2)) will prove useful. For S(n,1,1,2) the LQG cost
functional of (3.12) takes the following form:

(6.8) V= E'y12q] + E°u12r1

6.2.1 Input-Constrained Discussion (S{(n,1,1,2))

Assume that ry can be adjusted so that E°u12 u]z. Labeling this

value for ryas ry (6.8) can be written as:
(6.9) V= E“ylqu + u12rm

For the given S(n,1,1,2), Hs and output weighting a7s the term “12rM
represents a fixed control penalty term in V which insures that all
available control power (in a stochastic sense) is beiny used by the
LQG controller to minimize anlqu' Therefore the term Ewy]2q1 cannot
be made smaller without violating the input constraint. In light of
this discussion, the appropriate choice for ay to achieve the input-
constrained requirement of (6.1) is 1/012. Therefore, define

q]* a 1/012. The preceding situation is represented pictorially in
figure 6.1 by making use of the known inverse relationship between

2 and output variance Ewy]z. (1] The two curves

control power E_u,
represent the performance lines of the different systems Sa' Sb with

output weighting q1*. The interior of the rectangular box formed

- -\;,- T"‘;"‘ o ',n'* “.4 i* P T R TR "f" -.\.".-“;.:‘-.."x" V" s O




Sb(“)'a')n

% (n,1,0,8)
>
A, € u)

Figure 6.1: S(n,1,1,2) Input-Constrained Solution

by the oy Wy speci fication lines represents the region in which

(012’ u]Z) is satisfied. Clearly, an LQG controller does not exist

for S, which can meet (012. u12). Therefore the input-constrained
condition (6.1b) is sought. On the other hand, there are essentially
an infinite number of LQG controllers which can keep the operating

point of S, within the (a]z, u]z) specification region, and the require-
ment (6.1a) applies. The current operating point of both systems is
assumed to be (j) and the objective of the input constrained solution

is to move the operating points to (Z) by finding ry: Then aMb repre-

sents the the minimum achievable output specification for (6.1b) and

Y represents the minimum achievable output specification for (6.1a).
a

6.2.2 Output-Constrained Discussion (S(n,1,1,2))

A discussion of the output-constrained solution proceeds in an

identical fashion. Assume that a g, is found such that E’yi2 = ciz.

Labeling this value Ay (6.8) becomes:

s e
Y

e P A h e e et ST T e T RIS TN . N
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(6.10) v = oy%, + Euy’ry

For the given S(n,1,1,2), 91s and input weighting ris the term °12qM
represents a fixed output penalty term in V which produces the maximum
allowable output variance. Therefore the term E¢u12r] cannot be
reduced without violating the output constraint and ry e ]/u1 < r]*
satisfies (6.2). Figure (6.2) is a pictorial representation of systems

*

Sa(n,l,l,z) and Sb(n,l,l,z) with control weighting ry -

l I Sb(n)lal)')
| \L S‘(n,),lﬂ)
|
— 3 -
M, M, A €.yl

M,

Figure 6.2: S(n,1,1,2) Output-Constrained Solution

As in the input constrained case, the (012 u12) specification can be
achieved for Sa but not for Sb' The objective of the output-constrained
solution is to move the systems operating point from (I) to (X) by
finding qy. Then, uMa satisfies (6.2a) and uMb satisfies (6.2b).

6.2.3 Multi-Input/Output-Constrained Solutions
There is a subtlety in achieving (6.1) or (6.2) which does not

appear in the single-input, single-output case and should also be
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M discussed before the theory is presented. Assume a single input two
output system (i.e. S(n,2,1,2)) with specifications (c]. G u]). The
pictorial representation of both outputs vs. control effort is shown in

Figure 6.3 for an input constrained solution and the output weighting

Q- diag(q1*. a )

E..y.a f
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From the figure it is obvious that o, is restrictive and an LQG

controller does not exist for (oz. uz). Therefore, the input constrain-

ed solution adopts the criterion of (6.1b) and moves from (j) to fg)

%g . by finding ry- At point (g) E,y]2 is well within specification and
i; anzz is well above specification. The requirement of (6.1b) in this
iﬁ case is that E¢y22 be as small as possible. Since E“y12 is well within
;j ) specification, a logical course of action would be to channel some of
w the control effort from 2 to 17T For the LQG controller, this is
CQF accomplished by decreasing 94 and adjusting ry SO that all allowable
’§ . control power is still being used (i.e. keeps the operating point at
g u1). This redistribution of control power continues until E«¥12

§ reaches its specification at point (:) or (although not illustrated
g in figure 6.3) E;yzz reaches its specification. Since all available

| control power has been directed toward the output above specification,
23 (i.e. E’yzz) the requirement of (6.1b) should be satisfied. The

E% specific output weighting condition which achieves the control

» redistribution pictured in figure 6.3 is Q = diag (qM, qz*) = QF- An
3% identical situation to the one pictured in figure 6.3 exists for the
éi output-constrained solution for S(n,1,2,2). The input weighting
': condition for this situation is defined to be Rﬁ.

) The discussion just presented has emphasized important elements
¥ ' in the solution of the CVLQG problem. It also raises the questions
?; of whether the specific weighting conditions Q*, R*, Qﬁ, Rﬁ exist and
{3 - how to find them. The theory presented in the next section addresses

these questions.




6.3 Theory
In this section, the supporting theory for the algorithm of

Section 6.4 is presented. The following definitions are fundamental

to the discussion.

6.3.1 Definitions
The following are formal multiple input/output definitions for

the expressions adopted in Section 6.2.

. u
Definition 3: Vch’ Vspc’ Vspc

. Por the system S(n,k,m,%) using the LQG controller of (3.2)-(3.6)

k
(6.112) W (QR) 2 T EyyPro?

m
u 4 2, 2
(6.11b) Vspc(Q,R) igl Eau1 /"i

1 A .
: (6.11¢) Vo (QR) = ¥l (QR) + Vo (Q.R)
:

where the arguments (Q,R) represent the weighting matrices used

in determining the LQG controller.

Definition 4: Q*, R*, Qu, Ry, Qi RE

For the diagonal weighting matrices Q, R

— .

.. . 2 . . . 2 _Variance
(6.122) Q¥ = (Q: a4 = V/oy" 5 1 =17, ... k) 5 0% =gra ification



-

) J_Jgfa.'u._l.’.

as ‘-.'s'x\'}."ﬂs. e

e P PRSI M

2

A
(6.12b) R* = (R: ry = lluiZ; i=1, ...m); u; = Variance specification

(6.12¢c) Qy 2 (Q: EYy; =0  ¥i=1, .. k)

(6.12) R, 2 (R: Eu=yl¥i=1, .. m
2 2
) yZzel¥ia1, Lk
(6.12e) b= Q: {and
2 2. 2
q; = ]/°1 ¥i: £y > F

el uf¥i=1,
R: {and

He>

(6.12f) R
2 2

vy 1/u12‘¥= Emu,I > Uy
It should be noted that Q* and R* exist and are unique for any non-zero
(02, uz) however, QM’ RM, Qﬁ, and Rﬁ are not unique nor do they always

exist. The existence question will be addressed shortly.

6.3.2 Theorems
Using the notation of definitions 3 and 4 the following important
theorems are stated and proved. They will be recognized as multi-input/

output versions of the situations discussed in Section 6.2.

Theorem 4: Input-constrained conditions

For a system of type S{n,k,m,2) under the regulation
of the LQG controller defined by (3.2)-(3.6) (diagonal Q
and R) and the assumption that the matrices Q% and RM
exist, the following holds:

...........................




(a) Vjs,pc (0*,Ry) < vi/pc(o,n) ¥ Q,R subject to the
constraint that

23 2 =
Euc = ¥i=1, .om

) (b) vac (Qf Ry) > k = (o2, w%) cannot be satisfied by
an LQG controller

e

(c) Given condition (b), the LQG controller designed by
(Qﬁ. RM) minimizes the following:

vy e WU sy

k

e

2, 2 .. 2 2
izl E_yi /°i ¥i: Euyi > oy
f Proof: From definition 4, the controller defined by (Q*, R,) minimizes

the cost functional:

k
2, 2
(6.13) V= 121 Ewyi /<:t,i +

L | |
(1) (2)

For the given S(n,k,m,2) and (oz, uz), term(2)is a fixed penalty term

in V constrained by the RM requirement Eaui2 = u12

¥i=1, ...m

(i.e. use all available control power). Under this condition the LQG
controller minimiies term (1), and from the known optimality conditions
for the LQG controller, no other LQG controller (i.e. different Q,R)

or any linear? controller, for that matter, can do better for the

t1f the noise processes in S(n,k,m,2) are Gaussian, the LQG controller
also does better than any nonlinear controller. [1]

----------
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given constraints. [1] Since term (1) is equivalent, by definition,
to V"s’pc(Q*.RM) point (a) of theorem 4 is proved.
Again from definition 4, the controller defined by (Q%, RM) mini-

mizes the cost functional:

k m
= 2, 2 2 2
(6.14) 2 2 )
2
1: Ey.">0 i an. =g,
1 Py )L |
(1) (2) (3)

For the given S(n,k,m,2) and (az, uz), term (3) of (6.14) is constrained
by the Ry, requirement (E.u,® = w2 %1 =1, ... m) to be a fixed value.
Also, term (2) of (6.14) is constrained to be a fixed value by the
ﬁ requirement (E;¥12 3_012). Given the above conditions on (2) and
(3), the LQG controller will force (1) of (6.14) to be as small as
possible. Hence, point c¢) of Theorem 4 is guaranteed.

The fact that term (1) of (6.14) is as small as possible for the
given specifications also implies that if term (1) is not zero then a

CVLQG solution does not exist. From the definition of Qﬁ, RM and

W o (Q,R), W

spc spc
conditions. Therefore point b) of Theorem 4 is established. ###

(Qﬁ, RM) > k and [term (1) of (6.14)] > 0 are equivalent

The results of Theorem 4 directly establish weighting conditions
which satisfy the input constrained requirement of (6.1). Part (a) of
theorem 4 establishes (Q*, RM) as the weighting condition necessary to
satisfy (6.1a), and 1if all outputs are above specification at (Q*, RM)'
the condition for (6.1b). Parts (b) and (a), on the other hand,
establish (Qz%, RM) as a weighting condition which satisfies (6.1b).

D P A P S S
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Theorem 5 addresses the output constrained requirement (6.2).

Theorem 5: Qutput-constrained Conditions

For a system of type S(n,k,m,.) under the regulation
of the LQG controller defined by (3.2)-(3.6) (diagonal Q, R)
and the assumption that the matrices Rﬁ. QM exist, the
following holds:

(a) Vgpc(R*sQM) 5,Vzpc(R.Q) ¥ R,Q sugject ;o the constraint
| ‘ thatE”yi 'Ui ¥i=1, ... k

(b) V:pc(Rﬁ’ QM) >k = (uz, az) cannot be satisfied by an
LQG controller

(c) Given condition (b) the LQG controller designed by (Rﬁ. QM)
minimizes the following

m
2, 2 . 2 2
121 E Yy /ui ¥i: Eﬁ"i, > My

Proof: From definition 4, the controller defined by (R*, QM) minimizes
the cost functional:

(6.15) V= ? 13 uvZ/u 2 + § o 2q
=1 =171 ja1 1M

I L
e} (2)

The rest of the proof for part (a) is the dual of the proof of part (a)
of Theorem 4 where input terms are substituted for output terms and
(6.13) 1s replaced by (6.15).

Again from definition 4, the controller defined by (Rﬁ, QM) mini-

mizes the cost functional:
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m m k
2, 2 2 2
Ve §J EuS/us + I uorE o+ ] 0.5
(6.16) jp =1 g1 VM g T,
.16
i E.,u12>u12 i Ewu12=u1.2

L | l ~ 11 I

(1 (2) (3)

The rest of the proof is again the dual of the proof of Theorem 4 where
input terms are interchanged with output terms and (6.14) is replaced

by (6.16). ###

6.3.3 Update Equations
While weighting conditions which satisfy (6.1) and (6.2), are
specified in theorems 4 and 5, nothing is said about how to achieve the
weighting conditions or if they exist. The iterative update equations
used by the algorithm of section 6.4 to achieve the required weighting
conditions is presented in this section. Section 6.3.4 discusses the
existence question.

6.3.3.1 Input Update Equation. The input-constrained condition of

(6.1) requires the following condition

(6.172) Egul=w? #i=1,....m

or

(6.17b) r, "%, TKXKb, = w2 ¥i=1,....m
i i i i
The requirement of (6.17) is a nonlinear programming problem within the

larger CVLQG non-1inear programming problem. The goal is to adjust Fys

i =1, ... mwithout using gradient techniques which require complex

--------
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calculations. Assume for 1 moment that (6.17) is satisfied. Then,

the following algebraic manipulations are permissible:
2 by KK,
(6.18) rys = ——— y i=1, ....m

¥

Multiplying and dividing the right-hand side of (6.18) by ri-z and

substituting in Ewui2 gives:

(6.19) riz - ; r®s 1=, m

taking the positive square root of (6.19) leaves:

11/2
Eaui i .
(6.20) Y‘,'g Tz—i ry s i=1, ...m

Equation 6.20 represents a an m-dimensional, coupled transcendental
equation. A simple approach to numerically solving (6.20) is to adopt

the following successive approximation equation:

(6.21) ri(3+1) = 5 rs(3) s i=1, .o

2

where E“uiz(j) implies Ewu1 calculated at the jth iteration. The

beauty of (6.21) is that it will always correct ri(j) in the right
direction. For instance, assume that E¢u12 > “12 for ri(J). To
correct this situation in the LQG conirolIer, the penalty weight ri(j)

must be increased, and since E°u$(j) > uiz, this is exactly what (6.21)




..................................
...........................................

L does. When (6.21) was tested on the hoop-column and telescope models,

{' the convergence to RM was slow which is generally true of most

:3 successive approximation equations. However in each iteration of

L; (6.21) an algebraic Riccati equation of order n must be solved and

> therefore, the slow convergence of (6.21) was deemed unacceptable.

: Several options exist for increasing the step size of (6.21). The

- more sophisticated techniques involve iterations within each iteration
to pin down the best step size to use and, of course, this is exactly

§ what needs to be avoided. After, considerable testing the following

;{ automated non-linear step size adjustment was found to work 'well' on

- both the hoop column and telescope models:

e — PWR(j)

3;:' Emuizj :

o (6.22) ri(j+1) = -————7?—-; ri(j) sy i=1, ...m

,f where the exponent PWR(j) obeys the sequence:

. (6.23) PWR(T) =1/2, PWR(2) =1, ....PWR(j) =3 -1 ¥3j:1.

_3 The problem with (6.22) is that it is now possible for the step size
(i.e. change in r(j))to be too big which would cause the algorithm to

s

f oscillate (i.e. not converge) or even go unstable. To counter this prob-

1 lem, the well known non-linear programming technique of descent functions

g

i was adopted.[60] The function chosen was:

Z

2

.f E“ui (j+1) \\ i

- (6.24) Desctu(j+1) = Max ———=-1],0 by=1, m

4 Hi / —I

..............
...........
...................
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Therefore, at each iteration Desctu(j+1) is calculated. If Desctu(j+1)
> Desctu(j), then the current values of Desctu(j+!), Ecuz(j+1) are
replaced with the old values Desctu(j), Enuz(j) and the PWR(j) sequence
is reset to PWR(1). For notational purposes, the iteration at which
Desctu(j+1) > Desctu(j) will be called a 'reset iteration.'

The two key questions for update equation (6.22) coupled with the
descent function (6.24) are:

(1) 1Is PWR(1) = 1/2 truly a conservative step size?

(2) How often must data be lost toa 'reset iteration?’
Both questions actually apply to the sequence PWR(j). Appendix C offers
an argument for the conservative nature of PWR = 1/2 and for the hoop-
column and telescope data shown in sections 6.5 and 6.6, less than 7%
was lost because of reset iterations. There is, however no guarantee
the choosen PWR(j) sequence is the best, other possibilities are sug-
gested in Chapter 8.

6.3.3.2 Qutput Update Equation . In contrast to the input-constrained

requirement, the output constrained requirement of (6.2) requires the

following condition:
(6.25a) E“y1 = o,

or using the identity of (5.7)

(6.250) g, =0 % ¥i=1, Lk
Assuming that (6.25b) holds, the following algebraic manipulations are

possible:
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o8 (6.26) qy=VYe? ¥i=1, ...k
{

A\

LW X
:;C: Again making use of (5.7):

e

2
E o i

.Y - (6.27) q.i =_2"q- ¥1=]’ s k

.:_:. [+] 1

< i i

= This equation (similar to (6.20)) represents a k-dimensional, coupled

':- transcendental equation and as in the input case, a simple successive
4 approximation technique was chosen to obtain a numerical solution:

N

s

2

Ey; (J) :

2 (6.28)  q;(§*1) = —5— q;(d) s T=1, ... &

g

o i

)

0 Like (6.21), (6.28) will always adjust q(j) in the right direction;

%’ however, when tested it too demonstrated very slow convergence proper-
b ties. Benefiting from the knowledge gained in the input case, the
following update equation and descent function were adopted:

,-.'

% 5 = PUR,(3)

N Ey; (3)

: (6.29a) q,i(j+1) T | — qi(j) i=1, ... k

| %

A

Ol

~' -

oY (6.290)" PWR,(1) = 1, PHR(2) =1, ... PUR(§) =j -1, §>1

X

28

P

\-‘

¢ The PWR(j) sequence of (6.23) was also used successfully, however

A (6.29b) performed better for the chosen examples and is more in

:: harmony with the development of (6.25)-(6.28).
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(6.30) Descty(j+1) = Max — - 17,0} ;i=1, ... k

%
As in the input case, if Descty(j+1) > Descty(j), then the current
values of Descty(j+1), E’yf(j+1) are replaced with the old values
Descty(j), szyi(j) and the PNRY(j) sequence is reset to PwRY(l).
The same questions that exist for PWR(j) also exist for PWRY(j).
Empirical results have pointed to the selection of PwRY(j), but the
suggested sequences in Chapter 8 offer other possibilities.

6.3.3.3. Simultaneous Input and Qutput Updates. When conditions

require a search for the matrices Qﬁ or Rﬁ. simultaneous updates of Q
and R are required. The transcendental nature of the problem remains
the same. Therefore, (6.22) is used for the input weights and (6.29a)
for the output weights. Both descent functions are still calculated

but combined as follows:

ne

(6.31) Desctyu(j+1) = Max[Desctu(j), Descty(j), 0]

If a 'reset iteration’ occurs qll input and output values are restored
as well as Desctyu(j).

As a final summary, the update equations of (6.22) and (6.29a)
are modified successive approximations of the transcendental equations
(6.20) and (6.27). They will always step in the right direction and
the descent function is used to insure they never step too far. The
PWR(3), PNRY(j) exponent sequences are encorporated in an effort to

prevent an excessive number of jterations for convergence.

--------------------------------------------------

.....
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6.3.4 Existence of Ry, Q. Q. Ry

The final question to be answered concerning the theory behind
the CVLQG algorithm presented in 6.4 (entitled LQGWTS) is whether
the weighting matrices RM’ QM’ Qﬁ, Rﬁ exist. The question can be simpli-
fied by realizing that, by definition (i.e. Definition 4), if Ry exists
Rﬁ exists and if QM exists Qﬁ exists. Therefore, attention will be
focused on the existence of RM and QM'
6.3.4.1 Existence of RM' An RM cannot exist if the following condition

holds for some LQG control Uy

(6.322) Eul=r"% TkXKb, =0 ¥ Q>0, R>0,

or since 0 < ry < =

TkXKb, =0 % Q>0, R>0.

(6.32b) by §

Necessary and sufficient conditions for (6.32b) to hold involve the
observability of (A,C) and the controllability of (A+BG,F) and are
provided in Appendix D. Also included in Appendix D is the method

LQGWTS uses to determine if U satisfies the necessary and sufficient

conditions for (6.32b). If (6.32b) does not hold for all i then an RM

exists for arbitrary non-zero specifications (uz). More specifically,

if (6.32b) does not hold, it is possible to force all controls to

2L - | RADANEN

120

RN RS

arbitrary values E”ui2 by weighting certain controls more than others.

“I“"—". 4" {

Furthermore, since the ui's that satisfy (4.9b) are of no use to an

LQG controller, condition (6.32b) can always be avoided by deleting

O

22 %2 s

from the system controls which satisfy (6.32b), and LQGWTS does this.
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- The situation in (6.33) means that the outputs in Ys

.......................................

............................

Therefore LQGWTS seeks, a possibly reduced dimension,RM (i.e. RM )
R
which is known to exist.

6.3.4.2 Existence of QM. The existence of QM depends upon the ability

of the system to drive all outputs to arbitrary levels. For control-
lable systems, this implies the outputs (y = Cx) must be linearly
independent. For un-controllable systems, this implies that the rank
of the output controllability matrix must equal k (the number of
outputs). [63]. If, for a system of type S(n,k,m,z), Qy fails to exist
for either of the above reasons, the end result is that only some of
the outputs will be driven to their specification. Label this set of

outputs Ys and its reduced dimension weighting matrix QMR' The

pc

remaining outputs will be in the set Y The weights on these

spc’
outputs will have one of the two following properties as a result of

using the update equation (6.29a):

q'i—>0
(6.33)
q'i —> wl

pc are not effecting

the LQG regulator design and may be deleted from the system leaving only

the set Ys c for which a QMR exists. LQGWTS tests for outputs which

p
are not effecting the design by performing the checks

TThe condition q, += can result only when a stabilizable, detectable
system is not oLtput controllable and one of the uncontrollable outputs

stabilizes at a variance level above its specification.
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(6.34a) q; <€ ]/a1
7y 0 <e <<l

(6.34b) q; > ——

If (6.34a or b) is satisfied LQGWTS automatically zeros a; (i.e. effec-

h

tively deletes the it output from the system). Therefore LQGWTS will

Took for a QMR which exists.

6.3.5 Summary

The purposes of this section have been first, to establish the
weighting conditions which satisfy the requirements of (6.1) and (6.2)
(i.e. Theorems 4 and 5). These conditions are using the notation of
Section 6.3.4 RMR’ QMR’ RﬁR’ and QﬁR‘ Second, to develop the update
equations used by LQGWTS and verify that they converge to Rur? QMR’
RﬁR or QﬁR,and thirdly,as just presented, verify the existence of these
matrices. With this theory in place, a presentation of the algorithm

is in order.

6.4 The Algorithm LQGWTS

This section outlines the proposed algorithm LQGWTS which is
designed to find a solution to the CVLQG problem defined at the

beginning of this chapter. As already noted, LQGWTS uses the update

~

—»

equations (6.22) and/or (6.29a) to achieve either the input constrained
requirements of (6.1) or the output-constrained requirements of (6.2).
The general flow of the algorithm for achieving these requirements can
be summarized by the following two 1ine graphs which delineate the
weight adjustment procedure:

AR P PSRRI > o TR
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Input-Constrained Algorithm

(Q*s R*) -_— (Q*s ) > (Q*’ )
(6.35a) g i Fu
Begin ——  Solution? ----->End
Output-Constrained Algorithm
(R*, Q) —>(R¥, Qy)——> (R, Q)
(6.35b) M fie O
Begin—————— Solution?----- >End

With the general flow of (6.35) in mind, the concise steps of the

algorithm are presented.

Algorithm LQGWTS:
(). Read the following data: (A, B, C, D, M, W, V"

. k} {uiz, i=1, ... m}, select input-constrained or output

1 2 . .
},{01,1-1’

constrained option, and specify a zero-threshold parameter .
(2). Compute P by solving (3.2d).
;5) Compute ciTPci, i=1, ... k. If ciTPc.i > o4 for any i = 1,
... ky it is impossible to achieve the output specifications
since ciTPci is the lower bound of E“yiz. Therefore select

only the-input constrained option.

®

Set the following initial guess for Q and R:

. *
q = 1/012 s 1=1, ...k (i.e. qy)

ro 1/‘,12 s i=1,.om (e r)
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o
*
8
= (5). Compute K by solving (3.2c), and X by solving (3.6). Also
X
: as described in Appendix D, perform first iteration check for
. Tkikb, =
" - (:). Compute Edyiz, i=1, ... k using (3.16). Compute E“uiz, i=1,
. m using (3.19). Perform second check described in Appendix D
E for biTKiKbi = 0. Also perform the following:
~
= (a) Input-Constrained Search
A If Euu,i2 = ui2 ¥i=1, .... m then store for
2
z later use the indicies j for which Ewyj2 < cjz. Call
' this vector of indicies UPDATE.
i (b) Output-Constrained Search
N
N 1f £y,% = 0> ¥1i: q; # 0, then store for later
use the indices j for which Ewujz <u;®. Call this vector
", of indicies UPDATE.
¥ (:). Calculate Descent Function (DESCTN)
- (a) Input-constrained search: use (6.24)
g (b) Output constrained search: use (6.30)
(c) If UPDATE # 0 use (6.31).
(8! Check DESCTN:
'
j If DESCTN(j+1) > DESCTN(j) set PWR(j+1) = 1/2, PWRY(j+1) =1,
” .
s E,y1(3+1) = E,yi(j). E,ui(j+1) = Ea“1(j) DESCTN(j+1) =
: DESCTN(j) and go to (0). (i.e. 'reset iteration').
>
¢ tFor numerical considerations, the following additional reset condition
o is defined. If DESCTN(j+1)>DESCTN(j) and DESCTN(j) = 0, reset only
3 PWR and PWR,. This condition is termed 'step size' reset to distin-
" guish it from a'reset interation'!
4 .
.
\

-----------------------------------
...........
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2
i

then the CVLQG input solution has been found. Stop.
Output-Constrained Option:
2 2 . 2 2 _
c.2 If {Euyi = 0 ¥ i q; # 0}, and Ewui > Hy ¥i=1,

. m, then the CVLQG output solution has been found.

Stop.

Update Equations: Define PWR(j+1) as in (6.23) and PWRY(j+1)

as in (6.29b)

Input Constrained Option:

e PWR(j+1)
Eu; (3)
=1

%4

ri(j+1) = (@) s i=1,...m

PWRy (j+1)
q;(3) 5 %1 in UPDATE

2]
L EY; (3)
ay(g#) = |

%

qi(j+]) = qi(j) otherwise

If g4 < e/c12 or q; > '12 then set qi(j+1) = 0,
€q
i

Return to {5).

(3.4a)

Output-Constrained Option:

a (341 = ’y%(” ag(@)s 11, ...k
L -




-t 2o Sl

& b tury

If q; < e/ai2 or q; > —lZ then set qi(j+1) =0
€0

- — PWR(j+1)
Eu;(3)

(3.40) r,(3*1) = ———| r.(§) ; ¥1 in UPDATE
LM

ry(§+1) = r.(J) otherwise

Return to (:).

The algorithm LQGWTS has been written as a fortran IV subroutine
which uses the linear control package LSLIB developed for the Purdue
University CDC 6600 by C.S. Gregory in 1979. The specific details of
the program, along with a program listing are provided in Appendix E.
The subroutine has been used on both the hoop column antenna and tele-
scope models of Chapter 4. The results are presented in the next two

sections.

6.5 Hoop Column Antenna Example

The algorithm LQGWTS was run on the hoop column antenna model
SHoop(26,24,12,39) for the outputs, sensors, and actuators described in
tables 4.1-4.3 and for the (o2, u2) specifications of (4.16). Both
the input-constrained and output-constrained options were run, and the
results indicated that an LQG controller (diagonal Q,R) did not exist
to meet (az, uz) of (4.16). Therefore, the 'minimum achievable'

specifications of (6.1b) and (6.2b) were sought.

6.5.1 Input-Constrained Solution
Table 6.1 displays the results for the input constrained solution.

The expression in parentheses by each output and actuator number is a

''''''''''''''''''''
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Table 6.1: Hoop Column Input-Constrained Solution

/Edyi2

Output # (minimum achievable) Actuator #
1(AX2) 171 sec (9 = 0) 1(TX2)
2(AY2) 174 S (q, = 0) 2(TY2)
*3(AZ2) 701.807 Sec 3(T22)
4(AX10-AX2) .008 Sec (q = 0) 4(TX6)
5(AY10-AY2) .008 sec (qg = 0) 5(TY6)
*6(AZ10) 727.366 sec 6(TZ6)
7(X6-X2) J2m (g7 = 0) 7(TX9)
8(Y6-Y2) J20mn  (qq = 0) 8(TY9)
*9(X9-X2) .799 mm 9(TZ9)
*10(Y9-Y2) .784 mm 10(TX10)
*11(X10-X2) 1.859 mm 11(TY10)
*12(Y10-Y2) 1.824 mm 12(7Z10)

*13(X101-X10)  3.003 mm
*14(Y101-Y10)  7.595 mm
15(2101-210) 091 m (g5 = 0)
*16(X107-X10)  7.219 mm
*17(Y107-Y10)  3.381 mm
18(2107-210) 090 m (g = 0)
*19(X113-X10)  2.054 mm
*20(Y113-Y10)  3.474 mm
21(Z113-210) 016 m (g, = 0)
*22(X119-X10)  3.728 mm
*23(Y119-Y10)  1.799 mm
24(2119-210) 010 m  (qy, = 0)

*= specification violation (E,yi2 > 012)

R R N U BT ST S VRS SR VU N
e e Jr g0 e e e e
LT ] r .

/Enui2

(specification)

10.000 dn-cm

------------
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label for the type, direction, and 1location of the output or

actuator. For instance, AX2 stands for an angle output in the X direc-
tion at node 2, AX10-AX2 represents a relative angle output in the X
direction between nodes 10 and 2, Y6-Y2 means a relative linear dis-
placement output in the Y direction between nodes 6 and 2 and TX2 stands
for a torquer acting in the X direction at node 2. The output weight
in parentheses next to a specification represents the weight that the
algorithm assigned to that output on the final iteration. For the
given (02, uz). these outputs form the set vspc and have no effect on
the LQG regulator. As expected, the algorithm forced all actuators

to operate at their specification (i.e. 10 dn-cm). The data shown in
Table 6.1 is the result of 16 iterations of the input-constrained
search and two ‘step size' resets were required. The plots of Figures
6.4-6.6 show the normalized values of each input (i.e. Ewuiz/ui2 versus
the iteration number). The value 1.0 implies the component is in
specification, and the value of the last data point is printed on each
plot.

A striking feature of these plots is that the algorithm has
essentially converged after 5-8 iterations yet continues for another
8-11 iterations. This results because in 8 iterations the algorithm
converged to (Q*, RM)' It then took 8 more iterations to identify the
outputs in Yc (i.e. q, >0, (Q*, Ry) + (Qfig» Ry)). This indicates that,
for this example, the ¢ of .001 selected for the algorithm and used

in setting the q; + 0 threshold was smaller than necessary. Since

(Q*, R") did converge to (Qx.. RM) the output specifications of Table

5.4 are the minimum specifications promised by Theorem 4 and required

by (6.1b).
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. Figure 6.7 is a representative example of the behavior of 4 out
of the 24 outputs during this input-constrained search. The plots in

this figure also show normalized values versus the iteration number.

6.5.2 Output-constrained Solution

\ The output constrained search produced an LQG controller which
y satisfied the requirements of (6.2b). The results are shown in Table
Sj 6.2. The numbers in parentheses in Table 6.2,as in Table 6.1, repre-

sent the weight that the algorithm assigned to that particular output
o on the last iteration. As expected, the output-constrained search

drove the outputs in Yc to their specification. It also assigned

x zero weights to all outputs in Yc. Since the hoop-column model is
" controllable, these results indicate that the rank of the

24x26 C matrix is only 7 and for the particular (02, uz) outputs
11, 12, 14, 16, 17, 20, and 22 form the independent set. The input-

it

;? specifications shown in Table 6.2 represent the minimum torque specifi-
:; cations required by (6.2b) and promised in Theorem 5. The data is the
_ﬁ result of 18 iterations of the output-constrained search pius two

2’ ‘reset iterations' (i.e. PWR reset to .5 and previous iteration data
l' restored). Figures 6.8-6.13 display the normalized values of each

;E output component (1.0 implies the component is at specification)

55 versus the iteration number, and reset iterations are not shown. As
;r in Figures (6.4-6.7), the last data point is printed on each plot.

is . The apparent 'extra' iterations of the output-constrained search, as
“; in the input-constrained search, are necessary to identify the output
{; in ?c (1.e. q »0 ¥1i: ¥; e?c) for the specified .

'g Figure 6.14 is a representative example of the behavior of 4 out of

&,

e

v

L]
.

S S R s

..................
................

.........




A At N P A A R P SO B G R A P A " e i e B P S AT A S ISCEM U Jas i et aul A SIS S e
- - - - - . - ~ - - N ' . * . - - ".

ao.oo-l 80.00 -

50.C0~

gecsssssesediB .071 5.681

40.00 -

20.00

OUTPUT(14,Y101-Y10) NORM SPEC
OUTPUT(16.X107-X10) NORM SPEC

8 .00 * T 0 L 0.00 T I
) 0.00 10.00 20.30 30. 0.00 19.70
ITERATION NUMBER ITERATION \ILMBE?

Q
[=]

20.30-1 .8000 ~

I frwds .008
|

10.00 =

.80C0 - 573

S
EWE

N
.'~‘n’:'¢t‘n '1‘

L
-4

.N0CO =

{

AN/

$.00 2000

2
GUTPUT(15,2101-7101 NORM SPEC

BUTPUT{13,X101-X10) NORM SPEC

™

o 0.00 T T 7 0.0000 - T ™
Lyt 0.c0 18.06 20.00 30.90 0.00 _13.50 29
[ [TERATION NUMBER [TERATION ML) Bti’
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Table 6.2: Hoop Column Output-Constrained Solution Results

Output#

1(AX2)
2(AY2)
3(AZ2)
4(AX10-AX2)
5(AY10-AY2)
6(AZ10)
7(X6-X2)
8(Y6-Y2)
9(X9-X2)
10(Y9-Y2)
11(X10-X2)
12(Y10-Y2)
13(X101-X10)
14(Y101-Y10)
15(2101-210)
16(X107-X10)
17(Y107-Y10)
18(2107-210)
19(X113-X10)
20(Y113-Y10)
21(2113-210)
22(X119-X10)
23(Y119-Y10)
24(2119-210)

* => specification violation (Emui

Jev 2

.015 Sec
.015 Sec
11.579 sec

.010 mm
.010 mm
.068 mm
.068 mm
.158 mm
.158 mm
.104 mm
.158 mm
.007 mm
.158 mm
.156 mm
.008 mm
.122 mm
.159 mm
.001 mm
.158 mm
.091 mm
.001 mm

-4

(Q1 = 0)

(¢, = 0)

(Q3 = 0)

sec (q5 =0)
sec (q6 =0)
(q7 = 0)

(q8 =0)

(a9 = 0)

(q]O = 0)

(Q13 = 0)

(915 = 0)

(91 = 0)

(a7 = 0)

(qZ] = 0)

(9,5 = 0)

(q24 = 0)

2

Actuator #

*1(TX2)
*2(TY2)
*3(T22)
*4(TX6)
*5(TY6)
*6(TZ6)
*7(TX9)
*8(TY9)
*9(TZ9)

*10(TX10)
*11(TY10)
*12(T210)

2

VEul

wu‘i

(minimum achievable)

24.252 dn-cm
24.288 dn-cm
40.280 "
24.253 "
24.282 "
40.869 "
29.466 "
29.496 "
41.963 "
36.026 "
36.056 "
41.747 "
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Figure 6.12: Hoop Column Output-Constrained Solution
(outputs 17-20)
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e

ﬁi; the 12 controls during the output-constrained search. The plots of

.23 this figure also display normalized values versus the iteration number.

3 6.5.3 Summary of Hoop Column Results

;% ) Physical insights into the control of the hoop-column antenna will

= be reserved for Chapter 7. Of interest in Section 6.5 has been the

L;§ performance of LQGWTS for the multi-input/output hoop model SHoop

Eg (26, 24, 12, 39). As evidenced by the data, the algorithm converges

’ to the input-constrained or output-constrained solution. Considering

é% the fact that for the input-constrained case, the algorithm is solving

S?: 22 simultaneous transcendental equations (12 input, 10 output), and

o for the output-constrained, case 17 simultaneous transcendental equa-

;gg tions (17 output), the convergence rate is.impressive. For a larger

?;} e value, the rate would have been even faster. It should also be
noted that only 2 out of the 36 iterations were lost due to iteration

§§? resets. Therefore, for the hoop column model, the modified successive

5}@ approximation/descent function approach of LQGWTS is practical and

A succeeds in tailoring thé LQG cost functional to the input/output

%E requirements of the SASLQG problem! The next section shows further

24 evidence of the validity of LQGWTS.

éé 6.6 _Solar Optical Telescope Example

}f’ The algorithm LQGWTS was also run on the solar optical telescope

fi: model stele(24’ 3, 21, 45) for the output, sensor, and actuator con-

'§S ‘ figuration described in Section 4.4 and the (oz, uz) specification

?éi | of Table 4.14, As in the hoop case, both the input constrained and

output constrained options were run. and the results indicated that

an LQG controller (diagonal Q,R) did not exist to meet the (oz, uz)
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of Table 4.14. Therefore, the 'minimum achievable' specifications

of (6.1b) or (6.2b) were again sought.

S St
%l

6.6.1 Input-Constrained Solution

’g Table 6.3 displays the results for the input constrained solution,
A .

with appropriate labels by each output and actuator number. The

N algofithm placed a zero weight on the defocus output, and for the

éé specifications of Table 4.14 the set Yc 18 the defocus output. As

?3 expected, the input-constrained solution required all actuators to

?; operate at their specificatioh, and the output values of Table 6.4

*é? for the given actuator constraints represent the minimum achievable

? output specifications required by (6.1b) and promised by Theorem 4.
fﬁ The data of Table 6.3 is the result of 14 iterations of LQGWTS plus
:§ two 'reset iterations.' The plots of figures 6.15-6.20 show the

3 normalized value of each input and output component versus the itera-
% tion number (reset iterations are not shown), and the value of the last
g data point is printed on each plot. From looking at the plots, it

N appears that the algorithm converged by approximately iteration 9.

3% As was the case in the hoop-example, the 'extra' iterations are

;E required to identify, based on the specified ¢ threshold of .001, the
': outputs in Yc’ and thus guarantee the minimum specifications promised
éﬁ by Theorem 4. (i.e. (Q*, RM) - (QﬁR’ RM))'

-

e 6.6.2 Output-Constrained Solution

:; The output-constrained version of LQGWTS produced an LQG regula-
;3 ) tor for the telescope which generated the data of Table 6.4.
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Table 6.3: Telescope Input-Constrained Solution

Vﬁyf VE 2

U,
output # (minimum achievable) actuator # (spec}fi cation)
*1(LOS X) 8.809 deg 1(FY1) .0IN
*2(LOS Y) 8.465 deg 2(F21) .
3(DEFOCUS) .003 mm (q3 = 0) 3(FZ2) "

. 4(FX3) "
5(FY3) "
6(FZ3) "
7(FZ4) "
8(FX5) "
9(FYS5) "

10(FZ5) "
11(FZ6) "
12(FY7) "
13(FZ7) "
14(FZ8) "
15(F29) "
3 16(FZ10) "
: 17(FX11) !
18(FY11) "
; 19(FZ11) "
I 20(FY12) “
" 21(FZ12) "
* = gpecification violation (r:'wyi2 > ciz)
§




Table 6.4: Telescope Qutput Constrained Solution

| \/Emui2

e
.
-
e
~
™.
4
P .
o
‘e
.
{

” output # \/Emyiz actuator # (minimum achievable)
A% 1(L0S X) 65.227 Sec *1(FY1) .021N ‘
:§ 2(L0s ¥) 65.227 Sec *2(FZ1) .030N
2% 3(DEFOCUS)  .003 mm (q3 = 0) *3(FZ2) .037N
, *4(FX3) .041N
j *5(FY3) .021N
% *6(FZ3) .030N
. *7(FZ4) .037N
*8(FX5) . 208N
= *9(FY5) 135N
% *10(FZ5) .021N
g *11(F26) .025N
= *12(FY7) .135N
s *13(F27) .021N
> *14(F28) .025N
| *15(F29) .075N
R - *16 (FZ10) .075N
¥ *17(FX11) .265N
X *18(FY11) 135N
N *19(FZ11) . 089N
< *20(FY12) . 135N
Y *21(F212) .089N
Eid
2 *indicates specification violation (Em,ui2 > uiz)
'
o
- ;
- |
i |
'
. |
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Telescope Input-Constrained Solution (actuators 1-4)
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The output-constrained search drove the outputs i € Yc to their

specification (i.e. LOS X, LOS Y) and zeroed the weight on the defocus
output. The actuator specifications shown in Table 6.4 represent the
minimum achievable input specifications required by 6.2b and promised by
Theorem 5. These results were generated in 10 iterations of the algo-
rithm and two 'step size resets' were required. The plots of Figure
6.21 show the normalized values of the outputs and a representative

control versus iteration number.

6.6.3 Summary of Telescope Results

As in the case of the hoop column, LQGWTS converged to both the
input and output constrained solutions for the telescope. There was
a noticable difference in the convergence speed for the input and
output constrained solutions, and this is a direct result of the fact
that the input constrained option was simultaneously solving 22 trans-
cendental equations while the output'constfained case was solving
only 3. In addition, the data indicated that an ¢ larger than .001
could have been used,and faster convergence would have resulted. In
terms of 'reset iterations,' the algorithm lost only 2 out of the
total 28 iterations performed on the telescope. Therefore, both the
telescope and the hoop examples have demonstrated that LQGWTS can
successfully tailor the LQG cost functional to satisfy the input and
output constrained requirements of the SASLQG problem and this ability

is fundamental to achieving a solution.
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7.0 THE SASLQG ALGORITHM

N - e 8 o vl

As an introduction, a restatement of the SASLQG problem from
; Chapter 3 is appropriate.

SASLQG Problem Statement

Given: A system of type S(n,k,m,2) which has only m
out of m actuators and % out of % sensors
avajlable for the design of a steady state
LQG regulator which must achieve (02. uz).

Required: Specify the closed-loop system which satisfies
the following input-constrained or output-
constrained requirements:

Input-constrained

. If (oz, uz) are achievable,

k

2, 2 2 _-2 -
% (7.1a) M;n 121 EY;"/o;" subject to Eu =y ¥1=1,...m
. else,
‘. 7.1b mn'fe /6.2 % 4: Ey.l >l
: (7.1b) L o /% * By > 9y
| 2 -2 -
. Subject to E“u1 T uy ¥i=1,...m

; ‘At . o . A . L] N T V™ ) . % SETRCG A SR CRRL S 6§ G e
R YR N N e D N A S T

1



---------- AR SR RO PR A aalg RS LU ¢ AT S IR A A RN

3 149
x|

% Output-constrained

‘{_ If (02, uz) are achievable,

“ -

(7.22)  Min ] Eu2/i? subject to Ey.l=o.2 ¥1=1 k
. QUs “/uS subjec Jy =0y  ees

a &l
Y B PRI 2

| S i=]
8 v
4 else,
& 2,- 2 . 2 -2
(7-2b) Mgn izl Eaui /ui Vi E“U.I > u.i
: 2 2
; Subject to Ey;” = oy ¥1=1, ...k

ot

For the approach chosen by this research, there are, of course, two key

X -
RSN,

elements in solving the SASLQG problem: First, tailoring the cost
functional V so that the LQG controller which minimizes V also achieves

the fnput-constrained requirements or the output constrained require-

- kD

ments, and second, evaluating the effectiveness of the role of each

IS

sensor and actuator in the minimization of this tailored V. Chapter 6

providés the algorithm LQGWTS for tailoring V so that either the input-

i

constrained or the output-constrained requirements are satisfied by

i

N the LQG controller. Chapter 5 develops the sensor and actuator values
Visen and Via‘:t which provide a relative measure of the effectiveness

4 ) of each sensor and actuator in the minimization effort. The objective
: of this chapter is to combine LQGWTS and v1a°t. Vise" into an algorithm
which solves the SASLQG problem. Section 7.1 presents the facts which
were considered in developing the algorithm (SASLQG) along with a

discussion of the general flow of the algorithm. While Section 7.2

N L R o O I S e R N N P TP N A A T S e
IR ."’tl'/ ‘R:*“‘f@'z‘ih“‘.&, '.~ - .',‘ (.'" '.\"‘b-" . .\..“..‘-. . 3 ~‘.‘. VLR SRS et et e QI 0
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?3 presents the detailed steps of SASLQG. The algorithm is applied to

f% the hoop-column and telescope models in Sections 7.3 and 7.4 respectively
b and concluding comments appear in Section 7.5.

%

é? 7.1 Important Facts and Basic Algorithm Flow

x

8 The following facts merit consideration in combining LQGWTS and

e v,2%, **" to solve the SASLQG problem.

Ky

e, Facts

B (1) The data of Chapter 5 indicates that relative ViaCt

g% (Visen) ranking between actuators (sensors) can

%3 change as a function of Q and R. This fact is

o . further illustrated by the results of [12] that

showed the actuator location on a simple beam which
minimized V was a function of Q and R.

2
PP o s

(2) QM’ RM' Qk, Rﬁ change when the actuator and/or sensor
structure change. (i.e. the expressions E,yiz. E.piz

b are explicit and implicit functions of B and M which
§§ contain actuator and sensor configuration information).
S (3) The results of [11], [15] and [16] have shown the
N sensor and actuator selection problems to be highly
§§ coupled and that simultaneous selection works better
;; than sequential selection. For a simple example of
f& coupling note:
e act -2, T,% T a
e
5 sen _, -1 T

Vi vii m, PLPm1
i
! |
%; are both implicit and explicit functions of actuator
A and sensor terms. T

720y i

w6 g by 1 Y K e Tt TR TR e .
R L RO PR W e O I M ‘l‘u‘i'u‘\ o T
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e (4) Uisen and ViaCt do not provide insight into when

R deletion of a sensor or actuator will cause loss of

ol measurability (observability) or controllability.

.ﬁg (5) From Theorem 3 it is known that deleting sensors can
o never improve regulator performance.

»g ;

) , (6) From Theorem 2 it is known that deleting noisy

X sensors may improve regulator performance.

:z The preceding 6 facts suggest the following flow for the algorithm
| SASLQG.

L=

!

ig SASLQG General Flow

1} (j) Run LQGWTS (Input-constrained or output-constrained

option) assuming that all admissible sensors and
actuators are available and operating (i.e. S(n,k,m,2))

G A T e

and then rank them from highest to lowest.

"3

(2) Determine UiaCt and Visen for all sensors and actuators
3)

Throw out the lowest ranking sensor and actuator, and
all others of 'nearly' the same ranking, if measurability
and/or controllability of the system are not disturbed.

(E) Return to (I) until the appropriate number of actuators
and sensors have been deleted (i.e. m, £). However,

.

Pt

s oy

i3

s« X 0

?“‘s.ﬂ -

NG in 1ight of Theorem 2, fewer actuators than m might

- be desfrable and actuator deletion should continue

N until the "minimum" achievable specifications (i.e.

\13 (7.1) or (7.2) are no longer improving.

% |

w Facts (1) and (2) have dictated the order of steps (E} and (é) |
53 in the above described general flow. More specifically, since the j
;“ ranking of effectiveness values can vary as a function of Q and R, and

LB

kS

we are interested in effectiveness rankings for a V which produces

5 a controller that satisfies (7.1) or (7.2), the effectiveness values




should be based on the Q and R that specify the desired V.

Step (E\ of the general flow results from facts (3) and (4).
Obviously caution must be exercised in deleting sensors and actuators
with 'nearly' the same effectiveness values since facts (1) and (2)
indicate that any perturbation in the sensor and actuator configuration
can alter relative effectiveness rankings of the sensors and/or actuators.
Also, the requirement for checking measurability and controllability is
severe however, as a result of the work of Skelton and Hughes in [65],
the controllability and observability of systems in modal form (i.e.
(4.15)) can be done virtually by inspection for systems of any dimension.

Facts (5) and (6) influence the rationale behind step (E) of the
general flow. If m sensors are allowed then according to Theorem 3, m
~ensors should be used, but, of course, Theorem 2 invalidates this
philosophy for actuators. Since either the input-constrained require-
ments or output-constrained requirements are sought, the requirement
of step (Z} to check the improvement of these specifications can be

met easily, by checking the appropriate sum at each iteration:

Input-constrained Solution

For (7.1a) check for decrease in:

k
@3 ) £y 20,2

For (7.1b) check for decrease in:

2, 2 2
iZ] E”V.i /01 ’ ¥ i: E”y.i > 01

..........

.............................



:§§ Output Constrained Solution (for my actuators present)
o For (7.2a) check for decrease in:
( my
(7.5) 1 E_ u, /u
\_ i=1
or
s m
"‘d‘{ a
B 2, 2
_3 /ma z E"’ui /l-l.i
W j=1
:g
;:f For (7.2b) check for decrease in:
tg ma m
" (7.6) ¥i: Eu, > 2, I Eu 2/u 2 or 2 Eu /
. * ° o 1 'i s 'i’] © 'i i 'i ui
N a 2, 2
5 The average power (l/m 2 E u, /“1 ) is considered by the output-
constrained checks because the average power miqpt be of more interest,
'3 and a decrease in total normalized power (i.e. 2 E Y5 /u ) cannot
fr4
ﬂi guarantee a decrease in average power since my 1s a1so decreasing.

Before presenting the detailed algorithm the question raised in

Chapter 5 concerning ViaCt and constrained input power must be addressed.

7

{; The condition under which ViaCt was derived and tested in Chapter 5

;; assumed, implicity, that control power was not limited to an extent

;3 which would prevent other actuators from being able to increase power
Sé ' to compensate for the essential (noiseless) contribution of a deleted
E; actuator. In the input constrained situation, these conditions could
?g certainly occur and did for the hoop column example. It was therefore
X necessary to modify V%% for finding SASLQG input-constrained

,}, specifications. After considerable testing, the following viact
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modification was found to work for both the hoop and the telescope

examples:

u
actlgvi /Vu N\

\
a i u u/)
Viw \V -V1 ‘

(.1 v,

m
where VM = 7 v Y
i=]

The expression in (7.7) does have intuitivethpea] since it represents

V.
the product of an signal to noise ratio —l—; and a term
u - V_w
<f uV €> which is the inverse of the fradtional load carried by the
Ve-v
. i

remaining actuators. It should once more be re-emphasized that (7.7)
was found to be a suitable measure of actuator effectiveness only in

the input-constrained situation.

7.2 The Algorithm

The specific details of the algorithm SASLQG are presented in this
section. The specific steps of the algorithm will be presented first

and a brief discussion will follow.

Alyorithm SASLQG

(i} Specify the number of sensors (1) and actuators (m)
that can be used in the design. Choose the input-
constrained or output-constrained option and run
LQGWTS with all admissible sensors and actuators
present.

@) With the resulting LQG controller (i.e. (3.2) and

(3.6)),calculate Visen = Viv for each sensor using
(5.4f,9).

..... N T N YR .
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Input-constrained option:

‘J‘ Calculate ViaCtI for each actuator using (7.7) and
(5.4a,d).

é}s Qutput-constrained option:

B ‘ Calculate V,'act for each actuator using (5.8) and

o - (5.4a,d).

\ - @ Rank the sensors from highest to lowest based on

w., Visen values. Rank the actuators from highest to

i Towest based on V. Ior Vi“t values.

: @ From the rankings in @ ,» identify the lowest ranking

U sensor(s) for which deletion would not disturb the

=) measurability of the system. Also, identify the lowest

i ranking actuator(s) (from the ranking in i@ ) for

=N which deletion would not disturb the controllability

)

By of the system.

: @ Calculate the following value:

;:j: Input-constrained option

o For condition 7.1a: calculate (7.3)

B For condition 7.1b: calculate (7.4)

s Output-constrained option

e;* For condition 7.2a: calculate desired value in (7.5)

5 For condition 7.2b: calculate desired value in (7.6)

- If the value is greater than the value for the previous

j iteration and the number of actuators is less than m,

;- | ' restore the previous iteration actuator configuration

e and make no more actuator deletions.

If no sensor or actuator deletions are required. Stop.

5 |

Delete the identified sensors (i.e. drop the appropriate
rows of M and V, and the appropriate columns of V).

Delete the identified actuators (i.e. drop the appropriate
columns of B,D,R,W and rows of R,W).

T T T S T T e N e I A e P PR
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5\ Rerun the appropriate option of LQGWTS for the
reduced system and go to (g}.

The fortran IV subroutine LQGWTS has been modified to also calcu-

late and rank the actuator and sensor effectiveness values (UiaCt o
act

Vi I) and Viv, and as mentioned in Chapter 6, Appendix E contains

an explanation and listing of this program. Therefore, the first 3

r

steps of SASLQG have been automated. Steps (E), {5}, and ;Ej are
performed by the controls engineer based on the output of LQGWTS and
of course some form of controllability and measurability check. Both
the hoop column and telescope models are in modal form and the observ-
ability checks developed by Skelton and Hughes [65] can be applied by
inspection to these models. For systems not in modal form a trans-

8

formation to modal form could be helpful. The steps <2> and 8’ have
been automated for the hoop column and telescope models by writing a
calling program for the subroutine LQGWTS. The calling program can
delete any necessary row or column of the system matrices by simply
specifying the actuator or sensor number to be deleted. These calling
programs are labeled LQHOOP and LQTELE and are also listed in

Appendix E.

7.3 Hoop Column SASLQG Example

The SASLQG problem for the hoop column antenna model (SHoop(ZG,
24, 12, 39) was posed in Section 4.3.2 as the H.SAS problem and is

repeated here for continuity.

H.SAS PROBLEM

Given: SHOOP(ZG, 24, 12, 39) with only 6 actuators and
12 sensors available for designing an LQG regulator




::1 157
h } to achieve the (oz, uz) specifications of

(4.16).

S Required: Specify the closed-loop system which satisfies

2 either (the input constrained requirements of

'§ (7.1) or the output constrained requirements of

;§ (7.2).

iq Before presenting the results, the following table of sensor labels is
%ﬂ‘ * added to the output and actuator labels used in Tables 6.1 and 6.2. Note
H that ARX2 stands for an angular rate sensor in the X direction at node 2.
éi Table 7.1: Hoop Column Sensor Labels

¥ Sensor Sensor Sensor

A Number Label Number Label Number Label

g 1 AX2 14 AY10 27 Z119-210

W 2 AY2 15 AZ10 28 ARX2

= 3 AZ2 16 X101-X10 29 ARY2

i} 4 X6-X2 17 Y101-Y10 30 ARZ2

§ 5 Y6-Y2 18 - Z2101-Z10 31 ARX6

?@ 6 26-22 19 X107-X10 32 ARY6

A 7 X9-X2 20 Y107-Y10 33 ARZ6

. 8 Y9-Y2 21 107-210 34 ARX9

: 9 29-722 22 X113-X10 35 ARY9

% 10 X10-X2 . 23 Y113-Y10 36 ARZ9

:, 1" Y10-Y2 24 Z113-2Z10 37 ARX10

" 12 Z10-22 25 X119-X10 38 ARY10

13 AX10 26 Y119-Y10 39 ARZ10

5 7.3.1 Input-Constrained and Output-Constrained SASLQG Results

';' Tables 7.2 and 7.3 present the iteration by iteration results of
-f the SASLQG input constrained and output constrained options applied

‘ to the hoop column antenna. The results indicated that no LQG control-
; ler existed to meet the (o2, u2) of (4.16). Therefore, the conditions
¥

3
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of (7.1b) and (7.2b) were sought. Both tables show the iteration

» .n'lit

number and the sensors and actuators identified for deletion in the

!

AEN

next iteration with their effectiveness values in parentheses. Table

7.2 lists the normalized output sum (7.4), while Table 7.3 lists the

P s E e

average normalize control power (7.6). The last column in both tables
is the number of sensors and actuators in the current design.

As might be expected for an input constrained case, the iteration
data of Table 7.2 is more sensitive to actuator deletion than sensor
deleticn. Of particular interest is the large jump in the output

value between iteration 6 and 7. For certain design situations this

L St Mok ot

large shift could warrant a hardware change from 6 to 7 actuators.
The (0) effectiveness values for (Z6-Z2), (Z9-Z2), and (Z10-Z2) result

from the fact that these measurements correspond to rows in the M

2L AL

matrix which have very close to zero magnitude. If the longitudinal

. axis of the hoop-column was assumed incompressible in the NASTRAN

¥ development (a reasonable assumption) then that would account for the

b non-measurability of these sensor locations. As in the input-constrained
case, the data of Table 7.3 was more sensitive to actuator deletion

than sensor deletion. However, a significantly different sensor and

actuator configuration was identified. The largest shift in the input

« OROMEEER5 2

value occurred between iterations 5 and 6 which, as in the input case,

corresponds to a drop from 7 to 6 actuators. It should also be noted

e e .
* PR RNl Y ok

that if the sum of input power had been adopted as an effectiveness

criterion instead of the average, the algorithm would have continued

R~ LORYTL

to delete actuators past 6 (i.e. m).

i
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Table 7.2: Hoop Column Input-Constrained SASLQG Results
‘N . , Iteration Identified Output Value  Numoer of .
"3 Number Sensors (v, Sen)  Actuators (v, acty) (7.4) Sensors/Actuators
o 1 AZ10(.000253) TX10(.69642) 300.15 /12
Py AZ2 (.000243)
.Nf - 25'22(0
15 Z9-22(0
5 210-22(0)
2 2119-210(.00840)  TY10(.69671) 323.2¢ Wm
. AY2 (,00757)
& . 2113-210(.00707)
- 3 AX10(.0160) TX9(.75236) 346.46 31/10
A AY10(.0159)
X AX2(.0107)
3 I Y6-Y2(.114) TY9(.74576) 410.39 28/9
™ 2107-210(.0768)
> X6-X2(.0682)
2 2101-210(.0596)
5 ARZ9(.260) TZ9(.84762) 472.46 24/8
5 ARZ10(.258)
ARZS(.258) |
b ; ¥9-v2(.772) TY2(.82705) 639.97 217
‘ X9-x2(.768)
R 7 Y119-Y10(1.242) —--- 970.16 19/6
% ¥107-Y10(1.238)
§ ¥101-Y10(1.236)
_ g ARX6(2.037 - 975.48 16/6
? ARX2(2.037 :
; 9 ARY2(2.409) —e-- 980.27 14/6
ARYE(2.408)
b 10 — - 985.45 12/6
3] N
%
N
2
3!
;-i&
[ 4

B
W
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w Table 7.3: Hoop Column Output-Constrained SASLQG Results
i": b [teration I“"ﬁﬂ‘zn Id‘"t"“gct Ave Input Value Number of
& Number Sensors (vf ) Actuators (V") (7.6) Sensors/Actuators
W 1 AZ10(.0004116) T210(-1.362) 3.275 39/12
b AZ2(.000397) T29(-1.369)
3 . 26-22(0)
23] 29-22(0)
3 210-22(0)
2 - AY1(.003362) T26(-2.1408) 3.592 34710
~ AX10(.003358)
s szg.oozzs)
€ Ax2(.00226)
) 2113-210(.001942
by 2119-210(. 001884
N 3 X6-X2(.01457) TX10(-1.2055) 3.699 28/9
¥6-Y2(.01455)
A 2101-216(.0110)
2 2107-210(.0108)
N
% 4 ARZ2(.02844) TX9(-1.2917) 3.997 24/8
LY ARZ10(.02232)
& ARZ6(.02238)
- 5 X9-x2(.0986) TX6(-1.4793) 4.377 217
2 ¥9-v2(.0839)
5 6 ARXS (. 07648 —— 4.829 19/6
g ARX2(.07648 :
7 Y107-Y10(. 13395) - 4.857 17/6
ARYS(.1098)
¢ 8 X119-X10(. 1557) O 4.905 15/6
er xm-xwi.lsss
o X101-X10(. 1551
A 9 ———— ———- 5.021 12/6
b
”
hs .
3
.
iy
3
©
&
3 1
Er '
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7.3.2 Sensor and Actuator Configuration Comparisons

It shquld be remembered that the goal of the SASLQG input-
constrained and output-constrained algorithms is to locate the % out
of 2 sensors and m out of m actuators such that (7.1) or (7.2) are
X best achieved. Since no proof of optimality is currently available for

| the SASLQG algorithm just presented, the important question is whether

. another configuration exists which can do better either in the input-

| constrained or output-constrained case. For the hoop-column, numerous
configurations of 6 actuators and 12 sensors have been tested, and none
have bettered the configurations defined by Tables 7.2 and 7.3. Of
course, all possible configurations would have to be tested to theoreti-
cally vefify the optimality of the configurations. Table 7.4 and 7.5
compare the input-constrained and output-constrained configurations
respectively with each other and 2 other possible configurations. In
case (2) of Table 7.4 TX2 of the input-constrained configuration was
changed to TZ9. This gave the configuratfon of case (2) the use of
all z torquers, the rational being that if 3 Z torquers did well, four
would do better. For case (3) of Table 7.4 a form of collocation was
attempted where all torquers were collocated with rate sensors. In
case (4), the optimal SASLQG output-constrained configuration was
tried and obviously dogsn't do very we]f for an input constrained

, solution.

In the data of Table 7.5, case (2) is a collocation configuration
similar to the one in Table 7.4. The measurements for case (3) of
Table 7.5 were deliberately chosen so that measurability was lost

with relatively disasterous results. Finally, in case (4) the
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optimal input-constrained SASLQG solution is seen to be a better

approximation to an output-constrained solution than the converse

condition in Table 7.4.

7.3.3 Physical Insights

Tables 7.6 and 7.7 provide the minimum achievable SASLQG specifica-
tions for the input-constrained solution and output-constrained solu-
tion of the H.SAS problem. These specifications are valuable in the
sense that they represent a physically realizable set of specifications
for the given hoop model and sensor and actuator noise characteristics,
and an LQG contro]]ér has already been designed that achieves these
specifications.

The data presented in Tables 7.6 and 7.7 offer other useful
insights into the control problem. As noted in Chapter 6, the output
specifications of Table 7.6 represent the minimum achievable specifi-
cations when all available control power (in a stochastic sense) is
being used. The outputs which remain fhe farthest above specification
represent those outputs which, for the given specifications, are the
hardest to regulate. Dividing the (az, ﬁz) specifications of (4.16)
into the results of Table 7.6 the following outputs were found to be
significantly above specification and are ordered from highest to

lowest: 16, 11, 22, 14, 13, 19, 6, 3, 9, 20, 17, 12, 23, 10, 1S.

Combining the output labels of Table 6.1 with the hoop-column schematic
of Figure 4.1 provides a physical interpretation for these outputs.
Outputs 14, 16, 20, and 22 are tangential displacements of the hoop
with respect to the feed horn at node 10. Outputs 13, 17, 19 and 23

represent radial displacements of the hoop with respect to the feed
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Table 7.6: H.SAS Input-ConstrainedvSpecifications

Output #

1(AX2)
2(AY2)
3(AZ2)
4(AX10-AX2)
5(AY10-AY2)
6(AZ10)
7(X6-X2)
8(Y6-Y2)
9(X9-X2)
10(Y9-Y2)
11(X10-X2)

- 12(Y10-Y2)

13(X101-X10)
14(Y101-Y10)
15(2101-210)
16(X107-X10)
17(Y107-Y10)
18(2107-210)
19(X113-X10)
20(Y113-Y10)
21(Z113-210)
22(X119-X10)
23(Y119-Y10)
24(Z119-210)

2
VE

(minimum acgievable)

.534 Sec
1.779 Sec
1265.6 Sec
.026 Sec
.085 Sec
1311.7 Sec
1.247 mm
.374 m
8.161 mm
2.450 mm
18.984 mm
5.700 mm
13.671 mm
15.141 mm
.767 mm
20.573 mm
7.503 mm
.445 mm

- 13.519 mm

7.677 mm
<137 mm
16.949 mm
4.680 mm
.080 mm

Actuator #

1 (TX2)
2 (T22)
3 (TX6)
4 (TY6)
5 (Tz6)
6 (TZ10)

Specifications

10.000 dn-cm
10.000 dn-cm
10.000 dn-cm
10.000 dn-cm
10.000 dn-cm
10.000 dn-cm

LN il v oand
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o Table 7.7: H.SAS Qutput-Constrained Specifications
% | vf'_'z
— z‘Emu,i
‘ Output # v Ewyiz Actuator # (minimum achievable)
; 1(AX2) .015 Sec 1 TX2 72.91 dn-cm
: 2(AY2) .015 §ec 2 TY2 26.145 dn-cm
3(AZ2) 11.588 Sec 3 722 105.47 dn-cm
4(AX10-AX2) .001 Sec 4 TY6 26.138 dn-cm
B 5(AY10-AY2) .001 Sec 5 TY9 31.750 dn-cm
S 6(AZ10)  12.000 Sed 6 TY10 38.812 dn-cm
o) 7(X6-X2) .010 mm
] 8(Y6-Y2) .010 mm
- 9(X9-X2) .068 mm
N 10(Y9-Y2) -068 mm
i 11(X10-X2) .158 mm
12(Y10-Y2) .158 mm
13(X101-X10) .104 mm
14(Y101-Y10) .158 mm
15(Z101-210) .007 mm
. 16(X107-X10) .158 mm
: 17(Y107-Y10) .156 mm
% 18(2107-210) .008 mm
19(X113-X10) .122 mm
; 20(Y113-Y10) .158 mm
4 21(2113-210) .001 mm |
: 22(X119-X10) .158 mm |
23(Y119-Y10) .091 mm

24(2119-210) .001 mm
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Ry horn. Twisting (i.e. z rotation) between the top and bottom of the
column is represented by outputs 3 and 6, while bending and x/y rotation
of the column are represented in outputs 11 and 12. Therefore, for

the given sensor and actuator locations and actuator variance constraints,
¢ ) the most difficult control problems, respectively, are regulating the

‘ hoop x-y plane rotations with respect to the feed horn, keeping the

? . hoop centered with respect to the feed horn, and minimizing the twist-

: ing, bending, and x/y rotation of the columh. It should be mentioned
that similar output information can also be obtained from the output
constrained solution by noting which outputs require the largest qi's

to achieve their specification.

Theorem 5 promises, that for the given output specifications,

;i the torquer specifications in Table 7.7 represent the smallest possible

) average deviation from the required torquer specifications. A natural
consequence of this situation is that the torquers in Table 7.7 with

) larger values of E°u12 are more critical to overall performance and
therefore are candidates for the best hardware available (i.e. most
reliable, least noisy etc). The data indicates that the z-torquer is
the most critical actuator, and since hoop rotation with respect to
the feed horn and column twisting are some of the most difficult
outputs to control, this result is certainly not surprising. It

,E . should also be mentioned that similar critical input information can
be obtained from the input-constrained solution by noting which inputs
require the largest ri‘s to operate at their specification. Comparable

. J insights and results exist for the telescope SASLQG example presented

in the next section.
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7.4 Telescope SASLQG Example

The SASLQG problem for the solar optical telescope model (Stele
(24, 3, 21, 45)) was posed in Section 4.3.2 as the T.SAS problem. The

problem is repeated here again for continuity.

T.SAS Probiem

Given: Stele (24, 3, 21, 45) with only 12 actuators and
12 sensors available for designing an LQG regulator
to achieve the (02, uz) specification of Table 4.14.

Required: Specify the closed-loop system which satisfies
either the input constrained requirements of (7.1)
or the output constrained requirements of (7.2).

Before presenting the results, the following table of sensor labels
is added to the output and actuator labels used in Tables 6.3 and 6.4:
Note that Y1 represents a linear displacement sensor in the Y direction
at node 1 and LRZ3 represents a linear rate sensor in the Z direction

at node 3.

7.4.1 Input-Constrained and Output-Constrained Results

Tables 7.9 and 7.10 present the iteration by iteration results of
the SASLQG 1nput-constraiﬁed and output constrained options when
applied to the T-SAS problem. The results indicated that no LQG
controller existed to meet the (02, uz) specifications of Table 4.14
and therefore the conditions of 7.1b and 7.2b were sought. The
tables follow the same format as Tables 7.2 and 7.3.

The first point of interest in the data is that in iteration 1

of both solutions, the measurements of the outputs were deleted. It

should be remembered, however, that the goal of Kalman-Bucy filter is
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' 3
3 4
: 5
6
; 7
8
§
, 9
; 10
X
’ 11
12
13
: 14
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Table 7.8:

Sensor

Label Number
LOSX 16
LOSY 17
DEFOCUS 18
Y1 19
21 20
22 21
X3 22
Y3 23
Z3 24
24 25
X5 26
Y5 27
Z5 28
26 29
Y7 30

L)

......
........

Telescope Sensor Labels

Sensor
Label Number Label
Z7 K) LRZ4
28 32 LRX5
29 33 LRY5
210 34 LRZ5
XN 35 LRZ6
YN 36 LRY7
n 37 LRZ7
Y12 38 LRZ8
212 39 LRZ9
LRY1 40 LRZ10
LRZ1 41 LRX11
LRZ2 42 LRY1]
LRX3 43 LRZ1
LRY3 44 LRY12
LRZ3 45 LRZ12
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Table 7.9: Telescope Input-Constrained SASLQG Results

Iteration Identified Identified act Output Value Number of
Number Sensors (v, Seny  actuators (V ; I (7.4) Sensors/Actuators

R T

.f 1 3(.01176 FX11(.50204) 937.38 /21
L
LOSY(.00003)
b L0SX(.000002)
: DEFOCUS (0)

2 _Y12(.04943) FX5(.4600) 804.27 40/20
. Y7(.04943)
4 ¥11(.04943)
¥5(.04943)

262.050868) FY12(.66234) 627.29 36/19
18(.050864) FY7(.66234)

23 oaaat)

-4 22(.07382) FY11(.61612) 726.68 217
24(.07182) FY5(.61612)
23(.06732
1(.06595

5 210(.13672) FZ11(.6171) 745,53 28/15
~ 79(.13672) F112(.617%)

6 LRY3(.2820 F29(.6037) 790.47 26/13
LRY1(.2820
1 211(.2289)
X3(.1920)

7 LRZ7(.3457 c—e= 788.48 2212
LRZ8(. 3451
LRZS(.3040)

4 8 LRZ4(.5234) sm—e 788.96 19/12
LRZ3(.5173) ,

LR21(.4515)

LRZ6(. 3895)

9 LRZ9(1.214) v 790.79 18712
RX3(.62263)
LRZ2(.60428)
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10 ) cmma 794.72 12712

............

v .'\,-"\‘\ Qi %y
MMM‘.MA W ot




< gy "3 1 00 " K <3 iy TN A IR At Bt ity S A R S L i A S it AR B LM RO oL i s i g I MM
B
3 17
“
&
4%
‘g' . R
q Table 7.10: Telescope Output-Constrained SASLQG Results
\; .
e - Iteration Identified Identified Ave. Input Value Number of
7 Number Sensor (vism) Actuators (01°¢tt) (7.6) Sensors/Actuators
;’5 1 ¥3(.008197) FX11(-7.9 .
& o0 (-7.980) 7.483 45/21
ki . LOSY (.000015)
§ L0SX( .000002)
X DEFOCUS(0)
2 25(.02955) FX5(-8.796 7.393
“ z7§.ozsss) ( ) 4020
oY )
) 3 ¥12(.03848) FY7(-4.003) 7.2 38/19
¥7(.03848) FY12(-4.003)
z;l (6(3,832;8) FY11(-4.003)
FYS(-4.
é 03835; 5(-4.003)
2 .03835
N ,03570
5 . za .03570)
e 216(.03460)
;: 28(.08460)
£ 4 210(.08602) F211(-4.8877) 7.789 28/15
29(.08602 F : )
x3$.osz77 712(-4.8877)
g 5 LRY3(1.0815) F29(-5.414 8.15 1
% LRY1(1.0813) ( ) 5 /13
"z 6 LRZ7(.12273) S 8.
> LRz 12273) 8.339 23/12
7 LRZ1(.16805) I
¥ 211(.16129) 8.359 21/12
g LRZ6(.13838)
" ‘ LR28(.13615)
4
A 8 LRX3(.2237) caee .
) LRIt 220 8.416 17/12
- LRZ4(.2077)
. LRZ3(.1960)
Y
% 9 LRZ9(.47256) —ee 8.492 13/12
;, 10 coe- S 8.535 12/12
;f'{l, b
[3 3
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to estimate the state of the system not necessarily the output. For the

telescope example, the noise present on the output measurements made
them unattractive to the filter. For Table 7.9, iterations 3 and 4
indicate that 19 or possibly 18 actuators are an optimal configuration
if hardware constraints permit. From Table (7.10) the optimal number
lies between 19 and 15. It should be noted, however, that the output
value in Table 7.9 again began decreasing from iteration 6 to iteration
7, and according to the algorithm, actuator deletions should have
continued. This oversight was just recently noted and time has not
permitted a continuation of the actuator deletion sequence to determine
if fewer than 12 actuator is a better configuration. As was the case
for the hoop, iterations 7-10 in both tables indicate that the sensor
deletions are not having as much impact on the regulator design as
actuator deletions. Finally although not immediately obvious from the
data in the tables, both the input-constrained and the output-constrained

options converged to the same sensor and actuator configuration.

7.4.2 Sensor and Actuator Configuration Comparisons

As in the hoop example numerous other configurations were tested
and compared to the SASLQG solution to the T.SAS problem. Since both
the input-constrained and output-constrained options converged to the
same configuration, the results of both comparisons are presented in
Table 7.11 for the same test configurations. None of the tested
configurations did better than the LQGSAS solution including of
course the configurations in Table 7.11. Case (2) is a configuration

which collocates the actuators with the majority of the optimal

sensor locations defined in the SASLQG solution. Case (3) is a
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collocation of the sensors with the optimal actuator locations of the

SASLQG solution. Comparing cases (2) and (3) further indicates that
actuator location is driving the control design process more than the
sensors. The primary reason for this being the number of actuators,
and the power constraints, and noise level on the actuators. Case (4)
of Table (7.11) used all the actuator locations rejected by the SASLQG

algorithm plus the majority of the optimal sensor locations.

7.4.3 Physical Insights

Tables 7.12 and 7.13 provide the minimum achievable sepcifications
for the SASLQG input-constrained solution of the T.SAS problem. As in
thevhoop column exampIe. these specifications are valuable in the
sense that they represent a physically realizable set of specifications
for the given telescope model (S(24, 3, 12, 12)), and an LQG controller
has already been designed that achieves these specifications.

The data presented in Tables 7.12 and 7.13 also offer useful
insights into the control problem. Remembering that the output
specification on LOSX and LOSY is 65.2 sec, and that the specification
or defocué is .001 mm, it is easy to see that LOSX and LOSY are well
above specification. Since the specifications are the minimum achiev-
able specifications, LOSX and LOSY must be the most difficult outputs
to control. Using this same reasoning and recalling that the actuator
specifications are .0IN, the most critical actuator in the current

control configuration is FZ10.

7.5 Concluding Comments
The purpose of this chapter has been to develop and test an

algorithm which solves the SASLQG problem using the actuator and
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Table 7.12: T.SAS Input-Constrained Specifications

1

kT .,
Output # (minimum achievable) Actuator # Specification
1(LOSX) 7.965° 1(FY1) OIN
2(LOSY) 6.428° 2(F21) “
3(DEFOCUS) .00002 mm 3(FZ2) “
4(FX3) "
5(FY3) "
6(FZ3) "
7(Fz4) "
8(FZ5) "
9(Fz6) "
10(FZ7) "
11(Fz8) "
12(FZ10) "

Table 7.13: T.SAS Output-Constrained Specifications

fEu.2

Output # /é,yiz Actuator # (Minimum achievabie)
1(LOSX) 65.2 sec 1(FY1) -059N
2(LOSY) 65.2 sec 2(F21) .091N
3(DEFOCUS)  .0002 mm 3(F72) .084N
4(FX3) 195N
5(FY3) .063N
6(FZ3) .070N |
7(Fz4) 114N
8(Fz5) .060N
9(Fz6) .0585N
10(Fz7) .049N
11(Fz8) .075N

12(F210) 191N
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sensor effectiveness values of Chapter 5 and the weight selection
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algorithm of Chapter 6. This was accomplished by identifying known
facts about the SASLQG problem and then using these facts to develop

an intuitively appealing algorithm which has no current proof of

RO

optimality. The algorithm was successfully applied to the substantial
hoop column and solar optical telescope models. The documented results

have supplied not only a sensor and actuator configuration but also

KR IMAIE
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insight into the optimal number of noisy actuators, and the most

5“ demanding outputs and critical actuators for the given control design.
Oy ;

?,j \\\\‘\ Finally, if the desired variance specifications cannot be met, the
s algorithm provides a set of minimum achievable specifications along
%’ with an LQG controller which produces them. With the results of

z',

»3 this chapter, a summary of the entire research may now be presented.
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8.0 CONCLUSION

This research has developed and tested an algorithm which aids the

“ controls engineer in placing sensors and actuators (inputs) in a linear

AT AIY

stochastic system S(n,k,m,2) to 'best achieve' a set of variance
% specifications (02, uz) on the outputs and inputs of the system. The
term 'best achieve' has been defined in the introduction to be the

sensor and actuatorconfiguratiaiwhich enables a controller to do either
of the following: Meet the input specifications while minimizing a sum
of output variances normalized by their specificatibn (02), (i.e. input-
constrained solution), or meet the output specifications while minimizing
§ a sum of input variances normalized by their specification (uz) (i.e.
: output-constrained solution).

The approach taken to solve this sensor and actuator selection
(SAS) problem was to use LQG theory to specify a structure for the
j controller, and then develop an algorithm (SASLQG) that places sensors

and actuators 1n this controller structure to achieve either the input-

S A

constrained or output-constrained solution. The advantages and

~ disadvantages to this approach were discussed in Chapter 3. The main

g o

advantage being the mathematical ease with which LQG theory addresses

variance constraints, and the main disadvantage being that there may

be other controller structures which do better,




8.1 Contributions

In applying LQG theory to solve the SAS problem two specific
extensfons of the theory resulted. The first was the development of
the sensor and actuator effectiveness values Visen and ViaCt in Chapter
5. These values determine the importance of each sensor and actuator
to the LQG controller when both the sensors and actuators are assumed
noisy. The second extension was the development of the Algorithm LQGWTS
in Chapter 6. This algorithm provides a systematic method for adjusting
the weighting matrices in the LQG cost functional V so that the controller
which minimizes V also satisfies either the input-constrained or output-
constrained variance requirements.

These two extensions were combined to form.the sensor and actuator
selection algorithm SASLQG in Chapter 7. The algorithm was applied to
two substantial models of large space structures and the resulting
configurations although not guaranteed to be optimal achieved better
performance than any alternative configuration tested. As noted in
Chapter 7, the algorithm also provides insight into the sensitivity of
the controller design to sensor and actuator deletions and therefore,
insight into an optimal number for both sensors and actuators, Lastly,
the algorithm also provides information which identifies the most
demanding outputs and the critical actuators for the final sensor and

actuator configuration.

8.2 Recommendations for Further Research
It is felt that the algorithm SASLQG has made an important contri-

bution to the problem of selecting noisy sensors and actuators for

regulating linear systems with variance constraints on both the inputs
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and outputs of the system. In light of this contribution the following

recommendations are made for further research:

8.2.1 Discrete Time Systems/Deterministic Systems

The results of this research should be extendable to both discrete
time systems and deterministic systems. The only changes currently
forseen for a discrete time system would be using discrete versions of
the continuous, steady state Riccati and L yapunov equations currently
used in the algorithm. For determiniscic systems, the regulation
constraints will take different forms but the process of tailoring the
cost functional to achieve these constraints and then determining
sensor and actuator contributions sﬁould still be possible using a
sen

modified version of the LQGWTS update equations and V?Ct and V3
The specific details should be investigated.

8.2.2 Sensors Constraints
It is conceivable that variances constraints on the sensors of a
system (i.e. 5,212) may need to be within some bound. Incorporation
of these bounds appears possible through fhe techniques developed in

this research and should be researched.

8.2.3 SASLQG Simplification
The algorithm SASLQE requires running the algorithm LQGWTS at
each iteraction to tune the cost functional before the next set of
deletions occur. Experience has shown that once the original tuning
has been done (i.e. LQGWTS run on the first iteration), the subsequent

tunings of the cost functional may not be necessary. If conditions

for this result could be determined a substantial computational burden

of SASLQG could be removed.
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8.2.4 Non-Diagonal Q and R
While it is known that any cost functional which uses a non-diagonal
Q and R can be converted to an equivalent diagonal Q and R cost functional
by a unitary transformation on the system inputs and outputs. It is
currently not clear what advantages (if any) are gained by using the
off diagonal elements of the weighting matrices. This area needs to be

investigated.

8.2.5 PWR(j) and PWR, ()
There is certainly no guarantee that the PWR(j) and PWRy(j) sequences
choosen for the exponents in the LQGWTS update equations are the best
sequences. Investigation could continue in this area by testing

sequences such as eJ or gzu
J
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= Appendix A: Proofs
=% * Theorsm 1 proof:
For the proof of equations (5.4a,b) begin with the closed-1oop
* system representation of (3.3) partially repeated here for convenience.
X=Ax+Bo; x= (,xT;ET) ; ws= (wTvT)T
@
.x:Rzn s weRpﬂ‘
' y=Cx; y= [yT uT]T- : yeR'“'"k
(A1) - Ta oo
| votdTow: 0u |10
VeEyty; Q= | .
- 7 |lo Rl
;;' CM | _
e , T : 0
 emwt) W) sws(ter) 3 we
_ S ; - 0 vl
Then, the following holds:
CCaor wlo a : »
W% wWy ¢ | ' .
© where dfd’* and has a zero in all entries except for a 1 in the 1th
' entry. By the same token the following expression is also true.
3 .
5 .f' | o Tm T'
o o 1 ‘ :
L | | |
~Substituting A2 and A3 into the definitions of (5.3) yields:




T T

Pt

PO T

PR

bt

BT

oo o B

v = EyTQeud 5 1= ke, L kem
(A4)

y' T =
v = Etygeyr, 1=, .k

Letting e{ and eg'be‘k and m dimensional versions of e, and using the
partitions of y and Q in (A1), (A4) can be rewritten as follows:

u Tpal
Vi =EuReyu} =1, ...m
(AS)
v = ETeely ) =, Lk

Using tr[AB] = tr[BA], u = 6X, y = Cx , gives:

V" = g trlele] xx'6'R] i =1, ... m
(A6)

Uiy = Eutr[e¥c¥xxTCTQ] s 121, ...k

where giT is the 1th row of G and ¢ T is the ith row of C. The

T T

i

matrices eg gy and eiy C,; can be recognized as matrices of all zero

rows except for the 1th row of G or C respectively. Therefore, using

this fact a 1ittle additional linear algebra produces:

v = EL6XXGR]; 5 121, ...m
(A7)
(v = g fexxTcTQly 5 121, ...

Taking the expectation of A7 and substituting in the results of (3.5)
and (3.7) for the steady state variances of x and x gives the desired

result
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Y« [6X6"RL, L, 1=, ...
i (h8) -
Yafe(pax)cialyy » i=1, ...k

by . , For the proof of (5.4c-g) begin by recognizing that
L ) L =

‘.‘:-"- L4 Vi 9 1 1’ eee p

o Viv s T =2p+l ... p+e

Y where Viw is defined as follows:

(M0) VY= Hn Ely 5o~ (y Qy)ws} 3

X Using the known solution for X = Ax + Bw the solution for y becomes

t
(A1) o = ceMxlo) + cf At=-T) g )4
0

N Therefore, y can be considered a composite function of t and w{t).[66]
K Applying the chain rule for composite functions to the partial deriva-
g} tion in (A10) gives the following:

= %ﬁa%-(quPyQ

i Now, (A10) becomes:

o (M2) v = im ey 2L )
‘ _ Lo i
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The term %ﬁ;-wi can be interpreted as the contribution the ith
component of w is making to y. Mathematically this can be expressed

as follows:

t
y - A(t-g)
(A13) e w, C Io e biw'i (0)do

where b, is the i™ colum of B. Now,substituting (A13) and (A11) into
(A12) gives:

ATt t AT(
(A18) v = Tim E([x"(0)e CT + f W (7)8Te dC
t 0

0

o ft (Alt=)

0 b‘iw'i (0)do}

Upon multiplying out, Viw becomes

t T
(M15) v, = i E{f «F (0)e’ tcTchA(t'°)b1.w1.(a)da +
tre o

.
ftﬁuT(r)BTeA (t-1) CTQCeA(t'°)biwi(a)drda
0

Using tr[AB] = tr [BA] and interchanging the integral and the expec-

tation operators gives

t T
(16) v = 1im tr(] byt ()< (0)) € teTacett)gg
too 0

t T
. [ f byElw (o) (1)} 8Te* (8-7) -cToepA(t-0)grqo)
0




- 33

but from the assumed noise characteristics of (1.2)

E(w, (o)x' (0)) = 0

iT ith

Elwy (a)w (<)} = Wil §(t-a) ; where W' is the row of W

Therefore (A16) becomes:

(A17) vﬁ=1mtrfbm"TA(tﬂJ@guah
o

tro

Pulling out the constant terms and using the identity tr(AB) = tr(BA)

again:

(A18) v = 1im tr[8" f AT(t-0) ToceA(t-0)yq byu'T]
toe o]

Let S be defined by:

(A19) S = 1im I AT(t-a) TchA(t‘°)dc
0

toro
Using this definition, A18 becomes:
(A20) v, v = tr[BTspu'T]

Equation A20 can be written in the more convenient form:

w T
(A21) V1 = (8 SBw]11
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Since A is a stable matrix as a result of (1.3), S will approach a
constant matrix as t+-. (i.e. 5+0). Make the following change of

variable. (t-o) = (x-t) in (A19):

D 2t T
: (A22)  lim [ e (T-t)eToeAle=t)y . o
t+m it .
Now differentiating A22 with respect to t and making use of Leibniz's
rule gives
] et At 1 (28 gt () o A(z-t)
A (A23) 3 = 1im [2e" “c'gce -CQC+J =gt C e Thde
t
%
;
¢ 2t T, _ A(z~t)
. [ A (Tt) (Too de_d_t_ dc]
t
Now, applying the property of state transition matrices that
A(z-t)
i de = _gA(T-t)
} at e A
to A23 gives
4
) T 2t T
. (A24) & = 14m [2e* tcTge - cToc - ATI eh (1-t) Toeehle=t)y,
 TO t
2t ,T
: - f et (=t)eToceAlT=t)gr 2]
: t
Letting t+o in (A24), substituting in (A22) and remembering that
1im eA LN 0 for stable A gives
! tre

s KA A IR . . R R R T T A PR ] - E TR P M T N e e e e e e e . . -
1‘% f.!.q'n" -.Q' ‘ L) -\-' !" ‘fﬂ' ; et i.‘-'z\n - .",,f RN -"..'~~‘-‘ ARG RO T R
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(A25) 0 =Clgc+A'S +sA

The steady state Lyapunov equation (A25) is a 2n dimensional equation

tf which by direct substitution in (A25) can be shown to have the following
2
P solution
= Kt -
(A26) S =
- . L=l L
; where K is the control Riccati solution of (3.2c) and L satisfies:
] (A27)  L(A-FM) + (A-PM)TL + G'RG = 0 (i.e. 5.4g)
; Therefore, using the appropriate partitions of (A21) the formulas

(5.4d-f) are established. #i#

Proof of Property 1:

¢ From [1] it is known that the steady-state cost functional V of
L (A1) can be written in the following forms
s (A28) v = tr[xcToc]

B
5 and
o
&
v T
) (A29) V= tr{SBuB ]
4%,
4 where
T T

(A30) Ax + xAT + BuBT = 0
2
8
3
]

Bt v LTSI I PRPEIN P W P W A WA A AT T AL T T S, S PR LY SN PR
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and

(A31) SA+AlS+cClogc =0 (i.e. A25)

The form of the 2n dimensional matrix S has already been given in (A26)
and by direct substitution in A30 the 2n dimensional matrix X can be

shown to have the following form

[P+X
(A32) X = l_ :

> >
R

where P is the filter Riccati solution for (3.2d) and X is the estimate
variance matrix of (3.6). Using tr[AB] = tr[BA], (A28) and (A29) can
be rewritten as

(A33) v = tr[cxc'g]
(A34) v = tr{B'sBw]

Using the partitions of A and B defined in (3.3) and the partitions
of S and X defined in (A26) and (A32), (A33) and (A34) can be

rewritten as:
(A36) v = tr[C(P+X)CTQ] + tr[GXG'R]
(A36) v = tr[DT(K+L)DW] + tr[FTLFV]

Substituting the expressions for 5.4 into 5.5 and remembering that

D=8 Do] gives the following:
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, k
o (A37) V= 1?] [t;)leTR]ﬁ + 1X1 [c(P+i)cTQ]”

N L
(A38) V= E [T (K+L)OW], 4 + 121 [FTLFV,,

3 s
4

E? . By the definition of the trace operation, (A35) is equivalent to (A37)
Y and (A36) is equivalent (A38). Therefore Property 1 is proved. ###
N Proof of Property 2:

LA

M For diagonal R,Q,W and V along with the definitions for G and F
. in (3.21), Vi", Viy, Viw and Vz can be written as follows:

&

§ U, Ty -1

x (A39)  v,% = b, "KKKbr,

; Y 2 . T(p+X

A (A40) V'I ¢4 (P+X)c1

N

\

il (A41) Viw = diT(K+L)d1wi (wi = {th diagonal element of W)

N§

] (A42) Viv = miTPLPmivi'] (vi = {th diagonal element of V)']

j*tl.‘ (miT = it row of M)

Under the conditions of (1.3) the matrices K, P, X and L are known to
exist and be at least positive semi-definite. Therefore, since v,",
viy, viw, and viv are quadratic expressions which use these matrices

or symmetric products of these matrices as weights, they can never be

negative. (Part (a) proved)
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If (A,C) is observable, k (3.2c) is known to be positive definite
therefore, assuming di # 0 and remembering W > o, diTKdiwi will
always be positive and from (Ad41) so will Vi". (Part (b) proved).

If (A+8G,F) is controllable, then X in (3.6) is known to be
positive definite, this fact coupled with the fact that K is positive
definite when (A,C) is observable guarantees that biTKiKbi and ci.r)zc.i
will always be positive provided bi’ F # 0. Therefore, as indicated
by (A39) and (A40) v." and V.Y will always be positive. (Proof of
part c)

IF (A,D) is controllable, P (3.2d) is known to be positive definite.
Therefore, ciTPci > 0 always and from (A40), under this condition
V,I'y > 0. (Proof of part d)

If (A-FM, G) 1s observable then the matrix L defined by (5.4g)
is knowm to be positive definite. This fact coupled with the fact
that P is positive definite when (A,D) is controllable means that
miTPLPm1 > 0 and d1TLd1 >0 as long as m, , d, # 0. Therefore,from
(A41) and (M2) v." >0, v,Y >0. (Proof of part e)

###

Proof of Property 3:

Under the state transformation x = Tq , |T| # 0, where x is
defined to be the state of the system S(n,k,m,2) (i.e. (1.1)-(1.3))
controlled by the LQG controller of (3.2), the following identities

hold: (~ specifies the matrices in the transformed system)

~

(M3) A=TMW; B=T'8; CaCT; M=M
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T

B lal st
AT

SRS

Az:}‘. L2 L2,

1

h

TENYTT 2

i o7 g 4
AN

-

i

‘.e“;

L

A
LA
K,

“15r=T

-T T T

(M8) K=TKT; P=TWI¥; L=TWT; X=T

Using the definitions for G and F in (3.2) and substituting the identities

of (A43) and (A44) into (5.4) the transformation matrices T, TT are

1T

exactly cancelled by T and non-singular state transformation

is seen to have no effect on the quantities Viu, Vi-y , Viw’ and viv.

###

Proof of Theorem 3: Theorem 3 may be proved by showing that a

system of type (3.3) operating with fewer actuators is not guaranteed
to have a larger total cost.
The total cost of system (3.3) can be shown to be: [1]

(M5)  V(m,2) = tr[PCTQC + KPMTV TMP]

let the total cost of the system operating with a reduced set (1 or
more) of inputs be:

T T,~1
(M6)  V(m-1,2) = tr[PpC'QC + KoPeM V™ 'MP.]

To prove Theorem 3, a relationship between P, PR. K, KR must be found.
First make the following partitionings

D

R
(M7) B=D-=

Dpr W Wor | R
W= i; R:I!‘
0 l

RT
’ T
t DR %J e

3—!2’
%

i R
where DR is the D matrix for the system using a reduced set of inputs,
For clarity let "RT z 0 and RRT = 0. Substituting (A47) into the P

and K equations of (3.2) gives:
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(AM8)  PAT + AP - PMIV Twp + [onRDRT . DT“TDTT] =0

; T T 1 T Toe .
(M9) KA + A'K - K[BR,™'Bp' + ByRy™'By JK + C'QC = 0

g

The equations for PR and KR are

3 T T,-1 T
2 (AS0)  PRAT + APy - PRMTVTIMPR + Do DT = 0
¥ T 1.7 T
; (AS1)  KpA + ATKo - KoBeRy“ 1B 'Kp + €TQC = 0
v
& Now subtract (A50) from (A48) and (A51) from (A49):
\j.
T Ty~1 Ty~ T,
(A52) (PP )AT + A(P-Pp) - PM'V™'MP + PoMTV™IMP, + DoD.T = 0
; T 1. T 1, T 1T
g (A53)  (K-Kg)A + AT(K-Kg) - KBLRp™'BLTK + KeBoRo™'BpTKy - KBLR:™'B,TK = 0
. Add and subtract PMTVM']PR to A52 and add and subtract KoBp R'1BRTK
3
§ to A53:
2
‘ (AS4)  (P-Pp)(AT - MTV"MPR) + (A-PnTv“M)(P-pR) + 0.H-0.T = 0
2
",," [ N ———p
‘ T
F F
s R
: (A55)  (K-Ko)(A - B.R'B.TK) + (AT - K.B.R.“1B.TY(K - K,) - KB-R."1BK = 0
R R BR ROR'R BR R) - KBfRy By
B ——
: i
X GR
Adding and subtracting KpB.R-"1B-TK in (A-55):

T R A A A N TN A Tt vt e .
RPN SR L AU S Sl SR S Sl B WO S T WA v T LA, S,
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(AS6)  (K=Kg) (A+BG) + (A+B8)T (K-Ky) - KRBTRT"BTTK =0

Add and subtract (A-FRM)(P-PR) in (A54)

Add and Subtract (A+BG)T(K-KR) in (AS6)
(A57)  (P-PR)(A-FRM)T + (A-FgM)(P-Pp) + (Fp-F) M(P-Pp) + DWD.T = 0
(AS8)  (K-Kp)(A+BG) + (A+BG)T(K-Kp) + (G,'B,T-GTBT) (K-Kp) - KRBTRT"BTTK =0

substituting back the values for F, F G, Gy into (AS57) and (AS58) and
adding and subtracting KRBTRT']BTTKR in (A58) gives

(A59)  (P-Pp) (A=FM)T + (A-FM)(P-Pp) - (P-PR)MTV™'M(P-Pg) + DLW-D-T = 0
(A60)  (K-K,) (A+BG) + (A+8G)T(K-K,) + (K-Ko)BR™1BT(K-K,) - K.B_R. 'B_TK, = 0
R Kr R r! = KeBiRp B kg
multiplying (A60) by a minus sign yields:
(A61)  (Ko-K)(A+BG) + (A+BG)T (K,-K) - (Ko-K)BR™1BT(K,-K) + K.B-R."1B.Tk, = @
Kr R R K KeBrRr By 'Kp
Equation (A59) and (A60) are standard steady-state Riccati equations.
Since the reduced system is required to satisfy (1.3) and the original
system was assumed to satisfy (1.3), both (A-FRM) and (A+BG) will be

assymptotically stable. This means that the matrices [P-PR] and [KR-K]
exist and are at least positive-semi-definite. [1]

Therefore,
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(A62)  (P-Pp) 0= P > P,

(A63)  (KgK) 20 = K > K

Now, going back to A45 and A46 and subtracting A46 from A45

Tv-l Tv-l

T
(A64) V- VR = tr[(P-PR) C QC + KPM MP - KRPRM MPR]

If the sign of (20) is positive then the reduced set of actuators is
more efficient than the full set. Therefore if a feasible situation
exists for which (A64) is positive, Theorem 3 is proved. (A64) can

be rewritten as follows:
(A65) V- Vg = tRIC(P-PR)CTQ] + tr[M(PKP - PoKoPIMTV™']

From (A65) it can be seen that PKP > PpKoPp is sufficient for v - v, > 0.
From (AG2) and (A63) it can be seen that the definiteness of PKP - PpKpPp
dépends on the relative definiteness of (P-Pp) and (Kp-K). Therefore,
PKP-PRKRPR could feasibly be positive definite, negative definite,
indefinite, etc. Consequently, Theorem 3 is proved.

###

Proof of Theorem 3:
From [1] 1t is known that the LQG cost functional V (3.11) can

be expressed as follows: (using the notation of (3.2))

(A66) v = tr[KOWD' + PGTRG]
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x Now let V_ equal the cost functional for the system operating with one
£ additional sensor. Therefore,

i‘% (A67) v, = tr[koWD' + P GTRG]

W3

ig

¥t where

RN

‘: (A68) P+AT * AP, - P+M+TV+-'1M+P+ + DWDT = 0

et M -

% (A69) M = | - ; meR"

% B (i.e. added colum of M| matrix)

»

5 Vo0

) =

& (A70) i v,

ﬁ * 0 v, *

B (i.e. variance of new sensor noise)
o

% Subtracting (A67) from (A66) gives the following:

53

3 (A71) &V 2V - v, = tr(P-P,)G'RE]

#. Equation (A71) can be rewritten as follows:

&

& (A72)  av = tr[(P-P,)E"RG] = tr[ /TG(P-P,) /RG']

- Therefore, if (P-P,) is at least positive semi-definite the theorem
b

: ‘E« ‘ is proved.

Recall that the matrix P used here and in (3.2) is defined by
the following:

F

iy
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(A73)  PAT + AP - PMTV TMp + DWD = 0
Now, subtracting (A68) from (A73) gives:
(A78)  (P-P)AT + A(P-P,) - PMTV TP + P M. TV "Tup, = 0
adding + PM,'V,"IM.P, to (A74) yields:
N :
(A75) (PP )AT-M,Tv,"TMp) + AP-p,) - PMTV TP + P, TV, "TMp = 0

T

-1 1
Ve

T, -
adding + P .M MP., 2P MV,

. M.P to (A75) results in:

Ty Ty -1 Ty Ty v T-1
(A76)  (P-P,)(A'-M,'V,”'M.P.) + (A-P.M_'V.T'M,)(P-P,) - PM'V™'MP +

T

Ty -1 -1
PMY,TIMP, + PV TN (P-P) = 0

adding + va+']mTp to (A76), making use of (A69) and (A70) and the

- Ty =1 .
definition F_ = P.M_'V " gives:

Ty -1
v, M+(P-P+) +

(A77) (PP, )(A-FM)T + (A-FM,)(P-P,) - PM,
Ty =1 -1 T
PM V. M (P-P,) + Pmv."'mP =0
collecting terms gives:

(A78) (P-P+)(A-F+M+)T + (A-F M )(P-P,) - (P-P+)M+Tv+°1M+(p-p+) +

Pmv,"'m'P = 0

L]
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Equation (A78) is a standard matrix Ricatti equation. It is well

A
Sy EAE

known that the solution to (A78) (i.e. P-P+) is at least positive semi-
definite if the matrix (A-F+M+) is stable. The matrix (A-F+M+) will be
?; stable if the matrix pair (A,D) is stabilizable and the pair (A,M+) is
detectable. From the conditions (1.3) (A,B) is stabilizable and (A,M)
{ is detectable. Therefore (A,M+) must be detectable since adding a

}g . row to M (i.e. generating M, cannot effect the detectability of (A,M).
###
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Appendix B: i and the Chen-Seinfeld Switching-Function

In [1] it was shown that the switching function for the extended
Chen-Seinfeld method of optimal selection of sensors in systems of type

o (1.1) was

= -y

S _ a y=1 To
(B1) obi = tr(PmiV m, PAZ)

where m. is a column of M' and A, is defined by:

E (B2) Ay (A-PTVTH) + (AT-MTV"MP)A, + kBR ~TBTK = 0

where P is defined by:

) (83) PA" + AP - T q.Pm.V 'm.P + BB’ =0
: j-1
X
and
? 1 if itM sensor is to be used
X 9 = .th :
0 if i~ sensor is to be deleted
7
' The expression for V1.v is given by (5.4f), using F = puTy~] gives,
' V _ oyl T _, =1 T L
(84) V' = [VMPLPM ], = Vi 'm, 'PLPm, (assuming diagonal V)
where
: (85) L(A-PMTV TM) + (A-mTv- Ty TL + kBr™ 18Tk =0
E (B6) PAT + AP - PMTv Tvp + BWBT = 0
5 using the tr AB = tr BA (B1) becomes:
i
: S eyl To s . To o5 Lo
¥ (87) oc1 tr{V m, PAZPmil m, PAszitrV
} comparing egs. (B2), (B3) and (B7) to eqs. (B4), (BS5) and (B6) it is
)
R U O T T T T D R
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apparent that, with the exception of the trace operation on V'1 in (B7),

Viv is equivalent to calculating o‘j for the system with aZZ admissible

j
measurements present. (i.e. all q; = 1¥1 in (B3)).

T
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Appendix C: Conservative Step Size Argument

In this appendix an argument is presented for the conservative
E,-,uiz_l 1/2
nature of — . in the update equations for LQGWTS. The
u []
i |
identification of a conservative step size is fundamental to the success
of LQGWTS.

Substituting (6.22) with PHR = 1/2 into equation (3.19) gives the

following result:

AT ki) XG) KG) b,

Uy

(c1) ri;(i+1) =

where the argument (j) after the matrices K and X implies that the values

of Q and R at the jth iteration were used to determine the matrices,

édopting this notation, the steady-state means square value of the ith

control at the jth

+1 iteration may be expressed as follows
» 2 = =2y T,,: P .
(€2) E {“i }I = p.S(GH1)b, KEGHT)X(GH1IK(G #1)D,

Substituting (C-1) into (C-2) yields:

2 2 by KGR +K(G+1)b,
(C3) E lu; }'. =y T~
i by 'K )X(3 K )b,
Therefore, if
2 2 T s ianors . Tt eniys
(ca). E {Ui }| >ui and b1 K(J+])X(J+1)K(J+])bi>b. K(J)X(J)K(J )b,
® hEQ 1 i

then, from (C-3), (C-1) is a conservative step. Conversely, if

(cs) F.,,,,{u12}|j <u12 and b.iTK(j +H)X(E+)KEH )bi<b1.TK(J' )X(3)K(3 b,

-

e SO N N R N b N e e e e e ) AR
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then again from (C-3), (C-1) represents a conservative step size. The
arguments presented in the appendix are directed toward showing that the
conditions of (C-4 and (C-5) should hold when the update equation of
(3.5a) is applied with pwr = .5. Now, assume the following situation
exists

(Céa) E,{uiz}l > uiz
J

¥i=1, ... m

(Céb) System (1.1) is observable and stabilizable
Applying (3.5a) with pwr = .5 in this situation yields:

(c7) R(G+1)>R(G) (i.e. xTR(j+'l)x>xTR(j x4 x: |[x]] # (0)

Under condition (C-7) it can be shown that
(c8) K(3+1) > K(j) (i.e. xTK(j+'l)x > X7 K(3)x ¥ x).

The proof is not included here, but it involves the differentiating of

th and the j th+1 iteration and then

the control Riccati equation of the j
adding and subtracting terms until a Riccati type equation results for
the difference matrix (K(j+1) - K(j)).

Given (C-7) and (C-8), the following conjecture is made:
(€9) conjecture: f((j-!-'l) > i(j)

Justification:
Since the system of (2.1) is assumed observable and stabilizable,

f( is known to be equivalent to the following integral equation:

(C10)  X(§) = j e [ABR(3) Tty T A8 (5)] "t

0
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(4

} It is also known that increasing R (i.e. the situation in (C-7) results
ﬁ' in the closed-1oop system poles moving toward their open-loop positions
fi (i.e. G - 0). If the open-loop system has unstable poles (the usual case
:: _ for large space structures) R(j+1) R(j) implies that some eigenvalues of
%A

[A+BG(j+1)] will lie closer to the imaginary axis than any of the eigen-
"1‘”. values of [A+BG(j)]. That is (A+BG(j+1) will be less stable than [A#8G(j)].

Therefore, in determining i(jﬂ) from C-10, certain terms will go to zero

PO A )
s e 4 e

more slowly than they did in the i(j) calculations and therefore the

;_ infinite integral of these terms must be Zarger than the previous itera-
,’-‘ tion. The conjecture of (C-9) is based upon this fact.
‘ Continuing, if K(j+1) > K(j), and f((jﬂ) > i(j) it is straightforward
o to show the following:

(C1)  KGHXGHIKGH) 2 KGIX(IKG)
] Given (C.6a), C.11 immediately implies the conditions of C.4 hold and
therefore PNR = .5 in (6.22) would be a conservative step size, assuming
,._‘ no Q adjustments. If,
\{ (C12a) E,,(uiz)lj < uiz $#i=1,...m and
:r (C12b)  System (1.1) observable and stabilizable
. Using 6.22 as the update equation for the jth+1 iteration results in
it (©3)  REH) < RY)
and it can be shown that
» (C14)  K(I#) < K()
1_ An argument that parallels the one offered for the éonjecture of
(C9) can be used to justify the conjecture of C15

(C15) conjecture: i(jﬂ) 5_)2(.]')




*5 It is then again straightforward to show that

o R R
& (C16)  K(j*+1) X KG+1) < K@) X(3) K(J)
gg Given Cl2a, C16 1implies the conditions of C.5 hold and therefore pwr
l‘-‘

N . = .5 in (3.4a) would again be a conservative step size if no Q adjust-
X~

ments were made.

!
g?i The arguments above present a case for the conservative nature of
A N

o 6.22, PWR = .5 when all inputs are above or below specification and no
Y

Q adjustments (i.e. (6.29a) not used) are made. No statement

5§, is made about the situation when inputs are both above and below speci-
fg fication or when Q adjustments occur simultaneously or by themselves.

; In fact, an analysis such as described above cannot be applied to the
\

ﬁ:j output mean square equation (3.16) and the Q update equation

) because (3.16) is not an explicit function of Q. However, the experi-
= ence to date has shown that pwr = .5 in all update situations generates
%

ﬁ; a conservative step size. In fact, when just Q adjustments are required
1

_;ﬁ pwr = 1, has also generated a conservative step size and pwr = .5

N automaficaI]y generates a more conservative step size than pwr = .1.
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Appendix D: Necessary and Sufficient Conditions for EY; =0 ¥Q>,R>0.

Given the system (1.1) and the LQG controller (3.2)-(3.6), the
purpose of this Appendix is to identify the necessary and sufficient

conditions for

(01) biTl(iKbi =0 ¥Q>0, R>0; where b, = i" column of B,

i
b, #0
For necessity, consider that (D-1) implies that K > 0 and/or X > 0.

Furthermore,

K>0 = (A, C) unobservable

(02) X >0 => (A+BG, F) uncontrollable

Thus, the necessary condition for (D1) to hold is: (A, C) unobservable
and/or (A+BG, F) uncontrollable.

For sufficiency, assume first that (A, C) is unobservable and (1.1)
ﬁas been placed in observable canonical form. (i.e. x = Tx, |T| # 0

Then, the following is true,

M0 |5 0
(03) X = + u+ b w g
A Al [ %2 | B D
(04) y=[c, 0] andz=hx+v
Ky 0]
(D5) K= | (control Riccati Solution; K;y > 0

0 0

where,




1

(D6) A=TAT; B=T 8= [bys -vvs b1

p=1"n; [, O1=CT;M=MT;K=TK

{ Now, from (D3) - (D6), the following can be deduced:
' ) = =
and since Ky,>0,

(08)

K”b11 = (0 <= b11 =0 Q>0, R>0
% Conditions (D7) and (C8) lead to the following sufficient condition:
)
3 Sufficient Condition (1) : If (A, C) is unobservable and the jth column
; of B] is zero, then (D1) holds.
Y, Sufficient Condition (i) describes the situation when the ith input
: has no effect on observable states of the system. To check Sufficient
Q Condition {1) directly, it would be necessary to place (1.1) in observ-
: able canonical form. This numerical burden is certainly uncessary for
f LQGWTS since bi 1k.= 0 does got depend upon the particular Q > 0, R> 0,
? the test for <1) (i.e. biﬁ( . 0) only needs to be conducted on the first
j iteration of LQGWTS or whenever an output weight is zeroed.
f Placing the estimation dynamics
(09) X =(A+ BO)R + F(z-H0)
. (010)  u = Gx

in control canonical form (i.e. x = Sx, |S| # 0 yields:

E e e

) I L B PR R L »
(1) x= + (z-Mx)

—

Ced ot ve
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(D]Z) u= [G], Gz] —'X‘]— H 23 —il] 0_ )2'” >0
where

b L I LR
(013) | = S7(A+BG)S; ' =5~ 'F

9 L2 ! 9

e . %o o=18e-T
(D14) [G]. Gz] =G5S ; X=S XS
As a result of (D-11)-D-14) the following holds:
2 2 Taen =re%x e =aT%

Equation (D15) leads directly to Condition (2).

Condition <§5 : If (A+BG, F) is uncontrollable and 9. is zerd,
then b, TKiKb, = 0. 1

Note that Condition TZ) does not imply that (D1) holds since we
have not shown that g]i = 0 for every Q > 0, R > 0. Indeed this con-
dition cannot be shown unless the controllability of (A+BG, F) is
independent of the values of the matrices Q » 0, R > 0 when the rank
of F is less than n. The physical significance of condition 'é) is

that Euui2

= 0 LQG Controls which do not contain estimators states
that are disturbed from z.

Conditions ’j) and fZ‘ together describe all the possible condi-
tions for which (D1) could hold. As a result, LQGWTS performs the
following sequence of steps to check (D1).

1. On the first iteration and any time a a4y is zeroed, delete

any actuators associated with a zero row of BTK .
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2. Whenever ry adjustments force ry < e/ui2 delete the i~ actuator.

(Condition (Z\ then sufficient.)

The justification for step(:> results from the fact that update

equation (6.22) will decrease r; as long as Ewui2 < uiz.

Finally, it should be noted that when an actuator is deleted it is

A
also necessary to recalculate P (3.2e) since D = [B Do]
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Appendix E: Proaram Listings

Program LQGWTS

SUBROUTINE LAGUTS(NRAs NAs AR NRBy BB NRD» Ny DI NRU» Hlds NRUS WUT &
~NRC» CCy NRM» MM SIGMA, MU TITLY, TITLU, TITLZ, NYs NUs N2, FLAGS» EY» EUs
~EYNORM, » NRP» PP, NRK s KK» NRX» XXH» EIGAFM, EIGABG, NRQ» QQs NRR, RRI,
~HK, EPS, ITNUM)

i

SIS0 0040 30 00 SO O 0 00 00 000 -

GIVEN THE FOLLOWING TIME-INVARIANT,LINEAR, STOCHASTIC SYSTEMS:
DX/DT = AAeX + BBeJ + DO#Y
Y = CCnX
2 s MeX + VU
DD = tBB.nnol ] HI-ERE-DBO CAN BE O
HITH THE NOISE CHARQI:TERIST.}_CSS

E[N] = E[VU] = 0 3 ECH (TIH(S)] = L » DELTA(T-$)

T
ELV (TYU($)]1 = W = DELTA(T-$)
H>0 AND WO

DETﬂ!ﬂIPETPESIEAWSTﬁTELﬂBmz
U = GGax

,§

-

DXIDT'M’T*BB’U*FF'(Z HHCX)
GG = -RR'B;*KI:
FF=PPaMteW

T -1 T T
KK'MT-!' AR =KK -KK‘B?'RR10BB sKK + CC !000?80
PP#AQ + AARPP «~ PPaMM #WU #MM#PP + DD«l{li#DD = 0

SUCH THAT » 2
LIM EIYIJ .LE. SIGMACI} 3 FOR ALL I=l,....NY

2
LIM E[UIJ .LE. MU(I) 3 FOR ALL I=1,....NU

ALSOD» DETERMINE THE SENSOR AND ACTUATOR EFFECTIVENESS UALLES

IF NO SOLUTION EXSISTS , DETERMINE THE MINIMUM OUTPUT
ICATIONS AND THE LGG CONTROLLER WHICH KEEPS:THE STEADY-
MEAN-SQUARE  INPUT UALUES WITHIN THEIR ORIGINAL. SPECIFICA-
(1.E. AN INPUT CONSTRAINED SOLUTION) 3
CONVERSELY , DETERMINE THE MINIMUM INPUT SPECIFICATIONS
THE LOG CONTROLLER WHICH KEEPS THE: STEADY-STATE MEAN-SQUARE
UALUES WITHIN THEIR ORIGINAL SPECIFICATIONS.

(I.E. AN OUTPUT CONSTRAINED SOLUTION)

i
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INPUT

ARGUMENTS -
M(MoM)-BB(MoI’U).DD(M.N‘) HUCNM NHD » VUT (NZ5 N2) (IN=

VERSE OF W), CCCNY,NA), MM(NZ,NA)3 SYSTEM MODEL MATRICES
WITH ROW DIMENSIONS NRA, NRB. NRDs NRW» NRU, NRC) NRM RESPEC-

TIVELY.

NAy NU, NY» N2, N2  VECTOR
VECTOR

SIGMA(NY):

MUNU)
TITLY(NY):
TITLU(NUD ¢
TITL2(NZ):
FLAGS(11)2

LENGHTS OF XoUsYs2s ~d RESPECTIVELY
OF QUTPUT SPECIFICATIONS
VECTOR OF INPUT SPECIFICATIONS

LOGICAL PROGRAM

FLAGS(1)=.T.
FLAGS(2)=.T.
FLAGS(2)=.F.
FLAGS(3)=.T.
FLAGS(4)=.T.
FLAGS(S)=.T.
FLAGS(8)=.T.
FLAGS(7)=.T.
FLAGS(8)=.T.
FLAGS(9)=.T.

CONTROLS
PRINTS PARTIAL ECHO CHECK OF INPUT DATA
INPUT CONSTRAINED SEARCH USED
OUTPUT CONSTRAINED SEARCH USED
CHECK FILTER RICCATI SOLN
READ INITIAL GUESS FOR G~R FROM TAPE
CHECK CONTROL. RICCATI ~ EST. LYAP SOLN
PRINT INTERMEDIATE RESULTS
STORE INTERMEDIATE RESULTS
PRINT FINAL RESULTS
STORE FINAL RESULTS

FLAGS(10) USED BY SUBROUTINE

FLAGS(1
WS

1) USED BY SUBROUTINE
REAL WORK VECTOR OF LENGTH .GE.

[4NY+30NU+4sNAMNAHNASNUHMAX (NARNA, NY#NY, NUsNU) +
MAX(EotAnNA+4aNA, NUsNU+2¥NZ*NZ) 1
EPSSCMERGENCE BOUND »  IL.E.

(1-EPS).LE.(

ITHUM:

OUTPUT ARGUMENTS=

EY(NYs 1)2
EY(NY»2)3

EUCNUs 1)8
EU(NU,2)¢

EYNORM(NY»2)¢
EUNORM(NU.2) ¢
PP(NA,NA)S
KK(NA/NA)
EICABG(4#NA): REAL

EIGAFM(4=NA) ¢
XXH(NAsNA)E

EIUI]/I‘IJ(I)) .LE.(1+EPS) IMPLIES CONVERGENCE

SUGGESTED RANGE .1 > EPS >.001
MAX NUMBER OF ITERATIONS ALLOWED

VECTOR OF CURRENT OUTPUT MS UVALUES:
VECTOR INDICATOR OF OUTPUT WTS. BEING UPDATED
DURING AN INPUT CONST. SEARCH.(IE. EY(I.,2)=1.
IMPLIES UPDATE.)
VECTOR OF CURRENT INPUT MS URLUES
VECTOR INDICATOR OF INPUT WTS- BEING UPDATED
DURING AN OUTPUT CONST. SEARCH.
MATRIX OF THE LAST THO NORMED OUTPUT MS VALS
MATRIX OF THE LAST THO NORMED INPUT MS UALS
FILTER RICCATI SOLN, RON DIMENSION NRP
CONTROL . RICCATI SOLN» RON DIMENSION NRK !

REAL WORK VECTOR, EIGABG(1) CONTAINS THE EI-
GEN UALUES OF RA+BB=GG
REAL WORK VECTOR, EIGAFM(1) CONTAINS THE EI-
GEN UALUES OF ARA-FF=tM
EST UARIANCE. MATRIX, ROW DIMENSION NRX

MOTES- (1) IF FLAGS(4)=.F., THE PROGRAM ASSIGNS A SET OF INITIAL
WEIGHTS WHICH GIVES A COMPROMISE SOLUTION.(I.E. THE
m SPECIFICATION DEVIATION OF ALL COMPONENTS IS

(2) IF BB =

DD THE PROGRAM EXPECTS THE DD ARGUMENT TO BE
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BB.(I.E. THE DD MATRIX IS NOT NEEDED) . THE ALGORITHM
DELETES ACTUATORS WHICH HAVE NO EFFECT ON THE GUTPUT.

(3) THE PROGRAM WRITES AND READS OCCUR ON TAPES

(4) SUBROUTINES MDROP,MAREAD, MURITE, AND LYCHK MUST BE
DECLARED EXTERNALS. THEY ARE LOCATED AT THE BACK OF

(S) IF THE ALGORITHM HAS NOT CONVERGED IN THE ALLOKED
NUMBER OF ITERATIONS, IT MAY BE RESTARTED BY READ-
ING IN THE LAST UALUES OF THE APPROPRIATE UPDATE UVEC-
TOR AND HEIGHTING MATRICES. ALSO» FLAGS(10) MUST BE
SET TO .T. IF BOTH Q AND R*ADJUSTMENTS ARE OCCURING,
OTHERHISE FLAGSC10) MUST BE SET TO .F. .

‘SUBROUTINES USED: MP31,MP32, POTTER, MP3, MAREAD, MULRTR, MULRRT,»
%MT-MD%GEIGEN-LYGPE-LYM-HPRINTQ

11111111311111111

S0 00 00 0 RN S - R 0 S - IF D

01/20-83 MLD

REAL AA(NRAY 1)+ BBINRB, 1)+ CCCNRC» 1), DDCNRD» 1)+ HHC(NRH, 1) » WUICNRUs 1).

~s MCNRM5 1) STGHACNY ) » MUCNUD » TITLY(NY)« TITLUCNUD » EY(NY, 2) » EU(NU, 2)
~s EYNORM(NY» 2) s EUNORM(NU» 2) » PP(NRP» 1) » KK (NRK» 1) GB(NRG» 1)+ TITLZ(NZ
~)»RRICNRR, 1), HK(11), EIGAFM(NA) » EIGABGINA) + XXH(NRX» 1)

LOGICAL FLAGS(11),SOLN,NSOLN, SSOLN» INTERs CONST» XHAT» Q2FLGs RZFLG
INTEGER CNUM(1),RNUMC(1)

1 FORMAT(1H1)
2 FORMAT(SX» )
3 FORMAT (53 g 1 00-0040-00-40-3005-00-00-0- 000050 S-HEHHHEHEEHFHHEHHEHEHHHHHHHAR )

10 FORMAT (27X, #enennnnnsassnsnnannnananns, /, 27X, 0 INPUT DATA o,
astECHO CHECK %38, /7y 27% s s-HMHMHHHMHHIHHHHMHHII S8, // /7, S) o
~n OF INPUTS #, 13,7, SXs#NUMBER OF OUTPUTS »» 13+ /»SX, #UALUE OF =
~y mEPSILON »,E11.5,7)

11 FORMAT (9K, #SENSOR#, 12X, #SENSOR, 11X, *ACTUATORM, 11X, xNOISEm, -
11X, #ACTUATOR, 10X» #ACTUATORM, /s SXs *NUMBERM,» 3X, #LABEL#, SX»
~sEFFECTIVENESS#y 4%+ #NUMBER, 3%, #2LABEL #, SX» 2CONTRIBUTION®, 4X,. -
~#NUMBER#, 3K, #LLABEL»y SX» #EFFECTIVENESSH)

12 FORMAT(E8Xs»F3.0, 3% A10s 2% E11.5s 7%s F3.0+3Xs A10,2X,EL11.5, X F3.0s
f&(-ﬂlO.E’(oEll-S)

13 FORMAT(BX, F3.0,3%,A10,2X,E11.8) .

14 FORMAT(42%»F3.0s 3% A10, 2%, EL1.5:6XsF3.0, 3%, A10, 2%, E11.95)

1S FORMAT (79 34X s 7995000000000 00HHHHHHMNHHHMHHMHIHIHHEHEH S, /7, 34X,
~se ACTUATOR ~ SENSOR EFFECTIVENESS DATA #i, /s 34X, saunassnnnnt,
AR HN M TN N,/ /)

‘20 FORMAT(SX, #FLAG NUMBER? », 3K, s2st, BX, %3, BX» #45, BX» 25, EXs %26ty 6X
“o’?:.ﬁ)‘o’aﬁvsx'mo/, 11X, #UALLIE: #, 1X» RSy 7(2Xs AS)

LYY L4

‘30 FORMAT(9X, #»OUTPUTS#, 12X, #MEAN SQUAREN, 2X, #ent, BX, #INPUTSH, BX, »
~MEAN SQUAREM, /» SXs *NUMBERNM, 4X, #LABEL M, 7X, #SPECIFICATION, 1X, #est,
A1X» #NUMBERM, 4X%, #LABEL#, 7X, #SPECIFICATIONMs /s 41X, seunt)

40 FORMAT(SX» 139 4Xs A0+ SXe E11.5s 3X, sest, 2%, I3, 4%Xs A105SX,EL11.5)

41 FORMAT(SXs I13+9%s A10s SXeE11.5s 3X, nent)

42 FORMAT (41X, sent, 2%, 139 4% A105 SXE11.5)

‘50 FORMAT(SX,»#e THE FOLLOWING IS THE #,AG»# MATRIX,#, X, nent, /) 5X,
~n® ALL ELEMENTS SHOULD BE CLOSE TO ZERQ .#s6X, ex)
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B1 FORMAT(SX,#* THE FOLLOWING ARE THE EIGENVALUES OF #sAd,# , #a)

52 FORMAT(SX,#» THIS. SPECTRUM IS INDEPENDENT OF Q AND R#,SX,swa)

‘53 FORMAT (48X, #2NATURAL M, /» 47X, #FREQUENCY#, 7X» #DAMPING, /» 4X+ #EIGENU#
~y #ALUEH, BX» #REAL®, 9X» # IMAGINARY#: SX» # (RAD/SEC Yy 7X» #RATIOR, /)

{ 54 FORMAT(8%, I3,5%,E12.6,3X,E12.6»3X,E12.6,3X,E12.6)

™ 60 FORMAT(SX, ## THE FIXED COMPGNENT OF THE MEAN SQUARE #,/,SX,

o) ~y#e UALUE OF OUTPUT #, I3,# LABELED #,A10,6X, e, /s 5X, ## EXCEEDS #
A ~»#ITS SPECIFICATION .y 17X, dunt)

61 FORMAT(SX,#» NO CHOICE FOR Q@ AND R EXSISTS . S#,

ey ~2HOUNM®, 7X, #u3ty /4 SX, ## BELON ARE THE FIXED COMPONENTS AND #, -

~#THE SPECa, 1Xs #0nt)
‘82 FORMAT(/7, 9%, #OUTPUTSH; 15X #F IXEDHM, 12X, #MEAN SGUARE, /» SX,
~%NUMBER#, 4%, #LABEL %, 9%s #COMPONENT», SX, #SPECIFICATIONS. /)
< FORMAT(EX» 13, 4% A0+ 4%, EL11.S) 10X,E11.5).
1 70 FORMAT(SX,#» INPUT »,13,# LABELED #,A10,# HAS NO EFFECT #ut,
- . a/sS¥emt% ON THE OUTPUT . IT WILL BE DELETED .*»8X,xex) '
= 71 FORMAT(SX, %% SHOWN BELOM ARE.THE INPUTS WITH THEIR#, 7X, ##x, /s SX»
t~ ~stn RESPECTIVE ROW NORMS IN THE GAIN MATRIX#,SX,x#x,/,SX,## (I.E.
- ~ THE ROW MNORMS OF BTK)#, 15X, sunt)
72 FORMAT (6% I3,4%sA10,5%»,E11.9)
73 F%&T%&:IMPUTS#. 12X, 2GAIN MATRIX#, /5 SX» #NUMBER®, 4X, #LABEL#» 9X
S Ny
74 FORMAT(SX,#» INITIAL Q AND R RESULTS =, 19X, #ux) -
- ‘75 FORMAT(SX,#% THE ABOUE DELETED INPUTS CONSIST OF STATEH, 3X,»xwa
o ~s /72 S, #» ESTIMATES THAT ARE NOT DISTURBABLE FROM THE ws,
-, a7y S¥, % MEASUREMENT UECTOR 2 .#s 22X, #wnt)
80 FORMAT(SX,sw ITERATION NUMBER #y I3, 24X, #nnt) .
81 FORMAT(SX, 2z #,A7,% ADJUSTMENT » EXPONENT IS s FB.4,3X,xns)
'y 82 FORMAT(SX,#» SOLUTION OBTAINEDX, 27X, #%st)
83 FORMAT(SX,»# NO SOLUTION FOR  THESE SPECIFICATIONSH, 8X,xest)
a 84 FORMAT(SX,#» SOLUTION NOT YET OBTARINED#, 19X, #ex)
87 FORMAT(SX,#» IF THE #,AB,# SPECIFICATIONS ARE CHANGED TO ## -
] ~s 795X, #» THE #,AB, # MEAN SBUARE VALUES OF THIS#, 7X, x#m, /,5X .
1 ~ss# ITERATION» A SOLUTION HAS BEEN FOUND .(I.E. #,/,5X
~osin AN #,A6, # CONSTRAINED SOLUTION .)# 11X, =ux)
e ‘88 FORMAT(SX,#» IF THE a,AB,# SPECIFICATIONS ARE CHANGED TO #:
o’ s/ S¥, %% THE #,A6s# MEAN SAQUARE UALUES: OF THIS#, 7X, #x,s /s 5X .
»- ~s#t# ITERATIONs A SOLUTION HAS BEEN FOUND .2, BX,#u)
89 FORMAT(SX,s» IF THE »,A6,# SPECIFICATIONS ARE CHANGED TO a» .
as /9 SXs e THE #,AC,# MEAN SGUARE UALUES:OF THIS#, 7X,x#st, /5 SX
F'.. ~p#e ITERATION » THE COMPROMISE SOLUTION RESULTS #x)
: ‘90 FORMAT (8X» #20UTPUTS, 8X%s #MEAN - SQUARE®, 3X» #NORMED, EX» 2HEIGHT#»
A3X, un, 4%, *INPUTSH, 8Xs 2MEAN SQUAREM, 3X, *NORMED, X #UEIGHT®,
b a7 5%, #NUMBER LABEL#, 7Xs #UALUEM, 7X» #UALUEH, 7X, #(GII )%, 4X,
A ~s# NUMBER LABEL®, 7Xs #UALUER, 7%, *UALUE®, 6X» #(RII)®)
a 91 FORMAT(BXsF3.0:s2%XsA10, 1XoELL.Ss 1%sEL11.S5s 140 ELL.Sot @ 4,
s AF3.0,2%:A10, 1%, EL11.5, 1%, E11.50 1X+E11.5)
- 92 FORMAT(BXsF3.0+2%sA10s 1XsE11.5s 1XsE11.5s 1X,E11.Ss 2 wat)
93 FORMAT(S8X,#» #,F3.0,2% A10, 1%,E11.5s 1X,E11.5, 1X»E11.5)
-94 FORMAT (35X, #asssssnunut, 45X, tuansesssnxp, /) 28X, 2YSUM= #E11.S»
~39%, #USUM= #,E11.5, 77, 5Xs #TOTAL NORM SPEC = #,E11.5)
‘95 FORMAT(SXs 2% CONSTRAINED SPECIFICATIONS SOUGHT», 11X, a#st)
96 FORMAT(SXs ## CONSTRAINED SPECIFICATIONS FOUND», 12X, swst)
: 99 FORMAT (5)X s 000000110 - HHHHHNH L,
a . ARSI, /5 S, A ALGORITHM CONUERGING UERY SLOWLY. THESEm
. ~»# MEAN SGUARE UALUES #m,/,SX,#» ARE GOOD APPROXIMATIONS TO»
2 ~s# THE DESIRED SPECIFICATIONS.»»SX,#wst;/,5X,## FOR A CLOSER #,
~#APPROXIMATIONs THE ALGORITHM SHOULD BEx,8X, s, /s SX, #e REs
~s #STARTED WITH THESE WEIGHTS AS THE INITIAL WEIGHTS AND#, 4X, stest
as/y 5%, #% THE CURRENT UALUES OF EITHER EY(I,2) OR EU(I,2) AS THE #

................




a9y 4Xs 20ty 7/, SX, 2% UPDATE UECTOR, 46X, 2%, /, SX,

AT SO -0 08-S 00 0600 3330 0000 0 0 00 30 35 0004000000 S0 -0 - ot )
Connnnunnnnnnnnnen INITIALIZE PARAMETERS 8555501505 08 -5 -6 1905 9B 0

105 NYNU=NY+MNU

RNYNU=NYNU/

)
MIN=NU
IF(NY.LT.NU3 MIN=NY
NYU=NY-NU
MAX=TABS (NYU)+MIN
MINN=MIN+1
DESCTN=1.0E+99
I1I=0
PURS=0.
DO 111 I=1,NY
EYNORM(I, 1)=1,.0E+39
EY(I,2)=0,

111 CONTINUE
FLAGS(11)=.FALSE,.
SOLN=.FALSE.
NSOLN=.FALSE.
SSOLN=.FALSE.
INTER=, TRUE.
CONST=.F.
RZFLG=.F.
IF((FLAGS(4)).AND. (FLAGS(10))) CONST=.T.
XHAT=.F,

DO 112 I=1,NU
EUNORM(I, 1)=1.0E+99
EU(I,2)=0,

112 CONTINUE
Ny2aNYsNY
NU2=NUsNU
N43=4aNy+3sNU
N32a3uiyy+2eNU
NAZ2=NA*NA
NAU=NA#NY
Na2=2«NY+2+NU
N33=23=NY+3+NU
N21=2#NY+NU
Ne=2sNyY
N2Aa22#NA
NeU=2+Ny

-N3U=3=NU

N4U=4aNU

NSUaS#NU

NEU=GaNU

N2Z=2#NZ
NST=N43+NA2+NAU
NST1=NST+MAX#MAX -
SP=1.+EPS
SPM=1.~-EPS

Cannnasnan PART(AL INPUT DATA ECHO! CHETK #0000 0000000 R -

IF(.NOT. FLAGS(1)3 GO TO 110
HRITE(S, 1)
HRITE(6s 10)NUs NY, EPS

00 100 I=1,9

LvIewIvry
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WK (I)=SHFALSE

IF(FLAGS(I)) KK(I)=5H TRUE
100 CONTINUE

WRITE(B,»20) (LK(I), I=2,9)

HRITE(S, 30)

DO 101 I=1,MIN

LRITE(So40)I-TITLY(I)-SIGHR(\I)oIoTITLU(DoHU(I)
101 CONTINUE

IF(NY.EQ.NU) GO TO 110

IF(MIN.EQ.NY) GO TO 103

DO 102 I=MINN,MAX

HWRITE(E,41)1, TITLY(I)»SIGMACI)
102 CONTINUE

GO TO 110
103 DO 104 I=MINN,MAX

WRITE(G+42) I, TITLUCI)» MUCI) |
104 CONTINUE

Connuns CALCULATE STEADY STATE FILTER RICCATI s tmuasninus

110 CALL MP31 (NRM. NAs MM NRUs NZ2s UUT s NRMs NZ2» NA» M1 NA» UK (N43+NASH1))
CALL MP3I2(NRD» NA»s DDs NRU,» Nds W NRDs NHo NR» DDs NA» WK (N43+1))
CALL POTTER(#F ILTER, NAy» AAs NRAs HK (N3 +NAS+1 ), NAL WK (N43+1 ), NA. PP
~s NRP» HK(N43+2#NA2+1 ) » EIGAFMs KK (N43+6#NA2+1 ), FALSE. s FLAGS(3))
Connnanasanenns SQUE PMTUIMP #945550000-030-0HHMEHHHIHNNHE SHESHHIHE NS
CALL MP3(NRP,NAs PPy NA» NAs HK (N43+NA2+1) » NRP+ NAs NA» PP, NAY
~HK(N43+1))
C oo 0000090004000 50000 0 CHE I 109690 5050090500090 3000
IF(.NOT. FLAGS(3)) GO TO 120
HRITE(G, 1)
HRITE(G,3)
HRITE(E,S0)EH~DP/DT
HRITE(E,3)
HRITE(E,2)
CALL MPRINT(NA» UK (N43+2eNA2+1) s NAs NA» 10, 5, #-BP/DTH, 0)

Connsaunsnsnnnnens FIXED COMPONENT' (CPCT) CHECK #4995t - HHHMHHIHHMHMHS
120 gaLL B‘IPSE(I‘RC.NY-CC.NRP,N&PP.HRC.HG-NY.L‘C-NY, HK(N43+NA2+1))

DO 130 I=1,NY
WK (N33+1 ) =LK (N43+NA2+( I-1) #NY+]1)
CPCTN=LK(N33+1)/SIGMACI)
IF(CPCTN.LT.SP) GO TO 130
NDUM=NDUM+1
IF(NDUM.NE. 1) GO TO 131
HRITE(G, 1)
HRITE(B: 3)

131 HRITE(6,2)
HRITE(6,60)I, TITLY(I)

130 CONTINUE
IF (NDUM.ED.0) GO TU 140
NSOLN=,T

FLAGS(2)=.T,

WRITE(B,61)

HRITE(6,3)

HRITE(E.2)

HWRITE(6,62)

DO 132 I=1,NY

HRITE(E,63) I, TITLY(I)s UK(N33+I)» SICMACI)




S\‘;‘EE

TP A o

132 CONTINUE
Cesnses SET INITIAL GUESS FOR @ AND RCINUVERSE) HHH-ES-HMH-S-S81-408

140 DO 142 I=1,NY
DO 143 J=1,NY
0acI, J)=0,
IFCI.EQ.J) GO(I,J)=1.0/SIGMACI)
143 CONTIMUE
142 CONTINUE
DO 144 I=1,NU
DO 145 J=1,MNU
RRICI,J)=0,
N IF(I.EQ.J) RRICI, I)=MUCI)
bl 145 CONTINUE
144 CONTINUE
A : IFC.NOT.FLAGS(4)) GO TO 150
e IF(FLAGS(2)) CALL MAREADCNY:EY(1s2)yNY, 1,#UPDATE NUMM)
' IF(.NOT.FLAGS(2))' CALL MAREAD(NU,EUC1,2),NU» 1, #UPDATE NUM#)
CALL MAREADCNY, HK(N22+1)»NYs1,#QQ INITIALM)
CALL MAREAD(NU: NK(N32+1),NU, 1, #RR INITIAL#)
%! DO 146 Is=i,NY
[ QQC I, 1=K (N22+1)
Ly 146 CONTINUE
% DO 147 I=1,MU
: RRICI, I)=K(N32+)nn(~1)
147 CONTINUE

Cennase CALCULATE STERDY STATE CONTROL RICCATI #esssssanss

& Cunnne IDENTIFY ACTUATORS USING ONLY UNDISTURBABLE ESTIMATES swsuue
k- 1S0 IF(.NOT.R2FLG) GO. TO 1S4 -
v XHAT=, T,

G0 TO 162
151 CALL ml"ﬂc-m.m.m.moﬂﬂ’mc.m.m:ccoNQvHK(NST
3 CALL MP32(NRB, NA, BB, NRRs NUs RRI» NRBs MUs NA» BB» NAs HK (NST+1))
RN CALL POTTER(»#CONTROLA, NA» AR»NRA» KK (NST+1) s NA» K (NST+NA2+1 ) » NR»
> ~KK» NRK» HK (NST+22NA2+1 ) , EIGABGy UK (NST+E#NAZ+1)» .FALSE. » FLAGS(S))
:.;: Co900-29090905-0 0000510 B CHE DK 9040000000000 5-0-005HHHEHEHHEHEHEHEE SIS 8 S
" IF(.NOT.FLAGS(S)) GO TO 170
KRITE(G,1)
HRITE(6»3)
; HWRITE(8» S0)SH-DK/DT
! NRITE(E, 3)
~, WRITE(E,2)
CALL MPRINT(NA, UK (NST+2#NA2+1) s NAs NA» 10, S» #~DK/DTH, 0)

Cess IDENTIFY ACTUATORS: NHICH EFFFECT ONLY UNOUBSERUABLE STATESwwa#w

170 CALL MULRTR(BB,KKsHK(N43+NR2+1)s NU» NAs NA» NRBs NRKs NU)
IF((11.GT.0).AND.(.NOT.QZFLG)) GO TO 160
4 CALL MULRRT(HK(N43+NA2+1 ), WK (N43+NA2+1 ),
;‘1: ~HK (NST+NA2+1)» NU» MRy MU, NUs NU, NU)

) DO 171 Is=1,NU
IF (UK (NST+NA2+NU#(I-1)+1) .GT.BTKM) BTKM=WK(NST+NA2
~Us(I-1)+1)
‘ HK (NST+NA2+NUR+ 1 ) =stiK (NST+NA2+NUR(I-1)+1)
. 171 CONTIMNUE

k."‘.,'.
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162 NDUM=) : )
DO 172 J=1,MU
I=NU+1~-J
IF(.NOT.XHAT) WK(N21+1)=TITLUC(T)
IF(.NOT.XHAT) WK(NST+NA2+NU2+1)3SURT (HK (NST+NA2+NU2+1)/BTKM)
IF (K (NST+NA2+NU2+1) .GT.EPS) . AND. (.NOT.XHAT)) GO. TO 172
REPSa(1/RRICI, 1) )=MU(I)
IF ((XHAT).AND. (REPS.GT.EPS)) GO TO {72

NDUM=NDUM+1
IF(NDUM.NE.1) GO TO 173
NRITE(Es 1)
HRITE(B,3)
173 HRITE(B»70)I, TITLUCI)
WRITE(E,2)
Canwnnnansnnannnnnenss DELETE ACTUATOR IF NECESSARY --HMMHNHHNHHHIHHHIHIHMS
CNUM(1)=]
RNUM(1)=]
CALL MDROP(NRB,NA» NU, BB» 0» RNUM, 1, CNUM, 0)
CALL MDROP(NRWs NHs NH» Hids 1, RNUMs 15 CNUM, 0)
IF(NU.NE.NU) CALL MDROP(NRDs NR» NH. DD» 0, RNUMs 1, CNUM, 0)
CALL MDROP(NU, NUs 1, TITLU, 1, RNUM, 0, CNUM; Q)
CALL MDROP(NU, NUs 1, MUs 15 RNUMs 0o CNUM. 0)
172 CONTINUE
IFC(NDUM.EQ.0).AND. (.NOT.XHAT)) GO TO 160
NNU=NU
NU=NU-NDUM
Nd=NL~-NDUM
IF(.NOT.XHAT) URITE(S,71)
IF(XHAT) WRITE(S,73)
HRITE(E,J)
IF(XHAT) GO TO 105
HRITE(6,2)
WRITE(B,73)
DO 174 I=1,NNU
HRITE(B» 72) I, UK (N21+1) ¢ HKK(NSTHNA2HU2+1)
174 CONTINUE
GO TO 10S

sunannuunn CALCULATE STEADY STATE VARIANCE OF STATE ESTIMATES wweseus

Counrnnunne FORM A+BG MATRIX 450505090 50000 HHHHHEHEHEHEHNHHAHEHHHNHEHHE A
160 CALL MULTC(HK(NST+1),KK, HK(NST+NAS+1) s NAs NAs NAs NA» NRK» NR)
CALL MADDCARS UK (NST+NAR+1 ) » UK INST+1 ), NA, NAs NRAs NA» NA» ~1)
Cuannnannunned SOLUE LYAP EGQGUATION #0000 000050 S-0-00-00--HHHMHEHRNE HHHHHNHHIHNHN-
CALL GEIGENCNA, WK (NST+1)sNAs4s UK (NST+5#NA2+1), 0, 2LOGHTS SUB»
~s EIGABG» NA» HK (NST+NA2+1 ) » K (NST+3%NA2+1 ) » #A+BGA)
CALL LYRP2(EIGABG,s NAs WK (NST+NA2+1) . KK (NST+3=NA2+1)» NAs» HK (N43+
~1) s NRX» XxH» NAs UK (NST+E=NAR2+1))
Cuu 0509450000000 0 CHE CIK 5999000 00905595305 500050 0 HHHEHEHHHMEHEHHMMHEHHHIHHENS
IF(.NOT. FLAGS(S)) GO TO 180.
HRITE(B,1)
HRITE(E,3)
HRITE(B,»S0)6H-DX/OT
HRITE(Bs3)
HRITE(G,2)
CALL LYCHK(NAs NAs HK(NST+1) » NRX» XXH», IK (NST+E#NAZ+1) » NAy
~HK(N43+1),2)

Cunnnnne CALCULATE MEAN SOGUARE UALUES #5400 0000 0000 HHMHHIHMIR MM




Cenasns CALCULATE INPUT MEAN SQUARE: UALUES AND CHECKS #wssssssssanne
ol

CALL MP32(NU, NUs HK (N43+HNAS+ 1)+ NRX» NA» XXH» NU» NA» NU»
~HK(N43+HNA2+1)» NUy WK (NST+1)) !

A DO 183 I=i,NU

e EUCI) =K (NST+NUS( I=1)+I)#RRT( I, I)#e2
3 EUNORM( T, 2)=EUCT)/MUCT)

s _ IF(FLAGS(2)) GO TO 195

£ : WK (NST1+1)=EY(I,2)

33 IF(.NOT.CONST) EUCI,2)=0.

: IF (EUNORM(I,2) .LE.SP) EUCI,2)=1.
NUSUM=NUSLM+INT (EUCT,2))

4 195 IF(EUNORM(I,2).LE.SP) MUSPEC=NUSPEC+1

. IF (EUNGRMCI,2) .GE.SPM) NUMAX=NUMAX+1

3 IF (EUNORM(1,2) .GT.SP) DUM=(EUNORM(I,2)~1.)

£ IF (M. CT. DESCTU) DESCTU=DLM

3 USUM=USUM+EUNORM( I,

3 UUSUM=(EUCT)/RRI (T, 1) )+UUSUM!
DEL=ABS(EUNGRM( T, 2)~EUNORM( I, 1))
IF (DEL LT.EPS) NSTOP=NSTOP+1!
IF(FLAGS(2)) GO TO 183

D=0,
3 IF((EU(I-E) GT.SPM) .AND. (EUNORM(T,»2).GT.SP)) DUM=EUNORM(I,2)~-1.
! IF(DUM.GT.DESCYU) DESCYU=DUM
: 183 CONTINUE

NUBSPC=NU-NUMAX

NUOSPC=NU-NUSPEC

NUISPC=NU-NUBSPC-NUQSPC

Cannnnnun Cﬁ%mm OUTPUT MEAN SQUARE UALUES AND CHECKS #sssaensens

; NQZERO=0
DESCTY=0.

NYSPEC=0

YSUM=0,

NYSUM=0
th CALL MP32(NRCs NY» CCs NRXs NR» X3Hs NRC» NA» NYs CC» NY, KK (NST+1))
' DO 184 Isi,NY
EY(I)=K(N33+1) HIK(NST+HNY#(I~-1)+1)
EYNORM(I,2)=EY(I)/SIGMACI) .
- IFC(.NOT.FLARGS(2)) GO TO 181
» WK(NST1+1)=EY(I,2)

IF(.NOT.CONST) EY(I,2)=0,
.y IF(EYNORM(I,2).LE.SP) EY(I,2)=}.
i, NYSUM=NYSUM+INT(EY(I,2))

s, 191 IF(EYNORM(I,2).LE.SP) NYSPECsNYSPEC+1 .
A IFCEYNORM(I,2) .GE.SPM) NYMAX=NYMAX+!
o . QEPS=QQ(I, I)*SIGMACI)

IF( (GEPS.LE.EPS).AND. (EYNORMCI,2).LT.SPM)) NGZERO=NGZERG+1
IF C CEYNORM(T,2) .GT. SP) . AND. (GEPS.GT.EPS)) DUM=(EYNORM(I»2)=1.)

IF(DUM.GT.DESCTY) DESCTYsDUM
7 YSUMsYSUM+EYNORM( 1, 2)
¥
i . 4
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DEL=ABS(EYNORM(I,2)~EYNORM(I,1))
IF(DEL.LT.EPS) NSTOP=NSTOP+1:
IF(.NOT. FLAGS(2)) GO TO 184

DUM=Q,
IFC(EY(1,2).GT.SPM) .AND. CEYNORM(1,2).GT.SP)) DUM=EYNORM(I,2)-1.
IF(DUM.GT.DESCYU) DESCYU=DUM
CONTINUE
TSPECsYSUM+USUN
NYBSPC=HY-NYMAX
NYOSPCsNY-NYSPEC
NYISPC=NY-NYBSPC-NYOSPC
-NGZ2ERQ

NYACTU=NY:
TFC(CONST) . AND. (FLAGS(2))) NYSUM=NYSUM-NGZERD
IF((NUISPC.EQ.NU) .AND. (FLAGS(2))) CONST=.T,
IFC(NYISPC.EQ.NYACTU) .AND. ( . NOT.FLAGS(2))) CONST=.T.

Connanen CALCULATE DESCENT FUNCTION #0500t 8 0-00-HHHHNHE 8 - HHHHNHHNHMH S
DESCTO=DESCTN
DESCTN=DESCTU
IF(.NOT. FLAGS(2)) DESCTN=

B

;Ae o Ay
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g CoOrs

X DESCTY !

}-_{ IF ¢ (DESCYU.GT.DESCTN) . AND. (CCONST)) DESCTN=DESCYU *
- IF(DESCTN.EQ.0.) GO TO 186

ey IF(FLAGS(11)) GO TO 186

%) IF(DESCTN.GT.DESCTO) GO TO 187

g GO TO 188

Caravnnnunnansn® RESET CALCULATIDNS : #8000t S--HHHEHHHHHH
187 IF(PUR.ED..S) GO TO 175

IFCC.NOT.FLAGS(2)).AND. ( .NOT.CONST) .AND. (PHR.EQ. 1.)) GO TO 175
IF(DESCTO.EQ.0) GO TOD 175

DESCTN=DESCTO
DO 188 I=1,NY
EYNORM( I, 2)=EYNORM(I, 1)
08(I, I)=K(N22+1).
IF(FLAGS(2)) EY(I,2)=mbK(NSTi+1)
188 CONTINUE
DO 189 I=1,MJ
EUNORM( I, 2)=EUNORM( I, 1)
RRICI, 1)={.0/HK (N32+1)
IFC.NOT.FLAGS(2)) EUCI,2)=K(NST1+I)
189 CONTINUE
PURS=0.
GO TO 230
175 PURS=0,

Cansnennsnnssasasens SOLUTION CHECKS S-S0 HHHMMHEEHIHMHHHEHHEAS .
186 IF(DESCTN.LT.DESCTD) FLAGS(11)=.F.
IF (NSOLMN) T0 190

IF((.NOT.FLAGS(4)) . AND. (TSPEC.GE.RNYNU) . AND. (11.ER.0)) NSOLN=.T.
IF((IW?PEC.IE.HY).U!.(NJSPEC.E.NJ)) GO TO 180

GO 1O 197
190 IF(FLAGS(2)) GO TO 182
g(;gvxsrc.tt.mm).m. (NUISPC.NE.NUSUM)) GO TO. 193

194
192 IF((MUISPC.NE.NU) .OR. (NYISPC.NE.NYSUM)) GO TO 1S
194 NSOLN=.T.
SSOLN=

GO TO 187

|
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|
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-7 193 IFC(II.GE.ITNUM) GO TO 197
A0 IF(NSTOP.NE.NYNU) GO TO 203
- FLAGS(11)=,T,
h GO TO 203
. 197 INTER=.FALSE.
B L., IF(.NOT. FLAGS(S)) GO TO 210
e _ CALL MHRITE(NY,EV»NYs 1o#Y MS VALS a!)
,_ CALL MIRITE(NUEUSMUs 1,#U MS VALS #)
‘,::'. IF(FLAGS(2)) CALL MURITE(NY,EY(1,2),NY» 1,#UPDATE NuUM¢)
TN - IF(.NOT.FLAGS(2)) CALL MHRITE(NU,EUC1,2),NUs 1, #2UPDATE NUMs) .
% p
) Cavannansnanennnitt STORE RESULTS #5018 8-050-0HHHMHHHMHHHHIHHHHHHHHIHHIS -
N 203 DO 200 I=1,NY
.t HK(N22+1)=0Q(I, 1)
s 200 CONTINUE
ST D0 201 I=1,MU
koot HK(N32+1)=1.0/RRI(1,1)
s 22 201 CONTINUE
IFCC.NOT.FLAGS(?)).AND. CINTER)) GO TO 210
R CALL MHRITE(NY, HK(N22+1)+ NYy 1, #OUTPUT WTS®)
e CALL MURITE(MNU. HK(N32+1) ¢ MUy 1o #INPUT UTS »)
z5 CALL MURITE(NY, EYNORM(1,2)»NY. 1,#Y NORM UAL®)
CALL MURITE(NU, EUNORM(152)sNUs 1,2 NORM UALM)
2.4 CALL MUIRITE(N2R, EIGABG, N2A, 1, #A+BG EIGSH)
) IF C(INTER) GO TO 210
“ CALL MURITE(N2AR, EIGAFM, N2As 1, #A-FM EIGSH)
. Cannononnans: SQUE CURRENT UVALUES manuueun
e 210 DO 181 I=1,NY
i HK(I)=l
T HKCIHHY)=TITLY (1),
::.» EYNORMCI, 1)=EYNORM(I,2)
N WK (NST+1)=00( I, I)
Ko 181 CONTINUE
DO 182 I=1,NU
HK(N2+1)=]
3 HK(N21+1)=TITLUCI)
'l' EUNORMCI, 1)=EUNORMCI,2)
- WK(NST+NY+I)=1 . /RRI(I, 1)
B 182 CONTINUE
>
: Conanannnanennsdt PRINT RESULTS #0480 00HHHMHHHHHHHNHMHINHMEMHHHHIIP.
v IFC(.NOT.FLAGS(8)).AND. (INTER)) GO TO 230
.@ IFC((.NOT.FLAGS(8)).AND. ( .NOT. INTER)) GO TO 250
SN Cununannunsnnnsstst INPUT ORDERING : 0001000400000 0HH0 HHEHHHIHHHEPEHI-HMS
;,‘s DO 185 I=1,NU
N NPsNU+1-1
Ny DO 189 J=1.MP
- IF(J.EQ.NP) GO TO 18S9
IF (ELNORM( Js 2) . GE.EUNORM( J+1,2)) GO TO. 185
fq;;' TEMP1sEUNORM( J» 2)
;‘ TEMP2=EU(J)
o . TEMP3=IK(N2+J)
\ TEMP4=LK (N21+J)
Ry b TEMPSsUK (NST+NY+J)
) EUNORM( J» 2)=EUNORM( J+1,2)
- EUC(J)=EU(J*1)
" HK(N2+J)siK (N2+J+1)
": HK(N21+J)=lK(N21+J+1)
:‘1
-4
3
‘.;“t
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WK ANSTHNY+JIsK (NSTHNY+J+1)
EUNORI(J+1,2)=TEMP]
EU(J+1)=TEMPR '
HK (N2+J+1)=TEMP3
WK (N21+J+1)=TEMPA
WK CNST+NY+J+1 ) sTEMPS

185 CONTINUE

DO 208 Isi.NY

NPsiNY+1-1

DO 208 J=i.NP

IF(J.EQ.NP) GO TO 208
IFCEYNORM( J, 2) .GE.EYNORM(J+1,2)) GO TO. 208
TEMP1=EYNORM(J» 2)

TEMPS=LK (NST+J)
EYNORNM(J, 2)=EYNORM(J+1,2)
EY(JI=EY(J*1)
HK(J)=K(J+1)
WK (JHHY )=t (J+14NY)
WK (NST+J) =K (NST+J+1)
EYNORM(J+1, 2)=TEMP]
EY(J*+1)=TEMP2
HK(J+1)=TEMP3
HK(NY+J+1)=TEMP4
HK(NST+J+1 )=TEMPS

208 CONTINUE

Cune st n st nne ittt nn PRINT -HNHHMMHHHHEHHEHEHHEHHEHHRHEHHH

HRITE(Gs 1)
HRITE(6,3)
HRITE(6,80)1X
IF(11.E0.0) GO TO 214
IF(FLAGS(10)) GO TO 216
IF(FLAGS(2)) WRITE(G,81)% R = PUR
IF(.NOT.FLAGS(2)). WRITE(6,81)% @ »PUR
GO TQ 217

214 URITE(6»74)
IF(.NOT.FLAGS(4)) HRITE(E, 89)#SYSTEMA, GIVENH
GO TO 217

216 WRITE(S,81)#G AND RﬂoPHR

217 IF(.NOT.SOLN) GO TO 211
HRITE(6,82)
WRITE(E»3)
GO TQ 218

211 IF(.NOT.NSCLN) GO TO 213
HRITE(E,83)
IF(.NOT.SSOLN) GO TO 221
HRITE(S, 96)
IF(FLAGS(2)) HRITE(S.B?)‘GJTPUT&SOUTPUT#,#IPPUT o
IF(.NOT.FLAGS(2)) HRITE(S,87)»INPUT #, #»INPUT »,#QUTPUT*
g!'{g(ﬁ-&

218
215 HRITE (S, 88)#SYSTEM, #GIVENS 1
HRITE(G,»3)
WRITE(B,99)
GO TO 218
221 WRITE(S,9S)
IF(II.GE.ITNUM) GO TO 215

Connvnnaanseses QUTPUT ORDERING #0000 HHHMHEHNNM NN HHNNMHHIHHFHHNHIHS
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HRITE(Bs»3)
GO TO 218
213 WRITE(E,84)
IF(II.GE.ITNUM) GO TO 215
HRITE(6,3)
218 WRITE(S,2)
HRITE(G,50)
HRITE(B.2)
T DO 219 I=1,MIN
HRITE(S» 91 HK(I) s HK(NY+I3,EY(I)s EYNORM(Ts2) 9 KK(NST+I)»
ALK (N2+1) , K (N21+1)» EUCT) » EUNORM( I, 2) o HK (NSTHNY#I):
219 CONTINUE
IF(NY.EQ.NJ) GO TO 222
DO 220 IsMINN,MAX
IF(MIN.EQ.NU) HRITE(E, S2)HK(I)» HK(NY+I)s EY(1), EYNORM(I»2)»

[4

BAOED. AT tR L

, ~UK(NST+])
A IF(MIN.EQ.NY) HRITE(BS, S3)K(N2+I), HK(N21+1),EUCI)» EUNORM(I»2)
™ ~s HK(NST+NY+1)
220 CONTINUE
¥ 222 HRITE(6, 94)YSUM, USUM, TSPEC
¥ HRITE(S, 1)
; WRITE(B,3)
Lo HRITE(B, 51)mA+BGs -
WS HRITE(S»3)
A WRITE(6.2)
! HRITE(6,S3)
11=0
DO 2235 I=1,Nef.2
3 Ii=I1+1
X FREQG=SQRT(EIGABG( 1) ##2+EICABG(I+1)#n3) .
W IF(FREQ.EQ.EIGABG(I)) FREG=0.
> DAMP=1
IF(FREQ.NE.O.) DAMP=ABS(EIGABG(1))/FREQ
NRITE(E,»54)11,EICABG(1)s EIGABG(I+1), FREQ. DAMP
. 225 CONTINUE
) IFCINTER) GO TO 230
o WRITE(E,2)
o5 HRITE(6s3)
,; HRITE(G, S1)%A~Fm .
N HRITE(G, S2)
HRITE(6:3)
WRITE(S.2)
% WRITE(E,53)
11=0
2 D0 226 Is1,M2A2
Il=li+}
FREUsSQRT (EIGAFM( 1) ##2+EICAFM(I+1)#02)
&-FREGI -EQ.EIGAFM(I)) FREQ=0,
. IF(FREQ.NE.O0.) DAMP=ABS(EIGAFM(I))/FREQ
M HRITE(E: S4) 11, EIGAFM(I)»EIGAFM(I+1), FREQ, DAMP
228 CONTINUE
GO TO 250
1
‘,4 ’ Cavnassnses UPDATE EQUATIONS @500t a5 4-5HHN-HEHHHIHHHHHHEMNE
{
- 230 IIs=II+1
¥ FLAGS(10)=,F,
3 QzZFLG=.F.
* e
K
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HRS;HRSM..
IF( (PI;RS.LE.?) +AND, (PHRS.GE.SPM) .AND. ( (FLAGS(2)} ). OR. (CONST)))

~PLR=,
IF(PURS.GT.SP) PUR=PURS-1.
IFC.NOT.FLAGS(2)) GO TO 231
Casnsnees INPUT CONSTRAINED UPDATES 400000000000 0000 - - -
DO 240 Isi.NJ
RRICI, I)=EUNORM(I, 1)oe(-PURISRRI(I, 1)
REPS=(1/RRI(1,1))#MU(I)
IF(REPS.LT.EPS) RZFLC=.T.
CONTINUE

IF(NYBSPC.EQ.0) GO TO 150
IF(.NOT.CONST) GO. TO 150
FLAGS(10)=, TRUE.
DO 233 Is=i,NY
IF(QQ(I,I).EQ.0.) GO TO 233
IFCEY(I,2).GT.SPM? QOCI, I)aEYNORM(I» 1)#=PLR*QQ(I,1)
GEPS=QQ(I, [)*SIGMACI)
IF((QGEPS.GT.EPS).0R. (EYNORMCI, 1).GE.SPM)) GO TO 233
0ac(1,1)=0,
QZFLG=.T.
233 CONTINUE
GO TC 150
Cunununs QUTPUT CONSTRAINED UPDATES 4050000000 0000 5 S
231 DO 242 I=i,NY
IF(QR(I1,1).EQ.0.) GO TO 242
Q0C1, I)=EYNORM( I, 1) #aPUR»00Q( T, 1)
GEPS=QQ(I, I)#SIGMA(I)
IF((QEPS.GT.EPS).OR. (EYNORM(I,1).CE.SPM)) GO TO 242
m(I.I)‘o. ’
Q2ZFLGs=.T.
242 CONTINUE .
IF(NUBSPC.EQ.0) GO TO 1S5S0
IF(.NOT.CONST) GO. TO 1S0
FLAGS(10)=.T,
DO 235 I=1,NU
IF(EU(I,2).GT.SPM) RRICI, I)=EUNORM(I, 1)#»(~PURI#RRI(I,I)
REPS=(1/RRI(I,1))*MU(I)
IF(REPS.LT.EPS) RZFLG=,T.
235 CONTINUVE
GO TO 150
250 CONTINUE

Connnonnnn ACTUATOR / SENSOR EFFECTIVENESS CALCULATIONS ssswnsnsnnss

Crunannannannnnnnnnitt SET UP A=FM |00 a i a0 NN HHHNHEHEHNNS
. CALL MP31C(NRMs NA» MMs NRUs N2, UUT » NRM» NZs NAs MMs NA» K (NST+1) )
CALL MULT(PP, UK (NST+1) s HK(NST+NA2+1) » NAs NA» NA, NRP) NAs NA)
CALL MADDCAA, KK (NST+NA2+1 ) » K (NST+1) s NRs NA» NRA, NA» NAs» =1 )
Caunnsnanannasssnssses SOLUE L LYAR EQ. #0000 M HHMEHHEMHMIHS
CALL MP31(NU»NA, WK (N43+NA2+1 ) s NRRy NU» RRI » NUs NUs NA» HK (NA3+NA2+L ) »
ANAs IK(NST+2#NR2+1))
CALL GEIGENCNA, HKCNST+1)0 NAs4s HK (NST+7#NA2+1), 0, #QGSASH, EIGAFM,
~NA, UK (NST+3#NA2+1 ) s IK (NST+SsNAS+1 ) , A-F M)
CALL LYAPL(EIGAFMs NAs» HK (NST+3#NAS+1)» WK (NST+SeNA2+1 ), NA»
~HK (NST+29NA2+1 ) s NA» LK (NST+NA2+1) » NAs WK (NST+7aNA2+1) )
Cownen CALCULATE ACTUATOR NOISE CONTRIBUTION ' 5910000010000 H04HHH M-S
m)mnntxx.mmsrmn.mmsna-maﬂ>.m.m.m.m.
9
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CALL MP31(NRB, NU» BBs NAs NAs IK(NST+2#NA2+1 ) s NRBs NA» NU, BB» NU»

~HK(NST+3=Na2+NU2+1))

CALL MULT(HK (NST+3#NA2+NU2+1 ) » HH» KK (NST+3#NAZ2+1) » NU» NU» NU» NU» NRW

~yNU)

DO 260 Is=l,MNU -
UU=EUNORMCI, 1 )#MUCI)#(1./RRI(I, 1))

WK (I)=UU-LIK (NST+3#NA2+(I-1)#NU+I)
IF(FLAGS(2)) WK(I)=(W»
~RKC(NST+3sNA2+(I-1 ) #NU+T ) ) =UUSUM/ (VUSUM-UU)
HK(I+NU) =K (NST+3#NA2+( I-1 ) #NU+T)
WK(I+NaU)s]

HKCI+N3U)=STITLUCT)

WK (I+N4U) =]

WKCI+NSU)=TITLU(I)

260 CONTINUE

Convunansunninansnee CALCULATE SENSOR RANKING 8500000000150 S-00-0-HHHHHHN NI -

CALL MP3(NRP, NA: PPs NA» NAs IKCNST+NA2+1 ) » NRP» NAs NA» PP, NA»
~HK (NST+3NA2+NUS+1))

CALL MP32(NRM, NZs MMs NA» NAs WK (NST+3#NAR2+NU2+1 ) » NRM» NR» N2s
~MMs N2> HK (NST+4eNAR+NU2+NZ*NZ+1) )

CALL MULTC(UUT, UK (NST+4oNAZHNU2HNZ#NZ+1 ) » UK (NST+4aNAR+NUS+L ) »
~N2, N2» N2y NRU, N2, NZ) ’

DO 261 I=1,N2

HK CI+NSU) =K (NST+4#NA2+NU2+ (1-1) #NZ+1)

HK(I+NSU+N2)=]

WK CI+NEUHN22)=TITLZ(I)

261 CONTINUE

Canvnnnnnnnsuvnnne PRINT RESULTS (ORDERED) ##as-uit-t-us-tiHHIH-HHHIHNH

WRITE(S,1)

MIN=NU

IF(NZ.LT.NU) MIN=NZ
NZU=N2Z

-MNU
MAX=TABS(NZU)+MIN
MINN=MIN+1

Connannununs. ACTUATOR ORDERING SM-i0timstsethit-sh it 0 - HE M

DO 262 I=1,MNU

NP=NU+1~1

DO 262 J=1,NP

IF(J.EQ.NP) GO TO 2682

IF(KK(J) .GE.WK(J+1)) GO TO 266
TP1=kK(J)

TP2=HK (J+NaU)

TP3=lK (J+N3U)
HK(J)=K(J+1)

HK (J+N2U) =LK ( J+1+N2U)
WK (JH3U) =LK (J+1+N3U)
WK (J+1)=TP1

WK (J+1+N2U)=TP2

WK (J+1+N3U)=TP3

268 IF(HK(J+NU) .CE.HK(J+1+NU)) GO TO 262

TP1sK (J+NU)

TP2siK (J+N4U)

TP3=LK (JHNSU)

WK () =l ( J+1+4))
K (JHNU) =K ( J+1+N4U)
WK (JHISU) =LK ( J+ 1 +N5U)
WK(J+1+MU)=TPL
HK(J+1+N4U)=TP2
HK(J+1+45U)=TP3

CONTINUE
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D0 263 J=1,NP
IF(J.EQ.NP) GO TO 263
IF (IK(NSU+J) .GE.WK(NEU+J+1)) GO TQ 263:
TP1sHK (NBU+J)
TP2=iK (NeU+N2+J)
TP3=LK (NSUHN2Z+J)
HK (NBU+J) =LK (NBU+J+1)
LK (NSU+NZ+J ) =K (NBU+HNZ+J+1) ¢
K (NBU+N22+J) =LK (NBU+N2Z+J+1)
HK(NBU+J+1)=TPL
WK (NSU+NZ+J+1)=TP2
WK (NBU+N2Z+J+1)=TP3
@63 CONTINUE

Connannannnnannnnd PRINT #0000 MNMHME NN NI HHIHFHHS

HRITE(S» 15)

HRITE(B»11)

HRITE(6,»2)

DO 264 I=1,MIN

HRITE(B) 12)UK (NBUHNZ+T 3 o HK (NBUHNZZ+1) s HK (NBU+1) » HK (NGU+I)»
~RK (NSU+L) » IKC(NU+T) o K (N2U+T )y UK (NSU+DD » UK (T )

264 CONTINUE

IF(NU.EQ.N2) GO TO 269

D0 265 I=MINN,MAX

IF(MIN.EQ.NU) HRITE(Gs 13)UK(NEU+NZ+I) s KK(NBU+N22+1), HK(NSU+I)
IF(MIN.EQ.N2)

~HRITE(Gs 14)UK(N4U+T), II((N&.H'I) HKCNUFI) o WK (N2U+1)5 HK(N3U+1)» HK(T)

265 CONTINUE
269 RETURN :
END

SUBROUTINE MURITE(NROM, MATRIX. NRs» NC, NAME)

REAL MATRIX(NROW,NC)
1 FORMAT (s—— THE. MATRIX #»A10s® (#, 3,2 BY®, I3, )»)
2 FORMAT(EE12.5)

HRITE(8» 1) NAME, NR, NC

HRITE(8,2) ((MATRIX(IsJ)»I=1,NR)»J=1,NC)

e

SUBROUTINE MAREAD(NROW, MATRIX» NR»NC» NAME)
‘REAL MATRIX(NROW, NC)

1 FORMAT (17X, A1002Xs 13, 3% I3) .

2 FORMAT(BE12.5)
READ(S, 1)NAME, NR» NC
READ(S,2) ((MATRIX(IsJ)s Im1,NR)s J=1,NC)
RETURN

SUBROUTINE LYCHK(NRA»s NAs ARs NRXs XXs HIK» NRM» MMy FLAG)-
REAL AACNRAS 1) » XXC(NRX, 1)5 WK(1)s MMCNRIMs 1)
INTEGER NRAs Ns NRX» FLAG» NRM
IF (FLAG.EQ.2) GO.TC 100
CALL MULRTRCAA XX HK» NA» NA» NA» MRAY NRX. NA)
CALL MULT (XX, AAs HIK(NARNA+®L ) s NA» NA» NAs NRX, NRAS NA)
120 CALL MADD (UK, WK (NAsNA+L ) » K (2oNASNA+1) » NA, NAs NA» NARs MR 1)
CALL MADDCHK (2#NAnNA+1), MM, LIKs NAs NAs NA» NRM, NA» 1) -
CALL MPRINT(NAs HKs NAs NAs 95 Sy #LYCHECK, 0)
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GO TO 110
100 CALL MULT(AA, XXo WKs NRs NA, NASNRAY NRX, NA)
MULRRT (XX, AR K (NARENA+1) » NR» NA» NA» NRX s NRAs NA)

SUBROUTINE MDROP(NROHA» NRA» NCA» AR» NROHS s ROKNNLIM, NCOL S,
SCOLNUM, FLAG)
REAL AACNROLA, NCA)
INTEGER ROUNUM(NROWS) . COLNUM(NCOLS)
IF (NROWS.EQ.0) GO TO 101
DO 100 J'lol’ﬁ?h?
NR=NRA-ROLINUM
IF(NR.EQ.C) GO TO 104
CALL MEQCAACROUNUMCJII+1s 1) AACRONNUMCJIY, 109 NR» NCAY NROHA, NROWA)
104 DO 100 I=1,NCA
AACNRA, I)=0,
100 CONTINUE
101 IF (NCOLS.ED.0) m TO 102
DO 110 J=1,NCOLS
NC=NCA-COLNUM(J)
IF(NC.EQ.0) GO TD 108
CALL MEQCAARC( 1, COLNUMCJI+1 )+ AACL» COLNUMCJ) ) s NRAs NC» NROHA, NROHA)
105 DO 110 I=i,NRA
ARCI,NCA)=Q,
110 CONTINUE
102 IF (FLAG.EN.0) GUTU 103 :
CALL MPRINT(NROUAs AR NRAs NCA» Ss S» #AR~-TRUNCH, 0)
103 CONTINUE
RETURN

Note: For the LQGWTS subroutine just listed to work as adver-
tized in Chapter 6, (oz,uz) must be chosen such that no
LQG controller can satisfy them. Currently, if a solution
exists, the program will stop when any solution is found,
(1.e. It will not search for the input-constrained or output-
constrained solution in this case.) Also, the program cur-
rently does not check for 9y + =, SO uncontrollable systems
could cause problems for the output-constrained search,
(i.e. footnote on page 115).
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231

Program LQHOOP

15599, T, L10000, TU100000, MF140000, TCS0, T102%
PFILES(GET, LSLIB3, IB=FME)

PFILES(GET,LSLIB2, ID=T1Y)

PFILES(CET, HOOPOO, ID=EM)

RFL/120000

FTN4(MAN, R=0)

GET(LSLIB3,LBD)REL/BLS1

iy LOAD, LBD.

LOAD, LGO, LSLIB2, LSLIB3.:

EXECUTE, » HOOPOO
PF ILES(PUT. HDAT, GETP=U, X=TAPES)

L3}

PROGRAM LQHOOP ¢ INPUT» QUTPUT» TAPES=INPUT» TRPEE=0UTPUT, TAPEB)
EXTERNAL MDROP, LYCHK, MHRITE,MAREAD

REAL AA(26,26),BB(26,24)5CC(27526) s HH(24,24), VVUI(39,39),
1M(38, 28),00(27,27)»RR1(24,24) » SIGMAL24), MU(24), TITLY(24),
1TITLU(24), EY (24, 2)» EU(24» 2) » EYNORM( 245 2) » EUNORM(24, 2) » PP (265
iﬁwgs.as).mcas.am »HK(8332), EIGABG(104), EIGAFM(104),

- INTEGER NROWS(3), RNUM(3). RNUM1(B), RNUMR(27)
- LOGICAL ITTY »FLAGS(11)

COMMON/MATIO/FORM, TOL
COMMON/HDRMPR/0SUB(2) » KPAGE .
COMMON/HEAD/TITLE(?), CﬁSEM)oLINE

DATA RN.W!S-I?.S/

DATA RNUML/11,10,9,8,7,27

DATA RMIM2/39,36,33:,27:24+215 185155 14913512, 99 6s 54+ 3y 2»
~191191009,8+7:6+49301/

‘DATA NROUS/3, S, 18

20 FORMAT(6(1X,EL11.9))

30 FORMAT(3(1X,E11.5))
C22282285882283828828228228228238322828823e888s885202328 30088822238 s222882:22
c PAGE HEADER SET UP:
Ceeeeesese322223822288822222822888282°22228228 2388220228222

FORM=0.

TOL=0.

LINE=}

CASE(1 )= JPt. HOOP: fm
o CASE(2)=«NTENNA MOD»

M(3)ﬂ. (13 m

CASE(4)=eES)

OSUB(1)em OC WT W

QSUB(2)=sCIFICATIONS

KPAGE=Q

§
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NRA=26
MRB=26
NRU=38
NRI=24
NRR=24
NRK =26
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232
"
N
N N=26
A NU=12
N NH=24
v' L4 "z'as
{ NRM=3S
NRP=26
< NRC=27
N NRO=27
NRX=26
PR Ny=2?
2;% : Cisessssssssesesssessessssesssscsinsssssesssessessesessse
' c INITIALIZE MTRICIES
. Cessesssosssosssassssesessesgssessdisscsessesesssssssssesases
4 CAaLL MZERO(AAs NsNs NRA)
e CALL MZERQC(BB, N» MNis NRB)
B CALL MZERQ(CC, NYsNs NRC)
;-: CALL MZEROCH, Ny NHs NRH)
a2 CALL MZERO(WI,NZ, NZ, NRU)
A CALL MZERO(MM»NZ»N» NRM)
) C3s2s2es3s3ssssesessssessssssssadessssssesssssosgssssesseses
N SET UP AR MATRIX'
AN Cssesesssessoseesssssssassesasssessassssessesgssssssssassss
0 READ(S,»20) (RAC10+15 1), I=1,6):
o READ(S,20) (AA(10+1, 1), I=7,10)
N READ(S, 203 (AA(10+I, 10+1), I=1,6)
o READ(S,20) (RAC10+I, 10+1), I=7, 10)
pie CALL IDENT(AA(1,11),10,26)
: CALL IDENT(PA(21,24),3,26) .
BN c CALL MPRINT(NRAs AAs No N» 7+ 5 ¥AAM, 03
‘.13 Cesssssssssesssssssssssesgeecsssssssssssssssseresessseetsesss
A c SET UP BB MATRIX
. Csessssssssssssesssssssssssasssssssssesezesgssosassssssssssesse
.: DO 800 I=1,10
/ READ(S,20)(BB(10+1,J)» J=1,8)i
READ(S,20) (BB(10+1,J), J=7, 12)
- 800 CONTINUE
- DO 830 I=1,3
.y READ(S,»20) (BB(23+I,J)» J=1,6):
o READ(S,20) (BB(23+I,J), =7, 12)
" 830 CONTINUE
't CALL MEQ(BBsBB(1,13),N» 12.NRB-NEB)
v E CALL MPRINT(NRB, BB»N» NUs B+ S, #BB2»0)
$88883%s222s22¢ess222322ss2s3ssss0sss2s2essass e,
) c SET UP CC MATRIX
'*-j Csesgsssssasssssssssssssssssssssnssesssassssssssesasasssssnsy:
P DO 810 I=1,27
.4 READ(S,20)(CC(I»J)sJ=1,6)
o READ(S,20) (CC(I, ) »Ju?, 10)
] READ(S, 303 (CC(I,J)y» J=21,23) .
- 810 CONTINUE
‘ Cﬂﬁvl.'lﬁvﬂgROP(ﬂRC-NY-NoCCoNRGJS(D-RNM.Oo‘W-O)
-} -
4% Cc CALL MPRINT(NRC,CC,NYsN» 9y S,»CCH 0)
o Ceess22s322822223288228288223222232232828:3832288822382332223228¢82232¢28:
£ c SET MM MATRIX
K < : Csesessssassessssssssssssessssssssssssassssgesegesssseseesee.
~J D0 820 I=1,38
- READ(S,20) (MM(I,sJ)» J=1,6)
. READ(S,20) (MM( 1, 1) e J=?, 12) -
v READ(S, 20) (MM(I,J)»J=13, 18)
ot
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READ(S, 20) (MMC 1, D0 J=19,20) - '
READ(S, 20) (MM( I, J)» J=21,26) :
820 CONTINUE
CALL MPRINTC(NRM, MM, N2y No G+ Sontttitits 0)
Cissssssszessessesssssssssssssssgsyssesse
c SET UP W MATRIX
Cseeessesgessesesssessesssssessssssseagsassasseesssessssess:
READ(S, 20) (WICI, I), I=1,6)
READ(S, 20) (WI(I, ), 17, 12) -
~ READ(S,20) (WI(I, 1), I=13, 18):
READ(S, 20) (WI(I,I), I=1S,24)"
READ(S, 20) (WI(I, I), I=25, 30).
READ(S, 20) (WI(T, 1), I=31,36);
READ(S, 30) (WI(I, 1), I=37,39):
DO 821 I=1,39

$33822833s¢88228282232

WY rly LA ASAAN (MY

i.
8
P
E

3 , WIC(I,I)=1,0/WI(I,I)
. ) 821 CONTINUE
: E CALL MPRINT(NRUs W, N2, N2, BsSy»#UUIN, Q)
E SPECIFY OUTPUT AND CONTROL .MAX UALUES :
DO S0 I=1,6
SIGMA(I)=.0000000121846897
S0 CONTIMUE
DO S1 I=7,24
SIGMAC(I)=,000000025
51 CONTINUE
" m & I-alm .,
1 MUCI)=,000000000001
b ‘S22 CONTINUE
fa ITT=.FALSE.
IF(.NOT.ITT) GO TO 444
LY CALL MAREAD(NY,SIGMA,NYs 1,#¥ MS UALS )
! CALL MAREAD(NU,MUsNU, 1,2 MS UALS =)
444 CONTINUE
. Cregesesssssssssasssssssssssssssssssssessasesessssassesgessees
X C SET UP W MATRIX
', Cisscszessasssssessssssasssssssssesesssesssassgssssesssssss
2 DO 701 I=i,NU
o (I, 1)=,00000001
LY 701 CONTINUE
DO 702 I=1,12
. HUC(NU+T, NU+I)=1.0E-13
;-; 702 CONTINUE
§ E CALL MPRINTCNRU, ls Mo Mid» 90 Sy 80, 0)
\ g ACTUATOR/SENSOR LABELING
b TITLU(L)=10H TX2
ha TITLU(2)=10H TYR2
. TITLU(I)=10H TZ2
TITLUC4)=10H TXB
TITLU(S)=10H TY6
X TITLU(B)=10H TZ26
,g @ TITLUC(?)=10H TX9
o TITLU(B)=10H TV
a TITLU(9)=10H T29
TITLUCL10)=10H TX10
TITLUC11)=10H TY10
Y . TITLUC12)=104 TZ10
; .9
3
J
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234

CALL MEGQ(TITLU,TITLU(13),12,1,12,12)

TITLY(1)=10H AX2

TITLY(2)=10H AY2

TITLY(3)=10H RAZ2

TITLY(4)=10H AX10-AX2

TITLY(S)=10H AY10-AY2

TITLY(S)=10H A210

TITLY(?)=10H X6-X2

TITLY(8)=10H YE-Y2

TITLY(9)=10H X9-X2

TITLY(10)=10H YS-Y2

TITLY(11)=10H X10-X2

TITLY(12)=10H Yi0-Y2

TITLY(13)=10H X101-X10

TITLY(14)=10H Y101-Y10

TITLY(1S)=10H 2101-210.

TITLY(18)=10H X107-X10.

TITLY(17)=10H Y107-Y10.

TITLY(18)=10N 2107-210.

TITLY(19)=10H X113-X10.

TITLY(20)=10H Y113-Y10.

TITLY(21)=10H 2113-210.

TITLY(22)=10H X119-X10

TITLY(23)=10H Y119-Y10

TITLY(24)=10H 2119-210.

CALL MEQCTITLY,TITLZ,3y»1,24+39) .

CALL MEQCTITLY(?)»TITLZ(4),2,1,24,39)

TITLZ(B8)=10H Z26-Z2

CALL MEQCTITLY(9),TITLZ(?7)»2:1,24,39) :

TITLZ(9)=10H 29-22

CALL MEQCTITLY(11),»TITLZ2(10),251,24,39).

TITLZ(12)=10H 210-22

TITLZ(13)=10H , AX10

TITLZ(14)=10H ~ AY10

TITLZ2(1S)=10H AZ10

CALL MEQCTITLY(13), TITLZ(18)512s 1,24,39)

TITLZ2(28)=10H ARX2

TITLZ(29)=10H ARY2

TITLZ2(30)=10H ARZ22

TITLZ2(31)=10H ARXE

TITLZ2(32)=10H ARYE

TITLZ2(33)=10H ARZE

TITLZ2(34)=10H ARXS

TITLZ(3S)=10H ARYS

TITLZ2(368)=10H ARZY

TITLZ(37)=10H ARX10

TITLZ(38)=10H ARY10

TITL2(39)=10H ARZ10
C82352332838282233222828323238222322:328322332828233822283232 2282288222322
c ACTUATOR DELETIONS
C232338288838283328382388288282833883828283283338228838282 2238828838228 8 2822332828

CALL MDROPC(NUs NU» 1o TITLU, NRONS(2), RNUML, 0, RNUML, 0)

CALL MDROP(NRB: N, Nis BB» 0, RMUM1, NROWUS(2) s RNUM1,0)

CALL MDROP(NRH» NH» NU» HH» NROKS(2) » RNUML » NROWS(2) » RNUM1, 0)

CALL MDROPCNU» NUs 15 MUs» NROWS(2)» RNUM1, 0, RNUML,0)
0322283823 228822882828288282888823832823828333882882822323238898283¢82838238238233222
c SENSOR DELETIONS
C32828828822822888 8880888828828 2882328823288828822888828238.8238282883388282822822222

-----
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CALL MDROP(NRM» NZs Ns» MMs NROWS(3) o RNUM2, 0 RNUM2, 0) .

CALL MDROP(NRU, NZ, NZ, UUT» NROWS (3) » RNUM2, NROUS (3) » RNUM2, 0)

CALL MDROP(NZ:s N2, 1» TITLZ, NROUS(3)» RNUM2, 0> RNUM2, 0)

NZ=NZ-NROWS(3) )
C3322338252823232322352823832832222282:23233828282232888323888823282328282228223338
c SET FLAGS FOR LOGUTS
C3322823232283233223232832828222832838232832883283823282283223833328232332282282882822322¢

FLAGS(1)=,F,

FLAGS(2)=.T.

FLAGS(3)=.F,

FLAGS(4)s=.F,

FLAGS(S)=.F,

FLAGS(8)=.F,

FLAGS(?7)=.F.

FLAGS(8)=. TRUE,

FLAGS(9)=.F,

FLAGS(10)=.F.

EPS=.001

" £938223323388223228383228323328223232828:2322232323888 2828332823022 8828288:8882
c

INE LOGHTS (TA DASLLILILLS)
C1852232332228222332222333228223882828223 282828223 28232232323282323282823232233328283283122¢
CALL LOGHTS(NRA» N» ARs NRB,» BBs NRB, Nd» BB NRU, ilds NRU, WI , NRC, CCoNRM
1MMs SIGMA, MUs TITLY, TITLU» TITLZ, NY, NUs N2, FLAGS, EV» EUs EYNORM, EUNCRM»
}&.PP.m.m.w-w-ﬂwn.ﬂm.m.m-Nl!.l!m.u(.EPS.ZO)
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Program LQTELE

15599, THO,L.10000, TU1000009 TC310, T1024» CM40000, MF150000 .
PFILES(GET,LSLIB3, ID=FME)

PFILES(GET,LSLIB2, ID=T1Y)
PFILES(GET,LOCMO, ID=THO)
FTNA(MAN,R=0)
GET(LSLIB3,LBD)REL/BLSI
LOADs LBD.

LOAD, LGO» LSL1IB2, LSLIB3..

EXECUTE» »
PFILES(PUT, TDAT, GETP=U, X=TAPEB) .
PROGRAM LQTELE (INPUT, OUTPUT» TAPES=INPUT» TAPEG=0UTPUT» TAPEB) .
EXTERNAL MDROP; LYCHK, MUIRITE, MAREAD
REAL AA(24+24),BB(24,21),CC(3»24),HH(23,23),DD(24+23)
~y WI(45,45),MM(45,24)
REAL 00(3,3), RRI(&I.&I)-SIG(S)-HJ(ED-TITLY(3).TITLU(&!.)-
~EY(3,2)EU(21,2)» EYNORM(3s 2) » EUNORM(2152)» PP(24,24),KK(24524)

«oW(ﬂ.EQ):LK(?SSO).ERBG(S) EAFM(S96), TITLZ(4S) .
LOGICAL ITT,FLAGS(11)
INTEGER NROHS(2), RNUMI1 (9), RNUM2(33)

S FORMAT(S(EL3.9))

1 FORMAT((E13.5))

4 FORMAT(4(E13.5))

2 FORMAT(2(E13.5))
3 FORMAT(3(EL13.S)) -

TLE(?)-CRSEM).LII‘E
DATA RMNUML/21,20,19, 18,17, 15, 12,9,87

DATA RMUMR~39, 38, 37,35, 34,31, 30,29,28, 27,26, ao 23 22,21, 19
*g;l?: 16,15, 1:. 13112,10:918+7+6+s5:,4: 3029 1/
o0/

g::: $22222388232323283323832228232328:333322822322288322332322228323882322283233
C:322323228232838828232382823228828828288282232323282833288382322328883833238288282%
FORM=0,
TOL=0,
LINEs]

m:g&-cxrxcarm
C332223223223282322323283332832283822833233222232828282323238882228
c INITIALIZE MATRICIES AND MODEL

PARAMETERS
C338238822828832823383333323332282823823232352328822283383233332¢3

ULEL AR el
(% o Wl [

...............




X NRU=INZ
“ NRR=NU
- NRX=NX
NRX =X
NRP=NX

; NRM=NZ
X , CALL MZERD(AA, MXsXs NRR)
N ,, CALL MZERO(BB, NX»MJs NRB)
T . CALL MZERO(DD: NX»-Mhs NRD)
: CALL MZERO(CC, NY, MX, NRC)
CALL MZERO(MM, N2, NX» NRM)

& CALL MZERO(H, NRU. NRH, NRU)

CALL MZERO(WI,N2, N2, NRU)

b 0183282322382 23232823232823222328382823828232333322828288282 2282228283283
- c SET UP AR MATRIX'

ga . C82832288228282382383332833288233282332223283322833338883833332328388223223:
DO 40 I=1,NM.S

IF ((1+4).GT.NM) GO TO 40
H=l+4
READ(S, 5) (WK(J) s J=I, M)
CONTINUE

Mu]-S§
READ(S» ) (K (J) » Juits NI1)
D0 SO I=1,MNM.S

IF ((I+4).GT.NM) GO TO S0
M=Ied

READ(S) 5) (LK (J+NMY 5 Ju1, M)
CONTINUE

: NeI-5
READ(S» S) (HK(J+NM) » JuiN, NM) A
s | CALL IDENT(RAC1,NEMA+1), NEMA, WA}
5 DO 100 I=i,NEMA
e AACNENA+T, 1) =K (1+3)
ARCTHNEMA. T HNEMA) =i (M43 +1)
100 CONTINUE
‘ AR(17, 19)=g,
3 AR(18,20)=1,
i, AA(1S, 17)=-3947.8.
1 AA(20, 18)=-986. 96
L AA(1S, 19)m-, 1257 -
AR(20, 20)=-, 0628

. AA(22, 24)m1,
8 AA(21,23)m],
K CS8883283888l8888888!83183!888881831833833388?81333233!238338
: c SET UP BB MATRIX

b C1832383233223232228232388232822282828282232282:2228333382882283232828328333:32821283¢
E. 3 G )]
e DO 300 I=1,I1,S
' Ml -

I~ IF (M.GT.II) T80 300

B READ(S: 5) (HK(K) s K=I, M)

300 CONTINUE

5 Is]-8

oy ©o READ(S, 8) (K(K)oK=1, 1)

i DO 301 I=i,MNEMA

- D0 301 J=1,MU
BB(NEMA+T, J)=lK( (I+2)9NU+J) !

; 301 CONTIMUE
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DO 200 I=1,2

DO 200 J=1,NJ

BB(2*NEMA+E+1» J)=HK ((I-1)*NU+J)
c 200 CONTINUE

CALL MPRINT(NRB, BB, NX» NU,» 8, S» #BB» 0)
Cs233382228382328283222388328232282328232283222
c

SET UP CC MATRIX

$338832282283222z220822 8202383323022 0 02822322222

II=NYeNM
DO 201 1I=1,1I.8
M=l+4

IF (M.GT.I1) GO TO 201
READ(S,S) (UK(K)s K=, M)
201 CONTINUE
I=]-5
READ(S,S) (LK(K), K=, IT)
DO 400 1I=1,3
DO 400 J=1,NEMA
CC(Iy JIslK((I-1)aNM+3+J)
400 CONTINUE
DO S00 I=3,3
D0 S00 J=1,2
CC(I:NESA+4+J)=lK((I~1)oNM+ D)
S00 CONTINUE
C CALL MPRINT(NRC,CC,NY»NX,8,5,#CCx,0)
Ceossssseessssssesssessasssssssssesessssensssssessssssssseess:
c SET UP REMAINING PORTION OF AR
C3323232823282322282332382822822282828882323232328328232s225s2822232232s:
DO 110 I=1.NM2»S
IF((I+4).GT.N2) GO TO 110
M=l+4
READ(S, S) (UK(JS)» J=I, M)
110 CONTINUE
N=l-S
READ(S, S) (K (J)» J=N, NM2)
DO 111 I=1,NEMA
AA(NX*NESA+NEMA+] )=lK(B+2#I~1)
AACNX® (NESA+1 ) +NEMA+I ) =lK (G+2#])
111 CONTINUE
AACNX»NESA+NESA+7)=1K (1)
AA(NX» (NESA+1 ) +NESA+7 ) =K (2) -
AR (NX*NESA+NESA+8)=1K (3)
AA(NX*(NESA+1)+NESA+8)=lK(4) -
c CALL MPRINT(NRA:s AR, XX NX» B» Sh #A0, 0)
Csesrsssssessssesssssesssdsesessssssssesssssssesessssssssse
Cc SET UP DD MATRIX
C3c233s82s8282202888823223288832828 8828283822288 8888 2882888283888 -
CALL MEG(BB, DD\ NX» NUs NRB, NRD)
DOD(NESA+3, NU+1)=),
DO(NESA+4, MU+2)=L
c CALL MPRINT(NRD, DD, MX» NU, 8, S» %D, 0)
Ceesesesssessssssssssessssssssssssssesssssssssssssssssesesss
c SET UP M1 MATRIX
C322228228328338282282233222822888282828.28282882828882¢828282238883482¢

TI=MUnI

D0 112 I=1,11.5

Muled

IF (M.GT.II) GO TO 112

READ(S¢S) (K(K)sK=I, M)
112 CONTINUE

A T ;__,- el AN
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I=1-5
READ(S: S) (UK(K)yK=1, I1}
CALL MEQ(CC, MM, 3,24, 3, 45)
DO 210 I=1,NU
DO 210 J=1,NEMA
DeliK (448 (I=1)+3+J)
MMCI+NY,J)u]D
MCI+NY+NU, JHNEMA) =D
210 CONTINUE
D0 211 Is=i,MNU
Do 211 J=i,2
Dl (440(1-1)+J)
MMCI+NY, JHNESA+4)=D
MMCI+NY+NY JHNESAHE)=D
211 CONTINUE
- c CALL MPRINT(NRM» MM» N2 NX» 85 SyeMitts 0) :
' Cessssssessessessssessseossassssssseosssssssssseesessasssse :
c SET UP WI MATRIX
Cesszsssssssssscesseesssesssesseasesseessessosasssesdscsess
DO 212 I=1,NU
WI(NY+I, NY+1)=1,0E+06
WINY+HIU+T, NY+NU+ )= OE+07:
212 CONTINUE
WI(1s1)=1, 0E+04 .
WI(2,2)sUI(1,s1)
7 WI(3,3)=1,.0E+06
CALL MPRINT(NRU,WI»NZ, N2s 8+S, # WU INUSEM,0)
1,0 C32333323333383233833328323323282282238:32282882823888283382832¢8283228 ¢
2 , SET UP WM MATRIX
a4 : C32832228232323288823828232823288238328223282323223:32233838238323333:3833228328338 .
D0 213 I=1,NU
3, WC(Ir )=, 2 '
;Er 213 CONTINUE
’ WUCNU+1, NU+1)=3,.95
WU, U+ 2)=3,. 95
CALL MPRINT(NRU, b NRH, NRU, 8: S, #iin, 0) ¢

SPECIFY OUTPUT AND CONTROL .MAX UALUES ;

DO S3 Is1,2
SIG(1)=}.0E-07
‘53 CONTIMUE
S16(3)=},.0E-12
DO S2 I=1,M)
Mi(1)=1,0E-04
‘52 CONTINUE
. ITT=.,FALSE.
IFC.NMOT.ITT) GO TO 444
CALL MAREAD(NY,»SIG, MV, 1,#Y MS VALS )
CALL MAREAD(NU, MUsNU» 1, MU MS UALS o)
444 CONTINUE

ACTUATOR/SENSOR LABELING

& TITLUC1)=10H FY1
TITLU(2)=10 F21

L TEARRIOLE 14 Ja::ﬁj'
{
i

0,0

L7 AT AR
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53
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(n1xlnly)

AR T INN

o e

oY

(2 lg]ln]

iy

" TITLU(3)=10H
TITLU(4)=10H
TITLU(S)=10M
TITLU(B)=10H

338




e sk ]

L b O

Ve ¥ Y e Ve W il

~

LT

- e

TITLU(?)=10H

TITLU(B)=10H

TITLU(S)=10H

TITLUC10)=10H
TITLUC11)=10H
TITLU(12)=10H
TITLUC(13)=10H
TITLUC14)=10H
TITLUC(1S)=10H
TITLU(16)=10H
TITLU(1?)=10H
TITLUC18)=10H
TITLUC(19)=10H
TITLU(20)=10H

TITLY(3)=10H

e WMy v O e o N e W e " S S AV g VL

FZ4
FXS

DEFOCUS
CALL MEQCTITLY, TITLZ. 31,3 45)

TITLZ2(4)=10H
TITLZ(S)=10H
TITLZ(6)=10H
TITLZ(?)=10M
TITLZ2(8)=10H
TITLZ(9)=10H
TITLZ(10)=10H
TITL2(11)=10H

TITLZ2(13)=10H

TIMLZ(13)=10H
TITLZ(14)=10H
TITLZ(15)=10H
TITLZ(18)=10H
TITLZ(17)=10H
TITLZ(18)=10H
TITLZ(19)=10H
TITL2(20)=10H
TITLZ(21)=10H
TITLZ(22)=10H
TITLZ(23)=10H
TITLZ(24)=10H
TITLZ(2S5)=104
TITL2(26)=10H
TITLZ(27)=10H
TIiTLZ2(28)=10H
TITLZ(29)=10H
TITNL2(30)=10H
TITL2(31)=10M
TITLZ(3R2)=10H
TINLZ2(33)=104
TITLZ(34)=10H
TITLZ(3S)=10H
TITL2(38)=10H
TITLZ(37)=10H
TITLZ(38)=104
TINLZ2(33)=10H
TITL2(40)=10H
TITLZ(41)=10H
TITLZ(42)=10H
TINLZ(43)=104
TITLZ(44)=10H

Zl.
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: TINLZ(4S)=104  LRZ212

) ~ c‘!:!!llll8.3338388833!3883821883813133388888&13113133!383333'88'32383

; . c ACTUATOR DELETIONS

: C2383885288383283282822288328223882.8833233383388832233828232:333832828828328323¢
CALL MEROPCMU, MUs-1 o TITLU, NRONS( 1) RNUML, 0, RNUME , 00
CALL MOROP(MRE, MX, NU» BB» 00 RNUML, NRONS( 1), RNUM1, 0D

: CALL MBROPCIRL, Nile M3 biie NROHS (1) » RMUM1, NROHS( 1) , RNUM1 » 0)

8 : CALL MOROPCNRS, NX, Mide DD, 0, RNUME, NROUS( 1) , RNUN1, 0):

: © CALL MOROPCNU, MUs-1, MUs NROKSC 1), RNUML, 0, RNUM1,0) .

: NUSMU-HROMS( 1)

m-m-m-m :
C338888s88383382223828233828883838328888238333238288833843332823232333882338
c DELETIONS

SEMNEOR :
c"""‘l"""‘t"""l:'::l'33333333338333333333‘3‘3313333313'13?33'
CALL MEROP (NN, 12, MK, 191, NROIIS (2) » RNUM; 0, RNUIM2, 0);
CALL MEROP (MW o@“WIaW(!)-M.M(?)-MO)
CALL MDROPCIR, N2, loWoM(‘)oMo 0, RNUMR2, 0)
N2=NZ-MROLB( D)

Elll!lll!ltlli!tltlt8!8333383;%;888838888888888888388!8881388833888331

LOGUTS

c"3‘ll'.l'3"."3"'3'3'.l.'l‘ll"‘l.l"“"lft3333"!333333383333333

FLAGS(1)=.F,

FLAGS(2)e. T,

FLACS(3)=.FALSE.

FLAGS(4)=,T,

FLAGS(S)= . FALSE.

FLAGS(B)=.F,

FLAGS(?)=,.F,

FLACS(8)=,. TRUE.

FLAGS(9)n.F,

FL!GU(I.)-.F.

Erss=,00 .
E""‘l’:""’3"3’3'3"'3‘:#“333’31“13"333333333333331333333333333
)
C188323833832832328238282382828838282882:338332888282828828228282282828328328232882828828222
CALL LOGHTSCNRA, M(: ANy NRB, B8 MRD, Ml DD: NRU, Hils NRU» WI, NRC, CC.
© Lo MR 199 STCo MUs TITLY, TITLU TITL2, MY, MU, N2, FLAGS, EY, EUs EYNORM,
LEUNORI, MR, PP, NRK » KK » MIX, Y004, EAFM, EABG ; NRQ, O8» NRR,RRI » K » EPS, 0)
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Michael L. DelLorenzo is presently a Captain in the United States
Air Force. He was born on April 2, 1952 to Joseph T. and Juanita K.
DelLorenzo in Knoxville, Tennessee. In 1970, he graduated from Bearden
High School i.n Knoxville, Tennessee and accepted an appointment to the
United States Air Force Academy in Colorado. On June 5, 1974 he
graduated from the Air Force Academy with a B.S. in Astronadtica'l
Engineering and Engineering_ 'Sciences and received a Second Lieutenant's
Commission in the United States Afr Force. From June 1974 to June 1978,
he served as a _Gyroscope Test Engineer for the _6585th, Test Group,
Holloman Air Force Base, New Mexicd. During that time he received an
M.S. in Electrical Engineering from New Mexico State University. In
1978, he accepted a position on the faculty at the United States Air
Force Academy in the Departmeht of Astronautics and Computer Science. 4
He served in that capic'lty until arriving at Purdue University in

June 1980 to pursue a Doctor of Philosophy degree in Astronautical

Engineering.
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