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ABSTRACT

DeLorenzo, Michael L. Ph.D., Purdue University, August 1983. Selection
of Noisy Sensors and Actuators for Regulation of Linear Systems.
Major Professor: Robert E. Skelton.

)This research has developed and tested an algorithm which aids the

controls engineer in placing sensors and actuators in a linear system

to est achieve,- set of variance specifications on the outputs and

inputs of the system. The term best achieve has been defined to be

the sensor and actuator configuration which enables a controller to do

either of the following: Meet the input specifications while minimizing

a sum of output variances normalized by their specification (i.e. input-

constrained solution), or meet the output specifications while minimiz-

ing a sum of input variances normalized by their specification (i.e.,

output-constrained solution). 0 cjJ.r.i, C Ls;- )

The approach taken to so e this sensor and actuator selection

(SAS) problem was to use LQGktheory to specify a structure for the

controller, and then develop an algorithm (SASLQG) that places sensors

and actuators in this controller structure to achieve either the input-

constrained or output-constrained solution. The main advantage of this

approach is the mathematical ease with which LQG theory addresses

variance constraints, and the main disadvantage is that there may be

other controller structures which do better. -

* .* % *P*,** l a, i,,1-l ~ -
., *P ,r % , .,' . . . - . ,_ _.. , _ - ' ' " " "- . 't
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In applying LQG theory to solve the SAS problem two specific

extensions of the theory resulted. The first was development of sensor

and actuator effectiveness values (V1  and V which determine

the importance of each sensor and actuator to the LQG controller when

both the sensors and actuators are assumed noisy. The second extension

was the development of the algorithm LQGWTS which provides a systematic

method for adjusting the weighting n0dtrices in the LQG cost functional

V so that the controller which minimizes V also satisfies either the

input-constrained or output-constrained variance requirements.

These two extensions were combined to form a sensor and actuator

selection algorithm (SASLQG). The algorithm was applied to two substan-

tial models of large space structures and the resulting configurations

although not guaranteed to be optimal achieved better performance than

any alternative configuration tested. The algorithm also provides

insight into the sensitivity of the controller design to sensor and

actuator deletions and therefore, insight into an optimal number for

both sensors and actuators. Lastly, the algorithm provides information

which identifies the most demanding outputs and the critical actuators

for the final sensor and actuator configuration.

':4'
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1.0 INTRODUCTION

Our ability to make the behavior of a physical system (human or

not) conform to an unnatural but necessary standard (i.e. regulate it)

is directly proportional to our influence on the system, our understand-

ing of how the system responds to this Influence, our perception of

current system behavior, the way we exert our Influence (friendly

persuasion, brute force etc.), and of course the severity of the neces-

sary standard. From an engineering perspective, the standard of system

performance is usually defined by a set of specifications (constraints)

on system output(s) and/or input(s). Systems normally receive inputs

(influence) through physical devices called actuators. The understand-

ing of how a system responds to inputs is represented, in most cases, by

a set of differential equations referred to as a system model. Current

system behavior is normally monitored by devices called sensors and the

technique for combining sensor and model information into a set of rules

for issuing actuator commands is referred to as a control or regulation

law. Control laws which use sensor information are called closed-loop

control laws and are, in general, less sensitive to unexpected distur-

bances and implementation errors than are open-loop control laws which

do not use sensor information.

Basically then, the problem of regulating physical systems has

five elements:
4-..
4:_.

-.9
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(1) Specifications
(2) Actuators
(3) System Model
(4) Sensors
(5) Control Law

When these elemnts interact during regulator design, experience has

shown that the following situations arise:

() The nthemattcal models used to represent physical

systems are never exactly right and sometimes the
real system is offended by actuator commands based
on an imitation. (i.e. our control laws are right

in theory but wrong in practice).

(ii) There are many techniques for developing control

laws and the resulting regulators can have a wide
range of complexity. In addition to relative

complexity, each technique has other advantages
and disadvantages and no one technique always

does the 'best' job.

(iil) It is sometimes impossible to meet the given set

of specifications and it is often not clear what

specifications are achievable with ' e given
control elements.

(iv) Actuators have physical limits to the amount of

push, pull, torque, etc. that they can generate

and control laws sometimes forget this. (i.e. Input

constraints are a physical reality In most
practical control problems).

(v) When a large number of admissible locations exist

for sensors and actuators, some locations do
better than others in achieving the regulation

specifications, and systematically comparing
regulator designs for everj admissible sensor

-'I
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and actuator configuration is impossible. (For

instance, when a design problem requires choosing

6 out of 12 actuators and 12 out of 39 sensors,

there are - 3.61x1012 possible configurations!).

i) Sensors and actuators also have unmodeled behavior

(noise) which always degrades regulator performance.

This noise can significantly effect the locations

sought in (v) and can invalidate the design theory

which states the more actuators used the better.

This research has focused on the Sensor and Actuator Selection (SAS)

questions raised by situations (iii)-(vi). Before introducing these

questions further a brief discussion of the assumed system model and

regulation specifications is in order.

1.1 System Model and Specifications

The modeling problem of situation (i) is present in every area of

control theory and is currently a very active topic of research. For

the most part our system models are based on linear constant coefficient

differential equations for which a great wealth of solution techniques

and control theory exist. However, physical systems are by nature,

non-linear and are most accurately represented by non-linear differen-

tial equations. The problem with these type of equations is that no

general procedure exists for obtaining their closed form solutions, and

our ability to analyze non-linear system behavior to various forms of

inputs is therefore limited. This limitation carries over to the

design of regulators for non-linear systems and manifests itself in the

fact that the wealth of design techniques for linear systems currently

has no parallel in non-linear control theory. Fortunately, most physi-

cal systems do have 'nearly' linear behavior over limited ranges of

. ........-.-.
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response. The regulators which are based upon a model of this linear

behavior are, for a large number of practical cases, able to keep the

system operating within its linear range and therefore maintain the

validity of the linear model and the designed regulator. In some

situations, adding white noise processes to the linear models can

account for unmodeled non-linear behavior of the system and its sensors

and actuators thus enhancing the validity and range of the linear models.

These models then become linear stochastic models and they are the sub-

Ject of this research.

1.1.1 The Model

The specific type of linear stochastic model considered In this

research uses a set of ordinary differential equations with constant

coefficients driven by random processes that are at least wide-sense

stationary. This type of model is called a Lumped Parameter Model (LPM)

since it represents the motion of a physical system whose mass or col-

lection of masses can be attributed (lumped) to specific points in the

system. A considerable number of physical systems can be represented

by an LPM. One of these is the Large Space Structure (LSS) which was

choosen for the practical application of this research. The specific

LSS model development is the subject of Chapter 4. Shown below is the

state space form of the LPM used in this research.

i(t) - Ax(t) + Bu(t) + Dw(t) xeRn URm , weRp

x(to) x

(1.1) D=[B D0J

y(t) - Cx(t) ; yeRk  (system outputs)

z(t) Mx(t) + v(t) ; zeRL (system measurements)

;'*' "";" '. " . .-..-."- ." " " ' '""" .. " " .. ." ' " , "". *%*,'," "".* -.* - - ,.L'" - " """". """"" " ," "' "" " "
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with noise characteristics:

Ex0  0 ; Ew(t) - 0 ; Ev(t) *0

(1.2) 000 0
w(t) (xo, wW.t-F ; W,V > 0

La 0 0 V (t-T

Where the notation R implies a real vector space of dinen-

sion i, E represents the expectation operator, T represents

matrix transposition, 6 is the Dirac delta function and

W > 0 implies W is a positive definite matrix.

The n-dimensional vector x(t) represents the state of the system, while

the m-dimensional vector u(t) contains the actuator signals. The system

outputs which are to be regulated are defined by the k-dimensional

vector y(t) and the z dimensional vector z(t) represents the measure-

ments (sensor information) available from the system. The white noise

vector process w(t) is used to represent unmodeled system behavior

%* (Dow(t)) and unmodeled actuator behavior or noise (Bw(t)), while unmodel-

ed or noisy sensor behavior is accounted for by the white noise vector

process v(t). The matrices A,B,C,D,M,W, and V are assumed to be

*i time-invariant and appropriately dimensioned. It is further assumed

that the matrix B has no zero columns, the matrices C and M have no

zero rows and the matrices A,B,C,D, and M satisfy the following

detectability and stabilizability conditions: [l]

(A, B) (A, D) stabilizable
(1.3)

(A, C) (A, M) detectable

For the purposes of notation the LPM described by (1.1)-(1.3) will be

identified by S(n,k,m,t) where n is the number of states used to
,
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represent the system, k is the number of outputs, m is the number of

actuators and t is the number of sensors.

1.1.2 The Specifications

As noted earlier, the goal of the regulation process is to keep the

outputs and/or inputs (actuator signals) of a physical system within

some desired range. For the system S(n,k,m,t) these specifications

could take the following form:

(1.) ° t <-Yi M) <- ' li  t > t o 0 1, .. k

(14 (l i ) <u(t) < i t > to ; - 1, ... m

where a, and u, are constants representing the specifications (constraints)

on the tth output and input respectively. Since S(n,k,n,t) is driven

by white noise processes, both x(t) and y(t) will be random vector

processes. Therefore (1.4) can become a very severe requirement and in

reality could never be guaranteed. From a probabilistic view, Eyi(t)

might make more sense for a regulated quantity, however, we know that

Y1 (t) can be expressed as follows: [1]

(1.5) yi(t) a Ce 0x + C t eA(t)Bu(T)d + C eA(t-)Dw(T)dT

and, given the noise characteristics of S(n,k,m) along with removing all

controls (i.e. actuators turned off),

(1.6) Eyi(t) - 0 't > to l, ... k

which produces a meaningless regulation problem.
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The preceding discussion leads quite naturally to the use of the

variance constraints shown in (1.7).

" 2 a 2  tEy (t) 1at > to = 1 , ... k

(1.7) and

2
Eu (t < t t > to , I = 1 , m

The constant quantities o2 and ,2 now represent the variance constraints

on the I output and input respectively. The constraint on uM(t) is

necessary since only closed-loop regulation will be considered and ui(t)

must then be a function of noisy sensor information which is further a

function of the random vector process x(t). For systems of type

S(nkmt) control laws are known to exist which produce steady state

values for Ey 2 M and Eui 2(t) and since a great many practical regula-

tion problems require the outputs to be regulated for long periods of

time the following specifications have proven to be a very desirable

alternative to (1.7):

"lim Ei2(t) Ey i 2 < i . k

(1.8) and
k,' iZ - Eu2 2 i-1m

lim u1 (t) E u i = ,.o.m

The specifications of (1.8) were used in this research and the expres-

sion (a 2 V2) will be used to imply (1.8).

:.. 2 i
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1.2 The SA Problem

With the background of Section 1.1 it is now possible to formulate

situations (i11)-(vi) as a specific SAS problem for systems of type

S(n,k,m,.). To begin, assume that only m out of m actuators and

i out of t sensors are available for designing a regulator with specifi-

cations (a2 , 2i2). The goal is to find S(n,k,Ji) and its resulting
%;2 -2"-" closed-loop controller u(i, i) such that (a2 ) is 'best achieved',

where 12 is the specification for the reduced set of actuators. The term

'best achieved' warrants further explanation. If it is possible to

achieve the specifications (a2 ;2), the combination [S(n,k,m,), u(mi)]

which 'best achieves' (i2 2) is defined as that combination which

produces the smallest possible value for one of the following normalized

sums:

k

(1.9) Min I Ej /a,2  subject to E u 2  i VI = 1 ...S,u t 1

or

(1.10) Min Em 2 subject to E2-2 2 2. 1 k

S,u 11

If it is not possible to achieve (a2, ;2) the combination ES(n,kii),

u(i, )] which 'best achieves' is defined to be that combination

which minimizes one of the following normalized sums of outputs above

specification or inputs above specification:

k 2 2 2 2
Min I Ej a V- i: E. i  > 0i

S,u i-l
(1.11)

subject to E ut 2 = 2 i = 1, ...

, 1.



2-2 2 -2

subject to Ey t 1  
2  a - 1, ... k

The [S(n,k,i,i) , u(i,m)] which satisfies either (1.9) or (1.11) will

be called the input-constrained SAS solution and the combination which

satisfies (1.10) or (1.12) will be called the output-constrained SAS

solution. The above discussion may be summarized in the following

concise SAS problem statement:

SAS Problem Statement

Given: a system of type S(n,k,m,l) with only i out of m

actuators and 1 out of t sensors available for
designing a regulator to achieve the specifications

(W2, U2).

Required: Specify the system S(n,k,,i) and the closed-loop

controller u(i, ) which satisfies either the
input constrained requirements of (1.9) and (1.11)

or the output-constrained requirements of (1.10)

and (1.12).

1.3 General Objectiie and Approach

The objective of this research has been to develop and test an

algorithm which aids the controls engineer in finding a solution to the

SAS problem. There are different ways to achieve this objective but

they all must have at least the following ingredients.

(1) A specific structure for the closed-loop control law.
(2) Some technique for adjusting the parameters of the

control law to achieve (2 , 2)
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(3) Some means other than a direct search technique to

evaluate the effectiveness of the various possible

sensor and actuator configurations in achieving

( 2 ;2I

The approach in this research was to use the well documented theory of

Linear-Quadratic-Gaussian (LQG) control to specify the structure of the

closed-loop controller. Using the concept of component cost analysis

developed by Skelton and co-workers, [4]-[ 7], a technique was develop-

ed for determining the effectiveness of individual sensor and actuators

in the minimization effort of the LQG cost functional. Then, a method

for adjusting the weights of the cost functional to achieve (a2, 2) was

developed. With this link between the cost functional and (a 2 , .12)

established, the actuator and sensor effectiveness values were used

along with the weight specification technique to develop an iterative

design algorithm for the SAS problem.

1.4 Organization

The presentation of the design algorithm is organized as follows:

a survey of past approaches to SAS is presented in Chapter 2,

while Chapter 3 contains the specific details of LQG theory, the

advantages and disadvantages for its use in solving the SAS problem and

a redefinition of the research objective in terms of the mathematics of

LQG theory. In Chapter 4 the two substantial .SS models used to test

the design algorithm are defined. Also included in Chapter 4 is a

development of the model of type S(n,k,m,t) from finite element data for

one of the structures. The theory and development of the actuator and

sensor effectiveness values are presented in Chapter 5, while the theory
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and development for the weight selection technique is discussed in

Chapter 6. The results of Chapters 5 and 6 are combined in Chapter 7

to develop the algorithm for solving the SAS problem. Chapter 7 also

contains the results of the algorithm when applied to the LSS models of

Chapter 4. The conclusion is presented in Chapter 8.

I
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2.0 PAST APPROACHES TO SAS

Several approaches to SAS have been presented in the literature.

None directly address the SAS problem as defined in Chapter 1;

however, major components of the problem are addressed for both the

LPM and the distributed parameter model (DPM). Before reviewing these

SAS approaches, a brief discussion of the DPM is in order along with a

description of the most used SAS criteria and the general approach

choosen for SAS.

2.1 The DPM

A DPM is used to describe the motions of a physical system when

the system mass is allowed to exist as a continuum throughout the

spatial domain of the system. Therefore a DPM consists of a set of

partial differential equations with independent variables both in time

and space. The literature considered a linear stochastic DPM which

can be written in a form that closely parallels (1.1).

a Asx(t,s) + B(ts)u(t) + D(t,s)w(ts) - xn uCRm

weR p
x(t ,s) xCs

X(t(1S) a Xo(S)

y(t,s) - C(t,s) x(t,s) ; yc-k (system outputs)

z(ts) - M(ts) x(ts) + v(ts) (system measurements)
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The spatial coordinates are represented by the 6 dimensional real

vector s which is defined on a connected open domain labeled S. As

is defined to be a matrix differential operator (i.e. As[.] = Ao [- +

A -4 _+ A2 + ....) and B(t,s), D(t,s), C(t,s) and M(t,s) are

known time and space dependent linear operators. As in the LPM, v(t,s)

and w(t,s) represent white noise processes used to account for modeling

inaccuracies and xo(s) is a random vector process in S which is indepen-

dent of v and w.

For most physical systems it is currently not possible to generate

independent control forces at every point in S or to simultaneously

measure the movement of each point in S. Therefore, the literature

adopted the following 'point-wise' representation for the m admissible

-actuators and i admissible sensors of (2.1):

B(t,s)u(t) bi(s ) 6(s-si) ui(t)

(2.la)

Whee zl ~ts.)s)z(ts) = {M(t,s) x(t,s + v(t,s

Where st represents the spatial coordinate for the ith actuator, and

s represent the spatial coordinate for the j th sensor. It should also

be noted that the numerical examples presented in the literature further

assumed the linear operators B(t,s), D(t,s), M(t,s) and C(t,s) to be

time-invariant matrices of appropriate dimensions.

2.2 SAS Criteria and General Approach

For this selection of literature, there were two SAS criteria which

were commonly used. One involved the trace of the covariance matrix

4 . . -, 4. . .. . - - 4.. . . . . . . w 4_ 4 -. -. • . . . . -.. * 4 4 4 *' ' ' 
"

4 , w " ' . - " - "
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i; (or DPM operator) for the estimation error in the well known Kalman-

Bucy filter.[l] The other was a weighted quadratic cost functional of

the system state and control. Shown below are mathematical expressions

of these criteria for both the LPM and DPM:
it

(2.2a) tr{P(t)}dt

(2.2b) f t f tr{P(t, sI , s2)}dsI ds2 dt
t0

where tr{.} represents the trace of a matrix and

(2.2c) P -- E{(x-;)(x_;)Tl

The vector x represents the estimate of the state vector as determined

from the Kalman-Bucy filter. The quadratic criteria are:

* (2.3a) E C f xT(,)K2 X(T) + uT(T)Ru(T)}dT + xT(t)K xt)
t0

:! (2.3b) [ {xT(T,S K2x( ) + uT(r)Ru(r)} dsdT + XT(t,s)Klx(ts)]
0

where R > 0 and K2 >0, K1 >_0 (i.e. positive semi-definite). With

these criteria the goal for SAS becomes finding the set of sensors which

minimizes (2.2) over all possible sets of sensors, or finding the set

of actuators and/or sensors which, for a given controller structure,

minimizes (2.3) over all possible sets of actuators and/or sensors.

Then general approach of the reviewed literature to SAS may now

be summarized

-V , ', ,'. : , ,'..; '',. .. - . . •"-' ." - - . . . o.; ',-- . - -2 ' ; : -
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(1) Develop an analytical expression (criterion) which

reflects some desired goal for SAS (usually minimi-

zation of (2.2) or (2.3)).

(2) Use this criterion in a parameter optimization problem,

a minimum principle formulation or a variational tech-

nique in order to derive the necessary conditions for

the sensor and/or actuator configuration to achieve

the SAS goal.

(3) Use some form of gradient, successive approximation

or direct search technique to select the sensor and/or

actuator configuration which satisfies the necessary

conditions.

2.3 Literature Survey

The literature survey will be divided into three distinct sections.

The first section will summarize the techniques for selecting actuators

and/or sensors to minimize (2.3). The second section will survey the

literature on selecting sensors to minimize (2.2) and the last section

will discuss sensor and actuator selection techniques for minimizing

criteria other than (2.2) or (2.3).

2.3.1 SAS Based on a Quadratic Cost Functional

In (8], Johnson et al. propose a technique for locating a fixed

number of noiseless control surfaces (actuators) on a flexible aircraft

such that the controller designed to minimize an infinite time version

of (2.3a) (see Chapter 3) achieves the smallest possible value of (2.3a)

for the given number of control surfaces. It is assumed that the control

surfaces can be located across a continuum, and the desired locations

are sought by using a second order Newton-Rhapson technique to

•- . . . . . .. ."
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update the actuator locations. The technique uses closed-form expres-

sions for the first and second variations of the cost functional with

respect to the control surface locations, and these expressions are

developed in the paper.

Aidarous, in [9], proposes a method for locating a fixed number

of noiseless actuators in a continuous stochastic DPM such that a

functional of type (2.3b) is minimized. The technique involves approxi-

mating the general control functions (i.e. u(t) in (2.1)) by a linear

combination of a finite number of coordinate functions. The cost

functional then becomes a function of the coefficients in this linear

expansion of u(t) and the spatial coordinates of the actuator locations.

The coefficients and spatial coordinates which minimize the cost func-

tional are then identified by applying a gradient-type algorithm. The

algorithm uses a finite approximation of the system's Green function

(very similar to the impulse function for an LPM) and first order

variations of the cost functional with respect to the coefficients and

spatial coordinates in order to develop gradient-type update equations

for the coefficients and spatial coordinates. In [10] Aidarous et al.

present the discrete time version of the algorithm just discussed.

The question of locating a fixed number of noisy sensors and
noiseless actuators so that the controller designed to minimize a

functional of the form (2.3b) achieves the smallest possible value of

(2.3b) is addressed by Ichikawa and Ryan in [11]. Their technique

for finding the optimal locations is to adopt a finite dimensional

eigenfunction expansion for the operator As in (2.1) and then plot the

value of the cost functional for all admissible sensor and actuator

Qs*." '. ,.." " * .* ,, .S . ,- .- ", .... '....,-. , .. . . - -. .-.-.. -.*. , . . .... '. . . .. •" . "... .."., .,, .:,.,., ,, .:.,. .,.. . . ... , , ..:. .... . .. .. . .. .. . .....-.......... ...... ....... . . .
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configurations. The paper presented an SAS example for the stochastic

diffusion equation where measurement noise was assumed but process

noise was not (i.e. v (t,s) # 0, w(ts) = 0 in (2.1)). The problem

was to select 1 out of 16 possible actuator locations and 1 out of 16

possible sensor locations (i.e. m = = , m = = 16). The interesting

result from the example was that different optimal locations occurred

when the sensor and actuator problem was solved simultaneously as opposed

to separately and the lowest cost value was associated with the simultane-

ous solution.

Juang and Rodriguez, in [12], further demonstrated the effect that

actuator location can have on the performance of a closed-loop regulator

designed to minimize a quadratic cost functional of type (2.3). The

chosen model was an LPM for a simply supported beam with no process

noise (i.e. D = 0 in (1.1)). One actuator along with one noisy sensor

were used in the regulator design. As in the case of [11), the optimal

actuator location was determined by plotting the value of (2.3a) versus

* the admissible actuator locations. The results showed that the optimal

actuator location was a function of both model complexity (i.e. the

dimension of the LPM used to approximate the DPM), and the weights

choosen for the quadratic performance index.

The theory of Input Cost Analysis (ICA) and Output Cost Analysis

(OCA) was used in references [13]-[16] to pose algorithms for the selec-

tion of ; and of m actuators and 1 out of 2 sensors to minimize cost

functionals of type (2.3a). The fundamental concept behind (ICA) and

(OCA) is to determine the contribution that each admissible input and

output is making to the cost functional, and then use this information

.- .-.o-... ., ".:~~~~~~~~~~~~~~~......'.... .. ,. --.. '.... .. -.. •..... .....-...... .... ........... .. ..... .. ....- ,,°..'.,-,
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to make sensor and actuator selection decisions. The specific details

of ICA and OCA are fundamental to this research and are presented in

Chapter 5. In [13] and [14] Skelton and Chiu lay the ground work for

ICA and OCA. Analytic expressions are developed in [13] (for u(t) = 0)

which specify the contributions that the columns of D(dl, d2, ... dp )

and columns of CT(cl, ... Ck) are making to the cost functional. These

expressions have been labeled 'parametric' ICA and OCA since they involve

the coefficients associated with the inputs and outputs. In [14] analy-

tic expressions are developed (for u(t) - 0) which specify the contribu-

tions that the individual inputs (wi, i = 1, ... p) and outputs

(yI, I = 1, ... k) are making to the cost functional. The application

of these results to the more meaningful closed-loop (i.e. u(t) # 0) SAS

questions was achieved by Chiu, Skelton, and DeLorenzo in [15] and [16].

Under the assumption that the actuators have no noise, Chiu in

[16] shows that increasing the number of actuators will never increase

the cost functional. [Theorem 1, 15] He also states that increasing

the number of sensors will never increase the cost functional [Theorem

2, 15]. Given these results, Chiu develops an SAS algorithm which

suggests a specific number of sensors and actuators as well as specifies

their desired locations. The algorithm uses closed-loop 'parameteric'

versions of ICA and OCA to determine a suggested number of actuators

and sensors and then an iterative search routine is used to determine

4 the sensor and actuator locations which satisfy the necessary conditions

for minimization of the cost functional as derived from the matrix mini-

mum principle of Athans.[46] The iterative search routine is an

'extended' version of the search routine proposed by Chen and Seinfeld

,, which will be discussed shortly.
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In [16], Skelton and DeLorenzo developed closed-loop (u(t) $ 0)

analytical expressions for the contribution that each actuator (ui),

process noise source (wi), sensor noise source (vi) and output (yi)

makes to the cost functional. These expressions were combined to form

the actuator and sensor effectiveness values mentioned in the introduc-

tion and discussed in Chapter 5. The SAS algorithm based on these effec-

tiveness values will also be discussed in detail in Chapter 5 and is

not be repeated here. The main differences between [16] and the work

of Chlu in [15) are that noisy actuators are considered in [16] which

invalidates [Theorem 1, 15], the 'parametric' version of ICA and OCA

which is applied to the closed-loop situation in [15] produces calcula-

tions which are mathematically complex and computationally burdensome

compared to the non-parametric calculations of [16], and the iterative

search routine of [15) Involves calculations beyond the closed-loop

'parametric' ICA and OCA calculations while the search routine in [16]

involves no calculations beyond the closed-loop ICA and OCA calculations.

2.3.2 SAS Based the Error Covariance Matrix

References [17]-[24] are concerned with locating a fixed number of

sensors in an LPM or DPM so that either (2.2a) or (2.2b) is minimized

over all possible configurations. In [17] Yu and Seinfeld discuss this

problem for a DPM whose state vector x(t,s) can be represented by a

finite number of eigenfunctions of As . The system then becomes essen-

tially an LPM and it is possible to develop an ordinary matrix differen-

tial equation for the error covariance matrix P in terms of the spatial

coordinate s. Yu and Seinfeld then propose a sub-optimal algorithm

which sequentially locates sensors so that the trace of the steady state
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P matrix is minimized subject to the constraint that only the location

of the next sensor to be added may be varied: the previously located

sensors being assumed fixed. The optimal location, for the next sensor

is determined from the integration of the ordinary differential equation

for P in terms of s. The sub-optimality of this algorithm was verified

by the work of Colantuoni and Padmanabhan in [25].

Chen and Seinfeld develop an algorithm in [18] which locates i

out of L sensors to minimize criterion (2.2.b). The algorithm is,

iterative and searches for the i sensor locations that satisfy the

necessary conditions for minimizing (2.2b) as derived from a distri-

buted parameter formulation of the matrix minimum principle. The

search routine requires no gradient calculations, but does require the

solution of a partial differential Riccati equation at each iteration

and the calculation of a switching function for all i sensor locations.

The switching functions are based on the spatial integration of a

functional which is quadratic in the P operator specified by the cur-

rent set of i sensors.

In [19] Aidarous et. al. propose using a finite coordinate func-

tion expansion for P and the DPM Green's function along with a modified

conjugate gradient algorithm to develop update equations for the

sensor locations which minimize (2.2b). The algorithm is essentially

the dual of the actuator selection algorithms of [9] and [10]. The

necessary conditions for the convergence of the algorithm in [19] is

presented in [20].

Kumar and Seinfeld in [21] propose choosing sensors to mini-

mize the trace of an upperbound of P where the calculation of this
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upper bound does not involve the solution of a partial differential

Riccati equation. However, it does involve an orthonormal approximation

to the systems Green's function. A gradient type algorithm based upon

this upper bound expression is proposed to update the sensor locations.

An example which placed two sensors in a one dimensional heat conduction

equation is presentedand the results and compared with the algorithm

of [18]. The answers compared favorably, and a significant savings in

computation resulted when the upper bound criterion was used in place

of P.

Omatu et al. in [22] recommend adopting the following approximation

for P:

N
(2.4) P(tss 2) i, Pi(t) i(Sl) j(s 2 ) ; N <<

where the functions 01, Oj are eigenfunctions for As. Using this

approximation and the comparison and existence results for Riccati

equations derived in the paper, a set of necessary and sufficient con-

ditions are developed for locating i out of i sensors in a DPM of type

(2.1), (2.2) so that tr(P(t)}is minimized. These conditions essentially

involve definiteness comparisons of the matrix product:

(2.5) MT(t,si ) V" (t,si 9s M(t~s )

for each admissible set of i sensor coordinates, s. The matrix o is an

Nxi matrix of eigenfunctions evaluated at the i spatial locations. The

necessary and sufficient conditions based on (2.5) do not require the
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calculation of a partial differential Riccati equation or complex

gradients but, as posed, do require a direct search of all admissible

sensor configurations.

In [23] Wei and Wu address the problem of locating 1 out of Z

sensors for an LPM of type (1.1) to minimize criterion (2.2a). The

matrix maximum principle is used to derive necessary conditions for

the sensor locations. A sufficient condition which involves the

definite comparison

(2.6) PkMkVk.1MkPk > PkMTVJMP

is then derived where the subscripts k, j represent admissible con-

figurations of i sensors. If (2.6) holds for some k over all possible

configurations then k is the optimal configuration. A direct search

algorithm is proposed to find k. The results of this paper are in

many respects the LPM version of the results of [22]. Finally, the

paper also suggested minimizing the trace of an upper bound on P

instead of (2.2a) in order to avoid solving a Riccati equation at

iteration.

A technique for adjusting the elements of the measurement matrix

M in (1.1) was suggested by Arbel in [24]. The goal of the technique

is to adjust the elements of M so that a weighted trace of the error

covariance P is minimized subject to location constratins on the

elements of M. The first order variation of P to each element M is

calculated via a Lyapunov type equation and these variations are used

to adjust the elements of the M matrix as long as the constraints on

M are not violated.
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2.3.3 Other SAS Criterion

References [26-[43) pose SAS questions for criterion other than

the minimization of (2.2) or (2.3). In many cases the criteria are

minor modifications of (2.2) or (2.3), while the criteria choosen by

some references ([31]-[35]) do not apply to the context of this research.

These references are included, however, for completeness.

In [26], Curtain and Ichikawa propose the selection of sensors to

minimize both the cost of taking a measurement and the trace of the

covariance of the estimation error for distributed systems. No speci-

fic form for the cost of taking a measurement is offered, and a direct

search technique is used for those distributed systems whose solutions

may be expressed in terms of eigenfunctions of A n Amouroux et. al.
9.

in [27] add a term which includes certain variables in the control law

to the criterion (2.2b). Given a fixed number of sensors in a linear

stochastic DPM, these sensors are then located to minimize the cost

functional of the choosen control law variables and the error covariance

integral. A modified gradient algorithm is suggested to update the

sensor locations.

In [28] Morar and O'Dowd pose a sensor selection problem for a

DPM driven by non-stationary noise. It is shown that, in general, the

presence of non-stationary noise makes the system unobservable. A

projection technique is derived which yields an observable system and

a Kalman-Bucy filter for the observable system is constructed. The

sensors are then selected to minimize the error caused by the unobserv-

able non-stationary noise components. The criterion which accomplishes

this is shown to be the trace of spatial integral of P for
*4

4..
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the steady state Kalman filter of the projected, system. The criterion

is applied by using a direct search of the sensor locations.

Kosut et. al. discuss an SAS reliability question for a general

LPM with a fixed set of sensor locations in [30]. The "reliability"

question is approached by introducing a parameter representing sensor

systematic error (i.e. axes misalignment, scale factor and bias error,

etc.) into the measurement equation. An optimization problem is formu-

lated which places the sensors, with varying degrees of systematic

error, in the fixed locations such that a lower bound on P(t) is mini-

mized. Necessary conditions for the optimization are derived, but no

technique of solution is offered.

The problem of selecting at each instant of time, one measurement

provided by one out of many sensors in a linear stochastic LPM is

addressed by Athans in [31]. The criterion for selection is the minimi-

zation of a weighted combination of P(t) and a term reflecting observa-

tion cost. The observation cost term is expressed by functions which

denote the per-unit-of-time cost of making an observation. The problem

is transformed into a deterministic optimal control problem and the

5, matrix maximum principle is used to derive the necessary conditions for

optimality. A specialized gradient algorithm is used in obtaining the

solution. In [32], Herring and Melsa extend the results of Athans

[31] to the selection of a best combination of measurement devices

instead of selection of a best single device. A similar situation is

addressed in [33] where a measurement subsystem for a discrete time

linear decentralized LPM is chosen from a number of subsystems. An

"ideal" subsystem which minimizes the trace of the steady state P

4, 1
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jmatrix is found and then the existing subsystem which is closest to

this ideal subsystem, as determined by a certain information measure,

is choosen.

In [34] and [35] the problem of selecting at each instant of time
one out of many actuators or sets of actuators to achieve a desired

result is addressed. Vanbeveren and Gevers, in [34), consider a dis-

crete deterministic linear LPM and the minimization of a criterion

(2.3a). Propositions which specify when certain possible sequences of

actuator choices can be ignored are proved and these propositions are

combined with a proposed "decision tree" method to arrive at a solution.

The computational burden of this method for large systems is noted and

*a suboptimal "forward-backward" algorithm is proposed for this case.

In [35] Martain uses the theory of relaxed controls to solve the problem

posed in [34] for both an LPM and DPM. For the LPM, the existence of

a solution is established and necessary conditions for optimality are

derived. A steepest decent gradient algorithm is proposed to find the

solution to the necessary conditions.

In [36], Mehra discusses placing a fixed number of sensors in a

linear stochastic OPM. The problem is to select the sensor locations

that minimize a norm of the inverse of the Fisher information matrix

subject to a norm constraint on the measurement matrix (M). The

necessary conditions for optimality are derived through the lagrange

multiplier technique. However, a procedure for determining an appropri-

ate measurement norm constraint is not given.

Placing a fixed number of sensors in a matrix second order LPM

which is written in modal form (i.e., mass matrix is identity, stiffness

" .,-,:.-v,;,, .- ,: - - ,:.7 .. ,Q:. ..:-.* ,..-., ::-.: 2 k --- i." --. 2,.... ,.. . .- ... - .-.--- • ,..".* .: . .-.. '
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matrix is diagonal) is considered by Buhariwala in [37]. The minimiza-

tion criterion is a weighted sum of each mode's observability norm, and

the sensor locations that minimize this sum are solved for by a psuedo-

random search algorithm.

In [37] and [39] the problem of locating sensors in a DPM is again

considered. Ewing and Higgins, in [38], recast the partial differential

equation for the system in the form of a variational functional. The

sensors are then placed in optimal locations by choosing the set of

locations that minimizes the derived variational functional. A steepest

decent gradient algorithm is used to find the minimizing sensor loca-

ions, and if only discrete locations are available for the sensors, a

location constraint must be developed. In [39] Caravani and Phillo

approximate the DPM by a finite elgenfunction expansion. They then

propose finding the sensor locations that minimize the expected value

of the square estimation error when the residual components of the true

initial state are allowed to vary within a sphere of given radius. An

analytical expression for the above defined criterion is derived and a

direct search algorithm is used in a simple example having one sensor.

The problem of locating actuators (noiseless) in linear determin-

istic oscillatory systems is considered by Arbel and Gupta in [40] and

Arbel in [41]. The control objective is assumed to be open-loop minimum-

energy control and the minimum energy value is shown to depend directly

on the controllability matrix. An actuator selection algorithm is

thus proposed based upon the minimization of a measure of the control-

lability matrix. The gradient type algorithm requires the system be

placed in Jordan canonical form and makes use of the diagonal dominance
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property of the controllability matrix for systems in canonical form

[Theorem 1, 40].

In [42] VanderVelde and Carigan define a measure of controllability

which provides a quantitative indication of how well a deterministic

linear LPM can be controlled with a given set of actuators. The effect

of component unreliability is introduced by computing the expected value

*. of this controllability measure accounting for the likelihood of various

combinations of component failures. A direct search algorithm is then

used to locate the actuators of the system to minimize this

"controllability/reliability" criterion. The process of defining this

criterion for a large number of actuators and then applying a direct

search or integer programming (for discrete locations) type algorithm

is, as noted by the authors, computatlonally burdensome.

Lindberg and Longman in [43] discuss actuator placement for a

linear deterministic LPM. They use the concept of modal space control

developed by Meirovitch et. al. but eliminate the need for a large

number of actuators (i.e. one for each system mode) by introducing a

psuedo-inverse for the control distribution matrix (B ). The main

advantage of modal space control, (i.e. the elimination of the need to

solve large order Riccati equations) is retained. The goal

is to locate the actuators in the system to achieve minimum energy

control, and this is achieved by finding the set of actuators which

minimizes the largest singular value of B . Either a direct or

gradient search technique is proposed to accomplish the minimization.

* *
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2.4 General Relation to the SAS Problem

As mentioned in the beginning of the Chapter, none of the criterion

used in the reviewed SAS literature directly addresses the specific

2 2steady state variance constraints (a , 2 defined in (1.8). The

criteria of (2.2) and (2.3) and the other related SAS criteria all have

merit, and from an intuitive stand point, should indirectly attempt to

satisfy (a2 , 2). However, an SAS criterion which directly encompasses

(a2 ii2) would be more desirable, and the LQG weight selection algorithm

in Chapter 4 provides one method for achieving such a goal.

With the exception of [16], none of the literature considered the

selection of noisy actuators (i.e. B also becomes a partition of D).

The results of [16] are discussed extensively in Chapter 5, but have

shown that [Theorem 1, 15] is not valid when noisy actuators are con-

sidered. Therefore, noisy actuators can significantly change the

complexion of actuator selection and merit consideration.

Most of the literature used some form of gradient or direct search

technique to determine the sensors and actuators which satisfied the

necessary and/or sufficient conditions derived from the particular

selection criterion considered ([15], [16) and [18] are notable

exceptions). As discussed in the intrL',uction, even for a modest

number of sensors and actuators a direct search of all possible sensor

and actuator locations becomes infeasible. Furthermore, when sensor

and actuator selection is necessary for large complex systems with

many admissible sensor and actuator locations the requirement for any

form of gradient calculation is severe and can easily become prohibitive,

particularly if spatial integrations are also required. A search

. , l- , ""
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algorithm which does not require direct search or gradient calculations

would certainly be desirable in the above situations and only algorithms

with these properties were considered in this research. The detailed

discussion of the approach this research took to the SAS problem begins

with a discussion of LQG theory.

,* °*"
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3.0 LQG THEORY

As noted in the Introduction, an important step in the solution

of the SAS problem is the specification of a control law, and LQG

theory has been choosen to specify the control law in this research.

The theory originated in the 1960's with the foundational work of

Kalman, Bucy and others. Since that time, many papers and texts have

been written which further clarify and expand the theory. References

[ 1]-[ 3) are a few examples. Section 3.1 contains the fundamental

results of LQG theory when applied to systems of type S(n,k,m,t)

(i.e. (.1)-(.3)) and long periods of control are required (t-*-).

The proofs of the results are omitted but are readily available in the

previously mentioned references. In section 3.2 the LQG version of

the SAS problem is formulated and section 3.3 discusses the advantages

and disadvantages of this formulation.

3.1 The Steady State LQG Controller

For a system of type S(n,k,m,.) LQG theory guarantees a stable

closed-loop system and a closed-loop dynamical controller (u(z(T)),

0 < T < t) which minimizes the following cost functional:

(3.1) Vo a lim 1 E tl {yT(t)Qy(t) + uT(t)Ru(t)}dt;Q,R>O(tl'to )-. (tlto) Eto

The defining equations for this steady-state controller are as follows:
W-
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-1A T*(3.2a) u(t) *-RC B Kx(t) Gx(t)

(3.2b) x(t) A x(t)+ Fz(t); FPMIl; A A BG F

X(t)=Xo o

(3.2c) KA + TK - KBRl 1B TK + C TQC =0; (Control Riccati Equation)

(i.e. lrn K(t) = K)

(3.2d) PA + AP - PM T VIMP + DWD T = 0 ; (Filter Riccati Equation)

(i.e. lrn P(t) = P)

Substituting this controller into S(n,k,rn,L), the following 2n dimen-

sional closed-loop system results:

Ax +AwX ( Ta T A wT vT T

(3.3a) A T T

where,

(3.3b) A~ FA B] B 0 C ]

LFM A L0 F _0 GI

and

(3.3c) V0  lim *~4 ;-E y yT(t)Qy(t) dt ;Q
0 (ti- t 0 )-o Jt tO to0 0 R_

Given the noise characteristics of S(n,k~m,), the steady-state variance

matrix for S(2n, k+m, m+z, 0) is known to be:
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(3.4) E.{(x O)(x- O)T E{x xT}. 5X
where,

(3.5) X - 1im i(t) - E{(x - O)(x - )} E{x xT }
t'm

and is the solution of the following steady-state Lyapunov equation:

'C (3.6) X(A + BG)T + (A + BG)X + PMTV-IMP = 0.

Also, coupling the definition of x in (3.3a) with (3.4) gives,

(3.7) Xa lim X(t) - E {x xT I X + P

Assuming that the weighting matrices of V0 in (3.1) are strictly

diagonal, and using the results of (3.2)-(3.6) along with some linear

albegra, the following sequence of manipulations of V 0 produces a

useful result. First, using the fact that xTAx = tr{xxT A},V 0 becomes:

~t 1

(3.8) tl'o)). (tv 1toy tr to [CX(t)CTQ + R'1BTK(t)X(t)K(t)B]dt

Since (tl-to)--, the value of Vo will be dominated by the steady state

portion of the integral in (3.8) and the LQG controller must, there-

fore, minimize the following expression also: [l]

(3.9) V 0 tlim 1 tI-o tr ft CXCQ + R_ i1 d

C-~I tW 0* 0 -a

t.,C-
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The integrand of (3.9) is now time-invariant and this means (3.9)

can be written as:

(3.10) V a tr[CXCTQ + R 1 BTKXKB]

which is directly equivalent to the following:

(3.11a) V a tr[EE{yyT Q + E{uuTIR] ,

or the more well known form

(3.11b) V - EjyTQy + uTRu .

Envoking the assumed diagonality of Q and R yields the following

useful expression which the LQG controller is known to minimize.

k 2m 2

(3.12) V = k Eyi qi + I ECui 2 ri
inl i=l

where qi and r i represent the ith diagonal entries of Q and R respec-

tively.

3.2 LQG Theory and the SAS Problem
• " 2 2

The two key quantities in the SAS problem are Ej12 and EO u .

As might be guessed from the results of the previous section, analytic

expressions for these quantities are readily obtained when an LQG

controller is used for the system S(n,k,m,L). The expression for

Ey I  may be derived as follows. By definition, yi(t) can be written

as:

.4..
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(3.13) yl(t) * c1Tx(t)

where c T is the ith row of C. Therefore, y 2(t) becomes
,\'

(3.14) yl 2(t)- (cl Tx(t))(ci Tx(t))

or since the transpose of a scalar is still the scalar:

(3.15) y12(t) - c1 x(t)x (t)ci

Letting t--, taking the expectation of (3.15) and making use of (3.7),

the desired expression for Eyi2 results:

(3.16) E. y2 = ci T (X + P)c
C., i2

The derivation for Eui 2 procedes in a similar fashion by first

using (3.2a) to develop this expression for ui:

'1CT

(3.17) ui(t) = -r i  x(t)

where bi is the i t h column of Bt Then, u() can be written as

(3.18) u,2(t) - riJ bTKx(t)xT(t)Kbi

where the fact that K = KT (i.e. matrix Riccati solutions are symmetric)

has been used. Letting t-v- and taking the expectation of (3.18)

results in the following analytic expression for Eui2:

dTi., ... .

4 ', .', -/.-:.: ; '.:. .... =. :,'. . *;,..,- . - .*."-. -. . . .. ..... *.C . . . . . . . " " ".
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2 2 T
(3.19) E U1  r .bKXKb.

It should be noted that (3.16) and (3.19) are implicit functions

of the weighting matrices Q and R and that (3.16) is an explicit func-
"'2 2

tion of rt. Therefore the values of Ey i and E.ui may be changed

by adjusting the components of Q and R. In fact, the following general

trends are known. Increasing (decreasing) ri will decrease (increase)

E.ul2 while causing a general increase (decrease) in the remaining

E.uj, j 0 I and a general increase (decrease) in Ey i , 1, ... k.

-". Similarly increasing (decreasing) qi will decrease (increase) E.yi

while causing a general decrease (increase) in the remaining E yj,

J # i and a general increase (decrease) in E= 1, ... m.
'S

Incorporating the LQG theory of (3.2)-(3.7) and the expressions

(3.16) and (3.19) into the SAS problem defined in the introduction

produces the following parameter optimization or non-linear program-

ming problem which will be referred to as the SASLQG problem.

SASLQG Problem Statement

Given: A system of type S(n,k,m,t) which has only

out of m actuators and 1 out of X sensors

available for the design of a steady state

LQG regulator which must achieve (a2 u2)

Required: Specify the closed-loop system which satisfies

the following input-constrained or output-

constrained requirements:

Input-constrai ned

If (02, 42) are achievable,

Z-
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k 2 2 2-2
(3.20a) Min I E.yI /a 2  subject to E u2 i2  V-i=l,...

S 1=l

else,

(3.20b) Min k 2/2 V-i: E Yi 2 > a 2

S y I

Subject to Eiui P Vi = 1, ...

Output-constrai ned

If (a2, u2) are achievable,

(3.21a) Min Eu 2 / 2 subject to E,Y = o i2  1. 1, k
S il

else,

2 22>
(3.21b) Min E~u/ i i: Eu > UiS i=l

Subject to Ey 2 = ai2  = i, ... k

The essential difference between the SAS problem and the SASLQG problem

is that the SAS problem Is requiring the best choice of sensors and

actuators and controller structure to achieve (a 2, 2 ), while the

SASLQG problem assumes an LQG controller and looks for the best choice

of sensors and actuators to achieve (a2 U2). There is no guarantee

that the SASLQG problem is the solution to the SAS problem.

abc .,.'.:,% ; , .: - ,.: ..* ' "lfl,.,, ',, *.,,,''' .- * *..,. ".. "- - '"-*.. ' * ."- "
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3.3 LQG Theory Advantages and Disadvantages

In light of the discussion of Section 3.2, the advantages and

Idisadvantages of the LQG approach to the SAS problem can be summarized.
Advantages of the LQG Approach to SAS

(1) LQG theory provides a closed-loop linear dynamical

controller and necessary and sufficient conditions

for closed-loop assymptotic stability (i.e. (1.3))

(2) The controller computations of (3.2) and (3.6) are

straight forward (non-iterative) and the constant

gain matrices are easy to implement.

(3) Analytical expressions exist for E ui
2 and Eyt2

and require no additional major calculations beyond

those for the controller.

(4) The values ofEu 2 and EY 2 can be changed by
adjusting the components of Q and R and those

Q and R adjustments do not effect the filter
Riccati solution P (3.2d) (i.e. the separation

theorem applies).

Disadvantages of the LQG Approach to SAS

(1) The method for adjusting the elements of Q and R to

achieve desired changes in Eiu2 and has, in

the past, been trial and error.

(2) Solution of the SASLQG problem does not guarantee

that the SAS problem has been solved. (i.e.

another control structure might do better)

(3) The order of the controller is usually the order of

the model (for exceptions see [64)).
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Disadvantage (1) has been eliminated by the Q and R selection

procedure developed in this research and presented in Chapter 6. Also,

the sensor and actuator effectiveness values derived in Chapter 5 are

fundamentally rooted in LQG theory and provide another major incentive

for using LQG theory in the SAS problem. Concerning disadvantages (2)

and (3), they have been treated as 'current' necessary evils for gain-

ing insight into the SAS problem. Before continuing with the develop-

ment of the actuator and sensor effectiveness values and the weight

selection algorithm, Chapter 4 will discuss the physical systems choosen

, for practical application of this research and define their models.

t.4

If.

"9u

9..
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4.0 THE LARGE SPACE STRUCTURE (LSS)

I.. The design algorithm developed by this research for the SASLQG

'. problem has been tested on two substantial LSS models. The results

are presented in Chapter 7, while the details of the models are pre-

sented in this chapter. Section 4.1 contains a general description

of an LSS and its typical mission and control requirements. The

general DPM for an LSS and an outline of a technique which generates

a matrix second order ordinary differential equation from the DPM is

presented in Section 4.2. In Section 4.3 a model of type S(n,k,m,L)

is developed for the hoop column antenna satellite from finite element

NASTRAN data, and a specific SAS problem for the hoop antenna is then

posed. The S(n,k,m,t) model for a solar optical telescope is presented

in Section 4.4 and an SAS problem is also posed for this model.

4.1 Generpl LSS Description and Mission

The recent successes of the Space Shuttle has made the large

space structure (LSS) an imminent reality. These future space struc-

tures will be measured in kilometers and, of necessity, will be

lightweight and highly flexible (light damping). Standard LSS missions

will include power generation, surveillance, astronomy, and communica-

tions. These missions will require stringent pointing accuracy, shape

control and vibration suppression. To satisfy the demanding mission

requirements the LSS may require an active, regulator-type controller

t4 A.-__ 
.~. .
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with multiple sensors and actuators located throughout the structure

[67] -[72]. Furthermore, given the size of an LSS, there will be a

large set of admissible sensor and actuator locations. The controls

engineer is then faced with the problem of determining where to locate

a limited number of sensors and actuators to 'best' achieve the LSS

mission (i.e. he must solve the SAS problem!) Therefore, the problem

of regulating an (LSS) presents an excellent proving ground for SAS

techniques. For this reason two LSS models have been chosen to test

the SAS design algorithm proposed by this research. Their descriptions

follow.

4.2 The LSS Model

The problem of modeling an LSS is well discussed in the literature.

A representative example is [67]. The modeling process centers

around discretizing a system of partial differential equations of the

following form:

\m(s) a 0(t's) + aa(t,s) + A m(ts) I S(ss)f u1 t). atI 2 s at s i¢ts) l~lSs)ii t )

(4.1) y(t,s) •c p(t,s) + cr at , Y9 cps Cre R (system outputs)

mr t * * (t9 sj) + mr r = 1, *..

(system measurements)

where, as in (2.1), s represents the spatial coordinates defined in the

domain S. The quantity Q(t,s) represents the translational and rota-

tional motions for each point in S and could be a vector but for

':: "' " "'' - -': "' < -"- -": " h " *- : : - : ::. -t::& I-
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notational simplicity it will be assumed scalar. The expression

6(s-si) ftut(t), wheref t is a scalar influence coefficient, is

used to represent the forcing functions of m actuators located at

points sand m(s) is the mass density which is positive and bounded

on S. As is a time-invariant symmetric, non-negative differential

operator and is assumed to have a discrete spectrum defined by:

A s #i i s )  • i #i (s) ; i 1 , 2 , ... CO

(4.2a)

As1/ 2 0t(s) - Ail/ 2 oi(s) ; I = 1, 2,

and the elgenfunctions i (s) in (4.2) are assumed to be orthogonal with

respect to m(s) which implies the following:

(4 .2b ) n m (s ) *(s ) *j (s )ds = m  when i = j

S0 otherwise

The operator Vs generates the damping term for the structure and is

currently not well understood. It usually consists of a skew symmetric

part which represents gyroscopic damping due to on-board rotors or a

constant spin of the LSS, and a small symmetric part which represents

the internal structural damping [68]. It is this symmetric part of

0s which is hardest to understand, and for mathematical convenience

it is usually modeled as:

(4.3) Vs (symetric) * 24 As1/ 2  (i.e. similar to 2 w for an LPM)

* T. ***'.**-**.** ; *.* .**.4 ' .- .' . .'. -... ". ,.s.". - . - . "
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The symbol g is taken to be a matrix of damping ratios the components

of which are small (i.e. around .005). The vector y(t,s) in (4.1)

represents the outputs of the system which are to be regulated. They

are represented by linear combinations of position (c s (t,s)) and rate
p

(cr in1t~s), where cp and cr are assumed to be constant kxl vectors.
r at r

The sensor information z(t) for (4.11) is assumed to be provided by a

set of i sensors located at points s! which measure both position and

rate. For the ith position measurement, the rate influence coefficient

mri will be zero, and for the ith rate measurement mpi will be zero.

It should also be noted, that for the moment, actuator and sensor

noise, along with model uncertainty have been neglected.

If the Ds operator is assumed to have no gyroscopic terms, and

(4.3) is used to represent Ds the instantaneous position of the LSS can

be represented by an infinite sum of the orthogonal eigenfunctio,,; of

.9 As with strictly time varying coefficients.

(4.4) Q(t,s) = Z qi(t) Ol(s) ;

Substituting (4.4) into (4.1) and successively multiplying by 0j(s)

and integrating over S, the LSS may be represented by the following

infinite set of ordinary differential equations when the orthogonality

of (r(s) *1(s) *j(s)) along with the spectrum definitions for As and

As1/2 are used.
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mm

mjqj(t) + 2cj (t) + X. q(t) sa)fui(t); j=,9

(4.5) y(t,s) a Cp Oi1 (s)qi(t) + Cr j=* 1 (s)qi(t) ;

Zj(t) - mp oi(S )qi(t) +  m - i ( s  (t) ; j i

j "s+ mr

Three points of interest arise in (4.5). The first being that the

output y(t,s) is still a vector of both time and space and usually

represents such things as line-of-sight (LOS) angles, defocus lengths,

shape information etc. For practical reasons, usually from a control

design standpoint, it is necessary to discretize y(t,s) in a manner

similar to z(t). i.e.

(4.6) yj(t) - c *i(s )qi(t) + c y(sy)qi ( t) ; jl, ... k
,j I=I 3 i=ii

The quantities c and c represent the th element of cp and cr: Pj C" rj
respectively.

The second point of interest in (4.5) is that infinite sums are

involved which again, from a practical stand point, cannot be handled.

To alleviate this problem, some form of the model analysis can be

performed to choose a finite number (N) of etgenfunctions and eigen-

values (i.e. modes) to represent the LSS. With this modal truncation,

(4.5) and (4.6) can be written as follows:

,-e
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pN
k Mq(t) + Vq(t) + Kq(t) Fu(t) ; qeRN

y(t) - [Cp CR) [(t)

(4.7)

z(t) = [M M

Where MA is an NxN diagonal matrix with mi, j 1, N on the diagonal.
The elements of q(t) are the N qi(t)'s associated with the N choosen

modes and the matrices D and K are NxN diagonal matrices containing

the following data for the selected modes:

(4.8) D= diag [2 Cl X11/2.... 2 rN XN1/2

(4.9) K = diag [X N]

JThe matrix F is an Nxm matrix whose elements consist of eigenfunctions

evaluated at the actuator locations.

h lh(s 2)f2 .... ysl f

(4.10) F

N(s a)fl . . . . . .

The matrices Cp, CR, Mp, MR have the following structure;

4m
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(4.10) Y) .1( . . . 0 Y)sk

... k
Cr1  p(s .... cp (s

Cr *l(5@ •.NS

PI Pi-(lP

(4.12) CR =
* m (SY) . . . .

1  kdsN)k

(s; c s sk Y

mP 1  rlp 1  ... Np 1

(4.13) MR

,. 4)(Y
;-,,:r m 1 k

m°p, mr 1 (lSs)  mp 2(ss ) . p NSSI)-

M #(s )
ms mrl ) . . .. mr

" (4.13) MR

The final point of interest concerning (4.5) is that it requires

4 the exact etgenfunctions for the LSS. Even when Ds is assumed equiva-

lent to (4.3) and the LSS elgenfunctions become just the eigenfunctions

of As the exact determination of these eigenfunctions is essentially

I impossible due to the size and complexity of the LSS structure. How-

ever, a very useful technique known as finite element analysis has

been developed to provide an estimate for a finite number of
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eigenfunctions at discrete points in the spatial domain (0i(s.), i=l,

...N, j=l, ... a) and corresponding eigenvalues( i, i=l, ... N). The tech-

nique basically involves approximating the spatial domain S of the LSS by

a finite number of meshes of particular shapes and well defined struc-

tural properties. These meshes are then patched together by a matching

of the individual mesh boundary conditions, and the eigenfunction

estimates at each of the nodes (mesh corners) are then derived. The

number of elgenfunctions that can be estimated and the accuracy of

the estimation is a direct function of the number and/or complexity

of the meshes; while, the number of discrete points (a) at which the

eigenfunctions are estimated is equal to the number of nodes. The

finite element method is essentially a practical extension of the

Galerkin numerical technique for approximating the solution of a partial

differential equation. The method is particularly suited for use with

a high-speed digital computer and computer programs such as NASTRAN

have been used to provide approximate modal information for complex

structures that defy analytical solutions.

The N approximate eigenfunction 0i(sj)produced from finite element

analysis can be directly substituted for the N exact mode shapes * 1(s)

used to develop (4.7) and this model can, with some degree of confidence,

be used to represent the LSS for control design purposes. [73]

One last modification to the model of (4.7) is usually desirable.

Since M is known to be a positive definite matrix and K is at least

positive semi-definite a unitary transformation (T) can be applied to

M and K which produces the following result:J 74]
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T MT - I N (i.e. NxN identity matrix)

(4.14) and

T T where A -diag (,2 9 . N2

where w N2 are the frequencies of modal motion. Therefore,

using the coordinate transformation q =Tn (4.7) becomes:

n +T T T A+ A, -TTF u(t) nRN, URm1

yMt - ECP T CRTJ] yeRk

* (4.15a)

z(t)*- [MpT MRT]Je
R LA.

where,

TTVT - diag M2w I ... N

The second order model of (4.15a) can be readily converted to a state-

space model of type S(2N,k,m,Lt) by defining xT a[ T AT This con-

version is shown in (4.15b).

*i(t) *Ax(t) + Bu(t) ; xcR 2N , UERm

(4.15b) t) [ CR]xt yek

z~t M [M M RJTx(t) ; zeR'L

Iwhere

TTT and 8 T
rA -TV11LT F
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4.3 The Hoop Column Antenna

Figure 4.1 is a schematic of NASA's proposed hoop column antenna

communi cations satellite.

-C-olumn
x

9

0 ,NODE (location)

113 101 O

Solar Array

Figure 4.1: Hoop Column Antenna

The antenna will be positioned in a geosynchronous orbit with the

mission of the control system being to maintain the focus and orienta-

tion of the satellite. The nodes shown on the schematic identify the

spatial locations (sr) which have been choosen to define 24 system

outputs that are critical to the antenna focus and orientation. The

nodes also identify the spatial locations (ss) for 39 admissible

sensors and the column nodes 2, 6, 9, 10 represent the spatial locations

(s) for 12 admissible actuators. Tables 4.1-4.3 represent specific

location, type and orientation information for the outputs and admis-

sible sensors and actuators.
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Table 4.1: Hoop Column Output Description

Output# Type Nodal Location Direction

1 Inertial Angle 2 X

2 " 2 y
3 2 Z
4 Relative Angle Between 10 and 2 X
5 "I i y

6 Inertial Angle 10 Z

7 Relative Linear Disp. Between 6 and 2 X
8 " i y
9 " 9 and 2 X

10 It I y
11 " 10 and 2 X

12 " i y
13 101 and 10 X

14 y
15 " " z
16 107 and 10 X

17 "" y

18 Z
19 113 and 10 X
20 "Y
21 Z
22 119 and 10 X

23 " Y
24 Z

"r ' ' e . - - - ** .. ¢ ? : .;.. . - i?;'.': " - -?" , *'.-,' -
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Table 4.2: Hoop Column Sensor Description

Sensor# Type Nodal Location Direction

1 Inertial Angle 2 X
2 It yI4

3 Z
4 Relative Linear Disp. Between 6 and 2 X
5 Is 11 Y
6 IitZ
7 9 and 2 X
8 II I y
9 " I Z
0 10 and 2 X
11 " " Y
12 Z
13 Inertial Angle 10 X
14 s It y
15 2 - z
16 Relative Linear Disp. Between 101 and 10 X
17 " " Y
18 Is "1 Z
19 " 107 and 10 X
20 " " Y
21 i " Z
22 " 113 and 10 X
23 Y
24 " Z
25 119 and 10 X
26 y

27 Z
28 Inertial Angular Rate 2 X
29 I @I Y
30 " " Z
31 " 6 X
32 " Y
33 " Z
34 9 X
35 t o Y

36 Z
37 10 X
38 "1 Y
39 Is II z

,, ,,~~~................... ,..............................,.................... .-.
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Table 4.3: Hoop Column Actuator Description

Actuator (Torquer)# Nodal Location Direction of Torque

1 2 x
2 2 Y
3 2 Z
4 6 X
5 6 Y
6 6 Z
7 9 X
8 9 Y

99 z
10 10 X
11 10 V
12 10 Z

The regulation specifications (a 2 2) assumed for the hoop-column are

defined in (4.16).

a for linear displacements outputs .158 mm

(4.16) at for angular outputs 22.8 sec

.U for all actuators 10 dn-cm

4.3.1 Hoop Column NASTRAN Data and Model

The NASTRAN data used in this research to develop the hoop column

model was generated by the Harris Corporation in early 1981. The data

consisted of an estimate of the first 18 elgenfunctions for all 6

degrees of freedom in the hoop (i.e. translations and rotations in the

coordinate directions x, y, z). The 6 degrees of freedom change the

notation of section 4.2, and these changes are documented in Table 4.4.
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Table 4.4: Multidimensional n(t,s) notation

O(ts), *i(s) become 6xl vectors

m become M T mT vectors)pj rj pj rj

Cp and cr become kx6 matrices

c , c become c c( x6 vectors)

f becomes a 6xl vector

becomes *J(s i ) a Ix6 vector

Also, the elgenfunction estimates were normalized by the mass density

and this means that (4-7) automatically assumes the form of (4.15)

without need of the transformation in (4.14). A sketch of the calcula-

tions necessary for selected elements of the matrices F, Cp, Mp, and MR

* will be provided by first noting that Cp, Mp, MR9 and F can be written

as follows:

* P C P t( sy)

(4.18a) T S) .... (SY)

0 c 0" P 2 I I(s ')=

0

"T Pk] 
) . .

and

x yex

-.- .*-. 1 %r1 '' ~ V ~ 'Z~'
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where Oi represents the linear shape function in the x direction, and
1
x

i, represents the angular shape function in the x direction.

(4.19) Mp - M *(ss)  MR MR (ss)

where Mp and MR have the same format as C with cT changed to T

orm respectively and 0(ss) is equivalent to O(sy ) with output

locations sy changed to sensor locations s

(4.20) F= T(sa )f where f

The matrix 0 T(sa) is the transpose of 0(sy ) in (4.18) with sy changed

to sa It should be noted that no rate information (i.e. ;) is requir-

ed in the hoop-column output vector and therefore CR = 0. Table-T

4.5 displays the first four rows of C p (i.e. cTi , 1 = 1,2,3,4), the

first four and last four rows of Mp and MR (i.e. MPi and mR),

and the first 24 and last 6 entires of f. The first four rows of

Cp correspond to the first four outputs defined in table (4.1).

Similarly, the first four and last four rows of Mp and MR correspond

to the first four and last four measurements defined in table (4.2).

The first 24 entries in f correspond to the first four actuators and

the last 6 entires correspond to the last actuator as defined in

table (4.3).

Combining the information provided in table 4.5 and (4.18)-(4.20)

with the NASTRAN etgenfunctton and etgenvalue data, a model of type

-.



5 4

Table 4.5: Partial Representation of Cp, MP, MR, and f

-C [000100 000000 000000 000000 .... 0000001
P1

-T - [00000 000000 000001 000000 .... 000000)
!3

4

-T x [000100 000000 000000 000000 .... 0000001
M1 I

-[000000 000010 000000 000000 .... 000000]
2

-T * [000000 000000 000001 000000 .... 0000001

-T -[-100000 000000 000000 100000 .... 000000]
M4

-T all zero rows
MR1 mR 4

-T - all zero rows

36 39

-T [000000 .... 000001 000000 000000 0000001
36

mR 37 0 [000000 .... 000000 000100 000000 0000001

3 [000000 .... 000000 000000 000010 000000)

mR38

9R w [000000 .... 000000 000000 000000 0000011

fT [000100 000010 000001 0001000 .... 0000011
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(4.15b) was derived for the hoop-column where N = 15# m= 12, k, - 24

and t - 39. (note: since the eigenfunctions were normalized, T = I)

Only 15 Instead of the given 18 modes were used because the 3 trans-

lational rigid body modes were assumed to be non-excitable do to

the satellites stable geosynchronous orbit. With this 15 mode model,

it was discovered that two surface modes (labeled #14 and #15 by the

Harris Corporation were unobservable and uncontrollable). Therefore,

these modes were also deleted leaving a total of 13 modes (i.e. N = 13)

in the hoop-column model.

For this 13 mode representation, a model of type S(n,k,m,L) was

generated by adding white noise processes to the model to account for

sensor, actuator and model uncertainties. The form of the model is

shown in (4.21):

i(t) = Ax(t) + Bu(t) + Dw(t) ; xeR ; ucR12  weR24

I, D = [B B] ; (A,B) controllable

y(t) = Cx(t) ; yeR24 ; (A,C) observable
fA1/

(4.21) z(t) - Mx(t) + v(t) ; zR 39 , vR 39 ; (A,M) measurable

E(w(t)) 0; E(v(t))- 0(
w/ E((wT(r) vT(T} t

\~ t 0 (t-T)

Ii should be noted that although D is partitioned as [B B] the second

partition is used to represent model error and will not change if the

, ;,.:.,..-/;,;,::-:,::...:...,...::.; .... .. ::. -:-... .V
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number of actuators changes. The contents of the matrices A, B, C,

M, W, and V are described below.

26 12

-0 -20 0 0 BE

A = 26; B = 26(42) 0 0 0 13 0 !

_o 0 0 o_ 0 LBR_

where

Io, 13 = lOxlO and 3x3 identity matrices

-W2 = lOxlO diagonal matrix of the squared modal

frequencies i.e.

2 a diag [.40579, 7.2090, 7.2362, 13.277, 44,834,

132.14, 142.66, 445.01, 448.69. 775.86]

(rad2/sec 2)

-2 = lOxlO modal damping matrix, i.e.

2cw = diag [.0127, .053699, .0538, .07286, .26283,

.45981, .47777, .84381, .8473, 1.1142)

(rads/sec)

(4.23) C =[ CE 0 CR 0] ) 24

26

E 0 MR 0
(4.24) M= [ ME 1 39

MER 0 MRR

The contents of the BE, BR, CE, CR, ME, MR, MER and MRR matrices are

shown in tables 4.6-4.11. The noise intensity matrices are defined as

follows:

-- " . j %* " .. " •" " . ' ".". ."."- .' - -",,." "-". .. "-"-"" -".' -'.....*." -".-" "" . "" """' '- "- .'"- -" '' .'
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(4.25) W La = .l l2 (dn-cm)2

0o W02 W2 - IxlO "-5 (dn-cm) 2

".: 39

V1 0 0 0 0 V1 = 7.6154xi0
7] (rad) 2

0 V2 0 0 0 V2 2.5 1 19 2

(4.26) V- 0 0 V1  0 0 39; V3  2.5x0"7112 (m2 )

V3  0 V4  4.7597xl 0"512(rad/sec)2

0 0 0 0 V4_

4.3.2 The Hoop Column SASLQG Problem

The hoop column model defined by (4.21)-(4.26) and tables 4.6-

4.11 will be labeled SHoop(26,24,12,39). The following SASLQG

problem is posed for hoop column.

Hoop Column SASLQG Problem (H.SAS Problem)

Given: SHoop (26,24,12,39) with only 6 actuators

and 12 sensors available for designing

an LQG regulator to achieve the (a
2 , u )

specifications of (4.16).

Required: Specify the closed-loop system which satisfies

either the input constrained specifications

of (3.20) or the output constrained specifi-

cations of (3.21).

1' The H.SAS problem will be one of the examples used to test the

design algorithm of Chapter 7.

.

.4J

.4
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Table 4.6: The BE and BR Matrices

THE BE MATRIX ( 10OBY 12)

1 2 3 4 56
I -1.59S0E-12 2.0381E-11 -1.1045E-02 -L.5494E-12 2.4122E-12 -1.OS1SE-02
2 9.8045E-10 1.6688E-03 -4.SS51E-12 S.85S5E-1O 1.S354E-03 -1.7175E-12
3 -1.S588E-03 7.S073E-10 -1.0812E-12 -1.6433E-03 1.1361E-08 1.4252E-12
4 -4.6650E-14 1.2781E-11 -1.3452E-02 -1.1506E-14 -8.4481E-12 4.0238E-03
5 3.9018E-14 6.8800E-12 -7.277SE-03 -L.0665E-14 -4.5237E-12 2.4678E-02
6 -1.9443E-10 7.6551E-03 9.1886E-13 S:.8361E-12 -3.2844E-05 2.6411E-13
7 -7.3458E-03 -4.3316E-10 1.S507E-13 -3.5997E-04 2.098SE-10 -1.1448E-13
8 -2.0518E-11 2.838SE-03 3.1986E-12 2.2558E-12 -1.4116E-03 6.5322E-15
9 -2.1316E-03 5.1427E-11 8.4627E-15 8.063SE-04 -3.4740E-11 5.262SE-15

10 1.1447E-10 -1.4643E-02 -2.2370E-11 -8.9715E-14 1.0167E-02 2.557SE-15

7 8 9 t0 11 12
1 -2.4578E-12 1.7956E-11 -1.0738E-02 -3.SSS2E-12 2.3622E-11 -1.0775E-02
2 -7.790SE-10 -1.3052E-03 -4.6410E-13 -2.8930E-09 -4.8232E-03 -4.9025E-13
3 1.304SE-03 -8.1944E-10 -2.8724E-13 4.3327E-03 -2.8561E-09 -6.8225E-13
4 -2.S039E-14 2.2303E-12 2.1881E-02 -1.6287E-13 -S.8948E-13 2.4630E-02
5 -9.2454E-14 1.2231E-12 -8.3758E-03 -4.6523E-13 -6.5593E-13 -1.3SOSE-02
S 7.SO5SE-11 -3.3330E-03 5.4994E-15 -7.2756E-il 3.1574E-03 -3.9383E-14
7 3.S72SE-03 1.9284E-11 -I.0802-E-13 -3.2853E-03 -3.S427E-11 3.707SE-14
8 -3.9170E-13 5.5245E-04 -3.3571E-15 -1.8075E-i3 9.1035E-04 S.1567E-16
9 -2.3104E-05 S.4759E-12 3.S61OE-14 -1.2039E-03 -4.8622E-12 1.2247E-15

10 2.2502E-14 -S.3469E-03 7.4532E-15 1.3314E-14 4.5114E-03 -1.40S7E-15

THE BR MATRIX ( 3 BY 12)

12 3 4 5 6
1 -6.5117?E-04 8.8738E-08 3.3814E-11 -S.511SE-04 S.SSOSE-08 3.04S2E-11
2 8.S52SE-08 6.5131E-04 2.3734E-10 8.9528E-O8 S.5122E-04 2.3745E-10
3 7.754SE-13 -1.2353E-11 6.0894E-03 7.S575E-13 -3.0140E-12 6.1335E-03

7 8 3 10 11 12
1 -7.177SE-04 9.8472E-08 3.195SE-11 -7.9365E-04 1.0907E-07 3.2475E-11
2 S.8675E-O8 7.1774E-04 2.3S5?E-10 1.091OE-07 7.535SE-04 2.3681E-10
3 4.3753E-13 -5.2943E-12 S.2153E-03 1.6303E-14 -S.8254E-13 6.1S53E-03
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Table 4.7: The CE Matrix

THEK CE ATRX (24BY 10)

1 23 4 5
Ii -I.5980E-12 998045E-I0 -l.6599K-03 -4.665CK-14 3.9018E-14
2 2.039L1I .6688E-03 7.6073K-I0 1.2781K-Il 6.8800E-12
3 -1.1045K-Ga -4.9651K-I2 -1.0812E-I2 -1.3452E-02 -7.2776K-03
4 -2.0612K-12 -3.8735K-0S 6.49M6-03 -1.1622E-13 -5.0425E-13
5 3.2310K-iC -6.4920E-03 -3.6168K-OS -1.3770E-11 -7.535SE-12
6 -1.07M1-02 -4.9025E-13 -6.8225E-13 2.4690E-02 -1.3608K-CC
7 1.1011K-IC 2.3764K-02 1.'4877E-08 -3.4696K-il -1.8507K-Il
8 2.2688K-il -1.4311K-OS 2.3764-CC 3.7395E-13 -1.3531E-13
9 3.7640E-10 4.3917E-02 2.6324E-0S -2.5766K-IC -2.9303E-13

10 6.1152-li -2.6451E-08 4.4063K-CC 5.0362E-13 -2.6354E-13
11 7.3325K-10 -L.59SWK-02 -9.4022E-09 -1.2017E-12 -7.787LK-13
12 1.1462E-10 9.4569K-OS -1.5939K-Ce 2.4442E-12 5.3315E-i2
13 6.2644E-03 3.7333K-02 4.4234K-06 -2.6232K-04 2.7183E-03
14 -1.0850E-02 4.8142K-O6 3.7289K-Ce 4.5439K-04 -4.708BE-03
15 4.1555K-O8 1.7546K-02 1.0356K-0C -1.4920K-08 -1.802K-OS
16 1.0850E-02 3.7330C -4.813K-OS -4.5439K-O4 4.7082E-03
17 6.2644E-03 -4.4221K-0S 3.7M9E-02 -2. C2-04 2.7183E-03
18 4.1399K-OS -i.0361E-02 1.7938K-CC -1..4919K-CS -1.8021K-OS
19 -4.1128K-04 3.7247K-CC -6.0024K-OS -3.4072K-04 -5.1321K-03
20 7.1243E-04 -6.1945K-0S 3.7214E-02 5.9011E-04 8.8890E-03
21 5.7982E-O8 -7.7130E-03 -4.4493E-03 -2.084K-OS -2.514K-O8
22 -7. 1243E-04 3.7256K-CC 5.7700K-OS -5.SOIIE-04 -S.88SOK-03
23 -4. il2SK-04 6.4295K-OS 3.7206K-CC -3.4072E-04 -5. 1321K-03
24 5s8020K'OS 4.4525E-03 -'7.7074E-03 '2-.0881K08 -2.5165E-08

S 7 a 9 10
1. -1.8443K-I0 -7.3458K-03 -2.0518K-Il -2i.1316E-03 1.1447K-10
2 ?.6551K-03 -4.9316K-10 2.8388E-03 5.1427-1l -1.4643K-02
3 9.1886K-13 1.6507E-13 3.1986K-iC 8.4627K-IS -2.2370K-Il
4 1.216?K-10 4.0605K-03 2.0337E-1l 9.2770E-04 -1.1446K-iC
5 -4.49M7-03 4.5673E-10 -I.9285K-03 -5.6289K-Il 1.9154K-02
S '-3.9=E3-14 3.7079K-14 9.156?E-IG 1.2247E-15 -1.4097K-iS
7 6.6063K-CC -6.3608K-IC 7.4294K-03 -1.5739K-IC 1.6830K-04
8 1.5715K-OS 6.8980K-C2 2.9092K-l0 9.8576K-03 -2.0204K-OS
9 -9.7582K-03 1.9237K.-IC -1.4196K-CC -2.4179K-IC 4.4242E-03

10 -1.0048K-iC -8.8818K-03 2.8761K-IC -I.4117K-02 -2.0119K-OS
11 6.55I8K-03 -1.0065K-10 -1.2157E-03 -3.7776-1C 2.6514E-03
IC 2.7943K-I0 6.9694K-03 2.9173K-I0 -S.2165K-04 -2.0122K-OS
13 5. 1493K-C2 -5.1044K-OS 7.3545E-03 6.4842E-04 4.4558K-03
14 -7.56=3-OS 5.4072K-C2 I.0799K-03 9.2917E-O3 -1.0650K-04
15 5.1511K-02 3.0689K-CC 6.5278K-C3 4.28=5-03 -1.1151K-Ce
16 5.1524K-CC 9.0562K-CS 6.9553K-03 -1.0816K-03 4.SS2LK-03
17 4.1696K-OS 5.4033K-02 -6.4726K-04 9.6874E-03 -9.3106K-OG
18 -2.9739-C2 5.3157K-CC -3.73C1K-03 7.4901K-O3 6.5604E-03
19 5.1311K-CC -I.722SK-04 7.3086K-C3 3.3921K-04 3.2006E-03
20 -2.0998K-04 5.3937K-CC 5.7177E-04 S.3266E-03 5.0883E-04
21 -2-256SE-02 -1.333K-CC -2.6076K-03 -1.5122E-03 8.59M8-03

*22 5.1518K-0C 1.9710E-04 7*1797F-03 -96.1042E-04 -2.ST7K?-C3
23 1.8871E-04 5.3750K-02 -3.0C86K-04 9.4955-03 -5.8280K-C4
24 1.3029K-02 -2.3094K-CC- 1.4526K-03 -21.7153E-03 -5. 1253EK03
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Table 4.8: The CR Matrix

THE CR NATRXC(24 BY 3)

1 2 3
1-6.511?K-04 8.9529K-OS8 7.7548K-13

2 8.8738-CS S.5131K-04 -1.2353K-11
3 343814E-11 2.3734K-10 S.08SS4E-03
4 -1.424SE-04 1.9571K-OS -7.5918E-13
5 2..0331K-OS 1.4225E--04 1.1670E-11
6 3924M5-I1 2.3681K-la 6.1993E-03
?% 1.2906C 9.30M2-03 -8.0770E-11
8 5.3833-03 -1.291K-OS -1.1068K-Il
9 3.2972K-OS 2.4006K-Cl -2.3233E-10

10 2.4004K-02 -3.3002K-OS -2.6191K-li
11 5.0290K-CS 3.6613K-02 -2.687S-LO
12 3.6612K-02 -5.0334K-OS6 -2.8763K-11
13 -3.3225E-0S -1.8101K-Cl 5.5961K-03
14 -1.8101K-Cl 3.8115K-OS -1.0212E-Ol
15 4. 057SK-C3 7* 0266E-03 -1.80SOSE-OS
16 -3.8071K-OS -1.8101K-02 1.0212K-Cl
17 -1.8101K-Cl 3.8165K-OS 5.8961K-03
18 7. 0257EK-03 -4. 0581K-03 -1 * 795 8O
19 -3.691K-OS -1.8166K-Cl -3.46S2E-03
20 -1.816nK-Cl 4.0548K-OS 6.0088K-03
21 -1.7150K-03 -2.STI?E-03 -2.5163K-0S
22 -4.053E-0S -2.8166K-Cl -6. OOSSE-03
13 -2.8167K-02 3.6969-OS -3.46M2-03
24 -2.5713E-03 I1.7162E-03 -2.5195K-OS
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Table 4.9: The ME Matrix

THE ME MTRIX ( 27 BY 10

1 2 3 4 5
I -1.59801-12 9.80451-10 -1.65991-03 -4.6650-14 3.90181-14
2 2.03911-11 1.688-03 7.60731-10 1.2781E-11 6.88001-12
3 -1.1045E-02 -4.96511-12 -1.08121-12 -1.3452E-02 -7.2776E-03
4 1.101JE-10 2.3764E-02 1.4877-08 -3.4696E-11 -1.85071-11
5 2.26881-11 -1.4311E-08 2.37641-02 3.7395E-13 -1.35311-13
6 -1.80001-14 6.8493E-10 -7.89001-15 3.47001-15 7.2520E-15
7 3.76401-10 4.3917E-02 2.63241-08 -2.57661-12 -2.93031-13
8 G.1152E-11 -e.64511-08 4.4063K-02 5.0362-13 -2.6354E-13
9 -3.?0001-14 -3.3290E-12 6.4320E-14 9.5700E-15 1.607SE-14
10 7.33251-10 -1.5985E-02 -9.40221-09 -1.20171-12 -7.7871E-13
11 1.146BE-10 9.45691-09 -1.59391-02 2.4442E-12 5.3315E-12
12 -5.10001-14 -3.3120E-12 5.57SOE-14 1.6350E-14 2.4573E-14
13 -3.65921-12 -2.8930E-09 4.83271-03 -i.6287E-13 -4.6523E-13
14 2.36 22-11 -4.823B1-03 -2.85611-09 -9.8949E-13 -6.5593E-13
15 -1.07751-02 -4.90251-13 -6.825-L3 2.4690E-02 -1.360SE-02
16 6.26441-03 3.7333E-02 4.4234E-06 -2.6232E-04 2.71831-03
17 -1.08501-02 4.8142E-08 3.728SE-02 4.54391-04 -4.7082E-03
18 4.1555-08 1.7946E-02 1.0356E-02 -1.49201-08 -1.80211-08
19 1.0850E-02 3.73301-02 -4.81391-06 -4.54391-04 4.7082E-03
20 6.26441-03 -4.4221E-06 3.72931-02,-2.62321-04 2.7183E-03
21 4.1399-08 -1.03611-02 1.7938E-02 -L.4919E-08 -1.80211-08
22 -4.11281-04 3.72471-02 -6.0024E-06 -3.4072E-04 -5.1321E-03
23 7.12431-04 -6.19451-06 3.72141-02 5.9011E-04 8.8890E-03
24 5.79821-08 -7.7130E-03 -4.4493E-03 -2.0848E-08 -2.5147E-08
25 -7.1243E-04 3.725E-02 5.77001-06 -5.9011E-04 -8.8890E-03
26 -4.112oE-04 6.4295E-06 3.7206E-02 -3.40721-04 -5.1321E-03
27 5.8020E-08 4.45251-03 -7.7074E-03 -2.0881E-08 -2.51651-08

6 7 8 9 10
1 -1.94431-10 -7.3458E-03 -2.05181-11 -2.13161-03 1.14471-10
2 7.65511-03 -4.9316E-10 2.83881-03 5.1427E-11 -1.4643E-02
3 9.18891-13 1.65071-13 3.1986E-12 8.4627E-15 -2.2370E-11
4 6.60631-02 -6.36081-10 7.42941-03 -1.57391-10 1.68301-04
5 1.57151-09 6.89801-02 2.9092E-10 9.8576E-03 -2.0204E-09
6 3.1619E-09 -8.45401-14 6.02731-10 -8.2300E-14 -8.48091-10
7 -9.75821-03 1.92371-10 -1.41961-02 -2.4179E-12 4.4242E-03
8 -1.00481-10 -8.88181-03 2.87611-10 -1.41171-02 -2.01191-09
9 -3.24031-11 -2.00901-14 -I.1865E-11 -3:.OOOE-15 5.26641-11
10 6.55181-03 -1.00651-10 -1.21571-03 -3.777E-12 2.6514E-03
11 2.79431-10 6.9694E-03 2.91731-10 -8.21681-04 -2.0122E-09
12 -3.24051-11 -5.04301-14 -1.1977E-11 -1.76OE-13 5.2646E-11
13 -7.275G-11 -3.28531-03 -1.80751-13 -1.20391-03 1.39141-14
14 3.15741-03 -3.64271-11 9.10351-04 -4.86221-12 4.51141-03
15 -3.93831-14 3.70791-14 9.15671-16 1.22471-15 -1.40971-15
16 5.14931-02 -5.10441-05 7.35481-03 8.48421-04 4.45881-03
17 -7.56931-05 5.40721-02 1.07991-03 9.2917E-03 -1.0650E-04
18 5.1511E-02 3.0689E-02 6.52781-03 4.28381-03 -1.1151E-02

. 19 5.1524E-02 9.05621-05 6.95531-03 -1.081G-03 4.68211-03
20 4.16961-05 5.40331-02 -6.47261-04 9.68741-03 -9.31061-06
21 -2.97391-02 5.3157E-02 -3.7301E-03 7.4901E-03 6.56041-03
22 5.1311E-02 -1.72291-04 7.3086E-03 3.39211-04 3.20061-03
23 -2.09981-04 5.39371-02 5.71771-04 9.32661-03 5.0883E-04
24 -2.25691-02 -1.33321-02 -2.60761-03 -1.5122E-03 8.59581-03

4 25 5.15181-02 1.9710E-04 7.17971-03 -6-.1042E-04 2.67571-03
26 1.88711-04 5.370E-02 -3.00861-04 9.496SE-03 -5.82801-04
27 1.30291-02 -2.30941-02 1.45261-03 -2.71531-03 -5. 1253E-03
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Table 4.10: The MR Matrix

T MR MATRzX C2IY 3)

1 2 3
1 -6.5117'E-04 8.952SE-O8 7*548E-13
2 .',3E-08 6.5131E-04 -1.2353E-11
3 3.3814E-11 2.3r34-.o G.0894E-03
4 1.290K-0S 9.3852E-03 -8.0770E-11
5 9.38E-03 -1.29oE-06 -1.106Ks-l.
6 -1.0000E-13 -2.09282-10 7.0000E-15
7 3.2972E-0S 2.4006E-02 -2.3233E-10
8 2.4004E-02 -3.3002E-O -2.6191E-11
9 5.OOOO-14 2.7900E-12 2.10OOE-14

10 5 0290E-O6 3.6613E-02 -2.687KSE-O
11 3.6612E-02 -5.0334K-0S -2.8763E-l1
12 3.OOOE-14 2.7900E-12 2.9oooE-14
13 -7.936E-04 1.0310E-07 1.6303E-14
14 1.0907K-0 7,O93GE-04 -S•8254-13
15 3.2475K-Il 2.3681K-Ia 6.1993E-03
16 -3.9225E-OS -2.8101E-02 5.8561E-03
17 -2.8101K-02 3.812WE-06 -1.0212E-02
I8 4.05MS-03 7.O2SE-03 -l.806SE-08
19 -3.8071E-o -2.8101E-02 1.0212E-02
20 -2.1OE-O2 3.9265E-0 5.89611-03
21 7.0257E-03 -4.0581E-03 -1. 7958E-08
22 -3.68891E-0 -2.8165K-02 -3.4692 -03
23 -2.81671-02 4.05481-0 6.0088E-03
24 -1.7160E-03 -2.9717E-03 -2.5163E-08
25 -4.0539E-06 -2.8165E-02 -. 0088E-03
26 -2.8167E-02 3.6969K-OS -3.4692E-03
27 -2.9713E-03 1.7162E-03 -2.5195E-08

* . . * .-2*. ~ ~ .
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Table 4.11: The MER and MRR Matrices

THE MER MATRIX(12 BY 10

1 2 3 4 5
1 -1.5980E-12 9.8045K-10 -1.6599E-03 -4.6650E-14 3.901SK-14
2 2.0391K-Il 1.668SE-03 7.6073E-10 1.2781l 6.8800E-12
3 -1.1045E-02 -4.5651K-12 -1.0812E-12 -1.3452E-02 -7.277SK-03
4 -1.5494E-I2 S.8565E-10 -1.6433E-03 -1.1506K-14 -1.0665E-14
5 2.4122K-IC 1.6354E-03 1.1361K-OS -8-.4481K-IC -4.5237K-IC
6 -1.0918K-CC -1.7175E-12 1.4252E-12 4.0239K-03 2.4678K-OC
7 -2.4578K-IC -7.7906K-10 1.3046K-03 -2.9036E-14 -9.2454E-14
8 1.7996-lI -1.3052E-03 -8.1944E-10 2.2303E-I2 1.2231K-IC
9 -1.073K-CC -4.64IOE-13 -2.8724E-13 2.1881K-OC -8.3798K-03
10 -3.9552K-iC -2.8830E-09 4.8327E-03 -I.6287-13 -4.6523E-13
11 2.36 =K-11 -4.8232E-03 -2.8561K-OS -9.894SK-13 -6.5593E-13
I2 -1.0775-CC -4.9025E-13 -6.8225E-13 2.4690K-OC -1.3609K-OC

6 7 8 9 10
1 -1.9443E-10 -7.345SE-03 -2.0518K-il -2.131SK-03 1.1447K-10
C 7.6551E-03 -4.9316K-10 2.838SK-33 5.1427K-li -1.4643E-02

3 9.18=6-13 1.6507E-13 3.1986K-iC 8.4627K-I5 -2.2370E-1l
4 9.8351I -3.5997-04 2.2558K-iC 8.0639E-04 -8.971SK-14
5 -3.2844K-C5 2.0989K-10 -1.4116K-03 -3.4740K-11 1.0167E-02
6 2.6411E-13 -I.144eK-13 6.5322-IS1 5.2626K-iS 2.5578K-IS
7 7.6056K-li 3.672GK-03 -3.9170E-13 -2.3104E-05 2.2502E-14
8 -3-3330E-03 1.9284K-Il 5.5245E-04 9.4759K-IC -9.346SK-03
9 5.4994K-iS -1.0802E-13 -3.3571K-i5 3.66i0K-14 7.4532K-15

10 -7.2756K-li -3.C8S3K-03 -1.8075E-13 -1-203SE-03 1.3S14K-14
11 3.1574E-03 -3.6427E-11 9.iO3SE-04 -4.8622E-12 4.5114E-03
12 -3.9383K-14 3.7079K-14 *9.1567E-IG 1.2247K-IS -1.4097K-IS

THE MW MATRIX (12 BY 3)

1 2 3
I -6.5117E-04 8.9529E-08 7.7548K-13
2 8.8738K-OS 6.5131E-04 -1.2353E-lI
3 3.3814K-1l 2.3734K-10 6.0894E-O3
4 -6.5118K-04 8.S2K-08 7.6575E-13
5 8.9909K-CS 6.5122E-04 -3.0140E-12
6 3.0492K-11 2.374SE-10 6.i33SK-O3
7 -7.17M6-04 9.8975K-OS 4.3753E-13
8 9.8472E-08 7.1774E-04 -5.2949K-IC
9 3.1958K-li 2.3957K-10 B.2153E-03

10 -7.9=6E-04 1.0910E-07 1.6303K-14
11 1.0907E-C7 7.9356K-04 -6.8254E-13
12 3.2475K-Il 2.3681E-10 S.I993E-03
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4.4 The Solar Optical Telescope

Figure 4.2 is a schematic of the solar optical telescope.

Height =28m1

.11

4,4

Figure 4.2: The Solar Optical Telescope

The telescope model was developed by the Charles Stark Draper Labora-

tory (CSDL) primarily for the purpose of providing a minimum complexity

structure for the evaluation of LSS control design techniques. The

outputs for the model (not shown in Fig. 4.2) are the telescope line

of sight in the x and y directions and the focal length (defocus) of

the lenses located at the top and bottom of the telescope. The nodes

shown on the telescope represent the spatial locations for 45 admis-

sible sensors and 21 admissible actuators. Tables 4.12-4.14 provide

-zi .*N
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Table 4.12: Telescope Sensor Description

Sensor# Type Nodal Location Direction

1 Line of sight angle x
2
3 Defocus
4 Linear Displacement 1 y
5 1 z
6 IS2 z
733 x8 3 y
9 3 3 Z10 " 4Z

12 " y
13 5 z

141
15" 11

IS

26 7 z

17 2 Z

28 3 z

19 3I 10
20 3 11
21 4 11

32 5 xS" 11 Z
23 " 12 Y
2 L 1 y

36 " 1 Z

3 7 It 2 Z

28 " 3f y

29 '3 3 Y
30 10 3Z
31 11 4
32 11 5
43 It 52 y

45 " 1 Z36 " 7 Y,. - -,, . -,,-.L , .. ,,' , .,. , ' ", ' o ,,. ,-,- \ .,, . .. . '. . .. .-,- - .. -
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Table 4.13: Telescope Actuator Description

Actuator (Force)# Nodal Location Direction

1 1 y
2 1 Z
3 2 Z
4 3 X
5 3 y
6 3 Z
7 4 Z
8 5 x
9 5 y10 5 Z

11 6 Z
12 7 Y
13 7 Z
14 8 Z
is1 9 Z
16 10 Z
17 11 X
18 11 V
19 11 Z
20 12 V
21 12 Z

Table 4.14: Telescope Specifications

Speci fi cati on

a1 Optical line of sight angle (LOSx) 65.2 i

02 Optical line of sight angle (LOS ) 65.2 sec

03 defocus .001 m

force actuator .01 N

I

* -, * * * - -am.
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specific location, type and orientation information ,for these

admissible sensor and actuators and also a listing of the specifica-

tions ( a 2) chosen for the outputs and actuators.

4.4.1 Telescope Model Development

The telescope model used in this research was developed from

NASTRAN data generated by CSDL in early 1980. The data contained

estimates for the first 44 mode shapes of the structure and also

provided location information for the two sinusoidal disturbances

Sit S2 shown in figure 4.2. Using the technique discussed in Section

4.2, a 10 mode, 20 state,linear stochastic model coupled with a 2

mode, 4 state, linear stochastic model of the disturbances were adopted.

The criterion used for choosing 10 modes from the 44 modes was the

component cost algorithm developed in [4]-[7]. The technique

ranks the modes based upon their contribution to a quadratic functional

of the system outputs. A discussion of this modal cost analysis selec-

tion algorithm as applied to the CSDL NASTRAN data is provided in [75].

The end result is a system of type S(24, 3, 21, 45) described below:

i(t) - Ax(t) + Bu(t) + Dw(t) ; xeR24 , ucR21 , wcR23

(A,B) controllable

y(t) - Cx(t) ; yeR3 ; (A,C) observable

(4.27) z(t) - Mx(t) + v(t) ; z, vcR45 ; (A,M) measurable

Ew(t)) a 0 . E{v(t)} - 0

E(w(t)) (wT(T) vT(T) ED (t-tT 0

. M 0t o-
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The contents of the matrices AB,C,D,M,W and V are described as follows:

24

0 8 0 0 oT-% 21

2 -2&w S 0 00 0

(4.28) A- 0 2 2 00 24; B 240 0 - s W -2 s 0 0

a 0 0 0 0 0

where S is the coupling matrix between the telescope and the distur-

bances S1 and S2 and,

18, 12 - 8x8 and 2x2 identity matrices

- 8x8 matrix of the squared modal frequencies, i.e.

- diag. [.8347, 2.7356, 3.9706, 4.3776, 7.7455,

13.175, 13.339, 59.112] (rad2/sec2)

-M - x modal damping matrix, i.e.

29w u diag [.001827, .0033079, .003985, .004184,

.005566, .007259, .0073046, .015378] (rad/sec)

-w2 - 2x2 matrix of the squared disturbance frequencies,i.e.
2 -dtag 1 [3947.8, 986.96] (rad 2 /sec 2)

-2 s - 2x2 disturbance damping matrix, i.e.

2sw s a dlag [.1257, .0628] (rad/sec)
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23

o0

BE 0

(4.29) D, 0 0 24
*'0 12

o 0

BR 0

24

(4.30) C =[CE 0 0 CR 0]1 3

24

FCE 0 0 CR 0
(4.31) M - ME 0 0 MR 45

LO ME 0 0 MRR_

The contents of the matrices S, BE, BR, CE, CR, ME, and MR are shown

in tables 4.15-4.18.

The noise Intensity matrices are defined as follows:

23

(4.32) W- I 1 23 ; WI= (0.1) 121 (N2)
W W2 ' (3.95) 12(N

2)

45

V1  0 0 0 .x1- 4 )12 (rad)2
(4.33) V 0 V2  0 45; V2  (1.OxlO")1 22(ns)2

0 0 V3 V3 (1.OxlO7)12, (m/s)2
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Table 4.17: The ME Matrix

THE ME MATRIX(21IBY 8 )

1 234
1 6.73S8E-05 -4.S154E-03 -2.5821E-04 -4.9274E-03
2 -1.5203E-03 9.3534E-04 -5. 139SE-03 -7'.0371E-04

*3 -1.5071E-03 7.9167E-04 -5.1753E-03 1.47S0E-03
4 1.94S1E-03 -7.8443E-03 2.3592E-06 1.083SE-06
5 -6.S280E-05 4.6117E-03 -2.5814E-04 -4.329SE-03
6 1 .5206E-03 -9.3542E-04 -5. 1395E-03 -7'.8851E-04
7 1.5068E-03 -7-SIOSE-04 -5.1753E-03 1.479E-03
8 -6.0352E-03 -1.5745E-03 -3.4857E-08 -4.4647E-0S
S 8.S611E-05 -4.S43S:-03 -3.2884E-04 -3.L826E-04

10 -1.5172E-03 9.1748E-04 -S.L520E-03 -3.3665E-04
11 -1.5096E-03 8.0491E-04 -5.1720E-03 1.0263E-03
12 -B.SS55E-05 4.9415E-03 -3.2855E-04 -3.3960E-04
13 1.5172E-03 -9. 1803E-04 -5. 1520E-03 -3.3656E-04
14 1.50SSE-03 -8.04SSE-04 -S.L720E-03 1.0270E-03
15 -1.5215E-03 1.0421E-03 -5.1323E-03 -1.9280E-03
16 1.5215E-03 -1.0431E-03 -5. 1322E-03 -1.528SE-03
17 -6.3131E-03 1.4522E-02 2.5835E-07 -3.SS64E-07
18 8.5420E-05 -4.8453E-03 -3.2885E-04 -3.8915E-04
19 -1.503SE-03 6.9308E-04 -5.1946E-03 2.6169E-03
20 -8.53S4E-05 4.9448E-03 -3.2902E-04 -3.8942E-04
21 1-5030E-03 -6.9042E-04 -5.1947E-03 2.6134E-03

5 6 7 8
1 2.78S0E-04 1-5SSE-02 -3.'921E-04 -6.O651E-05
2 7.7980E-03 2.Se61E-03 -3.4506E-03 8.1133E-05
3 7.88W3E-03 -4.5157E-03 -3.5444E-03 1.4746E-04
4 -7-1741E-06 -6.14S0E-05 1.704SE-02 4.8504E-04
5 2.7837E-04 1-5583E-02 4.8135E-04 6.0648E-05
6 7.797SE-03 2.60?2E-03 3.4683E-03 -8.1247E-05
7 7.8853E-03 -4.5461E-03 3.5145E-03 -1.4714E-04
8 1.03SI8E-07 2.3312E-06 -4.7S1E-04 -3.OOSE-04
9 4.49?6E-04 1.25S8E-03 -5.515SE-04 S.4021E-05

10 7.8314E-03 1.2122E-03 -3.4728E-03 S.5121E-05
11 7.8791E-03 -3.O35IE-03 -3.539SE-03 1.4169E-04
12 4.5023E-04 I .2500E-03 5.9857E-04 -S.4624E-05
13 7.8314E-03 1.1903E-03 3.4807E-03 -9.5518E-05

4.14 7.8SSE-03 -3.123SJE-O3 3.5190E-03 -1.4084E-04
15 7-7864E-03 6.2495E-03 -3.4045E-03 S.0750E-05
16 7.?SSSE-03 6.2355E-03 3.4456E-03 -6.1232E-0S
17 -5.7021E-07 -1.0374E-05 1.472SE-03 -5.087SE-04
IS 1 4.5OOSE-04 1-255EE-03 -5.S27SE-04 5.9931E-05
1S 7.=37E-03 -8.1253E-03 -3.6105E-03 1.8241E-04
20 4.504-3E-04 1.2482E-03 6.0083E-04 -S.S368E-05
21 7.S330E-03 -8. 1624E-03 3. 5576E-03 -1 .823SE-04
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Table 4.18: The MR Matrix

THE MR MIATRIX 21 BY 2)

1 2
1 5.S320E+00 -4.5449E-07
2 4.4626E+00 4.OOOOE+0O
3 -5.5374E+00 4.OOOOE+0O
4 0. -5-6320E+00
5 5.5320E+00 4.5449E-07
6 4.4626E+00 -4.OOOOE+0
7 -5.5374E+00 -4.OOOOE+00
a 0. 1.43SBE+01
9 -1.438E+01 -4.544SE-07

10 2.462E+OO 4.OOOOE+0
11 -3.5374E+00 4.OOOOE+OO
12 -1.4368E+01 4.544SE-07
13 2.4S2SE+O0 -4.OOOOE+0
14 -3.5374E+00 -4.OOOOE+00
15 9.4626E+0O 4.OOOOE+00
1S 9.4S26E+0O -4.OOOOE+00
17 0. 1.4368E+01
18 -1.4368E+01 -4.5449E-07
19 -1.0537E+01 4.OOOOE+0O
20 -1.43SBE+01 4.544SE-07
21 -1.0537E+01 -4.OOOOE+00

W4,1Z
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4.4.2 The Telescope SASLQG Problem

The telescope model defined by (4.27)-(4.33) and Tables 4.15-

*,1 4.17 will be labeled Stele (24,3,21,45). The following SASLQG

problem is posed for the solar optical telescope:

Telescope SASLQG Problem (T.SAS Problem)

Given: Stele (24,3,21,45) with only 12 actuators and

12 sensors available for designing an LQG

regulator to achieve the specifi cations of

Table 4.14.

Required: Specify the closed-loop system which satisfies

either the input constrained specifications

of (3.20) or the output constrained specifica-

tions of (3.21).

The T.SAS problem coupled with the H.SAS problem will be the two

examples used to test the design algorithm of Chapter 7. With the

models of the hoop-column and solar optical telescope developed the

discussion of the design algorithm begins in Chapter 5 with the

development of the sensor and actuator effectiveness values.

........ ........
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5.0 ACTUATOR AND SENSOR EFFECTIVENESS VALUES

As noted in the introduction, the approach taken by this research

to solve the SAS problem has been to use an LQG controller with a cost

functional (V of (3.11)) tailored to the specifications (a2 , jP
2 ) of

(1.8) by an appropriate choice of the weighting matrices Q and R in V.

Then, actuator and sensor deletion decisions are based on a determina-

tion of how effective each actuator and sensor is in minimizing V.

Those that are least effective are natural candidates for deletion.

Chapter 6 discusses the Q and R weight selection problem while the

problem of determining actuator and sensor effectiveness values for a

specified V is discussed in this chapter. Section 5.1 defines the

fundamental elements of these values which are produced by cost analy-

sis techniques, and Section 5.2 combines these elements into the

desired sensors and actuator effectiveness values and provides empiri-

cal support for their validity.

5.1 Closed-loop Input and Output Cost Analysis

The first step in determining the actuator and sensor effective-

ness values is to determine the contribution that each actuator NO,

actuator noise source (wt), and sensor noise source (vi) is making to
09

the minimization of V. The contribution that each output (yv) makes

to V is not necessary for the development of sensor and actuator effec-

tiveness values; however, it is certainly of interest and is directly
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related to Eji 2 as will be shown shortly.

Also, it is not necessary to determine the contribution of noise

sources (wt°) associated with D0 in (1.1) since these noise sources

Vrepresent disturbances and/or model errors which are assumed to be

independent of the actuator noise sources. That is,the definition of

w in (1.1) can be further extended to:

w O ; E(w(t)wT(T)) 0 ] 6(t-r)

a W

where wIa represents the plant noise source associated with the ith

actuator.

5.1.1 Closed-loop Cost Definitions

Shown In (5.2) is a partial reproduction of the closed-loop

representation (3.3) for S(n,k,m,l) and the LQG regulator of (3.2)

i 1=Ax + Bw ; x= (xT x)T; w (wT vT)T

(5.2) y a CX ; Y - (yT uT)T

VaE TQy ; . [Q 0]

The inputs to (5.2) are the white noise processes w and v, and therefore,

the technique of determining the contributions that wi and vi make to

V has been labeled by Skelton and co-workers as closed-loop input-cost

analysis (CICA). As a matter of notation, the contribution that wI

makes to V is labeled V w while the contribution of v1 is labeled V1 V

In like fashion, since y and u appear in the output of the closed-loop

.+- ~
... 

4 4
4 .+% ' ~ ~ 4

W~~
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system (5.2), the determination of the contributions that yi and ui

make to V is called closed-loop output cost analysis (COCA) and the

contributions are labeled ViY and Viu respectively. The mathematical

definitions for vi u, viY, viw and Viv are:

ulTVu uEa 5u ui

V 7a ay.i i

(5.3)

Viw E .. wi I

V1  au~~L~y }Vi avV i

5.1.2 Closed-loop Cost Formula's and Properties

The following theorem produces formula's for the definitions of

(5.3).

Theorem 1: CICA and COCA Formulas

Given a system of type S(n,k,mL) regulated by the

steady state LQG controller of (3.2) and written in the

form of (3.3) the following formulas for Viu, VtY, Viw,

and Vi v hold:

(5.4a) vtu - [GRGTRJ , i = 1, ... m

(5.4b)I Viy - [C(P+X)CTQii I 1 , ... k
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i, .. m
; (5. 4c) V iw - V i O t . . p

where,

(5.4d) Viw - [ (K+L)BWaJ11 , 1 = 1, ... m

and

(5.4e) Viw - [D 0T(K+L)DWO]i , I - 1, ... (p-m)

(5.4f) Vi a [FT LFVi i 1 , ...

where, the matrix L satisfies the following steady state Lyapunov

equation

(5.4g) L(A-FM) + (A-FM)TL + GTRG = 0

The proof of theorem 1 is presented in Appendix A, and the formulas

of theorem 1 can be used to establish the following properties for

V u , Vty, V1iw and V1iv.

Propert 1: Cost Decomposition

m k
(5.5a) V I V u+ I Y

(S.5b) V - V1W + V1V1.1 1-1l vt

Property 2: Sign (For diagonal R, Q, W, and V matrices)

(a) Vtu > O, V Y > ' , w > 0, Vv > 0. In addition,

(b) (A,C) observable V w > 0
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(c) (A,C) observable, (A+BG,F) controllable -P V u , V1iY > 0

(d) (AD) controllable -. V1Y > 0

(e) (AD) controllable, (A-FM,G) observable -> VItw, Vi v > 0

Property 3: Transformation invariance

i tu , ViY,* Vw and V v are invariant under the state

transformation x - Tq, ITI # 0

Property 4: In aitu nature

VU1 9Y VWi and V1  do not, in general, represent

the change in V when an actuator, output, noise source,

or sensor is deleted from the system. (i.e. the cost

contributions are non-linear functions of input, output

and sensing terms and are calculated under the assumption

that all components are in place and acting).

The proof of properties 1-3 are presented in Appendix A. One other

point of interest for these cost contributions is the relationship

between VtU and E u12 and V Y and Ej1,2 when Q and R are assumed

diagonal. Writing out the ii element of the matrices in (5.4a,b) and

comparing the results with (3.19) and (3.16) produces the following

results:

(5.6) E.u 2 U V1U r 1

(5.7) Ej12 M Vt' -l

5.2 Drivation of Effectiveness Values

With the pr*cediW g definitions for V, Vt  and V the actuator

s- M r efft ctl es values can now be derived. The actuator value

. .i' , . _"; . ,
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5.2.1 Actuator Effectiveness Value (Vic)

As noted in section 5.1, Viu represents the contribution that ui

is making to V. Since the function of LQG theory is to use ui so

that V (for a given Q and R) is minimized, a 'large' V iu means that

the ui is i.mportant to the minimization effort. Furthermore, Viu > V u

implies that the i t h control is more important than the jth control

in minimizing V for the given S(n,k,m,z) and Q and R. On the other
Wth

hand, VI  represents the contribution that the ith actuator noise

source is making to V which is clearly an undesirable result. There-

fore, VIw > Vw implies that the jth actuator is more important to

the minimization effort than the ith actuator. (i.e. it hinders less)

In light of the preceding discussion some combination of Viu and

Viw could be used to form an actuator effectiveness value. The two
most obvious combinations are VlU/V i  Vu - V a , and these along with

some not so obvious combinations have been tested during the course of

this research. With the exception of a constrained input power situa-

tion which will be discussed in Chapter 7, Viu-Viwa has been the best

combination. It is also intuitively appealing since a linear combina-

tion maintains the contributive nature of 
the values vi u and Vi wa

Therefore,

(5.8) Vlact A iu " Vi a

where Vtact represents the effectiveness value of the t t h actuator. A

negative value of Vt act means that the tth actuator is contributing

more noise than control action to the minimization of V and is therefore

a candidate for improved noise characteristics, but, more importantly,
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a negative value for Viact implies that the regulator might do better

(i.e. achieve a smaller V) if the ith actuator were deleted! This

condition is impossible for noiseless actuators as shown by [theorem

1, 15]. However, for noisy actuators, this condition has been verified

by data in [16] and is supported by the following theorem which is

proved in Appendix A.

Theorem 2: Deletion of Noisy Actuators

- For a system of type S(n,k,m,l) under the regulation

of the LQG controller defined in (3.2), deletion of an

actuator is not sufficient for V(m-l,z) > V(m-t) where

(5,9a) V(m,z) a The value of V for a system of type
S(n,k,m,t) under LQG regulation.

(5.9b) V(m-l,t) 1 the value of V for a system of type

S(n,k,m-l,z) under LQG regulation.

Given theorem 2, the following definition is important.

Definition 1: aVl act

(5.10) AVlact A V(m-l,t) - V(m,t) where the Ith actuator has

been deleted in V(m-l,i)

Therefore if a/iact is negative, the LQG controller does better with a

fewer number of actuators, and a positive AVI act implies the opposite.

At this point, It should be remembered that the role of Viact in

the solution of the SASLQG problem is to identify the actuator(s) which

are least important to the minimization of V. The preceding discussion
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strongly alludes to the fact that the actuators with the smallest

algebraic values of Viact are the candidates for deletion. The

validity of this argument rests squarely on the assumption of the fol-

lowing ordering property:

(5.11) Vi act> Vact . Aviact > AV act

In other words, if Viact > V a c t throwing away the ith actuator will

produce a less favorable perturbation in V than throwing away the jth

actuator. Unfortunately, a proof for (5.11) has not been found; however

intuition and empirical results point strongly to its validity. Figures

5.1-5.3 are examples of data which provide empirical support for (5.11).

Figure 5.1 is a plot of V iact for the system SHoop( 26, 24, 12, 39)

superimposed with a Vi act (i.e. V(ll,39) - V(12,39) for each of the 12

actuators. The Q and R matrices used in V are given in table 5.1.

Table 5.1: Hoop Column Weighting Matrices, 1

Q - dlag [82.07, 82.07, .8207, 82.07, 82.07, .8207,

400,000, ........ 400,000) x10 5

18 entries

R - 10" 5xI 12

It should also be noted for fiqure 5.1 that the actuator number, as

defined In table 4.3, is plotted on the horizontal scale in order of

decreasing Vt act.

rAw..:
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ACTUATOR NUMBER
10 II 8 7 2 1 4 5

0
X

V c

.4-_

Figure 5.1: Hoop Column V i a c t Datafo

Q and R of Table 5.1

Since the actuators are plotted on the horizontal scale in order

of decreasing Vi act , the monotonic decrease of the data in figure 5.1

is empirical support for the ordering property of (5.11). Note also

tht Vact does have negative values which supports theorem 2 and

tat

shows [theorem 1, 15] does not apply in the noisy actuator situation
defined for $(n,k,mz). Figure 5.2 is another plot of actuator effec-

tiveness data for SHoop (26,24,12,39) with the choice of and R defined

Qn table 5.2.
I I '-- ';? Since the actuators " " ar plotte on the i " hor",izontalscale;"" " in '- order" .
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Table 5.2: Hoop Column Weighting Matrices, 2

Q * diag [0.8207, ... 0.8207, 0.4, .... 0.4) x10
8

6 entries 18 entries

R - 101 2 xi 12

ACTUATOR NUMBER
8 3 7 5

0
X

to __F -
0

%m
4-
U

< -,5 00,O /

Figure 5.2: Hoop Column viact Data
for Q and R of Table 5.2.

The data of figure 5.2 also exhibits a monotonic decrease which agrees

with the ordering property of (5.11). A comparison of figure 5.2 and

5.1 reveals one other interesting fact which will be used later in

Chapter 7: The relative V ranking between actuator 3, 7, and 5

Chapte 7:* Th relattve, .. -
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>, changed as a function of Q and R. That is the ranking (3,5,7) in

figure 5.1 became (5,7,3) in figure 5.2.

Actuator effectiveness data was also obtained for the solar

optical telescope (i.e. STeie( 24,3,21,45)). A sampling of this data

is shown in figure 5.3, and the weighting matrices are defined inI,
table 5.3.

Table 5.3: Telescope Weighting Matrices

Q - diag [108, 108, 1013]

R a105X12- 21

The data of figure 5.3 is presented in the same format as figures 5.1

and 5.2 where the actuator numbers are now defined by table 4.13 and

AV1 act - V(20,45) - V(21,45).

ACTUATOR NUMBER
17 7 IIII'

-.4 0.-r X-2
0

I*-
:-4 0 %

0".- 3 v°et

2 -4

Figure 5.3: Telescope V t  Data for

Q and R of Table 5.3.

4.%
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Again, the monotonic decreasing nature of the data is empirical

support for (5.11).

In summary, all the pertinent data gathered in this research

excluding the one special case of constrained input power discussed

in Chapter 7, has supported the choice of (5.8) for the actuator

effectiveness value to be used in the SASLQG algorithm. Furthermore,

as evidenced by figures 5.1-5.3, V1 act appears to be a 'good' estimate

of both the sign and magnitude of AVia.

The two major concerns for (5.8) are the lack of a proof for the

ordering property of (5.11), and the inability of (5.8) to account

for the possibility of the loss of controllability or stabilizability

of the system If a particular actuator is deleted. The second concern

is further addressed In Chapters 7 and 9.

5.2.2 Sensor Effectiveness Value (Vlsen)

It is again worth noting that the role of the actuator and

sensor effectiveness values in the SASLQG Algorithm is to identify

those sensors and actuators which are contributing the Least to the

minimization of V where V has been choosen through Q and R selection

to insure that the LQG controller achieves desired input and output

variances.

As discussed in Section 5.1, Viv represents the contribution that

the ith sensor noise source makes to V. Therefore, those actuators

with larger values for V.iv are contributing more noise to V than

those actuators with lesser Viv, and at first glance appear to be

candidates for deletion. However, the sensor measurements for

S(n,k,mt) under LQG regulation are being passed through a Kalman-
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Bucy filter whose function is to "de-emphasize" or "throw-out" measure-

ments which have more noise than estimation information.[l] Therefore,

any noise source that is making a 'large' contribution to V emanates

from a sensor which is making an even 'larger' contribution to the

estimation information necessary to minimize V. This is further

supported by taking an expanded look at the formula for Vi v in (5.4f).

Assuming a diagonal V:

(5.12) V v miTPLPm V1i I where mi is the ith col of MT

Equation (5.12) shows that Vlv is an explicit as well as an implicit

function of Vl which is the inverse of the variance of the Ith

sensor noise source. Therefore, I/iv will tend to be larger for sensors

with amalZer noise variances! Of course, the estimation information

contained in mT PLPmi will have a significant effect. Also, in

Appendix B, a development is presented which shows a significant

correlation between V iv and the Chen-Seinfeld Switching functions.

Chiu, in [15], has shown that sensors with larger values for those

switching functions are the ones which satisfy the necessary conditions

for minimizing V.

In light of the above discussion an obvious choice for the sensor

effectiveness value is:

(5.13) Visen V v

Sensors with the smallest values for Viv are then taken as candidates

for deletion. The following definition, which is analogous to

%;

{-.....-k.A-. .- ..................
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Definition 1 in Section 5.2.1 is now germane to the discussion.

senDefinition 2: AVe1 a

(5.14) &V sen I V(m= -l) _ V(mZ)

where V(m,L) is defined in (5.9a) and V(m,.-1) is

the sensor dual of (5.9b)

As in the case of viact the essential property that must be satisifed
senby Vs is the ordering property:

(5.15) Visen >_V isen . AV sen > AVJ sen

Again as in the case of V act, only the intuitive arguments of the

preceding discussion and empirical results currently exist to verify

the ordering property of (5.15).

Figures 5.4-5.6 contain data, which support the validity of

(5.15). Figure 5.4 is a plot of V/sen for the system SHoop(26,24,12,

39) superimposed with AVtsen (i.e. V (12,38) - V(12,39)) for seven

sensors. The Q and R matrices used are those defined by table 5.1.

It should further be noted that sensor numbers on the horizontal

scale are defined by table 4.2, and they are ordered from left to

right in term of decreasing Visen. The monotonic decrease of the

data in figure 5.4 is empirical support for the ordering property of

(5.15). Figures 5.5 and 5.6 show data analogous to figure 5.4 for

S OOP (26, 24, 12, 39) with the weights of table 5.2 and Stele

(24, 3, 21, 45) with the weights of table 5.3 respectively.
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1I0 0

3 0 1 AV-se
x

#0

C 50

1056837 3429 14 1

SENSOR NUMBER
Figure 5.4: Hoop Column V1 sefl Data

for Qand R of-Table 5.1.

4.,

37 10 17 3
SENSOR NUMBER

Figure 5.5: Hoop Column Vi sen Data for

Q and R of Table 5.2.
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0

C

4)
0

Z--
_ V~iVs I- Vv

<I

32 40 10 4

SENSOR NUMBER
Figure 5.6: Telescope V isen Data for

Q and R of Table 5.3.

The data of both figures again exhibit a monotonic decrease and offer

further support for (5.15).

Another point of interest surfaces when comparing figures 5.4

and 5.5. This comparison reveals that the relative Visens ranking of

sensors 10 and 37 changed as a function of Q and R, a matter of

importance to the development of Chapter 7. Also, in none of the data

of figures 5.4-5.7 did deleting a sensor provide better regulator

performance (i.e. Visens was never negative). This result is

empirical evidence of the following theorem which is proved in [15]

and [16] and also in Appendix A.

9
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Theorem 3: Deletion of Noisy Sensors

For a system of type S(n,k,m,t) under the regulation

of the LQG controller defined in (3.2), deletion of a

sensor cannot reduce V.

In summary, a1Z pertinent data gathered in this research supports

the validity of choosing (5.13) to represent the sensor effectiveness

value for the SASLQG algorithm. Also, as evidenced by the data of

figures 5.4-5.7, V1sen is a 'good' estimate for both the sign and

senmagnitude of AV/se. However, the same two concerns that exist for

V1
a c t , also exist for V isen: There is currently only empirical and

intuitive support for the ordering property of (5.15), and V isen does

not consider that measurability or detectability might be lost when

the i t h sensor is deleted. The measurability/detectability concern

is further discussed in Chapters 7 and 9.

With the expressions for sensor and actuator effectiveness values

chosen, the next order of business is to develop an algorithm for

selecting Q and R so that the LQG controller which minimizes V also

achieves desired variance constraints on system inputs and outputs.

'i This algorithm is the topic of Chapter 6.

.

-.- .*.. -.. .. ... '...... .. . .... , ,-...... .. .,.- - ........
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6.0 LQG WEIGHT SELECTION

A fundamental step in solving the SASLQG problem is to adjust

the elements of Q and R in V such that the resulting LQG controller,

for a fimed set of sensors and actuators, achieves the input-constrained

requirements of (3.20) or the output constrained requirements of (3.21).

A statement of this mathematical problem will prove useful. Substitut-

ing the definitions for Eyi2 and E.ui 2 provided by (3.16) and (3.19)

into (3.20) and (3.21) the following statement for a constrained

variance LQG (CVLQG) problem results:

CVLQG Problem

Given: A system of type S(nk,m,t) under the control

of an LQG regulator defined by (3.2) and with

variance specifications (a2, 112) of (1.8)

Required: Determine the diagonaZ elements of Q and R

such that one of the following holds:

Input Constrained Solution

If the specifications (a2, 2) are achievable

k 2
Mi n (cT(P+X)c1 )/a
Q,R il-

(6.1a)

subject to ri2 biTKXKbi 2 = i, ... m

else,
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k T 2 T 2
mn I (c, (P+X)c,)/,i1  .: c1 (P+X)c, > a,
Q,R -1 "

(6.1b)
subject to r 1 ZbTKXKbj a , s i 1, ... m

Output Constrained Solution

if (a , 2) are achievable,

Min I (r"bi TKxKb)/Uz

(6.2a) Q,R 1-1

subject to ctT(P+X)c - 2 I - 1, ... k

else,

Mt T (r 2b TK )/Ui 2 1 : r- 2b T 2
Q ,R i l i i " , , l i i

(6.2b)

subject to ctT(P+X)c 2 Y 0 = 1, ... k

The CVLQG problem is a non-linear programming problem which has

two distinct requirements: The first being to determine if a diagonal

Q and R exists to achieve (a2 , P2 ), and the other being to adjust the

Q and R elements to achieve either the input-constrained or output-

constrained solution. An obvious approach to this problem would be

to apply standard, non-linear programming techniques. However, these

techniques almost always .require gradient calculations and a search

routine for an appropriate step size. ([46], [59]-[61]) Given the

possibility of a large number of inputs and outputs, a large system

order and the requiremnt for solution of an algebraic Riccati equa-

tion at each iteration f the al- rlthm and at each Iteration of any
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step size search routine, the calculations required by these standard

gradient approaches would be prohibitive when applied to the CVLQG

problem. This chapter presents an algorithm for solving the CVLQG

problem which requires only the standard LQG calculations of (3.2)-
*(3.6) and hence avoids the computational burdens of gradient calcula-

tions and a step size search routine. The algorithm also uses inher-

ent properties of the LQG controller to make update and existence

decisions. Before discussing the algorithm, a survey of past techni-

ques and motivations for Q and R adjustments is presented in Section

6.1. Then, Section 6.2 provides a general discussion of input-

constrained and output constrained solutions while Section 6.3 presents

the important theory behind the algorithm. The specific steps of the

* algorithm are provided in section 6.4, and the algorithm is applied to

the hoop-column antenna model and the telescope model in sections 6.5

and 6.6 respectively.

6.1 Past Approaches to Q and R Selection

Even though LQG theory has a natural application to the problem

of satisfying variance constraints on system inputs and outputs, not

a great deal has been published on the subject. In [ 2], Bryson and

Ho suggest making Q and R diagonal such that:

. (6.3) ; 1 where ai2 and p 2 are components of the

Kr = /u 2  specifications (a 2  u2) in (1.8)

r 
a
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This choice for Q and R means that V in (3.12) can be written in

the following form

(6.4) V= kEi2/ai2 +  E u /i 2/2

1.1 1=1

From (6.4) it can be seen that the LQG controller designed by the

weighting matrices (6.3) minimizes the sum of the output and input mean

square values normalized by their specification. Therefore, selecting

(6.4) for Q and R guarantees that the average of the normalized mean

square values of all components has been minimized. While this is a

step in the right direction, it does not guarantee that the LQG control-

ler will meet the requirements of the CVLQG problem. In the past, if

using (6.3) did not achieve the desired variance specification it was

necessary to resort to trial and error variation of the elements of Q

and R based upon a set of general "directional" guidelines. (See [1],

[2], [47]).

Recently, in [44], (48] and [49], iterative algorithms have been

proposed for adjusting elements of the Q and R matrices in order to

achieve desired variance specifications on system inputs and outputs.

In [44] the following update equations are proposed.

aE Yi 2 (j)

(6.5a) q(j+l) = -- qi(j) = qi(j) + -7 (E ,Yi( 0) - a )qi(j)

(6.5b) r (J+1) = -2 r (j) = r (j) + I (E ul 2 (j) - Ui )r(J)
1 2 i

4

4
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Initially, if outputo are out of specification (Eyi/ai > 1), the

algorithm in [44] uses only (6.5a) to adjust the weights on those

outputs. When all outputs are within specification the algorithm uses

(6.5a) on all outputs and (6.5b) only on the inputs that are within

specification (E ui2/Ii2 < 1). The algorithm continues until all

specifications are satisfied or until the components that are out of

specification are no longer changing.

In [48], the following update equation is used: (assuming Q and

R diagonal)

(6.6) X(j+l) = X(j) + jHj¢(j)

where

= [ql, q2  ...' qk rl, ... rm]

j= scalar step length parameter at iteration j

Ey2 2]q 2 0.
CE aI  q(j) il, ... k and Ejyi > i

CO ) z [E ui2 - ui2]ri (J) i1l, ... m and Eui2  > pi

0 otherwise

H - Broyden approximation to the inverse of the Jacobian

of e(j) with respect to X(j), [50).

Therefore, the algorithm of [48] adjusts those components of Q and R

which correspond to outputs and inputs that are out of specification.

Neither [44] nor [48] give conditions under which the algorithms can

MDT&;&***.~..* .*.*~***.*-*.& ... . . . . . . *~ .- ~ j'* .



97

be expected to converge to a solution or specify conditions under

which it is known that no choice for Q and R would exist. Also not

addressed are the input-constrained and output constrained requirements

of (6.1) and (6.2).

In [49], the following update equation for ri is proposed for each

sample time in a self-tuning, discrete time, LQG regulator:
--. 4 ,-.

'ri(k)

(6.7) rl(k+l) r1 (k) + u(k+l) 2 (u 2 k) - ui 2)

*: 'where 0 < P(k) < 1 and v(k) is choosen to insure r.(k+l) is positive.

1

The objective is to use (6.7) to design a self-tuned LQG regulator

-- which has the inputs operating at their variance specifications ui

Other studies on the selection of weights Q and R have entirely

different motivations, but are mentioned here for completeness.

Considerable study has been devoted to the selection of Q and R to
achieve desired closed-loop pole locations, [51]-[54]. References

[55] and [56] relate Q and R selection to such additional frequency

domain properties as stability margin and disturbance rejection. In

[57] Sesak et al. propose non-diagonal selections for Q and R which

serve to suppress LQG controller excitation of unmodeled system states.

In work related to [51]-[54] Sesak et al., in [58], propose a technique

for selecting non-diagonal Q and R so that the compensator poles

* (i.e. the eigenvalues of Ac) are within some prespecified stable region.
As a final note, the algorithm presented in this chapter has been

documented in [45]. With this background for Q and R presented, the

algorithm development begins with a discussion of input and output

constrained solutions.

:; -,,: : .... . . . . .,, . ........ ...... . .. ,........ ... *.,*.*. .*.. ......?. . ... ..... , .. . . . . ..
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6.2 Input/Output-Constrained Solutions

Before presenting the theory behind the proposed algorithm, a less

technical discussion of the input-constrained and output-constrained

requirements of (6.1) and (6.2) for single input single output systems

(i.e. S(n,l,l,L.)) will prove useful. For S(n,l,l,L.) the LQG cost

functional of (3.12) takes the following form:

(6.8) V a E yl2 q + E ul2 r

6.2.1 Input-Constrained Discussion (S(n,l,l,z))

Assume that r1 can be adjusted so that 2= l2 Labeling this

value for rI as rM (6.8) can be written as:

(6.9) V a E.Yl2ql + 1,l rm

2For the given S(n,1,1,t), U ,, and output weighting ql, the term ul rM

represents a fixed control penalty term in V which insures that all

available control power (in a stochastic sense) is being used by the

LQG controller to minimize Ej 2lql. Therefore the term El2 qI cannot

be made smaller without violating the input constraint. In light of

* this discussion, the appropriate choice for ql to achieve the input-

2constrained requirement of (6.1) is 1/a1 . Therefore, define
q* Va 2 The preceding situation is represented pictorially in

figure 6.1 by making use of the known inverse relationship between
2 2

control power EUl and output variance Ejy . [1] The two curves

represent the performance lines of the different systems Sa' Sb with

output weighting ql . The interior of the rectangular box formed

-,l',!,,. - ',-! ,i 'i',v ',i ,- ,, ,-' '!- ,' : ', , . .,. . / ., " " .'. -, . " ". .,, .' '- .,' .- .- , .
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Sb (n)M

'.-U'

Figure 6.1: S(n,1,l,t) input-Constrained Solution

by the al, "I specification lines represents the region in which

(ai2 U12) is satisfied. Clearly, an LQG controller does not exist

for Sb which can meet (a12, Ul2). Therefore the input-constrained

condition (6.1b) is sought. On the other hand, there are essentially

an infinite number of LQG controllers which can keep the operating

point of Sa within the (al2, vl2) specification region, and the require-

ment (6.1a) applies. The current operating point of both systems is

assumed to be 0 and the objective of the input constrained solution

is to move the operating points to O by finding rM. Then am repre-M, b
sents the the minimum achievable output specification for (6.1b) and

alma represents the minimum achievable output specification for (6.1a).

6.2.2 Output-Constrained Discussion (S(n,l,l,t))

A discussion of the output-constrained solution proceeds in an

identical fashion. Assume that a ql is found such that Ey12 " u 
2 .

Labeling this value qM, (6.8) becomes:
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(6.10) V - a,2q + EUl2 r1

'9 For the given S(n,1,l,z), a,, and input weighting rI, the term a,21 q

represents a fixed output penalty term in V which produces the maximum

allowable output variance. Therefore the term Eul2 r1 cannot be

reduced without violating the output constraint and r= / A *

satisfies (6.2). Figure (6.2) is a pictorial representation of systems

Sa(n,l,l,.) and Sb(n,l,l,L.) with control weighting r1

E 1

'.'4

-S4

A~S Ail b U )

Figure 6.2: S(n,l,l,t) Output-Constrained Solution

As in the input constrained case, the (a,2 vl2 ) specification can be

achieved for Sa but not for Sb. The objective of the output-constrained

solution is to move the systems operating point from 1 to (7) by

finding qM" Then, uMa satisfies (6.2a) and uMb satisfies (6.2b).

6.2.3 Multi-Input/Output-Constrained Solutions

There is a subtlety in achieving (6.1) or (6.2) which does not

appear in the single-input, single-output case and should also be
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discussed before the theory is presented. Assume a single input two

output system (i.e. S(n,2,l,zt)) with specifications (a,, a2 , U1 ). The

pictorial representation of both outputs vs. control effort is shown in

Figure 6.3 for an input constrained solution and the output weighting

Q diag(ql q)

S .

A

.4.t

..

Figure 6.3 S(n,2,1,L) Input-Constrained Solution

i'
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From the figure it is obvious that a2 is restrictive and an LQG

controller does not exist for (a2 ,2). Therefore, the input constrain-

ed solution adopts the criterion of (6.1b) and moves from " to "2)

by finding rM. At point0 Er, is well within specification and

E 2 is well above specification. The requirement of (6.1b) in this

case is that E Y22 be as small as possible. Since EjY2 is well withincaseel isithtinJ

specification, a logical course of action would be to channel some of

the control effort from y, to Y2. For the LQG controller, this is

accomplished by decreasing ql and adjusting rM so that all allowable

control power is still being used (i.e. keeps the operating point at

ipl). This redistribution of control power continues untilEyl

reaches its specification at point @ or (although not illustrated

in figure 6.3) Ej 2
2 reaches its specification. Since all available

control power has been directed toward the output above specification,

(i.e. EJ22) the requirement of (6.1b) should be satisfied. The

specific output weighting condition which achieves the control

redistribution pictured in figure 6.3 is Q = diag (qM, q2 ) = Q(. An

identical situation to the one pictured in figure 6.3 exists for the

output-constrained solution for S(n,l,2,t). The input weighting

condition for this situation is defined to be R*.

The discussion just presented has emphasized important elements

in the solution of the CVLQG problem. It also raises the questions

of whether the specific weighting conditions Q*, R*, QA, R* exist and

1 ' how to find them. The theory presented in the next section addresses

these questions.
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6.3 Theory

In this section, the supporting theory for the algorithm of

Section 6.4 is presented. The following definitions are fundamental

to the discussion.

6.3.1 Definitions

The following are formal multiple input/output definitions for

the expressions adopted in Section 6.2.

Definition 3: p' V Vspcspl s c spc

For the mstem S(n,k,m,t) using the LQG controller of (3.2)-(3.6)

(6.11a) V (Q,R) A 22

V-Q1m 2 2(6.11b) Vyup(Q,R ) _ muih

1=1

(6.11c) Vspc(Q,R) Vpec (Q,R) + Vupec (QR)

where the arguments (Q,R) represent the weighting matrices used

in determining the LQG controller.

Definition 4,: Q*, R*, M, RR

For the diagonaZ weighting matrices Q, R

2 2 Variance

(6.12a) Q*" (Q: q1 "/2 ; 1 - 1, ... k) ; "Specification
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(6.12b) R* * (R: ri * I/i 2; i = 1, ...m); ui2 = Variance specification
'1 1

(6.12c) QM - (Q: Ejiy 2 ai "  1, ... k)

(6.12d) RM = (R: Eu2 = I i = I, ... m)

W 2 2 a j 2 1,
(6.12e) QM Q: r

q" - I/a Z 2 i: E,.y i2 ai 2

C,,

Sb.

. (6.12f) R : a
r rI = 11Pi 2 *F: E~ui12 >i 2

It should be noted that Q* and R* exist and are unique for any non-zero

.(a 2 , 2 however, QM' RM, Q*, and RA are not unique nor do they always

exist. The existence question will be addressed shortly.

6.3.2 Theorems

Using the notation of definitions 3 and 4 the following important

theorems are stated and proved. They will be recognized as multi-input/

output versions of the situations discussed in Section 6.2.

Theorem 4: Input-constrained conditions

For a system of type S(n,k,m,t) under the regulation

of the LQG controller defined by (3.2)-(3.6) (diagonal Q

and R) and the assumption that the matrices Q* and RM
exist, the following holds:

-'IY
"' ; "; , *.* . .. .v ". " .. . . -'.'- . . '. . -. .. "." . . -. . . . - ". " . ' . . .

....- - :: : :-, .. .. . -" : .. . " , ,,,. . . .- ," - ' . :. ':h '.: % . ' .:.:'.'*-.-.- .- . -'
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(a) Ip (Q*,RM ) < V~sp(Q,R) Q,R subject to the
spC spc

constraint that

Eui2 aIli2 * i = i, ... m

(b) pc (Q*' RM) > k (a2, 2) cannot be satisfied byspc M~R1
an LQG controller

(c) Given condition (b), the LQG controller designed by

(Q*, RM ) minimizes the following:

k y 2/ i  i: 2~i > a. 2
k 2 2 2 2

Proof: From definition 4, the controller defined by (Q*, RN) minimizes

the cost functional:

k 2 2 m 2

(6.13) VIs I Eyi /aI +  I i rM.
1i1 i=l 1

(1) (2)

2 2
For the given S(n,k,m,t) and (a, U), term(2)is a fixed penalty term

in V constrained by the RM requirement Eui 2 = AF i is ... m

(i.e. use all available control power). Under this condition the LQG

controller minimizes term (1), and from the known optimality conditions

for the LQG controller, no other LQG controller (i.e. different Q,R)

or any linear t controller, for that matter, can do better for the

tlf the noise processes in S(n,k,m,L) are Gaussian, the LQG controller
also does better than any nonlinear controller. (1]
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given constraints. (1] Since term (1) is equivalent, by definition,

to Vspc(Q*,Rm) point (a) of theorem 4 is proved.

Again from definition 4, the controller defined by (Q*, RM) mini-

mizes the cost functional:

k k m
. E 2/a, + ai 2q +

(6.14) il izi i-I rMi
" I: Ej12>0i 2  i: E yi 2 =a. 2

LI W LL I I
(1) (2) (3)

For the given S(n,k,m,Lt) and (a2  , ) term (3) of (6.14) is constrained

by the RM requirement (Eui2 = Pi2 * i = 1, ... m) to be a fixed value.

Also, term (2) of (6.14) is constrained to be a fixed value by the

Q requirement (EaY 1
2 > a, 2 ). Given the above conditions on (2) and

(3), the LQG controller will force (1) of (6.14) to be as small as

possible. Hence, point c) of Theorem 4 is guaranteed.

The fact that term (1) of (6.14) is as small as possible for the

given specifications also implies that if term (1) is not zero then a

CVLQG solution does not exist. From the definition of Q*, RM and

Vyp (QR), pc (Q ' RM) > k and [term (1) of (6.14)] > 0 are equivalent
spc s pc M'

conditions. Therefore point b) of Theorem 4 is established. ###

The results of Theorem 4 directly establish weighting conditions

which satisfy the input constrained requirement of (6.1). Part (a) of

theorem 4 establishes (Q*, R) as the weighting condition necessary to

satisfy (6.1a),' and if all outputs are above specification at (Q*, RM) ,

the condition for (6.1b). Parts (b) a,;d (a), on the other hand,

establish (Q*, RM ) as a weighting condition which satisfies (6.1b).
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Theorem 5 addresses the output constrained requirement (6.2).

Theorem 5: Output-constrained Conditions

For a system of type S(n,k,m,t) under the regulation

of the LQG controller defined by (3.2)-(3.6) (diagonal Q, R)
and the assumption that the matrices RA, QM exist, the
following holds:

(a) V (R*,Q ) < V (R,Q) * R,Q subject to the constraint
Spc M - pc that E y2 - 12 * i -1, ... k

(b) Vspc(RA M ) > k -> (02, 02) cannot be satisfied by an

LQG controller

(c) Given condition (b) the LQG controller designed by (R, M)

minimizes the following

2 2 i: mu 2 > U22
t1 *1 i

Proof: From definition 4, the controller defined by (R*, QM) minimizes

the cost functional:

m 22 k 2
(6.15) V I E~u1 hi + I i

The rest of the proof for part (a) is the dual of the proof of part (a)

of Theorem 4 where input terms are substituted for output terms and

(6.13) is replaced by (6.15).

Again from definition 4, the controller defined by (R4, QM) mini-

mizes the cost functional:
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m 2u2 m i2 k 2
V. I Eu/.i2 + P r* + ai qi=i i=l M i i qi

(6.16) : Eu 2  2 2 2

(1) (2) (3)

The rest of the proof is again the dual of the proof of Theorem 4 where

input terms are interchanged with output terms and (6.14) is replaced

by (6.16). ###

6.3.3 Update Equations

While weighting conditions which satisfy (6.1) and (6.2), are

specified in theorems 4 and 5, nothing is said about how to achieve the

weighting conditions or if they exist. The iterative update equations

used by the algorithm of section 6.4 to achieve the required weighting

conditions is presented in this section. Section 6.3.4 discusses the

existence question.

6.3.3.1 Input Update Equation. The input-constrained condition of

(6.1) requires the following condition

(6.a) E.u 2  2 i, .... m

or

(6.17b) r1 '2biTKXKbi 2 i = 1, .... m

The requirement of (6.17) is a nonlinear programming problem within the

larger CVLQG non-linear programming problem. The goal is to adjust ri,

i = 1, ... m ithout using gradient techniques which require complex
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calculations. Assume for a moment that (.17) is satisfied. Then,

the following algebraic manipulations are permissible:

i Kb
(6.18) ri2 = T ; 11m

* ui

Multiplying and dividing the right-hand side of (6.18) by r i
2 and

21
substituting in Eui2 gives:

(6.19) r1 =r I  ; = 1, ... m

taking the positive square root of (6.19) leaves:

1 1/2

(6.20) rI = I = 1, ... m

Equation 6.20 represents a an m-dimensional, coupled transcendental

equation. A simple approach to numerically solving (6.20) is to adopt

the following successive approximation equation:

-/2

(6.21) ri(j+l) ; i 1, ... m

where E u 2(j) implies E u 2 calculated at the j th iteration. The

beauty of (6.21) is that it will always correct r(j) in the right

direction. For instance, assume that Eu1 2 > Ui2 for ri(j). To

correct this situation in the LQG controller, the penalty weight r1 (j)

must be increased, and since E ~u(J) > U, this is exactly what (6.21)

.,T,' - "., .'Z' , , . . . .. . .,•.. . . .-. *- .• . . ., . . ,,. , .,,>;w , ," . *.* .... * -. . . . . . . . * ..-. .... 4* - --
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does. When (6.21) was tested on the hoop-column and telescope models,

the convergence to RM was slow which is generally true of most

successive approximation equations. However in each iteration of

(6.21) an algebraic Riccati equation of order n must be solved and

therefore, the slow convergence of (6.21) was deemed unacceptable.

Several options exist for increasing the step size of (6.21). The

more sophisticated techniques involve iterations within each iteration

to pin down the best step size to use and, of course, this is exactly

what needs to be avoided. After, considerable testing the following

automated non-linear step size adjustment was found to work 'well' on

both the hoop column and telescope models:

2 PWR(j)

(6.22) ri(j+l) = L_ ri(j) ; i = 1, ... m

where the exponent PWR(j) obeys the sequence:

(6.23) PWR(l) = 1/2 , PWR(2) = I .... PWR(j) = j - 1 Vj- 1

The problem with (6.22) is that it is now possible for the step size

(i.e. change in r(j))to be too big which would cause the algorithm to

oscillate (i.e. not converge) or even go unstable. To counter this prob-

lem, the well known non-linear programming technique of descent functions

was adopted.[60] The function chosen was:

(6.24) Desctu(j+l ) - Max [. . . , 0 i = , ... m

P.21 

1



Therefore, at each iteration Desctu(j+l) is calculated. If Desctu(j+l)

> Desctu(j), then the current values of Desctu(j+!), Eu 2 (j+l) are
12

replaced with the old values Desctu(j), Eu (j) and the PWR(j) sequence

is reset to PWR(1). For notational purposes, the iteration at which

Desctu(j+l) > Desctu(j) will be called a 'reset iteration.'

The two key questions for update equation (6.22) coupled with the

descent function (6.24) are:

(1) Is PWR(l) = 1/2 truly a conservative step size?

(2) How often must data be lost to a 'reset iteration?'

Both questions actually apply to the sequence PWR(j). Appendix C offers

an argument for the conservative nature of PWR = 1/2 and for the hoop-

column and telescope data shown in sections 6.5 and 6.6, less than 7%

was lost because of reset iterations. There is, however no guarantee

the choosen PWR(J) sequence is the best, other possibilities are sug-

gested in Chapter 8.

6.3.3.2 Output Update Equation . In contrast to the input-constrained

requirement, the output constrained requirement of (6.2) requires the

following condition:

(6.25a) Ey , 2  i 2  = 1, .... k

or using the identity of (5.7)

(6.25b) V -l 2, k

Assuming that (6.25b) holds, the following algebraic manipulations are

possible:

.9
9;:" '_. ,"-r -" ., ': . . '! . .,'' °,,,% '''"-''"' - ".''' "" ' ' ." ' . " . ". . - "."-". ." -" -". ." •"." , .



112

(6.26) q V /a 2i 'i = 1 " k

Again making use of (5.7):

(6.27) qi =  2 qi V-= I, ... k

This equation (similar to (6.20)) represents a k-dimensional,coupled

transcendental equation and as in the input case, a simple successive

approximation technique was chosen to obtain a numerical solution:

Ey 2 (j)
(6.28) qi(j+ l) = 2 qi ( j ) ; i = 1, ... k

Like (6.21), (6.28) will always adjust q(j) in the right direction;

however, when tested it too demonstrated very slow convergence proper-
N. ties. Benefiting from the knowledge gained in the input case, the

following update equation and descent function were adopted:

(6.29a) qi(j+l) 2 q.(j) i = 1, ... k

(6.2gb)t PWRy(l) 1 , PWRy(2) = 1 . .... PWRy(j) = j - 1 , j > 1

t The PWR(j) sequence of (6.23) was also used successfully, however

(6.2gb) performed better for the chosen examples and is more in
harmony with the development of (6.25)-(6.28).
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(6.30) Descty(j+l) Max - , ; i , ... k

As in the input case, if Descty(j+l) > Descty(j), then the current

values of Descty(j+l), Ejy2(j+l) are replaced with the old values

Descty(j), E 2yi(j) and the PWRy(j) sequence is reset to PWRy(l).

The same questions that exist for PWR(j) also exist for PWRy(j).

Empirical results have pointed to the selection of PWRy(j), but the

suggested sequences in Chapter 8 offer other possibilities.

6.3.3.3. Simultaneous Input and Output Updates. When conditions

require a search for the matrices Q* or R, simultaneous updates of Q

and R are required. The transcendental nature of the problem remains

the same. Therefore, (6.22) is used for the input weights and (6.29a)

for the output weights. Both descent functions are still calculated

but combined as follows:

(6.31) Desctyu(j+1) Max[Desctu(j), Descty(j), 0]

If a 'reset iteration' occurs al input and output values are restored

as well as Desctyu(j).

As a final summary, the update equations of (6.22) and (6.29a)

are modified successive approximations of the transcendental equations

(6.20) and (6.27). They will always step in the right direction and

the descent function is used to insure they never step too far. The

PWR(J), PWRy(J) exponent sequences are encorporated in an effort to

prevent an excessive number of iterations for convergence.
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6.3.4 Existence of RM, QM' Q ' RA

The final question to be answered concerning the theory behind

the CVLQG algorithm presented in 6.4 (entitled LQGWTS) is whether

the weighting matrices RM , QM' Q*, R* exist. The question can be simpli-

fled by realizing that, by definition (i.e. Definition 4), if RM exists

RA exists and if Q exists Q* exists. Therefore, attention will be

focused on the existence of RM and Q

6.3.4.1 Existence of R.  An RM canot exist if the following condition

holds for some LQG control u

': E ui 2 ri2b TK
(6.32a) Eu r- b b KKb 0 Q > 0 , R > 0

or since 0 < ri < ,

(6.32b) blTKXKbI =0 V Q>O , R>O

Necessary and sufficient conditions for (6.32b) to hold involve the

observability of (A,C) and the controllability of (A+BG,F) and are

provided in Appendix D. Also included in Appendix D is the method

LQGWTS uses to determine if ui satisfies the necessary and sufficient

conditions for (6.32b). If (6.32b) does not hold for all i then an RM
exists for arbitrary non-zero specifications (u2). More specifically,

if (6.32b) does not hold, it is possible to force all controls to

arbitrary values E ui2 by weighting certain controls more than others.

Furthermore, since the ui's that satisfy (4.9b) are of no use to an

LQG controller, condition (6.32b) can aZwaya be avoided by deleting

from the system controls which satisfy (6.32b), and LQGWTS does this.

-I 7
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Therefore LQGWTS seeksa possibly reduced dimension, RM (i.e. RM R

which is known to exist.

6.3.4.2 Existence of Q,. The existence of QM depends upon the ability

of the system to drive all outputs to arbitrary levels. For control-

lable systems, this implies the outputs (y = Cx) must be linearly

independent. For un-controllable systems, this implies that the rank

of the output controllability matrix must equal k (the number of

outputs). [63]. If, for a system of type S(n,k,m,t), QM fails to exist

for either of the above reasons, the end result is that only some of

the outputs will be driven to their specification. Label this set of

outputs Y spc and its reduced dimension weighting matrix QMR" The

remaining outputs will be in the set Ts. The weights on these
spc

outputs will have one of the two following properties as a result of

using the update equation (6.29a):

.- i 0
(6.33)

q, > cot

The situation in (6.33) means that the outputs in Ys are not effecting

spc
the LQG regulator design and may be deleted from the system leaving only

the set Yspc for which a QMR exists. LQGWTS tests for outputs which

are not effecting the design by performing the checks

tThe condition q4  can result only when a stabilizable, detectable

system Is not obtput controllable and one of the uncontrollable outputs
stabilizes at a variance level above its specification.

-.

%1

* .".1t~~~S . . .
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?
(6.34a) qi c e iiI* O<c<<l

? 1
(6.34b) qi >

If (6.34a or b) is satisfied LQGWTS automatically zeros qi (i.e. effec-

tively deletes the ith output from the system). Therefore LQGWTS will
look for a QMR which exists.

6.3.5 Summary

The purposes of this section have been first, to establish the

weighting conditions which satisfy the requirements of (6.1) and (6.2)

(i.e. Theorems 4 and 5). These conditions are using the notation of

Section 6.3.4 RMR, QMR RR' and Q" Second, to develop the update

equations used by LQGWTS and verify that they converge to RMR' QMR'

.IR or Q*R and thirdlyas just presented, verify the existence of these

matrices. With this theory in place, a presentation of the algorithm

is in order.

6.4 The Algorithm LQGWTS

This section outlines the proposed algorithm LQGWTS which is

designed to find a solution to the CVLQG problem defined at the

beginning of this chapter. As already noted, LQGWTS uses the update

equations (6.22) and/or (6.29a) to achieve either the input constrained

requirements of (6.1) or the output-constrained requirements of (6.2).

The general flow of the algorithm for achieving these requirements can

be summarized by the following two line graphs which delineate the

weight adjustment procedure:

P.4
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Input-Constrained Algorithm

(Q*. ) (Q*, RM)
(6.35a)

* Begin - Solution? ---- >End

Output-Constrained Algorithm

( .5 ) (R*, Q*) --- --(R*, QM
)  > R ,QM)

Begin - Solution? --- >End

With the general flow of (6.35) in mind, the concise steps of the

algorithm are presented.

Algorithm LQGWTS:

,,1 (j. Read the following data: (A, B, C, D, M, W, V 1 1, {a. 2 , i =
2

k} (u.i , i = 1, ... m}, select input-constrained or output

constrained option, and specify a zero-threshold parameter £.

(). Compute P by solving (3.2d).

* . Compute c , P I, ... k. If P !a, for any i - 1,

k, it is impossible to achieve the output specifications

since cTpC1 is the lower bound of E.yi2 . Therefore select

only the-input constrained option.

."40. Set the following initial guess for Q and R:

qi " l/aI ; I 1 , ... k (i.e. q*)

r. 1/u 2 ; 1 = 1 , ... m (i.e. r*)

S.. " ° . " ° ' ° " -' " '.. **' " . .. . - : , . *.' T." . *- , . . *.-, . . . ., . . .... .., .. ...: . .* .. *....*,. . ... .. - -... .. . . .
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(5). Compute K by solving (3.2c), and X by solving (3.6). Also

as described in Appendix D, perform first iteration check for

biTKiKb 0.

." ). Compute Eyi2, i = 1, ... k using (3.16). Compute E~ui2,i = 1,

... m using (3.19). Perform second check described in Appendix D

for biT bi = 0. Also perform the following:

(a) Input-Constrained Search

If E ui2 = ui2  -i =1....m, then store for

later use the indicies j for which < a2 . Call

this vector of indicies UPDATE.

(b) Output-Constrained Search

If Ey 2 I  2 * i: qi 0 0, then store for later
2 2

use the indices j for which E ~uj <j Call this vector

of indicles UPDATE.

Calculate Descent Function (DESCTN)

(a) Input-constrained search: use (6.24)

(b) Output constrained search: use (6.30)

(c) If UPDATE 0 0 use (6.31).

A .Check DESCTN:

If DESCTN(J+I) > DESCTN(J) set PWR(j+l)= 1/2, PWRy(i+I)= 1,

Ejl(J+l) u Eyi (j), Eui(j+l) = E~ui(j) DESCTN(j+l) =

DESCTN(J) and go to . (i.e. 'reset iteration').

tFor numerical considerations, the following additional reset condition
is defined. If DESCTN(j+I)>DESCTN(j) and DESCTN(J) = 0, reset onZy
PWR and PWR . This condition is termed 'step size' reset to distin-
guish it fr m a'reset Interation'!

*. . . . . - ._ " " "" - -'"" '' ' •,, :"7 ."." - , " '..,,. .'-". ''. . . " - .-, . - . ,"-''- .., -. - .- . ,. ","..
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.9 . Solution Checks:

Input-Constrained Option:

C.l If Eu 2 = 2 *i = 1, ... m, and {qi = 0 Yi: Eyi2<C 2

then the CVLQG input solution has been found. Stop.

Output-Constrained Option:2, 2 i 2  2

C.2 If {E.yi 2 Zv V-i: q # 01,andEui2 >.l i *i =1,

m, then the CVLQG output solution has been found.

Stop.

DO). Update Equations: Define PWR(j+l) as in (6.23) and PWRy(i+1)

as in (6.29b)

Input Constrained Option:

ri(j+l) = ri ( j ) ; i = 1 , ... m

2 " PWRy(j+1)D
4 , 

Ejyi2(j)

ql(j+l) = Li a 2  qi(j) ; in UPDATE

ql(j+l) ql(j) otherwise

If .< e/a12 or qt > then set qt(j+l) 0.

Return to (D).
Output-Constrained Option:

-'-.- %E= 2(j)- PWRy(J+I )

(3.4a) ql(J + I ) I i2 qi(j); I I, ... k

I.,z

L

d " " ' P " "" " " " " - • • . . . . • w .. . .
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21If qi < c/o, or qi > - then set qi(i+l) = 0

.- - PWR(j+1)
Eu (j)

* (3.4b) ri(J+1) " 2 ir(J) ; i i in UPDATE

" L 1

r i (j+l) - ri(J) otherwise

Return to .

The algorithm LQGWTS has been written as a fortran IV subroutine

which uses the linear control package LSLIB developed for the Purdue

University CDC 6600 by C.S. Gregory in 1979. The specific details of

the program, along with a program listing are provided in Appendix E.

The subroutine has been used on both the hoop column antenna and tele-

scope models of Chapter 4. The results are presented in the next two

sections.

6.5 Hoop Column Antenna Example

The algorithm LQGWTS was run on the hoop column antenna model

SHoop(26,24,12,3g) for the outputs, sensors, and actuators described in

tables 4.1-4.3 and for the (a2 , 2) specifications of (4.16). Both

the input-constrained and output-constrained options were run, and the

results indicated that an LQG controller (diagonal Q,R) did not exist

to meet (a2 u2) of (4.16). Therefore, the 'minimum achievable'

specifications of (6.1 b) and (6.2b) were sought.

6.5.1 Input-Constrained Solution

Table 6.1 displays the results for the input constrained solution.

The expression in parentheses by each output and actuator number is a

i ' .'..-,- , .,,: ;, .:.:,,.-....:, ' ..,,,--.- '.'. -...-.. -'..- .,,. ........ ,,
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Table 6.1: Hoop Column Input-Constrained Solution

Output # (minimum achievable) Actuator # (specification)

1(AX2) .17 1 se c (q, = 0) l(TX2) 10.000 dn-cm
2(AY2) .174 'sec (q2 - 0) 2(TY2) [

*3(AZ2) 701 .807 sec 3(TZ2) I

4(AX1O-AX2) .008 ie- (q4 = 0) 4(TX6) I

5(AYlO-AY2) .008 s'ec (q5 - 0) 5(TY6)
*6(AZIO) 727.366 s'ec 6(TZ6)
7(X6-X2) .122 mm (q 7 *0) 7(TX9)

8(Y6-Y2) .120 -m (q 8 =0) 8(rY9)

*g(X9..X2) .799 -m 9(TZ9)
*lo(yg..2) .784 mm 10(TXIO)

*11(x0..X2) 1.859 -m l1(TY1O) a

*12(ylo..y) 1.824 -m 12(TZIO)

*13(X101..XlO) 3.003 -m

*14(Yll.y10) 7.595 -m

15(Zl0l-Z1O) .091 -m (q15 - 0)
*16(X07.XIO) 7.219 num

*17(Y107.Yl0) 3.381 mm

18(ZI07-ZIO) .090 -m (q 18 = 0)
*1g(X113.XIO) 2.054 mm

*20(Y13.Ylo) 3.474 num

21(ZI13-Z1O) .016 imm (q21 - 0)
*22(x194.x0) 3.728 mm

*23(Y119..Y10) 1.799 mm

24(Z119-Z1O) .010 mm (q 24 - 0)

->specification violation (E ,y1 2 > ai2
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label for the type, direction, and location of the output or

actuator. For instance, AX2 stands for an angle output in the X direc-

tion at node 2, AXIO-AX2 represents a relative angle output in the X

direction between nodes 10 and 2, Y6-Y2 means a relative linear dis-

placement output in the Y direction between nodes 6 and 2 and TX2 stands

for a torquer acting in the X direction at node 2. The output weight

in parentheses next to a specification represents the weight that the

algorithm assigned to that output on the final iteration. For the

given (a2 i 2 ), these outputs form the set 7spc and have no effect on

the LQG regulator. As expected, the algorithm forced all actuators

to operate at their specification (i.e. 10 dn-cm). The data shown in

Table 6.1 is the result of 16 iterations of the input-constrained

search and two 'step size' resets were required. The plots of Figures

6.4-6.6 show the nozmnZized values of each input (i.e. Eui 2/I 2 versus

the iteration number). The value 1.0 implies the component is in

specification, and the value of the last data point is printed on each

plot.

A striking feature of these plots is that the algorithm has

essentially converged after 5-8 iterations yet continues for another

8-11 iterations. This results because in 8 iterations the algorithm

converged to (Q*, RM). It then took 8 more iterations to identify the

outputs in ic (i.e. ql. 0, (Q*, RM)  RN)). This indicates that,

, for this example, the e of .001 selected for the algorithm and used

in setting the qi * 0 threshold was smaller than necessary. Since

(Q*, N ) did converge to m Rm) the output specifications of Table

5.4 are the minimum specifications promised by Theorem 4 and required

Iby (6.1b).
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Figure 6.7 is a representative example of the behavior of 4 out

of the 24 outputs during this input-constrained search. The plots in

this figure also show normalized values versus the iteration number.

6.5.2 Output-constrained Solution

The output constrained search produced an LQG controller which

satisfied the requirements of (6.2b). The results are shown in Table

6.2. The numbers in parentheses in Table 6.2,as in Table 6.1, repre-

sent the weight that the algorithm assigned to that particular output

on the last iteration. As expected, the output-constrained search

drove the outputs in Yc to their specification. It also assigned

zero weights to all outputs in ?c . Since the hoop-column model is

controllable, these results indicate that the rank of the

24x26 C matrix is only 7 and for the particular (a,2, u2 ) outputs

11, 12, 14, 16, 17, 20, and 22 form the independent set. The input-

specifications shown in Table 6.2 represent the minimum torque specifi-

cations required by (6.2b) and promised in Theorem 5. The data is the

result of 18 iterations of the output-constrained search plus two

'reset iterations' (i.e. PWR reset to .5 and previous iteration data

restored). Figures 6.8-6.13 display the normalized values of each

output component (1.0 implies the component is at specification)

versus the iteration number, and reset iterations are not shown. As

in Figures (6.4-6.7), the last data point is printed on each plot.

The apparent 'extra' iterations of the output-constrained search, as

in the input-constrained search, are necessary to identify the output

in ?c (i.e. ql . 0 * I: yi ec) for the specified £.

Figure 6.14 is a representative example of the behavior of 4 out of

1.-.- 
* \ * ~ ~
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Zj,

V. Table 6.2: Hoop Column Output-Constrained Solution Results

Output# Ey Actuator # (minimum achievable)
,(AX2) .015 sec (q, - 0) *I(TX2) 24.252 dn-cm

2(AY2) .015 sec (q2 = 0) *2(TY2) 24.288 dn-cm

3(AZ2) 11.579 sec (q3 = 0) *3(TZ2) 40.280

4(AX10-AX2) .001 s (q4 = 0) *4(TX6) 24.253
5(AYlO-AY2) .001 sec (q5  0 0) *5(TY6) 24.282

6(AZIO) 12.001 sec (q6 - 0) *6(TZ6) 40.869
7(X6-X2) .010 mm (q7 = 0) *7(TX9) 29.466

. 8(Y6-Y2) .010 mm (q8 = 0) *8(TY9) 29.496

9(X9-X2) .068 mm (q9 = 0) *9(TZ9) 41.963

10(Y9-Y2) .068 mm (qlO = 0) *10(TX1O) 36.026

11(X10-X2) .158 mm *11(TYIO) 36.056

12(YIO-Y2) .158 mm *12(TZ1O) 41.747

13(X1O1-X1O) .104 nun (q13 = 0)

14(Y1OI-Ylo) .158 mm

15(Z1OI-ZlO) .007 mm (q15 = 0)

16(X107-XlO) .158 mm

17(Y107-YlO) .156 mm
18(Z107-Z1O) .008 mm (q18 = 0)

19(X113-X10) .122 mm (q19 = O)
* 20(YII3-YIO) .159 mm

21(Z113-Z1O) .001 mm (q21 = 0)
22(X119-XlO) .158 mm
23(Y119-YlO) .091 mm (q23 = 0)
24(Z119-ZI0) .001 mm (q24 = 0)

• specification violation (Eu.2 >U1 2

,.*-.j

,, .' .. ~ -.. ... . ... .. . . . .; ... .. ---... .. .,- . . ...>. . . .. .- .- . .- . .
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the 12 controls during the output-constrained search. The plots of

this figure also display noraZlized values versus the iteration number.

6.5.3 Summary of Hoop Column Results

Physical insights into the control of the hoop-column antenna will

be reserved for Chapter 7. Of interest in Section 6.5 has been the

performance of LQGWTS for the multi-input/output hoop model SHoop

(26, 24, 12, 39). As evidenced by the data, the algorithm converges

to the input-constrained or output-constrained solution. Considering

the fact that for the input-constrained case, the algorithm is solving

22 simultaneous transcendental equations (12 input, 10 output), and

for the output-constrained, case 17 simultaneous transcendental equa-

tions (17 output), the convergence rate is impressive. For a larger

e value, the rate would have been even faster. It should also be

noted that only 2 out of the 36 iterations were lost due to iteration

resets. Therefore, for the hoop column model, the modified successive

approximation/descent function approach of LQGWTS is practical and

succeeds in tailoring the LQG cost functional to the input/output

requirements of the SASLQG problem! The next section shows further

evidence of the validity of LQGWTS.

6.6 Solar Optical Telescope Example

The algorithm LQGWTS was also run on the solar optical telescope

model S tele(24, 3, 21, 45) for the output, sensor, and actuator con-
figuration described in Section 4.4 and the (a2 t2) specification

of Table 4.14. As in the hoop case, both the input constrained and

output constrained options were run. and the results indicated that

an LQG controller (diagonal Q,R) did not exist to meet the (a2, u2)
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of Table 4.14. Therefore, the 'minimum achievable' specifications

of (6.1b) or (6.2b) were again sought.

6.6.1 Input-Constrained Solution

Table 6.3 displays the results for the input constrained solution,

with appropriate labels by each output and actuator number. The

algorithm placed a zero weight on the defocus output, and for the

specifications of Table 4.14 the set Yc is the defocus output. As

expected, the input-constrained solution required all actuators to

operate at their specification, and the output values of Table 6.4

for the given actuator constraints represent the minimum achievable

output specifications required by (6.1b) and promised by Theorem 4.

The data of Table 6.3 is the result of 14 iterations of LQGWTS plus

two 'reset iterations.' The plots of figures 6.15-6.20 show the

normalized value of each input and output component versus the itera-

tion number (reset iterations are not shown), and the value of the last

data point is printed on each plot. From looking at the plots, it

appears that the algorithm converged by approximately iteration 9.

As was the case in the hoop-example, the 'extra' iterations are

required to identify, based on the specified e threshold of .001, the

outputs in ?c' and thus guarantee the minimum specifications promised
by Theorem 4. (i.e. (Q*, RM) (Q*R' )

6.6.2 Output-Constrained Solution

The output-constrained version of LQGWTS produced an LQG regula-
tor for the telescope which generated the data of Table 6.4.
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Table 6.3: Telescope Input-Constrained Solution

output # (minimum achievable) actuator # (specification)

*1 (LOS X) 8.809 deg I(FYI) .O1N

*2(LOS Y) 8.465 deg 2(FZ1)

3(DEFOCUS) .003 mm (q3 = 0) 3(FZ2)

4(FX3)

5(FY3) "

6(FZ3) "

7(FZ4)

8(FX5)

9(FY5)

I0(FZ5)

ll (FZ6)

12(FY7)

13(FZ7)

14(FZ8)

15(FZ9) of

16(FZIO) "

17(FX11) "

18(FYl1) "

19(FZ1 ) 

20(FY12) "

21 (FZ12)

* - specification violation (Eyi2 > ai2)

R ' - ,P ,, , ' ,. . ,. . , .. , . .. . . ... .. .. .. . . . . ... . . ..

I 
'

'=: ,b , "-" i
W

" "-", , " - " ' '"' " "-- .. .. ) . .". . ." ' 
'

. . . . .
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Table 6.4: Telescope Output Constrained Solution

output # actuator # (minimum achievable)

l(LOS X) 65.227 sec *l(FY1) .021N

- 2(LOS Y) 65.227 sec *2(FZ1) .030N
3(DEFOCUS) .003 mm (q3 = 0) *3(FZ2) .037N

*4(FX3) .041N

*5(FY3) .021N

*6(FZ3) .030N

*7(FZ4) .037N

*8(FX5) .208N

*9(FY5) .135N

*10(FZ5) .021N

*11(FZ6) .025N

*12(FY7) .135N

*13(FZ7) .021N

*14(FZ8) .025N

*15(FZ9) .075N

*16(FZ1O) .075N

*17(FXI1) .265N

*18(FYll) .135N

*19(FZ11) .089N

*20(FY12) .135N

*21(FZ12) .089N

*indicates specification violation (Eu i2 > U2

ml > I~j
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The output-constrained search drove the outputs Yi Yc to their

specification (i.e. LOS X, LOS Y) and zeroed the weight on the defocus

output. The actuator specifications shown in Table 6.4 represent the

minimum achievable input specifications required by 6.2b and promised by

Theorem 5. These results were generated in 10 iterations of the algo-

rithm and two 'step size resets' were required. The plots of Figure

6.21 show the norralized values of the outputs and a representative

control versus iteration number.

6.6.3 Summary of Telescope Results

As in the case of the hoop column, LQGWTS converged to both the

input and output constrained solutions for the telescope. There was

a noticable difference in the convergence speed for the input and

output constrained solutions, and this is a direct result of the fact

that the input constrained option was simultaneously solving 22 trans-

'- cendental equations while the output constrained case was solving

-.. only 3. In addition, the data indicated that an e larger than .001

could have been used,and faster convergence would have resulted. In

1 terms of 'reset iterations,' the algorithm lost only 2 out of the
..p

total 28 iterations performed on the telescope. Therefore, both the

telescope and the hoop examples have demonstrated that LQGWTS can

successfully tailor the LQG cost functional to satisfy the input and

output constrained requirements of the SASLQG problem and this ability

is fundxnentaZ to achieving a solution.

i4

m5

= % *;. -.- * *% . *5.~.
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7.0 THE SASLQG ALGORITHM

As an introduction, a restatement of the SASLQG problem from

*Chapter 3 is appropriate.

SASLQG Problem Statement

Given: A system of type S(n,k,ml) which has only

out of m actuators and Z out of z sensors

available for the design of a steady state

LQG regulator which must achieve (62 2).

Required: Specify the closed-loop system which satisfies

the following input-constrained or output-

constrained requirements:

Input-constrained

If (a2 , 2) are achievable,

k 2 2 2-2
(7.1a) Min I Eyi /ai subject to Ei 2  * f 1, ...

S 1tl

else,

k 2 2 2 2
(7.1b) Min I Ey /at " i: EJYt 0 2

S 1-1

Subject to E •u 2  2 * i 1 I

i............................................................-..........,. -....................
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Output-constrained

If (a2  U2 ) are achievable,

(72a M 2 -2 2 2k(7.2a) Min E u1 / subject to Eiy 1  2 k:"iS i-I

* - else,

mn 2 -2 2 -2
(7.2b) Min iI E ui /i i-lu: > Ui

S inl

Subject to Ey12= a1 2 * I a 1, ... k

For the approach chosen by this research, there are, of course, two key

elements in solving the SASLQG problem: First, tailoring the cost

functional V so that the LQG controller which minimizes V also achieves

the input-constrained requirements or the output constrained require-

ments, and second, evaluating the effectiveness of the role of each

sensor and actuator in the minimization of this tailored V. Chapter 6

provides the algorithm LQGWTS for tailoring V so that either the input-

constrained or the output-constrained requirements are satisfied by

the LQG controller. Chapter 5 develops the sensor and actuator values

V i sen and Vtact which provide a relative measure of the effectiveness

of each sensor and actuator in the minimization effort. The objective
of this chapter is to combine LQGWTS and Vtact , Vtsen into an algorithm

which solves the SASLQG problem. Section 7.1 presents the facts which

were considered in developing the algorithm (SASLQG) along with a

discussion of the general flow of'the algorithm. While Section 7.2
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presents the detailed steps of SASLQG. The algorithm is applied to

the hoop-column and telescope models in Sections 7.3 and 7.4 respectively

and concluding comments appear in Section 7.5.

7.1 Important Facts and Basic Algorithm Flow

The following facts merit consideration in combining LQGWTS and

Vi act, 1sen to solve the SASLQG problem.

Facts

(1) The data of Chapter 5 indicates that relative VIact

(V i sen) ranking between actuators (sensors) can

change as a function of Q and R. This fact is

further illustrated by the results of [12] that

showed the actuator location on a simple beam which

minimized V was a function of Q and R.

(2) (M" RM' Q ' RA change when the actuator and/or sensor2 2
structure change. (i.e. the expressions Ejy2 , u2

are explicit and implicit functions of B and M which

contain actuator and sensor configuration information).

(3) The results of [11], [15) and [16] have shown the

sensor and actuator selection problems to be highly
coupled and that simultaneous selection works better

than sequential selection. For a simple example of

coupling note:

act -
2b T T a~

Vlt r'b lXKbl - [BT(K+L)BWa)1 i

Vtsen Vii'Imi TpLPml

are both implicit and explicit functions of actuator

and sensor terms.

'wNw. "'K2f>.X .'
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(4) Visen and Viact do not provide insight into when
V) deletion of a sensor or actuator will cause loss of

measurability (observability) or controllability.

(5) From Theorem 3 it is known that deleting sensors can

never improve regulator performance.

(6) From Theorem 2 it is known that deleting noisy

sensors may improve regulator performance.

The preceding 6 facts suggest the following flow for the algorithm

SASLQG.

SASLQG General Flow

oil Run LQGWTS (Input-constrained or output-constrained

option) assuming that all admissible sensors and

actuators are available and operating (i.e. S(n,k,m,t))

02, Determine Viact and Visen for all sensors and actuators

and then rank them from highest to lowest.

7D3 Throw out the lowest ranking sensor and actuator, and
all others of 'nearly' the same ranking, if measurability

and/or controllability of the system are not disturbed.

(4). Return to (D) until the appropriate number of actuators

and sensors have been deleted (i.e. m, t). However,

in light of Theorem 2, fewer actuators than might

be desirable and actuator deletion should continue
until the "minimum" achievable specifications (i.e.

(7.1) or (7.2) are no longer improving.

Facts (1) and (2) have dictated the order of steps CT and (2

.in the above described general flow. More specifically, since the

ranking of effectiveness values can vary as a function of Q and R, and

we are interested in effectiveness rankings for a V which produces

a controller that satisfies (7.1) or (7.2), the effectiveness values

nij.
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should be based on the Q and R that specify the desired V.

Step (D of the general flow results from facts (3) and (4).

Obviously caution must be exercised in deleting sensors and actuators

with 'nearly' the same effectiveness values since facts (1) and (2)

indicate that any perturbation in the sensor and actuator configuration

can alter relative effectiveness rankings of the sensors and/or actuators.

Also, the requirement for checking measurability and controllability is

severe however, as a result of the work of Skelton and Hughes in [65],

the controllability and observability of systems in modal form (i.e.

(4.15)) can be done virtually by inspection for systems of any dimension.

Facts (5) and (6) influence the rationale behind step 04 of the

general flow. If i sensors are allowed then according to Theorem 3,

,ensors should be used, but, of course, Theorem 2 invalidates this

philosophy for actuators. Since either the input-constrained require-

ments or output-constrained requirements are sought, the requirement

of step ® to check the improvement of these specifications can be

met easily, by checking the appropriate sum at each iteration:

Input-constrained Solution

For (7.1a) check for decrease in:

k 2
(7.3) EY i2/a2

131

For (7.1b) check for decrease in:

k EYi 22/a 2

ill

.. . . , .,, . ¥. . . . .. .. .. .. .. . . . . • ... . . . . .. . .. __ __' r. - - - ,, ,,,., .,, ,-
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Output Constrained Solution (for ma actuators present)

For (7.2a) check for decrease in:

i ma
:::(7.5) i=1E~ui2 /Ui2

!;!i

or

m
i ala i=1E~u i 1Ui

For (7.2b) check for decrease in:

"m a  m

(7.6) : Eu > 2  .'a Eu 2 2 or I/ Ta 21Ui2W ; i 1 i h a I E uI

ma

The average power (1/ma = E 2u2 /Ut 2 ) is considered by the output-

constrained checks because the average power m1g~t be of more interest,

and a decrease in total normalized power (i.e. Ei U 2) cannot

guarantee a decrease in average power since ma is also decreasing.

Before presenting the detailed algorithm the question raised in

Chapter 5 concerning Viact and constrained input power must be addressed.

The condition under which V. act was derived and tested in Chapter 5

assumed, implicity, that control power was not limited to an extent

which would prevent other actuators from being able to increase power

to compensate for the essential (noiseless) contribution of a deleted

actuator. In the input constrained situation, these conditions could

* certainly occur and did for the hoop column example. It was therefore

necessary to modify Viact for finding SASLQG input-constrained

specifications. After considerable testing, the following V1 act

, Z1
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modification was found to work for both the hoop and the telescope

examples:

act1  V iu Vu(7.7) Vi  U - v /u

* wa VU Ut
Vt

where V 
u  V1=

The expression in (7.7) does have intuitive appeal since it represents: /V. \
the product of an signal to noise ratio ) and a term

; / which is the inverse of the fraitional load carried by the

remaining actuators. It should once more be re-emphasized that (7.7)

was found to be a suitable measure of actuator effectiveness only in

the input-constrained situation.

7.2 The Algorithm

The specific details of the algorithm SASLQG are presented in this

section. The specific steps of the algorithm will be presented first

and a brief discussion will follow.

Al orithm SASLQG

Q Specify the number of sensors (i) and actuators ()
that can be used in the design. Choose the input-

constrained or output-constrained option and run

LQGWTS with all admissible sensors and actuators

- present.

ci., With the resulting LQG controller (i.e. (3.2) and

(3.6)),calculate V isen , i/v for each sensor using

(5.4f,g).
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Input-constrained option:

act1
Calculate V t for each actuator using (7.7) and

(5.4a,d).

Output-constrained option:

Calculate Viact for each actuator using (5.8) and

(5.4a,d).

(3 Rank the sensors from highest to lowest based on

V isen values. Rankcthe actuators from highest to

lowest based on Vi c I or Vtact values.

(' From the rankings in e) , identify the lowest ranking

sensor(s) for which deletion would not disturb the

measurability of the system. Also, identify the lowest

ranking actuator(s) (from the ranking in i3 ) for

which deletion would not disturb the controllability
of the system.

( Calculate the following value:

Input-constrained option

For condition 7.1a: calculate (7.3)

For condition 7.1b: calculate (7.4)

Output-constrained option

For condition 7.2a: calculate desired value in (7.5)

For condition 7.2b: calculate desired value in (7.6)

If the value is greater than the value for the previous

iteration and the number of actuators is less than m,

restore the previous iteration actuator configuration

and make no more actuator deletions.

) If no sensor or actuator deletions are required. Stop.

:L. Delete the Identified sensors (i.e. drop the appropriate

rows of M and V, and the appropriate columns of V).

Delete the Identified actuators (i.e. drop the appropriate

columns of B,D,R,W and rows of R,W).

-I'
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8.i) Rerun the appropriate option of LQGWTS for the
reduced system and go to 1:2.

The fortran IV subroutine LQGWTS has been modified to also calcu-

late and rank the actuator and sensor effectiveness values (Viact or

Sact I) and Vi v, and as mentioned in Chapter 6, Appendix E contains

an explanation and listing of this program. Therefore, the first 3

steps of SASLQG have been automated. Steps i, , and '6 are

performed by the controls engineer based on the output of LQGWTS and

of course some form of controllability and measurability check. Both

the hoop column and telescope models are in modal form and the observ-

ability checks developed by Skelton and Hughes [65] can be applied by

inspection to these models. For systems not in modal form a trans-

formation to modal form could be helpful. The steps (7 and 8, have

been automated for the hoop column and telescope models by writing a

calling program for the subroutine LQGWTS. The calling program can

delete any necessary row or column of the system matrices by simply

specifying the actuator or sensor number to be deleted. These calling

programs are labeled LQHOOP and LQTELE and are also listed in

Appendix E.

7.3 Hoop Column SASLQG Example

The SASLQG problem for the hoop column antenna model (SHoop(26,

24, 12, 39) was posed in Section 4.3.2 as the H.SAS problem and is

repeated here for continuity.

H.SAS PROBLEM

Given: SHoop (26, 24, 12, 39) with only 6 actuators and

12 sensors available for designing an LQG regulator
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2 2
to achieve the (a2, ) specifications of
(4.16).

Required: Specify the closed-loop system which satisfies

*either (the input constrained requirements of

(7.1) or the output constrained requirements of

(7.2).

Before presenting the results, the following table of sensor labels is

added to the output and actuator labels used in Tables 6.1 and 6.2. Note

that ARX2 stands for an angular rate sensor in the X direction at node 2.

Table 7.1: Hoop Column Sensor Labels

Sensor Sensor Sensor
Number Label Number Label Number Label

I AX2 14 AYIO 27 Z9-ZlO

2 AY2 15 AZIO 28 ARX2

3 AZ2 16 XlOl-XlO 29 ARY2

4 X6-X2 17 YlOl-YlO 30 ARZ2

5 Y6-Y2 18 ZlOl-ZlO 31 ARX6

6 Z6-Z2 19 X107-XlO 32 ARY6

7 X9-x2 20 Y107-YIO 33 ARZ6

8 Y9-Y2 21 Z107-ZlO 34 ARX9

9 Z9-Z2 22 X113-XlO 35 ARYg

10 XlO-X2 23 Y113-YIO 36 ARZ9

11 YlO-Y2 24 Z113-ZlO 37 ARX1O

12 ZlO-Z2 25 X119-XlO 38 ARY1O

13 AXIO 26 YI19-YlO 39 ARZIO

7.3.1 Input-Constrained and Output-Constrained SASLQG Results

Tables 7.2 and 7.3 present the iteration by iteration results of

the SASLQG input constrained and output constrained options applied

to the hoop column antenna. The results indicated that no LQG control-

ler existed to meet the (a2, V 2) of (4.16). Therefore, the conditions
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of (7.1b) and (7.2b) were sought. Both tables show the iteration

number and the sensors and actuators identified for deletion in the

next iteration with their effectiveness values in parentheses. Table

7.2 lists the normalized output sum (7.4), while Table 7.3 lists the

average normalize control power (7.6). The last column in both tables

is the number of sensors and actuators in the current design.

As might be expected for an input constrained case, the iteration

data of Table 7.2 is more sensitive to actuator deletion than sensor

deletiun. Of particular interest is the large jump in the output

value between iteration 6 and 7. For certain design situations this

4 large shift could warrant a hardware change from 6 to 7 actuators.

The (0) effectiveness values for (Z6-Z2), (Z9-Z2), and (ZlO-Z2) result

from the fact that these measurements correspond to rows in the M

matrix which have very close to zero magnitude. If the longitudinal

axis of the hoop-column was assumed incompressible in the NASTRAN

development (a reasonable assumption) then that would account for the

non-measurability of these sensor locations. As in the input-constrained

case, the data of Table 7.3 was more sensitive to actuator deletion

than sensor deletion. However, a significantly different sensor and

actuator configuration was identified. The largest shift in the input

value occurred between iterations 5 and 6 which, as in the input case,

corresponds to a drop from 7 to 6 actuators. It should also be noted

that if the sum of input power had been adopted as an effectiveness

criterion instead of the average, the algorithm would have continued

to delete actuators past 6 (i.e. m).
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Table 7.2: Hoop Colum Input-Constrained SASLQG Results
Iteration Identified Output Value Number of
Number Sensors (V1Stfl) Acutr (V acti) (7.4) Sonars/Actueators

1 AZIO(.000253) TXO(.69642) 300.15 39112
AZ2 (.000243)

A4 ZS-Z2(0)

Z1-Z2(0)

2 Z119-ZIO(.00840) TYlO(.69671) 323.24 34/11
AY2 (.00757)

- Z113-ZI0(.00707)

3 AXIO(.0160) TX9(.75236) 346.46 31/10
AY1O( .0159)
AX2( .0107)

4 Y6-Y2(.114) TY9(.74676) 410.39 28/9
Z107-ZIO(.0768)

ZIO1-ZIO(.0596)

S ARZ9(.260) TZ9(.84762) 472.46 24/8
ARIO(.258)
ARZ6 (.258)

6 Y9-Y2(.772) TY2(.82705) 639.97 21/7
Xg- X2 (. .768)

7 Y119-Y10(1.242) --- 970.16 19/6Y107-Y1O( 1.238)
I Y101-Y10(1 .236)

8ARX6(2.037) --- 975.48 16/6
ARX2 (2.037)

9 ARY2(2.409) ... 980.27 14/6
ARY6(2.408)

10 --... 985.45 12/6
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Table 7.3: Hoop Column Output-Constrained SASLOG Results

Iteration Identified Identified Ave nput Value umber of
Number Sensors (vs.") Actuators (Vi (7.6) Sensors/Actuators

I AZ10(.0004116) TZo(-1.362) 3.275 39/12
AZ2(.000397) TZ9(-1.369)
Z6-Z2(0)
Z9-Z2(0)
ZIO-Z2(O)

2 AY1(.003362) TZ6(-2.1405) 3.592 34/10
AXIO(.003358)
AY2(.00226)

Z113-Zo(.001942)
Zll9-ZlO (.001884)

3 X6-X2(.01457) TXIO(-1.2055) 3.699 28/9
Y6-Y2(.01455)
Z101-Z10(.0110)
Z107-Z10(.0108)

4 ARZ2(.02844) TX9(-1.2917) 3.997 24/8
ARZ1o(.02232)
ARZ6(.02238)

S X9-X2(.0986) TX6(-1.4793) 4.377 21/7
6 Y9-Y2(.0839)

6 ARX6 (.07648) ---- 4.829 19/6
ARX2 .07648)

7 Y107-Y1O(.13395) 4.857 17/6ARY9(. 1098)

8 X119-410(.1567) ---- 4.905 15/6
X113-XO(.1555)
X101-X1O(.1551)

9 5.021 12/6

4- 1
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7.3.2 Sensor and Actuator Configuration Comparisons

It should be remembered that the goal of the SASLQG input-

constrained and output-constrained algorithms is to locate the out

of I sensors and i out of m actuators such that (7.1) or (7.2) are

best achieved. Since no proof of optimality is currently available for

the SASLQG algorithm just presented, the important question is whether

another configuration exists which can do better either in the input-

constrained or output-constrained case. For the hoop-column, numerous

configurations of 6 actuators and 12 sensors have been tested, and none

have bettered the configurations defined by Tables 7.2 and 7.3. Of

course, all possible configurations would have to be tested to theoreti-

cally verify the optimality of the configurations. Table 7.4 and 7.5

compare the input-constrained and output-constrained configurations

respectively with each other and 2 other possible configurations. In

case (2) of Table 7.4 TX2 of the input-constrained configuration was

changed to TZ9. This gave the configuration of case (2) the use of

all z torquers, the rational being that if 3 Z torquers did well, four

would do better. For case (3) of Table 7.4 a form of collocation was

attempted where all torquers were collocated with rate sensors. In

case (4), the optimal SASLQG output-constrained configuration was

tried and obviously doesn't do very well for an input constrained

solution.

In the data of Table 7.5, case (2) is a collocation configuration

similar to the one in Table 7.4. The measurements for case (3) of

Table 7.5 were deliberately chosen so that measurability was lost

with relatively disasterous results. Finally, in case (4) the

, . .
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optimal input-constrained SASLQG solution is seen to be a better

approximation to an output-constrained solution than the converse

condition in Table 7.4.

7.3.3 Physical Insights

Tables 7.6 and 7.7 provide the minimum achievable SASLQG specifica-

tions for the input-constrained solution and output-constrained solu-

tion of the H.SAS problem. These specifications are valuable in the

sense that they represent a ph/eicaZ y realizable set of specifications

for the given hoop model and sensor and actuator noise characteristics,

and an LQG controller has already been designed that achieves these

specifications.

The data presented in Tables 7.6 and 7.7 offer other useful

insights into the control problem. As noted in Chapter 6, the output

specifications of Table 7.6 represent the minimum achievable specifi-

cations when all available control power (in a stochastic sense) is

being used. The outputs which remain the farthest above specification

represent those outputs which, for the given specifications, are the

hardest to regulate. Dividing the (a2, j2) specifications of (4.16)

Into the results of Table 7.6 the following outputs were found to be

significantly above specification and are ordered from highest to

lowest: 16, 11, 22, 14, 13, 19, 6, 3, 9, 20, 17, 12, 23, 10, 15.

Combining the output labels of Table 6.1 with the hoop-column schematic

of Figure 4.1 provides a physical interpretation for these outputs.

Outputs 14, 16, 20, and 22 are tangential displacements of the hoop

with respect to the feed horn at node 10. Outputs 13, 17, 19 and 23

represent radial displacements of the hoop with respect to the feed
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Table 7.6: H.SAS Input-Constrained Specifications

I..-
Output # E Actuator # Specifications

(minimu achievable)

1(AX2) .534 sec 1 (TX2) 10-.000 dn-cm

2(AY2) 1.779 'sec 2 (TZ2) 10.000 dn-cm

3(AZ2) 1265.6 sec .3 (TX6) 10.000 dn-cm

4(AX1O-AX2) .026 sec 4 (TY6) 10.000 dn-cm
5(AY1O-AY2) .085 sec 5 (MZ) 10.000 dn-cm

6(AZ1O) 1311.7 sec 6 (TZlO) 10.000 dn-cm

7(X6-X2) 1.247 mun

8(Y6-Y2) .374 -m

9(X9-X2) 8.161 nu

10(Y9-Y2) 2.450 mm

1l(X1O-X2) 18.984 mm

12(YlO-Y2) 5.700 mm
13(XlO1-XIO) 13.671 num

14(Y101410O) 15.141 mm

15(z1o1-z1o) .767 mm

16(X107-X1O) 20.573 mm
17(Y107-Y1O) 7.503 mun

18(Z107-ZIO) .445 nun

19(X113-XIO) 13.519 nun

20(Y113-Y1O) 7.677 mm

21(Z113-Z1O) .137 mm

22(X119-XIO) 16.949 nun

23(YI19-Y1O) 4.680 mm

24(Z119-ZlO) .080 nun

.10S. P
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* Table 7.7: H.SAS Output-Constrained Specifications

Output # Ey' Actuator # (minimum achievable)

1(AX2) .015 se 1 TX2 72.91 dn-cm

2(AY2) .015 9gjZ 2 TY2 26.145 dn-cm
3(AZ2) 11.588 iec 3 TZ2 105.47 dn-cm

4(AX1O-AX2) .001 red 4 TY6 26.138 dn-cm

5(AY1O-AY2) .001 sec 5T93.5 nc
6(AZIO) 12.000 'si c 6 TYlO 38.812 dn-ci

7(X6-X2) .010 mm

8(Y6-Y2) .010 run

9(X9-X2) .068 nmn

10(Y9-Y2) .068 nun
1l(X1O-X2) .158 mm

12(Y1O-Y2) .158 nun

13(X1O1-X1O) .104 mmn

14(Y1O1-Y1O) .158 mm

15(Z1Ol-Z1O) .007 mm

16(X107-X1O) .158 mm
17(Y107-Y1O) .156 mm
18(Z107-Z1O) .008 nun

19(X1 13-XIO) .122 mm

20(Y113-Y1O) .158 mm
21 (Z113-Z1O) .001 mm
22(Xl19-XlO) .158 mm
23(Y119-Y1O) .091 mmn

24(Z119-Z1O) .001 mm
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horn. Twisting (i.e. z rotation) between the top and bottom of the

column is represented by outputs 3 and 6, while bending and x/y rotation

of the column are represented in outputs 11 and 12. Therefore, for

the given sensor and actuator locations and actuator variance constraints,

the most difficult control problems, respectively, are regulating the

hoop x-y plane rotations with respect to the feed horn, keeping the

hoop centered with respect to the feed horn, and minimizing the twist-

ing, bending, and x/y rotation of the column. It should be mentioned

that similar output information can also be obtained from the output

constrained solution by noting which outputs require the largest qi's

to achieve their specification.

Theorem 5 promises, that for the given output specifications,

the torquer specifications in Table 7.7 represent the smallest possible

average deviation from the required torquer specifications. A natural

consequence of this situation is that the torquers in Table 7.7 with

larger values of E4ui2 are more critical to overall performance and

therefore are candidates for the best hardware available (i.e. most

reliable, least noisy etc). The data indicates that the z-torquer is

the most critical actuator, and since hoop rotation with respect to

the feed horn and column twisting are some of the most difficult

outputs to control, this result is certainly not surprising. It

should also be mentioned that similar critical input information can

be obtained from the input-constrained solution by noting which inputs

require the largest rl 's to operate at their specification. Comparable

insights and results exist for the telescope SASLQG example presented

in the next section.

-4
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7.4 Telescope SASLQG Example

The SASLQG problem for the solar optical telescope model (Stele

(24, 3, 21, 45)) was posed in Section 4.3.2 as the T.SAS problem. The

problem is repeated here again for continuity.

T.SAS Problem

Given: Stele (24, 3, 21, 45) with only 12 actuators and

12 sensors available for designing an LQG regulator

to achieve the W, A2) specification of Table 4.14.

Required: Specify the closed-loop system which satisfies

either the input constrained requirements of (7.1)

or the output constrained requirements of (7.2).

Before presenting the results, the following table of sensor labels

is added to the output and actuator labels used in Tables 6.3 and 6.4:

Note that Yl represents a linear displacement sensor in the Y direction

at node 1 and LRZ3 represents a linear rate sensor In the Z direction

at node 3.

7.4.1 Input-Constrained and Output-Constrained Results

Tables 7.9 and 7.10 present the iteration by iteration results of

the SASLQG input-constrained and output constrained options when

applied to the T-SAS problem. The results indicated that no LQG

controller existed to meet the (o 2 , 2) specifications of Table 4.14

and therefore the conditions of 7.1b and 7.2b were sought. The

tables follow the same format as Tables 7.2 and 7.3.

The first point of interest in the data is that in iteration 1

of both solutions, the measurements of the outputs were deleted. It

should be remembered, however, that the goal of Kalman-Bucy filter is
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Table 7.8: Telescope Sensor Labels

Sensor Sensor Sensor
Number Label Number Label Number Label

1 LOSX 16 Z7 31 LRZ4

2 LOSY 17 Z8 32 LRX5

3 DEFOCUS 18 Z9 33 LRY5

4 Yl 19 Z1O 34 LRZ5

5 Zl 20 xli 35 LRZ6

6 Z2 21 Yll 36 LRY7

7 X3 22 Zil 37 LRZ7

8 Y3 23 Y12 38 LRZB

9 Z3 24 Z12 39 LRZ9

10 Z4 25 LRY1 40 LRZ10

11 X5 26 LRZ1 41 LRX11

12 Y5 27 LRZ2 42 LRY11

13 Z5 28 LRX3 43 LRZ11

14 Z6 29 LRY3 44 LRY12

15 Y7 30 LRZ3 45 LRZ12
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Table 7.9: Telescope Input-Constrained SASLQG Results

Iteration Identified Identified act (utput Value NuAbar ofNumber Sensors (Visen) Actuators (Vi (7.4) Sensors/Actuators

I 1 Y3(.01176) FX11(.50204) 937.38 45/21
Y1 (.01176)
LOSY(.00003)
LOSX(.000002)
DEFOCUS(O)

2 Y1Z(.04943) FXS(.4600) 804.27 40/20
Y7(.04943)
Yll (.04943)
YS(.04943)

3,Z6 (.050868) FY12(.66234) 627.29 36/19
Z8( .050864) FY7(.66234)
Z5 (.04841)
Z7(.04841)

4 Z2(.07382) FYII(.61612) 726.68 32/17
Z4(.07182) FYs(.61612)
z3. 06732)
ZI (.06596)

5 ZlO(.13672) FZ11(.6171) 745.53 28/15Z.,( .1 37?) F112(.6171 )

6 LRY3(.2820) FZ9(.6037) 790.47 26/13
LRYI (.2820)
ZlI(.2289)
X3(.1920)

7 LRZ7(.3457) 788.48 22/12
LRZS( .3451)
LRZS(.3040)

8 LRZ4(.5234) 788.96 19/12LRZ3(.5173)

LRZ1 (.4515)
LRZ6(.3896)

9 LRZ9(1.214) 790.70 15/12
LRX3 (.62263)
LRZ2(.60428)

10 .... 794.72 12/12

AT
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I, Table 7.10: Telescope Output-Constrained SASLQG Results

Iteration Identified~1  Identified at Ave. Input Value Nufter of
Nmber Sensor (V ) Actuators I) (7.6) Sensors/Actuators

1 Y3(.008197) FX11(-7.980) 7.483 45/21

Aq LOSY(.00015)
LOSX( .00002)
DEFOCUS (0)

2 ZS .02955) FX5(-8.796) 7.393 40/20
V (.02955)

3 Y12(.03848) FY7(-4.003) 7.221 38/19Y7(.03848) FY12(-4.003)
Y11(.03848) FYI(-4.003)
Y5 (03848) FYS(-4.003)
2 (.03835)

Z4(.03835)
Zl (.3570)
Z3 (.03570)
Z6 (.03460)
Z8(.0846)

4 Z10(.08602) FZ11(-4.8877) 7.789 28/15

M : OMFZ12(-4.8877)

5 LRY3(l.0815) FZ9(-5.414) 8.155 25/13
* LRY1 (1.0813)

6 LRZ7(.12273) ... 8.339 23/12
LRZS(.11553)

7 LRZI(.16805) ---- 8.359 21/12
Z1 1(.16129)
LRtZ6(. 13838)
LRZ8(.13615)

8 LRX3(.2237) --- 8.416 17/12
LRZ2 (.2191)
LRZ4 (.2077)
LRZ3(. 1960)

9 LRZ9(.47256) ---- 8.492 13/12

10 .... 8.535 12/12

VA&% D*~V ~ ~ ~ ~ \ ..
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to estimate the state of the system not necessarily the output. For the

telescope example, the noise present on the output measurements made

them unattractive to the filter. For Table 7.9, iterations 3 and 4

indicate that 19 or possibly 18 actuators are an optimal configuration

if hardware constraints permit. From Table (7.10) the optimal number

lies between 19 and 15. It should be noted, however, that the output

value in Table 7.9 again began decreasing from iteration 6 to iteration

7, and according to'the algorithm, actuator deletions should have

continued. This oversight was just recently noted and time has not

permitted a continuation of the actuator deletion sequence to determine

if fewer than 12 actuator is a better configuration. As was the case

for the hoop, iterations 7-10 in both tables indicate that the sensor

deletions are not having as much impact on the regulator design as

actuator deletions. Finally although not immediately obvious from the

data in the tables, both the input-constrained and the output-constrained

options converged to the wne sensor and actuator configuration.

7.4.2 Sensor and Actuator Configuration Comparisons

As in the hoop example numerous other configurations were tested

and compared to the SASLQG solution to the T.SAS problem. Since both

the input-constrained and output-constrained options converged to the

same configuration, the results of both comparisons are presented in

Table 7.11 for the same test configurations. None of the tested

configurations did better than the LQGSAS solution including of

course the configurations in Table 7.11. Case (2) is a configuration

which collocates the actuators with the majority of the optimal

sensor locations defined in the SASLQG solution. Case (3) is a
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collocation of the sensors with the optimal actuator locations of the

SASLQG solution. Comparing cases (2) and (3) further indicates that

actuator location is driving the control design process more than the

sensors. The primary reason for this being the number of actuators,

and the power constraints, and noise level on the actuators. Case (4)

of Table (7.11) used all the actuator locations rejected by the SASLQG

algorithm plus the majority of the optimal sensor locations.
am

7.4.3 Physical Insights

Tables 7.12 and 7.13 provide the minimum achievable sepcifications

for the SASLQG input-constrained solution of the T.SAS problem. As in

the hoop column example, these specifications are valuable in the

sense that they represent a ph/gicaZl 4 realizable set of specifications

for the given telescope model (S(24, 3, 12, 12)), and an LQG controller

has already been designed that achieves these specifications.

The data presented in Tables 7.12 and 7.13 also offer useful

insights into the control problem. Remembering that the output

specification on LOSX and LOSY is 65.2 sec, and that the specification

or defocus is .001 m, it is easy to see that LOSX and LOSY are well

above specification. Since the specifications are the minimum achiev-

able specifications, LOSX and LOSY must be the most difficult outputs

to control. Using this same reasoning and recalling that the actuator

specifications are .01N, the most critical actuator in the current

control configuration is FZIO.

7.5 Concluding Comments

The purpose of this chapter has been to develop and test an

algorithm which solves the SASLQG problem using the actuator and

' ! ! B ' - - .. . " " ' -" " ' 
" "

""
"
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Table 7.12: T.SAS Input-Constrained Specifications

Output # (minimum achievable) Actuator # Specification

l(LOSX) 7.965" 1(FY1) .01N
2(LOSY) 6.4280 2(FZ1)
3(DEFOCUS) .00002 mm 3(FZ2)

4(FX3) "

5(FY3) "

6(FZ3)

7(FZ4)

8(FZ5)

9(FZ6)

IO(FZ7) "

ll(FZ8)
* 12(FZIO)

Table 7.13: T.SAS Output-Constrained Specifications

Output # Actuator # (Minimum achievable)

l(LOSX) 65.2 sec 1(FY1) .059N
2(LOSY) 65.2 sec 2(FZ1) .091N
3(DEFOCUS) .0002 nn 3(FZ2) .084N

4(FX3) .105N
5(FY3) .063N

6(FZ3) .070N
7(FZ4) .114N
8(FZ5) .060N

9(FZ6) .0585N
IO(FZ7) .049N
,1(FZ8) .075N

12(FZIO) .191N
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sensor effectiveness values of Chapter 5 and the weight selection

algorithm of Chapter 6. This was accomplished by identifying known

facts about the SASLQG problem and then using these facts to develop

an intuitively appealing algorithm which has no current proof of

optimality. The algorithm was successfully applied to the substantial

hoop column and solar optical telescope models. The documented results

have supplied not only a sensor and actuator configuration but also

insight into the optimal number of noisy actuators, and the most

demanding outputs and critical actuators for the given control design.

Finally, if the desired variance specifications cannot be met, the

algorithm provides a set of minimum achievable specifications along

with an LQG controller which produces them. With the results of

this chapter, a summary of the entire research may now be presented.

!t

V
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8.0 CONCLUSION

This research has developed and tested an algorithm which aids the

controls engineer in placing sensors and actuators (inputs) in a linear

stochastic system S(n,k,m,e) to 'best achieve' a set of variance

specifications ( 2 , u2) on the outputs and inputs of the system. The

term 'best achieve' has been defined in the introduction to be the

sensor and actuator configuration which enables a controller to do either

of the following: Meet the input specifications while minimizing a sum

of output variances normalized by their specification (a 2), (i.e. input-

constrained solution), or meet the output specifications while minimizing

a sum of input variances normalized by their specification (u2) (i.e.

output-constrained solution).

The approach taken to solve this sensor and actuator selection

.4 (SAS) problem was to use LQG theory to specify a structure for the

controller, and then develop an algorithm (SASLQG) that places sensors

and actuators in this controller structure to achieve either the input-

constrained or output-constrained solution. The advantages and

disadvantages to this approach were discussed in Chapter 3. The main

advantage being the mathematical ease with which LQG theory addresses

variance constraints, and the main disadvantage being that there may

be other controller structures which do better,

.-L--. ~ 'S t - - . - - -
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8.1 Contributions

In applying LQG theory to solve the SAS problem two specific

extensions of the theory resulted. The first was the development of

the sensor and actuator effectiveness values Visen and Viact in Chapter

5. These values determine the importance of each sensor and actuator

to the LQG controller when both the sensors and actuators are assumed

noisy. The second extension was the development of the Algorithm LQGWTS

in Chapter 6. This algorithm provides a systematic method for adjusting

the weighting matrices in the LQG cost functional V so that the controller

which minimizes V also satisfies either the input-constrained or output-

constrained variance requirements.

These two extensions were combined to form the sensor and actuator

selection algorithm SASLQG In Chapter 7. The algorithm was applied to

two substantial models of large space structures and the resulting

configurations although not guaranteed to be optimal achieved better

performance than any alternative configuration tested. As noted in

Chapter 7, the algorithm also provides insight into the sensitivity of

the controller design to sensor and actuator deletions and therefore,

insight into an optimal number for both sensors and actuators, Lastly,

the algorithm also provides information which identifies the most

demanding outputs and the critical actuators for the final sensor and

actuator configuration.

8.2 Recommendations for Further Research

*! It is felt that the algorithm SASLQG has made an important contri-

bution to the problem of selecting noisy sensors and actuators for

regulating linear systems with variance constraints on both the inputs

-i*.'Ib
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and outputs of the system. In light of this contribution the following

recommendations are made for further research:

8.2.1 Discrete Time Systems/Deterministic Systems

The results of this research should be extendable to both discrete

time systems and deterministic systems. The only changes currently

forseen for a discrete time system would be using discrete versions of

the continuous, steady state Riccati and Lyapunov equations currently

used in the algorithm. For determinis-ic systems, the regulation

constraints will take different forms but the process of tailoring the

cost functional to achieve these constraints and then determining

sensor and actuator contributions should still be possible using a

modified version of the LQGWTS update equations and Vact and Vsen

The specific details should be investigated.

8.2.2 Sensors Constraints

It is conceivable that variances constraints on the sensors of a

system (i.e. E zi2) may need to be within some bound. Incorporation

of these bounds appears possible through the techniques developed in

this research and should be researched.

8.2.3 SASLQG Simplification

The algorithm SASLQG requires running the algorithm LQGWTS at

each iteraction to tune the cost functional before the next set of

deletions occur. Experience has shown that once the original tuning

has been done (i.e. LQGWTS run on the first iteration), the subsequent

tunings of the cost functional may not be necessary. If conditions

for this result could be determined a substantial computational burden

of SASLQG could be removed.

, "' ' " " " "-U.' * ' "7 L ,'," ,4,,,,., . . , ,,., , :i,-* 1i'" "*1:?i'"*
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8.2.4 Non-Diagonal Q and R

While it is known that any cost functional which uses a non-diagonal

Q and R can be converted to an equivalent diagonal Q and R cost functional

by a unitary transformation on the system inputs and outputs. It is

currently not clear what advantages (if any) are gained by using the

off diagonal elements of the weighting matrices. This area needs to be

investigated.

8.2.5 PWR(j) and PWR y(J)

There is certainly no guarantee that the PWR(j) and PWR y(j) sequences

choosen for the exponents in the LQGWTS update equations are the best

sequences. Investigation could continue in this area by testing

sequences such as e
J or J

:46



LIST OF REFERENCES



7 7.-- - - - -. .. -. - . . ...

181

LIST OF REFERENCES

[1] Kwakernaak, N., and Sivan, R., Linear Optimal Control Systems,
Wiley-Interscience, John Wiley and Sons, New York, 1972.

[2] Bryson, A.E., Jr. and Ho, Y.C., Applied Optimal Control, Waltham,
Mass., Ginn and Company, 1969.

[3] Athans, M., and Falb, P.L., Optimal Control, New York: McGraw-
Hill, 1966.

[4] Skelton, R.E., "Cost Decomposition of Linear Systems with Applica-
tion to Model Reduction," Int. J. Control, Vol. 32, No. 6, 1980,
pp. 1031-1055.

[5] Skelton, R.E., and Gregory, C.Z., "Measurement Feedback and Model
Reduction by Modal Cost Analysis," Proceedings Joint Automatic
Control Conference, Denver 1979.

[6) Skelton, R.E., and Hughes, P.C., "Modal Cost Analysis for Linear
Matrix-Second-Order Systems," Journal of Dynamic Systems,
Measurement, and Control, Vol. 10Z, Sept. 1980.

[7] Skelton, R.E., and Yousuff, A., "Component Cost Analysis of Large
Scale Systems," Int. J. Control, Vol. 37, No. 2, 1983, pp. 285-304.

[8] Johnson, Timothy, L., Athans, M., and Skelton, G.B., "Optimal
Control-Surface Locations for Flexible Aircraft," IEEE Trans.
on Auto. Control, Vol. AC-16, No. 4, August 1971.

[9] Aidarous, S.E., "On the Structure of the Control Subsystem for
Stochastic Distributed Parameter Systems," Lecture Notes in
Control and Information Sciences. Distributed Parameter Systems:

44 Modeling and Identification, Proc. of the IFIP Working Conf.
Rome, Italy, June 21-24, 1976.

[10] Aidarous, S.E., Gevers, M.R., and Installe, M.J., "Optimal point-
wise discrete control and controllers' allocation strategies for

Sstochastic distributed systems," Int. J. Control, 1975, Vol. 24,
No. 4, pp. 493-508.

[11] Ichikawa, A., and Ryan, E.P., "Sensor and Controller Location
Problems for Distributed Parameter Systems," Automatica, Vol. 15,
pp. 347-352, 1979.



182

[12] Juang, J.N., and Rodriguez, G., "Formulations and Applications
of Large Structure Actuator and Sensor Placements," Second VPI &
SU/AIAA Symposium on: Dynamics and Control of Large Flexible
Spacecraft, June 21-23, 1979.

[13] Skelton, R.E., and Chiu, D., "Optimal Selection of Inputs and
Outputs in Linear Stochastic Systems," to appear in Journal of
Astronautical Sciences, 1983.

[14] Chiu, D., and Skelton, R.E., "Selecting Measurements and Controls
in LQG Problems," Proc. of NCKU/AAS International Symposium on
Engr. Sciences and Mechanics, Talnan, Taiwan, Dec. 1981.

[15] Chiu, 0., "Optimal Sensor/Actuator Selection, Number, and Place-
ment for Linear Stochastic Systems," Purdue University Technical
Report, Contract No. 955369, West Lafayette, IN, May 1981.

[16] Skelton, R.E., and DeLorenzo, M.L., "Selection of Noisy Actuators
and Sensors in Linear Stochastic Systems," to appear in Journal
of Large Scale Systems, Theory and Applications, North-Holland
Publishing company.

[17] Yu, T.K., and Seinfeld, J.H., "Observability and Optimal Measure-
ment Location in Linear Distributed Parameter Systems," Int. J.
Control, 1973, Vol. 18, No. 4, pp. 785-799.

[18) Chen, Wl., and Seinfeld, J., "Optimal Location of Process Measure-
ments," Int. J. Control, 1975, Vol. 21, No. 6, 1003-1014.

[19] Aidarous, S.E., Gevers, M.R., and Installe, M.J., "Optimal sensors'
allocation strategies for a class of stochastic distributed
systems," Int. J. Control, 1975, Vol. 22, No. 2, pp. 197-213.

[20) Aidarous, S.E., Gevers, M.R., and Installe, M.J., "On the
Asymptotic Behavior of Sensors' Allocation Algorithm in Stochastic
Distributed Systems," Proc. of the IFIP Working Conf., Rome,
Italy, June 21-24, 1976.

[21] Kumar, S., and Seinfeld, J.H., "Optimal Location of Measurements
for Distributed Parameter Estimation," IEEE Trans. Actions on
Automatic Control, Vol. AC-23, No. 4, August 1978.

[22] Omatu, S., Koide, S., and Soeda, T., "Optimal Sensor Location
Problem for a Linear Distributed Parameter System," IEEE Trans.
on Auto. Control, Vol. AC-23, No. 4, August 1978.

[23] Wei, Y., and Wu, A., "Optimization of Large Structure Sensor
Designs," Proc. 13th Asilomar Conf. Pacific Grove, Ca., Nov. 1979.

[24] Arbel, Ami, "Sensor Placement in Optimal Filtering and Smoothing
Problems," IEEE Trans. on Auto. Control, Vol. AC-27, No. 1,
Feb. 1982.



183

[25] Colantuonl, G., and Padmanabhan, L., "Optimal Sensor Selection in
Sequential Estimation Problems," Int. J. Control, 1978, Vol. 28,
No. 6, pp. 821-845.

[26] Curtain, R.F., and Ichikawa, A., "Optimal Location of Sensors
for Filtering for Distributed Systems," Proc. of the IFIP Working
Conf., Rome, Italy, June 21-24, 1976.

[27] Amouroux, M., Babary, J.P., and Malandrakis, C., "Optimal Location
of Sensors for Linear Stochastic Distributed Parameter Systems,"
Proc. of the IFIP Worklng Conf., Rome, Italy, June 21-24, 1976.

[8] Morari, Manfred and O'Dowd, M.J., "Optimal Sensor Location in the
Presence of Non-Stationary Noise," Automatica, Vol. 16, pp. 463-480,
1980.

[29] Amouroux, M., and Babary, J.P., "Optimal Pointwise Control for a
Class of Distributed Parameter Systems," Proc. 6th IFAC Congress,
Part I, Boston, Mass., 1975.

[30] Kosut, R.L., Arbel, A., and Kessler, K.M., "Optimal Sensor System
Design for State Reconstruction," IEEE Trans. on Auto. Control,
Vol. AC-27, No. 1, Feb. 1982.

[31] Athans, M., "On the Determination of Optimal Costly Measurement
Strategies for Linear Stochastic Systems," Automatica, Vol. 8,
pp. 397-412, 1972.

[32] Herring, K.D., and Melsa, J.L., "Optimum Measurements for Estima-
tion," IEEE Trans. on Automatic Control, Vol. AC-19, pp. 264-266,
June 1974.

[33] El-Sayed, M.L., and Krishnaprashad, "Information Measures in
Decentralized Systems," Allerton Conf., 1979.

[34] Vanbeveren, Y., and Gevers, M.R., "On Optimal and Suboptimal
Actuator Selection Strategies," IEEE Trans. on Auto. Control,
Vol. AC-21, pp. 382-385, June 1976.

[35] Martin, J.E., "Dynamic Selection of Actuators for Lumped and
Distributed Parameter Systems," IEEE Transactions on Auto.
Control, Vol. AC-24, No. 1, February 1979.

[36] Mehra, R.K., "Optimization of Measurement Schedules and Sensor
Designs for Linear Dynamic Systems," IEEE Transactions on
Automatic Control, Vol. AC-21, No. 1, February 1976.

[37) Buhariwala, K.J., "Investigation of Sensor Placement in the
Control of Large Flexible Space Structures," B.S. Thesis,
Division of Engineering Science, University of Toronto, April 1980.

.,qq ; . ' , ,. ". , . , - .,, ,- ., - .- . . - .. ,.. -.-.- . . .. ,•. . . .- . . . - . . . . - .



184

[38] Ewing, D.J., Jr., and Higgins, T.J., "A Sensor Location Algorithm
for Distributed-Parameter Systems," Ninth Annual Allerton Conf.
on Circuit and System Theory, 1971.

[39] Caravani, P., and Pu11o, D.G., "Optimal Location of a Measurement
Point in a Diffusion Process," Proc. 6th IFAC Congress, Boston,
Mass., 1975, (Part I).

[40] Arbel, Ami and Gupta, N.K., "Optimal Actuator and Sensor Locations
in Oscillatory Systems," Proc. 13th Asilomar Conf., Pacific Grove,
Ca., Nov. 1979.

[41] Arbel, Ami, "Controllability Measures and Actuator Placement in
Oscillatory Systems," Int. J. Control, 1981, Vol. 33, No. 3,
pp. 565-574.

[42] Vandervelde, W., and Carigan, C., "Number and Placement of
Control System Actuators Considering Possible Failures," American
Control Conference, Arlington, Va., June, 1982.

[43] Lindberg, R.E., and Longman, R.W., "On the Number and Placement of
Actuators for Independent Modal Space Control ," to appear, Journal
Guidance Dynamics and Control.

[44] Skelton, R.E., and Delorenzo, M.L., "On Selection of Weighting
Matrices in the LQG Problem," 20th Annual Allerton Conference on
Circuit and System Theory. Allerton, Ill., Oct. 1982.

[45] Skelton, R.E., and DeLorenzo, M.L., "Weight Selection for Covar-
lance Constrained LQG Regulators: Large Space Structure Applica-
tion," submitted to Automatica.

[46] Athans, M., "The Matrix Minimum Principle," Inform. Control, Vol.
11, No. 5, pp. 592-605, 1968.

[47] Athans, M., "The Role and Use of the Stochastic Linear-Quadratic
Gaussian Problem in Control System Design," IEEE Trans. on Auto
Control, Vol. AC-16, No. 6, Dec. 1971.

[48] Makila, P.M., Westerlund, T., and Toivonen, H.T., "Constrained

Linear Quadratic Gaussian Control," 21st IEEE Conference on
Decision and Control, Orlando, Fl., Dec. 1982.

[49] Toivonen, H., "Variance-Constrained Self-Tuning Control," to
appear in Automatica.

[50] Broyden, C.G., "A Class of Methods for Solving Nonlinear Simultane-
ous Equations," Mathematics of Computations, Vol. 19, Number 92,
p. 577-593, October 1965.

[51] Harvey, A.H., and Stein, G., "Quadratic Weights for Asymptotic
Properties," IEEE Trans. on Auto Control, Vol. AC-23, No. 3, June
1978.

Ze , -t1 e



185

[52J Grimble, N.J., and Johnson, M.A., "Asymptotic Methods in the
Selection of LQP Optimal Control Weighting Matrices," IFAC
Workshop on Singular Perturbations and Robustness of Control
Systems, Ohrld Yugoslavia, July 1982.

[53] Shaked, U., "The Asymptotic Behavior of the Root-Loci of Multi-
variable Optimal Regulators," IEEE Trans. on Auto., Vol. AC-23,
No. 3. June 1978.

[54] Hartmnn, Harvey, Mueller, "Optimal Linear Control," Technical
Report No. 1, Office of Naval Research ONR CR215-238-1, Arlington,
Va., December 1975.

[55] McEwen, R.S., and Looze, D.P., "Quadratic Weight Adjustment for the

Enhancement of Feedback Properties," American Control Conference,
Arlington, Va., June 1982.

[56] Safonov, M.G., "Choice of Quadratic Cost and Noise Matricies and
the Feedback Properties of Multiloop LQG Regulators," Proc. of
13th Asilomar Conf. on Circuits, Sys., and Comp., Pacific Grove,
Ca., Nov. 5-7, 1979.

[57] Sesak, J.R., Likins, P., and Coradetti, T., "Flexible Spacecraft
Control by Model Error Sensitivity Suppression," Journal of
Astronautical Sciences. Vol. XXXVII, No. 2, pp. 131-156, April-
June, 1979.

[58] Sesak, J.R., et al., "Constrained Optimal Compensation Design for
Large Flexible Spacecraft Control," Proc. 19th IEEE Conference on
Decision and Control, Albuquerque, N.M., Dec. 1980.

[59] Zoutendijk, G., "Methods of Feasible Directions, Elsevier Publish-
ing Co., Amsterdam, 1960.

[60] Luenberger, David G., Introduction to Linear and Non-linear
Progrmng, Addison-Wesley Publishing Company, Reading, Mass.,
1973.

[61] Hadley, 6., Nonlinear and Dynamic Programming, Addison-Wesley
Publishing Co., Reading, Mass., 1964.

[62] Berkovitz, L.D., Optimal Control Theory, Springer-Verlag, New
York, N.Y., 1974.

[63] Chen, C.T., Introduction to Linear System Theory, Holt, Rinehart
and Winston, Inc., 1970.

[64] Yousuff, A., and Skelton, R.E., "Balanced Controller Reduction,"
IEEE Trans. Auto. Control, to appear, AC-29, Vol.. 3, March 1984.

[65] Hughes, P.C., and Skelton, R.E., "Stability, Controllability and
Observability of Linear Matrix-Second-Order Systems," Proceedings
JACC, June 1979, pp. 56-62.

= p - *.* ..- * -



186

[66] Sokolnikoff, I.S., and Redheffer, R.M., Mathematics of Physics
and Modern Engineering, McGraw-Hill, Inc.', 1966.

[67] Likins, P.M., "Dynamics and Control of Flexible Space Vehicles,"
Jet Propulsion Laboratory, TR32-1329, Rev. 1, Jan. 1970.

[68] Balas, M.J., "Trend in Large Space Structure Control Theory:
Fondest Hopes, Wildest Dreams, IEEE Transactions on Automatic
Control, Vol. AC-27, No. 3, June 1982.

[69] Kissell, G.J., and Lin, J.G., "Spillover Prevention via Proper
Synthesis/Placement of Actuators and Sensors," American Control
Conference, Arlington, Va., June 1982.

[70] Wu, Y.W., Rice, R.B., and Juang, J.N., "Sensor and Actuator
Placement for Large Flexible Space Structures," JACC, 1979,
Denver, Colorado.

[71] Johnson, T.L., "Principles of Sensor and Actuator Location in

Distributed Systems," Proc. of NCKU/AAS International Sy posium
on Engineering Sciences and Mechanics, Tainan, Taiwan, Dec. 1981.

[72] Gupta, N.K., and Hall, W.E., Jr., "Design and Evaluation of
Sensor Systems for State and Parameter Estimation," J. Guidance
and Control, Vol. 1, No. 6, Nov.-Dec. 1978.

[73] Balas, M.J., "The Galerkin Method and Feedback Control of Linear
Distributed Parameter Systems," Journal Math. Analysis and
Application, Vol. 91, No. 2, Feb. 1983, pp. 5Z7-546.

[74] Hadley, G., Linear Algebra, Addison-Wesley, 1961.

[75] Yousuff, A., and Skelton, R.E., "A Solar Optical Telescope Control-
ler Design by Component Cost Analysis," Proc. Synosium IFAC/CDSS
CERT/DERA, Toulouse, France, June 29-July 2, 1982.

[76] Kalaba, R., and Spingarn, K., "Design of Linear Regulators with
Energy Constraints," 19th IEEE Conf. on Decision and Control,
Albuquerque, N.M., Dec. 10-12, 1980.

.4:, < .. - <' . '. , .:. -... ..... .. ,..- -,, .;. .: < ,- .. .?........



APPENDI CES



187

Appendix A: Proofs

For the proof of equations (5.4a,b) begin with the closed-loop

system representation o1f (3.3) partiaZ4V repeated here for convenience.

iAx +& OW X (xTT) W(wT vT)T

CR 2n , c~

Cx; YuCYT u~Tj ; gRII
(Al)

and

Then, the following holds:

(M 2 Q e 1 1.. k

WhloeeoeRt am Mhaaaro in al I entries except for a Iin the

entr'y. OY the sam token the following expression is also true.

(M3) Z V 2yQ~ ;i i ke.1, ...

Substituting A2 and A3 into the definitions of (5.3) yields:
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V1U a Efy T QelU } ; i i k+l, "'" k+m-

V1Y Z Efy T eiy I  , I, ... k

Letting ey and eo be k and m dimensional versions of ei and using the

partitions of y and Q In (Al), (A4) can be rewritten as follows:

ViU,u uTReu utm5't  =E.(e u1  I = 1 , ... m

(AS)

Vy- E (TQey} 1 = 1 , ... k

Using tr[AB] - tr[RB], u - Gx, y - Cx , gives:

f u T T T

V, - Etr[eug 1 xxT GR] 1 I . m
(M6)

IVY E.tr~eyc Txx T C TQ3 I ,..k

matrices • g1T and e C1T can be recognized as matrices of all zero

rows except for the ith row of 6 or C respectively. Therefore, using

this fact a little additional linear algebra produces:

V Ej6xWTTR)i ; i -I, m
(A7) IVY EjCxxTCTQ]iI ; i = 1, ... k

Taking the expectation of A7 and substituting in the results of (3.5)

and (3.7) for the steady state variances of x and x gives the desired

result
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Vi - GXGTRJ11  1 *19 ... m

(M)

Vi/i. [C(P+XT)cQ 11 , i * 1s ... k

For the proof of (5.4c-g) begin by recognizing that

-i (w , , ...

(Mg) -
Vt  , 1 = p+l ... p+Z,

where V I s defined as follows:

(AlO) V1  i E E{- Y (QY)W I

Using the known solution for A = Ax + 8w the solution for y becomes

(All) u CeAtx(o) + Cj' eA(t)vTdT
f0

Therefore, y can be considered a composite function of t and w t).[66]

Applying the chain rule for composite functions to the partial deriva-

tion in (AlO) gives the following:

1 ( T Q YT Q a
2 awi awi

SI_ • ., = T

Now, (AlO) becomes:

(A12) V1
0  lrn E(Y TQ _21 }

ai
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The term w can be interpreted as the contribution the ith

component of w is making to y. Mathematically this can be expressed

as follows:

(A13) 2-w. - C f bliw(a)doaw 1  0

where b is the ith column of 8. Nowsubstituting (A13) and (All) into

(A12) gives:

AT t T (t-T) T
(A14) Vi' lim E(rXT(o)e C + f T(')&e dTCT]

,. aC: ft e A(t. )
;.. ~ ~ QbW I (a)da}

Upon multiplying out, Vi.w becomes

(A15) V1  = lim E{f t xTo)e ATtc TQCeA(ta)b (a)d +

ftfWT(T)BTeAT(tT) C CeA(ta)bwi  (a)dTda

Using tr[AB] = tr [BA] and interchanging the integral and the expec-

tation operators gives

t T.

(A16) Vw lH * blE{w I (a) T(o)} eAtCQCeA )do

+ Jt{ biE{wi()w T (r)} BTeAT(t'T) .cTQcA (t-)dd}
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but from the assumed noise characteristics of (1.2)

E( i a T ( 0 ) iT 
; where W Tis the rotoh(

E(W1(a)WT(T)I rowofh

Therefore (A16) becomes:

Pulling out the constant terms and using the identity tr(AB) tr(BA)

again:

(Ai8) Vi = rn tr(S T fte A T(t-a) CTkCe A(t-a) do b iWi

Let S be defi ned by:

(A19) S - lrn rt eA (t-0) C T QCeA(ta) da
twm. Jo

Using this definition, A18 becomes:

(A20) V.. w tr(STSb jWiT)

Equation A20 can be written in the more convenient form:

(A21) V B13Saw)



192

Since A is a stable matrix as a result of (1.3), S will approach a

constant matrix as t-*-. (i.e. t-O). Make the following change of

variable. (t-a) - (T-t) in (A19):

(A22) lim 12t eAT (t)CT eA( -t)dT Z S
t-)- t

Now differentiating A22 with respect to t and making use of Leibniz's

rule gives

r2t dAT(t) T A t

(A23) - a lim [2eATtCT QCeAt - cTQc + -de CT Ce t)
t-I dt

+ fte AT (T.t) C C dtd-t

t

Now, applying the property of state transition matrices that

deA(T 't) z eA( T-t)A
dt

to A23 gives

(A24) lim P~e At CTQC - C T C - ATJ~ e A T(Tt)Ck Ce A(T-t)dT

f2teAT(T-t)CT QCeA(-t)dT 
A]

t

Letting t4"s in (A24), substituting in (A22) and remembering that

lim eATt * 0 for stable A gives

.tow

S . - . . 4 S - .
. * * * .
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(A25) -CTQC + ATS + SA

The steady state Lyapunov equation (A25) is a 2n dimensional equation

which by direct substitution in (A25) can be shown to have the following

solution

(A26) S K+L  - L]

where K is the control Riccati solution of (3.2c) and L satisfies:

(A27) L(A-FM) + (A-FM)TL + GTRG - 0 (i.e. 5.4g)

Therefore, using the appropriate partitions of (A21) the formulas

(5.4d-f) are established. ###

Proof of Property 1:

From [1] it is known that the steady-state cost functional V of

(Al) can be written in the following forms

.4 (A28) V a tr[XCT QCJ

and

A29) V - tr[SM3TI

where

(A30) AX + XAT + uBT  O

*1
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and

(A31) SA + ATS + cTQ.c 0 0 (i.e. A25)

The form of the 2n dimensional matrix S has already been given in (A26)

and by direct substitution in A30 the 2n dimensional matrix X can be

shown to have the following form

(A32) X z +x X

where P is the filter Riccati solution for (3.2d) and X is the estimate

variance matrix of (3.6). Using tr[AB] tr[BA], (A28) and (A29) can

be rewritten as

(A33) V - tr[CXCT Q3

(A34) V = tr[BTsBw]

Using the partitions of A and B defined in (3.3) and the partitions

of S and X defined in (A26) and (A32), (A33) and (A34) can be

rewritten as:

(A35) V - tr[C(P+X)CTQ] + tr[GxGTR]

- (A36) V - tr[DT(K+L)DW] + tr[FTLFV]

Substituting the expressions for 5.4 into 5.5 and remembering that
0- aB 0o] gives the following:

,



195

m TkT

(A37) V C EGXGTRJt + i . [C(P+x)C Q)1 1

(A38) V [ DT(K+L)DW ]  + T L i

By the definition of the trace operation, (A35) is equivalent to (A37)

and (A36) is equivalent (A38). Therefore Property 1 is proved. ###

Proof of Property 2:

For diagonal R,Q,W and V along with the definitions for G and F

in (3.21), V1 u, Vty, VtW and Vv can be written as follows:

i

:NN (A40) VtY y ctT(P c

i (A41) Vtiw . d tT (K+L)d tw t  (w i . tt h diagonal element of W)

(A42) V v = M1TPLPm v J (v1 = tth diagonal element of V) "1

(mI T th row of M)

Under the conditions of (1.3) the matrices K, P, X and L are known to

exist and be at least positive semi-definite. Therefore, since Vi u

?i/tY, tw , and viv are quadratic expressions which use these matrices

or symmetric products of these matrices as weights, they can never be

negative. (Part (a) proved)
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If (A,C) is observable, K(3.2c) is known to be positive definite

therefore, assuming d1 0 0 and remembering wi > 0 , d1TKd w1 will

always be positive and from (A41) so will ViW. (Part (b) proved).

If (A+BG,F) is controllable, then X in (3.6) is known to be

positive definite, this fact coupled with the fact that K is positive

definite when (A,C) is observable guarantees that biTKxKbi and c TXc i

will always be positive provided bi, c i 0 0. Therefore, as indicated

by (A39) and (A40) Vi u and ViY will always be positive. (Proof of

.* part c)

IF (A,D) is controllable, P (3.2d) is known to be positive definite.

TTherefore, ci Pct > 0 always and from (A40), under this condition
I Y >0. (Proof of part d)
i

If (A-FM, G) is observable then the matrix L defined by (5.4g)

is known to be positive definite. This fact coupled with the fact

that P is positive definite when (A,D) is controllable means that

mjTPLPmi > 0 and dlTLdi > 0 as long as mi , di i 0. Therefore,from

(A41) and (A42) Vlw > 0 , Vi v > 0. (Proof of part e)

Proof of property 3:

Under the state transformation x = Tq , ITI $ 0, where x is

defined to be the state of the system S(n,km,.t) (i.e. (1.1)-(1.3))

controlled by the LQG controller of (3.2), the following identities

hold: (' specifies the matrices in the transformed system)

(A43) A"T-AT; B T B ; C CT; MMT

4V

VV

9-.. "". 9 ." " "" .-" -. . . . . ". - ", " , " " "- .. 9 . 9
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(A44) ,.TTKT; .T- 1 PTT; L-TTLT; X . T-XT

Using the definitions for G and F In (3.2) and substituting the identities

of (A43) and (A44) into (5.4) the transformation matrices T, TT are

exactly cancelled by T-1 , T"T and non-singular state transformation

is seen to have no effect on the quantities Vi, VY , V,. and Viv.

Proof of Theorem 3: Theorem 3 may be proved by showing that a

system of type (3.3) operating with fewer actuators is not guaranteed

to have a larger total cost.

The total cost of system (3.3) can be shown to be: [l

(A45) V(m,,) a tr[PCTQC + KpMTv'1 MPJ

4. let the total cost of the system operating with a reduced set (1 or

more) of inputs be:

(A46) V(m-l,t) -tr[PRCTQC + KRPRMTV'1MPR)

To prove Theorem 3, a relationship between P, PR9 K, KR must be found.

First make the following partitionings

r-D D W W 7R RD rRT R WRTI R u(A47) 8 0= D-W; H R-

T LWT _T jRT

where OR is the 0 matrix for the system using a reduced set of inputs,

For clarity let WRT - 0 and RRT 0. Substituting (A47) into the P

and K equations of (3.2) gives:
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(A48) PAT + AP - PMTV-1MP + [DRWRDRT + DTWTDTT] = 0

(A49) KA + ATK- K[BRRR IBRT + BTRIBTT]K + CTQC - 0

The equations for PR and KR are

(ASO) PRAT + APR - PRNTV'1MPR + DRWRDRT = 0

(All) KRA + AT - K RBRR'1BRTKR + C TQC - 0

Now subtract (ASO) from (A48) and (ASI) from (A49):

(A52) (P-PR )AT + A(P-PR) - PMTV'MP + PRMTVlMPR + DTWTDTT = 0

(A53) (K-KR)A + AT(K-KR) - KBR 1 BRTK + KRBRRR 1BRTKR - KBTRT IBTTK 0

Add and subtract PMTVt'lP R to A52 and add and subtract KRBRRR'IBRTK

to A53:

(A54) (P-PR)(AT - MTV'lMPR) + (A-PMTvl M)(P-PR) + DTWTDTT  0

FRF

(A55) (K-KR)(A - BRR'1BRTK) + (AT - KRBRRR'IBRT)(K - KR) - KBTRT'BTK = 0

G TR

Adding and subtracting KRBT RTIBTTK Tin (A-55):
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(A56) (A)(As-BG) + (BG)T (-) K '-1 TK 0
(K-K, ~R (+R) (K) R KRBTT 8T

Add and subtract (A-FRt4)(P-PR) in (A54)

Add and Subtract (A+BG)T(K-KR) in~ (A5)

(A57) (P-PR)(A-FRM)T +(A-FRI4)(P-PR) + (FR-F) M(P-P R) + DTWTDT T a

(A58) (K-K R) (A+BG) + (A+BG) T(K-K R) + (G R TBR TGTBT )(K-K R) - KRBTRT(IB T T K -0

substituting back the values for F, F RO G, G R into (A57) and (A58) and

adding and subtracting KR BTRf IB1.KR in (A58) gives

(AM9) (P-PR)(A-FR4) T+ (A-FRl4)(P-PR) - (P-PR)MY -M(P-PR) + DTWTDT Ta0

(A60) (K-KR)(A+BG) + (A+BG)T (KAKR) + (K-K R)BRI B T(K-K R) - K RBT R T_1BT TKR =0

multiplying (A60) by a minus sign yields:

(A61) (KR-K)(A+BG) + (A+BG)T (KR K) - (KR-K)BRI'BT(KR-K) + KRBT RT-1BT TKR a

Equation (A59) and (A60) are standard steady-state Riccati equations.

Since the reduced system is required to satisfy (1.3) and the original

system was assumed to satisfy (1.3), both (A-FRM) and (A+BG) will be

assymptotically stable. This means that the matrices £P-P RJ and EKR-K]

exist and are at least positive-semi-definite. (1)

Therefore,
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(A62) (0 " P >

(A063) (KR-K) 0 _ KRa > K

Now, going back to A45 and A46 and subtracting A46 from A45

(A64) V - VR - tr[(P-PR) CTQC + KPMTv'IMP - KRPRMTV'MPR)

If the sign of (20) is positive then the reduced set of actuators is

more efficient than the full set. Therefore if a feasible situation

exists for which (A64) is positive, Theorem 3 is proved. (A64) can

be rewritten as follows:

(A65) V - VR a tR[C(P-PR)CTQ] + tr[M(PKP - PRKRPR)MTv"I]

From (A65) it can be seen that PKP > PRKRPR is sufficient for V - VR > 0.

From (A62) and (A63) it can be seen that the definiteness of PKP - PRKRPR

depends on the relative definiteness of (P-PR) and (KR-K). Therefore,

PKP-PRKRPR could feasibly be positive definite, negative definite,

indefinite, etc. Consequently, Theorem 3 is proved.

Proof of Theorem 3:

From [1] it is known that the LQG cost functional V (3.11) can

be expressed as follows: (using the notation of (3.2))

(A66) V - tr[KDWDT + PGTRG]
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Now let V+ equal the cost functional for the system operating with one

additional sensor. Therefore,

(A67) V+ a tr[KDWDT + P+GTRG]

where

(A68) P+AT + AP+ - P+M+TV+-lM+p+ + DWDT = 0

(A69) M+ = ; meR n

(i.e. added column of MT matrix)

(A70) V+ 0;V v+eR lxl

L (i.e. variance of new sensor noise)

Subtracting (A67) from (A66) gives the following:

(A71) AV a V - V tr[(P-P+)GTRG]

Equation (A71) can be rewritten as follows:

(A72) AV - tr[(P-P+)GTRG] * tr[ J (P-P+) /'RG T ]

Therefore, if (P-P+) is at least positive semi-definite the theorem

is proved.

Recall that the matrix P used here and in (3.2) is defined by

the following:
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(A73) PAT + AP -PMTV-MP + DT *0

Now, subtracting (A68) from (A73) gives:

(A74) (P-P+)AT + A(P-P+) - PMTV-lMP + P M+ T V+ 1 M+P z 0

adding ± PM+ T V+-1M+P+ to (A74) yields:

(A75) (PP)(A TM TV 1MP) + A(P-P4) - pMTV-lMp + PM +T V -1 M+ P *0

adding ± P+M+ T V+-1M+P~p ±+M+ T V+-1M+P to (A75) results in:

(A76) (P-+(TM T+-IP)+ AMTV+ -1M)I-+ - PMV-M +

PM+TV+-lM~p+ + + +-1M(-+

adding ± Pmv+~ -m~p to (A76), making use of (A69) and (A70) and the

definition F+ a P+M+ T V+- gives:

(A77) (P-P+)(A-F+M+)T + (A-F+M+)(P-P+) - PM+ + I~M+(P-P+) +

P++TV- M(-+ + Pmv+1 lmTPa

collecting terms gives:

(A78) (P-P+)(A-F+M+)T + (A-F+M+)(P-P+) - (PP)+TV+- +PP +

Pmv +- ImTp -
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Equation (A78) is a standard matrix Ricatti equation. It is well

known that the solution to (A78) (i.e. P-P+) is at least positive semi-

definite if the matrix (A-F+M+) is stable. The matrix (A-F+M+) will be

stable if the matrix pair (A,D) is stabilizable and the pair (A,M+ ) is

detectable. From the conditions (1.3) (A,B) is stabilizable and (A,)

Is detectable. Therefore (A,M+) must be detectable since adding a

row to M (i.e. generating M+ cannot effect the detectability of (AM).

4##

I

U- VV .*..1~..,' * *
V -- !'._
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Appendix B: {/i and the Chen-Seinfeld Switching-Function

In [1] it was shown that the switching function for the extended

Chen-Seinfeld method of optimal selection of sensors in systems of type

(1.1) was

(Bl) a = tr(PmiV- TmA2)

where mi is a column of MT and A2 is defined by:

(B2) A2(A-PMTvlM) + (AT-MTv'IMp)A2 + KBR -ITK = 0

where P is defined by:

(B3) PAT + AP - qiPmiV'miP + BWB T = 0
i-l1

and

I if ith sensor is to be used
qi = 0 if ith sensor is to be deleted

The expression for Vi v is given by (5.4f), using F = PMTVl gives,

(B4) V iv = [V-lMPLPMT ii = Vii mi TPLPmi (assuming diagonal V)

where

(B5) L(A-PMTVl1M) + (A-rMTvl1M)TL + KBR_'BTK =0

(B6) PAT + AP - PMTV'MP + BWBT = 0

using the tr AB = tr BA (Bl) becomes:

(B7) acS

comparing eqs. (B2), (B3) and (B7) to eqs. (B4), (B5) and (B6) it is

- "' ' ";" " " " '," . ' " ". -," ",. ,' -. • -," ." " " ... . ... "."""- .. '. " " "*" . . .', . ."*. .' ,,"'.
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apparent that, with the exception of the trace operation on V l in (7),

V.v is equivalent to calculating ac S for the system with alZ admissible
measurements present. (i.e. all qi= 1 i in (B3)).

i~*I~***~ * ~ % .' . 4* ? * * *-- . . -- I

-9I 
. -

I. -
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Appendix C: Conservative Step Size Argument

In this appendix an argument is presented for the conservative2~ 1 /2

nature of [ in the update equations for LQGWTS. The

identification of a conservative step size is fundamental to the success

of LQGWTS.

Substituting (6.22) with PWR = 1/2 into equation (3.19) gives the

following result:

ITIDT K(i) XCI) K(j) b.
i .(Cl ) r i (j + ) Z Aui

ii u.

where the argument (j) after the matrices K and X implies that the values

of Q and R at the jth iteration were used to determine the matrices,-. th

adopting this notation, the steady-state means square value of the ith

control at the jth+1  iteration may be expressed as follows

(C2) E'{ui} = r 1(j +l)b i TK(j+I)(jIl)K(jFi)bi

Substituting (C-l) into (C-2) yields:
(C3) E 2{ui2 Ui2 bi TK(j+l)X(j+l)K(j+l)bi
CA iI = b b TK(j )i(j )K(j )b

Therefore, if

(C4) E {ui2 } lj+l>Ui and biTK( +l)X(J+l)K(j+l)bi>bTK(J)X(i)K(i )b

then, from (C-3), (C-l) is a conservative step. Conversely, if

(C5) E.(ui 2}Ij<ui and biTK(j+l)X(j+l)K(j+l)bi<b iK(j)X(j)K(j)bi
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then again from (C-3), (C-i) represents a conservative step size. The

arguments presented in the appendix are directed toward showing that the

conditions of (C-4 and (C-5) should hold when the update equation of

(3.5a) is applied with pwr = .5. Now, assume the following situation

exists

.,(C6a) Elu21 > U 2 * i = is ... m

(C6b) System (1.1) is observable and stabilizable

Applying (3.5a) with pwr = .5 in this situation yields:

(C7) R(j+l)>R(j) (i.e. xTR(j+l)x>xT R(j)xx: lxil $ (0)

Under condition (C-7) it can be shown that

(C8) K(j+l) > K(j) (i.e. x TK(j+l)x > xT K(j)x * x).

The proof is not included here, but it involves the differentiating of

the control Riccati equation of the j th and the j th+1 iteration and then

*, adding and subtracting terms until a Riccati type equation results for

the difference matrix (K(j+l) - K(j)).

Given (C-7) and (C-8), the foZZlwing conjecture is made:

(C9) conjecture: i(j+l) > X(j)

Justification:

Since the system of (2.1) is assumed observable and stabilizable,

.5' X is known to be equivalent to the following integral equation:

(CIO) X(J) - f e[A+BG(j)]tFVFTe[A+BG(j)] Ttdt

0

j; d,. ' -.. . .

-. %* a -- \ ,,l* *~.. - . ' .. - *. .~
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It is also known that increasing R (i.e. the situation in (C-71 results

in the closed-loop system poles moving toward their open-loop positions

(i.e. G - 0). If the open-loop system has unstable poles (the usual case

for large space structures) R(j+l) R(j) implies that some eigenvalues of

[A+BG(j+l)] will lie closer to the imaginary axis than any of the eigen-

values of [A+BG(j)]. That is (A+BG(j+l) will be less stable than [A+BG(j)].

Therefore, in determining X(j+l) from C-l0, certain terms will go to zero

more slowly than they did in the X(j) calculations and therefore the

* infinite integral of these terms must be Lar'ger than the previous itera-

tion. The conjecture of (C-9) is based upon this fact.

Continuing, if K(j+l) K l(j), and X(j+l) > X(j) it is straightforward

to show the following:

(CIl) K(j+l)X(j+l)K(j+l) > K(j)X(j)K(j)

Given (C.6a), C.l1 immediately implies the conditions of C.4 hold and

therefore PWR = .5 in (6.22) would be a conservative step size, assuming

no Q adjustments. If,

(Cl2a) (ui2 < U i =,... m, and
3

(Cl2b) System (1.1) observable and stabilizable

Using 6.22 as the update equation for the j th+1 iteration results in

(C13) R(j+1) < R(j)

and it can be shown that

(C14) K(j+l) K(j)

An argument that parallels the one offered for the conjecture of

(C9) can be used to justify the conjecture of C15

(C15) conjecture: X(j+l) < X(j)

%, %
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It is then again straightforward to show that

(C16) K(J+I) X KOj+1) < K) X(i) K(i)

Given Cl2a, C16 implies the conditions of C.5 hold and therefore pwr

, .5 in (3.4a) would again be a conservative step size if no Q adjust-

ments were made.

The arguments above present a case for the conservative nature of

6.22, PWR = .5 when all inputs are above or below specification and no

Q adjustments (i.e. (6.29a) not used) are made. No statement

is made about the situation when inputs are both above and below speci-

fication or when Q adjustments occur simultaneously or by themselves.

In fact, an analysis such as described above cannot be applied to the

output mean square equation (3.16) and the Q update equation

because (3.16) is not an explicit function of Q. However, the experi-

ence to date has shown that pwr = .5 in all update situations generates

a conservative step size. In fact, when just Q adjustments are required

pwr = 1, has also generated a conservative step size and pwr = .5

automatically generates a more conservative step size than pwr - .1.

4 . . ." . ..-'......... .. .. . .. . . . . .. . . . ..... . -...... ,-..-... -.. ,-',
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Appendix 0: Necessary and Sufficient Conditions for Eui 2 =0 Y Q>,R>O.

Given the system (1.1) and the LQG controller (3.2)-(3.6 ), the

purpose of this Appendix is to identify the necessary and sufficient

conditions for

(0l) biT -0 *Q > 0, R > 0; where b= ith column of B,
. i # 0

For necessity, consider that (0-1) implies that K > 0 and/or X> 0.

Furthermore,

K > 0 -> (A, C) unobservable

(02) X '0 -> (A+BG, F) uncontrollable

Thus, the necessary condition for (Dl) to hold is: (A, C) unobservable

and/or (A+BG, F) uncontrollable.

For sufficiency, assume first that (A, C) is unobservable and (1 .1)

has been placed in observable canonical form. (i.e. x Tx, ITI 0

Then, the following is true,

(03) [ 1+ u + w;

(04) y = C1 0] and z -M + v

(05) K a j (control Riccati Solution; KI > 0

where,
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(D6) A a T1IAT; 8 • TIB = [b, ... bm  ;

-T ID;E O[C =CT ; M =MT; K TTKTI I

Now, from (03) - (D6), the following can be deduced:

(07) Kb 0 <-> K1b 0

and since K > 0

(08) K1b 0 <-> b 0 Q > 0 , R > 0

Conditions (D7) and (M) lead to the following sufficient condition:

Sufficient Condition . : If (A, C) is unobservable and the ith column

of 81 is zero, then (Dl) holds.

Sufficient Condition ,1 describes the situation when the ith input

has no effect on observable states of the system. To check Sufficient

Condition -'3 directly, it would be necessary to place (1.1) in observ-

able canonical form. This numerical burden is certainly uncessary for

LQGWTS since bi TK = 0 does not depend upon the particular Q > 0, R > 0,

the test for "11 (i.e. b1  ? 0) only needs to be conducted on the first

iteration of LQGWTS or whenever an output weight is zeroed.

Placing the estimation dynamics

(D9) x -(A + BG)x + F(z-Mx)

(O0) u - Gx

in control canonical form (i.e. x = S,., Isl 0 0 yields:

(011) - 12  1 +- 1

.5- "., .... * ," .' . .' " , .- V , .- **. " .* *= " ~ • .* ~*. . *vo,' . ,.. . . . -" -"...-. .." -" " • " " "

(D l : '. . . . .
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(D12) U [G , G2  - ; X = 0 Xl> 0

0 o_

where

( 013L)= S 1 (A+BG)S; F =S'IF
(013)0

(014) [GI, G2  = GS ; X= S'lxs - T

As a result of (D-Il)-D-14) the following holds:

2 2 T" %

(015) Eu 2  = r 2 biTKXKb G g1  X11

Equation (015) leads directly to Condition ( .

Condition (, : If (A+BG, F) is uncontrollable and is zero,T i
then biTK XKb = 0.

Note that Condition 'D does not imply that (Dl) holds since we

have not shown that gli = 0 for every Q ) 0, R > 0. Indeed this con-

dition cannot be shown unless the controllability of (A+BG, F) is

independent of the values of the matrices Q > 0, R > 0 when the rank

of F is less than n. The physical significance of condition +) is

that E ut2 a 0 LQG Controls which do not contain estimators states

that are disturbed from z.

Conditions and 2' together describe all the possible condi-

tions for which (D1) could hold. As a result, LQGWTS performs the

following sequence of steps to check (Dl).

1. On the first iteration and any time a qi is zeroed, delete

any actuators associated with a zero row of BTK
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2. Whenever rt adjustments force ri < C/u delete the ith actuator.

(Condition 2 then sufficient.)

The justification for step@ results from the fact that update

2 2
equation (6.22) will decrease ri as long as E~u i < Ii 2 .

Finally, it should be noted that when an actuator is deleted it is

also necessary to recalculate P (3.2e) since D [ EB D0

* .
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Appendix E: Program Listings

Program LQGWTS

SUBROUTINE LOGW(TStNRAA, AA, tIRE. * 3. INRDtI. D, t,4, NR'J UUl
-eRC, CC. NMel. Ill, SrIGIA, flU. TITLY, TITLU, TITLZ, NY, Nut NZ, FLAGS. EY, EU.

EYMORIM EUNORM9 NAP, PP. NRK. KK IRX, XXH, EIGAFM, EIGABGv NRQ GO# NRAR RRI*
-K, EPS, ITMII)

C

C - GIUEN THE FOLLOWING TIME-IMTUARIAtT, LINEAR, STOCHASTIC SYSTEM:
C...
C - DXtDT a AA*X + BBU + DD*C .oY - CC*X
C . Z a itiX + U
C DO- a ,DEDD I S WHERE'D CAN E 0
Cu 0 0
C .
C W 1ITH THE NOISE CHARACTERISTICS:
CEC T
C EEW3 a ECU] - 0 1 EEN (T)W(S)I a M * DELTA(T-9)
C .
C ' T
C ECU (T)U($)) 3 UU * DELTA(T-S)
Cu.
Cu'. 111> 0 AND UU> 0
Cu"
C...
C . DETERMINE THE STEADY STATE LOG CONTROLLER

C.. U a GGSX
C .
C ... IlEREvC-- t t

-N C DXDT - AA.X * lUjJ + FF*(Z - uleX):
C.. -1 T
C... GG a -R I KK
C . T -1
C. FF - PP M i UU
C . T -1 T T
C... KKOAA + AA .* Kl-K. *BEKK+M.0900 -CC- 0
C... T T -1 T
C ' PPAA + AAnPP - PP.4MM "UU .IPP + DD*WW*DD - 0
C .
C . SUCH THAT
Cu 2
C M LIM EY I .LE. SIGIA(I) I FOR ALL I-=, .... NY
Cm
Cu'
C u. LIM ECU I .LE. MU(I) s FOR ALL 11..... IU
C. I
C .
C . LSO, DETERMINE THE SENSOR AND ACTUATOR EFFECTIUENESS UALUES
C ..
C..
C .
C . IF NO SOLUTION EXSISTS v DETERMINE THE MI1IMUIM OUTPUT
C *.00SPECIFICATIONS AND THE LOG CONTROLLER WHICH KEEPS. THE STEADY-
C e-STATE MEAI-SOUARE. IPUT UALUES WITHIN THEIR ORIGIAL. SPECIFICA-
C TION (I.E. AN INPUT CONSTRAINED SOLUTION) I
C ., OR , CNI*RELM.Y , ETERmINE ThE NINIIIUm ImPUT SEcrFICATIONS
C .uAND THE LOG CONTRILR WHICH KEEPS THE. STEADY-STATE MEA-SOUAE
C .' OUTPUT URLUES WITHIN THEIR ORIGINAL SPECIFICATIONS.
C . (I.E. AN OUTPUT CONSTRAINED SOLUTION)

r % %.1 " -" ,- ." " " , ,"," " '," .' ','," -'' '," ,'' ". "'' " ''.*.'- *,'-'",'.''''.
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C
C INPUT ARGUIMENTS -

C AA(MA A), BBiAU, )DD(MA.1) WW(IJI),UUI CNZ, .NZ) (Ir-
C .. UERSE OF u).CC(NY.A).9M(MZMA)A SYSTEM MODEL MATRICES
C W44. 1ITH ROM DIMEINSIONS NRANRBIRD,RWvIRU,,RCNRM RESPEC-
C .e TIUELY.
C . nvA, NU, NY. Z, nJ: UECTOR LENIGHTS OF XUYZ, I RESPECTIUELY
C . SIGMIA(Y): UECTOR OF OUTPUT SPECIFICATIONS
C He IIU(JU): UECTOR OF INPUT SPECIFICATIONS
C .. TITLY(NY)3 uECTOR OF 10-CHARACTER OUTPUT LABELS
C . TITLU(NU): UECTOR OF 10-CHARACTER INPUT LABELS
C '.4. TITLZ(Z): UECTOR OF 10-CHARACIER SE]MOR LABELS
C .'. FLACS(11)i LOGICAL PROGRAM CONTROLS
C 4 FLAGS(V)o.T. PRINTS PARTIAL ECHO CHECK OF INPUT DATA
C . FLAGS(2)=.T. INPUT CONSTRAINED SEARCH USED
C ".FLAGS(2)w.F. OUTPUT CONSTRAINED SEARCH USED
C .4' FLAGS(3).T. CHECK FILTER RICCATI SOLM
C . FLAGS(4)i.T. READ INITIAL GUESS FOR GlR FROM TAPE
C 4. FLAGS(S)i.T. CHECK CONTROL. RICCATI - EST. LYAP SOLN
C . FLAGS(C)'.T. PRINT INTERIIEDIATE RESULTS
C FLAGS(?)=.T. STOR INTERMEDIATE RESULTS
C ' FLAGS(8)o.T. PRINT FINAL RESULTS
C .4 FLAGS(S)n.T. STOR FINAL RESULTS
C ... FLAGS(10) USED BY SUBROUTINE
C . FLAGS(IL) USED BY SUBROUTINE
C W43 REAL MW uECTOR OF LENGTH .GE.
C . C4.NY+3*MJ44-lA A -MU+fAXNA*MA MY*NY, MUMNU)+
C .. MAX(S4--l-*A4*A9 rlU*tlU4-a.Z.NZ) I
C .. EPS:CONVtRGEICE. BOUND v I..E.

C .4. (1-EPS).LE.(ECU )IMU(I)).LE.(+EPS) IMPLIES CONVERGENCE

C .44 SUGGESTED RANGE .1 > EPS >.00r
C .. ITrUM: MAX r ER OF ITERATIONS ALLOWED

C OUJTPUT ARGUMENTS -C
C .. EY(NVl): ECTOR OF CURRENT OUTPUT MS UALUES
C .,H EY(MY2)t UECTOR INDICATOR OF OUTPUT WTS. BEING UPDATED
C .4 DURING AN INPUT CONST. SEARCH.(IE. EY(I,2)il.
C . IMPLIES UPDATE.)
C ' EU(NU )3 UECTOR OF CURRENT INPUT MS VALUES
C . EJ(Nu2): UECTOR INDICATOR OF INPUT WTS BEING UPDATED
C DURING AN OUTPUT CONST. SEARCH.
C ' EYlOtR(Y,2)2 MATRIX OF THE LAST TWO NORMED OUTPUT MS VALS
C ' EUMORM(U,2): MATRIX OF THE LAST-TWO NORtED INPUT MS VALSI C ' PP(MA,IIA) FILTER RICCATI SOLi, ROW DIMENSION NRP
C .'. KK(MA, IA)3 CONTROL.RICCATI So, ROW DIMENSION NRK;
C ,. EIGAIG(4*A)i REAL WORK UECTOR. EIGABGC) CONTAINS THE-El-
C GEN ALUES OF AA+BB G
C ,.. EIGAF(4*tA): REAL WORK UECTOR EIGAFM(1) CONTAINS THE.E!-
C .. GEN VALUES OF AA-FF.lIt
C XX 700(MA, MA): EST UARIANCE.MATRIX, ROW DIMENSION NRX
C*'

C NOTES- (1) IF FLAS(4)=.F.* THE PROGRAM ASSIGNS A SET OF INITIAL
C W lEIGHTS WHICH GIUES A COMPROMISE SOLUTION.(I.E. THE
C 'U. AERAGE SPECIFICATION DEUIATION OF ALL COMPONENTS IS
C .' MINIMIZED.
C .'
C ." (2) IF 33 - U THE PROGRAM EXPECTS THE Di ARGUMENT TO BE

7-..

' . " . ', ' * r,. " . " . " w " - '- '- " -,- " . ',. ' . ,- .L . ' ' ' ' 
• " "

m q I I I - I w - . . • - . . . . .
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46C =. 3.(I.E. THE DD MATRIX IS NOT NEEDED) . THE ALGORITHMC . DELETES ACTUATORS WHICH HAUC NO EFFECT ON THE OUTPUT.

C . ~ (3) THE PROGRAM WRITES AND READS OCCUR Oil TAPES
C .
C .. (4) SUBROUJTINIES MDROPoMAREADPMWRrTE# AND LYCHK MUST BE

C DECLARED EXTERNALS. THEY ARE LOCATED AT THE BACK OF
C . ~ LOGWTS
C..

C (S) IF THE ALGORITHMI HAS NOT COMUERGED IN THE ALLOWED
C NUIRMBER OF ITERATIONS. IT MAY BE RESTARTED BY READ-
C IN 1G IN THE LAST UALUES OF THE APPROPRIATE UPDATE UEC-
C .. TOR AND WEIGHTING MATRICES' ALSO* FLAGS(I0) MUST BE
C .. SET TO .T. IF BOTH 0 AMD R ADJUSThEIITS ARE OCCURING.
C.. OTHERWISE FLAGSClO0) MUST BE SET TO .F.
C
C .. SUBROUTDIES USED: MP3I * MPUa POTTER# MP39 MAREAD. MULRTRv MULRRT.
C n# DO.MULT.MADD. EIGEN. LYAP2. LYCHK MPRIMT.*
C MWR~IITE

C 01 O/20'8m MLD

REAL AA(MIR).,BB(NRB. l).CCCNRC.l).DDCNRD. L).WW(NRI.l).LRI(IIRU. I).
A.IIKNfti. 1 .SIGMA(NY).M(Mr)TITLY(NY). TITLU(MJ) .EY(NY.2) *EUJ(M.2)

4 A.~^EYMOM(MiY.2).EUJMCNU.o2)PPCP, 1).KKCNRK. l)QOCNRO. 1)oTITLZ(NZ

LOGICAL FLAGSC II). SOM. NMSOLN.SSOM. INTER. COMST. KHAT. OZFLG. RZFLG

INTEGER CIIUMQl).RIIJMI)

I FORtIATCHI)
2 FORMATCSX.')
3 FORMAT(5KS ±--------------------------

.10 FORMAT(27Xv~:------ INPUT DATA O,
-OCOCHECK 00/ M :900:v:N:------- * 4*s',5K.S~*MB1Eb,

-0 OF INPUTS' 0v13v/,SKo0LM1ER OF. OUTPUTS 0v1I39/p5Xv0UALUE OF 0

11 FORIIT(SX.SEMlSORi. I2X.OSE1MSORli. XPACTUATOR$. 1XK POISE19.
'-1 1K. OACTLIATORP9 lOX. OACTUATORPIP /, 5Xv 0MU1BERP19 3Xv. OLABELP19 5K.

13 FECIENS0 4X M~bo.X*"E0 CONTRIBUTION09 4Xv

-0MMBR0 3v OASL0 5v ETFECTIUEESSO
2 FORMAT(SXP. FLAG riIMIER: .K. X 6. o3X6K. 2X 6K. 5-. 6K. .6

13 FORtIAT(SXo.093UTPUTS~, 2. 4IA GAE. K 56.)NUT~ K

14 FORMATC52X 3.0XAl.5XEll.5XP'.K 3.XAO.XEli.)
15 FORIIATCSX 34X --------------- **.*X.*,/v4Xv

2 FORMATC4IX. 6Xv P930 13.4K A4O. 5K.5 X ELI .5)

30 FORMATC5Xs.0OUTHE FO9LOWING IS THE 0 MATRI** X.~liP.SXOie..5
-MEALL EMENTo/S SHOULD ER CL4OSE TOERvO PCFCTONtX00

l4 MWEO X dAE.979 SEIIAIM9/ lm *0

40FRAAXlpXA05ol.9(09XlpXAO5(EIS
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51FORtAT(5X0. TH4E FOLLOWING ARE THE EIGErIVALUES OF v'vA4o. *0
.52 FORtAT(SX0. THIS. SPECTRUM IS INDEPENDENT OF 0 AND ROP5XO*O)
:53 FORMAT C48X. iNATURAL. A ,47X, iFREQUENCY;, 7X. iDAMPING, 9/.4X. OEIGENUO

A, OAUEM, GX. REALIi, 9X. OIMAGIMARYP. 5X. O(RAD/SEC)%. ?X. RATIOn,')
54 FORIIAT(8X. 13.5X.E12.So3X.E12.6,3X.El2.6o3X.E12.G)
60 FORNT(5X, n* THE FIXED COMPONENT OF THE MEAN SQUARE PIP/. SX.

APO* UALUE OF OUTPUT OP1390 LABELE ,i,A1OGX0*0,/'*5XP0* EXCEEDS
*,nITS SPECIFICATION .n. 17XoO*O)

61 FORIIAT(5X0. HO CHOICE FOR 0 AND R EXSISTS . SOP
-#HOWM09.7X, nen. ,,SX. * BELOW*ARE THE FIXED COMIPONENITS AND Oo.

$%THE SPECPlX.0*0)
-6 FORMAT ('. ax. uOUTPUTS. 15X. nFIXEDn, 12X, nIEAN SQUAREn. , 5X.

nNUMBERn, 4X. nLABELn. 9X. nCGtIPMIENn.9X. SPECIFICATIOI1#, )
* 63 FORIIAT(6aX.13,4X.Ai.0,4XEI.5.IOXElI.5)

70 FORMAT(SXjn* INPUT OP3* LABELED 0,A1090n HAS 110 EFFECT n
--/5X(o,0 ON THE OUTPUT . IT WILL BE DELETED OvS8XPP9*l)

71 FORIIAT(SX. n* SHOLZI BELOW ARE. THE INPUTS WITH THEIRn. 7XP0non.'. Xp
-0* RESPECTIVE ROW NORMIS IN THE GAIN MATRIxn5xoo*,1#5xnoj (I.E.

* A ~~~THE ROW NORMS OF BKn 5.nn
72 FORMAT(6X. 13P4XvAl09SXEII.5)
73 FORMAT00XlOX INPUTSM. 1060 GAIN MATRIXn. '. 5X. nNUIBEIn, 4X. nLABELn. ax

-9nROW NORMO)
74 FORIIAT(5X~pno INITIAL 0 AND Rt RESULTS 091SXpon*n)
75 FORMAT( 5X. no THE ABOUE DELETED INPUTS CONSIST OF STATEn. 3X. non

^~995X* ESTIIMATES THAT ARE HOT DISTURBABLE FROM THE n
A/#SXP.O* MEASUREMIENT VECTOR Z* .n,922xpno)

80 FORIIAT(5X(PO* ITERATION NUMBER OvI3924Xtno)
81 FORMAT(5X0o 09A7vO ADJUSTMENT , EXPONENT IS 0vFff.493XP0*n)
82 FORMAT(SX9,no SOLUTION OBTAINEDn,27Xtnon)
83 FORtIAT(5X90* HO SOLUTION FOR-THESE SPECIFICATIOtiS,8XPnOn)
84 FORMAT(5X# O* SOLUTION NOT YET OBTAINEDo'.lax. oMo)
131 7 FORIIAT(5Xo IF THE OPASPO SPECIFICATIONS ARE CHANGED TO *0-

A,.SXP0O THE OoAG'O MEAN SQUARE VALUES OF THISn.7X90*0vMP.X,
.A,0* ITERATION.t A SOLUTION HAS BEN FOUND .(I.E. OM./o5X
^tO* AN 09AS.M CONSTRAINED SOLUTION .)OiXon$)

88 FORMAT(5Xiio IF THE OPAG.M SPECIFICATIONS ARE CHANGED TO O
A. /P )X. 0 THE 09 AGO 1 MEAN SQUARE VALUES. OF THIS09 7X,#oM. , SX.
^90o ITERATION. A SOLUTION HAS BEEN FOUND *.SX90on)

*89 FORMAT(5XMO* IF THE PnASPO SPECIFICATIONS ARE CHANGED) TO *pg
A,,5XMO THE OPA6,O MEAN SQUARE VALUES. OF THIS047X.MOnO,5X

* ^,0* ITERATION v THE COMPROMISE SOLUTION RESULTS *0)
90 FORMAT (aX, OUTPUTSM, aX. MEAN SQUAREji,3Xo MNOR!IEDM. ax.nIWEIGHTM,9

-3XP0non.4X. MINPUTSM. aX, MIEAN SMUAREn. 3X. nNORMEDM, GX. MWEIGHTM,
-A/, X#OMJMBER LABELM, X. iVALUEM. T7X. VALUE, t7X. MC 011)M. 4X.
** NUMBER LABELJt. TX, UALUE. tX. MALLJEM.ax. (RII)M)

A,91 FORMAT(XF3.02XAIO,XEI.5.XEII.5,1X.-Ell.5,MO 09M
'F3. 0.2X AlO, IX:EII.5, iX, EII.5. IX.EII.5)

* 93-S FORNiAT(5XF.o u,2X,AIOILSIXEI1.5.IXtEI.51.
94 FORMAT(35X.P . at45Xo Pb '/2X.YSUM- OE1I.S.

A3aXouiIJS1JM. 0,Ell.5P//SXMTOTAL NORN SPEC n 0.EL5)
:95 FORMAT(aX. O* CONSTRAINED SPECIFICATIONS SOUGI4Tn, I Xvln*0)
96 FORrATaSXnO* CONSTRAINED SPECIFICATIONS FOUNDM12XP0*0)
99 FORNATCSXM------------:uuvuu:: --------oooo:UU::5

- ..- ,-SX#PgO ALGORITHM CONVERGING VERY SLOWLY. THESE0
^00 MEAN SQUARE VALUES on,.5SX9no ARE GOOD APPROXIMATIONS TOO
^,0 THE DESIRED SPECIFICATIONS.M.SX.MoM.',5SX.M* FOR A CLOSER M.,
^APRO))IMATIOMP THE ALGORITHM SHOULD BEn. ax. nn, '9 SX. 0 REM

MOSTARTED WITH THESE WEIGHTS AS THE INITIAL WEIGHTS ANDM, 4X. MOM
A-d',SX90* THE CURRENT VALUES OF EITHER EY(I.S) OR EU(IP2) AS THE 0
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a, 4X, *l./, SX. %* UPDATE UECTDO%,46X. a*s,/. 5X.

Ceeee*e~n~l INI ITIALIZE PARAMETERS *.n*~ee.*n*

105 rllU=HwtIU
RY~YYIU/I'1.

IFISIY.LT.NU) Mitriii
NYU=-MfU
NAX-IABSIYU)+1I

DESCTtI*OE+99

.4RS-O.

DO Ill IlIImY
EYIORIICI. 1)1.OE+99
EY(1I.2)s0.

* Li CONTINUE
FLAGS( 11)=.FALSE..
5013=. FALSE.
riSari-.*FALSE.
550111= *FALSE.
INTER.TRUE.
COIIST-.F.
RZFLG=.F.
IF( (FLAGSC4) ).AID. (FLAGS(10).)) WIISTs. T.
XHAT.F.
MC 112 I=1IiHU
EUTIORN(I. 1)1.DE+SS
EUC192) =0.

12 CONTINUE
NY2UtiY.N
NU2=NU*NU
N43-441Ye3.IU
N3231Y+2tIU
NA2-NAtIA
MAUIIANMU
N22=2*MY42.tlU
M33=3e11Y+3tU
r121=2'rMv+hU

N2A=2tA

N3U=3t1U
M4U4II

NST.N43+IAE.NAU
rlSTI-tl-rfl.AX
5Ps1..EPS

CnnHMHnn PARTIAL INPUT DATA ECHO!fl4CK3

IF(.WT. FLAGSCfl GO TO 110)
URITE(6, 1)
U4RflE(6, 1011U.IY.EPS
DO 100 1.1.9
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IIKC I )=SALSE
IFCFLAGSCI)) WK(I.)-1H TRUE

100 COG1TINUE
IJRITECS.20)(WKI) 1029S)
URITECS*30)
DO 101 1.11111
WRTECS40)PITLY(I).SIGMA(II).I.TITLJJCI)dlU(CI)

101 CONTINUE
IFCrIY.EG.NW) GO TO 110
IFtitiN.EO.MY) GO TO 103
DO 102 10MIM9M.AX

102 COITIIIUE
GO TO 110

103 DO 104 IinflItl.NX
WRITEC642)IPTITLU(I).IIU(I) I

104 CONTINUE

Cm'.". CALCULATE STEADY STATE FILTER RICCATY :::r.

110 CALL 11P31 C RtI. A. III. RIJ, Z. IUI. Ni Z. NA, III. A. K(Ni43411A2+1)')
CALL flP32CNRD. NA. DD. NRUW. W. rRD. NW. NA.DD. NA. IC(43+L))
CALL POTTERCOVILTER0l.NAtAAqMRA.UK(N434tlA2.1) 9 MAP WK(N43+1) #HAP PP

C .NPWKC43+2.r1A2.1).EIGAFI1.LCK43.6.t1Aee1)..FALSE. .FLAGS(3))
------------------------ SAUC PITUIMP *4144**1*4U*4HI44

CALL IIP3CNRP. NA.PP. IA. NA.WK(N43+rIA241 ) ,RP. NA. NA.PP. NA.
41(CM43+1))

IF(.NOT. FLAGS(3)) GO TO 120:
WRITECS. 1)
WRITE(693)
WRITEC(6.50)SH-D)P/DT
WRITECS. 3)
WRITE(6. 2)
CALL MPRIMT(NAPWKC43+2*11A2+1),NA.NA. 10.5.O-1DP0)

C::--:--:::*u... FIXED COZPOEIT. CCPCT) CHECK.a

120 CALL IIP32UMRC.NYPCCIINRPNAPPPRC.NA.NYCC.NY, WKCI43fI1A2+1) 1
NDUHIO
DO 10IIM
WKCN33+1IWK(N43+I1A2.( I-i )otY+I)

IF(CPCD.LT.SP) GO TO 130
NDUPIUtDUM+1

-, IF(CDUI.PE.1) GO TO 131
"I WRITECG.1)

WRITE6.3)
MWRITEC 6.2)

WRITE(6.60)IoTITLYCI)
130 COMTINUE

IF (NDUII.ED.0) GO T0 140

FLAGS(2)w.T.
4 WRITE(S61)

WRITECG.3)
WRITECS.2)
WRITE CS. 62)
DO 132 Isl1.NY
WRITECS.63)I.TITLYCI)WKCN334I).SIGMACI)
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132- COMTIhUE

C**" SET IMITAL GUESS FOR 0 AND R C INERSE)

140 DO 142 In1.NY
DO 143 J.1IvIY
00(1.J)u0.
IF(I.EG.J) 0O(ItJ)u1.0,SIWIAXI)

143 CONTINUE
142 CONITINUE

DO 144 I=1IU
DO 145 J-1,NU
RRI(II.J)-O.
IF(I.EO.J) RRI(II)ul)

145 CONTINUEU~)
IF.NT.FLAGS(4))4 CALL IS

CALL rAREAD(NU.WK(N32+1)rYo$ INITIAL;N)
CALL. I)=I.JK(M122.I)Mlv9R 11TA~
DO 147 Is1IoNJ

16CONT INUE

C...... CALCULATE STEADY STATE CONTROL RICCATI

C..*. IDENTIFY ACTUATORS USING ONLY UND2STURBABLE ESTIMIATES'.a.
150 IF(.NOT.RZFLG) GO, TO 151

XHATm.T.
GO TO 162

151 CALL 1~1P3 (RC. NA. CC. NR G. .0(M RC. NY. NA. CC. NA.MK(NTW
A-tjA24.1))

AN ~~~CALL PM3(NRU N, 3.iIRR. flU.RRI. M INA. 3. NA. &K(tWIIS ))
4' ~~~CALL POTTERC OCMtTRGOLI'. NA. .IRA, iK(NST+1 ) * A. tIC(NST.NA2+1 ) * NA

-IK.NPRK.UWK(NiST+2.tlA2.1).EIGAB~oWK(lST.BStA241). .FALSE. .FLAGS(5))

IFC.NOT.FLAGSC5)) GO TO 170
WRITE(6. 1)
WITEC6. 3)
4RITEC6.5O)GH-DK4DT

.ft~ WRITE(6@3)
WRITE(6.a)
CALL IIPRINiT(NA. WK(NST.2'.1A24-1) .NA. NA.10.5. i-D1K/DTI.0

C*.. IDENTIFY ACTUATORS-'IIICH EFFFECT ONLY UNOBSERVABLE STATES**".

170 CALL IIULRTR(33. P(K.iN434tIA2+1) * MU.NA. NA. MRS. RK. MU)
IFC(IIGT0)AND.(.OT.GZM G)) GO TO 160

* CALL IULRRT~C(t43.tjA2.).WK(Ni43+NAP2.1).
41K(ST'*2+1)tMUvhA.MU.MUNIJ.MU)

F 3TKN-0.
DO 171 I-1.NU
IF(IJK(NiST+rA2.rlUcI-I).!) .GT.BTKI) BTKllutI(NST4NA

A4IIU(I-1)+I)
1.1CC ST.NA~I241U2I)=W( ST+INA24rlU(I-I )*I)

171 CONTINUE

Mv
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162 NDUMwO
Do 172 J-J..lIU

IF( .NOT.XHAT) UK(M21+I)-TITLU(I)
IF( .NOT.XHAT) WKUriST.11A2t1U2+I )uSORT(LJK ( ST+flA2+11241 )vBTKM)
REPS(1I( 1,I))*IIU(I2+)GTESAH.M.X )GOO17
WoELJK(MSTRIQ1A2+rU.Io.P)A1..1THT)G.T 7
IF( (XHAT) .AID. (REPS.GT.EPS)) GO TO 172.

IF(IIDtNIME.1) GO TO 173
IJRITE(6. 1)

173 WRITE(670)IPTITLUCI)

C*.I....*l..DELETE ACTUATOR IF NECESSARY --------:--

cmiuic1)-I
RIIUI(1)=I
CALL IIDROP(IRBtlA.MUBB.O.RIIUM1.CtIM.0)
CALL MDROP(IIU.W, 1MU, 1.R~iIU .CM. 0)
IF(1I.ME.IIU) CALL IIDROP(MeRD. A. flUDD. 0.R1UfO 1.CNiUti0)
CALL IIDROP(MPUI 1TITLU. 1.RMUM. 0CtiUM.)
CALL MDROP(UlUII.1MU1.RIIUI.0.CIiM90)i

172 COHTINUE
IF(rMDUII.EGO.AND.1.MOT.XHAT)) GO TO 160

muHUmflDUM

IF(.lOT.XAT) U4RITESP71)
IF(XHAT) WRITE(6.75)
W4RITE(6.3)
IF(XHAT) GO TO 105
WRITE(6.2)
U4RITECSP73)
DO 174 1-1 9 NNU
WRITECB 672)! ItUK (M121+1). 9 K(t1ST+14A24flU2+i-)

174 CONITINULE
GO TO 105

) i~h.4H.*g~mCALCULATE STEADY STATE:UARIA1ICE OF STATE ESTIMATES *

C***** FORM A+BG MATRIX **** -----.............................
160 CALL MLT(WK(MST+1),KKPUK(NST+11A241),NA.MiAotlANA.MNRKMA)

CALL MADD(AAKUSTtIA2+1),U4K(STW+1).IA,1iArtiRA.MA.PIA,-1)
Cmommm.-N.* SOLVE LYAP EOUATIO.Immo---------------

- *~~ CALL GEIGEMI(MA.WK(ST~).tlA4,WK(MWS+5.tA2+1). 0,4.GTS SUB$
Av EIGABG. MA. U4K (PIST+11A ). U K(NST+3.tA2+1) t A+BGs)

S ~~CALL LYAP2(EIGABG. NiA.WK(MST+tlA2.1) * LK(tST+3*tlA2+I) *NA. WKa143+
.%),flR~,t0GIMAoUK(rj5T+6.rA1Aa))

C---------------**CHCK4.H1114*.4*1114..*.**1.41u.
IFC.MOT. FLAWSS).) GO TO 180'
WRITECS. 1)
WRITECS.3)
WRITECS. 50 )GH-flXDT
WRITECG.3)
WRITE(So,2)
CALL LYC(MA. NA. UK(MST4I) . IRX. XOXi.WK(MT+SIIA24L) .MA.

-WKM43+1)#2)

C*""o.. CALCULATE MEAM SQUARE VALUES .. :..............
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C""* CALCULATE IIIPUT MIAMl SQURE VALUES AND CHECKS *4U*I
*180 NUSPECCo

NSTOP-sO
uSUI.
uuSUli1.
r.RSU"o
MUJMAX-0
DESCTu-0.
DESCYU-0.
CALtW(s U UKM3M21.#IRX9 MAP X)G, MPU MAP.M

E. W(N)WIST M1+I)UEU(I.2)D**

* IFC.NOT.CONST) EU(I.2)uO.
IF(EUIIORNCI2).LE.SP) EUCI.2)-l.
r.JSWl-MUSUMII+TTEI 1*2))

195 IF(EUNORIIC 12) .LE.SP) MUSPECrIUSPEC.I
IFCEUMIOP12) .GE.SPM) NUIIAX#MUNAX*1
IFCEUIIORI1CI2).CT.SP) DU~n(ELNORIPI(.)
IF(DUN.GT. DESCTU) DESCTUl-DUII
USUNUWSUM4EUNORIICI2)
IASLII(EU(I),RI(Iv 1) )44ASUII'
DELwABS.EUIORIC I 2)-EUNOMICr, P))
IF(ME.LT.EPS) MSTGPNSTGPll
IF(PLAGS(2)) GO TO 183

!PC (EUCl P 2) .GT. SP1). .AMD. CELEIORtIT2). GT.SP)) MMUII-EUN(!.2-1.
4 IF(DUII.GT.DESCYU) DIESCYU-DLII

ImCONTINUE
MUBWC-U-UMAX
MUOSPC4Mk-NUSPEC
rlUISPCMUu-IUSPC-NUOSPC

C..**... CALCULATE OUTPUT MEAN SGUARE VALUES AND CHECKS
NYtIAX-0
NOZEROO0
DESCTY-0.
NYSPEC-0
YSUIIMO.
NysunUo
.CALL tf32(NRCP NVP CC. NAX. MAP X)G. NRCP NA. NY. CCP MY. W (NST+1))
DO L84 1.1.1*
CYC I)uIJKN33.I)4ICNST+rlY*.I-1)*I)
EYhNORIIC,2)=EY(I)/SIGIACI)

* IF(.IIOT.FLAGSC2)) GO TO 191
WK(NSTI+I)OEYCI.2)
IU(.MO.CONST) EY(I.2)-0.
IFCEYNOR?1(I.2).LE.SP) EY(I.2)-1.

* NYSUlnoNYSUI+IN4TCEYCI.2))
183. IFCEYNORfIPI2).LE.SP) NYSPECuNYSPEC~1

IF(EYNCRI(X2).GE.SPII) iWTMAIIOrYq1X+&
.4 QEPS-QOC1D*SIGZIACI

IF( CQEP.LE.EPS) .AND. CEYNORNM 2) .LT.SPII)) NMRanOZERO4*1
numo.
IPC CEYNORtIC.2) .GT.SP) .AfID.( (EPS GT.EPS)) DUN-CEYNORIC 12)-I.)
IF(MM*.GT. DESCTY) DESCTYsDLII
YSL~iNYSUM4EYMIIOII2)
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DEL=ABS(EYtIOR?(1CI2)-EYtORMII1))
IF(DCL.LT.CPS) M15TUPufSTOP+L1
IF(.lT. FLAGSC2)) GO TO 184
a~j.o.

IF .GT.DESCYUJ) DESCYUSwDMI

MYISPC-flY-YMAX

MYACTUN-flYOZERO
IF( (OtST) AID. (FLAGS(2))) MYSMl=WISuIJrIOZER
IP( MUISPC. EQ. U). .AMD. (FLAGS (2))) COIISTO.T.
IF( (IYISPC.EG.MYACTW .AflD. (.NT.FLAGS(2))) CO HST =;T.

C.4M114.. CAIWLLATE DESCENT FLECTIOfI. *u e :

DESCTOnIESCTh
DESCThODESCTU

IFCFLAGS(IM) GO TO 196
IF(DESCTh.GT.DESCTO) GO TO 187
GO TO 186

137 XF'(PIIREO.5) GO TO 175
XFCC(.NOTFLAGS(2)).AID. (.MT. COST). AMID-(PW.R. EO.1.V GO TO 171
IF(DESCTO.EG.O) GO TO 175
IMFC q DESCTO
DO 183 I1.NoY

00(1. I)OW(N2241).
IF(FLAGS(R)) EY(I,2)4K(tW1+13I

DO IO 230pm

186 IFCDESCGS.LT.DESCTO) FLAGSC11)1J

GO TO 230

I(S)GO TO 10I . IUOL..T.FLG().H.TPCG.M )AD(IE-) SLNT
SOO. T.

GO TO IV7

19UFFAS2)G O12
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19 IF(II.GLITM) GO TO 197
IISTOP.lE.WYH) GO TO 203

FLAGS( ll)in.T.
GO TO 203

197 XNTER.FALSE.
ZPC.MOT. FLAGS(S):) GO TO aio0:
CALL MIJRITE(NY9EYPMY.1.aY M1S UMS 0)
CALL MIITE(MU.EU.NU.1.OU M15 LALS d)
IFCFLAGSC2)) CALL MMlITECIIY. YC 1 *2). NY. 1.*UPDATE MU"1)
IVC.NOT.FLACSC2)) CALL I1IJITECNUEUC1.2) PMU.lo UPDATE MW)

CW--------------STORE RESIJLTS .ommom"-

*203 DO 200 1=1.1W
L1KC122I)-OO(! 1)

200 COIT IKIE
Do 201 I-1IIJ
W(K113I).0/RRI(L.I

201 COIIT IIE
IF(C.MOT.FLAGSC7).A1D.(INTER)) GO TO 210
CALL MUITE(tlY. WK(f2241 ) .Y*. .1 * ~ PUT WTSO)

* CALL 1IJRITEtJ.WCN32.l).Ij,..IH9UT IJTS 0)
CALL MIRITE(NYEYORM(v2)vNYl1.dY NORM UAL$)
CALL MWIRTE(MU.EIIII1.2.NU.1. NM VAIi)
CALL MMJITECM2A*EIGABG'gMAP l, A4DG EIGSO)
IF (INTER) GO TO 210
CALL MIIITECN2A. EIGAFN. N2A. 1. A-R1 EIGSO)

C*WIu.4I.4,....SAUE CUlRRENT LALUES ------ -

210 DO 181 I1.IY

EYhOMRIC.)=EYMORMICI.)
* WKCST+I)uQ~oCiX)

181 CONITINUE
DO 192 1=19HU
tJKrt214D-
WKC2+I)-TITLU(Z)
EUIIORt(I.)=EUIIORM(192)
II(CNST4IY+I)-1.'RRI(1XI)

182 CONTINUE

C~m..........PRINT RESLLTS----------------

IF(C.NOT.FLAGS(S)).AIID.(INTER)) GO TO 230
1IFCC.NT.FLAGS(8)).AMD. (.MOT. INTER)) GO TO 250

CM--------------*INPUT ODRN
DO 185 Im1.NU
NtIIJ+1-I

.II ~ Do 185 Julem9
IFCJ.EO.NP) GO TO 185
IFCEUNMOI(J.2).CE.ENIORII(J.1,2)) GO TO. 18!
TEMPIOEUIIORM (J.2)
TEMPEIJCJ)
TEIIP3uII(PNJ)
TEMP411CH21J)

EUORM(J2)=EUMORN(J41.2)
Ej(J)EUCJ41)
N(M24J)uI(CM4Ju1)

bICCN2l+J)uW(M21.J+l)
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tIC CHST4 .4 j)int.C 1T4IY.j41)
EEHMNJ41.92) =TEMPI
EUCJ41)-TEJIP

WKC NST+NfY.J41 )=TEMFS

C---------OUTPUT ORDERIG :

DO 203 ulM

IFr(J.ELNMP) GO t20

* TEMPI.EYMORMCJ.2)
* TEMOMEYCJ)

TEMP3=IICJ)
EMP4mW CNY+J)

EYNORHJ2)EWIOR(J1.2)
EryC4)UEYJ+l)

* I.IKJ)IICCJ41)
bICCJ4')WKCJ.14NY)
IJKCMSTJ)-b(STJ.1)
EY(tIMCJ1.2-EF
WKJ41)-TEJIP3
WIKctY+J+i ).TEWI4
WKCIST.J41 )=TEW1P

-0 COHTINE
-- -- ON PRINT- - - - - -

WRITECS.)
WRITECI. 3)
WRITE680)11
IPCULEO.0) GO To 214
IF(FLACSC10)) GO TO 216
IF(FLAGS(2)) IIRITE681)0 At 0,PR
IF(IIOT.FLAGSC2)) IJRITE(Gm81)o 0 uiPWR
GO TO 217

214 tWTECS.74)
IF(.MT.FLAGSC4)). WRTEC6,8S)idSYSTEMW9OCIUE1O
GO TO 217

216 WRTE(G81)OG AMD R09PIR
217 IFC(flOT.SOLfI) GO TO 211

lIRITEC 6.82)
tJRITE(6*3)
GO TO 218

21.1 IFP-C.IdSGL!1) GCL TO 213
WRITECSPO83
IFC .IIT.SSOLi1) GO TO 221
WRITE(S. 86)
IF(FLAGS(2)) IJRITECG. 87) OJTPUTOi*'OUTPUTO. lf~UT 0
IPC .IIT.FLAGSC2))- WRITECS. 87),iIIP O. OIPUT A.'OUTPUTO
WRITECS.3)
GO TO 213

213 WfITECBSO)OSYSTEM109OGUE1*i
IRITEC 6.3)
BIRITEC B. 8)
GO TO 213

221 BIRZTECB.S5)
lFCII.E.TUMV GO TO 215
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WRTKC693)
218 bRITE(G.)

p WITECB.,90)
IlRITE(Soll)

7 DO 219 I.1.IIIN
IWITECS.91 )IJ(I) 4IK(IIY+I),EY(I),EYIORflC'12). WK(IIST+I).,

219 CON1TINUE
ZF(HY.EOl.MA) GO TO 222DO 220 XItIIAKm
IF(fHIM.EO.NU) IJRI7KE(6.92)t.KI(().WK(IIY+I).EY(I). EYMtIOI(t.2).

41KNtw+I)
IF(CINU.EO.NY) WJRITE (So 93) WK(f2+1) UKUI2l+I) P EU(I).ELNIORI(I V
IlWK(tST.NY+!)

220 CMfTIHUE
22 WRITEC 6. 94YSLEI.USUJI.TSPEC

WRITECS. 1)
W.RITE(Sv3)

$ URITECS. 51 )OA+BGO
WRITE(6.3)
WRITECS#2)
IIRITE(6*53)
Zino
Do 225 I-1.rl2A*2

* FrREG4ORTCEIGAUGC I)4..24EIGABGC1 1*).
IF(FREO.EO.EIGAMMI) FREO-0.
DAMPO1
IFCPREO.IIE.0.) DAlPABSCEIGABG(I) )4REO
lEITECS, 54)11. EIrAICI) sEXGABGC(I.1). FEO.-DA

-2 COIITILE
IFCITTER) GO TO 230
WRITECS, 2)
WRITECS.3)

WRITECgs.52)
WRITEC 6.3)
W.RITECS.2)
IIRITECS.53)

DO 22B Iw1,M2Av2
11*11+1
FREG.SGRTCEIGAFlIC I)..2EIAFI(1+1).42)
IPCFREO.EO.EIGAFM(I)) FRE-0 9

IFCFREO.ME.0.) DAI1P-A3(EIGAR1(I))/'FREO

GO TO 250

C m w UPDATE EQUATIGrIS m E-.U. -

TLAGS( 10)u.F.
QZLGu..
RZFLro.
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a.. Ir( (PURS.LE.SP) .AND. (PI.RS.GE.SPI) .AIID. C((FLAGS(C2) )(.OR. (COtST)

irCPUR.GT.SP) PURPw.s-i.
irC.HOT.FLAGSC2)) Go To 231

Ce.... INPUT CONSTRAINED UPDATES' ------
DO 240 I.1.I'I

REPSX 101(Ipt OU(I)
IFCREPS.LT.EPS) RZFLG.T.

240 CONITINUE
IVFtIYBSPC.E.0) GO TO 150
IFC.HOT.cOrIST) GO. TO 150
PLAGS( 10)m.TRUE.
DO 233 IwlsMW

XF(GCI.).EO0.)GO TO 233
IPCEYI2).GT.SPt G0(II)EYIOR(Il).PJR4'(I,-I)

GESOGCI.I)OSIGACX)
IF( CGEPS.GT.EPS) .OR.CEYtIMICI.1) .GE.SPH)) GO TO 233
09(1.1)-o.

434 OZPLG-. T.
amCONTINUE

GO TO 150
COH** OUTPUT CONSTRAINED UPDATES ----------

231 DO 242 I.1.1W
IF(GOMMI)EO2.0.) GO TO 242
00(l. I).EYtIORI(I,1).tJOG I)
OSum(.I)SIGIA()

IF(OEPS.GT.EPS).OR.(EYMORtIOI.1).GZ-.SPID) GO TO3 242

WZLG=.T.
242 CONTINUE

IFCNBSPC.EO2.0) GO TO 150
IF(.NOT* COtST) GO. TO 150
FLAGS(10)-.T.
DO 235 1-1 p M
IFCEU(192).GT.SPI) RRI(I. I)-EUMORI(I. 1)uu(-PR)*RRI(!, I)
REPS-(1'RRI(IoI))MUCI)
IF(REPS.LT.EPS) RZFLGu.T.

235 CONTINUE
GO TO 150

250 CONTINUE

C***** ACTUATOR / SENSOR EFCTXUENESS CALCUJLATIONS------

Ce..uui.. SET UP A-RIM 161
- CALL 11P31 CNti A. II. NU. HZ.UUI. NRMI.HZ. HA. 111. A. K(HST+1))

CALL HULT(PPWKCNiST.).UKCNTI1A2.1).NiA.NA.NiA.NRPNA.HA)
CALL IIADDCAA. UK(HST+11A241 ) KCNST+1 ) * A. NA. IRHPR. NA.-1)
CU~u~~u~uuu::::muSOLUE L LYAPE E- -------------------
CALL HP31 CNU. A. UK(H434t1A241), NRR NURRI * HU NU. A. UKCN434flA241).

4 ~ ^HAvlWKCHT+2*.tA4L))
CALL GEIGENCHA. UKCNST.1 ) A.4. WKCHST+711A2+1) *0. 4..GSASi. EIGAFI.

iNA. KtST3e11A2e.1) * K CNS4'A2I1) * A-FflO)
CALL LYAPI(CEIGAFTi. NA.WKCST+3MEtI) K (MST+5$1A241), NA.

41CCNSWf2#1A21 ).NA. UK C ST4N%21) *NA.UK CHST+?.t+IA4))
C..'.. CALCULATE ACTUATOR NOISE COMTI IUTIOII '.e.'.e: -

CAML MADCKK.KCSTMA21).UK(HST+2.I1A2+1).NA.NA.NA.NA.
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* ~CALL MP31CrMuPMU.3B.NPA,MA.UICCNST.2*MA291) ,NRB. IA. flU.BR.MU.
-WK CNST3.flA24tU2+ ) )
CALL MLTCWKCNST+3eNA24tIU24), 111k K(IST+31tW1A2l) .NMU, UMUM. MRI

DO 260 I-IPM.U
IAJ-EUORQI, .IUIo1'RII )
WK(I)=UU-UK(MST.3etlA2.I-1)tiU+I)
IFCFLAGS(2)) WKM(IU/

X ~~ 41-K(MST+*1A2+C I-I )11U41) )'UUSU11V(UUSU1-UU)
1.1CC 14U)-UK(HSTe3*MA24( I-I )j+[)

11CC 1413)mTITLU( I)
11CC 14H4U)inI
WK(I4NSU)mTITLUCI)

290 COMTIIIUE
C..~M.4.o**4M~u.CALCULATE SENSOR RANKING;--

41C(MST+3.tIA24t1U241))
CALL 11P32(MRMPMlZ. il. NA. NA. UK (ST+3'11A24tU2+1) , Ht. A, lIZ.

411. HZ, UK CST+441A2+1124tIZ*tZ+1))
CALL IIULT (WI.UK (NST4.t1A24tlU4ZtiZ+ 1). 11CCST+4*tIA2+NU241) P

ANPZ. Z , RU. HZ. Z)
DO 261 1.1.112
W1CCI+MlGU)-JK(NST+44.tA2411U2(-I-l ) .IZ+I)

261 1CC4$1U4N2Z)uTZTLZC I)
21CONTINUE

C"mm N*** PRINT RESULTS (ORDERED) mo
WRITECS. )

IFCHZ.LT.NUJ) NIM*lI

tIAX=IABS(H2W4IIIh

00M---------ACTUATOR ORDERING------------------
DO 262 I1N
NipaI +1-I
DO 262 J-lmtI
IF(J.EO.N9) GO TO 262
IFCUKJ).GE.WK(J4.1) GO TO 266
TPIICK(J)
TPBUWCJ.H2U)
TP3-WCJ.N3U)
WKJ)IICJ1)

4. IWKCJ4H2U)-uKCJ14NM2U)
WKJH"3UJ)=WK(i.143U)
WK(J41)=TPI

* UKJ*1.tl2)-TP2
UK(J414f13)=TP3

2WIF(WKJII).GE.11(J.14NU)) GO TO 262
TPINKCJ+II)
I P41KCJ+4U)
TP3mUKCM)

WK(CJ+MH4W(CJ.14$4U)
WKCJ+flSU)uWCCJ414415U)

'S. UK(J+lIfl)-TPI
WK(J414H4U)-TP2
11(J41.H5J)-TP3

23CMIT INUE
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8 0 Nm * SET1SR ORDERING swmoulo
DO 26 11.NZ

DO 263 J019HP
IF(J.EO3.IP) GO TO 263
IFCWKCNGIJJ).GE.LJI(NGI+J4J)) GO TQ 263
TPENWKCIIGU+J)
TP2-bW(M6U+MB+J)
IIK(r16U.J)-I.K(r6U.J41)
WK(HGUNMZ+J )=UK (11U+tlZ+J+1)!
ICC N6U4N2ZJ)=WK(MUr2ZJ.1)
I.I(1UJ)=TPI

lC16KMU4412Z+J4+1)=TP3
BMCOIT IIIUE
C.........PRINT----- ONNONOSUR

IWaITEC6. 15)
NRITEC6. 11)
WRITECS. 2)
DO 264 IulvNIM
liRITECS. 12)MKctIGu4+m). WK(MSUf2Z+).WK(NMtJI).WK(tl4U*!).

4IC(f5UI). LlC(rU4I). WK(M2UOI) , WK(t3U+I). WKCI)-
264 COITINUE

IF(MU.EO.NZ) GO TO 269
DO 265 IutlIMPMAX
IFCII.EQ.MU) WRITECS. 13)WIC(rGUflZ.I ). K(M6U442Z+I) , IK(M6U1).
IF(MI.E.MZ)

4RITEC6. 14)1JK(f4UI).WM~tJI ).WK~mrlt).WK(tI2U+I)bWK(f3U+).II(I)

269 RETURN
EMD

SUBROUTIME MWRITECIIR(oU MATRIX# MR. tC. MAHE)
REAL MA1RIXC IROI. C)

1 FORAT- THE: MATRIX OPAIO90 (0,1101 BY'I3.PL-)O)
2 FORIIAT(6E12.5)

WRITEC8s. 1)AME.IIR.MC
WRITE(8.2) ((IIATRIX(IJ)vI-1.NR)v.Jo1.MC)
RETURN
END

SUIROUTIIE MAREADNROIJ.MATRIX iMR. IC.MAME)
'REAL MATRIX(MRNPM.C)

I FORIIAT17XAO2X33X13).
2 FORMATCE2.S)

READ(5vDM)AIIEIIRsMC
READ52) (CMATRIX(I.J). I-1..MR)tJs1.NCI
RETURN
END

SUBROUTINE LYCI(MRA. MA. A. MRX. XX. IC. RN. III.FLAC)I
REAL AA(IIRA.1),XX(rIRX.1).wKl)MMIRMII)
INTEGER !RA.MPMW*X.LAG.NR
IF (F'LAG.E.2) GO TO 100
CALL MULRTRCAA. XX. WK. MA. MAP MAP NRA. MRX. MA)
CALL MULTC XX. AA9 U.KCMAtIA41) 9 MA. MA. MA. MRX. NRA. MA)

120 CALL MADD(WC. WKCMAONWe1) *WK2*tIAIIAI) MA. NA.MA. MA. NA.1)
CALL MADD(WK(2.MANA.1 ) *P11. C.MA.MA. MA. fRM.MA. 1)
CALL MPRINTC MA. WK.MA. MA. 9.5. -YCHECK. 0)
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GO TO 110
100 CALL tULT(At XX. W, KNA.NA ), Ntit RrA)

CALL NLLRRTCXX@ Aft. NICMNOWA4) v MAP MAP MA. NRXPMA. W~

110 RETURN
END

SUROUTINE MWROP(NrROI ,NM, t.CAA f. *NROIIS ROII1UN NCOLS4CI]LIKIFLAWG
REAL A (I HI.fICft)
INTEGER RJUNlRG),* COLJJ(COLS)
IF (IUGS.E.0) GO TO 101
M0 100 JULNRIMNRIIRA-RO tIUMI(J)
IF(R.E.0) GO TO 104
CALL tEO(C ROIIGJI(J)+l, 1) v AAROIMMUl(J1, 1) * NR. NCAIROfit =*RM")

104 M0 100 I-IICAW(IR&, D)0.
100 CONTINUE
101 IF (NCOLS.EO) GO TO 10210 110 J-1,.NCOLS

I1CUqC- UUI(J)

IFCtC.EQ.0) GO TO L05
CALL IIEMCI 1,* COLMLICJ)l), MCI,* COLIUI('.J) ), sNRA. N, rRO3, tROIm)

105 10 110 'IiIM
AA(CA)u0.

110 CONTIIIE
102 IF CFLAG.EO.0) WO.7O 103

CALL tPRItITCtf ,A AP rA tC. S ,5,AAt-TRNCA, 0)
103 COTrINuE

RETL
END

Note: For the LQGWTS subroutine just listed to work as adver-

tized in Chapter 6, (a22) must be chosen such that no

LQG controller can satisfy them. Currently, if a solution

exists, the program will stop when any solution is found,

(i.e. It will not search for the input-constrained or output-

constrained solution in this case.) Also, the program cur-

rently does not check for q, -, so uncontrollable systems

could cause problems for the output-constrained search,

(i.e. footnote on page 115).

. ....



231

Program LQHOOP

15555.1o. LIOOOO. TUI0OOCO. I140000riTcSO T1024
PFILESC GET. LSLIZ39 ID-VIE)
PFILIESCGET. LSLIM2 IDMTIY)
PFILES(GET v HOOPO0. ID-EJi)
RWL/'120000
7Tth4C1W1.RUO)
GET(LSLIB3@.LBD)REL/BLSL
LOAD. LID.
LOAD. LGO.LSLIB2. LSLIB3.;
EXEWJTEp. OP.
PFILES(PUT. HDAT. GETPIJ. X=TAPES)

PROGRAM LOHOOP( IlPUT. aUTPUTvTAPE5-Ir1PUT*TAPEOUTPUTTPES)

EXTERHtAL flDRO3P.LYCHK. IIWITE.4IMAREAD

REAL AA(26. 26) * 3(26.24). CCC27, 26), U(24.24)PWUI (39.39).
UIM(38.29a)o,(2727)RRI(2424)SliA(24)dIJ(24)TITLY(24).
ITITWU(24) *EY(24. 2). EU(249. 2). E'fMOM(24. 2). EUtIORP(24. 2)P*PP(26ri
126), KK(26.296).XXH(26.26) *WK(8332). EWABG(104) * EIGAFMIC104).
LTITLZ(39)

INTEGER NRQJ(3).RtIUN3).RIIUII(6).Rflfl(27)

LOGICAL ITT .FLAGS(11)

MOI11MN1T0o-V0RN. TO..
COuMPI IILR1P OSI(2), KPAGE
wxwmOti4EAD'ITILEM7 o CASEM4).LItIE

DATA RIIUIVIS.12pv~
DATA RttJMI/l0S.8v7'V
DATA RtIJII2'333.27.24.21.18.15,1413.12.9. @6.34,3.2.

4DATA PROWIJSo 1V
20 FORIATCSIX.EI1J))
30 FORIIATC3IXtEII.5))

C PAGE HEADER SET UPF:

TOLWO.
LIIEmRI
CASE(1)uOJPL HO0lr AO

QN CASE(2)up~lTEtIA MOD
CASE3)siEL (13 MOD
CASE(4)uPIES)
09UC1M(D=0G UT 9PEO
0SU(2)-*ICIFICATO1O

C
C MANX.SI~n
C R04

nR3-U
MM4024
Huma"
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MU- 12
M-I24
NZ=39
MMR-39
NRP-26
NRC-a?
MRO-27

* NMRX-aG
NY-a?

c IIIITiALZ MATICIS

CALL IIZERO(AAtMPMPNRA)
CALL MZERO(BB. N.Nib RB)
CALL MZEROCCC.NYM#RC)
CALL MZEROCI4W.NH.NPRU)
CALL MZERO(UU!.IZoMZ.IIRU)
CALL IIZERO(MPMZll.IRM)

C SET LIP AA MATRIX,

READ(5,20)(AA(10.I.!),I-1.6;
READ(5. 20) (AAC 10+I*D),I-?. 10)
READ(5.20)(AA(10+I. O10+).1-1.6)
READC(5.20)(AAC10+l.10+I).I-?.,10)
CALL IDEIIT(AA(21.24).3.26)

C CALL MPRIMTCNRA.AM9MN,?.5,AAiO)

C SET UIP BB MATRIX

Do 800 I-1.10
READ(5. 20 )(EEC 10+1 J). J-1 6):i
READC(S920)CBB(10+IvJ)vJ=7. 12-)

800 COMITJhE
DO 830 1-1.P3
READ(5o20)(BB(23+IJ).J-1vG)o
READ(5v20)(BB(23+IvJ)vJ-7. 12)

830 CON4TINUIE
V CALL MEO(BB#BB1,13)rl,12MrIREIR)

C CALL MPRIITCRE.EBMUNU6.5.4EBB~0)

C SET LPcCMATRIX

DO 810 1-1.27
READ(v20)CC(IJ)Ju1.6)
READC5.,20)(CCCI.J)sJw?.10)
READC5p30)C(CCIPJ)9J-2,23);.

810 CONTINUE
CALL MDR13P(NRC.NY, N.CC. NROWI4S). RtIM. .CIUN.)
MYsMY-3

C CALL 1PRIMT(NRC*CCvNYvMP9S..uiCCO90)

C SET MI MATRIX

DO 820 1=1@39
READ(v20)(MM(PJ)Jm1.6)
READ(920)(MIr(!J)9J-?. 12)
READCS20)CII(IJ).J-13v18)
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READ520)(MM(IJ)J-19.20);
820 S.0)Ct1C.J)J-2.29

READ(5v20)(UUICIpI)vI-1v61)

READCS.20)CUUXII).XinlSv24)1
READ(5v20)CUUICI. I). -e5v30)i
READ(Sv0)(IIII-37.39)'
READCS.20)(USJ(Iv.DIw131,36);

821 COMITnaf
* C CALL flPRIFT(RU,UU1.N2.DMZ65,$JU?00)

C
C SPCIFY OUTPUT ANID COIITROL..MAX VALLESi

DO 50 1.1.6
SIWMCI)=. 000000012184697

DO 52 I .%Mi
* IIMUCI-.0 0000000001

'52 CONlTINUE
ITT.FALSE.
IF(.lT.ITT) GO TO 444
CALL rAREAD(Mf.SIGMApMYt1v0Y MS9 VALS PL)
CALL MARE-ADC?1UM1.1.U Mg IALS, 0)

444 COIITIMIE

C SET UIP 18W MATRIX

DO 701 I-1.lo
141(11 -. 0000000OL

701 COIMhE
DO 702 1-1.12
WWI(MIUMUI)n1. OE-13

702 CCMITIMUE
C CALL MIPRIlCIr(J. 114. tIfI. S55, 4W.0)
C
C ACTUATOR/SE1SOR LARELING
C

TI1LUCI)-IOH TX2
TITLUC2)=IOH TY2
TI1UC3)=IOH 12
TI1LUC4)=014 TXG
TITLUC5)-IOH TYS
TITLUCB)=lOH 126

46TITU7)=ION 1)49
TITLU(8)uIOH TYS
TITLUC9)=lOH T29
TITLUC 10)-IOH TX410
TITUCI)sIOH TY10
TITLUC 12)mLON T210

plqP~. 4 *.*.* *. - - ~ %%* :~. .3 - .~ ~'j~ "IL St
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CALL flE(TrLUTTLJJ13XX12lP12.12)
TITLY(1)u1OH AXR
TITLYC2)u1OH AY2
TITLY(3)10OH AZ2
TITLYC4)-1OH AX1O-AX2

rTITLY(5)-l0H AYlO-AY2
TITLYCS)u1OH AZ1G
TlTLVC7)=l0H XS-X2
TlTLY(8)-10H YG-Y2
TITLY(S)nIGH XS-X2
TITLY(1O)-InH VS-Y2
TITLYI1)-10H XIO-X2
TITLYC 12)=IOH 'flO-V2
TITLYC 13)-IOH X101-XIO
TITLYC 14)-IlOH ViOl-YlO
TITLY(15)-IOH Z101-ZIO.

*TITLYCIG)=1OH X107-XlO
TITLYC 17)=IOH Y107-Y1O.
TITLYC1S)10HM Z1O7-ZtO
TITLY(1S)-IOM X113-XI10
TITLYC2O)=IOH Y113-Y1O.

* TITLY(21H Z113-ZlO.
TITLY(22)-IOH X119-XIC
TITLYC23)-IOH Yll9--Y1O
TITLY(24)-IOH Z1IS-ZlO.
CALL NEG(TlTLY9.TlTLZ.3. 1.24.39)
CALL IEOCTITLY(7)TITLZC).2 1.24939)
TITLZ(S)=IOH ZG-Z2
CALL IIE(TITLYCS).,TITLZC7).-2.1.24,3S)
TITLZ(S)=IOH Z9-Z2
CALL NEGCTITLY(11).TITLZCIO).2, 1.24,393.
TITLZC 12)mbOH Z1OP-ZR
TITLZ(13):IOH , AX10
TITLZC14) LOH AYIO
TITLZC15)-IOH AZ1O
CALL flE(TlTLY(13). TIT(16).12.1.24.38)
TITLZC28)-IOH AM2
TITLZ(29)-IOH ARY2
TITLZ(3O)sIOH ARZ2
TITLZC3l)=IOH ARXG
TITLZ(32)-1OH ARYG
TITLZ(33)=IOH ARMG
TITLZ(34)=IOH ARX9
TITLZ(35)-LON ARYS
TITLZ(3g)-1OH ARZO
TITLZ(37)nLOH ARXIO
TITLZC3S)-IOH ARYlO
TITLZ(3S)-10H ARZ1O

C ACTUATOR DELETIR1

CALL tIDR PMJ.fl.I TITU. R01192Y. MMI *.RtIN1.
CALL HDROMPR ltIJ M,3..O Rrtini lifOMSM) RtIPI 0)

CALL NDROPCII. 1.. 1111.IIOIISC2) *RtIM1. 0.RMII#.

C SNO DELETION

li Ze- *. ..- .*.
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CALL IIDROP(NRU. Z. lIZ PI foMR (3). Rtgll2. 101C ) R1.0
N4ZuIU-IROIIS(3)

C SET FLAGS FOR LOGUS

FLAGS(IDu.F.
FLAGS(2)o.T.
FLAGS(4)=*F.
FLAGS4)w.F.
FLAGS()m.F.
FLAGS(G)u.F.
FLAGS(S)..RE
FLAGSCS)=. TUE
FLAGIC I0)in.F.
EPS.001

c SUU3RCOUTlh LOGWTS ( TA VAUII&1 4-)

CALL LOGIJTS(IRA. ti.APR, NRi, 33 f3 tN.33.t~ell.i.lIU. UI. tEC. CCi1RM.
I~tl. SIGM JP TlTLY. TITLUP TlTLZP MY* MlU Me FLAGS. EYP ElU. EYHMPII EUMMOtI
JtIRP PP. WRK KKv Me. 004. ECAGM EZORUG. Mgt. 00. NO#t REX P Wlk EPSt 20)
EMi
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Program LQTELE

15595.1110.LIOOOO. TUIG0OOO.TC3IO. T1024, 0140000. 11V500004
s PFILESC GET# LSLIBlp IDuRIE)

PFILESCGET. LSLII2. IDT1Y)
PFILESC GET, LOOIO TWO)
FTh4 OlMAMRuG)
GETCLSLIB3. LBD)REL/BLS17
LOAD. LBD.
LOAD., LGO. LSLIB2. LSLIB3..

PFILESC PUT. TDAT. GETPuU. X-OTAPE3)
)RGRAMI LGTELEC If 'T. GJTUTAE5lNJTTAPES=U~tTPUT. TAPES),

EXTERtWNA O sLYCHK. tITEstiAEAD

DEAA(II292S. 38.37.35.34.31,30.29. 27.5.2. 23 )l 9

LOIA PTAG HEDRSTU

2 ORAC2CE1.5cPCPb

LKVOUB2)v PAE'O
CI~ ~ ~~TL() 3:::3::23833138:333~I~i ~23II 3333

DAT IITMJZiIAp2thICIESMID ~Dl PARMIETER
DATA 33:3332333ih23333U38,73o43@0 B3338P .32G2:Uv2T*2~v

4lo~~~l94lt~p~gg~gg~~~l
DAM01150

j PAE1EDtSE3I

FORNMO

-YN& .-o % .
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HRQc=n

CAL lW(A.ftd0.NA
CAL ZEOI.ri~IJ NJ

CALL NZEROCCC. Wf.P~vHNR)
CALL NZM(BBM NZ tI. NM)

* CALL PIWO13C~IJ.NRU~tMWi)
CALL HZEOd'AnMruHru*rin

C SET tP AA MATRIX'

DO 40 1-1 P Me 5
IF CCI44).GT.M) GO TO* 40

READC5v5) CWKJ)vJ.I9N)-
-40 CONTINUE

M101-5
READ(5.5) CIICJ)Jw1. M)
DO 50 ZIOM.f5
IF CCI44).GT.f11 GO TO 50

READC5.5) CUlCJm).J.I.N)
:50 COMT INUE

RAC59 5) (MKCJ+Mf) vJtI. M)
CALL IDEIITCAAC 1vMI+EM4).RAPMR*)A-
DO 100 I-1.NDm
AA(MIEHA4I. )WCI+3)
AC 14M I441DI)uW(M+i341

100 COtITI~iI
ARC 17. 19)-I.
ARC 13.20)-I.
AC 17)-3947.6.

ARC2O. 18)-9U6.95
AAUC 19S1)-. 1257
AA2920)-.0623
AA(22924)-I.

C SET LP33 MTRIX

DO 300 I=1911.5
MI.144
IF (M.CT.II) GO TO 300.

READCS5)(WKCK).KveI. II

D0 301 IIIEMA
D0 301 JNIFIJ
I3CNIv~IJ)wWC C42)*tU+J)

301 CO11TINUE
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DO 200 1-19 2
DO 200 J-1IU
B3(2t*iEAS.IeJ)4.lK((.11 )*t+J)

200 CoIITfiUE
C CALL flPRINiT(-IRB 3. fX. NU.. 5.BBVI 0)

Do 201 1.1,11.5

IF (1.GT.II) GO TO 201'
READ55) (1IK(K)9,K-1I)'

READ55)(UK(K)9.KI9 II)
DO 400 1=193

CC(IPJ)41(((I-)*Mt+3+J)

DO 500 1.1,3
DO00J=9

C SET UP REIIAIMING PORTIC1 F AA

Do 110 1.1.11112.
IF((144).GT.Me1) GO TO 110

READ(59 5)CUWKJ v dalp )
110 COITINUE

11-1-5
READ(Se5) (WKCJ).pJu1.11NN)

AA(HIX*fESA.NEKA41 )UK(6+21-1)
AAt1X.(flESA.1)r1EwA4I )-IJK.2I)

11.1 COWTINUE
$ AACNX'NESA4'NESA47)uIC( 1)

AA(HX0(WNEWe1)4flESA'+T)=II(2).
AACNX*MISA4NESA.8)&NC3)
AACNX'(NESA41)'tIESA4.S)=WJC4Y

C CALL flPRIM[TCIRA* AAvM. MX SipB S.lOAAO#O)

C SET LP DD ATRIX

.4' CALL flEOCU.DDPHX#MUPMRB#RD.
DD(MESA3 IU+1)-1.
DC IIEA+4. 2)-t.

C CALL NPRINiTC14RDDDfX.NU.8.5.D090)

C SET IF M11 MATRIX

DO 112 101#11#5

If (N.GT.II) GO TO 1.12-

4' 1.12 COWTIMMJ
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READ(5s5) CUK(K)tK-1m1)
P01 CALL ME(CC.11H3243v45)

Do 210 I-ilriu
DO 210 J0l9,EMA

t~l 0D 44*(I-)+3+J)

10COrITIMMJ
DO 211 Z1.IvMU
DO 211 J=192Ii D-II(44*C I-I)+J)
Mc zmY. J+HESAe4)-D
MMc I+wMraj.J+M1ESA6.wD

luCOM1TIMUE
C CALL 1PRIMTCMRMM,M.Zro(.SS,-4tWavO)

C SET UP WUK MATRIX

1D0 212 1-n19 MU
WI (WI4I.vWYf* I. 06:O

UUIClpDI).8E404

W(HU2.2)-3.mpl

C CALL MPRIHTC lM. Ill. lM. MUM.8.5,4W IHS0) '

C SET UPUTN MARIXHRL I VLUS

DO 513 119M2

213 CVI1TIIIJ

ITTCAL

CAL SIIEAD(OUTPUT IW AND Y C M SL' UALUSa)

C

-5 OTIU2aO Z
SITL(3)IOH F9

*5 QTIJMUEO X
ITUJ5.IOH FY

T!(.TUJ.IT O TO 44
CALMRE)Mv~vVvYM AS0

CALL~ ~ ~ ~ MA**Mp~M~l0 M' UALS0)
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TITLUC?)aIOH FZ4
TXTLUCS)a1014 FX5
TITLU(S)u10g4 FY5
TITLUCIO)-IOH FZ5
TXTLU(llDa1OH P26
TITLUC 12)=ION FY7
TIlLUC 13)=ION FZ7
TITLUC 14)-ION P28
TITLUC 15)-ION F29
TITLUC Gl.OH FZ10
TITLUC 17)=ION FX1I
TITLUC S18IO FY11
TITLUC 19)-ION 7211
TITLUC2O)-014 FY12
TIUC21)-IOH 7212
TIfL.YC1)=IOH LOSfX
TITLYCR)-IOH LOS Y
TI1LYC3)=10N DEFOCUS
CALL HEOCTITLYPTITLZP3. 1.3.45)
TITLZC4)nIOH Y1
TITLZC5)=10H 21
TITLZC6)-10N Z2
TITLZCT)n10H X3
TITLZCS)u10N Y3
TITLZCS)-101l M
TITLZCIO)-IOH Z4

TITLZC 12)-IOH YS
TITLZC 13)-ION 25
TITLZC 14)-ION 26
TITLZC 13)-IOH Y7
TITLZ( 16)-ION V7
TITLZC 17)-ION 28
TITLZC 18)-ION 25
T1TLZCIS)-LOH 210
TrTLZC2O.)-IOH XII
TITLZCRl)-ON Yli
TITLZ(22)-IOH 211
TITLZ(23)-OH Y12
TITLZC24)-I0N Z12
TITLZC25).10N LRYI
TITLZCBS)-10N LRZI
CXTLZ(2?)u104 LM3
TITLZCI8)-IOH LOG3
TITLZC29)nlOH LRY3
TrrLZC30)=IOH Lmn
TITLZC31)-IOH LR24
TITLZ3)nIOH LRO6
TITLZC33)m10N URY5
TITLZC 34)mION 1129
TtTLZC 35)-ION L M2
TITLZC 30)-IOH LRY7
TITLZC2)-IOH LRU
TITLZC3$)=.1H LMZ

Ci ~TITLZC40)=IOH 1.3210
TITLZC41)-IOH LIXll
TITLZ(42)*10N LRY11
TXTLZC43)slOH 1.3Z11
TIN.2C44)-IOH LRY12
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08228 M 112888u88sa:$: 11it's M 8181122:1 s uu:2wnini:::u 1: :231t

C0188818 88233228113181ISMit It 841 S3s324 I8.ttn':: :t: 1::::: :2:2
CML MEOPCNJ 114. TITLU. NUIM(C NMI m Ol 0.Mul. 0)

CALL umaPf d.te.0 111rU(1 ON.0
MLuS-MS 1)fadDn"9

CI~sl inn n mm -st :is1 t i o3SitItSS
CML MIUUoMMvz~ML MUM S(3l) * Rmg* 0. oUS. 0),
CML NMM(s~g liz. UUI.IIJC2) *936. IIRMUC2). 11115.)
CML 6WOS 15.1. tTIILZ. 1ANSCi) * hE. 0 IllME..0)

C Ot FLAMS FM LocmT

FLAGS(1)uJT.
FLAGS()-.?.L
FLAGS4)=eT*
FLAGSCS).M*U6.K
FLABS)m..

C SUUROUTIM5 LOOM CTA MASISWO4

1.131.Nf. 5.111. TITLY. TITLIJ.TKtL2.M lU 2.FLAGCY. VEU.IOEM.

1cRM eaP A9 O n MMPMHMII K P*0
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