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I. INTRODUCTION

The Discrete Convolution Method (DCM) is an iterative

solution technique for solving the matrix equation

formulated by using the Method of Moments (MOM) [1]. This

is accomplished essentially by looking at the matrix

equation, as a (set of) convolution equation(s). The DCM

can solve a properly formulated NxN matrix equation, with

only NlogN order multiplicative operations, instead of N3 as

in Gaussian Elimination. The number of iterations needed

for a given accuracy is also found to be practically

independent of the size N.

II. FORMULATION

We first prove that a properly formulated MOM matrix

equation can be viewed as a convolution process and then

develop the solution technique. Depending on the type of

problem, the equation can be reformulated into two types of

convolution processes.

1) For some MOM problems, the matrix equation can be

rewritten as

N

Zmn Jn V ,m 1 ,2,...,N (1)

n=1

where Vm 's are all known. For most of these problems it is
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possi1bl e to choo se expansion functions, renumber them and

add dummy segments (if needed), so that C1) becomes

N 1 N2N

1 2...2 P

V P~2 p (2)

where p 1=1,2,...,N 1

PH =1,29,....N M

Here PlP2***PM are a renumbering of the original N segments

plus the added dummy segments, a total Of N 1N 2 -.N M.

Furthermore

Z IP .. Pq q p- p- *** q. ZP 1 -q2"pm- q NC3)

and V P2..PH are not all known. The values Of V's

corresponding to dummy elements are unknown but J1s

corresponding to these are zero. If we call the domain of

original segments S and the domain of all segments e , then

V P 2..Pare known

Jare unknown ( to be solved for) (4I)

if PlP 2 ... PH C and

V p2.. Hare unknown

J ~2..P are known (=0)



3

if plP2 . . . PH C (Se-S).

Combining (2) and (3), we get

N1 N2 M4

n=1 n2 =1 n =1

= V(Pl*P 2 9.'''PM) (5)

where p1=1 ,2... N1;P2=1,2....N 2;..pM=1 ,2....N H .

But (5) can be easily recognized as an 4 dimensional

convolution equation (2]. Therefore (5) can be rewritten as

I * I =' plP2 ... PMCSe (6)

where "*" denotes convolution of the appropriate (M here)

order or dimension. To give a one dimensional example,

consider scattering from two quarter wavelength straight

wires that lie along a single axis 0.15 wavelength apart, as

shown in Fig. 1(a).

' .. 2 5 O l e 0 2. 5

(gap)

Fig. l(a) Two quarter wavelength wires seperated

by 0.15 wavelength gap
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S2 it ; 4 5 6,, 7,,1. 9 ,10, 1 12 a 13

Fig. l(b) Segmentation used for the problem

of Fig. l(a)

Further, suppose that we break the wire into 0.05

wavelength segments and also add three dummy segments in

between as shown in Fig. 1(b). The matrix equation is then

13

E Z = Vm ,m=1,2,...,13 (7)

n=1

However, it is clear that the value of Zmn depends only on

(r-n). Therefore (7) can be rewritten as

13

L, Z(m-n)J(n) V(m) ,m=l ,2,...,13 (8)

nzl



5

In other word s, the equation is a one dimensional

convol ution,

Z (9)

where

V are known

Jm are unknown for m=,2,3,4,5,9,10,11,12,13

V are unknown

Jn are known for m=6,7,8 (10)

Other examples of the one dimensional convolution are

helical wires, infinite strips, infinite circular

cylindrical segments, linear antenna arrays, etc.

A two dimensional 9xample is the MOM formulation of a

linear antenna array problem using several expansion

functions for each antenna, as shown in Fig. 2(b).

Fig. 2(a) A linear array of wire dipoles

r + . .. ,, .,+ . , .. .. + . . .. ., . .. ,.. S, W._ . .,



-7 -. W 7%F

- /

Fig. 2(b) Expansion functions used for the antenna current

If p, denotes antenna number and P2 denotes expansion

function number for each antenna, it is easy to see that

Z plP2qlq2 2 Z(pl-qlp2-q 2 )  (11)

Note that if we use only one expansion function per segment

we get a one dimensional convolution equation.

~A three dimensional example is the solution of a

1 rectangular antenna array problem by using several functions

:1per antenna. The problem is as shown in Fig. 3.

= - . .I .%

- " '=. W ' "g" " " " " " " ,, "~~I ", '"'.'.*'" ' ''". .. "'.'' .' .. . . .: ' gr ; ' '~g ' ;r, , , , .. , ,.. .. ..... ,, , ... v;.'. ..-''... '. -. .':.-.'".-''-.''
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7

Fig. 3 A planar array of wire dipole antennas

Note that if we use a single expansion function per antenna

we get a two dimensional convolution equation. A four

dimensional equation would be produced by cubic array

problems using multiple expansions, etc.

2) Most of the remaining MOM problems can be reformulated

" ' ' ; ; .:: .' , ', .,,- L:.'...-.....: .i"..¢ .. '¢. -.. .,-.¢ .-' '" -i'..''': :,.0
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into a set of convolution equations, though neither the

reformulation nor the solution is as straight forward as in

case (M). In fact, the reformulation will depend on the

4, type of problem and the expansion function(s) chosen. Two

examples are given here to demonstrate the general

technique.

%"

For the first example consider an arbitrarily shaped

flat scatterer. Take N rectangular segments to approximate

its shape as shown in Fig. 4.

Y

% " ~~ ~ ~~- AI--I-I -
:J

' . .illi-

"I--I-' -- I-

* - -

iiH

Fig. 4 A flat conducting scatterer approximated

by rectangular subsections

Add (Ne -N) segments (dummy segments) to get a full

rectangle. Now, on each segment (or group of segments) we



choose two independent current expansion functions; one tn

the x direction and the other in the y direction, as shown

in Fig. 5.

A n

tth

Fig. 5 Expansion functions used on the n thsubsection

It is apparent that we then have the following matrix

equation.

(z xx)I C [XY] TIx

(12)

[Z YX)3 IZYY] I> LY.

j ii
C

° 

,

Here, -Z 1, EZyx), and are all block Toeplitz

matrices of size Ne. Renumbering the segments in terms of

m'un nn n ~ V

rowsi an 2lumns, 12) 2 e rerittn the nsbs 1t

[: z x  [ Zy + iy  z V yTY

n21n1-1m Im2n~n n 1 n =1 n ml m n 2n n 0 2 m 1m 2
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N2  N 1  N2  N 12 2 ZlZmj ~ n 2  nln 2  ml 2

n% 1 ml2n1n2 n1 2 1 2. -Al 1 1 2 1 2 1 2 1 2

m 1 1 ,2,.. . •NJ m2 l 2 ... ,N 2  (13)

where N1N 2 =Ne, N1 being the number of segments in the x

direction and N2  being the number of segments in the y

direction. Also

Zmm nln =Zx (m -nl,m 2 -n 2 )

Zy x  =ZYX(m -n ,m 2 -n 2 )

(14)

Z l Znl xy2 m -n m2n)

Z I m2nIn2 - 2-n 2

inltii2 nln 2  1Y

Therefore (13) can be rewritten as

W2 N1

2: E zxXx(mI- nl,m,-n2) X(nl,n2 ) +

n2=1 n 1=1

N2  N1

'E zXY(mI-nl,m 2 -n 2 )IY(nl,n 2) =VX(mlm 2 )

n2 =1 n1=1

* - | 1 - 1 -



E I zy"~m1 i-n1 ,m 2-n2 )Ix~nn 2)+

N 2N 1

T EZ Z"(m1 i- n1 ,m 2-n2 )Iy~nl,n 2) =yYC,*9)

m 1 =,29...,N 1 ; m2 (15).,N

Now (15) is obviously a convolution equation set, written

symbolically as

z xx * I x + Z xY * 1y =Vx

(16)

ZYX * IX + Z * 1y =V

For the second example consider an arbitrarily shaped

solid imperfect conductor or dielectric. Now take N

rectangular cubic segments to approximate its shape, as

shown in Fig. 6.



., , . : . . :, . -- i. , ; v', . , , , -i. U.. ' .. J . . .- * . . . -. .. , . - -. .

12

Z Y

*10

.- 

-

Fig. 6 A solid dielectric or imperfectly conducting

scatterer approximated by cubic subsections

Add N e-N dummy segments to get a full rectangular cube. To

solve the problem of scattering from the imperfect conductor

or dielectric using the MOM formulation, we choose for each

segment (or group of segments) three independent current

expansion functions; one in the x direction, another in the

y direction and the third in the z direction as shown in

Fig. 7.

F -- !- -'-,----D
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nn

Fig. 7 Expansion functions used in the n thsubsection

It is apparent that we then have the following matrix

equation.

(Zx1 3 ZXY] 1ZXZ 1X z x v

CZYX) tZy') [ZYZ) If (17

[ ZZ ExI ZZY) EZZZ) 1 Z VZ

Here, CZ xx 1, (Zxy), etc. are all block block Toeplitz

matrices of size Ne* Renumbering the segments in terms of

ZX 1 m 3 n 1n 2n 3 n 1n 2n3

n 3:1 n -1 n1=



* ~li
414

N3  N2  N1

z Xy yn n~

EZXYm 1 3
n 3=1 n =1 n1 =1

N 3  N2  N 1

xzI z V x

m1m2m3nn2n3 nn2n3 m1m2m3
n 3=1 n 2=1 n1 =1

4. etc. (18)

Here N1N 2 N3 =Ne, N1 are the number of segments in the x

direction, N2 are the number of segments in the y direction,

and N 3 are the number of segments in the z direction. Also,

m1m2m 3 nn2n 3 1 2 2n,3-n3

z-yxm~~l~ = zyx(ml-nl ,m-n,,m -n )  (19)

Zz  ZYX(ml-nl1 1m2 -n2 9 m3-n 3 ) (9
m1m2 m3 n1 n2 n3  1

etc.

Therefore (18) can be rewritten as,

4 3  N 2  N

Z: F Z: zXx(ml1-nlm2-n, m 3- n 3 )  x(nl,nn 3 ) +

n 3=1 n2=1 n,121

N 3  M2  N 1N 1  zYx(ml-nlom2 -n2.m3 n3 ) Iy(nl n2,n +n3 =. 2 1 n 1 11
23  N3 3N1

n 3. ..1 n 2 :1 n 1 21



N3  N2  N 5

Z 2: 2: zXZ( to1 -n1 ,, 2 -n. , 3 -n 3 )IZnn21n3
n 3=1 n 2=1 n 1=1

= V X(mlm 2 ,m 3) (20)

etc .

Now (20) is obiously a set of convolution equations.

Symbolically, we can write this set as

-VxX x * XY * y xZ 0 -* =Z x

" YX * "*x + -y Y y * ", yz Y + =* Z y (21)

Z I Z V

Here "*" denotes three dimensional convolution.

Other examples of "two and three dimensional" problems

of this type (giving sets of two and three dimensional

convol,ution equations) are apertures in an infinite flat

conductor, antenna arrays with both polarizations, non

planar antenna arrays with more than one polarization, etc.

Also, some problems of type (1) can be reformulated as type

(2) problems. For example, a planar array problem using

more than one expansion per antenna (say two) could be

written in the form of (13) and hence (16), by replacing x

and y in the equations by 1 and 2 and by numbering the two

expansions 1 and 2.
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III. SOLUTION METHODS

The methods that we use to solve (6) for the problems

of the first type, and (16),(21) etc. for the problems of

the second type are iterative. We will discuss here in

detail, the method for solving (6). To demonstrate the

general approach for the second type of problem, we also

discuss the method for solving (16).

In (6), we are taking the convolution product of the

left hand side and equating it to the right hand side for

the values of p1P2...PM in the region Se . However, the full

convolution process given by the left hand side of (6)

produces results not only for S el but also for the regions

outside of Se .  Specifically, convolution results are

produced for

P l Z -N 1+2 '-N 1+3 9 .... 9-1 0 ,1 2 ,....,2N1-1

P2 
= -N2 +2,-N 2+3,...,-1,0,1,2,...,2N 2 -1 (22)

P3 = -N 3+2,-N 3+3 ....- 1,01 ,29 .... 2N 3- 1

etc.

However, values of V not in the region S are unknown and

values of J not in the region S are known (equal to zero).

If we call the values of V in region S to be V (for

impressed) and outside S to be Yo, then (6) can be rewritten

as

Zi 0 1V (23)

Here, no restrictions are placed on the region of validity.

NL .. ... ... ...... ?. .' . "
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If we take the Discrete Fourier Transform (DFT) of

(23), on the basis of 3N1-2 elements for pl, 3N2 -2 elements

for P2 etc., then we get an algebraic equation [2].

7 1 "V(214)

Here "-" denotes transformed quantities. Equation (24) is

true for each transformed quantity; in other words,

(klk2,...,k M)'(kltk 2,...,k M)  = 7(kl,k 2 9 ... ,kM)

k 1 =1,2,...,3N 1 -2; k2 =1,2,...,3N 2-2; ... ; etc. (25)

Therefore, if we know V for all values of plP2...PM, then we

can determine V and find J by

V(kl , 2,•. ,.kM)

7(k 1 ,k 2 ,... ,kM) (26)

Z (k Vk 29," t k M )

The inverse DFT (IDFT) then gives T. However, we know only

V and not V. Thus the following procedure is used:

STEP 1-Assume 1 0 . Normally we take all (initial) values

of 'o to be zero. (As shown later in the Appendix, the

"distance" of the initial guess from the correct value

does not effect the convergence; only the number of

iterations needed.) Call this first guess of Vo by V( 1 ).

STEP 2-Take the DFT of Z on the basis of 3N1-2 for pl,

3 2-2 for p29 etc. to get Z.
- -i (27)

STEP 3-Compute V(1 ) =V(1))

STEP 1-Take the DFT of V( 1 ) on the same basis as in step

2 to get V()(kk 2 9 ... kM)

STEP 5-Compute J(1)(kl,k 2 ,...,kM) using (26).

.........................- -............ "
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STEP 6-Take the IDFT (on the same basis as DFT in step 2)

of j(1 ) to get J( 1 )"

STEP 7-Since J(1) is not the correct answer, it will have(1)p

nonzero values outside S. Change the values of J(1)

outside S to zero. (This is the same as truncating or

projecting J( 1 ) onto S.) Call this I)"

STEP 8-Take the DFT of I) to get 1)(kk(1) (1 (k k 2 , .. k M )

STEP 9-Compute (2) (:Z 1P, as given in equation (25)).

STEP 10-Take IDFT of VP to get o(2)e(2) (2)ot

STEP 11-Since J(1 ) is not yet the correct answer, values

'of V on S are not be equal to V. Here, we can check
0fV(2)

the accuracy by comparing V with (,) on S. One method

is to check the maximum (V -tV,))/V for all elements, as

well as the average. If the maximum and average are

below a certain value (say .1% and .01% respectively),

then stop. We can also use the criterion of the

convergence of J (n)' i.e., the relative magnitude of

J(n)-J(n-1) in comparison to J(n)' or combine the two

criterions.

STEP 12-If we decide that more iterations are needed,

then change the values of VP V
(2)

STEP 13-Replace V(I ) in step 4 by V(2 ).

STEP 14-Continue from step 4 onwards until the criterions

in step 11 are satisfied.
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The solution techniques for sets of convolution

equations produced by the problems of the second type are

not as straight forward. To illustrate the general

technique, consider (16). In (16), we are taking the

convolution products of the left hand sides and equating

them to the right hand sides for values of m 1m2 in the

region Se . However, the full convolution process, as given

by the left hand sides of (16) produces results not only for

Se , but also for regions outside Se - Specifically,

convolution results are produced for

m 1  =-N 1+2 ,-N 1+39 .. s -1,0919,29 ... • 2 ,2 1- 1

m2 =-N 2 +2,-N 2+3,...,-1,0,1,2,...,2N 2 -1 (28)

as in the first type of problems. However, values of V and

V not in the region S are unknown, and the values of I and

I not in the region S are known to be equal to zero. If we

denote the values of V and 'y in the region S by and

Vyi (for impressed), and those outside S by V and o

then (16) can be rewritten as,

OXXO'X + xyv-y :vxi-xo =-x

,Oyxofx + .0yy 1 *y =.yi Oyo -*Y (9

Here, no restrictions are placed on the region of validity.

If we take the DFT of (29) on the basis of 3N1 -2

elements for m 1 and 34 2 -2 elements for m 2 , we then get the

algebraic equations (2]
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X X x2Y(k9kf 2)L(k 1 9 k2)y4y(k1 , k 2)lyCk k2 ) V (kj~
1'~klk2 )7(lk2+y~ ik2 1'~kt 2=V kj 2

k 1 =1 929,. .. , 3N 1-2; k 2 =1 929,... 9 3N2 -2 (30)

Equation (30) is true for each transformed quantity.

Therefore, if we know i' and -V' for all values of miand in2,

we can find Vand V. Since (30) can be written as,

1!xx( j9k2) ! zk,k 2 ) Ck1 Ok 2 ) V( kj Ok2 )

(31)

we can find Ix and '1j' easily as

7~yykk )xkk)-Ixy(kk 2)"Vyk 1 9 k2 )

IX Ck k 2
1'x 2

'Z y (k i s , ( kj ) -ix y ( kl t 2 )I~YX( kl k2

(32)

Vx(11 , k 2) - zxxklk k )Yx~k~ ( 2

2 2 19k~k2 )

The IDFT then gives I~ and 1l'. However, we know only x9

yi and not VXO, Iyo. Thus the following iterative

procedure can be used.

STEP 1-Assume Vy, . Normally, we take all elements



.'7 .

21

of _xo -yo to be zero. Denote this first guess of Vo

V by ,

(15 (1)

STEP 2-Take the DFT of Zxx. Vxy lyx and "'YY on the

basis of 3NI-2 for m1 and 3N 2-2 for m?, to get Z x
_and

Zyx and VYY
x xi xo

STEP 3-Compute V V(1 )

(33)

- + *y

STEP 4-Take the DFT of V () 1 on the same basis as in
(1) "(1)

step 2 to get V( 1 )(k 1 9 k 2 5 and V(1 )(k1 91c2 )"

STEP 5-Compute I(1) (k 1 ,k 2 ), I 1 )(k 1 ,k 2 ) using (32).

STEP 6-Take the IDFT (on the same basis as DFT in step 2)

of I and l1)"

STEP 7-Since 1(1 ) and 1), are not the correct answer,

they have nonzero values outside S. Therefore, change

the values of 1(1 ) and I 1) outside S to zero. (This is

the same as projecting 1 ) and onto S.) Call these

and IrM
(1) ( )

STEP 8-Take DFT's of I M (1) to get 1)(kl,k 2) and

STEP9-opt x y1~C) (1)(i k )

-xp

STEP )V and V(2 as given in (30).
9-Cmpte (2) (2

STEP 10-Take IDFTs of nd to get 'xp
V() a (2) (2)

and §YP (Note that

"- ' ;.", '. . , ,. ,., . *.,-. , .. ". , ' . . .- . . . " . .. .. .. . ? .'. "- * . - . . . -. ... • - . . ".. * -.* .. *.'- '. * '.. .. ' * " '.
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V (2) x 1 (2 )+Z 1(2) and

-II, Y* X ,% ,=4 *O)

(2 =z (2 )+ z 1 (2)

STEP 11-Since I (1 (1) are not yet the correct answers,

So ,p n YP
values of and V(,) on S are not equal to Vxt and

V y Here we can check the accuracy by comparing
;-e i -- *x XP ,-yp

V with V( "(?) on S. The same kind(s) of

criterion(s) as in step 11 of the solution procedure for

the problems of the first type can be used to determine

whether or not the iteration has converged.

STEP 12-If we decide that more iterations are needed,
I-IP on Stob xi

then change the values of Vxp and V on S to be V(2) (2_)

and Vyi Denote these VX 2)
in ste 4 by)

STEP 13-Replace 1) and (1) in step 4 by V(2 ) and V) V ,~ ~ (2)"

STEP 14-Continue from step 4 onwards until the

criterion(s) of convergence in step 11 are satisfied.

IV. SAMPLE COMPUTATIONS AND COMMENTS

Computer Programs using the techniques devised in the

preceding sections have been written. They are listed in

the Appendix of this report. In this section we give the

results of computations that were made using these programs.

The routines and formulations for computing the impedence

matrix (or mutual coupling matrix) EZjare from [3],[4], and

E51.

- : . _ U, " : : - . . , . _ . . . . - . , , . . .. . . - .
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Two types of one dimensional problems and one type of

two dimensional problems are solved. They are,

(i) scattering from straight thin wires

(ii) linear antenna arrays

(iii) planar antenna arrays

Fig. 8 shows the problem of scattering from a straight

thin wire illuminated by a perpendicular plane wave. The

Method of Moments formulation is made by breaking the wire

into Ns  segments of equal length and using triangular

expansion functions, as given in [3). Table 1 gives the

number of iterations needed to get convergence using DCM for

single thin wire problems. Comparison with LU decomposition

method in terms of the number of multiplicative operations

required is also given.
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C' Fig. 8. Scattering from a thin straight wire.

, Table 1. Comparison of DCM and LU decomposition methods
. L 1 N Ne  N LU decomp I DCM

(mult. ops.) (mult. ops.)

0.75 0.0625 12 5 15 42 10 1280

2.0 0.05 40 19 64 2286 9 6912

4.0 0.1 40 19 64 2286 6 4608

8.0 0.1 80 39 128 19773 11 19712

16.0 0.1 160 79 256 164346 5 20480

23.85 0.075 318 158 512 1314771 12 135168

32.0 0.1 320 159 512 1339893 6 67584

Here a = wire radius in wavelengths(O.013477089 for problems

in Table 1)
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L = length of wire in wavelengths

1 = length of each segment in wavelengths

N= number of segments

Ne = number of expansion functions needed

N : basis on which FFT and IFFT are taken for DCM

I = number of iterations needed to get maximum error in

current to be less than 1% or maximum error in

field to be le3s thanl .1

From Table 1 we see that, based on the number of complex

multiplications required, DCM is faster than LU decomposition

for problems with more tLLan 40 expansions. Total computing

time needed to solve the 32 wavelengths problem (last entry

in Table 1) is 14.16 seconds on an IBM 4341. This includes

computing time needed to ret up the impedance matrix.

The problem of two thin wire scatters with a gap in

between, as in Figure 1, was also solved. The number of

iterations needed for .123% maximum field error and .00404%

average field error was found to be 14. The problem is the

same as the 23.85 wavelengths wire problem of Table 1,

except that 114 segments in the middle are missing. Since

* the original problem needed 12 iterations for the same level

of accuracy, the insertion of the gap does not seem to cause

much increase in computing time.

- - . .. . .. .
-.. -I.* 4~~

,-: ' ",-I ' , - -, ,,, .. "..'," ... '." ',..'.,. . ,* . . *. ",". ' . ,'. '.*- -',. . . '. . .,, '..,



26

Fig. 2 shows the problem of radiation from a linear

antenna array. If one expansion function per antenna is

used, then the Method of Moments formulation gives a matrix

equation equivalent to a one dimensional convolution

equation. The formulation used is as given in (4]. Since

the mutual coupling matrix is Toeplitz in this case, it can

be solved using the faster (N 2 order) algorithm for Toeplitz

matrices as given in [4]. Therefore, Table 2 compares

between computing time needed for DCM with the computing

time needed for the (N2 order) Toeplitz algorithm given in

[4]. The computing time measurements were made on an IBM

4341. The matrix set up time is not included, which would

be the same for both cases. All the problems in Table 2 are

linear arrays with halfwave antennas one-quarter wavelength

in front of an infinite ground plane. The seperation

4 between antennas is one-half wavelength also. Uniform

excitation is used for all cases given in Table 2. Other

excitations were tried and number of iterations needed (and

hence computing times) were found to be practically

independent of the type of excitation.

We see that, for very large arrays, DCM is faster. For

1000 antenna elements it is nearly 4 times faster.

Breakeven seems to occur at about 300 antenna elements.

Comparisons between the solutions given by DCM and Toeplitz

algorithms were made for all problems except the 1000

antennas problem, and the agreement was to within .1%

maximum difference in current in all cases.
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Table 2. Comparison of DCM and Toeplitz methods

Ne I Setup DCM Toeplitz Field Error

Time Time Time

-- 4 (see) (see) (see) (%)

11 4 .57 .37

44 3 1.55 1.23

88 3 1.51 2.43 1.57 .0222

.000971

250 3 3.97 9.8 9.79 .0224

.000349

352 3 5.55 19.48 18.53 .022

.000935

1000 3 11.57 34.22 135.44 .0218

.000423

1000 4 - 45.63 - .00466

.000365

Here N e is the number of antennas in the array

I is the number of iterations needed for the given

field error and the last current change. For both field

error and last current change, the upper entry is

maximum error and the lower entry is average error.
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Computing time savings are even more dramatic for

antenna arrays with some antennas missing, i.e., gaps. The

matrix produced by MOM in this case is no longer Toeplitz,

and LU decomposition (needing 1/3 N3  multiplicative

operations) is usually used instead of Toeplitz methods

(needing 2N 2 multiplicative operations). But, as explained

in section II, we can add dummy segments and still use DCM

to solve the problem. The number of iterations needed

increased by only 1 over that needed for the same problem

without gaps in each of the cases that were tried. The

results are given in Table 3.

Table 3. Results for array problems with gaps

Ne  N g Gap(s) I Field error(%)

44 1 17-28 4 .0166

.00175 (avg)

- 2 12-16 4 .0384

28-32 .00759(avg)

- 3 12-15 4 .0330(max)

21-26 .00542

33-37

Here N is the number of gaps

Gap(s) gives the start and end segment numbers of the

gaps

I is the number of iterations needed for the given

field error

az
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With the LU decomposition method, the computing time would

be 10 times larger even for the 44 antenna problem.

For linear antenna arrays which are lined up at an

angle as shown in Fig. 9, then one expansion per antenna

would no longer be enough since the current will not be

symmetric anymore.

9

4

,ICIA

Fi,,,. 9 Linear antenna array lined up at an angle

The MOM formulation will no longer give an impedance matrix

that is Toeplitz but will give an impedance matrix that is

block Toeplitz. This is equivalent to the two dimensional

discrete convolution. We can solve by using the two

dimensional DCM technique but since one of the dimensions

will have only three points, it is not worthwhile. However,

we can look at the matrix equation as three one dimensional

convolution equations similar to what is done in (17) to

".21). However, convolutions would be one dimensional here,

instead of three dimensional as in (21). If we call the

• , ; , ,. .- _ -,, , -, .._ . ., , .. -., ., . ., . , ., .. - . ,- ", -.. ' - .- , . -. . ' . .*. ,1. . -.-. -.*. ." , L . -i . , .
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first, second and the third expansions of each antenna, a,b,

and a respectively, then the equivalent set of equations is

"aa * "a + -ab n -b + ac a " c

-ba --a +bb --b -bc -c (34z I I I+ z = V(34)

-"ca , Ya + -cb 0 b +-icc --c = 0

The solution -of (34) using DCM would require nine times

more multiplicative operations than the solution of (9).

However, since the block Toeplitz solution technique will

also need nine times more than the Toeplitz solution

technique, the timing comparisons of Table 2 will remain

unchanged. For problems with gaps, if three expansions per

antenna are used, DCM will still need only nine times more

multiplicative operations per iteration. But LU

decomposition, being 1/3 N3 , will need twenty seven times

more multiplicative operations.

Fig. 3 shows the problem of radiation from a planar

antenna array. If only one expansion function per antenna

is used, then the MOM formulation gives a matrix equation

which is block Toeplitz. This is equivalent to a two

dimensional convolution equation. The formulation is as

given in 15). Since the matrix equation is block Toeplitz,

it can be solved using faster (N a order where az2.5)

algorithm for block Toeplitz matrices as given in £5].

Table 4 lists the computing time requirements for the DCM

solution of some planar array problems. The computing times
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given include the setup times. All the problems are for

planar array problems with halfwave antennas one-quarter

wavelength in front of an infinite ground plane. The

seperation between antennas is one-half wavelength in either

direction.

Table 4. Results for some planar array problems

Ne  Excitation I Computing Field Error Current

Time(sec) (%) Change

16 Uniform 4 2 .05 .25

(4x4) .03 .14

36 Uniform 4 3 .056 .25

(6x6) .025 .1

Exponential 4 3 .055 .27

Taper .021 .087

Beam Steer 4 3 .034 .62

(45"-45 ") .008 .056

Beam Steer 4 3 .02 .18

(30"-20 ) .007 .05

Progressive 4 3 .074 .3

Phase shift .032 .1

(30-20.)

121 Uniform 4 13 .07 .29

.03 .08

Exponential 14 5 .068 .24

.016 .05
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N Excitation I Computing Field Error Current- e

Time(sec) (%) Change(%)

1849 Uniform 4 255 .07 .28

.009 .023

Beam Steer 4 255 .028 .27

4 (30"-30") .0014 .01

Here Ne is the number of antennas in the array

I is the number of iterations needed to get the given

accuracy. For both field error and (last) current

change, the upper entry is the maximum and the lower

entry is the average.

We see that even for very large arrays DCM is quite

fast. The problem with 1849 antennas takes only 4 minutes

computing time. Just as for the linear arrays, problems

with gaps could also be treated and would take comparable

amounts of time.

For more accurate planar array solutions, three

expansions per array should be used since the current on

each antenna is not symmetric. This would increase the

required computing time by a factor of nine as before.

Notice also, the independence of the number of iterations

required to the size of the array.

.3*-.
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To check the accuracy of the DCM technique, the

solution of the 36 antenna planar array was made using

matrix inversion routine LINEQ from [3], and the agreement

between the currents were found to be better than .1%

maximum difference.

The problem of a planar array with antennas arranged in

diamond patterns instead of rectangular, can also be

formulated as a two dimensional convolution equation by

adding dummy elements (as shown in Figure 11), to make a

parallelogram. The diamond pattern arrangement is shown in

Fig. 10.

F g I I I
-i I

Fig. 10 The Diamond pattern arrangement
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Fig. 11 A planar array with antennas arranged i'n diagonal patterns

The MOM formulation using one expansion per antenna

will then give a block Toeplitz matrix which can be solved

using two dimensional DCM. However, it cannot be solved

using the block Toeplitz method since the field on the dummy

elements are unknown. Therefore, only LU decomposition or

two dimensional DCM can be used. For a large array, DCM

will be considerably faster. Since the current on each

antenna is not symmetric, using three expansion functions

per antenna will give a much more accurate result and will

need nine times more computing time for the DCM. With LU

decomposition method computing time will go up twenty seven
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times the already large value.

V. DISCUSSIONS

Discrete Convolution Method for solving the matrix

equation set up by the MOM, is found to be accurate and much

faster than either the Gaussian Elimination (LU

decomposition) or the Toeplitz and block Toeplitz methods

given in [4 and [5). Also DCM can solve a wider range of

problems than the Toeplitz and the block Toeplitz methods.

The number of iterations needed by DCM for a given accuracy

is also found to be practically independent of size.

However, it is dependent on other factors. For instance,

the number of iterations needed to solve an array problem is

found to be dependent on antenna length, antenna seperation

and the ground plane distance.

With careful formulation, the problem of radiation from

a planar array backed by a finite ground plane can be solved

with the DCM. Therefore DCM may prove to be useful in

designing array antennas.

The other numerical technique using FFT and IFFT to

solve iteratively, electrically large problems is the

Spectral Theory of Diffraction (STD). This technique is

well known and a number of papers and reports [63, (73J83

etc., have been published about STD. The difference between
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STD and DCM is that STD solves the problems in the spectral

domain and DCM solves the problems in the spatial domain.

Therefore, for certain types of problems STD may feel more

" natural and for other types of problems (for example planar

arrays), DCM may feel more natural. Also errors in each

technique have different causes.

Since both STD and DCM are iterative techniques using

FFT and IFFT, they both have numerical inaccuracies

associated with

(i) the use of FFT and IFFT

(ii) taking only a finite number of iterations based

on some criterion

However, as shown in the Appendix, for DCM these errors are

insignificant. But since DCM is the iterative solution of

the MOM formulation of the original problem, DCM will have

in addition the inaccuracies associated with the MOM

formulation (but not the matrix inversion). On the other

hand, STD has the following numerical problems [6],

(i) windowing and

(ii) the need to take sufficient number of points to make

sure that the aliasing effect is small

Thus the numerical errors of DCM and STD are of

different natures. However, since the MOM formulation has

been in wide use for a considerable period of time, the

numerical errors associated with the MOM are familiar

tbrough experience.
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APPENDIX

I. INDEPENDENCE OF CONVERGENCE ON STARTING POINT

We prove here, the independence of convergence on

starting point for the one dimensional case. Proofs for

higher dimensions will be similar. Consider the one

dimensional problem given in (9). The discrete convolution

equation to be solved is,

Z * J V (Al)

But V is unknown, only e[V] is known. Here the

>2 function 8[ 1 means truncate values outside region S and

replace with zeros. We also know that J is confined to S,

i.e.

1 1,31 (A2)

The general solution technique is,

Z* 3 41=( eE11+ 'E BE I Cn1 A3)Jn~1 n

where 8 J is the complement of BE ],

- th
in is the approximation of J at the n iteration

The correct solution is,

z * 6 Ev + IVI (A4)

Therefore from (A3) and (A4), we get

Z * ( n+l ' a (3 A5

Using (Al), the equation above becomes,

Z * (J- )n+l [Z*J - !*B[3) (A6)

ii
-

.
V *.

.
*. 

.
.
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But by CA2),

7 * (J-i )= B E) [' r-j (A)

:"~ Therefore, if we denote the error in the approximate

th "" "- -"
solution at n step, (J-J ) as En'

Z E n+l : [Z* 8E [)n (A8)

We now prove the independence of convergence to the

starting point, in the sense that if the convergence is

- achieved for a certain starting point, then the convergence

is achieved for other starting points nearer or further than

that. Suppose that we achieve convergence if we start with

the error E If instead we start at a different starting

point with the error, So E6o, then

7 * Z O1 0 (A9)

* 1 ([Z* F-0]1 (Ala)

Z Z * F' l(All)

Therefore,

)Z * (81-8t E (A12)

From the fact that the original convolution equation is

the Method of Moments formulation of the physical problem

I which can have no currents for zero excitation, (A12) can be

interpreted as indicating,

-- 9 1 1
and

n n A1C ;4

Nq
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Since the convergence is achieved when we start with the

error to in the limit as n approaches , approaches

zero. Therefore,

lim n 0 (A15)
-

II. CONDITION FOR CONVERGENCE

The condition for convergence for the one dimensional

case is given here. Multi-dimensional cases will have

similar conditions for convergence. The general solution

technique as given by (A3) for the one dimensional case is,

&C -
= ) [ G[Jn]] (A16)n+1 -

However, it is apparent that since the convolution can be

written as a matrix multiplication operation,

[ n+ 1 2 9[V] + [1 ] )[ )]] (A17)

Here [ is the circulant matrix produced from Z and not

the same as [Z].

The trunction operator 1 C ] can also be represented as [T],

a diagonal matrix with l's at places on the diagonal

corresponding to region S and zeros elsewhere. Similarly,

it is easy to see that the operator B 3 can be represented

as [T], a diagonal matrix with l's at places on the diagonal

corresponding to region S (i.e. the region outside S) and

zeros elsewhere. Therefore (A17) can be rewritten as,

n+1 =  [T] V + [C ] [ ][T] J (A18)

]n+1 - ,1-1 [T] 1 T T J" (A19)

An. . . . .T].. . . . ][ ][.].
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Since, C'Iis the circulant matrix with Z as its rows, it

has an inverse if Z has a DFT [9]. Let

[Q] [ .I I-[T] (A20)

ER) I I- [TIC kj[ITJ (A21 )

Therefore,

E + Q] V + [RI n(A22)

It is easy to see from (A2) and (419) that the exact

solution is given by

I Q] V + [RI J (A23)

Equation (A22) can be rewritten as,

n+1 ' IQ V + ERIEQ) V + [R) i n (A24)

Repeated application of (A22) gives

([J[R.R 2+.[Q (n+1)
in1 (T][R+R]+..)Q]V [ RI in (A25)

If the maximum elgenvalue of [RI, ma is such that

maxx

Then [9),

[1+R+R 2+. I-RV-1  (A27)

and

tRijn+l 0 (A28)

as n approaches oo.

There fore

i Vn+1 [I-Rf-1 IQ V" (A29)

El-RI J n+1 =EQI V' (A30)

as n approaches so.

Therefore from (A23) and (A31),
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S.1 (A32)

as n approaches 00) if

<1 CA33)max

However, the usefullness of the above condition is limited

as the computation of ma requires N2  order complex:. max

multiplications and so will take longer than the solution

itself, although not as long as using Gaussian Elimination

which requires complex multiplications of the order N3 .

III. ESTIMATION OF NUMERICAL ERRORS
.

The Discrete Convolution Method (DCM) is an iterative

technique for solving the matrix equation,

[z] T C (A34)

formulated by the Method of Moments. This is done by

looking at the above equation as a convolution equation,

z *J V (A35)

Now, it is apparent that if we are given the answer for

(A34), Ja (say), then we can use Ja to take the matrix

multiplication with [Z] and get Va, which we can then check

against V to see if the answer given, J is correct or not.a

Also, instead of taking FFT and IFFT, if we actually

convolve, by using the relationship
N

= m Z(m n) ,i n  A36)

to compute Ia from Ja' then the computations involved in

using (A35) is identical to that involved in using (A34).
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Therefore, if the matrix equation solution of (A34)

using Gaussian Elimination is unique (in the sense that .,

to the desired precision point there are no two answers to

A34, although there may be many beyond that precision

point), then trying out various Ja 's (chosen randomly, found

B.' by iteration or any method) in (A34), would also give us the

same unique answer. Hence, trying out various J as in

(A35), provided we actually convolve (i.e. use A36), will

give the same answer. So, any difference in DCM and matrix

inversion solutions will come only through

(a) the use of FFT and TFFT

.4 (b) the fact that the iteration is carried out only

*o up to a certain accuracy based on some criterion.

Numerical errors due to (a) can be analyzed in the

following way. By [2], the use of FFT introduces the output

error, the expected value of which is

E(error) N -/3 2 -b (A37)

where b is the number of machine precision bits

N is the basis on which FFT is made and

Eerror) is the expected value of normalized error

Since IFFT needs identical computations as FFT, IFFT causes

error, the expected value of which is

E(error) 2- b A38)

4 Even if the worst case occurs and errors do not cancel at

all in taking FFT and IFFT, then the total convolution error

~is,
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Eerror) TNf3 2-  100% (A39)

To give a numerical example, for the IBM mainframe

computers, b=23. For N=100000,

E(error) = 100000/3 x -22 x 100% (A40)

..004%

* Therefore, if we check the answer by comparing V with V a
;. a

computed from (A35) by using FFT and IFFT, the numerical

-.9

error in V a would be in the fifth precision position i.e.

insignificant.

Errors due to (b) will be small, provided that the

problem is well behaved (i.e. the condition number of the

impedance matrix [Z] is small) and that the iterations are

carried out far enough so that the error in V is small. In

a practical problem like the antenna array problem, the

change in current for each iteration drops off very sharply,

indicating that the actual error in the current is probably

less than the last change. The following qualitative

argument can be given in support of the above claim. From

(A22),

Rn+) [Q] V + JR] in (A41)

-- %-T

in [Q] V + [R) in-1 (A42)

Subtracting (A42) from (A41), we get

whre n+1 UR) n t (A43)

where n =n-Jn-1 is the change in current at n

iteration. Therefore
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n+1m - *

Now, if n is much less than n for n:1,2,3,...,N,

then it is very unlikely that n would be larger than

Sn for n>N.

1

-4
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IV. COMPUTER PROGRAMS AND SUBROUTINES

The computer programs and subroutines given in this

section are written to verify that DCM works properly and

to measure the number of iterations needed for some sample

problems. No attempts have been made to optimize the computer

code. In fact, the fast fourier transform and inverse fast

fourier transform (FFT and IFFT) routines given are for 2N

points. This means that more points than are strictly

necessary has to be taken. However, even with the relatively

unoptimized code, DCM proves to be faster than other techniques

for large problems.

Subroutines FFT and IFFT are for one dimensional FFT

and IFFT. Subroutines TWODF and ITWODF are for two dimensional

FFT and IFFT. The main program segment starting on page 47,

solves the one dimensional convolution equation. This program

is written to be able to solve problems with gaps. Subroutine

SOLVE solves the two dimensional convolution equation. It is

not written to solve the problems with gaps, however.

9,



46

SUDBOU'?IUE FPT(XN,R)
INTEGER IJNMLlLE1.3V2v3i1,I

* COMPLIX 1(4096),U,9,2
REAL El
P1=3. 1415926535
DO 20 L-1,8f
-LE2*~ ill* 1-L)
L~ll=Ll/2
U= g .0. 0.0)
M=CNPLI(COS(PI/NLOIT(LE1)) .-SIN (PI/FLOAT (LEI)))
DO 20 JZ1.LZ1
DO 10 I=JNLE
1P1.+LE1
T-X(1) +1 1P)
XIUp) =(1I(I) -X(IF) *a

10 CONTINUE
0=0*1

20 CONTINUE
212=N12
111=3-1

J~25
DO 4 zd

TIXJ)I

25 K-NV2
26 IP(K.GB.J) GOTO 30

J=3-K
K-K/2
GOTO 26

30 JzJK
40 CONTINUE

RETURN
EN3D

*1 SUBROUTINE XIFI (1.3,M)
INTEGER I.1,,~lLlLElvHV2,3Nf1vK
COMPLEX 144096),U.3.T
REAL Ex
P1-3. 1415926535
DO 20 L=1.1

A LE-2** f(N* 1-L)
L1,LE/2
U-n( 1. 0.0. 0)
S-CfPLI (COS (PI/LOAT ILElJ) SIN Lfl/LOAT(LBI1))
DO 20 Js1.LEI
DO 10 I-JNLE

TI f (I) a 111 L I I )

10 CONTINUE

20 CONTINUE
3 12=5/2
311=3-1
J-1
DO 40 1=1#251
11(1.01.J) GOTO 25
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T-1 (J)
X (j)=X (I)

25 K-N12
26 IF(K.GE.J) GOTO 30

J=J-Kl
K=K/2

GOTO 26

40CONTINUE
DO 50 I=1,1
I 43=1 (I) /FLOAT (N)

50 CONTINUE
RETU RN
END

C** DISCRETE CONVOLUTION METHOD TO SOLVE BOTH TOBPLITZ AND
C** NON TOEPLITZ MATRIX EQUATIONS BY (I LCG I PROCESS) ITERATION

INTEGER I,K
COMPLEX X(1366).'Z(4096) .CZER~oCU (4096) .A(40961 .TSTORE
INTEGER START (1) .PINISH( 0) .STDII,RBVS
CZERO= t0. 0,0. 0)

I DO 10 1=1,1021
AII)=CZNRO
CUR (I) =CZ EDO
T (I)-CZERO

10 CONTINUE
READ(11, 100) 8, MNS,IFLAGIDIGeREVS

4UNITE 13,200) N, MUS
17 (IPLAG. NZ.0) GO TO 11
RIAD(1,300) (I(1).Il=1.NS)
MRITE (3, 400) (1 (1) .I=1, NS)
READ(1,300) (T (1)I 1,NS)

GO TO 13
11 CONTINUE

ASDI2=NS/2
O-PEN (OEIT-2 1 ,ILE' ABDATA. DAT$)
READ (21,101) (T(I).11.,NS)
READ(21, 101) (I (I) ,I=1,NS)

101 FORMATf5114. 7)
UF(REVS.BQ.0) GO TO 13
DO 12 I-1,NSBY2
TSTOEE-T (I)
IPTB33S-141
T (1)= -T(IPTR)
T(IPTI)TSTORI

12 CONTINUE
13 CONTINUE

IF(IRIG.BQ.0) GO 20 14
RZAD(1.100) (STAT(I).PINISH(I) .I-1.IRG)

14 CONTINUE
3S2 US *NS
351 1am-US
DO 15 1-109S
JuI*USK1l
AW I Il)
T (IS2-) -T (I)

15 CONTINUE
CALL F12(Te3.1)
ICOUNTl
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IfIREG.EQ.O) GO TG 18
DO 16 11IBEG
ST-STARTU()
FI-FINISH (I
DO 16 J=ST.FI
A (3) CZERO

16 CONTINUE
18 CONTINUE
20 CONTINUE

CALL FFT(A.I.N)
DO 30 1=1,9
CUR(I)=AlI)/T (I)

30 CONTINUE
CALL lIFFT(CURoN,M)
UNITE (3, 1000) ICOUNMT
DO 40 INMS,N
CUOR (1) =CZ ERO,

40 CONTINUE
IF(IBJG.10.O) GO TO 46
DO 485 I=1,IREG
ST!ST ART (I)
FX=FINISH (I)
DO 45 J=ST.FI
CUR(3) =CZERO

45 CONTINUE
4 46 CONTINUE

EUITE 13,600) (CUB (1) .I1 ,S)
CALL FFT(CURN,fl)
DO 50 I=1.1
A (I)=CUBR(I)*T (1)

50 CONTINUE
CALL lIFFT(AN,M)
VVITE (3,500) (AIl) .I=US,NStNSHI)
CUERRO. 0
31AX=0. 0
XF(jIBEG.3B.0) GO TO 52
DO 51 11NS
J-I*NsN1
TSTOBE=I LI)
33303-CADS (A (3) -TSTORE) /CABS (ISTODE)
A 43)mTSTODE
IF (130R.GT.BlEAX) EBAI-EBOR

51 CONTINUE
GO TO 54

52 CONTINUE
STw1
DO 53 I=1IR!G#1

11(.311)ST-PINISH(I-1) .1
FImSTAR T (1)- I
11M! E0.IREG+1) Rings
DO 53 J=ST.FI

3303=CA1S (A (K)-TSTOBEI /CIDSS(TSYORIJ
Ii (1380RoGT. BEAK) ENAK=E1303
C GEB38CU N RR+11803
A (K)mIT209

S3 CONTINUE
54 CONTINUE

.. T .' ..~ ..~~.-. .- ~. .~ .* ,
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EN AX= EMAl* 100. 0
CUNERR=100.0*CEREB/FLOAT(NS)
MRITE(3,900) ENAXC0a1ERR
VhITE13.700)
RE&D(1, 100) IFLAG
IF(IrFIAG.BQ.0) GO TO 55

C CALL IFFT(CURU.N)
C IRIT.(3,600) (CUB 1) I=INS)
C URITE (3,500) (& (I)I=NS,,S*NSm1)

IP(IFL&G. EQ. 1) STOP
VRETE (3.1100)
GO TO 1

55 CONTINUE
ICOUNT=ICOUNT 1
GO TO 20

100 FORBAT(10.0)
200 FORBAT(1e $' N M NS',317)
300 PBLAT (OBO. 0)
400 FORAT(l ,'EXCITATION VBCIOBl/(1i ,10211.41))

500 TOREAT1H 'RESULTANT FIEL't/la ,10B1.))
600 FORMATIlfI 'CURRENTS'/(1H .IOE11.4))
700 FORBLAT(1H 'CONTINUE ITERATIONS? 0 FOR YES,',

s ' 1 FOR NO AND RETURN#)
800 FORMAT(1H ,'GRZEInS FUCT1,O9/(10E11.I4))
900 FORBATO1H 'N&X FIELD ERROR=",110.3,'%'/

0 11 9,'AERAGE ERROR ='.10.3.'%')
1000 FCRAT(1H ,//IH 'ITldATION UNBERe.I7//)
1100 FORMAT(IB ,//IH ,'**********NEfl PDCBL]N********//)

END

• * • ,* -*. ".. o. .. . -. o " . °- "'mr "+'; :++ +', --C * '" ,*<. +........... .... ,.,,.'.:...... .......... ,,-,, . ................. ~..., .- .... ::.+:: -.-



SUBROUTINE FFT(X.B.,START.STBP)
COMPLEX 1(1638),U.U,l
INTEGER STIRTeSTEPSDIFF

SOIFF=STEP-START
312 -II/2*STiP
Ni1 = (N-2) *STEP4START
N = (N-1) *STBP.SX&32
J =START
DO 8 I=STRT,ISIEP
II(I.GE.J) GO TO 5

T(J =141)

X (1) =T
5 K =NV2
6 IF(K-SDIFF.GE.J) GO T0 7

* 3 J-x
K =K/2
GO TO 6

7 3 =J+K
8 CONTINUE

PI =3.14159265358979
DO 20 L=l.d
LE =2**L
LI 1=L 1/2
LSTEP=LE 1*STEP
0 =(l.0,O.0)
ANGLE =P1/FLOAT (LEI)
v =CMPLZ(C0S(ANGLE),-SIN(ANGLi))
LEI =LSTEP+STABT-STEP
LE =LE*STEP
DO 20 J=STARTLE1,SIEP
DO 10 1=JNeLE

*IF =1*LSTEP
T =X(IP)*U
XI 1)=1(I) -T

1 =1(1) X()T
10CONTINUE

- ~20 CONTINUE
RETURN
BND

C
SUBROUTINE TIIODF(ZeNe3Lufl~eLU)
COMPLEX 1416384)
INTEGER STARTSTIP
START1l
S29P =1

* DO 10 I=1.1
CALL FFT(XLNvSTARTSTiP)
S!ART=START*L

10 CONTIUE
STEP zL
DO 20 101,L
SfART-I
CALL FFT (X i.Ie START vSTEP)

20 CONTINUE
RETURN
IND
SUBROUTINE 1FF! (XI.ISTARI.STlF)
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COMPLEX Z(16384)*UM*T

7 INTEGER STAETSTEPSDIF

SMIEP-STIP-STADT
N12 U9/2*S22P
NMI - (N-2)*STBP+sTABT
NEIP (2- 1) *STiP+SIABT
J =STABT
DO 8 I=STAITe.Nh1.STEP
I1(I.GlJi) GO TO 5

I1j) -1 1)

5 9 =M12
6 IF(K-SDIFP.GR.J) GO T0 7

i =J-I
K =9/2
GO TO 6

a CONTINUE

PI -3.l11S9265358979
DO 20 L1.Nf

-% =(1.010.0)
ANGLB=PI/FLOAT (LEi)
v =CUPLX (COS (ANGLE) .511(ANGLE))
LI =LSTEPST22STEP
LE =LE*STEP
DO 20 J=STARTLll.SIBP
DO 10 I=J.NBXP,Ll
IP =I+LSTEP
T =X(IP) *O

1 (1) =1 1) +T
10 CONTINUEI u-U.M

*120 CONTINUE4 RETURN
END

C
SUBROUTINE XTMOD? (XN.1L,NRLg)
COMPLEX 1(16384)
INTEGER STARTSTEP
START=l
STEP -1
Do 10 1=1m
CALL IFFT (I.LlU.SIARZSTEP?)
S!AR2-START.L

10 CONTINUE
STEP UL
Do 20 I-1.L
SfART-1
CALL IFFZ (1. KSTAR.sSTZP)

20 CONTINUE
PNwFLOAT (N)
DO 30 I-l.N

30 CONTINUE
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SUBROUTINE SOLUEgA.B,LONONC.LB1NLof,NU.VCITB)
C ROUTINE TO SOLVE TEE MATRIX IODATION A X B

LOGICAL PICITI
COMPLEX CTENIP.CZBDCA(16384) .I(638*Q .V(16384) .(1849) .1(18149)
INTEGER FLAGIFLAG2,COUNI
REAL CINAVG*CHMAI.CBANGI
CZEROZ (0. 0,0. 0)

C ZEROIZE TIAND V (EXPENDED E)
DO 10 1=1.1

10 CONTINUE
DO 20 1=1.10
1(I) -CZERO

*20 CONTINUE
IP(.NOT..FXCITE) GO TO 65
DO 40 I1,MfO
IPTR: 41- 1) *L
JPTR=IPTB.LO*LO- 1
Do 30 JWIPTR.1.IPTE.LO-l
A IJPT)A ()
JPTR=JPTE-1

30 CONTINUE
40 CONTINUE

C FILL UP A ARRAY AND V ABBAY
00 60 1-1,80-1
IPTN (I-I) *L
JPTB (MOOM-I-1) *1
Do 50 J=1.LOLo-1
A (JPTR#J) =A (IPTR4J)

50 CONTINUE
60 CONTINUE

CALL TWOVF(A,R,L.NNUiLNi)
65 COUNTC0
70 JPTBR1

COUNT=COUNT* 1
DO 90 1=1.10
IPT3-L* (MO-2*I) *10
Do 80 J31.LO
V (1113) sB (JPTB)
JPTBNJPTE* 1
IR3IPTE41

so CCNTINUE
90 CONTINUE

C FIND T TRANSFORMED IND COMPOTE I TRANSFORMED
CALL 2VODF(VN.,LUN.LB)
DO N1001,3.

100 CONTINUE
C GET I FROM I TRANSFORMED

CALL IT3ODF(I.N.Bi,L.ffN.LNi)
C TRUNCATE I AND SITE I AFTR COMPUTING THE CONVERGENCE CR113310N

CD NAIG0. 0

DO 120 1-1,9
IPThzI/L
JPTIIuI-IPTE*L
IP(JPTE.LE.LO.AND.JPTR.U3.0.AND.IPTD'LT.UC) GO T0 110
I(I)uCZzlC
00 TO 120

110 IflB=IPT*LO*JPTB
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CHANGBCABS(CTEMP-Y (IPTR) )/CABS(CTEMP)
7 JIPTR) =CTEMP
C MN A V=C NA VG*CHA GE
IF (CHANGE. GT.CiHN AX) CHNMAX=CBAUGE

120 CONTINUE
CHNAVG (CHNZVG* 100.0) /FLOAT(NO)
CUNNRAICDNRAI0. 0
VRIT113,1200) CHNAVG.CHNBAX.COUUT

C FIND THE TRANSFORM OF TRUNCATED I
CALL TVOD.F(IJi,1,LfiMLR)

C COMPUTE V TRANSFORMED
DO 130 1=1,8
V (1)=A (1) *1(1)

130 CONTINUE
C GET V FROM V TRANSFORMED

CALL ITVODP(V.NRLMMLS)
C COMPUTE THE ERROR CHITERIOU

CHNAVG0. 0
C HNNA 1=0..0

.4 JPTR= 1
DO 150 I=1.EO
IPTRIL* (MO-2*I) +LO
DO 140 J=1,LO
CTEMP=B (JPTR)
CHANGE=CABS (CTEMP-V (IPTE) ) /CABS (CTBMP)

* CBNATG=CJINAVG4CHANGI
IV(CHANGE.GT.CHNNAX) CHNBAX=CHAUGE
IRTR=IPTR41
JPTR=JPTR. I

140 CONTINUE
IS0 CONTINUE

C ASK WHETHER OR NOT TO STOP AFTER REPORTING % FIELD 13301
CMNAVG=(CHAVG*100.0)/FLOAT(NO)
CHNIEAX=CHNNAX* 100.0
9RITR(3e 1300)CRUMAI.CHNAVG
READ(1.1100) FLAGI
IF(FLAGI.EQ.0) GO To 70

C ASK IF FIELD SHOULD BE PRINTED OUT ALSO
MRlTI 13,1500)

READI1, 1100) FLAG2
If IFL AG2. N.0) R ETURN
WRITE (3, 1600) IV (1) IzlU)
RETURN

1000 FORMAT(10E0.0)
1100 FORMAT(4I0)
1200 FORMATOhI *lAVG CURRENT CHANGE-90214.7,9 SO/

s 10i $RAI CURRENT CHING-9,114.7#0 %/
s 10 91&FTER,14,1 11RATICIS/)

1300 FORMAT(1H I'NAI FIELD ERROR - 1.115.7,1 SO/
s 1H #AVG FIELD ERROR = 1,315.7.' %1/
s 1a 0*CONTINUS IIIRA2IONS? 0 FOR YES, 1 PCI NO. AND 8219221/)

1400 FO3UAT(hU rICURRENTS//(1 .101111.4))
1500 FORNAT(18 elPRINT FIELDS? 0 FOR U1S. 1 FOS NO. TRES 5220214/)
1600 FORUAT(1Bf rRESULTANT FIBLDS$//(1I r10111.4))

En
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