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I. TINTRODUCTION

The Discrete Convolution Method (DCM) is an iterat
solution technique for solving the matrix equat

formulated by using the Method of Moments (MOM) [1]. T

ive

ion

his

is accomplished essentially by 1looking at the matrix

equation, as a (set of) convolution -equation(s), The

can Solve a properly formulated NxN matrix equation, w
only NlogN order multiplicative operations, instead of N3
in Gaussian Eiimination. The number of iterations nee

for a given accuracy is also found to be practica

independent of the size N,

II. FORMULATION

We first prove that a properly formulated MOM mat

DCM
ith

as
ded

lly

rix

equation can be viewed as a convolution process and then

develop the solution technique, Depending on the type
problem, the equation can be reformulated into two types

convolution processes,.

1) For some MOM problems, the matrix equation can
rewritten as

N
r z _J_ = V_ ,m=1,2,...,N (1)

where Vm's are all known. For most of these problems it
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possible to choose expansion functions, renumber them and

add dummy segments (if needed), so that (1) becomes

NN N
Z o« o o YA P J
a.=1n.=1 n'=1 P1P2r -Py%9z2::-qy 44%5-- 9y
1 M
=V (2)
PyP2---Py

pM=1,2,....NM
Here PyPy...Py are a renumbering of the original N segments

plus the added dummy segments, a total of N_N

1 2.'.“

H.
Furthermore

Z (3)

=Z
p1p2nooqu1q200'QM p1-Q1'p2-QZ""pM-QM
and V are not all known, The values of V's
PyPa---Py
corresponding to dummy elements are unknown but J's
corresponding to these are zero, If we call the domain of
original segments S and the domain of all segments Se' then

v are known
PyPye- Py

J are unknown (to be solved for) (u)
p1p2...pM

ir p.lpz...pnes and

v are unknown
PyPpe- Py

J are known (=0)
p1p2'°'pM

‘. ..Q§Q s- *.", v\."“' g\.r‘- .";.-".:"."."-'.‘-"‘- .. ._ TR
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1f P py.--PyE (5,-S).
Combining (2) and (3), we get

N1 N2 NM

2 I z AQ FEL TN PO PRRRN S ML LT AT PRPRRY )

= V(p‘.pz.....pn) (5)

where p1=1 '2.009N1;p2=1 '2.'00N2: -oopM=1 '2...."“.

But (5) can be easily recognized as an M dimensional
convolution equation [2]., Therefore (5) can be rewritten as
T+2T =7 PiPs.+-Py€S, (6)
where "#" denotes convolution of the appropriate (M here)
order or dimension, To give a one dimensional example,
consider scattering from two quarter wavelength straight
wires that lie along a single axis 0.15 wavelength apart, as

shown in Fig. 1(a).

L 0 L |

fe———0.255 He—( (55—t 0.25——
(gap)

Fig. 1(a) Two quarter wavelength wires seperated

by 0.15 wavelength gap




Fig. 1(b) Segmentation used for the problem

of Fig. 1(a)

Further, suppose that we break the wire into 0.05
wavelength segments and also add three dummy segments in
between as shown in Fig..1(b). The matrix equation is then

13

2 Zan®n * Vn ym=1,2,...,13 (1)

n=1
However, it is clear that the value of Zmn depends only on
(m-n). Therefore (7) can be rewritten as
13
3 z(m-mJi(n) = v(m Mzl ,2,...,13 (8)

n=1

T e ey




In other words, the equation is a one dimensional

convolution,

- -p

7% 7] =V (9)
where
Vln are known |
Jm are unknown for m=1,2,3,4,5,9,10,11,12,13
Vm are unknown
J_ are known for m=6,7,8 (10)

Other examples of the one dimensional convolution are
helical wires, infinite strips, infinite circular

cylindrical segments, linear antenna arrays, etc,

A two dimensional example is the MOM formulation of a
linear antenna array problem wusing several expansion

functions for each antenna, as shown in Fig. 2(b).

Fig. 2(a) A linear array of wire dipoles
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Fig. 2(b) Expansion functions used for the antenna current

If Py denotes antenna number and Py denotes expansion

function number for each antenna, it is easy to see that

yA 2(p,~-q,.P~-4q,) (11)
p(‘p2q1q2 1 H1*¥2 T2 _

Note that if we use only one expansion function per segment

we get a one dimensional convolution equation.

A three dimensional example is the solution of a

rectangular antenna array problem by using several functions

per antenna., The problem is as shown in Fig. 3.
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Fig. 3 A planar array of wire dipole antennas
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&
% Note that if we use a single expansion function per antenna
3
|- we get a two dimensional convolution equation, A four
»
- dimensional equation would be produced by cubic array
f problems using multiple expansions, ete,
5
1l
2) Most of the remaining MOM problems can be reformulated
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into a set of <convolution equations, though neither the

reformulation nor the solution is as straight forward as in

case (1). In fact, the reformulation will depend on the
type of problem and the expansion function(s) chosen, Two
examples are given here to demonstrate the general

technique,

For the first example consider an arbitrarily shaped
flat scatterer. Take N rectangular segments to approximate

its shape as shown in Fig. 4,

[t

bl it S i Tt ot g - S e o B}
=== Jt+++4qg
-Prﬂﬂ-z '”LEEJJ
I=y=i— 171717
= 1= =1- s
17 =5
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- r -l
Y 17171
-fc\; it ex

Fig. 4 A flat conducting scatterer approximated

by rectangular subsections

Add (Ne-N) segments (dummy segments) to get a full

rectangle, Now, on each segment (or group of segments) we
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5 .
3 choose two independent current expansion functions; one in

\m.

the x direction and the other in the y direction, as shown

s v AR ]
)
.8

g in Fig. 5.
!

e _th 1
=) * x
segment J

Fig. 5 Expansion functions used on the nth subsection

X It is apparent that we then have the following matrix
Py

N equation,

‘“‘N

- 1 r “ - -
e (z**1  1z2*Y3 ¥ vX

"

(12)

» (z¥%1  1z¥N 124 {"y
| ]

o] Here, [Zxx]. [ny]. (z¥*3, and [(zYY] are all block Toeplitz
matrices of size Ne‘ Renumbering the segments in terms of

rows and columns, (12) can be rewritten as

\ 0
v N N2 N1

¢
> n§1 nZ- MMy 0, Toyn,? L 2 Z;Z'“z“ﬂz Tayn, © Vo

1 2 = =
n2 1 nl 1
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10
N2 N1 N2 N,
> ¥ ¥ LD ¥y iy =Y
nel ey M™% ™% 1T .,,Z.l‘, MMy,  Myn, MM,
1 ' N =
m1=1.2.....N1; m2=1.2.....N2 (13)
where N1N2-Ne, N1 being the number of segments in the x

direction and N2 being the number of segments in the y

direction, Also

XX XX
m,m,n,0, =L (m1-n1,m2-n2)
yx oYX _
Zm1m2n1n2 =2 (m1 L) n2)
(14)
Xy XY _
Zm1m2n1n2 =Z (m1 NyeMp "2)
Yy _, VY _
Zm1m2n1n2 =7 (m1-n1,m2 n2)

Therefore (13) can be rewritten as

2 1
XX X
2 2z (m . -n,,m,-n,)I"(n,,n,)e+
n2=1 n1=1
N, Ny

Xy y CyX
2. 2.1 (m-n,,m,-n)I%(n ,n,) =V'(m, ,m,)

n2=1 n1:1

i

b
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1M
N2 N,
yx X
z: z: z (m1-n1,m2-n2)1 (n1,n2)+
n2=1 n1=1
N, N,

y y
2: z: 24 (m1-n1,m2-n2)1y(n1,n2) =V (m1,m2)

n2=1 n1=1

m1=1.2.....N1: m2=1.2.....N2 (15)

Now (15) is obviously a convolution equation set, written

symbolically as

[}
<3

z** & X, XY e 1Y .

(16)

Zyx ) Ix . Zyy . 1Y Vy

For the second example consider an arbitrarily shaped

solid imperfect conductor or dielectric. Now take N

rectangular cubic segments to approximate its shape, as

shown in Fig. 6.

L T L o o LR LR PR N T S T T e e e e e T T e e e e e
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Fig. 6 A solid dielectric or imperfectly conducting

scatterer approximated by cubic subsections

Add Ne—N dummy segments to get a full rectangular cube, To
solve the problem of scattering from the imperfect conductor

or dielectric using the MOM formulation, we choose for each

segment (or group of segments) three independent current

expansion functions; one in the x direction, another in the

y direction and the third in the z direction as shown in

Fig. 7.
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Fig. 7 Expansion functions used in the nth subsection

It is apparent that we then have the following matrix

equation.

-

[z**)

[(2Y%3

[22%2%)

g

S B ¢ R
[z*Y1 [z2*% 1"1 v¥
(z¥¥1 [z29% Y| = |vY (17)
[(z%2Y1 12%%) rzj LVZJ

S e PR e A Al e e e it Nl et i a0 e e e e e

........................

th
n

segment

Here, [Zxx], [ny].

matrices

of

si ze Ne

rows and columns, we

13

I
s
n

]
H X
o |
t .y e

/,Jh..-

/
7
4

etc, are all block block Toeplitz
. Renumbering the segments in terms of

can write (17) as
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13 14
Ry
" %
153
o5 N3 N, N,
’ Xy y
., Z VA I +
¥ Z 2 Mympmanynyng "yngng
‘é? n3=1 n,=1 n,=1
Ad
Xz z X
z I =V
;; 2. MiMaMyNyiany Nyn,yNg My mpms
2 =1 = =
55‘ n3 n2 1 n1 1
;? etc. (18)
e Here N1N2N3=Ne, N1 are the number of segments 1in the x
B!
tﬁ direction, N2 are the number of segments in the y direction,
B
%g and Ny are the number of segments in the z direction. Also,
§b XX = 2**(m, ~n ,My=n, ,M,=n_)
gk m1m2m3n1n2n3 1 7172 2373
yX yX
i z = 27" (m =n, ;m-n,,m,-n,) (19)
%; m1m2m3n1n2n3 17127 23T
1B
b zX _ o2ZX
B z = Z (m1-n1,m2-n2.m3-n3)

m1m2m3n1n2n3

ete.,

o
! Therefore (18) can be rewritten as,

-

f N3 N2 N,

: 2: Z Zxx(m1-n1,m2-n2,m3—n3) Ix(n1.n2,n3) +

? ny=l ny=1 ng =

;‘E Ny N, N,

;’: Z Z Z Zyx(m1-n1.m2-n2.m3-n3) Iy(n1,n2,n3) .
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etc.
Now (20) is obiously a set of convolution equations.

Symbolically, we can write this set as

'in.‘ix+‘z’yy,‘iy+'iyz.'iz="',y (21)

™~
N
»
-
-4
»
+
Ny
N
<
=
-
«
+
™~
N
N
E ]
(]
N
1]
-t
N

Here "®#" denotes three dimensional convolution,

Other examples of "two and three dimensional" problems
of this type (giving sets of two and three dimensional
convolution equations) are apertures in an infinite flat
conductor, antenna arrays with both polarizations, non
planar antenna arrays with more than one polarization, ete.
Also, some problems of type (1) can be reformulated as type
(2) problems. For example, a planar array problem using
more than one expansion per antenna (say two) could be
written in the form of (13) and hence (16), by replacing x

and y 1in the equations by 1 and 2 and by numbering the two

expansions 1 and 2,

...........

.............

......................
------
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ITI. SOLUTION METHODS

The methods that we use to solve (6) for the problems
of the first type, and (156),(21) ete. for the problems of
the second type are iterative. We will discuss here in
detail, the method for solving (5). To demonstrate the
general approach for the second type of problem, we also

discuss the method for solving (16).

In (6), we are taking the convolution product of the
left hand side and equating it to the right hand side for
the values of PiPy...Py in the region Se- However, the full
convolution ©process given by the 1left hand side of (6)
produces results not only for Se, but also for the regions

outside of S Specifically, convolution results are

e.
produced for

p1 = -N1+2,—N1+3,...,-1.0.1,2,....2N1-

11}

-N2+2.-N2+3,...,-1.0.1.2,...,2N2-1 (22)
p3 = -N3+2.-N3‘.‘3'-00'-1'0'1.2'..0'2N3-1
etc.

However, values oflv not in the region S are wunknown and

values of I not in the region S are known (equal to zero).

-9 .qi
If we call the values of V in region S to be V (for

impressed) and outside S to be Vo. then (6) can be rewritten
as

- - ~~ - -

27 =FL.3° =% (23)

Here, no restrictions are placed on the region of validity,

. |
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If we take the Discrete Fourier Transform (DFT) of
(23), on the basis of 3N1-2 elements for p,, 3N,-2 elements
for Py etc,, then we get an algebraic equation [2].

77 =V (24)
Here "~ " denotes transformed quantities., Equation (24) is
true for each transformed quantity; 1in other words,

EAQ N N e R (4 ™ ky) = Vikykyyooniky)

pree e
k1=1.2.....3N1—2; k2=1.2.....3N2-2:...; etc. (25)

Therefore, if we know V for all values of PiPo.+ Py then we
can determine V and find 7 by

V(k1,k

J(k1.k2.....k (26)

MG
Z(k1,k2.....kH)

The inverse DFT (IDFT) then gives 7. However, we know only

Vi and not V°. Thus the following procedure is used:
STEP 1-Assume V°. Normally we take all (initial) values
of V° to be zero. (As shown later in the Appendix, the
"distance" of the initial guess from the correct value
does not effect the convergence; only the number of
i{terations needed,) Call this first guess of Ve by 7?1).
STEP 2-Take the DFT of Z on the basis of 3N,-2 for p,,
3N2-2 for Py ete. to get i.

v Vi (27)

STEP 3-Compute (1) ® V' o+ (1)
STEP 4-Take the DFT of V(1) on the same basis as in step

-~
2 to get V(1)(k1,k2'....kM)

STEP 5-Compute T(1)(k1.k2.....kM) using (26).

T T T et e AT e e P A I R G T A \:-"-—-,\\'}"';n"."'."' A '-'-‘.'-‘."':“

‘?ﬁf*{*f’fjﬂ
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STEP 6-Take the IDFT (on the same basis as DFT in step 2)
£ 7 t t J

of J¢qy to 8et Jiy,.
STEP 7-Since 3(1) is not the correct answer, it will have
nonzero values outside S. Change the values of 7(1)
outside S to zero. (This is the same as truncating or

: . »> . =p
projecting J(1) onto S.) Call this J(1).

- 3P 5P

STEP 8-Take the DFT of J(1) to get J(1)(k1.k2.....kM)
STEP 9-Compute V?Q) (=2 3P, as given in equation (25)).

- vP P

STEP 10-Take IDFT of V (2) to get v (2)* (Note
-Op_-.“p

Vi=2Z J(Q))

STEP 11-Since 3?1) is not yet the correct answer, values

-'p -

of V(?) on S are not be equal to V-, Here, we can check
the accuracy by comparing Vi with V?Q) on S, One method

is to check the maximum (Vi45?2))/?i for all elements, as
well as the average. If ¢the maximum and average are
below a certain value {(say .1% and .01% respectively),
then stop. We can also use the criterion of the
convergence of j(n)' i.e,, the relative magnitude of
F(n)'j(n-1) in comparison to 3(n)’ or combine the two
criterions,

STEP 12-If we decide that wmore iterations are needed,

then <change the values of V??) on S to Vi. Call this

-p
Viay-

STEP 13-Replace V(1) in step 4 by V(z).

STEP 14-Continue from step 4 onwards until the criterions

in step 11 are satisfied,
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The solution techniques for sets of convolution
equations produced by the problems of the second type are
not as straight forward, To 1llustrate the general
technique, consider (16), In (16), we are taking the
convolution products of the left hand sides and equating
them to the right hand sides for values of m1m2 in the

region Se' However, the full convolution process, as given

by the left hand sides of (16) produces results not only for

se. but also for regions outside Se' Specifically,
convolution results are produced for
om, =-N,+2,-N,43,...,-1,0,1,2,...,2N,-1

L =-N2+2,-N2+3.....-1.0.1.2.....2N2-1 (28)

as in the first type of problems, However, values of VX and

X

VY not in the region S are unknown, and the values of<i and

fy not in the region S are known to be equal to zero. If we

=xi

V* and VY in the region S by V" and

denote the values of V
Vyi (for impressed), and those outside S by on and ‘VYO'

then (16) can be rewritten as,

ixx.ix . ixy.iy =3xi*vxo -

<}
]

TNTE L IV gL

<l
-

(29)

Here, no restrictions are placed on the region of validity.

If we take the DFT of (29) on the basis of 3N1-2

elements for m, and 3N2-2 elements for m,, we then get the

algebraic equations (2]
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2 RX ~X =Xy ~y _oX
2 (k1,k2); (k,y ky)e (k, k)T (ky,ky)=¥ (k,,ky)
yx =X Yy ay oY
2 (k1.k2)I (k1,k2)+2 (kl.kz)I (k1,k2)-v (k1,k2)
ky=1,2,...,3N,-2; kp=1,2,...,3N,-2 (30)

Equation (30) 1is true for each transformed quantity,

Therefore, if we know V* and VY for all values of m1 and m,,

we can find V" and VY. Since (30) can be written as,

[ x x =Xy - X ] [«
A (k1,k2) Z (k1’k2) I (k1,k2) v (k1'k2)
= (31)
ZyXx _ 5YY Ty vy
Lz (k,,ky) I (k1,k21 i (k1,k2U r Ckyoky)
L L o

we can find 1* and 1Y easily as

~yy - X ~xy ~y
A (k1,k2)v (k1.k2)-2 (k1,k2)v (k1,k2)

L
I (k1,k2)

"n

Yy XX Xy ~yX

1 (k1.k2)i (k,,ky)-2 (kqy.ky)% (k,, k)
(32)

)

~ X % XX ~X
1) (k1,k2) - 17 (k1.k2)I (k1,k2

k24
I (k1,k2)

z (k1,k2)
The IDFT then gives I* and 1Y, However, we know only v*i,
Vyi and not on. vyo. Thus the following iterative
procedure can be used.

STEP 1-Assume V*°, ¥Y°, Normally, we take all elements
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of on. ﬁyo to be zero. Denote this first guess of on

=yo $yo
Vo ey VT, VT,

STEP 2-Take the DFT of 2%, Z*Y, ZYX*, and 7YY on the

basis of 3N,-2 for m, and 3N,-2 for m, to get B A A

1
7Y%, and ZYY.

STEP 3-Compute 7?1) = v¥* + ‘?$)
(33)
Ty  _ eyl JYo
iy =V Yy
STEP 4-Take the DFT of 3?1), V¥1) on the same basis as in
step 2 to get Vz1)(k1.k2) and 7{1)(k1,k2).

STEP 5-Compute 1(1)(k1.k2). I(1)(k1,k2) using (32).
STEP 6-Take the IDFT (on the same basis as DFT in step 2)
-» X .y
STEP 7-Since 1(1) and 1(1). are not the correct answer,
they have nonzero values outside S. Therefore, change
- % -.y
the values of 1(1) and I(1) outside S to zero, (This |1is

the same as projecting T?1) and T{1) onto S.) Call these

=Xp -yp
Icqy and Ifqy.

STEP 8-Take DFT's of 1¢5y, TP, to get T(7y(k . ky) and
EHTTLIRPER

STEP 9-Compute ?g) and V(,) as given in (30).
STEP 10-Take IDFTs of zg) and V(Z\ to get v(z)

and VYP (Note that

(2)°
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I E{$) are not yet the correct answers,
values of ?g) and V{g) on S are not equal to VXi and
Vyi. Here we can check the accuracy by comparing -VXi.
Vyi with -V?g). V{g) on S. The same kind(s) of
criterion(s) as in step 11 of the solution procedure for
the problems of the first type can be used to determine
whether or not the iteration has converged,

STEP 12-If we decide that more iterations are needed,
then change the values of-vzg) and.V{;) on S to be-TIXi
and Vyi. Denote these V?z). 7{2).

STEP 13-Replace 7?1) and 7{1) in step U by'ﬁyz) and 7{2).
STEP 14-Continue from step y onwards until the

criterion(s) of convergence in step 11 are satisfied,

IV. SAMPLE COMPUTATIONS AND COMMENTS

Computer Programs using the techniques devised in the
preceding sections have been written. They are listed in
the Appendix of this report, In this section we give the
results of computations that were made using these programs,
The routines and formulations for computing the 1impedence
matrix (or mutual coupling matrix) [z)are from [3],(4], and

(51.
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Two types of one dimensional problems and one type of

two dimensional problems are solved. They are,
(i) scattering from straight thin wires
(i1) linear antenna arrays
(iii) planar antenna arrays

Fig. 8 shows the problem of scattering from a straight
thin wire illuminated by a perpendicular plane wave. The
Method of Moments formulation is made by breaking the wire
into Ns segments of equal 1length and wusing triangular
expansion functions, as given in [3]. Table 1 gives the
number of iterations needed to get convergence using DCM for
single thin wire problems, Comparison with LU decomposition

method in terms of the number of multiplicative operations

required is also given,.
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Table 1,

L 1 N
s

0.75 0.0625 12

2.0 0.05 40
4.0 0.1 40
8.0 0.1 80
16.0 0.1 160
23.85 0.075 318
32.0 0.1 320

Ne
5
19
19
39
79
158

159

Ne

15
64
64
128
256
512

512

LU decomp

(mult, ops.)

42

2286
2286
19773
164346
1314771
1339893

Scattering from a thin straight wire.

Comparison of DCM and LU decomposition methods

I DCM

(mult, ops.)

10 1280
9 6912
6 4608

1 19712
5 20480

12 135168
6 67584

Here a = wire radius in wavelengths(0,013477089 for problems

in Table 1)
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L = length of wire in wavelengths

[
(]

length of each segment in wavelengths

=
1]

number of segments

N = number of expansion functions needed

N = basis on which FFT and IFFT are taken for DCM

I = number of iterations needed to get maximum error in
current to be less than 1% or maximum error in

field to be less Lhan 1%

From Table 1 we see that, based on the number of complex
multiplications required, DCM is faster than LU decomposition

for problems with more tuan 40 expansions. Total computing

time needed to solve the 32 wavelengths problem (last entry
in Table 1) is 14.16 seconds on an IBM 4341, This includes

computing time needed to cet up the impedance matrix,

The problem of two thin wire scatters with a gap 1in
between, as in Figure 1, was also solved, The number of
iterations needed for .123% maximum field error and ,00404%
average field error was found to be 14, The problem is the
same as the 23.85 wavelengths wire problem of Table 1,
except that 114 segments in the middle are missing. Since
the original problem needed 12 iterations for the same level

of accuracy, the insertion of the gap does not seem to cause

much increase in computing time,
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Fig. 2 shows the problem of radiation from a linear
antenna array. If one expansion function per antenna is
used, then the Method of Moments formulation gives a matrix
equation equivalent to a one dimensional <convolution
equation. The formulation used is as given in [4]. Since
the mutual coupling matrix is Toeplitz in this case, it can
be solved using the faster (N2 order) algorithm for Toeplitz
matrices as given in [4], Therefore, Table 2 compares
between computing time needed for DCM with the computing
time needed for the (N2 order) Toeplitz algorithm given in
[4)]. The computing time measurements were made on an IBM
4341, The matrix set up time is not included, which would
be the same for both cases. All the problems in Table 2 are
linear arrays with halfwave antennas one-quarter wavelength
in front of an infinite ground plane, The seperation
between antennas 1is one-half wavelength also, Uniform
excitation is used for all cases given in Table 2, Other
excitations were tried and number of iterations needed (and
hence computing times) were found to be practically

independent of the type of excitation,

We see that, for very large arrays, DCM is faster. For
1000 antenna elements it is nearly 4 times faster,
Breakeven seems to occur at about 300 antenna elements.
Comparisons between the solutions given by DCM and Toeplitz
algorithms were made for all problems except the 1000

antennas problem, and the agreement was to within 1%

maximum difference in current in all cases,
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Table 2.

Ne

1M
44

88

250

352

1000

1000

I
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Comparison of DCM and Toeplitz methods

Setup

Time

(sec)

1.51

3.97

11.57

DCM

Time

(sec)

.57
1.55

2.43

19.48

34,22

45.63

Toeplitz Field Error

Time
(sec) (%)
.37
1.23
1.57 . 0222
.000971
9.79 .0224
.000349
18.53 .022
.000935
135.44 .0218
.000423
- .00466
.000365

Here Ne is the number of antennas in the array

I is the number of iterations needed for the given

field error and the last current change, For both field

error and last current change, the upper entry is

maximum error and the lower entry is average error,
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YY1
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(AR

Computing time savings are even more dramatic for
antenna arrays with some antennas missing, i.e., gaps. The

matrix produced by MOM in this case is no longer Toeplitz,

T el
LA

5y and LU decomposition (needing 1/3 N3 nmultiplicative
‘; operations) is usually used instead of Toeplitz methods
;ﬁ (needing 2N2 multiplicative operations). But, as explained
;1 in section II, we can add dummy segments and still wuse DCM
5 to solve the problenm, The number of iterations needed
i increased by only 1 over that needed for the same problem
é without gaps 1in each of the cases that were tried. The
5 results are given in Table 3,
7
g: Table 3. Results for array problems with gaps
2 Ne Ng Gap(s) 1 Field error(%)
X wy 1 17-28 4 .0166
J .00175(avg)

- 2 12-16 4 .0384
3 28-32 .00759(avg)
A - 3 12-15 4 .0330 (max)
< 21-26 .00542
4 33-37

h Here Ng is the number of gaps
A

Gap(s) gives the start and end segment numbers of the
2 gaps

Jg I is the number of iterations needed for the given

field error

EE T
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$;
;j With the LU decomposition method, the computing time would
) be 10 times larger even for the %4 antenna problem,.
b |
fi For linear antenna arrays which are lined up at an
" angle as shown in Fig. 9, then one expansion per antenna
‘& would no longer be enough since the current will not be
é symmetric anymore,.
i
k4
;'
1
!
[ ]

v o
" .
: N

I'4
o ’\ ]
Y. 4

A

7

/
! ,
)
. Fir. 9 Linecar antenna array lined up at an angle
!
3 The MOM formulation will no longer give an impedance matrix
v
§ that 1is Toeplitz but will give an impedance matrix that is
5
A
- block Toeplitz. This is equivalent to the two dimensional
ﬁ discrete convolution, We can solve by wusing the two
§
; dimensional DCM technique but since one of the dimensions
v will have only three points, it is not worthwhile, However,
; we can look at the matrix equation as three one dimensional
.
) convolution equations similar to what is done in (17) to
4
' {21). However, convolutions would be one dimensional here,
3 instead of three dimensional as in (21). If we call the
3
)
{
¥
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Fs first, second and the third expansions of each antenna, a,b,

and ¢ respectively, then the equivalent set of equations is

722 » 12, 33 4 7P, 720 4 30 . G
.Z'ba'-fa+'ibb"fb+’ib°*-f°=v (34)
7¢a ¢ 73 Ecb » fb + 3CC » Tc - 3

The solution of (34) using DCM would require nine times
more multiplicative operations than the solution of (9).
However, since the block Toeplitz solution technique will

also need nine times more than the Toeplitz solution

technique, the timing comparisons of Table 2 will remain
unchanged. For problems with gaps, if three expansions per
antenna are used, DCM will still need only nine times more
multiplicative operations per iteration, But LU
decomposition, being 1/3 N3, will need twenty seven times

more multiplicative operations,

Fig. 3 shows the problem of radiation from a planar
antenna array. If only one expansion function per antenna
is used, then the MOM formulation gives a matrix equation
which 1is block Toeplitz. This 1is equivalent ¢to a two
dimensional convolution equation. The formulation 1is as
given in [5]. Since the matrix equation is block Toeplitz,
it can be solved wusing faster (N® order where ag2.5)
algorithm for block Toeplitz matrices as given in [5].
Table 4 lists the computing time requirements for the DCM

solution of some planar array problems. The computing times

AL N R N R BRSO R
........ . .
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;
: given include the setup times, All the problems are for
" planar array problems with halfwave antennas one-quarter
>§ wavelength in front of an infinite ground plane,. The
_i seperation between antennas is one-half wavelength in either
direction,
i Table 4, Results for some planar array problems
¥ Ne Excitation 1 Computing Field Error Current
’i Time( sec) (%) Change
; (%)
; 16 Uniform ! 2 .05 .25
3 (4xd) .03 14
1 36 Uniform U 3 .056 .25
(6x6) .025 .1
3 Exponential 4 3 .055 .27
{ Taper .021 .087
| Beam Steer y 3 .034 .62
(45°-45"°) .008 .056
! Beam Steer u 3 .02 .18
. (30°-20°) .007 .05
f Progressive ] 3 LOT4 .3
’ Phase shift .032 .
1
i (30°-20")
i 121 Uniform y 13 .07 .29
j .03 .08
; Exponential i 5 .068 .24
.016 .05

'
3
¢

----- AL N

)

-------------
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ij Ne Excitation 1 Computing Field Error Current

' Time(sec) (%) Change (%)
1849 ° Uniform ] 255 .07 .28

.009 .023

$ Beam Steer u 255 .028 .27

j (30°-30") L0014 .01

é Here Ne is the number of antennas in the array

% I is the number of iterations needed to get the given

g accuracy. For both field error and (last) current

§ change, the upper entry is the maximum and the lower

g entry is the average.

v

We see that even for very large arrays DCM 1is quite

=2

fast. The problem with 1849 antennas takes only 4 minutes

computing time. Just as for the 1linear arrays, problems

L T S g

with gaps could also be treated and would take comparable

amounts of time,

if For more accurate planar array solutions, three
oy expansions per array should be used since the current on
N each antenna is not symmetric, This would increase the
b

i required computing time by a factor of nine as before.
! Notice also, the independence of the number of iterations
ﬁ required to the size of the array.
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To check the accuracy of the DCM technique, the
solution of the 36 antenna planar array was made using
matrix inversion routine LINEQ from [3], and the agreement

between the currents were found to be better than ,1%

maximum difference.

The problem of a planar array with antennas arranged in

diamond patterns instead of rectangular, can also be
formulated as a two dimensional <convolution equation by
adding dummy elements (as shown in Figure 11), to make a
parallelogram, The diamond pattern arrangement is shown in

Fig. 10.

Fig, 10 The Diamond pattern arrangement

..........
--------------



s,

e g

SLPAP L T

| LR

Xy

.ﬁ_‘ -y

R AN

b

A, i

Y PR 2 AR,

A o

P S Lo
¥ » (]

DR S A R R R IR I
RIS ANCORT

34

%
/

/ {

7/ ]

4 I

d l

7 |

// Dummy :

|

,/ Elements

!
!
!
|

ARRAY

Dummy ,/

Element;/
/

/
7/

/7
/
/

!

|

|

|
|

|

I

!

} Ve
}
!

|

|
L/

Fig. 11 A planar array with antennas arranged in diagonal patterns

The MOM formulation using one expansion per antenna
will then give a block Toeplitz matrix which can be solved
using two dimensional DCM. However, it cannot be solved
using the block Toeplitz method since the field on the dummy
elements are unknown, Therefore, only LU decomposition or
two dimensional DCM can be used, For a large array, DCM
will be considerably faster, Since the current on each
antenna is not symmetric, using three expansion functions
per antenna will give a much more accurate result and will
need nine times more computing time for the DCM. With LU

decomposition method computing time will go up twenty seven

RN
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times the already large value,

V. DISCUSSIONS

Discrete Convolution Method for solving the matrix
equation set up by the MOM, is found to be accurate and much
faster than either the Gaussian Elimination (Lu
decomposition) or the Toeplitz and block Toeplitz methods
given in [4] and [5]). Also DCM can solve a wider range of
problems than the Toeplitz and the block Toeplitz methods,
The number of iterations needed by DCM for a given accuracy
is also found to be practically independent of size,
However, it is dependent on other factors, For instance,
the number of iterations needed to solve an array problem is
found to be dependent on antenna length, antenna seperation

and the ground plane distance,

With careful formulation, the problem of radiation from
a planar array backed by a finite ground plane can be solved
with the DCM. Therefore DCM may prove to be wuseful in

designing array antennas,

The other numerical technique using FFT and IFFT to
solve iteratively, electrically 1large problems 1is the
Spectral Theory of Diffraction (STD). This technique 1is
well known and a number of papers and reports [6], [(7]1,(8]

etc,, have been published about STD. The difference between
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STD and DCM is that STD solves the problems in the spectral
domain and DCM solves the problems in the spatial domain.
Therefore, for certain types of problems STD may feel more
natural and for other types of problems (for example planar
arrays), DCM may feel more natural. Also errors in each

technique have different causes.

Since both STD and DCM are iterative techniques wusing
FFT and IFFT, they both have numerical 1inaccuracies
associated with
(i) the use of FFT and IFFT
(ii) taking only a finite number of iterations based
on some criterion
However, as shown in the Appendix, for DCM these errors are
insignificant, But since DCM is the iterative solution of
the MOM formulation of the original problem, DCM will have
in addition the inaccuracies associated with the MOM
formulation (but not the matrix inversion), On the other
hand, STD has the following numerical problems [6],
(i) windowing and
(ii) the need to take sufficient number of points to make

sure that the aliasing effect is small

Thus the numerical errors of DCM and STD are of
different natures. However, since the MOM formulation has
been in wide use for a consgsiderable period of time, the

numerical errors associated with the MOM are familiar

through experience.
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APPENDIX

I. INDEPENDENCE OF CONVERGENCE ON STARTING POINT

We prove here, the independence of convergence OnN
starting point for the one dimensional case. Proofs for
higher dimensions will be similar, Consider the one
dimensional problem given in (9), The discrete convolution

equation to be solved is,

-
77 = v (A1)

But V is unknown, only ©®({V] 1is known. Here the
function O[ ] means truncate values outside region S and
replace with zeros. We also know that 3 is confined ¢to S,

i.e.

i = 871 (A2)

The general solution technique 1is,

z*J ., = 6lvi-o(z* B[Jn]] (A3)

”~
where 8 [ ] is the complement of 81[ 1,
3n is the approximation of 3 at the nt'h iteration

The correct solution is,

-

7#7 = O[V] + BIV] (AB)

Therefore from (A3) and (Al), we get

[

) = BIV-Z » 817 17 (A5)

" -»> =
Z (J-Jn+1

Using (A1), the equation above becomes,

~

T (3-F7. ) = 0(7+7 - 78 (TN (A6)

n+1

DY Sy
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3
s But by (A2),
- - - = ~ - - -
* - - * -
] Z* (I3 .,) = B1(Z#6(J-1 1] (AT)
<z
K= Therefore, if we denote the error in the approximate
o th - >
s solution at n step, (J—f ) as & ,
. n n
‘., - * -é »~ - 6 -
s - *
&N z ne1 = 812 (e .1 (A8)
o
J';:
- We now prove the independence of convergence to the
&; starting point, in the sense that if the convergence is
3: achieved for a certain starting point, then the convergence
'f' is achieved for other starting points nearer or further than
2 that. Suppose that we achieve convergence if we start with
0 -
:3 the error € . 1If instead we start at a different starting
point with the error, So=-<€s, then
- - - A - -
) 2 %8 = B8[7%6 [xg)] (A9)
’:“ - - ~
b -
4 z %8 = xBL2%* BIE]] (R10)
’. - - - -ty
z*S1= £ 7 *E (A11)
g Therefore,
j - - - ~
- Z* (§,-xE) =0 (A12)
f From the fact that the original convolution equation is
37 the Method of Moments formulation of the physical problem
J‘
!
fi which can have no currents for zero excitation, (A12) can be
" interpreted as indicating,
o -
3 §, = «¥E, (A13)
2 and
R -
: -
4
b

»-
~
N
;i""ff'{“
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Since the convergence is achieved when we start with the

g -

error eo' in the 1imit as n approaches o, én approaches

zero, Therefore,

4 -ly
lim Sn = 0 (A15)

N

II. CONDITION FOR CONVERGENCE

The condition for convergence for the one dimensional
case 1is given here, Multi-dimensional <cases will have
similar conditions for convergence. The general solution
technique as given by (A3) for the one dimensional case 1is,

-l

77 .= oVl +BrZ* 007 1 (A16)
However, it is apparent that since the convolution <can be
written as a matrix multiplication operation,

(317, = 8V1 + 831007 (A17)
Here [3’] is the circulant matrix produced from i and not
the same as [Z].
The trunction operator O [ ] can also be represented as [T],
a diagonal matrix with 1's at places on the diagonal
corresponding to region S and zeros elsewhere, Similarly,
it is easy to see that the operator 5[ ] can be represented
as [?]. a diagonal matrix with 1's at places on the diagonal

corresponding to region S (i.e. the region outside S) and

zeros elsewhere, Therefore (A17) can be rewritten as,

(11 Vo« (T3 43013 7, (A18)
(47t Ve 0T 3un 7, (g

-
Jn+1
*
Jn+

1
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;} Since, [ 3@ is the circulant matrix with Z as its rows, it
2 has an inverse if Z has a DFT [9]. Let
i" -1
F (o1 = 1417 (1] (a20)
Y (Rl = €417 tT102007] (A21)
g7ty
o Therefore,
‘- - - - -y
%f Jnet = [Q] v + [R] Iy (A22)
s? It is easy to see from (A2) and (A19) that the exact
] solution is given by
A Cd -p -
% J = [QJ v + [R]J (A23)
!; Equation (A22) can be rewritten as,
y -> — — 2 -
) Jner = [Q1 V + [IRIIQI V « (RI® J, (A24)
% Repeated application of (A22) gives
¥ - - —
- T,y = (CTlelrIe[RIZe.. 0001 ¥ & (RI™T) T (a2s)
If the maximum eigenvalue of [R], 2 max is such that
A
. Ial < (426)
4
Y Then [91],
- [11+CRI+[R1%+... = [TI-R]™] (A27)
a4
2 and
A
X n+1)
A (rf = 0 (A28)
z
- as n approaches oo.
% Therefore
7 = [(1-R1"T(Q1 V (A29)
n+1
o -» -
| {1-R] Jn+1 = [(Q) vV (A30)
‘3 - - ->
K Joep ° (el v « (RIS, (A31)
H

as n approaches o0,

Therefore from (A23) and (A31),

‘ ; AL T N T R R I S R S R A N S U L T S
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nel J (A32)
as n approaches 09,if
A
2 (A33)
Howaver, the usefullness of the above condition is 1limited
as the computation of A requires N2 order complex

max

multiplications and so will take longer than the solution
itself, although not as long as using Gaussian Elimination

which requires complex multiplications of the order N3.

ITI. ESTIMATION OF NUMERICAL ERRORS

The Discrete Convolution Method (DCM) is an iterative
technique for solving the matrix equation,

(z1 7 = ¥ (A34)
formulated by the Method of Moments, This 1is done by
looking at the above equation as a convolution equation,

72%7 = ¥ (A35)
Now, it is apparent that if we are given the answer for
(A34), ja (say), then we <can use Fa to take the matrix
multiplication with [2Z] and get Va. which we can then check
against V to see if the answer given, 3; is correct or not.
Also, instead of taking FFT and IFFT, {if we actually
convolve, by using the relationship

Zmemy *a (A36)

. then the computations 1involved |in

Mz

v =
m na

to computeva from

NL“

using (A35) is identical to that involved in using {(A34),

\".‘ 'f '1‘ -"‘.-: .

h
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Eﬁ Therefore, if the matrix equation solution of (A34)
i using Gaussian Elimination is unique (in the sense that ujg
N

b to the desired precision point there are no two answers to
£

R A34, although there may be many beyond that precision
Byt

- point), then trying out various Ja's (chosen randomly, found
b

3 by iteration or any method) in (A34), would also give us the
N

jﬂ same unique answer, Hence, trying out various Ja's in

(A35), provided we actually convolve (i.e. wuse A36), will

give the same answer, So, any difference in DCM and matrix

A

v

inversion solutions will come only through
(a) the use of FFT and TFFT
(b) the fact that the iteration is carried out only

up to a certain accuracy based on some criterion,

Numerical errors due to (a) can be analyzed 1in the

: ;7’4'2 5'3- !

following way. By [2], the use of FFT introduces the output

error, the expected value of which is

N, E(error) = JN/3 27° (A37)
Y where b is the number of machine precision bits

d

- N is the basis on which FFT is made and

ﬁ E(error) is the expected value of normalized error

E‘ Since IFFT needs identical computations as FFT, IFFT causes
i

- error, the expected value of which is

o E(error) = SN/% 2= (A38)
"4

fj Even if the worst case occurs and errors do not cancel at
L

- all in taking FFT and IFFT, then the total convolution error
] is,

B!

b

A

&

4
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ECerror) = [N/3 27°*1 1003 (A39)
To give a numerical example, for the IBM mainframe

computers, b=23, For N=100000,

[100000/3 x 2722 x 100% (A4O)

.004%

E(error)

Therefore, if we check the answer by comparing YV with .Va
computed from (A35) by wusing FFT and IFFT, the numerical
error iniva would be in the fifth precision position 1i.,e.

insignificant.

Errors due to (b) will be small, provided that the
problem is well behaved (i.e. the condition number of the
impedance matrix [2] is small) and that the iterations are
carried out far enough so that the error in'v is small. 1In
a practical problem like the antenna array problem, the
change in current for each iteration drops off very sharply,
indicating that the actual error in the current is probably

less than the 1last change. The following qualitative

argument can be given in support of the above claim, From
(a22),

-p — -

Jn+1 = Q1 v + [(Rr] In (A1)

Jn H [Q1 v + [R] Jn-1 (A42)
Subtracting (A42) from (Al41), we get

g -

ne1 = [R) B (A83)

where Sn =z Jn’Jn-1 is the change in current at n

jteration. Therefore
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b V6.1 < \\Rl\\sn\ (A4Y)

- —
Now, if Sn*1 is much less than 5!1 for n=1,2,3,...,N,

Oy

-
then it is very unlikely that 8n+1 would be larger than

-

Sn for n>N.
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¥ IV. COMPUTER PROGRAMS AND SUBROUTINES

%)

The computer programs and subroutines given in this

Ficd P et

section are written to verify that DCM works properly and

g to measure the number of iterations needed for some sample

3 problems. No attempts have been made to optimize the computer
; code. In fact, the fast fourier transform and inverse fast

‘§ fourier transform (FFT and IFFT) routines given are for ZN

B points. This means that more points than are strictly

necessary has to be taken. However, even with the relatively
unoptimized code, DCM proves to be faster than other techniques

ore

»a

for large problems.

A As;. ":'_‘ A

Subroutines FFT and IFFT are for one dimensional FFT

and IFFT. Subroutines TWODF and ITWODF are for two dimensional

W

FFT and IFFT. The main program segment starting on page 47,
solves the one dimensional convolution equation. This program

AR

L3

)

& is written to be able to solve problems with gaps. Subroutine
| SOLVE solves the two dimensional convolution equation. It {g
Y

éﬁ not written to solve the problems with gaps, however.
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SUBBOUTINE FFI(X,N,HM)
INTEGER I,J,N,M,LE,LE1,8V2,NB1,K
COMPLEX X(4096),0,8,1
REAL FI

PI=3. 1415926535

DG 20 L=1,H
LE=2%%(N+1-L)
LEV=LE/2

U=(1.0,0.0)

#=CHAPLX (COS (PI/FLOAT(LEV) ) ,~SIN(PI/FLOAT (LE1)))
DO 20 J=1,LE1

Do 10 1I=J,N,LE
IP=I¢LE1

T=X(I) +X{(1P)

X{IP) =(X(I)-X(IP))*U
XI)=T

CONTINUE

U=0*l

COMTINUE

wv2=N/2

LT RED Bl

J=1

DO 40 I=1,NM1
IF{I.GE.J) GOTO 25
T=X (J)

X¢(J)=X(I)

X(I)=1

K=av2

IP(K.GE.J) GOTO 30
J=J-K

K=K/2

GOTO 26

J=J+K

CONTINUE

RETURN

EED

SUBROUTINE IPPT(X,N,H)
INTEGER I1,J,N,8,LE,LE1,NV2,0NH1,K
COMPLEX X {4096),0,¥,T
REAL FI

PI=3. 1415926535

DO 20 Li=1,8
LE=2%%(N¢+1-L)

U=(1.0,0.0)

¥=CHPLX (COS (PI/FLOAT(LE1)), SIN{PI/PLOAT(LBY)))
po 20 J=1,LE1

DO 10 I=J N,LE
IP=I¢LE1
T=X(I)+X(1P)
X(IP)=(X(I)-X(IP))*0
I(I)=T

CONTINUE

U=0%¥

CONTINUE

N¥2=8/2

yal=N-1

J=1

DO 40 I=1,XM1
Ir(I.GE.J) GOTO 25
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3
el 47
Y T=X (J)
3] X(J) =X (1)
o X (1)=1
3% 25 K=MV2
-3 26 IF(K.GE.J) GOTC 30
- J=J-K
c K=K/2
% GOTO 26
3 30 J=J+K
¥ 40 CONTINUE
fod DO 50 I=1,N

X{I)=X(I)/FLOAT (N)

X 50 CONTINUE

] RETURN

29 END

:" Ces DISCRETE CONVOLUTION METHOD TO SOLVE BOTH TOEPLITZ AND

Ce* NON TOEPLITZ MATRIX EQUATIGNS BY (N LCG ¥ PROCESS) ITERATION
INTBGER N, N
& COMPLEX X(1366),T(4096) ,CZERC,CUR (4096) ,A (4096) ,TSTORE
X INTRBGER START (11) ,FINISH(10) ,ST,FI,REVS
CZIER0=(0.0,0.0)
DG 10 1=1,102%
A {I)=CZERO
CUR(I)=CZERO
T{I) =CZERO
10 CONTINUE
READ(1,100) N,8,NS,IFLAG ,IBEG,REVS
WRITE (3,200)8,0,HS
IF(IPLAG.NE.OQ) GO T0 11
BREBAD(1,300) (X{(I),I=1,HS)
WRITE(3,400) (X(I),I=1,1S)
READ (1,300) (T(I),I=1,NS)
WRITE(3,800) {(T(X),I=1,KS)
G0 TO 13
1 CONTINUE
NSBY2=NS/2
OPEN (UNIT=21,FILE="ARDATA.DAT?)
BEAD (21,101) (T (1) ,1I=1,NS)
READ(21,101) (X(I) ,I=1,NS)
101 FORMAT (S5E14.7)
IP(REVS.EQ.0) 60 10 13
DG 12 I=1,NSBY2
TSTORE=T (I)
IPTB=NS~-1+¢1
T(I)=T(IPTIR)
T (IPTR)=TSTORE
12 CONTINUE
13 CONTINUE
IP(IREG.EQ.0) GO IC 14
READ(1,100) (START (I) ,FINISH(I) ,I=1,IREG)
14 CONTINUE
NS2=NS +NS
NSE1=)sS-1
DO 15 I=1,NS
i J=Ie+usSH1
’ AQJ)=x(I)
: T(NS2-1I)=T(I)
4 15 CONTIWUE
CALL PPI(T,N,H)
ICOUNT=1
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IP (IREG.EQ.Q) GO TC 18
DO 16 I=1,IREG
ST=START (I)
FI=FPINISH(I)

DG 16 J=ST,FI

.

LA S et

A (J) =CZERO
. 16 CONTINUE
3 18 CONTINUE
% 20 CONTINUE
K CALL PPT(A,N,H)
: DO 30 I=1,¥

COR{I)=A(I)/T(I)
30 CONTINUE
CALL IFFT (CUR,N,M)
WRITE (3,1000) ICCUNT
DO 40 I=NSe¢1,N
CUR (I)=CZERO
40 CONTINUE
IF(IREG.BQ0.0) GO TO 46
DO 45 I=1,IREG
ST=START (I)
PI=FINISH(I)
DO 45 J=ST,FI
CUR (J) =CZERO
85 CONTINUE
46 CONTINUE
¥BITE (3,600) (CUR(I),I=1,NS)
CALL FFT(CUR,N,N)
DO SO0 I=1,H% ‘
A(I)=CUR(I)*T (1)
S50 CONTINUE
CALL IFFT (A,N,M)
WRITE(3,500) {A(I),I=HS,NS*NSN1)
CUNERR=0.0
BNAX=0.0
IP(IREG.NE.0) GG T0 52
DO 5% I=1,NS
J=I+NSA1
TSTORE=X(I)
BRROR=CABS (A (J) -TSTORE) /CABS (1STOBE)
A (J)=TSTORE
IP (ERROR.GT.ENAX) ENAX=ERRGOR
CUMERB=CUMERR+ERBOE
51 CONTINUE
GC TO S4
S2 CONTINUE
ST=1
DO 53 I=1,IREG+1
IF(I.NE.1) ST=FINISH(I-1)+1
FI=START(I)-1
IR(1.EC.IREG#1) FI=NS
DO 53 J=ST,FPI
K=J+lsn1
TSTORE=X (J)
BRROR=CAES (A (K) -TSTORE) /CABS (TSTORE)
IF (ERROR.GT.ENAX) ENAX=ERROR
CUNERBR=CUMERR+ERBRQR
A (K) sTSTORE
53 CONTINOE
$S4 CONTINUE
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49

EMAX=ENAX*100.0
CUNERR=100.0*CUNMEBB/FLOAT(NS)
WRITE(3,900) ENAX,CUNERR
WBITE (3,700)
READ(1,100) IFLAG
IP(IPLAG.BQ.0) GO TO 55
CALL IFFT(CUR,N,N)
WRITE(3,600) (CUR(I),I=1,NS)
WRITE(3,500) (A(XI),I=NS,NS*NSAT)
IFP(IPLAG.EQ. 1) STGP
WRITE(3,1100)
GO TO 1
55 CONIINUE
ICOUNT=ICOUNT¢+]
60 T0 20
100 FOBRMAT (1010)
200 FORMAT('H ,* N M NS',317)
300 FORMAT (10E0.0)
400 PORMAT({1H ,*EXCITATION VECTOR'/(1H ,10E11.4))
500 POBSAT(1H ,*RESULTANT FIELD'/(1B ,10E11.4))
- 600 PORMAT('H ,'CURBENIS‘'/(1H ,10B11.4))
700 FORMAT (1H ,*CONTINUE ITERATIONS? 0 FOR YES,',
s * 1 FOB NO AND BETURN®)
800 PORMAT({'H ,*GREEN"S FUNCTION'/(10E11.4))
900 PORMAT (1B ,"NAX FIELD ERBOR=',E10.3,'%%/
1H ,*AVERAGE ERBOBR =?,E10.3,°'%")
1000 PCRMAT (1H ,//1H ,*ITExATION NUNBER',I7//)
1100 PORMAT(1H ,//1H ,'¢4$32%85s+NEXT PRCBLEN®**3%8328k0/))
END

ann
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SUBROUTINE PPT(X,M,START,STEP)
CONPLERX X (16384) ,0,8,T
INTEGER START,STEP,SDIFF
N=2%sy

SDIFPF=STEP-START

N¥2 =N/2*STEP

NAY = (N-2)*STEP+START

N ={N~ 1) *STEP+START

J =START

DO 8 I=START,NN1,STEP
IF(I.GE.J) GO T0 5

T =X (J)

X{J) =X{I)

X(x =t

K =NV2
IFP(K-SDIFF.GE.J) GC 10 7
J =J-K

K =K/2

GO TO 6

J =J+K

CONTINUE

PI =3.14159265358979
DG 20 L=1,4

LB =2%8]

LE1=LE/2

LSTEP=LE1*STEP

U =(1.0,0.0)
ANGLE=PI/FLOAT(LE1)

|| =CMPLX (COS (ANGLE) ,~-SIN (ANGLE))

LE1 =LSTEP¢+STARI-SIEP
LE =LE*STEP

DO 20 J=STARTI,LE1,STEP
DO 10 I=J,N,LE

Ip =I+LSTEP

T =X (IP) *0
X{IP)=X(I)-T

X(I) =X{I)+T

CONTINUE

U=U*s

CONTINUE

RETURN

END

SUBROUTINE TWODP(X,N,8,L,B8H8,LH)
COMPLEX X (16384)

INTEGER START,STEP

START=1

STEP =1

Do 10 I1I=1,H

CALL FPT(X,LH8,STARY,STEP)
START=START+L

CONTINUE

STEP =1

po 20 I1I=1,L

STABRT=I

CALL FPT(X,NN,START,STEP)
CONTINVE

RRTURN

RRD

SUBROUTINE IFPT(X,H,STARY,STER)
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CONPLEX X (16384),0,H,T
ISTEGER START,STEP,SDIFP
N=28sy
SDIPF=STEP-START

NV2 =N/2%STRP

NH1 = (N-2)*STRP+START
NEXP =(N-1)¢STEP+START
Jd =START

DO 8 I=STARY,EN1,STEP
IP(I.GE.J) GO T0 S

T =1(J)

X{J) =X{I)

X{I) =1

K =NV2

IP (K~-SDIPF.GE.J) GO 10 7
J =J-K

K =K/2

GO TO 6

J =J+K

CONTINUE

P11 =3.18159265358979
DO 20 L=1,AN

LE =28%8],

LEI=LE/2
LSTEP=LE1*STEP

U =(1.0,0.0)
ANGLE=PI/PLOAT(LRY)

¥ =CHBPLX (COS (ANGLE) ,SIN(ANGLE))
LE1 =LSTEP+STARI-STEP
LB =LESSTEP

DO 20 J=STARZ,LE1,SIEBP
DG 10 I=J,MEXP,LR

Ip =XI+LSTEP

T =X (IP) =0
X(IP)=X{(I)-T

X(I) =X(I)+T

CONTINUE

U=0*§

CONTIRUE

RETURY

BND

SUBROUTINE ITWODF (X,B,N,L, HH,LH)
COBPLEX X (16384)

INTEGER START,STIEP
START=1

STEP =1

DO 10 I=1,N

CALL IPFT(X,L8,START,STEP)
START=START+L

CONTINUE

STEP =L

DO 20 I=1,L

START=I

CALL IPPT (X,8H,STABTI,STEP)
CONTINUE

PE=PLOAT (N)

DO 30 I=1,M

X(I)=X(I)/PN

30 cosrisv:

.t

AN AN

51
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SOBROUTINE SOLVE(A,B,LO, NO,NO,LA BN,L, N,N,FICITE)
ROUTIMNE TO SOLVE THE MATRIX EQUATION A X = B
LOGICAL PXCITR

CONPLEX CTEMP,CZEBBC,A(16384) ,X(16384) ,V(16384) ,B(1849) ,Y(1849)
INTRGER PLAGI1,PLAG2,COUNT

REAL CHMAVG,CHNMAX,CHANGE

C2BRO=(0.0,0.0)

ZERCIZE Y AND V (EXPENDELD E)

DO 10 I=1,N

V{I)=CZERO

COMTINUE

DO 20 I=1,MN0

Y {I)=CZERO

CONTINUE

IP({.HNOT.FXICITE) GC TC 65

DO 40 1=1,H80

IPTR=({I-1) *L

JPTR=IPTR¢LO+LO-1

DO 30 J=IPTR¢+1,IPTR+LO-1

A (JPTR)=A(J)

JPTR=JPTR-1

CONTINUE

CONTINUE

FILL UP A ARRAY ANLC V ABRAY

DO 60 I=1,80-1

IPTR=(I-1)¢L

JPTR= (HO+NO-1I~-1) *L

DG S0 J=1,L0¢L0-1

A (JPTR+J) =A (IPIR+J)

CONTINUE

CONTINUE

CALL THODP (A ,8,M,L, N4,LA)

COURT=0

JPTR=1

COUNT=COUNT+1

IPTR=L* (H0-2¢1)+LC

DO 80 J=1,10

V(IPTR) =B (JPIR)

JPTR=JPTR+1

IPTR=IPTR+1

CCNTINUE

CONTINUE

FIND ¥V TRANSPORNED AND COMPUTE X TRANSFORNMED
CALL THODP (V,M,N,L,BN,LH)

pc 100 I=1,NW

X{I)=V(I)/A(I)

CCNTINUE

GET X PRON X TRANSPOBNED

CALL ITNODP (X, MN,B,1,HM,LH)

TRUNCATE X AND SAVE X AFTER COBPUTING THE COMNVERGEECE CRITERION
CHEAYG=0.0

CENBAX=0.0

Do 120 1=1,H

IPIR=1/L

JPTR=1~-IPTR*L

IP(JPTR.LE.LO.AND.JPIR. NE.O.AND.IPTB.1IT.8C) GO TO 110
X({I)=CZERC

¢o 70 120

IPTB=IPTR*LO+JPTR
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X

R

120

180
150

1000
1100
1200

1300

1400
1500
1600

o ven

CIENP=X(I)
CHANGE=CABS (CTENP-Y (IPTB)) /CABS (CTENP)
Y (IPTR)=CTENP
CHNAVG=CHNAVG#CHANGE
IP(CHANGE.GT.CHNHNAX) CHNMAX=CHANGE
CONTINUB
CHNAVG= (CHNAVG*100.0) /FLOAT (NO)
CHNBAX=CHNMAX*100.0
WRITE (3,1200) CHNAVG,CHNMAX,COUNT
PIND THE TRANSPCRM OF TRUNCATED X
CALL TWODP(X,N,H8,L,NH,LH)
COMPUTE V TRANSFORMED
DC 130 I=1,N
V{I)=A(I)*X(I)
CONTINUE
GET V FRONM V TRANSFORBED
CALL ITWODF(V,N,M,L, HN,LAH)
COMPUTE THE ERROR CBITERION
CHNAVG=0.0
CHNMAX=0.0
JPTR=1
po 150 1=1,M0
IPTHE=1%* (N0-2+]) +LO
DO 140 J=1,LO
CTENP=B (JPTR)
CHANGE=CABS (CTEMP-V(IPTR) ) /CABS {CTENP)
CHNAVG=CHNAVG+CHANGE
IF(CHANGE.GT.CHNHAX) CHNNAX=CHANGE
IPTR=IPTR+1
JPTR=JPTR+1
CONTINUE
CONTINUE
ASK WHETHER OR NOT TO STOP AFTER REPORTING X PIELD ERROR
CHNAVG= (CHNAYG*100.0) /FPLOAT (NO)
CHNMAX=CHNNAX*100.0
WRITE({3,1300)CHNBAX,CHNAVG
READ(1,1100) FLAG1
IF(PLAG1.EQ.0) GO 10 70
WRITE(3,1400) (Y (I),I=1,¥0)
ASK IF FIELD SHOULD BE PRINTED GUT ALSO
WRITE (3,1500)
READ(1,1100) FLAG2
IP(FPLAG2.NE. Q) RETURN
WRITE (3,1600) (V(I),I=1,N)
RETURN
FORMAT(10E0.0)
FORMAT {410)
FORMAT (18 ,°AVG CURRENT CHANGE=',E14.7,' %%/
18 ,"HAX CUBBENT CHANGE=? ,B14.7,°* X%/
18 ,*APTER?,I4," ITERATICNSY))
PORNAT (1H ,*HAX FIELD BRROR = ',R15.7,*' %'/
18 ,*AVG FIBLD ERROR = ' ,B15.7,° %%y
18 ,*CONTINUB ITERATIONS? O POB YES, 1 PC8 NO, AND BETURNY/)
PORMAT (1H ,°CURRENTS*// (18 ,10E11.0))
FPORBAT(1H ,*PRINT PIBLDS? O PFCR YES, 1 FOE WO, THES BBIURRY/)
PORSAT (R ,*RESULTANT FIBLDS'//(1H ,10E11.4))
END
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