

EFFECTS OF JP-4 FUEL ON GRAPHITE/EPOXY COMPOSITES

B. L. White Structural Concepts Branch Structures and Dynamics Division

October 1983

V

AD-A25542

2

Final Report for Period March 1977 - October 1982

Approved for public release; distribution unlimited

AIR FORCE SYSTEM: COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES

FLIGHT DYNAMICS LABORATORY

Reproduced From Best Available Copy DTIC ELECTE DEC 5 1903

83 12 05 067

20000802034

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement coeration, the United Status Government thereby incurs no responsibility app any of the string wheteoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be reparded by implication or otherwise as in any menner licensing the holder or any other person or corporation, or conveying any rights or permission to semicacture use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Trobuical Information Service (NTIS). At NTIC, if well be available to the general public, including foreign mations.

This technicel report has been reviewed and is approved for publication.

BILLY L. WHITE

Project Engineer

POR THE COMMANDER

RALPH L. KUSTER, JR., Colonel, USAF

Chief, Structures & Dynamics Division

"If your address has changed, if you wish to be removed from our mailing list, or if the addresses is no longer employed by your organization please notify Acode/2000, W-PAFS, ON 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by prourity considerations, contractual obligations, or notice on a specific document.

ROTICE

Long 11.7611

LARRY G. KELLY, Chief Structural Concepts Braden Structures & Dynamics Division

REPORT DOCUMENTATIO	N PACE	READ INSTRUCTIONS
1 REPORT NUMBER		BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER
AFWAL-TR-83-3086	2. GOVT ACCESSION NO	S RECIFICAT SCALADU HUMBER
4. TITLE (and Subility)		5. TYPE OF REPORT & PERIOD COVERED Final Technical Report
EFFECTS OF JP-4 FUEL ON GRAPHIT	E/EPOXY COMPOSITES	
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)		0. CONTRACT UN GRANT NUMBER()
B. L. White		· · · · · · · · · · · · · · · · · · ·
PERFORMING ORGANIZATION NAME AND ADDRI Flight Dynamics Laboratory (AFW)		10. PRUGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Air Force Wright Aeronautical La		Project
Wright-Patterson Air Force Base,		Task
	,	Work Unit 24010338
1. CONTROLLING OFFICE NAME AND ADDRESS	·	12. REPORT DATE
Flight Dynamics Laboratory (AFWA		October 1983
Air Force Wright Aeronautical La		13. NUMBER OF PAGES 45
Wright-Patterson Air Force Base,	UH 40433	15. SECURITY CLASS. (of this report)
· · MUTHING AUERUT MARE & AUDRESHII SIIN		
		Unclassified
		15. DECLASSIFICATION/DOWNGRADING SCHEDULE
B. DISTRIBUTION STATEMENT (of this Report) Approved for public release; dis 7. DISTRIBUTION STATEMENT (of the obstract enter		·
Approved for public release; dis		·
Approved for public release; dis		·
Approved for public release; dis 7. DISTRIBUTION STATEMENT (of the obstract enter		·
Approved for public release; dis 7. DISTRIBUTION STATEMENT (of the obstract enter		·
Approved for public release; dis 7. DISTRIBUTION STATEMENT (of the obstract enter	od in Block 20, il different fre	·
Approved for public release; dis DISTRIBUTION STATEMENT (of the obstract enter SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary JP-4 Fuel	od in Block 20, il different fre	·
Approved for public release; dis DISTRIBUTION STATEMENT (of the obstract enter SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary JP-4 Fuel Graphite/Epoxy	od in Block 20, il different fre	·
Approved for public release; dis DISTRIBUTION STATEMENT (of the observed enter SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side If necessary JP-4 Fuel Graphite/Epoxy Laminate Panels	od in Block 20, il different fre	·
Approved for public release; dis DISTRIBUTION STATEMENT (of the obstract enter SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary JP-4 Fuel Graphite/Epoxy	od in Block 20, il different fre	·
Approved for public release; dis DISTRIBUTION STATEMENT (of the obstract enter SUPPLEMENTARY NOTES KEY WORDS (Continue on revorce side if necessary JP-4 Fuel Graphite/Epoxy Laminate Panels Experimental Data	ed in Block 20, il different from	·
Approved for public release; dis DISTRIBUTION STATEMENT (of the observed enter SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary JP-4 Fuel Graphite/Epoxy Laminate Panels Experimental Data Test Fixture Design AESTRACT (Continue on reverse side if necessary of The primary objective of this pro of graphite/epoxy composite lamin material to JP-4 fuel under prese vestigation consisted of three ex-	and identify by block number) and identify by block number) ogram was to determ nates could be degr sure for an extended ctended evaluations	n Report) nine if structural properties raded by subjecting the ed period of time. The in- s in which a total of 305
Approved for public release; dis DISTRIBUTION STATEMENT (of the obstract enter SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary JP-4 Fuel Graphite/Epoxy Laminate Panels Experimental Data Test Fixture Design AESTRACT (Continue on reverse side if necessary of The primary objective of this pro of graphite/epoxy composite lamin	and identify by block number) and identify by block number) ogram was to detern hates could be degr sure for an extended ctended evaluations modes. The study comment exposed lan	aine if structural properties raded by subjecting the ed period of time. The in- s in which a total of 305 dealt primarily with tensile binates and oven dried
Approved for public release; dis DISTRIBUTION STATEMENT (of the observed enter SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary JP-4 Fuel Graphite/Epoxy Laminate Panels Experimental Data Test Fixture Design AESTRACT (Continue on reverse side if necessary of The primary objective of this pro of graphite/epoxy composite lamin material to JP-4 fuel under prese vestigation consisted of three ex specimens were tested in various testing of fuel and ambient envir	and identify by block number) and identify by block number) ogram was to determ nates could be degr sure for an extended thended evaluations modes. The study conment exposed lan atrength values. The strength values.	aine if structural properties raded by subjecting the ed period of time. The in- s in which a total of 305 dealt primarily with tensile binates and oven dried

Y. JINCLASSIFIED SETURITY CLASSIFICATION OF THIS PAGE (When Data Enformed) degradation of the Hercules AS 3501-5A graphite/epoxy material properties after being exprsed to JP-4 fuel at a 40 psi pressure for six months. UNCLASSIFIED ïi SECURITY CLASSIFICATION OF THIP PAGE (When Data Entered)

FOREWORD

This report describes an in-house investigation conducted by the Structural Concepts Branch (FIBC), Structures and Dynamics Division, Flight Dynamics Laboratory, Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio, under Project 2401, "Structural Mechanics", Task 240103, "Advanced Structures for Military Aerospace Vehicles", Work Unit 24010338, "Preliminary Design of Aircraft Structures." Mr. Billy L. White, AFWAL/FIBCA, served as Project Engineer and test fixture designer; Mr. Robert T. Achard, AFWAL/FIBCC, supervised the fabrication of the composite specimens; and Mr. Harold D. Stalnaker, AFWAL/FIBE, was the Test Engineer.

AFWAL-TR-83-308C

TABLE OF CONTENTS

SECTION		PAGE
I	INTRODUCTION	1
11	OBJECTIVES	2
111	SCOPE	3
IV	TEST FIXTURE	. 5
٧	TEST LAMINATE SIZING	9
. VI	TEST PROGRAM	10
	1. Test No. 1	10
	2. Test No. 2	17
	3. Test No. 3	20
VII	CONCLUSIONS AND RECOMMENDATIONS	23
	APPENDIX - TEST DATA	25
	REFERENCES	39

FRECKPLING PACK MANK-NOT TILNED

....

LIST OF ILLUSTRATIONS

PAGE

PAGE

FIGURE

1	Test Fixture Components	. 4
2	Test Fixture	6
3	Test Fixture Cutouts	7
4	Composite Laminate Panels	11
5	Tensile Test Specimen	13
6	Short Beam Shear Test Specimen	14
7	Flexural Strength Test Specimen	14
8	Tensile Test Results	26
9	Short Beam Shear Test Results	27
10	Flexural Strength Test Results	28
11	Stress Versus Axial Strain - Test No. 3	29

LIST OF TABLES

TABLE

Tensile Test Results - Test No. 1 30 1 31 Short Beam Shear Test Results - Test No. 1 2 Flexural Strength Test Results - Test No. 1 32 3 Tensile Test Results - Test No.2 33 4 Short Beam Shear Test Results - Test No. 2 34 5 Flexural Strength Test Results - Test No. 2 35 6 Tensile Test Results - Test No. 3 36 7 38 Artificial Fuel Tank Sump Water 8

vi

SECTION I

INTRODUCTION

During the past decade, composite materials have developed into current state-of-the-art materials commanding an increasing percentage of the structural materials used in high performance aircraft. Aircraft are now being flown, such as the F-18 and AV8B, that contain composite materials in primary structure throughout the aircraft. These materials are subject to numerous environmental effects including prolonged contact with liquids such as jet fuel.

It is well known that the epoxies used as a matrix in fibrous composite structures absorb moisture. This moisture causes a reduction in certain structural properties of the matrix. Questions still arise as to the possible degradation of composite structural properties due to jet fuel penetration into the epoxy matrix. The resistance of the composites to JP-4 fuel depends largely on the chemical resistance of the resin, and on the presence of defects such as cracks, voids, resinrich regions and "dry" regions. Such defects can arise during the fabrication process or from subsequent service usage.

In the past, several investigations have been conducted where the composite materials were simply subjected to immersion into fuels to determine if any deterioration could be detected. In all cases except for a few test points, the data has shown little or no degradation in material properties due to contact with fuels (References 1 through 4).

SECTION II

OBJECTIVES

The primary objective of this program was to determine if structural properties of graphite-epoxy composite laminates could be degraded by subjecting the material to JP-4 fuel under pressure for an extended period of time. Also, an investigation was conducted to determine if fuel tank sump water would deteriorate the laminate material properties. A secondary aim was to observe whether the laminates exposed to pressurized fuel would absorb enough fuel for a measurable weight gain.

2

: | |

SECTION III

SCOPE

Tests have been conducted previously in which composites were simply immersed in JP-4 for long periods of time. No degradation in material properties was found as a result of these tests. Unlike this approach, the specimens in this program had pressure applied to one face of the laminate, tending to force the fuel into the laminate. To subject the test specimens to pressurized fuel required the design, analysis, and fabrication of an innovative test fixture. This fixture allowed the composite panels to act as fuel tank walls without being over-stressed in bending when high fuel tank pressures were applied for long periods of time. (Figure 1)

The investigation consisted of three extended evaluations in which a total of 305 specimens were tested in various modes. During the initial phase, three laminate panels were fabricated using Hercules AS 3501-5A graphite/epoxy material system with a stacking sequence of $[0_2/90_2/+45]_c$. Two of the panels were installed in the fuel tank test fixture and the third one was used as a control specimen for baseline data. The fuel tank specimens were subjected to 20 psi pressure for six weeks. In the second test phase, four panels were fabricated from the same material systems as the first test but had 16 plies with orientation of $(\pm 45^{\circ})_{Ac}$. Two of the panels were placed in the test fixture for six months under a fuel pressure of 40 psi. One panel was placed next to the test fixture for ambient environment exposure and one panel was placed in an oven at 140°F as a control specimen. The third phase test was essentially the same as the second phase except a mixture of JP-4 fuel and 3% artificial fuel tank sump water was placed in the tast fixture to determine sump water effects on material properties.

Following the extended test period in each test phase, the laminate panels were removed from their respective test areas and were cut into 20 tensile test specimens of 1 inch width and 10 inches length. Additionally, three of the tensile test specimens from each panel were used for preparing specimens for flexural strength and short beam shear tests.

SECTION IV

TEST FIXTURE

To accomplish the objective of the program, an innovative fuel tank test fixture had to be designed, analyzed, and built so that large composite laminate panels could be subjected to pressurized JP-4 fuel. (Figure 2) The test fixture was designed with a center plate cut out to contain fuel. The two outside plates of the fixture were designed with cutouts permitting the composite panels to be exposed on the inside to pressurized fuel and on the outside to the atmosphere. These cutouts had posts every two inches to support a 23 x 10 inch test panel and to prevent excessive deflection while under pressure. (Figure 3)

An extensive analysis of the fuel tank design was made prior to fabrication to assure that the fuel tank fixture would n t fail due to internal pressure. The weakest area of the fixture was found to be the posts between the cutouts in the plates. The posts were analyzed for fixed end boundary conditions. AISI 4130, low carbon steel material with a tensile yield stress (F_{ty}) of 70,000 psi and an ultimate tensile stress (F_{tu}) of 90,000 psi was sed in the initial analysis of the last fixture (Reference 6). The system was analyzed for a test pressure of 100 psi. For this pressure, the stresses were found to be 10,816 and the MS was 5.47. Thus, the fuel tank fixture was designed to contain pressures much higher thar the maximum 40 psi used during the programs.

The test fixture was designed to eliminate sealing problems to the extent possible. Recesses were cut into the end plates to seal the composite test panels and specimen retainers were designed to hold them securely against the tank walls. Buna-N rubber material was cut to shape and placed around the fuel tank plate boundaries to prevent leakage of the system.

A pressurization system was designed which would prevent any possibility of over-pressurization during the course of the test. The pressurization system incurporated a small cylinder with a piston that

was connected by a shaft to dead weights as shown in Figure 2. The cylinder filled with fuel when the fuel tank was filled. The piston compressed the fuel when the dead weight was applied, thus restricting the maximum system pressure. Over-pressurization could occur only by the application of more weight. A pressure gage was installed between the cylinder and the fuel tank for monitoring the system pressure.

The possibility of fuel leaking during the long test periods was taken into consideration when the test fixture was designed and the location of the facilities was selected. The fuel tank test fixture was designed to hold only 1.37 gallons of JP-4 fuel and the pressurization system held approximately 0.1 gallons of fuel. Consequently, if a leak had occurred, very little fuel would have been present for a possible fire. The conditions necessary for combustion were not permitted. The JP-4 fuel was enclosed in a sealed pressurized system, the test building was well ventilated, and no ignition sources were present. Also, the fuel tank test fixture was grounded to prevent the possibility of static electricity buildup.

SECTION V

TEST LAMINATE SIZING

To determine the most efficient size test fixture, several different size composite test panels were analyzed with 10 different laminate schedules of 8 to 16 plies each. Problem areas encountered during the design of the composite panels included: (1) larger panels, if unsupported would have excessive deflection, which could result in sealing problems, (2) small panels would have small deflections, but would not provide an adequate size or quantity of tensile test specimens; and (3) specimens from 7 panel that was very thick could not be failed in the test machine.

The analysis of several panels with different thicknesses and laminate orientations indicated that the 12 ply laminate panel with a lay-up of $[0_2/90_2/\pm 45]_s$ was the most suitable for the initial test. The results of the analysis indicated that a 20 psi test pressure would deflect the panel, supported by the test fixture cutout bars, .0037 inches at the center with a margin of safety of 8.39. This was an adequate MS to preclude possible failure due to the test pressure. The analyses of the graphite/epoxy composite panels were made utilizing two computer programs. The "Finite Element Plate Bending Analysis" program provided panel deflection data and resultant moments at the maximum deflection point (Reference 8). These resultant moments were input into the "Laminate Point Stress Analysis (SQ-5)" program which provided the margin of safety for each panel analyzed (Reference 9).

SECTION VI TEST PROGRAM

1. TEST NO. 1

Some consistent initial evaluation, a 12 ply composite panel with a stacking sequence of $[0_2/90_2/\pm 45]_s$ was selected to be tested at a fuel tank pressure of 20 psi for a six-week duration. Three laminate panels with dimensions of 23 x 10 inches were fabricated utilizing Hercules AS 3501-5A graphite/epoxy material. (Figure 4) The three laminates were cured in a single autoclave run and NDI was performed on each panel to determine if any voids or flaws were present. No significant defects were evident from the C-scan or X-ray inspections. The resin content was measured to be 30.5% by weight. Fiberglass ($0^{G}/90^{0}$ #S* glass) tabs were bonded to the laminate grip sections prior to insertion into the 140⁰ drying oven. The drying oven was used to assure a minimum moisture content at the start of the test period.

Two of the test panels (1A and 1B) were removed from the oven and placed in the fuel tank test fixture with one side subjected to JP-4 fuel at a 20 psi pressure and the other side to the ambient environment. The third panel (1C) was used as a control specimen exposed to the ambient environment. This panel was mounted on a metal plate with drying desiccant placed between the composite laminate and the plate. Consequently, the outside surface was subjected to the humid atmosphere and the inside was kept dry. Therefore, one side of the test panels were all exposed to the ambient environment. As a result, any reduction found in tensile strength could be attributed to the fuel exposure. The fuel tank test fixture and the control panel were placed in a remote building for the six week test period. The humidity and temperature of the area were recurded each afternoon. The temperature recorded during the test pericd ranged from $24^{\circ}F$ to $76^{\circ}F$, and the humidity ranged from 49% to 100%.

The three panels were removed from the drying oven and weighed prior to the start of the test period and weighed again after removal from the test fixture at the end of the six week test period.

÷μ

The before and after test weights were:

4 A 4	Weight	(Grains)	
Specimen No.	Before	After	Change
IA (Fue! Soaked)	777.4	777.5	0.1 (.01%)
	780.0	780.4	0.4 (.05%)
18 (Fuel Soaked)		778.3	0.1 (.01%)
1C (Ambient Environment)	778.2	110.0	

Further evaluation of moisture content was made since the panels were so large and the weight change so small that the accuracy of the available scales was questionable. The ends were cut off each panel and weighed. They were placed in a drying oven at 140° F for 30 days, removed and weighed. The results were:

	Weight	(Grams)	
Specimen No.	Before	After	Change
IA	10.7263	10.6995	0.0268 (0.25%)
18	5.6273	5.6155	0.0188 (0.21%)
	13.6639	13.6290	0.0349 (0.26%)
10	13.0033		

The results show that all three specimens had approximately 0.25% decrease in weight. It is evident from the small weight change that the resistance of the composite epoxies to JP-4 fuel is very good.

Immediately following the removal from the test fixture and after weighing, the test panels were cut into tensile specimens (Figure 5). Great care was taken to assure that the test specimens were cut in the 0° ply direction. A diamond cutoff wheel was used to cut each panel into 20 tensile test specimens one inch wide and 10 inches long (1 x 10). Three of the tensile test specimens(Numbers 1, 10, and 19) from each panel were saved for cutting into short beam shear and flexural strength test specimens (Figures 6 and 7).

Seventeen of the tensile test specimens from each of the three panels were tested to failure at ambient temperature in an Instron test machine. The specimens were loaded at a crosshead speed of 0.05 inches per minute. The results of the tensile tests were inconclusive as to whether or not the JP-4 fuel degraded the graphite-epoxy matrix since the laminate had a fiber dominated failure. The strength at the initial failure load was calculated using a nominal area for the fiber controlled laminate of .063 in² (12 ply x 0.00525 in./ply). The average failure strengths were 103,238; 98,502 and 97,621 (psi) for panels 1A, 1B, and 1C respectively (Figure A-1 and Table A-1).

Interlaminar shear stresses were determined by the short beam shear (SBS) test which is used primarily as a laminate quality check method. The short beam shear test method normally uses unidirectional laminates with the fibers running parallel to the length of the specimen. Although the test laminates were not specifically tailored to the SBS tests, it was decided in this program to use them for comparison purposes only to investigate effects of fuel exposure. However, the data generated is not recommended to be used as structural allowable values. Six SBS test specimens were cut from each of the three laminates. The specimen has the dimensions of 0.250 inch wide and 0.700 inch long. The specimen configuration is shown in Figure 6.

The short beam shear test fixture untilized a 3-point load assembly. The specimen supports were adjusted to a span-to-depth according to the relationship:

 $\frac{S}{T} = 4$

where S = span, inch

T = specimen thickness, inch

Therefore, with a specimen nominal thickness of .063 inch, a span of .25 inch was used between the specimen supports. The tests were conducted with the Instron test machine crosshead speed of 0.05 inch per

minute. The short beam shear strength at failure was calculated according to the following equation:

 $\tau = \frac{3P}{4A}$ where τ = Short beam shear strength, psi

P = Total load at failure, lbs

A = Cross sectional area, in^2

The average shear strength of the two fuel soaked laminates, 1A and 1B, were 11,286 and 10,971 psi respectively and the control (ambient environment) laminate, 1C, was 11,425 psi (Figure A-2 and Table A-2).

Six flexural test specimens were p[•] pared from each of the three panels IA, IB, and IC. Flexural testing was performed principally for checking the laminate material quality rather than for establishing basic mechanical properties. This is a convenient method for checking laminate quality since it simultaneously applies tension, compression, and horizontal shear. The test specimen was a straight sided, rectangular cross section beam 3.0 inches long and 0.5 inch in width. The specimen configuration is shown in Figure 7.

Flexural testing was conducted using a four-point loading method with the specimen support span of 2.0 inches. Each specimen was loaded to failure in an Instron test machine at a crosshead speed of 0.05 inch per minute. The ultimate flexural strength was calculated by the following equation:

$$\sigma = \frac{3PL}{4bt^2}$$

where:

 τ = stress in outer fiber at failure, psi

P = maximum load carried by the specimen, lbs

L = major span, inch

b = width of specimen, inch

t = thickness of specimen, inch

Comparison of the flexural strengths of the three panels shows very little difference in the values. The ambient environment exposed specimen, 1C, flexural strengths average value was 165,438 psi. The `wo fuel-soaked specimen strengths were 166,730 pci (1A) and 164,441 psi (1B) (Figure A-3 and Table A-3).

2. TEST NO. 2

1-

It was evident from the first test phase that the failure of the specimen was fiber controlled and the effects of JP-4 fuel on the matrix could not be determined with any reliability. It was decided that the next test should utilize a $\pm 45^{\circ}$ laminate schedule so the failure would be matrix rather than fiber controlled.

For the second test phase, the fuel tank pressure was increased to 40 psi and the test duration increased to six months in an attempt to force the fuel through the composite matrix. Analysis of $a \pm 45^{\circ}$ stacking sequence indicated that a 16 ply laminate would be required to prevent excessive deflection when exposed to the 40 psi test pressure. Also, four panel specimens were fabricated utilizing Hercules AS 3501-5A graphite-epoxy material rather than three used during the first test. The extra panel was used as a control panel and was placed in a 140°F drying oven for the duration of the test. The four panels were cured in a single autoclave run and NDI was performed on each panel to determine if any voids or flaws were present. No defects were evident from the C-scan and X-ray inspections. The resin content was measured to be 31% by weight. Fiberglass tabs were bonded to the grip sections prior to inserting the four panels in the 140°F drying oven. The drying oven was used to assure a minimum moisture content at the start of the test period.

Two of the test panels (2A and 2B) were removed from the oven and placed in the fuel tank test fixture with inside subjected to JP-4 fuel at a 40 psi pressure and the outside to the atmosphere. The third panel (2C) was used as a control specimen exposed to the ambient environment. This panel was mounted on a metal plate with drying desiccant placed

between the composite laminate and the plate. This resulted in the outside surface being subjected to the atmosphere and the inside surface staying dry. The fourth panel (2D) remained in the $140^{\circ}F$ drying oven for the six month test period. The outside air temperature at the test site ranged from $51^{\circ}F$ to $92^{\circ}F$ and the humidity ranged from 39% to 100% during the test period.

The four panels were removed from the drying oven and weighed prior to start of the test period. They were once again weighed after the six month test period. The before and after test weights were:

	Weight	(Grams)	•
Specimen No.	Before	After	Change
2A (Fuel Soaked)	901.1	902.9	+1.8 (.20%)
2B (Fuel Soaked)	895.6	897.0	+1.4 (.16%)
2C (Ambient Environment)	901.9	902.0	+0.1 (.01%)
2D (Oven Control)	898.3	897.6	-0.7 (08%)

The weight change data is questionable since it is improbable that the available scales could accurately measure the small change in the panel weights. It does indicate that the composite matrix never absorbed an exorbitant quantity of fuel.

The four test panels were each cut into 20 tensile test specimens of on inch width and ten inches in length. As in the first test, great care was taken to assure that the specimens were cut in the 0° direction. Three of the cut specimens from each panel (numbers 2, 10, and 18) were saved for use as flexural strength and short beam shear test specimens (Figures 6 and 7).

Sixty-eight tensile test specimens, 17 from each panel, were tested to failure at ambient temperature in an Instron test machine. Prior to testing, each specimen was measured for thickness and width in three places for determining specimen area. The failure stress of each

specimen was calculated using the average area and failure load. A mean stress, standard deviation, and coefficient of variation were calculated for the 17 specimens. The standard deviation for all data sets was less than one percent of the mean stress except the oven control panel, which was 1.17 percent. The mean failure strengths from the four panels shows a very small difference in value. The oven-dried control panel specimen strengths were slightly higher than the fuel-scaked and ambient-environment exposed panel specimens, which were essentially the same. The mean failure strength for the oven control panel specimens was 27,421 psi. The failure strength for the two fuel-exposed panel specimens and the exposed ambient environment panel specimens were 26,964 psi, 26,944 psi, and 26,982 psi respectively (Figure A-1 and Table A-4).

Interlaminar shear stresses were determined by the short beam shear (SBS) test as was described in Test No. 1. This test utilized specimen numbers 2, 10, and 13 of each panel for preparing SBS specimens (Figure 6). Three SBS coupons were cut from each specimen. The SBS test used a 3-point load assembly with supports adjusted to a span-to-depth ratio of four. A span of approximately 0.35 inch between the specimen supports was used for the 16 ply SBS specimen, which had a nominal thickness of 0.084 inch.

The results of the short beam shear tests, in which nine specimens from each panel were tested to failure, show that the ambient environment exposed panel (2C) had the greatest shear strength, whereas, the two fuel soaked panels (2A and 2B) had essentially the same shear strength as the oven control panel (2D). The mean shear strengths of the two fuel exposed panel specimens were 11,867 and 11,558 psi; the oven control panel had a strength of 11,868 psi and the ambient environment exposed panel shear strength was 12,415 psi (Figure A-2 and Table A-5).

The flexural test specimens were prepared from specimen numbers 2, 10, and 18 from each of the four panels (2A, 2B, 2C, and 2D) (Figure 7). The testing and flexural strength calculations were rerformed as in Test No. 1. The fuel-exposed specimens had average flexural strengths of

AF HAL - TR-83-3085

45,161 ps1 and 44,834 ps1 and the ambient-environment-exposed and oven dried specimens average flexural strengths were 46,432 ps1 and 46,140 ps1 respectively (Figure 10 and Table 6).

3. TEST NO. 3

The third test phase consisted of the same type material, Hercules AS 3501-5A, and laminate schedule, $\pm 45^{\circ}$, as Test No. 2 with some variations in procedures. Since very little change was evident in Test No. 2 of the fuel-soaked and ambient-environment-exposed panels, it was decided to (1) determine the effects of sump water on the graphite-epoxy material; (2) instrument some of the tensile test specimens; (3) perform only tensile tests; and (4) fabricate two extra panels and test them prior to the start of the fuel soak tests.

For the third test, a 16 ply composite laminate with a stacking sequence of $(\pm 45^{\circ})_{45}$ was selected to be evaluated at a fuel tank pressure of 40 psi for a six month duration. Also, six panels were fabricated rather than the four used during the second test. The two extra panels were dried in an oven for four weeks at 140° F and tensile tested prior to the start of the fuel soak test to determine if the tensile properties had a significant change during the test period. The six panels were cured in a single autoclave run and NDI was performed on each panel to determine if any voids or flaws were present. No significant defects were evident from the C-scan and X-ray inspections. The resin content was measured to be 28.8% by weight. The panels were placed in a 140°F drying oven to assure a minimum moisture content at the start of the test period.

Two test panels (3A and 3B) were removed from the oven, weighed, and placed in a fuel tank test fixture. The third panel (3C) was used as a control specimen exposed to the ambient environment. The fourth panel (4D) remained in the drying oven for the six month test period. The fifth and sixth panels (4E and 4F) were cut into 20 tensile test specimens each. The tensile test specimens, numbers 2, 10, and 18 were instrumented on both sides with high elongation strain gages. Tensile tests were conducted on the 40 test specimens.

1

The fuel tank test fixture was filled with JP-4 field of 20104 2000 water. The artificial sump water was prepared by General Cynonics, Cert Worth Division, from the formula given in the Materials Laboratory Technical Report entitled. "Clastomers for Fuel Systems Containing Micro-Organisms-Centrolling Additives". (Reference 7 and Lable Add), the wrificial fuel tank sump water would not readily blend with the ode; fuel. The solution had to be mixed in a sonic vibrator. The 34 solution of sump water and JP-4 fuel was placed in the test fixture and tank was pressurized to 40 psi for the six month test period. The outside air temperature of the test site ranged from 46°F to 37°F and, the humidity ranged from 43% to 32% during the test period.

The four panels were removed from their test area after six coulds and weighed. The before and after test weights were:

	Weight	(Gr 9005)	
toorimon NO.	ilefore	After	Chi :
Spectmen No. 3A (Fue) Soaked)	853.7	855.6	2.1 (0.033)
	850.4	852.4	>.0 (0.23%)
3B (Fuel Soaked)	852.5	854.1	1.6 (0.144)
3C (Ambient Environment)		851.1	-0.3 (0.053)
30 (Oven Control)	851.4	031.1	

The weight change data is questionable since it is imprchable that the available scales could accurately measure the small change in the panel weights. It does indicate that the composite matrix never absorbed an exorbitant quantity of fuel.

A total of 120 tensile specimens were tested to failure in lest No. 3. Twenty specimens were prepared from each panel. Three test specimens from each panel were instrumented with strain gages and the data plotted in Figure A-4. A mean stress, standard deviation, and coefficient of variation were calculated for each set of data. Just standard deviation for all data sets was less than two precent of the mean stress with the oven control data having the largest coefficient of variation, which was 1.76. The results show that the fuel-surp water

exposed specimens mean strengths had a decrease in value when compared to the other laminates. The fuel-sump water soaked panels mean failure strengths were 25,176 psi and 25,308 psi. The ambient environment exposed panel and the oven control panel mean strengths were 26,129 psi and 27,568 psi respectively. The mean tensile strengths of the two new panels, which were tested prior to the six month test period, were 26,829 psi and 27,039 psi (Figure A-1 and Table A-7).

SECTION VII

CONCLUSIONS AND RECOMMENDATIONS

The objective of this program was to determine if graphite-epoxy composite material properties could be degraded by exposing the laminate to pressurized JP-4 fuel. The study dealt primarily with the tensile testing of fuel and ambient environment exposed laminates and oven dried laminates to determine relative strength values. Also, a test condition was set up to evaluate the effects of fuel tank sump water on the composite properties. The conclusions from this effort were:

1. Composite laminates will not absorb a significant amount of JP-4 fuel, after exposure to JP-4 fuel at a 40 psi pressure for six months.

2. The results of Test No. 1 show no degradation of the laminate strength due possibly to having fiber dominated failures rather than matrix controlled failures. The mean tensile strength of the fuel soaked laminates was actually greater than that of the ambient environment exposed laminates. The short beam shear and flexural strength average results were essentially the same for all laminates.

3a. The test results of Test No. 2 show no significant degradation in the strength of the test laminates. The tensile strength results show that the fuel exposed and ambient environment exposed laminates had the same average strength. The oven control panel had a slightly higher average failure strength than the other specimens although it was still within 2%.

b. The short beam shear test results show the ambient environment exposed laminate had a shear strength higher than the fuel exposed and oven dried laminates. Short beam shear strengths of the fuel exposed and oven dried laminates were essentially the same.

c. The flexural strength of the ambient environment exposed and oven control specimens was approximately 4% greater than the fuel soaked flexural strength values. No conclusions can be made from this test due to the small sample size and the large deviation in failure loads.

· · · · ·

4. Test No. 3 data shows that the fuel plus artificial sump water mixture reduces the strength of the composite materials. The fuel-sump water soaked tensile failure loads are consistenly lower than the other laminate failure loads, as shown in Figure 11. The mean failure load of the new material test specimens was 2176 lbs. The mean failure load of the fuel-sump water test specimens was 2060 lbs.

5. This study has shown that there is little or no degradation of composite material properties due to JP-4 fuel. The undamaged composite matrices used in this investigation were very resistant to JP-4 fuel. It is apparent from this study that further investigations are required to determine if fuel sump water has a significantly detrimental effect on composite material properties.

The following recommendations are made to further investigate the compatibility of composite fuel tanks with fuel and sump water:

1. Investigations should be conducted on matrix damaged composite fuel tanks since the resistance of the composites to JP-4 fuel depends largely on undamaged resins.

2. Additional studies should be made to determine if fuel tank sump water significantly reduces composite material properties beyond the normal reduction due to moisture absorption.

APPENDIX TEST DATA

25

ł

1. UN
RESULTS-TEST
1011
TISVIL
TABLE A-1

TENSILE SPECIMEN NO	PANE	L 1A SOAKED)	FUEL SOAK PAVEL 1B	PANEL 1B (FUEL SOAKED)	FANEL IC (AMBIENT ENVIR	FANEL 1C (AMBIENT ENVIRONMENT)
.00	FAILURE LOAD	STRESS	FAILURE	STRESS	FAILURE	STRESS
	(TB)	(ISd)	(TB)	(PSI)	LUAD (LB)	(ISI)
2	6280	99683	5880	93333	5580	88571
ů	7105	112778	9400	101587	5100	80952
4	6702	106380	5810	92222	6390	101429
ß	6902	109556	7170	113810	6200	98413
Ś	6804	108000	7040	111746	6325	100397
7	2900	93650	7050	111905	6320	100317
8	6650	105556	5480	86984	6330	100476
6	6670	105873	6000	95238	6310	100159
11	6360	100952	6003	95286	6510	103333
12	6103	96873	2990	95079	6880	109206
13	7002	111143	5850	92857	6910	109683
14	6650	105556	6220	98730	6000	95238
15	6680	106032	5790	91905	5500	87302
16	5780	91746	6710	106508	5802	92095
17	6650	105556	2029	106391	5860	93016
18	6200	98413	5800	92063	6200	98413
20	6150	97619	5601	88905	6330	100476
Mean:	6504	103238	6205	98502	6149	97612
Standard I	Standard Deviation 383	6085	537	8535	469	7454
Coef. of V	Varation 5.89	5.89	8 · bb	8.66	7.63	7.63
Note: Non	Nominal 12 ply Thick	.ckness = 0.063 in			•	

Ч
NO.
RESULTS-TEST
TEST
SHEAR
BEAM
SHORT
TABLE A-2

ŝ	SHEAR SPECIMEN NO.	-	PANEL 1A (FUEL SOAKED)			PANEL 1B (FUEL SOAKED)		(AMB)	PANEL IC (AMBIENT ENVIRONMENT)	MENT)
	AREA (IN ²)	ЕА 1 ²)	FAILURE LOAD (LB)	SHEAR STRENGTH (PSI)	AREA (IN ²)	FAILURE LOAD (LB)	SHEAR STRENGTH (PSI)	area (1N ²)	FAILURE LOAD (LB)	SHEAR STREMGTH (PSI)
	1 0.0	0.0173	250	10838	0.0174	266	11466	0.0172	244	10640
	2 0.0	0.0173	292	12659	0.0181	267	11063	0.0174	289	12457
	3 0.0	0.0172	260	11337	0.0181	235	9738	0.0173	275	11922
	4 0.0	0.0175	270	11571	0.0177	286	12119	0.0177	294	12458
	5 0.0	0.0171	242	10614	0.0179	255	10684	0.0177	263	11144
	6 0.0	0.0169	241	10695	0.0175	251	10757	0.0173	229	9928
ž	Mean: 0.0172	172	259	11286	0.0177	260	10971	0.0174	266	11425
S A	Stand. Dev.: 0.0002	2000	19.5	770.7.	0.0003	17.3	802.5	0.0002	25.5	1031
ບໍລິ	Coef. of Var. :			6.83			7.31			9.02

____/

R-83-3086											
	FLEXURAL STRENGTH (PSI)	164791	176156	165391	165824	153186	167277	165438	7334	4.43	
VT.)	LOAD (LB)	261	279	263	269	238	266	262	13.6		
PANEL 1C (AMBIENT ENVIRONMENT)	(NI) Hlaim	0.499	0.499	0.501	0.505	0.504	0.501				
PAN (AMBIENT	THICK- NESS (IN)	0.069	0,069	0.069	0.069	ŋ.n68	0.069				
	FLEXURAL STRENGTH (PSI)	162857	165209	166.020	163359	173449	153749	164441	6355	. 3.86	
	LOAD (LB)	266	272	264	264	285	244	266	13.3		
PANEL 18 (FUEL SOAKED)	HTCIW (NI)	0.500	0.504	0.501	n.503	0.503	0.500				
PAN (FUEI	THICK- NESS (IN)	0.070	U.97A	0.069	0.069	010.0	0.069				
	FLEXURAL STRENGTH (PSI)	157404	172077	171716	159731	171586	167865	166730	6546	3.92	·
	LOAD (LB)	236	258	259	254	265	268	257	11.3		
PANEL 1A (FUEL SOAKED)	(NI)	0.501	0.504	0.504	0.501	0.501	0.503				
	THICK- NESS (1N)	0.067	0.067	0.067	690-0	0.068	0.069		Stand. Dev. :	Coef. of Var.	
FLEXURAL SPECIMEN NO.			ہ 32	ຕ 2	4	ŝ	•	Mean:	Stand	Coef.	

s,

TABLE A-3 FLEXURAL STRENGTH TEST RESULTS-TEST NO. 1

•

1.36.22

263.026 · (

AFWAL-TR-83-3086

TENSILE SPECIMEN NO.		PANEL 2A (FUEL SOAKED)	(G	(F	PANEL 2B (FUEL SOAKED)	(f	(AMBIE	PANEL 2C (AMBIENT ENVIRONMENT)	NMENT)	۸٥)	PANEL 2D (OVEN CONTROL)	()
	AREA	FAILURE	STRESS	AREA	FAILURE	STRESS	AREA	FAILURE	STRESS	AREA	FAILURE	STRESS
	('IN ²)	(LB)	(ISI)	(IN ²)	(LB)	(FSI)	(1N ²)	(LB)	(PSI)	(1 ²)	(LB)	(ISI)
-	.0%69	2390	27503	.0868	2374	27350	.0337	2267	27085	.0363	2381	27431
<u>م</u> ،	.0862	2360	27378	.0873	2368	27125	.0874	2326	26613	.0877	2387	27218
4 u	.087]	2345	26923	.0875	2364	27017	.0878	2370	26993	.0879	2417	27,97
<u> </u>	.080.	C182	26/94	.0372	2346	26904	.0876	2374	27100	.0378	2420	27553
2	.0890	2373	26663	.0877	1002	26926	.0871	2 363 2 360	901/2	0/80.	2409	27699
8	.0882	2377	26950	.0875	2352	26880	.0871	2379	27313	.0893	2438	27301
6	.0873	2358	27010	.0870	2333	26816	.0882	2389	27086	.0882	2425	27494
11 :	.0373	2328	26667	.0873	2344	26850	.0879	2384	27121	.0877	2439	27511
12	.0873	2335	26747	.0872	2346	26904	.0878	2368	26970	.0877	2435	27765
ст -	.0875	2325	26571	.0880	2338	26568	.0389	2380	26772	.0888	2397	26993
14	.0870	2354	27057	.0877	2375	27081	.0875	2357	26937	.0892	2410	27018
다 ;	.0874	2342	26796	.0885	2364	26712	.0880	2357	26734	.0879	2416	27486
9;	.0868	2364	27235	.0831	2348	26652	.0886	2342	26433	.0882	43	27551
1/	.0868	2329	26832	.0870	2348	2699R	.0875	2342	26766	.0375	2420	76
L9	s i	2338	12	.0870	2349	27000	.0858	2360	27506	.0868	2397	
07	cc8u.	2325	27193	.0852	2332	27371	.0871	2348	26953	.0887	2355	26550
Mean	.0872	2350	26964	.0873	2353	26944	.0885	2357	26982	6280°	2412	27421
Stand. Dev.	. 00083	23.09	259.9	.00071	13.29	212.3	.0035	28.58	256.2	.0007	27,76	1. 665
												4 - 1 -
Coef.	Coef. of Var.		0.964			0.788			0.949			1.17
			-									

TABLE A-4 TENSILE LEST ABSULIS-TEST NO. 2

AFWAL-TR-83-3086

33

1

. بەرۇر

•

STELLARY STELLARY NO.	r I	PANEL 2A (TUEL SOAKED)	(QI	(F	PAKEL 28 (FUEL SCAVEL	H	(AMBIE	PANEL 20 (AMBIENT ENVIRONMENT)	(TVBPAC)	(cv	PANEL 20 (OVEN CONTROL)	
	ABEA (1N ²)	FAILURE LOAD (LB)	SHEAR STRENGTH (PSI)	AREA (13 ²)	FAILURE LUAD (LB)	SHEAR STRENGTH (FGI)	AREA (13 ²)	FAILURE LOAD (LB)	SHEAR STRENGTH (PSI)	AREA (13 ²)	FAILURE LOAD (L3)	SHE UR STRENGTH (PST)
	.0222	352	11867	.0232	353	11418	.0223	126	12473	.0229	<u> 1</u> 94	12930
2	.0234	352	11274	.0227	36.8	12171	.0225	361	12053	1220.	350	10337
•	.0226	377	12514	.0227	351	11576	.0218	329	11325	.0233	349	11223
.9	- 0236	358	11393	.0246	366	11159	.0218	381	13090	.0236	367	11679
Ś	.0225	364	12137	.0233	366	11798	-0219	361	12360	1520.	332	11422
9	.0226	360	11964	-0234	351	11267	.0217	334	11532	. 0234	367	11775
•	.0225	376	12391	.0222	143	11576	.0216	382	13256	.0217	367	12671
40	. 5223	353	11872	.0238	352	11105	.0213	390	13696	.0225	373	12449
6	-0230	349	11383	.0228	363	11953	.0216	77E	11950	.0226	355	11775
Yean	.0228	360	11867	-0232	357		-0218		12415	1620.	367	11868
Stand Dev.	. 000	3.4	148.2	.0007	90 90	363.7	•000	21.8	800.4	0100-	14.7	683.7
Coef. of Var.	of Var.		3.74			3.14			6.44			5.76
							-					

TADLE A-3 SHORT BEAM SHEAR TEST RESULTS-TEST NO.

AFWAL - TR- 83- 3086

FLEXURAL SPECIMEN NO.		PANEL 2A (FUEL SOAKED)	, 2A SOAKED)			PANEL 2 B (Fuel Soak	PANEL 28 (fuel soaked)	•
	THICK-	HLDIM	TOAL	FLEXURAL STRENGTH	THICK- NESS	HIGIM	TOAD	FLEXURAL STRENGTH
	(NI)	(NI)	(TB)	(IS4)	(NI)	(NI)	. (LB)	(JSJ)
1	.0870	.5017	115	45426	.0863	.5004	109	43871
3	.0864	.5023	113	45204	.0863	. 5006	111	44658
3	.0863	.5029	112	44955	.0862	.5006	114	45972
Mean	.0866	.5023	113	45161	.0863	.5005	111	44834
Stand Dev.	.0004	.0006	1.5	288	1000.	1000.	1.5	613
Coef. of Var.				.637				2.36
FLEXURAL SPECIMEN WO		PANEL 2C (AMBIENT ENVIR	PANEL 2C AMBIENT ENVIRONMENT)			PANE (OVEN C	PANEL 2D (OVEN CONTROL)	
	THICK-	HLCIM	TOAD	FLEXURAL	THICK- NFSS	HIGIM	LOAD	FLEXURAL
	(NI)	(NI)	(TB)	(ISA)	(NI)	(NI)	(13)	(ISd)
1	.0869	.5006	120	47615	.0873	.5011	115	45169
NM	.0881	.5007	120	45363 45363	.0871	. 5004	123	47810
Mean	.0874	. 5005	118	46432	.0874	.5007	117	46140
Stand Dev.	.0006	.000	2.9	1130	.0004	,000	4.6	1452.8
Coef. of Var.				5.43	•			3.14

TABLE A-6 FLEXURAL STRENGTH TEST RESULTS-TEST NO. 2

35

AFWAL - TR-83-3086

						C . W 10-			
TENSILE SPECIMEN NO.	(F	PANEL 3A (FUEL/SUMP WATER)	TER.)	E	PANEL 3B (FUEL/SUMP WATER)	rer)	(AMB	PANEL 3C (AMBIENT ENVIRONMENT)	MENT)
	AREA	FAILURE	STRESS	AREA	FAILURE	STRESS	AREA	FAILURE	STRESS
	(1N ²)	(LB)	(ISI)	(1N ²)	LOAD (LB)	(ISI)	(1N ²)	LOAD (LL)	(ISI)
+ 7 1-	.0822	2080	25304	.0808	2080	25743	.080	2140	26452
2 N (*	4780 ·	2024	24563	.0815	2067	25362	.0808	2117	26200
° 4	.0874	2000	26062	.0819	2070	25275	.0830	2140	25783
Ś	.0830	2070	24939	.0832	2080	25000	.0820	2140	26098
9	.0817	2075	25398	.0852	5906	24940	1080.	2140	26717
7	.0805	2075	25/76	.0801	2050	2423/	2680.	2140	25721
80	.0817	2060	25214	.0802	2050	25561	0100.	2150	26103
6.	.0809	2050	25340	.0802	2040	25436	0814	2150	C4407
* 0T	.0809	2044	25266	.0802	2028	25287	.0828	2115	25563
11	1180.	2055	25339	.0811	2050	25277	.0828	2150	25966
71	1780.	2070	25213	.0808	2050	25371	.0821	2165	26370
	2700.	2020	25061	.0811	2060	25401	.0819	2145	26190
- 1 -	6160	20/02	25306	.0810	2065	25494	.0826	2140	25908
16	1100.	20/02	25398	.0823	2065	25091	.0822	2150	26156
17	.0822	0506	40TC7	. 0804	2070	25746	.0809	2150	26576
18 *	.0811	6706	24737	. 0830	2090	25181	.0830	2150	25903
19	.0819	0706	16162	6 180.	2079	25571	.0828	2117	25568
20	.0812	0107	24700	6780.	2070	24570	.0312	2120	26188
	7700.	0407	67767	Z18n.	2080	25616	.0805	2115	26273
Mean	.0817	2057	25176	.0816	2064	25308	.03177	2138	26129
Stand Dev.	.0006	14.9	248	.0013	15.3	349	6000	1 5 5	766
Coef. of Var	ar.		0.986			1.38			1_74
									r

-

TABLE A-7 TENSILE TEST RESULTS-TEST NO. 3

36

-

* - Strain Gaged Specimens

AFWAL-TR-83-3086

NO.
RESULTS-TEST
TEST
TENSILE
t)
TABLEA-7(Con'

TENSILE SPECIMEN NO.		PANEL 3D (OVEN CONTROL)			PANEL 3E (NEW)			PANEL 3F (NEW)	
	AREA	FAILURE LOAD	STRESS	AREA	FATLURE	STRESS	AREA	FAILURE	STRESS
	(1N ²)	(TB)	(PSI)	(IN ²)	(LB)	(PSI)	(IN ²)	(LB)	(ISI)
• ا	.0825	2220	26909	.0810	2125	26235	.0808	- 2165	26795
K K	.0814	2217	27232	.0812	2135	26293	.0809	2112	26106
n 4	0180.	2200 2180	27160 26618	.0811	2200 2206	27127	.0808	2160	26733
ŝ	.0821	2200	26797	.0807	2200	20303	0800	2190	26904
Q	.0809	2190	27071	.0810	2195	27099	.0812	2180	26847
~ 0	.0814	2180	26781	.0807	2220	27509	.0802	2200	27431
χc	.0806	2250	27915	.0812	2175	26736	.0811	2195	27065
	.0804	2240	27861	.0805	2175	27019	.0310	2195	27099
K DT	.0802	2217	27643	.0818	2090	25550	.0800	2120	26500
11	0080.	2230	27875	.0812	2150	26479	.0806	2185	27109
7 1	0000.	2230	27875	.0800	2165	27163	.0806	2200	27295
13	•080•	2250	27916	.0813	2190	26937	.0802	2200	27431
14	-0804	2250	27985	.0816	2200	26961	.0801	2205	27528
CT 22	.0802	2260	28180	.0816	2195	26900	.0816	2200	26961
	.1813	2260	27798	.0816	2130	26715	.0808	2205	27290
+ 01	1180.	2250	27743	.0814	2200	27027	.0792	2190	27652
	0080	2248	28100	.0808	2149	26597	.0797	2119	26587
20	C000.	2250	28020	.0807	2190	27138	.0803	2190	27273
		00733	0/0/7	0000	C017	26/92	.0802	2180	27182
Mean	.0809	2228	27568	.0811	2172	26829	.0805	7716	07030
Stand Dev.	.000	27.0	484	.0004	38.1	437	9000	31 7	378
Coef. of V	Var.		1 76		5 5 5				
			0/.1			1.63			1.40
* - Strain Gaged		Specimens							

TABLE A-8 ARTIFICIAL FUEL TANK SUMP WATER (Reference 7)

COMPOSITION	Z BY WEIGHT	METAL	CHLORIDE
		(HAA)	(MAA)
cac1 ₂	0.005	18	32
cdc12	0.100	490	310
MgC1 ₂	0.005	9	18
NaCl	0.010	20	30
ZnC12	0.001	4.7	5.2
CrCl ₃ .6H ₂ 0	1000.0	0.2	0.3
cuc12.2H20	T000.0	0.4	0.4
rec1 ₃	0.0005	1.7	3.3
MnC12.4H20	0.0005	1.4	1.8
N1C12.6H20	1000.0	0.2	0.3
PbG12	0.0001	0.7	0.3
		543.3	9.104

AFWAL-TR-83-3086

Adjust to PH = 4.5 Using HNO₃

REFERENCES

- 1. I. G. Hedrick, J. B. Whiteside, "Effects of Environment on Advanced Composites Structures" presented at the AIAA Conference on Aircraft Composites, San Diego, CA, March 1977.
- N. C. W. Judd, et al., "The Effects of Aviation Fluids on Carbon/Epoxy Composite Panels", <u>SAMPLE Journal</u>, May/June 1977.
- 3. L. G. Kelly, Unpublished paper, "Environmental Effects on Composites", Materials Laboratory, WPAFB, OH, 1970.
- C. L. Hendricks, "A Study of the Effects of Long-Term Exposure to Fuels and Fluids on the Behavior of Advanced Composite Materials", NASA Report D-6-41185-6, Sept 1977.
- 5. C. D. Shirrell, "Diffusion of Water Vapor in Graphite/Epoxy Composites", SESA Conference, Philadelphia, Pa, Oct 1977.
- 6. MIL-Handbook-5-C, 15 Sept 1976.
- C. W. Cooper, et al., "Elastomers for Fuel Systems Containing Microorganism-Control" j Additives" <u>AFML TDK-63-4195</u>, Part II, Jan 1965.
- 8. R. S. Sandhu, I. S. Rai, "Finite Element Analysis of Anisotropic Plates Using Q-19 Element", <u>AFFDL-TR-74-12C</u>, Part II, Oct 1974.
- 9. D. L. Reed, <u>SQ5-Point Stress Laminate Analysis</u>, FZM-5494, AF Contract F33615-69-C-1494, General Dynamics, Fort Worth Division, April 1970.