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Oblective of Research Effort

Among the problems encountered in attempting to analyze data from

actual experiments are (1) a significant portion of the data points often

fall below the instrument detection thresholds and (2) insufficient data

are available to form the population size necessary to validate

conclusions reached by standard statistical techniques. Versar addressed

these deficiencies via this research effort to provide the Air Force with

better techniques to evaluate experiments yielding data thus characterized.

When measuring environmental phenomena, the measuring devices/

procedures used are often unable to detect low concentrations. Thus.

concentrations below certain threshold levels are not measurable.

Standard "detection limits" are set by various agencies for various

phenomena for various types of measuring devices. Measured values below

these limits are reported as "below detection limit" and are thus not

available for statistical analysis. (Sometimes values below these limits

are available, but their accuracy is greatly in doubt.) Consequently, the

statistician often has a very basic problem facing him: how does he

analyze data sets which contain a reasonable percentage of "below

detection limit" entries? This problem is exacerbated by the usual

problem of small sample size. As an example, support we have taken eight

samples of air near a chemical warehouse in order to see if there are

leaks. Concentrations below 0.7 parts per billion, say, are below the

reliability of the measurement procedure. Of the eight samples. suppose

five are below the detection limit while the other three are measured to

have concentrations of 1. 2. and 5 parts per billion. How do we find the

average concentration?

The dual problems of small sample size and sub-detection limit data

can often be encountered by statisticians working on Air Force problems.

Examples are:

o The determination of the "hardening" characteristics of AWACS and
other Air Force systems against nuclear explosions. The tests to
simulate segments of a nuclear environment are expensive and
provide relatively few data points in small portions of the
radiation spectrum. A significant portion of these data could be
"real," but could be below the detection limits of the
instrumentation used. ' !.' 1.1: '' F T fAY32TTIFIC RESX J, ,.H ' " :.
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o The determination of the effects of Chemical, Biological, and
Radiation (CBR) warfare agents against Air Force systems and

*O personnel. Again, due to the nature and costs of tests, data
* would be relatively sparse. Much of these data, particularly
*those representing "leakage" and other unintentioned side-effects,

could be below detection Instrument thresholds, but would be
useful in evaluating the agent effects, particularly in the regime
of low dosages over a long exposure period. The CBR requirement

* will undoubtedly receive more emphasis after the President's
recent announcement to resume the development of these agents.

u The exposure of Air Force personnel to fumes released by fueling
operations. Some fuels contain trace amounts of toxic substances
(indications exist that synthetic fuels, which may receive

* increasing Air Force use, contain larger concentrations of such
substances than do conventional fuels). The exposure
concentrations, and their effects over time, to persons
continually involved in refueling operations need to be further
assessed. Many of these concentrations are frequently below
detection equipment threshold.

We studied the problem of "below detection limit" data coupled with

small size both theoretically and via computer simulations. We suppose

that we are given N data points, p of which are "below detection limit" L

and N-p of which have reported values larger than L. We suppose that theS
distribution for the underlying stochastic process Is known to belong to a

fixed family of distributions depending on an unknown parameter e. We

wish to estimate 0. Among the techniques we used were maximum

likelihood techniques, order statistic techniques, truncation techniques.

and fill-in with constants or expected values procedures.

I
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significant Findings of Research Effort

0 lThe findings of our research effort are embodied in three manuscripts:

1. Estimation of the mean for small data sets of left-censored
exponential data (Appendix A).

lie 2. Estimation of the normal population parameters by order statistics
given a singly censored Type I sample (Appendix B).

3. Estimation of the parameters for small data sets of left censored
normal and lognormal data (Appendix C).

In the first, we investigated exponential data characterized by the

dual problems of small sample size with several values reported as

"smaller than the limit L." We proposed several estimators for the mean.

In particular. we investigated:
4l

* 1. maximum likelihood estimator (HLE)

2. modified MLE, which removes the conditioning of the RLE due to
knowledge of p, the number of censored points

3. best linear invariant estimator

3. best linear unbiased estimator

5. fill-in with constants

6. modified fill-in with constants. which removes the conditioning
on p

7. fill-in with expected values, which is equivalent to the MLE

8. truncation.

To evaluate the performance of these procedures we performed a simulation.

Selecting (by scaling) L=l, we tested 0-1/3, 2/3, 1. 2. 3, and 5 for

sample sizes N-5, 10. and 15. Using 20,000 data sets for each of the 18

cases, we found that the truncation method was the best while the modified

HLE was a close second. Here we used the square error as our criterion

for selecting techniques.

The second manuscript deals with estimating the parameters of the

censored normal distribution via order statistic techniques. Data from a

censored normal has been analyzed many times before using order



statistics. However, all these previous studies used Type 1I censoring:

0 the p smallest observations are missing where p is fixed a priori. Type I

censored data (observations below a fixed value are missing) are usually

analyzed by Type II methods. We provide Type I estimators: however, the

algorithms fall to converge often enough to make the method practical.

The third manuscript deals with estimating the parameters of the

censored normal distribution by other than order statistic techniques. In

particular we investigated:

1. maximum likelihood estimator (MLE)

2. modified MLE, which removes the conditioning on p

3. fill-in with constants

4. modified fill-in with constants, which removes the conditioning
on p

5. fill-in with expected values of the missing data

6. modified fill-in with expected values, which removes the
conditioning on p

7. truncation.

To evaluate the performance of these procedures. we performed a simulation.

Selecting (by scaling) L=, we tested

V-0.61, o=.2, .3

V-1.00, *-.1, .2. .3

V-1.33. o-.2, .3

for sample sizes N-5, 10, and 15. Using 50,000 data sets for each of the

21 cases, we found that the modified fill-in with expected values was the

best while the fill-in with expected values was only marginally worse.

The former had smaller bias but larger variance leading to a slight

improvement (in general) of the total squared error.
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Written Manuscriots

The three manuscripts mentioned above will be submitted to

appropriate journals for review and possible publications.

Presentation of Results

* We presented the results of this research at the following meetings:

1. Operations Research Society of America, spring 1983 national
meeting In Chicago. "Small sample, below detection limit
exponential data"

* 2. Operations Research Society of America. fall 1983 national

meeting in Orlando. "Normal data and detection limits."

We provided copies of our manuscripts to several individuals including:

1. Dr. John Beauchamp, Oak Ridge National Laboratory, Tennessee

2. Dr. David Payton. Air Force Weapons Laboratory, Kirtland AFB.
New Mexico.

We discussed the material of this study informally with participants in

the workshop on reliability held at the University of North Carolina -

Charlotte in June 1983.
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APPENDIX A

ESTIMATION OF THE MEANJ FOR SMALL DATA SETS OF

LEFT CENSORED EXPONENTIAL DATA

Alan Gleit*
Versar Inc.
6850 Versar Center
P. 0. Box 1549
Springfield, Virginia 22151

0 * This work was sponsored by the Air Force office of Scientific Research
under contract F49620-82-C-0079.



ABSTRACT

We study exponential data characterized by the dual problem. of

small sample size with several values reported as "smaller than the limit

L." In particular, we propose several estimators and report the results

of a simulation.

Key words: Below detection limit; Reliability



INTRODUCTION

In reliability theory, the exponential distribution plays an

important role. It usually leads to simple formulas for the quantities

of interest. In this way it may provide a "first approximation" to the

real-life situation. Indeed, quite often it leads to useful bounds for

these quantities. So an investigation of a problem in reliability theory

may begin with a discussion of the exponential distribution.

We have in mind the problem of estimating mean shelf-life for objects

placed in inventory. Often, to decide whether the object is still operable

(or edible or . . .), an expensive or destructive or time-consuming test

need be performed. Hence, the number of objects for our experiment is

small and so asymptotic or large-sample-size results are inapplicable.

Further, since testing requires money and time, one usually does not

continuously monitor for failures from the moment that the objects are

placed in inventory. Consequently, some of the units might have failed

prior to our testing. Thus our data will be characterized by (1) small

samples and (2) reported values for failures if above some limit L, but

only "below L" for those that failed very quickly. Our problem is to

estimate the mean of such a data set if we assume the underlying

distribution is exponential.

The problem that we address below is an example of censoring. In

general, censoring means that observations at one or both extremes are not

available. Our problem is equivalent to "left censoring"; life testing

usually involves "right censoring", i.e., the largest values are not

available. Two types of life censoring have received much attention. Type

I occurs when the test is terminated at a specified time before all the

items have failed; Type II occurs when the test is terminated at a

particular failure. In Type I censoring, the number of failures as well as

the failure times are random variables. This of course makes Type I

• . ~~- . .,. • .



censoring far more complicated. Consequently Type II methods have often

* been applied to Type I data with the hope that the bias is not

appreciable. Our problem is analogous to Type II censoring since the

number of units, say p, with failures "below L" is a random variable.

0

0

0
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SECTION 1. THE ESTIMATORS

Suppose we have N identical units on test with time-to-failure

exponentially distributed with parameter e, i.e., time-to-failure has

probability density

00 -i
( ex) - ee z>o. (1)

We assume ocp<N values lie below the (known) limit L. Thus we are

given data

{x1 ,. .,x, p values below L) (2)

where we have taken

K - N-p.

We are asked to find the parameter e. In this section we shall

investigate several techniques to estimate e.

I. Maximum Likelihood Estimator (MLE)0
For our data (2) the likelihood function is given by

F(W)pK f(x10 i-1

where fe is given in (1) and

F (x) - If e(t)dt - l-e (3)

0

Substituting (1) and (3) into the likelihood function and taking logarithms

yields

log likelihood = p log (1-e- L / e) - K log e - Ex/e. (4)

Maximizing the expression (4) yields the conditional MLE e*.

0



Proposition 1. The conditional KLE e* exists and is the unique root of

L/eW- v +K (5)
M~e L/*-1) K

It is consistent, asymptotically efficient, and has asymptotic variance

N1 CepL/)l + 02 (exp(-L/O)-exp(- 1 /o))48 2 E (exP(-z -/e)-exp(- i /em)I

Proof Follows from Kulldorff (1961, Theorems 11.1 and 11.2).

The estimator 0* is biased. By using a simulation (see section 2

below) we may view the extent of the bias.

Examples. Let Lul, e=2, N4=15. Suppose Xx =K(L+e), its expected value

(see Prop. A.4(f)).

Then p a 4 gives e* =2.32
p = 2.15

p.71..



II. Modified MLE

* The ILE 8* is extremely biased for small samples. The problem is that

0* tries to estimate the average value of all the data. Let

A = E(average all data Ip). (6)

From Proposition A.4(f), we see that

A = e+L - L (7)N l-e-L/e 7

which is not 0. So we suggest modifying 8* to form the estimator eo

0 which will satisfy the following implicit formula:

0* = o + L - a L (8)
N -L/ol-e

* By using our simulation (see section 2 below), we see that 8o is a very good

estimator. Further, if we replace Ex by its expected value, we see that

eo is close, but not equal, to e. Consequently, it does have some small

bias.

0 " Examples. Let L-l, 8=2, N=15. Replacing Ix by its expected value, we

obtain:

p - 4 gives Go = 2.002

p a 5 2.001

p = 7 1.996.

III. Best Linear Invariant Estimator (BLIE)

We let

K
H = 2 C.z. (9)

be an arbitrary linear estimator. We wish to select those coefficients

S{CI,. .,CK) which minimize the variance of H among all invariant H,

i.e. all H satisfying

E(H/e) = constant.
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From Prop. A.4, we have0
E(H) - IC.E(x.)

I I

a ZC.(L+E.e)
I I

a LEC. + 92CiE.. E (10)

This is a constant times 0 if and only if ZC =0. Hence, invariance of H

is equivalent to

EC. 0 0. (11)
1

So we wish to minimize E(H-e)2 subject to (11). Now from Prop. A.4 we have

2 2
E(H-e) = EEZC C x ix J-28W ixi e

M C i ci(Dije2+Ei je2 +Lie+LEje+e2

-2eCI (L+E e)+e2

a 11CiC(Dije 2+EiE e2 )-2eC iE.+0 2  (12)

where we have used (10). So our problem is to minimize (12) subject to (11).

Using a Lagrange multiplier X, our problem is to

II
min L - min (11C i C (D ij+E iE i)e 2-2eZCi E i-2X£Ci. (13)

Setting L/8C i - 0, each i, yields

0 - ZC (Di +E 1 )e2-0 i- (14)

j lj i I

and aL/a. = 0 yields (11). The solution to our system (11) and (14) is

C1 = - 1 + 1/K

C = l/K, i = 2,...,K

e - IK + LI.



The verification requires use of Corollary A.3. Hence the BLIE is

*H* = - 1 + ; Z1 .
1 K

We how have the following result.

Proosition 2. The BLII is (for N-p - K > 2)

HS x 1 + x. (15)

It satisfies

EH* -1 0 (16)K

var H* a 6 2 /K. (17)

Proof. We note that

* [- K I1 )
K K-1 1 K-1

2SfrmCorollary A.6, Hx is distributed as xK X(2(K-l)). Hence (16)

follows. To obtain (17) we haveO
2 * 2

var H =E(H* - 0) + bias

e2 K- 22
= - 4(K-l) + -- )e

4K K

O 
- e 2 /K.

IV. Best Linear Unbiased Estimator (BLUE)

We let

* K
G = iBix i  (18)

i=I

be an arbitrary linear estimator. We wish to select those coefficients

(B,.,B K  which minimize the variance of G among all unbiased G.

From (10) we have

EG = LIB i + OEBi E.
1!1

0•



Since we require EG -0, we require

0B a -0 (19)

IB.K - 1. (20)

Hence our problem is min( G_9)2 subject to (19) and (20). Now from (12)

2 2 2(1
E(G-8) a SIB iB JDij 0 +. 20 - 20. (1

Using Lagrange multipliers X. and Mi, our problem is to

min L = min (SIBD B D ij2- 2XI.B.-2ii(IB E i-1)). (22)

Setting 8L18B - 0, each i, yield.

0m = B D IJ2--~,(23)

aL/a).-0 yields (19), and aL/8au0 yield. (20). The solution to our

system (19), (20), and (23) is

0

B 1 /(K-l), j=2,3,...

0 k. e 2 /K(K-l)

Vi _ e2 (K-1).

Hence the BLUE is

*G*m x1+ -- Ex
K-1l -

We have the following result.

Prooosition 3. The BLUE is (for N-p - K > 2)

G* K--Ex. (24)K--l 'l + K-1



It Is distributed as 2-)L 2(K-l). Consequently,

var G' /(-) (25)

Also the BLIE H* satisfies

* Kl. G*.
* K

Proof. See Corollary A.6.

V. Fill-in with Constants Approach

Various constants have been suggested as proxies for the data below L.

Pessimists might use zero (i.e. equipment failed immediately) while optimists

might argue for L (i.e. equipment failed at the instant we started checking).

Those suggesting some sort of balance might use L/2. Let us suppose that we

use the value C as a proxy. Then our estimator is

8' (Ex + PC). (26)

* This procedure is very easy to use and is easily understood by the

statistically non-sophisticated.

Clearly the rule 0* is biased. In fact

98 I0 - (K(L+O) + PC)

= 84.L-R (e+L-C) (27)

using Proposition A.A(e). Consequently

var 0* -1- var (Ex)
N

K 2(28)

-%



from Corollary A.5, a relatively small value since a (sometimes large) part of

* Qthe data is replaced by a fixed constant. Hence e* has a very narrow spread

about the wrong value!

To improve this technique, we suggest that 0* is trying to estimate

A 2 K (average Ip)

N U-L/

from (7). Our suggestion is to modify 0' to form eo which will satisfy

- a eo+L- L (29)
N le-L/o'

Our simulation (see Section 2 below) shows that eo is a much improved

% .estimator.

VI. Fill-in with Expected Values

Let us fill in the missing data not by constants as in V above but by

more appropriate values: their expected values. From Proposition A.4(d) we

have

-L

E(sum of missing data Ip) a p(e - L (30)

Hence our estimator 0* satisfies the equation

e a 16 [zx+p(e* - L )1. (31)
N e -1l

After rearranging, this equation is identical to (5), the equation for the

NLE! Consequently, the NLE procedure is equivalent to filling-in the data

points "below L" with their conditional expectations. This interpretation

adds credance to our suggestion in II that the KLE needs to be adjusted via

the procedures outlined there.

['V
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VII. Truncation

Our last technique is very easy to conceptualize: forget that data below

L has been obtained and assume that the distribution of the remaining K data

points are governed by the truncated exponential distribution

1 -x/9

L e

1 L0 I for z>L. (32)

All "good" estimators (i.e. MLE, BLUE, Minimum Variance Unbiased

Estimaetor) for our truncated distribution (32) are the seane:

0* E x-L. (33)
K

It has the following properties.

Pgoposition 4. The truncated estimator e* is distributed as

K X(2K).

As such, it Is unbiased with variance

var e* e /K,

which is smaller than that of the BLUE.

Proof. See Corollary A.6(a).



SECTION 2. THE SIMULATION

* In order to evaluate the performance of the estimators based on maximum
likelihood procedures (parts I and II of section 1) and on filling-in by
constants (part V of section 1), we performed a simulation. Since the
exponential distribution has only a scale parameter e to estimate, all the

* formulas depend only on the ratio O/L. Thus we were free to normalize the
simulated data to the case L=l, e=l/3, 2/3, 1, 2, 3, and 5. We selected
Nu5, 10, and 15 as representative small data set sizes.

Using a standard pseudo-standard generator, we simulated 20,000 data sets
* for each value of N and e. The data sets were then artifically censored at

the cutoff L=l and passed to the several estimators to "guess" values for

0. The data sets were then grouped by p, the number of missing data values,

and averaged. Typical results are included in Tables 1 and 2 below. The
O tables include the method of truncation (part VII of section 1) as a means to

check the simulation since the mean and variance for this method have been

theoretically calculated in Proposition 4. We can clearly see that the
theoretical values agree quite well with those obtained in the simulation.

(Insert Tables 1,2 about here.)

pa

...



CONCLUSION

We have presented above several methods to estimate e based on censored

from below data sets. Several are extremely simple, easily calculated and

understood by the mathematically unsophisticated. Among these, the method of

* truncation

"_ Ex-L
N-p

0 is clearly the best. It is unbiased and has small variance

var e* = e2/(N-p).

Simulated data shows that it performs just about as well as predicted.

* For the more sophisticated worker who will use a computer to find an

estimator the modified LE (part II of Section 1) appears to be slightly

superior. It is found via a two-step procedure: eo satisfies

Seo + L - ?IN L . e
-L/eo

where e* satisfies

"i ) e - _!I Ex -PL

(N-p) (N-p)(eL/e_l)

It appears to have little bias with slightly smaller variance than the

method of truncation.

0
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APPENDIX

* In this section we investigate the distributions of various random

variables associated with our estimators.

Proposition A.1 Let Y1,.. .YK be the order statistics for an exponential

distribution with parameter e, i.e. Y .. YK are a random sample

arranged in ascending order O<Y <.Y <,,,<YK.

Then

a. Y1 has an exponential distribution with parameter e/K.

* b. Y +-y has an exponential distribution with parameter

e/(K-j), jnl,...,K-l

c. tY1 ,Y2 -Y1 .... ,YK-YK-
1) are independent.

Corollary &.2 For the situation described in Proposition 1,
0

a_.(Y 1 L
.j K 1 +"'+ K-j+l

b. Cov(YiY ) ) 2)+ (z 2 +1+ 1 - e+ 2

1 K K-1 K-m~l

where m - min(i,j).

We let

E(K) 1 1
3 K-j+l

D(K) 1) 2+..+ ( 1 )2
13 K K-m+l

(K) (K) 1 2
D. uD 1 ( ).
3 i n=o K-n

Corollary A.3 For the quantities defined above, we have:

K (K) (K)
a. I Dij

K
K (K)

b. I, E. -K

41=

c.JD(K),K
• .- - K.- -



* Proof. Suppressing the superscripts, we have the following calculations,

K i Ka. I D ii - D.. + j ~ Di~j
jul jl13 jui+1

i K

I - Dj + I Di
jul jni+l

I
= 1 D. + (K-i)D.

) + :( 6 ) 2 +.+[ 2 + 2 +..+ +(K- )D

K K K-1 K K-1 K-i+l

62121 2 1 2K-i'+ K-? K-i+l=i( K +(i-M T(1  (i-2)( K2+..+ Vi( ) +(K-W)D.

i-l 1 2 i-1 1 2

K-n
n-o fimo

I(K-n)( -)
nl=o

i-I

K-n
n-0

•k i -1 i K K K- -

=K (16) + (K-M)-i-) +..+(l)1

K- 1 K-n

K.

We suppose in the remainder of this section that O<L<-, is a fixed,.4-

-ie kon Kcons(tant.. +()

I . ' - - ' -. ,- .' - - -.% - -"K'- . . K .o - -'. i 1-. . % -- ." . -. ..



Proposition A.4 Let Yi,.., 'N be the order statistics from an exponential

distribution with parameter e. Suppose Y p L < Y P and let K=N-p. Let

Then a. (X j-L) are the order statistics from an exponential distribution with

parameter 0.

b.~ ~ ~~~K 2( p

c. cov(ZX.I p) - D.. e)
1 3 13

d. M(Y +. .+Y IP) _ ple L-

C. (Xi1+..+ *Kx1p) -(N-p)(L+O)

E. M(Y +..Y 1p - N(L+e) - o
1 N 1-e L/e

Proof d. EMY 1+. .+Y p ) - (sum of p independent samples each less than L)

-pE(X<L)

PO-( e+L)e-Lie
i-e-L

P~- L

e. follows from Corollary 3(b) and part (b).

f. follows from parts (d) and (e).



* Corollary A.5 For the situation described in Proposition A.4, we have

var (jXjp) - e.2

Proof var(lXp) _ E((ZX)
2 (p) - (E(IXIp))2

- (jXi X ip) - (K(L+e))
2

= II(Dij2e + (L+ ie)(L+K e)) - (J((L+e))2

- Ke2 + (K(L+e))2 - (K(L+O)).

Corollary A.6 For the situation described in Proposition A.4, we have

a. (-'X- L) - 2- X' (2K)

•b. (-2(m 1  + 1 - X2(2(K-1))
X-1 1 X12(K-l)X

Proof. Let

S K(X-L)

S = (K-j+1)(X.-xj-1 j=2,..,K.

Then

ECSj) = (K-j+1)(EX j-X 1 )

(K-j l)(EK) _ _(K)

= (K-j+l)e/(K-j+l)

Thus (Sj/el are i.i.d. exponential 1. Hence 2S/e - x 2(2) and so

K -e

I S - X2 (2(K-T+1))
OT

and K
j e a

X-T 1 I S 2(K-T 1) X (2(K-T+1)).

Part (a) is the case T=I; part (b) is the case Tm2.

= ,' .,,,..-..,,.-.. .. < .- --.... . .. . . .. . . -. .-.- "-- 'v -" . " ,
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* We construct the Best Linear unbiased Estimators for the man and

variance given a Type I censored samle from a normal population.

Numerical experience with small data sets indicates that owr iterative

procedure to find the estimators almost never converges.

Key words: Best Linear Unbiased Estimation. BLUE
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* INTRODUCTION

The problem of estimating the parameters from a censored normal

distribution has been extensively treated in the literature. Two natural

* censoring mechanisms are: (1) observations below or above a given point

may be missing (Type I) and (2) the p smallest or largest observations of

a sample of size N may be missing (Type II). Type I censoring is more

complex since the number of observations K - N - p is a random variable.

0 Consequently, Type II censoring methodology has been applied to Type I

data though the methods are clearly biased.

One widely used method to estimate the parameters of a normal

distribution is based on linear combinations of order statistics. For

* Type II censoring, the known sample elements are arranged in ascending

order, i.e., X(l) <_ X(2) < .. S X(K), and the method of least squares

is applied to get the best linear combination of them. The coefficients

provided by these linear estimators are unbiased (if K is known a priori)

with minimal variance. Important contributions to this methodology

include Gupta (1952). Sarhan and Greenberg (1956, 1958). Law (1959) and

Dixon (1960). Below we extend this methodology to the case of Type I

censoring.

4S

S
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SECTION 1. CONDITIONAL ESTIMATORS

Let

X1 <X 2 :S .. XK

be the ordered censored sample of size K out of a complete sample of size

N. We assume that the p - N - K censored values are known to lie below

the censoring value L. We will first develop the minimal variance

unbiased linear estimator (BLUE) conditional on p. Later we shall remove

this conditioning.

Our initial problem is to find

0- 0jXj (1)

and

H - HjXj (2)

with E(G) - v. Z(H) - a. and minimal variance among such linear estimators.

• To better formulate one problem, let

E(i.R.K) - expected value of the ith order statistic from groups

of size K for a standard normal random variable censored from

below at R,

cov(iU.J.R,K) - expected value of the covariance of the ith and

jth order statistics from groups of size K for a standard normal

random variable censored from below at R.

* Using this notation we have

E(X ) - t+a E(J.(L-u)/a,K) (3)

cov(XiXj) - a2 cov(i,j,(L-v)/a.K). (4)

Hence

so- IG1(u+aE(i,(L-i)/aK)) (5)

varO - a2XGiGcov(i.j.(L-u)/aK) (6)



with similar formulas for H. Since EG should be i.we obtain from (5):

10 1

R(J.L-P)a.K)- 0.

Thus we may formulate our problem as follows.

Propositig"L. The BLUE'S for v and a solve the following problems.

P1: min 10 G cov(i,j,(L-i*)/o.K)
ii i j

such that JGO M 1 (7)

V;G3E(J.(L-ia)/a.K) - 0(8

and

P2: min XH i jcov(iei.(L-1a)/a.XO

such that XII a 0 (9)

XH i (J.(L-u)/o.K) - .(10)

*To solve P1 and P2. let us first write them using the equivalent

Lagrangean formulation:

P1':. min JIG iG icov(i;j.(L-Vd/oK) - a1 (10 31) - B1XGEH.(L-ia)/a.K)

*P2': min IIH iH icov(i.i.(L-p)/oK) - a2J B2(HiZj(-)oK-)

To write down the solution to P1' and P2', we first introduce some

additional notation. Let

I(R,K) - matrix with (i,J) coordinate equal to coy (i.J.R.K)

3(R.K) - vector with ith coordinate equal to E(i.R.K)

I - vector of length K whose elements are all the numaber one.

Finally let ( (R.'c) -l' -3'RK

3(I.K) 00

Then the solutions to P1' and P2' are

. ~ ~ ~ -... .. .. .. ..



(11). (12) 

SUiotntoly tee oureutions cne fobtoun rovidd epenve tabe

befairly ritfravr dues

1,(. aetnd

100

2. Let R a+ saif
00

3(R1 .K) 0

OP1



0

1+1 I1j

R ~ ( 0L~ /

R1+1 M Lv1+1 a1+1*

4. If lI-IAI I~ and Io -* + are small enough, stop.

Otherwise, let I.--I+1 and go to step 2.



SBCTION 2. UNCONDITIONA&L ESTIPTORS

we now. after considerable effort, have V* a* which clearly

depend on K. To obtain unconditional estimators we need to find the

expected value of p* a*. For this purpose, we note the following.

* Provosition 3.

1. Rx1i x?:L) -~ l-((-p/ (13)

2. E(xI x<L) = u0*(L-i)a (14)

3. R(x 21xL) - )A2 +cy + (L+v0a -(L-)/)(15)

4. E(x 2 xsL) - V +0 2_(L+Ii)a *((L-ia)/a) (16)

Letting

A -l((-)/)(17)
and

and using (13)-(16) we may easily obtain the following.

corollary 4.

1. R(sum of all N data Ip missing) - Nvjao(KA-pB)

2. 8(sum of squares of all N data ip missing)

WN2 +d )+(L+ua)a[KA-pB]

3. 8((sum of all N data)2 1p missing)

K(K-l)(P+aA) 2+2pK(Ui+aA)(Vi-aB)+p(p-1) (ja-aD) 2+

+N(V a 20 )+(L+Pa)*(Kh-pB).



Corollary 5.

1. E (average of all N dataip missing) - i+o(KA-pB)/N (19)

2. E(S2 for all N datalp missing)

P2a2 + (L+V)a(KA-pB)/N - KKl(~A NN1

-2pK(Pa+OA)(v-aB)/N(N-l) - p(p-l)(ii-aB) 2/N(Ni-l). (20)

Hence the expected values of V* and a* 2are not is and o0 but the expressions

on the right hand sides of (19) and (20). Another iterative scheme would

*convert the biased ja* and d* 2to their unbiased counterparts.



*) SECTION 3. NUMERICAL EXPERIENCE

To perform the calculations indicated in Section 1, rather extensive

tables of M- (R.K) would be required. In turn, to find the inverse for

the matrix H(R.K) we would need to find the expected values E(R.K) and

the variance J(R,K) for groups of K order statistics from a standard

normal distribution with censor value R. To find these we generated one

million normal variates. We then grouped all those values greater than

R into groups of size K. The means and covariances were computed as the

averages of the values for each such group. Tables were prepared for

R - -3.0.-2.0(.l)+2.0,+3.0 and K-1(1)15. As an example, we show in

Tables I, II, III below the output for R-.1. K-1,2,3,4.5.9, and 14. For

groups of 14 values from the standard normal distribution all above the

S value R-.1, the first (J-1) order statistic has expected value 0.1763, the

second (J-2) order statistic has expected value 0.2549, etc. Further, the

variance of the first (J-1) order statistic is 0.0053, of the second (3-2)

order statistics is 0.0103, etc. Also, the covariance of the second (J-2)

* and first (1-1) order statistics is 0.0049, etc.

-1
For each possible (R.K) combination N(R.K) and thence N (R,K)

was found. For values of R not in our tables. linear interpolation was

used.

To test the value of our estimators, we used various combinations of

1 and a. By adjusting the range and scale, we chose L-1 and

P-1.33; a-.2..3

n-1.00: a.1,.2..3

P-.67; a-.2,.3

with total sample sizes N-5, 10, and 15. For each (p, a, N)

* combination we generated 50,000 samples, censored them at the value L-l,

and tried our algorithm on the resulting data sets. In the algorithm of

S



*Section 1 we let "small" be .01 and stopped if R was ever out of range.

Unfortunately, in no (M. o, K) instance did even 10% of the samples

converge for -3< o* <+3; in fact, for only V=1, o=.1 did even 5%

coverage!
S

Hence, the methodology described above, though theoretically useful,

has little practical value.

O

0

0

I



TABLE I. Expected values of standard normal variates
above the value 0.1 in groups of K- 1,2,3,4, and 5

* anm mmmammmmmmmm m~imainmm mmmmm

TRUNCATION VALUE a 0.1

MEAN OF MEAN OF MEAN OF MEAN OF
X X**2 X*93 X**4 COVARIANCE

K- j I I- 1 0o8616 1.0847 1.7301 3.25E*0 0.3425

* SUM OF MEAN: 0.8616

K- 2 J- 1 I- 1 0.5380 0.4209 0.4Z56 5o14E-1 0.1315
JS 2 1- 1 0.7357 0o1027

2 1.1768 1.7346 3.0215 5.99E#0 0.3501

SUM OF MEAk: 1e7147

K- 3 Ja I I- 1 0.4134 0.2442 0.1687 1.77E-1 0.0733
J- 2 Is 1 0.3893 0o0623

2 0.7911 0.7818 0.9159 1.23E+O 0.1560
J- 3 1- 1 O.6165 0.0502

2 1.2093 0.1255
3 1.3700 2.2069 4.0492 8.27E.0 0.3302

SUM OF MEAN: 2.574;

K- 4 Js 1 to 1 0.3438 0.1643 0.1023 7.74E-2 0.0461
Ja 2 Is 1 0.2535 0o0408

* 2 0.6186 0.4759 0.4341 4.53E-1 0o0933
J- 3 In 1 0.3671 0.0350

2 0.6778 0o0803
3 O.9661 1.0926 1.4049 2.OIE.0 0.1595

J- 4 In 1 0.5472 0.0286
2 0.9979 0.0b49

* 3 1.0845 0.1273
4 1.5085 2.5878 -4.9481 1.04E*1 0.31Z4

SUM OF MEAN: 3.4370

KM 5 J I I1- 1 0.3007 0.1227 0o0647 4916E-2 0.0323
60 Ja 2 1- 1 0o1841 0.0286

2 0.5172 0.3314 0o2523 2.20E-1 0.0640
J- 3 1- 1 0.2575 . 0.0257

2 0.4561 0.0573
3 0.7711 0.6970 0.7181 8.26E-1 0.1024

J- 4 Is 1 0o3513 0.0223
2 0o6148 0.0489
3 0.9317 0.0679
4 1.0944 1.3557 1.8653 2.81E*0 0.1581

Ja 5 Is 1 0o5038 0.0182
2 0.8747 0.0395
3 1.3156 0.0703
4 1o8963 0.1290
5 1.6150 2.9093 5ob64 1.24E#1 0.3012

SUM OF MEANS 4.2984

V



TABLE Il. Expected values of standard normal variates
above the value 0.1 in groups of K-9

TRUNCATION VALUE s, 0.1

MEAN OIF MEAN OF MEAN OF MEAN OF
X X**Z X**3 X**d# COVARIANCE

K- 9 Js 1 I= 1 0.2161 0.0581 0.0194 7.a4E-3 0.0115
JS Z l- 1 000840 0.0108

2 0.3389 0.1383 0.0668 3*?3E-Z 0.0235
J- 3 Is 1 0.1108 0.0101

2 0.1797 0.0218
3 0.4659 002515 0.1544 1*06E-1 0.0345

Ja 4 1- 1 0.1399 000095
2 0.2249 000204
3 0.3130 0.0318
4 096035 0*4095 0.3075 Z.52E-1 0.0453

Ju 5 1- 1 0.1722 0.0088
2 002752 0.0189
3 0.3819 00*0295
4 0.4984 0e 0419
5 0.7564 0.6315 0.5755 5*67E-1 000594

Js 6 Is 1 002091 0. 0081
2 0.3328 0.0174
3 0.41607 0. 0271
4 0.5999 0.0383
5 0.7580 0 oO041
6 0.9307 0*9409 1.0251 1020E+0 0*0749

J- 7 1- 1 0.2536 09007Z
2 0.4020 0*0154
3 0.5557 0.0244
4 0.7230 0.034#8
5 009119 0.0492
6 1.1293 0 *00
7 1.1405 14000 1.8372 2*56E+0 0*0994

Ja 8 Is 1 0.3113 0.0062
2 09d#923 0.0135
3 006796 000216
4 0.8833 0.0308
5 101122 0*0437
6 14.3751 0.0606
7 1.7000 000890
8 1.4127 Ze1374- 3.4460 5989E.0 0014#20

J- 9 to 1 004116 0.0059
2 096478 090113
3 0.8926 0.0178
4 1.1590 0. 025 8
5 1.4574 0.0370
6 107992 0. 0517
7 2.2163 0.0747
a 2.7722 0.1197
9 108779 3o7899 861844 1988E*1 0.2637

SUR OF MEAN: 7*7426

................



TABLE III. Expected values of standard norm!al variates

above the value 0.1 in groups of KI14

TRUNCATION VALUE - 0.1

MEAN OF MEAN OF MEAN OF MEAN OF
X X**2 X*03 X*04 COVARIANCE

K.14 J- I 1- 1 0.1763 0.0363 0.0089 2.S8E-3 0.0053
j- 2 1- 1 0.0499 0.0049

2 0.2549 0.0753 0.0256 9.96E-3 0.0103
* J- 3 1- 1 0.0637 0.0047

2 0.0951 0.0097
3 0.3349 0.1271 0.0543 2.58E-2 0.0150

J- 4 1- 1 0.0787 0.0045
2 0.1166 0.0093
3 0.1551 0.0142

* 4 0.4209 0.1971 0.1019 5.77E-2 0.0200
Js 5 [" 1 0.0937 0.0043

2 0.1383 0.0090
3 0.1834 0.0135
4 0.2325 0.0190
5 0.5074 0.2821 0.1706 1.11E-1 0.0247

* J" 6 1- 1 0.1099 0.0041
2 0.1616 0.0086
3 0.2139 0.0129
4 0.2706 0.0180
5 0.3278 0.0233
6 0.6003 0.3901 0.2725 2.03E-1 0.0298

J- 7 Is 1 0.1269 0.0039
2 0.1860 0.0081
3 0.2458 0.0121
4 0.3107 0.0169
5 0.3759 0.0218
6 0.4469 0.0280
7 0.6980 0.5Z23 0.4166 3.52E-1 0.0352

* J- a I 1 0.1452 0.0036
2 0-2124 0.0075
3 0.2805 0.0114
4 0.3542 0.0160
5 0*4283 0.0205
6 0.s088 0.0264

• 7 0.5941 0.0332
8 0.8037 0.6872 0.6221 5.93E-1 0.0414

J= 9 Is 1 0.1651" 0*0033
2 0.2409 0.0070
3 0.3180 0.0106
4 0.4011 0.0149
5 5 0.4846 0.0190
6 0.5755 0.0247
7 0.6716 0.0311
8 0.7764 0.0368
9 0.9178 0.8907 0.9105 9.76E-1 0.0485

J-lO Is 1 0.1876 0.0031
2 0.2733 090065
3 0.3605 0.0100
4 0*4S44 0e0139
5 0.S487 0.0176
6 0.6514 0*0230
7 0.7597 0.0291
1 0,8777 0.0364

* 9 1.0062 09046
10 1.0468 1.1530 1.3322 1.61E*0 0.0572



TABLE III continued
J-11 1- 1 002140 000026

2 0.3112 0.0056
3 0.4103 0*0087
4 0.S171 0.0124
S 0.6243 0.0159
6 0.7407 0.0210
7 0.8636 0.0267
8 0.9970 0.0333
9 1.1422 0.0417

10 1.3077 O.O525
11 1.1992 1.5067 1.9788 2.71E*0 000688

J-12 1- 1 0.2464 0.0024
2 0.3579 0.0050
3 0.4712 0.0076
4 0.5938 0.0112
5 0.71:69 0.0145
6 0.8502 0.0192
7 0.9905 0.0244
a 1.1429 0.0304
9 1.3086 00381

10 1.4970 0.0480
11 1.7236 0a0637
12 1.384t 2.0053 3.0326 4077E+0 000690

J-13 1- 1 0.2904 0.0024
2 0.4212 000047
3 0.5542 000071
4 0.6980 0.0105
5 0.8421 0.0134
6 0.9964 0.0179
7 1.1626 0.0225
6 1.3412 000264
9 1.5346 0.0355
10 1.7542 0.0443
11 2.0168 0.0580
12 2o3427 0.0814
13 1.6336 2.7952 5.0017 9934E+0 0.1269

JW14 Is 1 0.3659 0.0020
2 0.5305 0,0042
3 0.6979 0.0066
4 0.8786 0.0096
5 1.0598 000125
6 1.2550 0.0160
7 1.4608 0.0201
8 1.6844 000254
9 1.9260.. 0.0315

10 2s1995 0.0387
11 2.5256 0.0502
12 2.9274 0.0698
13 3.4803 0.1084
14 2.0644 4.4970 10.3215 2.49E*1 0.2358

SUM OF MEAh: 12.0424

.
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ABSTRACT

We study normal and lognormal data characterized by the dual

problems of small sample size with several values reported as "smaller

than the limit L". In particular, we propose several estimators and

report the results of a simulation.

Key words: Below detection limit: MLE; fill-in techniques; Type I

censoring: environmental data analysis.
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INTRODUCTION

The reality of detection limits in the measurement of environmental

phenomena is undeniable. Concentrations of pollutants are quite often

too small to measure and are reported as "not detectable". For such

measurements, we know only that the concentration lies below L, the

detection limit.

Thus, the problem of address is one of censoring. In general,

censoring means that observations at one or both extremes are not

available. Our problem is equivalent to "left censoring"; life testing

usually involves "right censoring", i.e., the largest values are not

available. Two types of life censoring have received much attention.

TyIpe I occurs when the test is terminated at a specified time before all

the items have failed; Type II occurs when the test is terminated at a

particular failure. In Type I censoring the number of failures as well as

the failure times are random variables. This, of course, makes Type I

censoring far more complicated. Consequently, Type II methods have often

been applied to Type I data with the hope that the bias is not

appreciable. Our problem is analogous to Type I censoring since the

number of measurements, say p. with concentrations below L is a random

variable.

Environmental data is characterized not only by left censoring but

also by small sample size. Required measurements for compliance purposes

often are performed annually. quarterly, or, at most, monthly due to the

expense or disruption caused by the testing. Studies of pilot plants or

demonstration plants are often of such short duration that five to ten

samples are all that are obtained. Thus, methods for estimating the

parameters of environmental data using asymptotic or large-sample-size

procedures are usually inapplicable.

In sum, environmental data usually has the following characteristics

which make it difficult to analyze:

1. The data is left censored with a random number of data values.

2. The sample size is very small.

.m *.
° .
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Further, environmental data quite often is well-modelled by the normal or

the log-normal families. Consequently, the problem we address below is

one of estimating the parameters of a normal or log-normal distribution

when the data sets are characterized by (1) and (2) above.

The problem of estimating the parameters of left censored normal data

has been extensively studied. Methods may be categorized as: (1) maximum

likelihood estimators. (2) estimators based on linear combinations of

order statistics, and (3) others. Maximum likelihood has been studied by,

among others, Cohen (1950). Gupta (1952), and Harter and Moore (1966).

Linear estimators have been studied by, among others, Gupta (1952). Sarhan

and Greenberg (1956. 1958), Saw (1959). and Dixon (1960). Other methods

include a method of moments suggested by Ipsen (1949) and the conservative

estimator for the mean calculated by replacing all missing data by the

truncation point (suggested by the U.S. Environmental Protection Agency).

All of the above techniques have drawbacks. The maximum likelihood

procedures, though applicable to Type I data, are inefficient for small

data sets and require numerical interpolation in extensive tables. The

linear estimators are based on Type 11 censoring and so are biased for

Type I data. Most estimation schema require extensive tables of

coefficients. The moment estimator is extremely inefficient for small

data sets while the conservative estimator is extremely biased.

Below we shall evaluate on simulated data various estimators, some

new and some from the literature, to determine which (if any) are

reasonable.

.P



* SECTION 1. MAXIMUM LIKELIHOOD ESTIMATOR

In this section we recall the procedures from Gupta (1952). We assume

O<p<N values of our N samples lie below the (known) limit L. Thus we are

* given data

( x ... X, p values below L (1)

where we have taken

K N - p. (2)

we are asked to estimate the mean A and standard deviation a. For our

data (I) the likelihood function is given by:

pK
,lIn ((L-p)/o) I v((X t- R)/G) (3)

i-

where C, respectively V, is the cdf, respectively pdf, for the

standard normal random variable. Taking logarithms yields

log likelihood - p log # ((L-V)/o) - Kloga - (X-P)/O) (4)

Maximizing the expression (4) yields the maximum likelihood

estimators (LE). Setting the partial derivatives equal to zero yields

X - Pa(5)
K K ((L-p)/o)

a"" 2 _ (X) - L-) ((L-)/O) (6)
K K0

Let

, s(X (8)

KK



The procedure to find V and a is then as follows:

1. Calculate X. d. and p/K from the data.

2. Calculate D using (19).

3. Find a value of a satisfying (13). (14). and (20). Find the
corresponding value for z.

4. Then the estimates follow from (15) and (16):

a* d/z (21)

* p* X + ( *2 - S 2 ) /d. (22)

In order to carry out this algorithm a table is needed giving the values of

z for a given pair (D.p/K). Tables can be found in Gupta (1952) and also

below as Table 1. Note that when K-I we ht-ie S-d-o and so that above

procedures do not produce useful results.

0

0
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SECTION 2. TRUNCATED MAXIMUM LIKELIHOOD ESTIMATOR

Our next technique is very easy to conceptualize: forget that data

below L has been obtained and assume that the distribution of the remaining

K data points are governed by the truncated normal distribution

g (X) - V ((X - p) Ia) / (1- 4 ((L - v)/)). (23)

The log likehihood for ou K data points is

log likelihood - -K log (1 - * (a)) - K log a - 1/2 ((X -)/)2

where we again used (12):

a - (L- )la

Proceeding as in Section 1 we let

B(a) - i(a)/(l - 4(a)) (24)

z T(a) - -a + B(a). (25)

Then

D - S2/ (S2 + d2 ) (26)

- (1-aT - ZT)2 / (I - azT). (27)

So we need to modify our previous algorithm in step 3 to find zT for

a given value of D. Our Table 2 provides the necessary Input.



SECTION 3. CONDITIONAL FILL-IN TECHNIQUES

A general technique for dealing with missing values is to replace

* them with proxies. In this section we describe estimators using

constants or using expected values of the censored values as proxies.

i. Fill-In with Constants

Various constants have been suggested as proxies for the data below L.

The United States Environmental Protection Agency has a mandate to protect

the human population from harmful pollutants. In doing this it usually

errs on the side of conservatism. Thus, EPA often suggests that all

censored values be replaced by the censoring value L to obtain the clearly

most upward-biased. i.e., conservative, estimator for the mean pollutant

levels. For pollutant concentrations the most liberal policy is the one

that substitutes zero for the censored data: If I cannot measure it, it's

not there. Those suggesting some sort of balance might use L/2. Let us

suppose that we use the value C as a proxy. Then our "data" are

{ X1 ,.... XKC ..... C1.

* Since we have all N values, we would use the usual estimators for the mean

and variance:

= (jX + pC) (28)

*2 a (x2 + PC 2-_ NV*2) •(29)

This procedure is very easy to use and is easily understood by the

statistically r,,n-sophisticated.

i
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*• 2. Fill-In with Randon Order Statistics

As an alternative, we may elect to fill-in the censored data with

seemingly more appropriate values: their expected values. To develop the

formulas, we note the following.

Proposition 1.

1. 9 (XI X > L) a p + a * ((L-u)/o) (30)- I - I ((L-ii)/o)

we((L-iz)/o) (l
2. (x X L) ( X ((L-L-)/ ) (31)

3 -2 2 + ((L-)/o) (32)

4. g (X21 X < L) - P + 02_ (L + ) 1 - ((L-3)/o)
--~ - ((L-u)/o) (33)

Thus the eXpected values of the sum of the censored data and of the sums

of squares are p times the right-hand-sides of (31) and (33)° respectively.

Hence, p* and o* must satisfy

* - X + p* _ p* M u*)/o*) (34)
M (L 4*)/)*)

, *2. -X X2+ PU* 2+ pO*2 - (L + p*) Op w, ((L-u*)/o*) _ N p*2]. (35)

Let us simplify these expressions. Recalling our previous

definitions (7), (8). for X and S2 and our previous notation (12),

(13), for a, A(a), we find that (34) and (35) may be transformed to

0* -X - A(a*) (36)
K

a * + A* A(a*) (X- L) S 2 +. IL_ (X- p*)(X-L) (37)
K-1 K- 1

1



Except for the factor K/(K-1) in (37) these are identical to the MLE

estimators (9) and (16)! Consequently, the HLE procedure is almost

equivalent to filling-in the censored data with their conditional

expectations. To numerically solve (36) and (37) set

0 0

and use the right-hand-sides of (36) and (37. define Ji+l

J+ in terms of J, J.*

1+



SECTION 4. UNCONDITIONAL ESTIMATORS

The estimators developed in Sections 1, 2, and 3 are biased. The

problem is that they estimate the parameters conditionally on the

knowledge of p, the number of censored values. In this section we will

readjust the estimators removing the bias due to conditioning.

1. Fill-In with Constants

Recall that our N data values are

(X , **. ,XK C-. , C].

To compute the expected value of p* and a* given by (28) and (29) we

will use Proposition 1 and definition (24) for B.

Proposition 2.

1. E (ZX + pCip) - K(V + aB) + pC. (38)

2. a (ZX2 + pC2 1p) K(W2 + o2+(L + )B) + pC2 . (39)

3. Z ((EX + pC)21p) - K(K-)(V + o)2 + 2pKC(P + B) + p(p-l)C 2

+ K(V 2 + 02 + (L + V)aB) + pC2.

Corollary 3.

1. z(V*jp) -(K( + aB) + pC)/N (41)

2. g (0*2jp) [ [K(V 2 + 02 + (L+U)aa)+pC2]/N-K(K-1)(v+oB)2/N(N-1)

-2pKC (1A + aB)/N(N-l)-C 2p(p-l)/N(N-l) ( (42)

... . . . . . . . . . . . . .



So, given data, first compute p* and a*. Using these values

unbiased estimates p °a may be found by solving

V* (K(Io+oo BO ) + pC)/N (43)

*- K[po2 + o2 + (L+po)oo Bo]/N -K(K-l)(pO+aoBO)2/N(N-l)

- 2pKC(o+(oBo )/N (N-1)+KpC2/N(N-1) (44)

where

0 Bo - B((L-po)/ao). (45)

Values for pot a satisfying these equations to any pre-set

degree of accuracy may be easily obtained by use of a computer.

* As an example. we initialize by

I l V*' *1I 0i *

and then update by

Bj n B((L-vj)/aj) (46)

Pj+l (Nv*-pC-ajKBj)/K (47)

oj+i Na*2/K+(K-I)(ij+I+ojBj)2/(N-l) + 2pC(pj+l+OjBj)/(N-1)

- :pC2/(N-l) - pj+l - (L+pj+l)ojBj • (48)

3. Fill-In with Random Order Statistics

We let Y 1 < Y2 o < 'I < L be the (random) order

statistics. We then use Proposition 1 and definitions (13) and

(24) for A and B to obtain the following.
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Rroposition 4.

1. E (EX + ZYjp) - Nu + a (KB - pA) (49)

2. E(lX 2 + Zy21p) - bN(2 + a2) + a(L + v)(KB - pA) (50)

3. E((ZX+ZY)2 1p) a K(K-l)Ib+aB) 2+2pK(pA+aB)(-aA) + p(p-l)(V-aA)
2

+ N(Va2 + 02 ) + a(L + a)(KB - pA). (51)

Using these results, we can compute the expected values of our

* estimators M* and a* as given by (34) and (5).

Corollary 5.

1. Vl*p) - v + o(KB-pA)/N (52)

2. E(0*2tp) - [N(Ua+a)+a(L+va)(KB-pA)]/N - K(K-)(ip+aB)2/N(N-1)

;: -2pK(v+aB) (u-Oa)/N (N-1)-p (p-1) (p-oA) 2/N (N-1). (53)

We may find unbiased estimators io and a (to any degree of
accuracy) for this case in a fashion similar to that of case 1 above.

One scheme puts

V +1  - * - ,j(KBj-pAj)/N (54)

a + 0* 2 + K(K-1) U B) + 2PK (vj++ajBj)(vj+-ajAj ) +
N(N-l) uNI-l)

+ p(p-l)( -a A)2 _ L+ +) 1(KBt-pSI) - J J+l (55)
*' N(N-l ) N

3. Maximum Likelihood Estimators

We noted above that the maximum likelihood estimators (9) and (16)

were virtually identical to the Fill-In with expected value estimators

(36) and (37). Consequently, we can find the expected values for the

"LES. *..
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Sl.Leua 6.

.(S2) a + (L-UjoB - a2B2  (56)

• Provosition 7.

1. B(U*Ip) - u + a(KB-pA)/N (57)

*2. UVa*21p) - V(KLFO Kv.) + ;S1p

K-i 2 2 +K-1 (K-I) 2 (58)- . + (L+(i+) (KB-pA.) -N(N--i)(i+B)= -

K M ( a+ jQ

2t)(K-1) - 2 )( -) + (L-i*B- 02B2

* N(N-) )(N-1)K K K

We may find unbiased estimators p. and a (to any degree

of accuracy) for this case in a fashion similar to case 1 above.

* One scheme puts

aj+i- a* - o(KB -PA )/N (59)

2 (K-1)2  2 2D(K-i)
a j+ a*' + N(bI-1) (tj+i+*jBj) + N(N-i) (pj+l+.jBj)(uj+l-ojAj) +

+ p (- U. (ip -a A 2 K-1 a (L+u )(KB -pA,)
N(N-i)K J+t J KM + -+1 t

+ aK B 2+" (60)
KK

.

-.
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0
SECTION 5. ORDER STATISTIC TECHNIQUES

Previous work on linear estimators are for Type II censoring, i.e.,

those with fixed sample sizes and not fixed censoring points. These have

often been used in Type I situations with the hope that the resulting

bias is small. We have investigated linear estimators for singly

censored Type I samples elsewhere (Gleit 1983) and reported their very

poor performance.

-.

0
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SECTION 6. LOGNORMRL DATA

If our sample were from a lognormal distribution, then we could apply

the techniques described above to the logarithms of the data to estimate

V and a for the resulting normal distribution. Then the parameters of

the lognormal could be estimated by using the following facts:

mean of lognormal - exp (p + *2/2)

variance of lognormal - exp (2v + 0 2) (exp (os) -I).

0

- . -



S CTION 7. SIMULATED DATA

To evaluate the performance of our estimators we performed a

simulation. By rescaling and changing origins, all the formulas depend on

choosing two of the three parameters: it, a. and L. We normalized the

simulated data to La. and selected the following seven combinations for

u and a.

P - 0.67: a - .2. .3

- 1.00; a - .1. .2. .3

- 1.33; a - .2. .3.

We selected N-5. 10, and 15 as representative small data set sizes.

Using a standard pseudo-random number generator and the Box-Muller

transformation, we generated one million standard normal random variates.

Using these variates, we generated 50.000 data sets for each of the

twenty-one combinations of N. p. and a. These data sets were then

artificially censored at the cutoff Lul and passed to the several

estimators to "guess" values for V and a. The data sets were then

grouped by the value of p. the number of censored val.es, pm0...

For each technique, each p. each N. and each 1, a combination we

computed the mean and variance of the estimators for p. for a, and for

the man and variance of the lognormal distribution whose logarithms

follow the normal (V.o) distribution.

Typical results are reported in Tables 3. 4. and 5 below. Table 3

reports the results for estimating the mean from data with N-5, v-1.33.

and a-0.2. The sample sizes are large enough only for p-0.1. and 2. We

see that the modified MLE and modified fill-in with constants routines

failed to converge for p-2 and did a fair job of converging for p-1. The

truncation method had an unacceptably large variance. The MLE was very

biased high; the modified version did not noticeably improve the



estimator. The expected value did a reasonable job while its modified

form decreased the bias at the expense of added variance.

Table 4 also reports the results for estimating the mean but from

data with =l0, u-1.00. and a-0.3. The sample sizes are large enough

* for all values of p from I to 9 (i.e.. all values of interest except p-0).

Again the modified ML and modified fill-in with constants routines did

not .converge very often. The truncation method again has large variance,

the ME is biased high. the expected value does very well, and the

modified expected value does the best. Finally Table 5 reports the

results for the mean for simulated lognormal data with mean 1.99. N-5,

corresponding to u-0.67 and a-0.2 for the underlying normal. The

results are essentially the same as in Tables 3 and 4.

• The results are very consistent throughout all the twenty-one cases

for each of the four possible quantities estimated: normal mean and

variance. lognormal mean and variance. The expected value estimator does

a very good job while its modified form reduces the bias but increases the

• variance. These procedures converge just about all the time. The HLE is

usually highly biased, has a large variance, and is not usable for the

case K-1 (i.e., only one data point). The modified HLs almost never

converged: even when it did, it did a poor job. The truncation method

always had an unacceptably large variance; it was also very biased for P/N

large and not usable for K-I. Fill-in constants did not perform very

wall. For small p, fill-in with 0.5 did not do too badly; for large p,

the estimator virtually agrees with the constant and so is of no value.

The modified form almost never converges. Using the criteria of minimum

square error, i.e.

square error a B ( - 0)a
a Bias2 + Variance,

in general the modified expected value is best with fill-in by expected

values coming in a close second.

02 _



CONCLUSION

We have presented above several methods to estimate the mean and

* variance for a normal distribution based on censored from below data

sets. Several are extremely simple. most require extensive computer

calculations and some require extensive tables. Among these the modified

fill-in by expected values (54) and (55) is our choice with fill-in by

* expected values (36) and (37) a close second. Though far more biased,

this latter approach has lower variance.

- ,t *. ... .. . ..
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Table 1. %lues of z for given values of D and p/K

p/K

w ,.1. .1730 .25,% .328u

D- .)oJl * 3.7,47t, 3,0.1J Z. 5.5 7Q 2,.)29L 1.70Iu

.0LO 1 , 3.722 Z.99Jd 2.35'.3 Z.0252 1.b9J
2.*i731 ,.t77r 10 4') 4 L.b721

.0 5C, $ 4. Vi93 2.'1,4 2 . Ic27 1. b157 L.564.o

60do , .,97t 2.213o Z.O097 1.7083 1.4921

.LO0 2, .229-, 2.J27t 10.o40 1.6133 1.,*25L

.-,2O 9 Z.0321 1.872a L.7400 1.5277 1.3o3i

.1700 * 1 .8b69. 1. 741. 1.b311 1.4499 1.3051

.ZOUO 1 .732- 1.627Z 1.5345 1.3734 1.2505

.23%O 4 1.bl64o 1.526t 1 .4#7b l.312 1 L99 I

*2bOC 0 1*.517 1.43b L.3690 1.2511 1.150t

*2'900 1 .41U1 1.354o 1.2r9- 11193C 1.103di

* .32U0 1.334o l.Z803 1.2301 1. 13'44 1. 0i9s

. 1.25tid 1.2110 1.oO0 1.)881 1.0O65

*.4 00 L.8 1 . 14 L.1046 1.0393 0.9751

.41O * 1.123Z 1.0d 1 1.054o 0.992D 0.435s

e400 U I..2: 1.0314 1.0027 0.9477 0.d965

.4700 L 1.005- 0.978o 0.9530 U.9043 O.8587

* .SOuO * C.9511 0.927o 0.9054 0.do23 0.8210

.53o0 0 .899't 3.8791 0.d94 0.8217 0.7853

11 * .00b,99 O.U3ZZ 0.i150 0.781c U.7444

.5 -#,JO 0.Oc2V %.7d68 0.7717 0.7424 0.7141

.0200 ( ;.7557 0.742. J.729 4 0.703d 0.o7!o

. 0!) * 0.7165q 0.699L 0.b87o 0. 655 0.643,

*.O 0.6b4 O.b563 0.6466 O.o273 0.608i

.?LjO * O.b22.3 O.b14u 0.605o 0.5191 0.572o

.7400 4 0.5787 0.571o 0.5b64o 0.5505 0.53b

.77, U * (0.534d 0.529o 0.5232 O. 511', G. 499.,

.3JOO % 0.490 0.4857 0.4tt9 0.4711 O.*4b1

. 3U0 * j. 5.) '. L2 0.s,373 0.4295 %.,42't

,00'* 0.397o 0.394o 0.3916 0.3,35 0.3793

.i00 0*3473 0.34 5 1 O.342 v.33di o.333,

.42UC , 0.2920 0.290'-. c. 2881-0 0. 28,9 0.282t)

.47uU ' u.2277 J.2250 O.2oJ 0.2242 C.2222.

* 
u 

0 5 4 
Qe 2 t 

U. 23 

0. 11 

.. % .9.'-.



Table I (cont.)

p/K

D- .)Oo * .b, 1 47t L.25)SZ 1. 154 1.0930
.0J O * .0-7 t I.qbdi 1. ?-, 1.15341 1.0922
.•)IUO * 1.553- L.450li 1.2d14 . 11443 1.084 '
.15u0 I i.t4b L.37b7 1.22 77 1.10 4i 1 .049 ,-
,J.uoO 1.4031 1.249 1.Ld-0i 1.0753 1.0243
.IluO * 1.34,0u .*275d 1.1523 l.046b 0.999s
. 1 't, C * 1.293%1 1.2293 1.11o7 1.019 0. 474t)
.17uO * 1.2424 1.134o 1.0d20 0.9918 0.9503
.T3uO * 1.194 1.1421t 1.0433 0.9649 0.9262
.230O 1 . 114do 1.1 l.U157 0.9334 0.9022
.2 uO * 1.i049 1.06h@ O.i3a 0.9121 0.d787

.2 -,O 1.QO2 1.0241 0. 52e 0.3863 oJ.t550

.3 ZO * 1.C22't J.14872 0.921o 0.860c j.3317
•35u0 * u.9b33 %.951a 0..913 0.3351 O.d031
3300 * 0.9451 0.916j 0.,6 0.361t 0.8098 j.7850

.41uO 1 0.9064 0.8821 0.1322 0.744t 0.76Lo
.z40( 0.8722 ).84d4 O.d030 0.75941 0.73d1
.470O0 * 0.83tc 3.815z 0.77,41 0.7341 u.714
.53( *t O. OZ3 0.782o 0.7452 0.7069 O.b9Od
.53U0 * 0.7b7l 0.750', 0.71o: 0.8333 O.bb70
.50O0 * 0.7337 0.7183 0.687b 0.65 7 5 0.b 42
.59u0 * 0.7C00 3.b80 0.b 5i7 0.631b 0.6160
.- Zuo ' O.bbbj U.o540 u. o2"95 0.6051 0.592V
.6500 * 0.6327 j.b217 0.600k 0.5732 0.5673
.o0 * 0.5987 0.5891 0.5699 0.550c o.540d
.7LU * 0.56,4L 0.5560 0.5393 0.5222 0.513o
.74UOo * 0.529j 0.522i (. 077 0.49q2d J.455
.77u0 P 0.4934 0.4874 O.474 0.#62 3 0.4551
.jdJ0 3 3.156i 0.4512 0.4409 0.4302 0.'.24u
.13u, * 0.4174 ). 43. 0.40480 0.3960 u.3913
.d6O * 0.37btu 0.3726 0.3bbl 0.359k 0.355Z
..JjiO * 0.331- O.328d 0.3237 0.3114 0.3154
.92U0 * 0.2e09 0.2792 0.275o 0.271o 0.2700
.,5uO * 0.2213 0.2202 C. li 0.215.1 0.2147

_I! 7A



Table 1 (cont.)

p/K

1 .i42 3 L. 0 _ .:0,- 2.333a 2.750

.I3PU 9 1.G357 1.9339 0.Z4zo .OlOC 0. 75do

-A , .029% G .428o 0.,36: 0.79o4 C.7557
.. * .998 0.905o c.b2.3j 0.7911 0.7423

, u,' * U.97e, U. ad.5 0.307,-) 0.7697 0.73Lj

.Uuu * 0.45,;, 0.371. 0.79,3 0.7579 0.7211

.1400 C 0.9325 u..353-o 0.7dlu 0.745c U.71lu

.1u0 0.910o0  0.836o 0.7671 0.733t U. 002
20kO 0 0 20 .I 1't 0.7532 0.7211 0.68-'
.2300 * 0. o7o 0.?019 0.7393 0.708c 0.b7S7

JZJj * J.d4oj 0.76., 0.7251 0.o950 0.6670

.2,4uO * O.,24. 0.7bb? 3.71Jo 0.683C 0.055
3 0.803., 0.7440 0., 954 O.o69d 0.643)

.351u0 * '.711 v. 731., 0.o li 0.b5bl 0.b31.Z

.3 300 # 0.76C6 ).7126 0. 65 0.t423 0.old't

.'lj * 0.739i ;j.09'', 0.050', ).bZdC 0.6057

.4400 * 0.7171 0.675o 0.6345 0.6137 ).59/.?

.-tuu *' . l5t 0.65b7 0.613 3 0.5967 0.5781

.u1c * 0.t73i 0 .637 o. to1, 0.5834 o.5.14

.5300 * C.650o 0.6177 0.5604 0.5673 0.549
" u * 0.627o ).5975 0.5bb7 0.55014 0.5340

.i,)u * .047 0.577v 0.54 ,7 0.t337 0.5190

.62uo 0 G.5Uo 0.555o 0.5295 C.51b2 3.5024

.,,tO * 0.55. Q.5335 G.5100 0.,977 0. 4iu

.1 4 0.530- 0.510 0.',39. 0.47 '0 '. 4o65
.7%;. .50 4') 0.1486? u.46,7) 0.457t) J.'73

.14J * v.14771 0.4616 0.444o 0.43b.: 0.4265

.77J * 0.4491I 0.4353 0.-,207 0.4121, J.404o

. Ou 000 0.419u .4071 0.3947 0.3179 0.350o

.3JO * ).jch7 J.3707 0.360.0 J.363? 0.3547
•OA * .3517 O. 3437 0.3j3l 0.330. 0.325t
.1)uO * 0.312/ 0.30(5 0.2997 0.2961 0.2923
.* L.2bej 0.263b 0.251 0.2561 o.2531
.950 0 0.213. J.2107 G.20/o 0.2063 G.ZC~ o

_ .. % , .".,...jI A -- 2 - ..: .



Table 1 (cant.)

p/K

I C(,Q 0. 5o, 14.00

Dm .*)Jc o .7 7 459 0. ts52 v 0. 532C
.3J iu 0.6 7 7, 0 1 5( 0. 2 0 .5 02 c

Ijj A J.6755 0 . 79u 0. 5iQ7 0.501d
.053 Q 0. 665 t 0.5872 0.,.)446 .4d)7t
*6o ) 5 *)3~ )51 b Oa 5't.J3 0,49 3,i

0LL6 4 ibS J,5760 . l35 0. 49,32
Oe6't24 J.5704. 0.530o U.4866

.I7vO O .b33,j J.5b4't 0.525,o 0.4824

.Z3L0 * U.bZ57 0.55.30 0.5210 U.473d
.2300 0 t. b17 1 0.5510 0 5 15b 0.4741
.2nu0 0 O.0 I i.57 0. D 3j 0. 4t99

0 *,).wC * 0.5Q9L u.53,iv 0.50)414't45
.J32to 0 .5 9 .5 3 0- fi 1#.9 1 O,.4b0C
.3D00 0.579o -).5233 0.49190 0.4553
.3 i0) 0 O.5 b 9 u.5 15 d 0.4052 J, 449f;
. l jO * 0.5583 ().5o72 J.'. 76 1 .4431%
.-O4I. 0*O54eJ 0.,4992 0.47lu 0.4377

.'.1us 0*53b1 0.4901 004631t U.4315,
i .,u Q 0 ptp )a4d() 0.',50 0. 424 t
.53t0 * C.5126i 0 .,47 Od 0. 44to 0.41.76
5,JG 4 % 05C0 u. 4bt. 0.43730.4 3l

5-;tJo 0.48to 0*4'.fl7 0.407o 0.4017
.o Z t 0,4 7 2 Z 'J)4374 (.1 t15 0,.3929
.-7; * 34573 J.425 0 O.'.cmi 0.38332

*.65300 ' .441z) J.411-3 0.3943 J.373C
.714 P) u.42',5 )e 39715 0 a3d it Qo36,i3
.7'.tu 0*4Gbj 0*3320 0.361Z 0.3 4 9 i

.7 *v 0.36wo' 0.3647 0.351o 0.3354t
io0 *(. 0. 3641f )9345,0 0.3343 0. 3 19

.jjI vG v u. 3 It u.3246 0.3149 0.3021
.40030 0 0.3110t 0,303o 0.2921 0.2,91o

e0, v~u I 0 .,d53 . 0 *2 72 t U.2bbl* i2 57 2
4Q3 JG J.247 %) 0.23 3Y 0. 233v 0.2274

.%0 0.2003 0.1955 0.1922 0 6133.



Table 2. Values of zT for given values of D_zT T
D

P) U 0 4 3 36

. ivo * Z.3L3h

•~~ l u .,4, 7 4

L* 1.b,'6
3.3u I C,1 50~4

• * 0.8oo3
S.JO * 0.7150

.4fluo C.5u"45

.,7UU0 * 0.2a'47

.i-jU * C.2388
• 3300 * 17
.5,-,UO * 1,2lOd

7 0.2425
.z5J0 * C.1155

U 5 JO' C C. 1.) 92

.* C.1o33

.7L40 * 0.,177
.7*J C.1121.

.7 ?G-) I 0.lo65

.1 ,0 * C.LOjb

.36UO O.1471

G .1463
0.1137
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