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Objective of Research Effort

Among the problems encountered in attempting to analyze data from
actual experiments are (1) a significant portion of the data points often
fall below the instrument detection thresholds and (2) insufficient data
are available to form the population size necessary to validate
conclusions reached by standard statistical techniques. Versar addressed
these deficlienclies via this research effort to provide the Air Force with
better techniques to evaluate experiments ylelding data thus characterized.

When measuring environmental phenomena, the measuring devices/
procedures used are often unable to detect low concentrations. Thus,
concentrations below certain threshold levels are not measurable.
standard “detection limits" are set by various agencles for various

phenomena for various types of measuring devices. Measured values below
these limits are reported as “below detection limit" and are thus not
avallable for statistical analysis. (Sometimes values below these limits
are available, but their accuracy is greatly in doubt.) Consequently. the
statistician often has a very basic problem facing him: how does he
analyze data sets which contain a reasonable percentage of “below
detection limit" entries? This problem is exacerbated by the usual
problem of small sample size. As an example, support we have taken eight
samples of air near a chemical warehouse in order to see if there are
leaks. Concentrations below 0.7 parts per billion, say, are below the
reliability of the measurement procedure. Of the eight samples, suppose
five are below the detection limit while the other three are measured to
have concentrations of 1, 2, and S parts per billion. How do we find the
average concentration?

The dual problems of small sample size and sub-detection limit data
can often be encountered by statisticlans working on Air Force problems.

Examples are:

P o The determination of the "hardening” characteristics of AWACS and

other Air Force systems against nuclear explosions. The tests to

simulate segments of a nuclear environment are expensive and

provide relatively few data points in small portions of the

radiation spectrum. A significant portion of these data could be

“real,” but could be below the detection limits of the
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© The determination of the effects of Chemical, Biological, and
» Radiation (CBR) warfare agents against Air Porce systems and
N ® personnel. Again, due to the nature and costs of tests, data
would be relatively sparse. Much of these data, particularly
those representing “leakage” and other unintentioned side-effects,
could be below detection instrument thresholds, but would be
useful in evaluating the agent effects, particularly in the regime
- of low dosages over a long exposure period. The CBR requirement
® will undoubtedly receive more emphasis after the President's
recent announcement to resume the development of these agents.

P AP

3 0 The exposure of Air Force personnel to fumes released by fueling
b, operations. Some fuels contain trace amounts of toxic substances

3 (indications exist that synthetic fuels, which may receive

® increasing Alr Force use, contain larger concentrations of such
) substances than do conventional fuels). The exposure
» concentrations, and their effects over time, to persons

continually involved in refueling operations need to be further
assessed. Many of these concentrations are frequently below
detection equipment threshold.
We studied the problem of "below detection limit" data coupled with
. small size both theoretically and via computer simulations. We suppose
j that we are given N data points, p of which are “below detection limit" L
; and N-p of which have reported values larger than L. We suppose that the
distribution for the underlying stochastic process is known to belong to a
fixed family of distributions depending on an unknown parameter 6. We
wish to estimate 6. Among the techniques we used were maximum
W likelihood techniques, order statistic techniques, truncation techniques.
and fill-in with constants or expected values procedures.
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Significant Findings of Research Effort

The findings of our research effort are embodied in three manuscripts:

1. Bstimation of the mean for small data sets of left-censored
exponential data (Appendix A).

2. Bstimation of the normal population parameters by order statistics
given a singly censored Type I sample (Appendix B).

3. Bstimation of the parameters for small data sets of left censored
normal and lognormal data (Appendix C).

In the first, we investigated exponential data characterized by the
dual problems of small sample size with several values reported as
“smaller than the limit L." We proposed several estimators for the mean.
In particular, we investigated:

1. mwaximum likelihood estimator (MLR)

2. modified MLE, which removes the conditioning of the MLE due to
knowledge of p, the number of censored points

3. best linear invariant estimator
4. best linear unblased estimator
5. fill-in with constants

6. modified fill-in with constants, which removes the conditioning
on p

7. £4ll-in with expected values, which is equivalent to the MLE
8. truncation.

To evaluate the performance of these procedures we performed a simulation.
Selecting (by scaling) L=1, we tested 6=1/3, 2/3, 1, 2, 3, and 5 for
sample sizes N=5, 10, and 15. Using 20,000 data sets for each of the 18
cases, we found that the truncation method was the best while the modified
MLE was a close second. Here we used the square error as our criterion

for selecting techniques.

The second manuscript deals with estimating the parameters of the

censored normal distribution via order statistic techniques. Data from a

censored normal has been analyzed many times before using order
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statistics. However, all these previous studies used Type 11 censoring:
the p smallest observations are missing where p is fixed a priori. Type I
censored data (observations below a fixed value are missing) are usually
analyzed by Type II methods. We provide Type I estimators: however, the
algorithms fall to converge often enough to make the method practical.

The third manuscript deals with estimating the parameters of the

censored normal distribution by other than order statistic techniques. 1In
particular we investigated:

1. maximum likelihood estimator (MLE)
2. modified MLE, which removes the conditioning on p
3. fill-in with constants

4. modified fill-in with constants, which removes the conditioning
on p

5. fill-in with expected values of the missing data

6. modified f£ill-in with expected values, which removes the
conditioning on p

7. truncation.

To evaluate the performance of these procedures, we performed a simulation.

Selecting (by scaling) L=1, we tested
u=0.67, o0=.2, .3
u=1.00, o=.1, .2, .3
y=1.33, o0=.2, .3

for sample sizes N=5, 10, and 15. Using 50,000 data sets for each of the
21 cases, we found that the modified £111-in with expected values was the
best while the fill-in with expected values was only marginally worse.
The former had smaller bias but larger variance leading to a slight
improvement (in general) of the total squared error.
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Written Manuscripts

The three manuscripts mentioned above will be submitted to
appropriate journals for review and possible publications.
Presentation of Results
We presented the results of this research at the following meetings:
1. Operations Research Society of America, spring 1983 national
meeting in Chicago, "Small sample, below detection limit
exponential data“

2. Operations Research Socliety of America, fall 1983 national
meeting in Orlando, “Normal data and detection limits.”

We provided copies of our manuscripts to several individuals including:
1. Dr. John Beauchamp, Oak Ridge National Laboratory. Tennessee

2. Dr. David Payton, Air Force Weapons Laboratory, Kirtland AFB,
New Mexico.
We discussed the material of this study informally with participants in
the workshop on reliability held at the University of North Carolina -
Charlotte in June 1983.
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APPENDIX A

ESTIMATION OF THE MEAN FOR SMALL DATA SETS OF

LEFT CENSORED EXPONENTIAL DATA

Alan Gleit*

Versar Inc.

6850 Versar Center

P. 0. Box 1549

Springfield, Virginia 22151

This work was sponsored by the Air Force Office of Scientific Research
under contract F49620-82-C-0079.
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We study exponential data characterized by the dual problems of
small sample size with several values reported as "smaller than the limit
L.” 1In particular, we propose several estimators and report the results
of & simulation.

L Key words: Below detection limit; Reliability
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INTRODUCTION

In reliability theory, the exponential distribution plays an
important role. It usually leads to simple formulas for the quantities
of interest. In this way it may provide a "first approximation” to the
real-life situation. 1Indeed, quite often it leads to useful bounds for
these quantities. So an investigation of a problem in reliability theory

may begin with a discussion of the exponential distribution.

We have in mind the problem of estimating mean shelf-life for objects
placed in inventory. Often, to decide whether the object is still operable
(or edible or . . .), an expensive or destructive or time-consuming test
need be performed. Hence, the number of objects for our experiment is
small and so asymptotic or large-sample-size results are inapplicable.
Further, since testing requires money and time, one usually does not
continuously monitor for failures from the moment that the objects are
placed in inventory. Consequently, some of the units might have failed
prior to our testing. Thus our data will be characterized by (1) small
samples and (2) reported values for failures if above some limit L, but
only "below L" for those that failed very quickly. Our problem is to
estimate the mean of such a data set if we assume the underlying

distribution is exponential.

The problem that we address below is an example of censoring. 1In
general, censoring means that observations at one or both extremes are not
available. Our problem is equivalent to "left censoring"”; life testing
usually involves "right censoring”, i.e., the largest values are not
available. Two types of life censoring have received much attention. Type
I occurs when the test is terminated at a specified time before all the
items have failed; Type II occurs when the test is terminated at a
particular failure. In Type I censoring, the number of failures as well as

the failure times are random variables. This of course makes Type I
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censoring far more complicated. Consequently Type II methods have often
been applied to Type I data with the hope that the bias is not
appreciable. Our problem is analogous to Type II censoring since the

number of units, say p, with failures "below L" is a random variable.
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SECTION 1. THE ESTIMATORS
®
Suppose we have N identical units on test with time-to-failure
exponentially distributed with parameter 6, i.e., time-to-failure has
probability density
® . 1 -x/e
fe(x) e X>0. (1)
We assume o<p<N values lie below the (known) limit L. Thus we are
given data
e
{xl....xK, p values below L} (2)
where we have taken
K = N-p.
PS P
We are asked to find the parameter 0. In this section we shall
investigate several techniques to estimate ©.
o I. Maximum Likelihood Estimator (MLE)
For our data (2) the likelihood function is given by
p K
Fe(L) n fe(xi)
® i=l
where fe is given in (1) and
X -x/0
Fe(x) = Iofe(t)dt = l-e . (3)
®
Substituting (1) and (3) into the likelihood function and taking logarithms
yields
. -L/©
log likelihood = p log (l-e ) - K log 6 - Ix/0. (4)
@
Maximizing the expression (4) yields the conditional MLE ©*,
@
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Proposition 1. The conditional MLE ©6* exists and is the unique root of

o%x o —BL___ , Ix ()

X
K(e]:'/e -1) K

It is consistent, asymptotically efficient, and has asymptotic varisnce

-1 L2

[— 1
exp(L/6)-1)

K
/0))+6% ¥ (exp(-x,_,/0)-exp(-x /8017t

j=2

+ ez(exp(-Lle)-exp(—x

1 b

Proof Follows from Kulldorff (1961, Theorems 11.1 and 11.2).
The estimator 6* is biased. By using a simulation (see section 2
below) we may view the extent of the bias.

Examples. Let Lsl, O=2, N=x15. Suppose Ix = K(L+©), its expected value
(see Prop. A.4(f)).

Then p = 4 gives 0% = 2.32
p=S5 2.15
p=7 1.81.

N . . \ . 4 . .
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II. Modified MLE

The MLE ©* is extremely biased for small samples. The problem is that

0% tries to estimate the average value of all the data. Let

A = E(average all data |p). (6)

From Proposition A.4(f), we see that

_R_L___
A = O+L N “L/o 7
l-e

which is not 8. So we suggest modifying 6* to form the estimator 6o

which will satisfy the following implicit formula:

P L
0% = 00 + L - N —L/6o ° (8)
l-e

By ugsing our simulation (see section 2 below), we see that 6o is a very good
estimator. Further, if we replace Ix by its expected value, we see that

8o is close, but not equal, to ©. Consequently, it does have some small

bias.

Examples. Let L=l, ©6=2, N=15. Replacing Ix by its expected value, we

obtain:

D = 4 gives 60 = 2,002
P = S 2.001
p=7 1.996.

III. Best Linear Invariant Estimator (BLIE)

Ve let

X, (9)

be an arbitrary linear estimator. We wish to select those coefficients
{cl....cK} which minimize the variance of H among all invariant H,

i.e. all H satisfying

E(H/8) = constant.
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From Prop. A.4, we have
E(H) = IC E(x,)
i i

= IC, (L+E.©)
i i

= LIC, + O03C.E,. (10)
i ii
This is a constant times © if and only if zci-o. Hence, invariance of H
is equivalent to
ZCi = 0. (1)

So we wish to minimize E(H-) subject to (11). Now from Prop. A.4 we have

2 2
E(H-0)" = s(ztcicjxixj-zezcixi+e )

2 2 2
= zzcicj(bije +sizje +L£ie+sze+e )
-2ezci<L+:ie)+e’ L
2 2 2
= zxcicj(nije +Ei3j0 )-26EC.E. +0 (12)

where we have used (10). So our problem is to minimize (12) subject to (1ll).

Using a Lagrange multiplier A\, our problem is to

-20%C.E.-2)AIC,).
j(D j+E aj>e 201 E 2 i) (13)

= 0, each i, yields

min L = min (ztcic

Setting BL/aCi

0 = £C.(D, .+E.E,)0°-0E, -\ (14)
g3 i’ i

and 9L/3\ = O yields (11). The solution to our system (11) and (14) is
C1 = -1 + 1/K
Ci = 1/K, 1 = 2,...,K

A = - 0%/k* + Lo.
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The verification requires use of Corollary A.3. Hence the BLIE is
1
X u - = .
@ H 2, + X ix
We how have the following result.
P gjtion 2. The BLIE is (for N-p = K > 2)
L . 1
HX = - xl + K ix. (15)
It satisfies
® EH* = K*;—l' e (16)
var Hx = 8?/K. (17)
Proof. We note that
@ k-1 K 1
X = — — — R
H X ( -1 xl + K-1 ix)
So from Corollary A.6, HX is distributed as g—x x2(2(K-1)). Hence (16)
® follows. To obtain (17) we have |
var H* = E(H* - @) + bias?
= 9—21 a(x-1) + (&L 1)%?
4K K
o = Qz/K.
IV. Best Linear Unbiased Estimator (BLUE)
We let
@ K
G= J B.x, (18)
i=l
be an arbitrary linear estimator. We wigsh to select those coefficients
L (81...,8‘} which minimize the variance of G among all unbiased G.
From (10) we have
EG = LIB, + OIB.E..
i ii
@
@
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Since we require EG = 8, we require

iBi = 0

zBiEi = 1.
Hence our problem is ninz(c-e)’ subject to (19) and (20).
E(G-6)® = IIB,B D, .08° + 207 - 20.
i7)71)

Using Lagrange multipliers \ and u, our problem is to

min L = min (IIB,B.D,.0% - 2AIB,-2u(IB,E -1)).

ij'i;

Setting 3L/3B, = 0, each i, yields

i

2
0= tBjDije -X-uEi.

Now from (12)

AL/3\=0 yields (19), and 3IL/3u=0 yields (20). The solution to our

system (19), (20), and (23) is

B, = -1
B, = 1/(K-1), j=2,3,..,K

A = 0%/K(K-1)
u = -0%/(K-1).

Hence the BLUE is
GX = - i X, + '%‘ Ix.

We have the following result.

Propogsition 3. The BLUE is (for N-p = K » 2)
1
* X1 tx.

G* a - L 4

k-1 "1
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(19)

(20)

(21)

(22)

(23)

(24)
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It is distributed as 2(:_1) xz (2(Kk-1)). Consequently,
®
var G* = 6/(K-1). (25)
Also the BLIR HX satisfies
HX = K=l Gx.
® K
Proof. See Corollary A.6.
V. Fill-in with Constants Approach
® Various constants have been suggested as proxies for the data below L.
Pessimists might use zero (i.e. equipment failed immediately) while optimists
might argue for L (i.e. equipment failed at the instant we started checking).
Those suggesting some sort of balance might use L/2. Let us suppose that we
e use the value C as a proxy. Then our estimator is
1
0% = N (x + pC). (26)
Y This procedure is very easy to use and is easily understood by the
statistically non-sophisticated.
Clearly the rule 6* is biased. In fact
e 26% = L (K(L+6) + pC)
= 04L-F (84L-C) (27
using Proposition A.4(e). Consequently
®
ver 6% = %7 var (Ex)
K 2 (28)
= ;‘7 (-]
@
@
L J
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from Corollary A.5, a relatively small value since a (sometimes large) part of
' Y the data is replaced by a fixed constant. Hence ©* has a very narrow spread
about the wrong value!

To improve this technique, we suggest that 6* is trying to estimate

° . A = E (average |p)

- Bep R —L
+L-y {-a-L/®

from (7). Our suggestion is to modify 6* to form 6o which will satisfy

0x = eo-rL-g L (29)

N, _L/®o

OQur simulation (see Section 2 below) shows that 6o is a much improved

estimator.

VI. PFill-in with Expected Values

Let us fill in the missing data not by constants as in V above but by
more appropriate values: their expected values. From Proposition A.4(d) we
have

L
oL/0_

E(sum of missing data |p) = p(® - ). (30)

1

Hence our estimator 6% gatisfies the equation

L

x
L9y

X = % (Ix+p(O* - )). (31

After resrranging, this equation is identical to (5), the equation for the
MLE! Consequently, the MLE procedure is equivalent to filling-in the data
points "below L" with their conditional expectations. This interpretation
adds credance to our suggestion in II that the MLE needs to be adjusted via

the procedures outlined there.
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VII. Truncation

b Our last technique is very easy to conceptualize: forget that data below
L has been obtasined and assume that the distribution of the remaining K data

points are governed by the truncated exponential distribution

* 1 ,-x/0
©
se(x) = = ) .
' ! Y AT
L P
h} = % o{L-x)/0 for x>L. (32)

All "good"” estimators (i.e. MLE, BLUE, Minimum Variance Unbiased

Estimator) for our truncated distribution (32) are the same:

0X = % £x-L. (33)
]
It has the following properties. 1
%’ Proposition 4. The truncated estimator 8% is distributed as {
Q. .2
2K X (2K).

As such, it is unbiased with variance
+ var 6% = e’/x.

which is smaller than that of the BLUE.

Proof. See Corollary A.6(a).
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SECTION 2. THE SIMULATION

In order to evaluate the performance of the estimators based on maximum
likelihood procedures (parts I and II of section 1) and on f£illing-in by
constants (part V of section 1), we performed a simulation. Since the
exponential distribution has only a scale parameter © to estimate, all the
formulas depend only on the ratio 6/L. Thus we were free to normalize the
simulated data to the case L=1, 6=1/3, 2/3, 1, 2, 3, and 5. We selected

N=5, 10, and 15 as representative small data set gizes.

Using & standard pseudo-standard generator, we simulated 20,000 data sets
for each value of N and 6. The data sets were then artifically censored at
the cutoff L=l and passed to the several estimators to "guess™ values for
©. The data sets were then grouped by p, the number of missing data values,
and averaged. Typical results are included in Tables 1 and 2 below. The

tables include the method of truncation (part VII of section 1) as a means to
check the simulation since the mean and variance for this method have been
theoretically calculated in Proposition 4. We can clearly see that the

theoretical values agree quite well with those obtained in the simulation.

(Insert Tables 1,2 sbout here.)
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i e CONCLUSION
We have presented above several methods to estimate © based on censored
v from below data sets. Several are extremely simple, easily calculated and
_; understood by the mathematically unsophisticated. Among these, the method of
e truncation
d
,: 0X = 2 Ix-L
N N-p
: ® is clearly the best. It is unbiased and has small variance
' var 6% = 8%/(N-p).
Simulated data shows that it performs just about as well as predicted.
@ For the more sophisticated worker who will use a computer to find an
estimator the modified MLE (part II of Section 1) appears to be slightly
: superior. It is found via a two-step procedure: 6o satisfies
L ) - —L __ _ ex
y 6 + L - P/N —2—o =@
l-e
.‘ where 9% satisfies
’ 1 pL
Y o* = R Ix - =
4 (N-p) (N-p) (*/®"-1)
" It appears to have little bias with slightly smeller variance than the
method of truncation.
| §
@
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APPENDIX

In this section we investigate the distributions of various random

variables associated with our estimators.

Proposition A.1 Let Yl....YK be the order statistics for an exponential
distribution with parameter o, i.e. Yl....YK are a random sample

arranged in ascending order 05¥15¥25°--5¥K.
Then
Yl has an exponential distribution with parameter 6/K.
Yj+1'Yj has an exponential distribution with parameter
0/(K-j), j=1,...,K-1
c. {YI.YZ-YI.....YK-YK_I} are independent.
Corollary A.2 For the situation described in Proposition 1,
P S T
a. E(Yj) = (K+ k1t K-j+1)e
1.2 , 1 2 1 2, .2
b. Cov(Yin) = ((K) + (K-l) +..4+ (K-m+1) )
where m = min(i,j).
We let
E(K) 1 . 1
3 K """ K=j+1
(K) 1.2 1 2
Dij = (K) TS (K-m+1)

j-1
() _ p(R) e 12

D -
j 33 peo Kn

Corollary A.3 For the quantities defined above, we have:

K
o 3 o8 Lgl®
ju1 i i




....................

Proof. Suppressing the superscripts, we have the following calculations,

K i K
a. ID,,=% D..+ I D,
jal 1 gay M ajey 1
i K
=3 Dj + I Di

j=1 J=i+l
i
= Z D. + (K-i)D.
j=1 '
2 2 2 2 2 2
1 - S 1 1 1 iy
= (K) + ‘(K) + (K-l) 1 +..+[(K) + (K-l) +. .+ (K-i+1) 1 + (K 1)Di

U P TAP TR Ny S NN
= i(K) +(i 1)(K-1) +(1 2)(K—2) oo+ 1‘K-i+1) +(K 1)Di

i-1 1 2 i-1 1 2
= I (-nG3) + (K-1) I ey
=0 =0
i-1 1.2
= I -
n=0
T
= K-n
N=0
= Ei.
K 1 1 1 1 1 1
b. iE1 E = () + (g g+ (K ga + D

1 1 i
= K (K) + (K-l)(K_l) +..+(1) 1

We suppose in the remainder of this section that O<L<«w is a fixed,

given (known) constant.




Proposition A.4 Let Yl,...YN be the order statistics from an exponential

distribution with parameter ©. Suppose Y <L < Y . and let KaN-p. Let

P P+l

X, =Y j=1,..,K.
j p+Jj J

Then a. {xj-L} are the order statistics from an exponential distribution with
parameter O.
(Kg

b. EBE(X = E L
j1p) = By +
(K),2
c. cov(xilep) = Dij e
d. E(Y.+..+Y_|p) = p[o6 - L ]
. 1+ L0,

e. 3<xl+..+xxlp) = (N-p)(L+0)

N(L+0) - —RE_ -

__-L/®

£. E(Y1+..+YN|p)
1-e

E (sum of p independent samples each less than L)

Proof d. E(Y1+‘.+Yp|p)

= pE(X<L)

e-ge+Lze‘L’°]

ap[
1-e~L/®
L
= p(o- L/6 1.
e -1

e. follows from Corollary 3(b) and part (b).

f. follows from parts (d) and (e).

.....
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Py Corollary A.5 For the situation described in Proposition A.4, we have
ver (IX|p) = K6?
Proof var(IX|p) = E((IX)*(p) - (E(IX|pN?
. = E(Zinxj|p) - (K(L+0))?
= zz<nije’ + (L+E;0) (L+E;0)) - (K(L+6))?
= K07 + (K(L+8))? - (K(L+@))?
@
Corollary A.6 For the situation described in Proposition A.4, we have
1 O - I
s. (Kix - L)~ x (2K
- . K . - 2 2 -
b. (= 77X+ 37 X - Ty X (2(K-1))
Proof. Let
S, = K(X,-L)
) 1 1
® S K-j+1) X. .) j=2 K
j = ( -J+ (xJ-" j—l J’ R
Then v
. (K) (K)
= (K-q‘.l)(sj - Ej-l)
= (K-j+1)6/(K-j+1)
[~ ] = O,
Thus {sj/e} are i.i.d. exponential 1. Hence zsj/e ~ xz(2) and so
K 0 2
- I s, ~ 2 X (2(K-T+1))
j=1 !
and K
1 -0 2 -
K-T+1 jET 85 7 Z(k-Temy X (2(K-T4ID).
o

Part (a) is the case T=l; part (b) is the case T=2.
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APPENDIX B

ESTIMATION OF THE NORMAL POPULATION PARAMETERS BY

ORDER STATISTICS GIVEN A SINGLY CENSORED TYPE I SAMPLE

Alan Gleit*

Versar Inc.

6850 Versar Center
P. O. Box 1549

springfield, virginia 22151

* This work was sponsored by the Alr Force Office of Scientific Research

under contract F49620-82-C-0079.

.............
......

S S,

N Yl W




P DA S il e av gl

We construct the Best Linear Unblased Estimators for the msan and
variance given a Type I censored sample from a normal population.
Numerical experience with small data sets indicates that our iterative
procedure to find the estimators almost never converges.

Key words: Best Linear Unbiased Estimation, BLUE
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INTRODUCTION

The problem of estimating the parameters from a censored normal
distribution has been extensively treated in the literature. Two natural
censoring mechanisms are: (1) observations below or above a given point
may be missing (Type I) and (2) the p smallest or largest observations of
a sample of size N may be missing (Type II). Type I censoring is more
complex since the number of observations K = N - p is a random variable.
Consequently., Type II censoring methodology has been applied to Type I
data though the methods are clearly biased.

One widely used method to estimate the parameters of a normal
distribution is based on linear combinations of order statistics. For
Type 11 censoring, the known sample elements are arranged in ascending

order. i.e., X(1) < X(2) < *++ < X(K), and the method of least squares

is applied to get the best linear combination of them. The coefficients
provided by these linear estimators are unbiased (if K is known a priori)
with minimal variance. Important contributions to this methodology

include Gupta (1952)., Sarhan and Greenberg (1956, 1958), Law (1959) and
Dixon (1960). Below we extend this methodology to the case of Type 1
censoring. ' :




......

SECTION 1. CONDITIONAL ESTIMATORS

Let
X XS K

be the ordered censored sample of size K out of a complete sample of size
N. Ve assume that the p = N - K censored values are known to lie below
the censoring value L. We will first develop the minimal variance
unblased linear estimator (BLUE) conditional on p. Later we shall remove
this conditioning.

Qur initial problem is to find

G = § ijj (1)
and
H= § Hjxj (2)

with B(G) = u, B(H) = o, and minimal variance among such linear estimators.
To better formulate one problem, let

E(i,R,K) = expected value of the ith order statistic from groups
of size K for a standard normal random variable censored from
below at R, '

cov(i,J.R,K) = expected value of the covariance of the ith and
jth order statistics from groups of size K for a standard normal
random variable censored from below at R.

Using this notation we have

B(xj) = y+o B(J,(L-u)/0.K) (3)
cov(x Xg) = a2cov(1,], (L-u)/a.K) . )

Hence
BEG = XGj(u+cB(J.(L-u)/o.K)) (5)

varG = ¢2336,G,cov(1, 3, (L-u)/a.K) (6)

1%4




with similar formulas for H. Since EG should be u, we obtain from (5):
G, =1
E b
ZGJB(J.(L-u)/c.K) = 0.
Thus we may formulate our problem as follows.
Proposition 1. The BLUE's for u and o solve the following problems.

Pl: min $3G .G, cov(i,3,(L-u)/0.K)

13 13
such that ZGJ =1 (7
XGjB(j.(L-u)/c.K) =0 (8)
and
P2: min IJH _H_ cov(i,j,(L-u)/e,K)
13 13
such that Enj =0 (9)

EHjB(J.(Lﬂl)/o.K) =1, (10)

To solve Pl and P2, let us first write them using the equivalent
Lagrangean formulation:

Pl': min chicjcov(i;J.(L-u)/a.K) - achG 31) - Blzajz(j.(L-u)/o.x)

P2': min Xzﬂinjcov(i.j.(L-u)/a.x) - czzﬂj‘ﬂz(iﬂjﬂ(iv(L‘H)/G-K)°1)-
To write down the solution to Pl' and P2', we first introduce some
additional notation. Let

I(R.,X) = matrix with (i.3) coordinate equal to cov (1,3j,R.K)

B(R,K) = vector with ith coordinate equal to E(1.R,K)

1 = yector of length K whose elements are all the number one.
Finally let
I(R,X) -1' -B'(R.K)

1

0 0
B(R,X) O 0 .

M(R,K) =

Then the solutions to Pl' and P2' are

X oy Radin i et Bt S e S e e
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[+
b 0
o\ 0
a) \= M ((L-u)/e.X)| . (11)
0
8 1
0
0
A 0
al= M “((L-u)/e.K)| . (12)
0
8, 0
1
with optimal variances a; and 8,.
Unfortunately, the optimal linear combinations G and H depend on the
unknown parameters u and o! Hence our estimates for u and o need to
be found by iterative procedures.
Proposition 2. The estimates u* and o* provided by the BLUE's satisfy
(11), (12), and
G X = *
X 59 " u
H,x, = o*,
X 33
501utions to these four equations can be found provided extensive tables
of ll-l(!.x) are availlable. If they were, a useful algorithm is
fairly straightforward:
l. LetR =0
°
P 2. Let °I+1' HI+1 satisfy
0
G .
c{*l - M 1(RI.K) 0
81 1
0

. . R S . .
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3.

4.

o

»
O O

Let

Yre1 " 4,5 %y

Sre1 = U g %y

Rppp = (Lovgy V0

If {u_-u_,,| and |oI-a

V14l | are small enough, stop.

I+l

Otherwise, let I<—I+l and go to step 2.




SBCTION 2. UNCONDITIONAL ESTIMATORS

We now, after considerable effort, have u*, o* which clearly
depend on K. To obtain unconditional estimators we need to find the
expected value of u*, o*. For this purpose, we note the following.

(] Proposition 3.

- e ((L-u)/e)
1. B(x| xL) = p+o 1-#((L-p)/o) (13)

- ue ¢((L-u)/9)
2. B(x| xL) = wo g T970) (14)

$((L-u)/g)
1-8((L-p)/o) (15

4. E(x|xeL) = wita’-(Ltn)a f{{fﬁﬁ%fﬁ; . (16)

3. B(leng) = v2+02+(L+u)o

Letting

o 2((L-u)/a)
A= 6w/ - un

and :

° s = Slmul/el | (18)
and using (13)-(16) we may easily obtain the folloﬁing.
Corollary 4;

® 1. B(sum of all N data |p missing) = Nu+o(KA-pB)

2. ER(sum of squares of all N data |p missing) =
2 2
N(y +0 )+(L+u)o[KA-pB]
3. B((sum of all N data)2|p missing) =

K(K-l)(u+on)2+2px(u+cn)(v-aB)+p(p-1) (u-oa)2 +

M (u2+0?)+ (L) o(KA-pB) .

RS
WL e




¢
Corollary 5.
®
1. B (average of all N data|p missing) = u+o(KA-pB)/N (19)
2. B(s2 for all N datai{p missing) =
o w2402 + (L+u)o(KA-DB)/N - K(K-1) (w+aR)2/N(N-1)
~2pK(yu+aR) (y-oB)/N(N-1) - p(p-1) (u-0B)/N(N-1). (20)
Hence the expected values of u* and 0*2 are not u and 02 but the expressions
on the right hand sides of (19) and (20). Another iterative scheme would
2
® convert the biased u* and o to their unbiased counterparts.
®
.,
®
®
|
@
o
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® SECTION 3. NUMERICAL EXPERIENCE

To perform the calculations indicated in Section 1, rather extensive
tables of H-I(R.K) would be required. In turn, to find the inverse for
the matrix M(R,K) we would need to find the expected values B{R,K) and
the variance J(R,K) for groups of K order statistics from a standard
normal distribution with censor value R. To find these we generated one
million normal variates. We then grouped all those values greater than
R into groups of size K. The means and covariances were computed as the
averages of the values for each such group. Tables were prepared for
R=-3.0,-2.0(.1)+2.0,+3.0 and K=1(1)15. As an example, we show in
Tables I, II, III below the output for R=.1, K=1,2,3,4,5,9, and 14. For
groups of 14 values from the standard normal distribution all above the

© value R=.1, the first (J=1) order statistic has expected value 0.1763, the

‘ second (J=2) order statistic has expected value 0.2549, etc. Further, the
variance of the first (J=1) order statistic is 0.0053, of the second (J=2)
' order statistics 1s 0.0103, etc. Also, the covariance of the second (J=2)
o and first (I=1) order statistics is 0.0049, etc.

Foi each possible (R,K) combination M(R,K) and thence H-l(R.K)
was found. Por values of R not in our tables, linear interpolation was
used.

To test the value of our estimators, we used various combinations of

u and o. By adjusting the range and scale, we chose L=1 and
u=1.33; 0=.2,.3

*6 u=1.00; o=.1,.2,.3

: u=.67; o0=.2,.3

with total sample sizes N=5, 10, and 15. For each (u, o, N)
® combination we generated 50,000 samples, censored them at the value L=],
and tried our algorithm on the resulting data sets. 1In the algorithm of

L e ae O Lms

S s o o
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Section 1 we let “small” be .0l and stopped if R was ever out of range.
Unfortunately, in no (u, o, K) instance did even 10% of the samples

4
converge for -3gfl;f‘ <+3; in fact, for only u=l, o=.1 did even 5%
coverage!

Hence, the methodology described above, though theoretically useful,
has little practical value.
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TABLE I. Expected values of standard normal variates
above the value 0.1 in groups of K= 1,2,3,4, and 5

e ] At
“,

asassaaa SO OONOESASESSSEESAESRNESAARASEanS S csEEessafcaTasan -.---.-.-....---...-.. I

TRUNCATION VALUE o 0,1

N
v

MEAN OF MEAN OF NEAN OF MEAN OF
X Xe82 Xee3 Xess COVARIANCE
K= 1 Je ] J= 1 0.8616 1.0847 1.7301 3.25€¢0 0.3425 '
SUM OF MEAN: 0.8616
Ke 2 J=o 1 Je 1} 0.5380 0.4209 0.4256 Sel4E-1 0.1315
Js 2 [= 1 0.7357 0.1027
2 1.1768 l.7346 3.0215 5.99€+0 0.3501
SUR OF MEAN: 1e7147
K K= 3 Ja 1 [= 1 0.4134 0.2442 0.1887 1.77E=-1 0.0733
. J= 2 1= | 0.3893 0.0623
X 2 0.7911 0.7818 0.9159 1.23E+0 0.1560
S J= 3 [= ] 0.6165 0.0502
. 2 1.2093 0.1255
ﬁO 3 1.3700 2.2069 4.0492 B.27E+0 0.3302
X SUN OF MEAN: 2.5745
;:l
X K= 4 J= 1 [= ) 0.3438 0.1643 0.1023 7. T4E=2 0.0461
. Je 2 [a 1 0.2535 0.0408
2 0.6186 0.4759 0.4341 4+53E~-1 0.0933
J= 3 [= 1} 0.3671 0.0350
2 0.6778 . 0.0803
3 0.9661 1.0926 1.4049 2.01E+0 0.1595
J= 4 ‘- 1 0.5“72 0.0236
2 0.9979 0.0649
3 1.5845 0.1273
4 1.5085 2.5878 . 4.9481 l.04E¢1l 0.3124
. SUM OF MEAN: 3.4370
3 K= 5 J=a 1 = 1 0.3007 0.1227 0.0647 4,16E=2 0.0323
‘-0 J= 2 I= ] 0.1841 0.0286
F 2 0.5172 0.3314 0.2523 2.20€E-1 0.0640
3 = 3 [a ] 0.2575 .. 0.0257
. 2 0.4561 0.0573
: 3 0.7711 0.6970 0.7181 8.26E-1 0.1024
8 J= &4 Ja ] 0.3513 0.0223
% 2 0.6148 0.0489
L4 3 0.9317 0.0879
y 4 1.0944 1.3557 1.8653 2.81E+0 0.1581
o Ja 5 e } 0.5038 , 0.0182
. 2 0.8747 0.0395
ﬁ 3 1.3156 0.0703
' 4 1.8963 041290
Eca 5 1.6150 2.9093 5.7664 1.24E¢1 0.3012
- SUM OF MEANS 4,2984
:
‘b.
}.,
roo
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TABLE I1. Expected values of standard normal variates
above the value 0.1 in groups of K=9

b TRUNCATION VALUE = 0.l
MEAN OF MEAN OF MEAN OF MEAN OF
X Xee2 . Xs%3 X®84 COVARIANCE
K= 9 J= 1 Is= 1 0.2161 0.0581 0.0194 7.84E=-3 0.0115%
Je 2 I= 1 0.0840 0.0108
r 2 0.3389 0.1383 0.0668 3.736=2 0.0235
J= 3 [= 1 0.1108 0.0101
2 0.1797 0.0218
3 0.4659 0.2515 0.1544 1.06E~1 0.0345
J®» &4 |s= 1l 001399 0.0095
2 0.2249 0.0204
b 3 0.3130 0.0318
4 0.6035 0.4095 0.3075 2.52E-1 0.0453
= 5 [= 1 0.1722 0.0088
2 0.2752 0.0189
3 0.3819 0.0295
“ 0.4984 0.0419
5 0.7564 0.6315 0.5755 5.67E-1 0.0594
P Jew 6 ls 1 0.2091 0.0081
2 0.3328 0.0174
3 0.4607 0.0271
4 0.5999 0.0383
5 0.7580 0.0541
6 0.9307 0.9409 1.0251 1.20E+0 0.0749
P J= 7 J= 1 0.2536 0.0072
2 0.4020 0.0154
3 0.5557 0.0244
4 0.7230 0.0348
5 0.9119 : 0.0492
6 1.1293 0.0680
7 1.1405 1.4000 1.8372 2.56E¢0 0.0994
i= 8 I= 1} 0.3113 0.0062
2 0.4923 0.0135
3 0.6796 0.0216
4 0.8833 0.0308
5 1.1122 0.0437
6 1.3751 0.0606
P 7 1.7000 0.0890
8 le4127 2.1374 " 3.4460 5+89E¢0 0.1420
J= 9 = ] 0.4116 0.0059
2 0.6478 0.0113
3 0.8926 0.0178
4 1.1590 0.0258
r 5 1.4574 0.0370
6 1.7992 0.0517
7 2.2163 0.0747
) 2.7722 . 0.1197
9 1.8779 3.7899 8.1844 1.88E+1 0.2637
F SUM OF MEAN: 7.7426
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TABLE III. Expected values of standard normal variates
above the value 0.1 in groups of K=l14
...-....--.---.-.-.-.-...-.........--....--.--..--.-.-....--.-----..-..--.--...-
TRUNCATION VALUE = 0,1
® MEAN OF MEAN OF MEAN OF  MEAN OF
X xse2 Xse3 Xeey COVARIANCE

Kele Jo 1 e} 0.1763 0.0363 0.0089 2.58E=3 0.0053
J= 2 l= ] 0.0499 0.0049
2 0.2549 0.0753 0.0256 9.96E-3 0.0103
@ Js 3 = ] 0.0637 0.0047
2 0.0951 0.0097
3 03349 0.1271 0.0543 2.58E=2 0.0150
J= &4 1= } 0.0787 0.0045
2 0.1166 0.0093
3 0.1551 _ 0.0142
® 4 04209 0.1971 0.1019 5,77E=2 0.0200
J= 5 [= 1 0.0937 0.0043
2 0.1383 0.0090
3 0.1834 0.0135
4 0.2325 0.0190
5 0.5074 0.2821 C.1706 1.11E~1 0.0247
® J= 6 [= 1 0.1099 0.0041
2 0.1616 0.0086
3 0.2139 0.0129
. 4 0.2706 0.0180
5 0.3278 - 040233
6 0.6003 0.3901 0.272% 2.03E-1 0.0298
® J= 7 1= 1 0.1269 0.0039
, 2 0.1860 0.0081
3 0.2458 0.0121
4 0.3107 0.0169
5 0.3759 0.0218
6 0.4469 0.0280
7 0.6980 0.5223 0.4166 3.52E~-1 0.0352
® J= 8 I=s ) 0.1452 0.0036
2 0.2124 0.0075
3 0.2805 0.0114
4 0.3542 0.0160
5 0.4283 0.0205
6 0.5088 0.020646
® 7 0.5941 0.0332
8 0.8037 0.6872 0.6221 5.93E=1 0.0414
Js 9 [= ] 0.1651 " 0.0033
2 0.2409 0.0070
3 0.3180 0.0106
4 0.4011 0.0149
e 5 0.4846 0.0190
6 0.5755 0.0247
7 0.6716 0.,0311
8 0.7764 0.0388
9 0.9178 0.8907 0.9105 9.76E-1 0.0485
J=10 1= 1 0.1876 0.0031
2 0.2733 0.0065
® 3 0.3605 0.0100
4 0.4544 0.0139
s 0.5487 0.0176
6 0.6514 0.0230
7 0.7597 0.0291
(] 0.8777 0.0364
o 9 1.0062 0.0456
10 1.0468 1.1530 1.3322 1.61E+0 0.0572
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TABLE ITI continued

0.2140
0.3112
0.4103
0.5171
0.6243
0.7407
0. 8636
0.9970
l.1422

Jall 1= ]
2
3
4
5
6
?
8
9
0 1.3077
1
1
2
3
4
-]
6
?
8
9

[N

1.1992 1.50067 1.9788 2.71€+0
0.2464
0.3579
0.4712
0.5938
0.7169
0.8502
0.9905
le1429
1.3086
10 14970
11 1.7236
12 l.3844 2.0053
0.2904
2 0.4212
3 0.5542
4 0.6980
5 0.8421
6 0.9984
7
8
9

+ =12 [=

3.0326 4.77€+0

1.1626
1.3412
1.5346
10 . 17542
11 2.0168
12 2.3427
13 1.6336 2.7952
0.3659
2 0.5305
3 0.6979
A 0.8786
5 1.0598
6 1.2550
7 1.4608
] 1.6844
9 1.9260
10 2.1995
11
12
13
14

5.0017 9.34E+0

2.5256
2.9274
3.4803
4.4970

10,3215 2049E¢1

r 2.0644

12,0424

SUM OF MEAN:S

0.0026
0.0056
0.0087
0.0124
0.0159
0.0210
0.02067
0.0333
0.0417
0.0525
0.0688
0.0024
0.0050
0.0076
0.0112
0.014%
0.0192
0.0244¢
0.0304
0.0381
0.0480
0.0637
0.0890
0.0024
0.0047
0.0071
0.0105
0.0134
0.0179
0.0225
0.0284
0.0355
0.0443
0.0580
0.0814
0.1269
0.0020
0.0042
0.0066
0.0098
0.0125
0.0160
0.0201
0.0254
0.0315
0.0387
0.0502
0.0698
0.1084
0.2358
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ABSTRACT

We study normal and lognormal data characterized by the dual
problems of small sample size with several values reported as “smaller
than the limit L". 1In particular, we propose several estimators and
report the results of a simulation.

Key words: Below detection limit: MLE: fill-in techniques; Type I
censoring; environmental data analysis,
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INTRODUCTION

The reality of detection limits in the measurement of environmental
phenomena is undeniable. Concentrations of pollutants are quite often
too small to measure and are reported as "“not detectable”. For such
measurements, we know only that the concentration lies below L, the
detection limit.

Thus, the problem of address is one of censoring. 1In general,
censoring means that observations at one or both extremes are not
available. Our problem is equivalent to "left censoring”: life testing
usually involves “right censoring”, i.e., the largest values are not
available. Two types of life censoring have received much attention.
Type I occurs when the test is terminated at a specified time before all
the items have failed: Type II occurs when the test is terminated at a
particular failure. 1In Type I censoring the number of failures as well as
the failure times are random variables. This, of course, makes Type I
censoring far more complicated. Consequently, Type II methods have often
been applied to Type I data with the hope that the bias 1is not
appreciable. Our problem is analogous to Type I censoring since the
nunber of measurements, say p, wWith concentrations below L is a random
variable.

Bnvironmental data is characterized not only by left censoring but
also by small sample size. Required measurements for compliance purposes
often are performed annually, quarterly, or, at most, monthly due to the
expense or disruption caused by the testing. Studies of pilot plants or
demonstration plants are often of such short duration that five to ten
samples are all that are obtained. Thus, methods for estimating the

parameters of environmental data using asymptotic or large-sample-size
procedures are usually inapplicable.

In sum, environmental data usually has the following characteristics
which make it difficult to analyze:

1. The data is left censored with a random number of data values,

2. The sample size is very small.




()

] Further, environmental data quite often is well-modelled by the normal or
the log-normal families. Consequently, the problem we address below is
one of estimating the parameters of a normal or log-normal distribution
when the data sets are characterized by (1) and (2) above.

P The problem of estimating the parameters of left censored normal data

has been extensively studied. Methods may be categorized as: (1) maximum
likelihood estimators, (2) estimators based on linear combinations of
order statistics, and (3) others. Maximum likelihood has been studied by,
r among others, Cohen (1950), Gupta (1952), and Harter and Moore (1966).
Linear estimators have been studied by, among others, Gupta (1952), sarhan
and Greenberg (1956, 1958), Saw (1959), and Dixon (1960). Other methods
include a method of moments suggested by Ipsen (1949) and the conservative
I estimator for the mean calculated by replacing all missing data by the
truncation point (suggested by the U.S. Environmental Protection Agency).

All of the above techniques have drawbacks. The maximum likelihood
procedures, though applicable to Type I data, are inefficient for small

b’ data sets and require numerical interpolation in extensive tables. The
linear estimators are based on Type II censoring and so are biased for
Type I data. Most estimation schema require extensive tables of
coefficients. The moment estimator is extremely inefficient for small
r data sets while the conservative estimator is extremely biased.

Below we shall evaluate on simulated data various estimators, some

new and some from the literature, to determine which (if any) are

reasonable.
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SECTION 1. MAXIMUM LIKELIHOOD ESTIMATOR

In this section we recall the procedures from Gupta (1952). We assume
O<p<N values of ocur N samples lie below the (known) limit L. Thus we are
given data

{ xl' . xx. p values below L} (1)
where we have taken
K=N-p. (2)

We are asked to estimate the mean u and standard deviation ¢. For our
data (1) the likelihood function is given by:

p K
$ ((L-w)/o) M (X~ w)/o) (3)
i=1

where &, respectively ¢, 1s the cdf, respectively pdf, for the
standard normal random variable. Taking logarithms yields

log likelihood = p log & ((L-u)/e) - Klogo - % I ((x-w)/a)?. (4

Maximizing the expression (4) ylelds the maximum likelihood

estimators (MLE). Setting the partial derivatives equal to zero yields

=i - bg e((L-u)/g)
MR IX T S ((ow) /) )

. 1 12 — Rg o _ .y e{({L-u)/a) (6)
o= g I (X-w)T - F (L) T ey
Let
' - 1
f X=p2X (1)
i. s’-%z(x-i)’. (8)
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1. Calculate ;. 4, s*, and p/K from the data.

2. Calculate D using (19).

3. Pind a value of a satisfying (13), (14). and (20). Find the
® corresponding value for z.

4. Then the estimates follow from (15) and (16):

ot =d/z (21)

® w =X+ (c2-8% /4. (22)

In order to carry out this algorithm a table is needed giving the values of
z for a given pair (D,p/K). Tables can be found in Gupta (1952) and also
below as Table 1. Note that when K=1 we hzve S=d=0 and so that above
procedures do not produce useful results,

R il 3 R —————s - e s e W e ;_')v‘,‘f
®
Py The procedure to find w and o is then as follows:




SECTION 2. TRUNCATED MAXIMUM LIKELIHOOD ESTIMATOR

our next technique is very easy to conceptualize: forget that data
below L has been obtained and assume that the distribution of the remaining
K data points are governed by the truncated normal distribution

g(X) =9 ((X=-y) /o) / (1- & ((L - w)/o)). (23)

The log likehihood for our K data points is

log likelihood = -K log (1 - # (a)) - K log o - 1/2 § ((X - w)/&)?
where we again used (12):

a=(L-wu)lo.

Proceeding as in Section 1 we let

B(a) = p(a)/(1l - &(a)) (24)
zT(a) = -a + B(a). (25)
Then
D = 8%/ (s* + 4% (26)
2
= (l-az,r - zr) /7 (1 - azT). 27)

So we need to modify our previous algorithm in Step 3 to find z¢ for
a given value of D. Our Table 2 provides the necessary input.
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SECTION 3. CONDITIONAL FILL-IN TECHNIQUES

A general technique for dealing with missing values 1is to replace
® them with proxies. In thls section we describe estimators using
constants or using expected values of the censored values as proxies.

i. Fill-In wit nstants
PY various constants have been suggested as proxies for the data below L.
The United States Environmental Protection Agency has a mandate to protect
the human population from harmful pollutants. In doing this it usually
errs on the side of conservatism. Thus, EPA often suggests that all
° censored values be replaced by the censoring value L to obtain the clearly
most upward-bilased, i.e., conservative, estimator for the mean pollutant
levels. For pollutant concentrations the most liberal policy is the one
that substitutes zero for the censored data: If I cannot measure it, it's
not there. Those suggesting some sort of balance might use L/2. Let us
® suppose that we use the value C as a proxy. Then our "data“ are
{ xlrooov xK.C..... C}-
Since we have all N values, we would use the usual estimators for the mean
and variance:
u* = % (IX + pC) (28)
o ov? = Ao (T x? + pc? - Nut?) . (29)
N-1
This procedure is very easy to use and is easily understood by the
° statistically .on-sophisticated.
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2. Fill-In with Randon Order Statistics

As an alternative, we may elect to fill-in the censored data with

seamingly more appropriate values: their expected values. To develop the
formulas, we note the following.

Proposition 1.

. @ ((L-y)/a)
1. B(X| X2L)=u+o 1 - & ((L-p)/o) (30

L-u)/o

2. BE(XI XL =n-o Frphy (31)
2 - w2 2 L-u)/g

3. BE(X"| X2L)=yu" + 0+ (L +y)o 1 -8 ((L-p)/a) (32)

4. B (X X <L) = u? + o= (L +y) o &M{Loul/a) (33)

¢ ((L-w)/o) °

Thus the eXpected values of the sum of the censored data and of the sums

of squares are p times the right-hand-sides of (31) and (33), respectively.
Hence, u* and o* must satisfy

.1 _ @ ((L = u*)/g*)
whos g [ X4 put - pet TN 7o) ) (34)
orls L (DX put M pott - (L4 un) orp  HLIMUEL oy ez 9

Let us simplify these expressions. Recalling our previous

definitions (7), (8), for X and S2 and our previous notation (12),

(13), for a, A(a), we find that (34) and (35) may be transformed to

w e X - B e (36)
o g+ 1%5; A(a*) (X - L) = §? +lx:1 (X - u*)(X-L) . (37)

>~
'.l
rd
L ¢
\

»
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Bxcept for the factor K/(K-1) in (37) these are identical to the MLE
estimators (9) and (16)! Consequently, the MLE procedure is almost
equivalent to filling-in the censored data with their conditional

expectations. To numerically solve (36) and (37) set

Yo " % T 1
and use the right-hand-sides of (36) and (37, . define u
] in terms of u , o, .

il 33
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*. SECTION 4. UNCONDITIONAL ESTIMATORS

The estimators developed in Sections 1, 2, and 3 are biased. The
problem is that they estimate the parameters conditionally on the
h knowledge of p, the number of censored values. In this section we will
readjust the estimators removing the bias due to conditioning.

1. Pill-In with Constants
Recall that our N data values are
{ xlo soe , XKU C, e , C }-

i To compute the expected value of u* and o* given by (28) and (29) we
will use Proposition 1 and definition (24) for B.

i.' Proposition 2.
1. B (IX + pClp) = K(u + oB) + pC. (38)

2. E (IX2 + pc2|p) = K(u2 + o2+(L + p)oB) + pC2.

(39)
3. E ((IX + pC)2|p) = K(K-1)(n + oB)2 + 2pKC(u + oB) + p(p-1)C2 (40)
r + K(u2 + 02 + (L + u)oB) + pC2.
ollary 3.
1. B(u*|p) = (K(u + oB) + pC)/N (41)
r 2. B (o*2|p) = [K(u2 + 02 + (L+u)oB)+pC2]/N-K(K-1)(u+cB)2/N(N-1)
-2pKC (u + oB)/N(N-1)-C2p(p-1)/N(N-1) . (42)

A el .




® So, given data, first compute u* and o*. Using these values
unbiased estimates By+ O MaY be found by solving

u* = (K(potdg Bo) + PC)/N (43)

o*2 = K[uoz + g ' (L+ug)og Bol/N -K(K-1) (ugtogBg) 2/N(N-1)
- 2pKC(ugt+ogBg) /N(N-1)+KpC2/N(N-1) (44)
where
@ -
Bo = B((L-ug)/og). (45)
Values for Yo' % satisfying these equations to any pre-set

degree of accuracy may be easily obtained by use of a computer.

o As an example, we initialize by
¥ = u*, o) = o
and then update by

lo By = B((L-uj)/Oj) (46)

uj+1 = (Nu*-pC-o4KB4)/K (a7)

P °j+l’ = Nc*“'/l("'(l(-l)(u3+1+aij)3/(N-1) + 2pC(uj+1+oij)/(N-l)
- pC2/(N-1) - uj+1z- (L+ug+1)o4By . (48)

3. Fill-In with Random Order Statistics

}“ We let ¥ < Y

1 € *°c & !P < L be the (random) order

2

statistics. We then use Proposition 1 and definitions (13) and
(24) for A and B to obtain the following.
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Proposition 4.
1. B (X + IY|p) = Nu + ¢ (KB - pA) (49)
2. B(ZX2 + IY2|p) = N(u2? + 02) + o(L + u)(KB - pA) (50)

3.  B((IX+fY)2|p) = K(K-1)(u+oB)2+2pK(u+oB)(u—oh) + p(p~1)(u-od)2
+ N(u2 + 02) + o(L + u)(KB - pA). (51)

Using these results, we can compute the expected values of our
estimators u* and o* as given by (34) and (35).

Corollary S.
1. B(u*|p) = u + o(KB-pA)/N (52)

2. B(o*2|p) = [N(u2+02)+o(L+u)(KB-pA)]/N - K(K-1)(u+oB)2/N(N-1)

~2pK(p+oB) (u-ch)/N(N-1)-p(p-1) (u-oA)2/N(N-1). (53)

Ve may find unbiased estimators LR and % {to any degree of
accuracy) for this case in a fashion similar to that of case 1 above.

One scheme puts

Ui+l = u* - cj(KBj-ij)/N (54)

2 2 2
] = g*° + K(K-1) (u,, ,+a,B.)°+ 20K (u,, ,*o B )(u, .-g.A ) +
I+l N Y gy 33T
- - z -
+ plp 1)(u1+1 ajnj) - ojﬂL+vj+1)(KBj p§11
N(N-1) N

(55)

- ]
T

3. Maximum Likelihood Estimators

We noted above that the maximum likelihood estimators (9) and (16)
were virtually identical to the Fill-In with expected value estimators
(36) and (37). Consequently, we can find the expected values for the
MLEs.
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Lemma 6.

B(S2) = 02 + (L-u)oB - o2B2 . (56)

Proposition 7.
1. B(u*|p) = u + o(KB-pA)/N (57)

2.  EB(a*?|p) = z(l‘;—%*’m.v.) + isﬂp)

- _ 112 (58)

- 5—% w? + e’ s EELU(L+H)(KB*9A) - ;%§§i)(u+aa)’ -

_ 2p(K-1) ooy _ R(P=L)(K-1), _ .2 _ (L-u)oB _ o’B .
N(N-1) (PHoB) (wmah) = Fury ik (wmeR)T Ty K

We may find unbiased estimators LR and 9 (to any degree
of accuracy) for this case in a fashion similar to case 1 above.
One scheme puts

* - g,.(KB

Mgy = WY - oy (KB -PAI/N (59)

_ij

2
= 2p(K-1)
c:j+1 = o%2 +\(N-1) (u3+1*Oij)z + N(N-1) (uj+1+to3By) (ug+1-o4Ay) +

-1) (k-1 2 K=l )
*UNORDK (Pga17ogRy) T T Ty oy (Ltuy,y ) (KByTRRY)

2 . 2
o, B K=l 2
+ 1 = i =K Ya (60)

.......................
.............................

..........
.................
.............
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SECTION 5. ORDER STATISTIC TECHNIQUBS

Previous work on linear estimators are for Type II censoring, i.e..
those with fixed sample sizes and not fixed censoring points. These have

often been used in Type I situations with the hope that the resulting
; bias is small. We have investigated linear estimators for singly
' censored Type I samples elsewhere (Gleit 1983) and reported their very
\ poor performance.
®

................
..................
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SECTION 6. LOGNORMAL DATA

If our sample were from a lognormal distribution, then we could apply
® the techniques described above to the logarithms of the data to estimate
p and o for the resulting normal distribution. Then the parameters of

the lognormal could be estimated by using the following facts:

mean of lognormal = exp (u + s?/2)

variance of lognormal = exp (2u + a’) (exp () -1).
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SECTION 7. SIMULATED DATA

To evaluate the performance of our estimators we performed a
simulation. By rescaling and changing origins, all the formulas depend on
choosing two of the three parameters: u, o, and L. Ve normalized the
simulated data to L=1 and selected the following seven combinations for
u and a:

u=0.67 0= .2, .3
=100 0=.1 .2, .3
n =133 0=.2 .3.

Ve selected N=5, 10, and 15 as representative small data set sizes.

Using a standard pseudo-random number generator and the Box-Muller
transformation, we generated one million standard normal random variates.
Using these variates, we generated 50,000 data sets for each of the
twenty-one combinations of N, y, and o. These data sets were then
artificially censored at the cutoff L=1 and passed to the several
estimators to “"guess” values for yu and s. The data sets were then
grouped by the value of p, the number of censored val .es, p=0,1, <*° ,
N-1.

For each technique, each p, each N, and each u, o combination we
computed the mean and variance of the estimators for u, for ¢, and for
the mean and variance of the lognormal distribution whose logarithms
P follow the normal (u,o) distribution.

Typical results are reported in Tables 3, 4, and S below. Table 3
reports the results for estimating the mean from data with N=5, u=1.33,
and 0=0.2. The sample sizes are large enough only for p=0,1l, and 2. Ve
L’ see that the modified MLE and modified fill-in with constants routines
failed to converge for p=2 and did a fair job of converging for p=l. The
truncation method had an unacceptably large variance. The MLE was very

biased high: the modified version did not noticeably improve the




estimator. The expected value did a reasonable job while its modified
form decreased the bias at the expense of added variance.

Table 4 also reports the results for estimating the mean but from
data with N=10, u=1.00, and 0=0.3. The sample sizes are large enough
for all values of p from 1 to 9 (i.e., all values of interest except p=0).
Again the modified MLE and modified fill-in with constants routines did
not converge very often. The truncation method again has large variance,
the MLE is biased high, the expected value does very well, and the
modified expected value does the best. Finally Table 5 reports the
results for the mean for simulated lognormal data with mean 1.99, N=5,
corresponding to u=0.67 and o¢=0.2 for the underlying normal. The
results are essentially the same as in Tables 3 and 4.

The results are very consistent throughout all the twenty-one cases
for each of the four possible quantities estimated: normal mean and
variance. lognormal mean and variance. The expected value estimator does
a very good job while its modified form reduces the bias but increases the
variance. These procedures converde just about all the time. The MLE is
usually highly biased, has a large variance, and is not usable for the
case K=1 (i.e., only one data point). The modified MLE almost never
converged: even when it d4id, it did a poor job. The truncation method
always had an unacceptably large variance; it was also very biased for P/N
large and not usable for K=1. Fill-in constants did not perform very
well. Por small p, fill-in with 0.5 did not do too badly: for large p,
the estimator virtually agrees with the constant and so is of no value.
The modified form almost never converges. Using the criteria of minimum
square error, i.e.

square error = B (6 -e?
= Blas® + variance,

in general the modified expected value is best with fill-in by expected
values coming in a close second.




CONCLUSION

We have presented above several methods to estimate the mean and
variance for a normal distribution based on censored from below data
sets. Several are extremely simple, most require extensive computer
calculations and some require extensive tables. Among these the modified
£111-in by expected values (54) and (55) is our choice with fill-in by
expected values (36) and (37) a close second. Though far more biased,
this latter approach has lower variance.
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Table 1. Values of 2z for given values of D and p/K
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Table 1 (cont.)
p/K
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Table 1 (cont.)
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Table 2. Values of 1z, for given values of D
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