

Aseesslon For

MI ° GA&I
Unannounced

Jutitficatio

DilttrbutiT / The Enhancement of

Availability Codes Datamodule I

Avail and/or TECHNICAL REPORT I
bigh Special

APPROVED FOR PUBLIC RELEASE

DISTR1BUTiON UiLIMiTED

0August 1, 1978 to October 15, 1978

Computer Corporation of America
575 Technology Square

Cambridge, Massachusetts 02139

D-TICS ELECTE
DEC 6 IM31D

D
This research was supported by the Defense Advanced
Research Project Agency of the Department of Defense and
was monitored by the Naval Electronic System Command
under Contract No. N00039-78-C-0443, ARPA Order No. 3175,
Ammendment 20. The views and conclusions contained in
this document are those of the authors and should not be
interpreted as necessarily representing -the official
policies, either expressed or implied, 'or'the Defense
Advanced Research Projects Agency or the U.S. Government.

,1I- . , :' "t ,'' :r " . " " -:/ '*'" ' ' ' ' %

Technical Report Page -i-
TABLE OF CONTENTS

TABLE OF CONTENTS

1. Introduction 1

2. Study Procedure 2

3. Model Definition 5
3.1 Processing Components 7
3.1.1 Overview of Datacomputer Processing Steps 7
3.1.2 Communications 8
3.1.3 Compilation 11
3.1.3.1 Parsing 13
3.1.3.2 Expansion 13
3.1.3.3 Simulation 14
3.1.3.4 Code Generation 15

. 3.1.4 Execution 16
3.1.5 Storage Interface lb
3.2 Selection of Components in the Model 22
3.3 Query Classes 24
3.4 System Loading 25

4. Measurements 27
4.1 CPU Time Measurements 28
4.2 System Load Experiments 32
4.3 WES Experiments 34
4.4 Measurements on the FC Database and SDD-1 Usage 37

5. Preliminary Conclusions 39

6. Future Work 41
References i

Refere nces

..
X....*.*.*..*l. *e-.*

Technical Report Page -1-
Introduction Section 1

1. Introduction

This report summarizes the first two and one half months

of a project entitled "The Enhancenent of Datamodule 1".

\The focus of this project is to study the Datacomputer's

performance in its role as a datamodule in SDD-1 [ROTHNIE

and GOODMAN] and as a DBMS in other command and control

applications. The goal of this study is to produce a set

of potential performance enhancements and an analysis of

Stheir expected effect on overall Datacomputer performance.

i the reporting period, a model of Datacomputer

performance was constructed and measurements of current

U system performance were made. The results of this initial

work have already indicated that parts of the system are

bottlenecks and this, in turn, is suggesting potential

ienhancements to be analyzed further along in the study.

ft+ . % .- - ftft * . .' tt*', , f " t, ft . . ., , ". -, ft 'f . 4+'+ . " f. ft-o -t, -,

1 7 -7

Page -2- Technical Report
Study Procedure Section 2

I

2. Study Procedure

The study procedure we are using is a formal analytic

process aimed at identifyin request processing

bottlenecks, suggesting techniques to relieve these

bottlenecks, and evaluating the cost-effectiveness of the

suggested improvement techniques. The study procedure

steps being followed are:

1. Model building -- determining a simple picture of

the way the Datacomputer performs.

2. Requirements Analysis -- determining the

performance requirements of the command and control

community.

3. Measurement -- calibrating the model with the

performance parameters of the current Datacomputer.

4. Sensitivity Analysis -- determining where the

system bottlenecks are using the calibrated model

and the requirements analysis data.

I

Technical Report Page -3-
Study Procedure Section 2

j 5. Enhancement option generation -- proposing

candidate actions for improving performance.

6. Enhancement option analysis -- determining the

effects on the model of adopting each performance

enhancement option.

7. Evaluation and recommendation -- recommending a

specific set of actions to be taken based on the

cost, flexibility, and effectiveness of each

option.

During the reporting period, progress has been made in the

j first four steps of the study procedure.

1. A model of the Datacomputer which represents the

delay incurred by different components of the

Datacomputer under various classes of query traffic

and various system loads has been constructed.

2. Interactions have taken place between CCA and NOSC

as to Datacomputer performance requirements and

typical command and control database traffic.

3. A version of the Datacomputer has been modified to

produce extensive performance data during request

processing. Performance measurements hav.. been

m i smade using this data.

.I

7,Page -4- Technical IHeport
Study Procedure Section 2

U 4. The data from the measurements have been used to

>*4 populate the model and begin to discover where the

9.-' system bottlenecks lie.

.4

I

-~~~~1: '.p W*-* -. p -.- .-

Technical Report Page -5-
Model Definition Section 3

I

3. Model Definition

A Datacomputer performance model which represents the

delay incurred by each component o the system for each of

several types of queries and under each of several system

loads has been defined. This model can be viewed as a

3-dimensional matrix of the sort pictured in figure 3.1.

The first dimension represents major processing components

of the Datacomputer, the second dimension corresponds to

different classes of queries, and the third dimension

represents different system loading conditions. An

initial version of this model has been constructed.

U

-a:

,I

Page -6- Technical Report
Model Definition Section 3

5Datacomputer Model Figure 3.1

VL

D

Cfl D
E4 4

0 D5 ___ ____

D6

I6

E-4 D"C 8

D9

*10

02Q 3 04
Query Classes

A---- b1

Technical Report Page -7-Model Definition Section3

Ii

3.1 Processing Components

I!
3 The first axis to parameterize is the Datacomputer

processing component axis. The components to be

represented must be meaningful in terms of the resources

used and the part they play in request processing. In

.order to make this selection, an understanding of the

processing steps invoked by the Datacomputer while

handling a request is required. The next few sections

I3 describe these steps.

3.1.1 Overview of Datacomputer PrQcessing Steps
I

In any database management system, a request must go

through a language evaluation phase followed by execution

of the database operations requested. The Datacomputer's

3 data management functions are invoked by requests in a

high level language called Datalanguage. Datalanguage has

facilities for storing, retrieving and updating data.

Data is stored by the Datacomputer in files whose

* descriptions are maintained in a system director i" Data

3is transmitted to or f om the Datacomputer through ports

,N I N . ,, ""

Page -8- Technical Report
Model Definition Section 3

i whose descriptions are also maintained in the system

directory. All requests, regardless of the operations to

be performed, go through a compilation phase followed by

execution as illustrated in figure 3.2. In the following

sections, these phases are detailed with emphasis on I/O
.4

and other areas of potential delay. Al-so to follow is a

section on Datacomputer/user-job communications which

impact all requests.

-, 3.1.2 Communications

Although all database management systems communicate with

the end user, the Datacomputer is different in that the

typical user of this system is a program running at some

U other site on the Arpanet. All interaction between the

user program and the Datacomputer -- sending Datalanguage

requests, receiving Datacomputer responses, and

transferring data outside the Datacomputer -- takes place

over the network. Communication delays incurred over the

network tend to be much greater than those incurred on

single-site systems. Since the end user is another

process, the Datacomputer performs synchronization, error

reporting, prompting for actions etc. duriIn;g the

compilation and execution phases via network messages.

A0

-Ns L

Technical Report Page-9

- ~Model Definition Section 3

Request Processing Components Figure 3.2

D~a L a
newr Datalanguage 1Descriptions

COMPILATION Trail/
q L~oq

.. Fils

'Execution Code
networkU

Direc-

network

EXECUTION

Sc ra tc
Area

~Areag

Inver- Data
sion CAT Base
Strutc -
ture

Page -10- Technical Report' Model Definition nSection 3

j Each message is formatted with a prefix code and

human-readable text. The prefix code is designed to be

machine-readable so that the user process can make

decisions based on the message without having to parse a

human-readable string. T e human-readable portion of the

. messages is designed to provide the end user with a more

detailed description of what is going on.

A record of all dialog in the users' sessions is kept in

- audit trails and log files which the Datacomputer

maintains in the TENEX/TOPS20 file system. These files

are produced primarily for system maintenance purposes.

j If the Datacomputer exhibits unexpected behavior, the

audit trails and log files may be used to determine the

A.. exact sequence of events that led to the problem

situation. Although these files do not require network

communication, they do incur additional formatting and

local I/O overhead.

242

] ~

: , , . , i " ."'- -2 i.i,. .: :,':: ''"2-i '.22) "."12i.i: , , , , _ _ .""._..:?'''':i: - :i.. ,,. . , r2.. .'.. ,i ' i"""'-.- " ..- ?.: *i--.... ._i' , :<2

-T 7 77-k

SI.

Technical Report Page -11-
Model Definition Section 3

N3.1.3 Compilation

4 : The Datacomputer was designed to handle large files. Thus

the compilation phase of the sys-tem was designed with an

optimization phase which reduces the number of

.J instructions executed for each record. While this

strategy yields overall savings when processing large

*files, it may in fact slow down the processing of requests

involving small files, if the time to perform the

optimization exceeds the savings gained.

The process of compilation proceeds in four steps as

illustrated in figure 3.3. The parsing step reads in the

Datalanguage over the network. The expansion step adds

loop control and inversion handling to the requested

.database operations. The simulation step optimizes the

operations to be performed at each point based on

operations which have already been performed. The code

$;generation step selectively generates instructions to

perform the operations, eliminating all tests and

branches based on information known at compilation time.

These steps are elaborated below.

b : .

Page -12- Technical Report
Model Definition Section 3--
Compilation Phase Figure 3.3

network Data Descriptions
Datalanguage

, Parsing

Syntax Tre

Expansion

lntermediate Language

U Simulation

10peration Table

Code

Generation

Execution Code

- - --

Technical Report Page -13-
Model Definition Section 3

A
3.1.3.1 Parsing

Syntactic and semantic analysis is performed as

Datalanguage is parsed and a syntax tree is built. The

data descriptions for all files and ports involved in the

request are utilized during semantic analysis. These

descriptions are accessed from the directory system at the

time the file/port is opened and remain in core until it

is closed. The resulting syntax tree is an unambiguous

j internal representation of the request.

3.1.3.2 Expansion!
The expansion step of compilation analyzes the syntax tree

and produces an internal structure named intermediate

language. The two most important functions of the

expansion step are to add looping and inversion handling

to the request.

- The looping structure which will process a file or

port on a record by record basis is embedded within

intermediate language

0I

Page -14- Technical ReportModel Definition Section 3

All boolean qualifications on files are analyzed in

- the light of inverted fields. The qualification is

broken into two booleans, one of which only

references inverted fields and one which cannot

utilize inversion. *The 'inverted' boolean is used

at execution time to restrict the records which

will be accessed within the loop on the file. The

'non-inverted' boolean is then applied to all

records accessed within the loop.

All assignments to inverted fields are expanded to

update the inversion structure as well as the

database itself.

3.1.3.3 Simulation

Central to the simulation process is optimization of

execution code. During this phase, intermediate language

is transformed into a series of atomic operations which

are entered into a table. The optimization at this level

is accomplished by simulating the runtime environment and

using the results of this simulation to produce the most

efficient sequences of atomic operations to handle each

intermediate language operation. Minimization. 'of the

operations to skip from one field in a record to the next

, ? -4? ? V~~~~~~~f _v -..,.. " -. .'. . ".v. '. .. . , . ., . - " . . - ' .

a.. -- ,

Technical Report Page -15-
Model Definition Section 3

is an example of the kind of optimizations produced in

this phase. Obviously these optimizations produce the

biggest payoffs when the code is executed many times or in

other words when large numbers of records are being

processed.
oC4

3.1.3.4 Code Generation

Code generation is the final step of compilation. Each

entry in the operation table is converted into one or more

instructions. The thrust of code generation is to

eliminate as many tests and branches as possible from the

final execution code. This is accomplished by performing

all possible tests based on information known at compile

time, either generated by the simulation step or based on

field descriptions, and generating appropriate code based

on the result of the tests. This eliminates the need to

perform the identical tests at execution time for every

record when the results of the tests will not vary from

record to record.

V* N LN -7 IN.-

Page -16- Technical Report
Model Definition Section 3

i

3.1.4 Execution

K
Although the execution phase of request processing varies

with the mode of operation, each file and port referenced

in the request proceeds through seven basic steps as

illustrated in figure 3.4. The first step initializes

files and ports for data reading and writing. The second

step restricts file access based on inversion. The third

through sixth steps comprise the looping mechanism and

perform the requested database operations on each record.

The seventh step performs the termination operations.

3.1.5 Storage Interface

The effect of data I/O throughout the execution phase of

request processing is directly related to the system's

storage techniques and the supporting hardware. Thi.s

section describes the Datacomputer's storage interface in

general terms and points out areas where systems using

different hardware may vary.

.I

Technical Report Page -17-
Model Definition Section 3
--
Execution Phase Figure 3.14

Direc-
tory

Execution

network

Initialize

network Restriction
Inver-
sion

Struc-
7r: ture

Accelsst ______g

Dat

-- manipersion

Dat

Page -18- Technical Report
Model Definition Section 3

j The Datacomputer maintains a system of maps that describe

the location, possibly on several storage devices, of

A various versions of different parts of files. Files are

divided into sections. Each section is of logically

contiguous storage .bu' may be several physically

non-contiguous storage extents.

For efficiency, the physical extents in which sections of

data are stored are made as large as can conveniently be

handled by the hardware configuration. If the hardware

supports it, this makes it possible to do track and

, cylinder at a time disk I/O when moving an extent between

secondary and tertiary storage or copying an extent from

disk to disk.

The Datacomputer provides for multiple readers and one

*updater of a file with each reader guaranteed to see a

consistent version of the file. When an updater of a file

modifies an extent, the change is made to a new copy of

that extent and thus requires copying data. Any reader

coming along in the meantime sees the file as it was

before it was opened for modification. If a serious error

occurs during the update, the modified extents will be

discarded and the file left unchanged for consistency.
A

If an update is successful, when the file is rele.ased by

the updater the modified extents are logically merged into

Technical Report pae -19-
Model Definition Section 3

i the file. A new reader will see the modified file, but if

the file is still being accessed by an old reader, the

, aJ unmodified file is preserved.

All this is done with chains of maps that are maintained

by the Datacomputer. Tere can be at most one update map

to modified extents followed by oqe or more read-only maps

and then the 'home' file map which is the map of all the

file in its original quiescent state. Maps other than the

home file map may be incomplete and any missing parts are

found by searching down the map chain [EASTLAKE and FOXJ

(see figure 3.5). Certain physical volumes of secondary

storage are used exclusively for active extents of files

for readers and writers as described above. In contrast,

the home file map may point to an area on a volume of

tertiary storage depending on the system hardware

Uconfiguration. Copying referenced extents from the home

file to secondary storage is referred to as staging the

data. Although figures 3.3 and 3.4 show that all data is

staged, actually the data that is staged is configuration

dependent. On configurations not having a tertiary store,

non-modified data is read directly from the home file.

7' Modified data is written to the staging area and is

eventually copied back to the home file. Modified data is

read from the staging area until the copy back.;process

takes place.

a% - . . - .- . . - ''''' .. -.- ,-..,. " ' - •.. .. " "- .-.L " . . ." - ."- . . "- ." . ." - . " "

Page -20- Technical Report
Model Definition Section 3

--------------------- -----------------------------
Datacomputer Differential File Mechanism Figure 3.5

E]CI

A t * I I A i3- - 1

Kij opqnn tr....ie E Ura.... 2 m.,es C D and F and adds G ..)Ies

Ii 1. tf0 2 .. .H -rescrI w

Datacomputer Differential File

Mechanism Showing Different Maps

For Readers and Updater

.....1 r.I.-.T \. -:

Technical Report Pnge -21-
Model Definition Section 3

j When disk space for active file extents gets crowded,

modified data must in general be copied back to the home

file and unmodified data can be discarded. On

configurations having a tertiary store, a background task

within the Datacomputer periodically awakens and, if

secondary storage is getting sufficiently tight, attempts

to discard or copy back data. to make more room. On

configurations not having a tertiary store, modified data

f is copied back when no jobs are using the file.

.4I

CSK

Page -22- Technical Report
Model Definition Section 3

A

3.2 Selection of Components in the Model

In order to map the actual processing components of the

Datacomputer into the model, some initial experiments were

performed. These experiments were intended to indicate

which components were likely candidates for processing

bottlenecks. The results of these initial experiments

indicated that for the kinds of databases used in SDD-1

and other command and control activities, the cost of

r.unning execution code was negligible and that overhead

was very expensive. These results in conjunction with our

understanding of the Datacomputer's processing steps led

us to define twelve interesting processing components for

the model.

Whereas some of these components correspond to those

described above, others are not related to the kind of

component described above, but are components that

permeate the entire request processing activity.

Specifically, the following components were selected for

the axis of the matrix:

Technica. Report Page -23-
Model Definition Section 3

I. Printouts -- This refers to the sending of messages

to the user program over the network.

2. Context -- This corresponds roughly to the parsing

phase of compilation.

,j. 3. Precompile -- The expansion phase of compilation.

4. Compile -- The simulation phase of compilation.

5. Instruction Generation -- The instruction

generation part of compilation.

6. Overhead -- Unaccountable time lost to system

overhead.

7. Inversion -- Inversion processing.

8. Page Read -- Reading a page of the database.

9. Scratch Read -- Reading a page from a scratch file

, built during request processing.

10. Read Only Page -- Making a page read-only (mainly

entails making a system call to do this).

11. Writable Page -- Making a page writable.

I

Page -24- Technical Report
Model Definition Section 3

p 12. Open Buffer -- The Datacomputer operation of

allocating a buffer.

The reasons for this selection of components will become

more apparent in the measurements section of this report.

3.3 Query Classes

-5 Four classes of query traffic were selected for use in the

model based on SDD-1 usage and Datacomputer usage in the

ACCAT. The query classes selected are:

1. Bluefile Retrievals -- The bluefile [NELC] is a

small sanitized version of a real command and

* control database which exists on the Arpanet.

pQueries on the bluefile were generated using LADDER

ESACERDOTI]. The most extehsive measurements were

.5. made on these.

S2. WES Updates -- WES is a war games simulator that

produces update transactions for the Datacomputer

at ACCAT. Some measurements were made on the

Datacomputer running WES updates.

Un

4.

J .* ',, , . '..- ."."- ." -"- .. ,' ''' •2" '''"-.-.•-" . ."-" -" , . -" .. ""L .L . - _' - -. '' ' '.

47 3 - OV 7T~- - .. - -

Tlechnical IhportL Lage -25-
Model Definition Section 3

3. FC Database Retrievals -- The FC database is the

classified fleet commander's database at the ACCAT.

LADDER retrievals on the FC database were used as

another query class.

4. SDD-1 Retrievals -- Finally, Datacomputer queries

produced by SDD-1 were incluqed.

3.4 System Loading

Based on previous experience and interactions with NOSC,

we decided to emphasize paging as the important loading

factor in the model. Some preliminary experiments were

conducted to determine if the CPU time resource was an

pinteresting parameter. It turned out that most components

experienced delays almost direlctly proportional to CPU

load. On the contrary, delays incurred by paging appear

to vary much more widely. Three levels of paging activity

were chosen for the model:

- light -- essentially no page contention from other

jobs on the system.

Page -26- Technical Report
Model Definition Section 3

- medium -- a moderate amount of paging produced by

one page-bound competing job on an otherwise empty

system.

- heavy -- a large amount of paging produced by two

such jobs.

Higher levels of paging were ;investigated but did not

produce dramatically different results so they were left

out of the model.

4..

. Technical Ieport Page -27-
Measurements Section 4

~. 4

4. Measurements

In order to make measurer~ents of Datacomputer performance,

- a version of the Datacomputer. was modified to produce

statistical output at each significant step of processing.

These statistics included CPU utilization, real time

elapsed and page faults for each step. This modified

Datacomputer was used to analyze performance on the

. bluefile queries. Extensive experiments were conducted on

thirteen: such queries (each accessing two files and one

port) and a few of the experiments were run on one hundred
queries as further verification of the results on the

smaller sample. Several characteristics of these queries

and the database are important to the analysis of the

results:

- The files are short (200 or fewer records per

*file).

1- Each file has many inverted fields.

>. - All the requests are retrievals.

4:I

%

*, -" , : " ." .: .' . . . -' . . - -. . . . ,, . ., , .,, ., . , - , -..

Page -28- Technical Report
Measurements Section 4

- All files were open and stayed open during the

4] tests. No OPENs or CLOSEs were executed.

4.1 CPU Time Measurements

0 The first set of results, as illustrated by figure 4.1,

show the CPU time used by different parts of the

Datacomputer. For expository purposes, the twelve

processing components were first collapsed into the

following four:

1. Services -- The services section constitutes a

pseudo operating system for the Datacomputer. It

provides the basic functions of a traditional

operating system in a form which is maximally

convenient for the request processing parts of the

Datacomputer. Time spent in the services section

can be viewed as Datacomputer system overhead. It

was selected as a component because as the

measurements below show, a large percent of the CPU

time is spent there.

s,

-- ~~~~~~~~~~~~.....-......-. . -.......-..-......--.--..-...- ,-.. -...-.",

~ T. - T '4-7'74=77 -. -77

Technical Ieport Page -29-
Measurements Section 4

2. Inversion Processing -- This corresponds to time

spent processing inversions during the execution

phase.

3. Compilation -- This is the entire compilation phase

as described in section 3.1.3.

4. Other -- Time unaccounted !for elsewhere. This

includes executing the compiled code.

As shown in figure 4.1, services utilized about two-thirds

of the time; thus it was subdivided, as illustrated in in

figure 4.2, in order to better understand where the time

was spent. The subdivisions in general correspond to

components in the model described above. The one

component which requires further explanation is opening

and closing files and ports. Even though the files and

ports are already open (as far as the user is concerned),

whenever they are used in requests, several actions must

take place within the Datacomputer. These include:

- allocation of I/O buffers,

- data staging, and

- directory updating to indicate the last referenced

date.

I'age -30- "lii lea IIeporL

Measurements
Section 4

Division of CPU Utilization Figure 4.1i
Component Percent of CPU time

Services 62
Inversion Proc. 15
Compilation 20
Other 3

TOTAL 100
--

--- --

Services CPU Breakdown Figure 4.2

Component Percent of CPU time

Page reads 22
Scratch file reads 19
Opening files/ports* 8
Closing files* 4
Listening on network 6
Buffer calls 3

*these refer to internal opening and closing, not the OPEN
and CLOSE commands
--

From figure 4.2, it is obvious that page reads are very

expensive. In order to get a better handle on why this is

the case, an experiment was conducted comparing the CCA

Datacomputer and a standard TENEX Datacomputer (like the

one in the ACCAT). Unlike the TENEX Datacomputer, the one

at CCA maintains its own disks separate from those on

TENEX. Therefore, it was possible to compare the time to

do a page read on the two systems to determine how much of

that time was TENEX overhead. Figure 4.3 'snows the

' % , , ,,-. •

Technical Report Page -31-
Measurements Section 4

j results of this test. The page reading activity is

divided into three steps in this figure. The first step

.j Nallocates a buffer in core to hold the contents of the

- page. The second step is physically causing the page to

be read in to the bLffer. The third component is

miscellaneous additional processing. The difference

between the two is accounted for by the additional CPU

ttime required by the TENEX operating system to read the

page. Obviously this is an expensive TENEX operation.

--

Comparison of TENEX & CCA-TENEX page reads Figure 4.3

TENEX Page Read

Component CPU time in ms

1 Buffer manipulation 3.5
Reading Page 9.0
Other 1.5

TOTAL 14.0

CCA-TENEX Page Read

Component CPU time in ms

Buffer manipulation 3.5
Reading Page 2.0
Other 1.5

TOTAL 7.0
--------------------------- --------------------------------------

Internally opening and closing files also incurs a

significant time cost in these experiments. Further

investigation indicated that a major reason for ifis cost

.-.... ,... .- -

Page -32- Technical Report
Measurements Section 4

was changing the access mode of Datacomputer directory

pages. In general, these pages are kept read-only for

reliability reasons. However, whenever they are accessed,

the Datacomputer updates the "last read" slot in the page.

This process entails mnaking the page writable, writing the

date and time and then making it read-only again.

Experiments indicated that about 75% of the time opening

and closing files was spent in changing the modes of

pages. This seems to be an area where reliability could

be traded off against performance.

I!

4.2 System Load Experiments

The next set of experiments measured Datacomputer

performance at different levels of paging activity. Three

levels of paging were established as described earlier.

The results are summarized in figures 4.4 and 4.5. Figure

4.4 indicates the average amount of CPU time, elapsed time

and page faults for the bluefile queries. Figure 4.5

indicates clearly which processing components are most

sensitive to paging activity. The numbers in parenthesis

indicate the factor by which the value increased over the

'' lightly loaded case.

I

Technical leport Page -33-
Measurements Section 4

Paging Activity Variation Figure 4.4

'. Light Moderate Heavy

CPU(ms) 11441 11669 12703
Real(ms) 20000 49470(2.5)* 80919(4.0)
Page faults 197 363(1.9) 571(2.9)

*numbers in parenthesis indicate the factor of increase
over light.

Paging activity on a component basis Figure 4.5
S. Elapsed time in ms

Light Moderate Heavy

Printouts 229 1309(6.0) 2193(9.9)
Context 128 1071(8.0) 1504(12.0)
Precompile 551 3868(6.5) 5628(12.0)
Compile 950 5372(5.5) 3697(3.5)
Inst. Gen. 1426 5060(3.5) 7176(5.0)i Overhead 2078 6900(3.3) 10627(5.0)
Inversion 7731 14782(2.0) 19560(2.6)
Page read 4914 11775(2.4) 20541(4.4)
Scratch read 3429 4923(1.4) 7217(2.1)
Read Only pg. 597 526(.9) 526(.9)
Writable pg. 599 928(1.6) 2414(4.1)
Open Buffer 112 1188(10.6) 1165(10.6)

Initial analysis of the measurements made on the LADDER

queries indicates that overhead both in TENEX and in the

Datacomputer is a very significant for queries on the

small files used.

I
• " - " ". -" , " .°t"..-. .. .' ."_-.-.-" ''.". " "- ".. " -. '. "

Page -311 - Techic:l lReport
Measurements Section 4

4.3 WES Experiments

The WES transactions vhich we examined had different

characteristics than the LADDER qqeries:

- The files were very small.

l All the requests involved appending or updating to

files.

- The files were not inverted.

- Each request accessed at most 400 records.

- Each request accessed at most 20 data pages.

- The requests were all precompiled.

Since the WES data had tc be produced on the ACCAT

Datacomputer, we were not able obtain as much measurement

data as we did with the LADDER queries. If more data is

required during the study, a trip will be made to NOSC to

perform experiments using our modified Datacomputer. From

our discussions with NOSC personnel, it is apparent that

although the Datacomputer performs correctly in the WES

environment, its execution speed is significantiy below

the desired level.

~--. --. *.*. *.* * . . .

. =*... .- •' '. ._..- - . .. - . . _. ' . . . -... . . - ..-. . . - --- - - - --. '?' - - - - - - --..o ; ,

Z- Technical leport Page -35-
Measurements Section J4

= 5 WES operates by running a series of requests every cycle

through the simulation. Seven different precompiled

requests are run each time. Figure 4.6 lists the requests

and what they accomplish; figure 4.7 shows CPU and elapsed

time for the compile and :run phases of each request. The

compile phase in this case includes reading the

precompiled request and finishing, the compilation. Thep runtime part includes essentially everything else involved

in the request. These results indicate that even the

small amount of time required to setup a precompiled

request is significant when we are dealing with requests

on such small files. Once again overhead is a very

j important cost factor.

I

-A= * - "--.

Page -36- Technical Report
Measurements Section 4-

WES Requests Figure 4.6

TRANS transfer records into temporary file

UPDATE update position of ships and aircraft
if they are already in the database

HIST add records for new ships and aircraft

to traclhist file

CONT update the contaqt file

CASR update the casualty file and the
readiness file

POSAPPEND append to the position file all records
not found during the update phase

UNITUPDATE update the unit file

WES Requests CPU time and elapsed time Figure 4.7
(expressed in ms)

Comp ile Runtime
M P/ LAPSED U7-TLAPSED

TRANS 1727 / 2799 2792 / 28898
UPDATE 3400 / 7085 5827 / 8824
HIST 3550 / 6166 4506 / 10669
CONT 2200 / 4150 2620 / 6203
CASR 3550 / 3968 4085 / 8594
POSAPPEND 3650 / 10211 4628 / 8027
UNITUPDATE 3100 / 11032 2530 / 4067

Some interesting observations can be made from studying

this data on the WES updates. Even though the requests

are precompiled, a significant cost is still involved in

the compilation phase. This includes reading the

precompiled request into core and executing the, final

instruction generation phase. The first step involves 1

m - -N . ,- - .- , %, -.- ." .- .- .- .- .- . ,.t-.. ,.. . .,.. . ..-.

i r . j . -. ! T o- . - A ' ' - .- '
"

- . -. -- - - . A
o °

-
" "

. -. ' - .

Technical Ieport Page -37-• Measurements Section 4

second of cpu time, about 15 page reads, 3 directory page

Sreads and 14 directory mode changes. Mode changes are

quite expensive (from our previous experiments) and take

approximately 45 ms each for a total of .63 seconds. The

instruction generation step is mainly cpu intensive taking

on the order of 2-3 ms of cpu time.

The primary expense in actual execution of WES requests is

in overhead. The overhead is mostly internal opening and

closing files and moving data to the staging area. Once

again mode changing is an important factor. In some cases

75 mode changes are made. At 45 ms each, this adds up to

about 3 seconds of cpu time.

4.4 Measurements on the FC Database and SDD-1 Usage

Currently we do not have as much data for these query

classes as we had for the others. A small number of

queries were run on the FC database and some statistics

were collected. In most cases the results corresponded to

the results on bluefile queries. There were a few cases

where linear scans of large numbers of records were

required and these produced results where execution time

was a much more important factor.

.- v* , * .. ,~ :. KK, :..

Page -38- Technical Report
Measurements Section L4

h The data from some runs of SDD-1 have just recently been

produced and has not as yet been fully analyzed. However,

initial observations indicate that the trend is similar to

p that for bluefile queries.

k17 96!

T"echnlcal Icport Pi"ge -39-
Preliminary Conclusions Section 5

N 5. Preliminary Conclusions

p

From the analysis of the data we have obtained so far,

some initial conclusions can already be drawn. These

include:

1. Overhead in the Datacomputer and the operating

system is a very significant factor. This fact

indicates that optimization toward smaller files is

desirable. Also trading off reliability with

performance could cut down some of the system

overhead.

2. The Datacomputer is very sensitive to paging

activity. One way of cutting down on paging is to

decrease the working set size. Two approaches to

this are possible: restructure the system's core

image to increase locality of reference and remove

parts of the system that are not used in the
SDD-1/command and control environment. Paging

experiments have been conducted which indicate that

the number of page faults could be cut

approximately in half by loading all subro.utines

near to the other subroutines which call them.

I

Page -40O- Technical Reoport
Preliminary Conclusions Section 5

3. An inversion mechanism tailored more towards small

files would cut down substantially on the number of

scratch reads performed. Currently the

lip Datacomputer builds its inversion structure in

scratch files dur-in. execution. This technique was

* -, implemented because, in general, the information

will not fit in core. However, with small files

in-core inversion processing is possible and would

* be much more efficient.

Technical Report Page -41-
Future Work Section b

*

6. Future Work

Future activities in thi! project will focus on proposing

and analyzing specific Datacomputer enhancements. In

order to do this, additional measurements may be required.

Complete analysis of the SDD-1 results must also be done

to verify the initial analysis of these results. In

addition, enhancements which affect performance in

indirect ways will be considered. These include expanding

the number of files and/or ports that can be open at a

time and increasing the amount of space available for

compiling large requests. There are obvious tradeoffs

involved in these kinds of enhancements that will have to

Ube considered.

I

I

, : b " -. .o. % ..-. . - .. • -- ,- -. - " - -'' -''' " ' . ' '

Technical Report Page-42-
" 4 References

i
REFERENCES

[EASTLAKE and FOX]
Eastlake, D.E. and Fox, S.A. "Integrity and
Recovery in ;he: Datacomputer Machine for Very
Large Databases' ,Submitted to National Computer
Conference, 1978.

[MARILL and STERN]
Marill, T. and Stern,D.H. "The Datacomputer: A
Network Utility", Proceedings AFIPS National
Computer Conference, AFIPS Press, Vol. 44, 1975.

[(NELC]
NELC, "A Relational Model for an A7 Sea
Commander's Tactical Data Base", Project
Scientist: Garrison Brown, SEI, October 29, 197b.

[ROTHNIE and GOODMAN]
Rothnie, J.B.; and Goodman, N. "An Overview of the
Preliminary Design of SDD-1: A System for
Distributed Databases", 1977 Berkeley Workshop on
Distributed Data Management and Computer Networks,
Lawrence Berkeley Laboratory, University of
California, Berkeley California, May 1977. (Also
available from Computer Corporation of America,
575 Technology Square, Cambridge Massachusetts

I

02139, as Technical Report No. CCA-77-O4).

N..........,...

