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ESTIMATION FOR INFINITE DIMENSIONAL
ORNSTEIN-UHLENBECK PROCESSES

by
Ian W, McKeague

ABSTRACT

‘) The maximum likelihood estimator for parameters in the gen-
erating operator of an infinite dimensional Ornstein-Uhlesbeck
process is shown to be consistent and asymptotically normal. The
generating operator of the process is assumed to be in the form of a
finite linear combination of fixed commuting dissipating operators
and the coefficients in the linear combination represent the un-

known parameters.
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& 1. Imtroduction.

2 Infinite dimensional Ornstein-Uhlenbeck processes have re-

ii - cently been of interest as wodels arising in a wide variety of

"*‘.' physical phenomena: quantum mechanics [3], scattering theory

{3 . (101, neural response [11], stochastic control [5], chemical re-

?.'-: action problems [5, 12] and as limiting cases in infinite particle
' systems [6]. From the point of view of applications it is important
3 to have a statistical theory for the estimation of unknown para-

::: meters in such nqdels. Despite the presence of a considerable

i‘: literature (see the survey in [2, Ch. 9]) on estimation for finite
dimensional diffusion processes, estimation for infinite dimensional
3

diffusion processes has received little attention. The recent paper

¥
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of Bagchi and Borkar [1] appears to be the first to address such
problens.

In the present paper we-study the asymptotic behavior of the maximum

¢ likelihood estimator for parameters in the generating operator of an
e infinite diwensional Ornstein-Uhlenbeck process. The parameters are
‘ coefficients in a finite linear combination of known operators which
are assumed to commute. The estimator is shown to be consistent and
asymptotically normal. Our approach is quite different from [1].

%

"‘é 2. Preliminaries.

( The basic theory to be used in this work is the generalization
; . of Ite's stochastic calculus to abstract Wiener spaces due to Kuo [7].
' Let B denote a real separable Banach space with norm || ]| . It is
- ) known [9] that each Gaussian measure on the Borel sets of B can be
§ induced from the canonical Gaussian cylinder set measure on
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£ a separable Hilbert space H contained in B, through the injection

» i of H into B. The triple (i, H, B) is known as an abstract

; Wiener space. Denote the inner product on H by <+, > and the norm
3 by |*|. The pairing between B and B* is denoted (¢, ). As in [7]

’- assume the following condition on (i, H, B): There exists a sequence
Q, of finite dimensional projections on B such that (1) Q (B) <

': range (i*), (2) Qn converges strongly to the identity in both B and H.
5 Let W,, t20 denote the B-valued Wiener process derived from

I- (i, H, B), see [9]. Supposc that xt, t20 is a B~valued Ornstein-

4 Uhlenbeck process satisfying the following stochastic integral equa-
.. tion

. (2.1) X, = xo ¢ [AX)ds + W, t 20,

h vhere Xy € B and A:B + H is a bounded linear operator. By (7,

.3 ) Theorem 5.1] (2.1) has a unique, non-anticipating, continuous so-

:.:i lution. Let u: and u; denote the measures induced on C([0, T1, B) by
‘ (xoowt, tel0, T]) and (xt, tc.to, T)) respectively. From [8], u;l('

:' and v} are equivalent and

: duy T 1T

" (2.2) =70 = ol Jo(AX), dX) - & [olA(X,) |2de,

] o]

: where the stochastic integral in this expression is defined in [7].
& The true generating operator A of the observed process will be de-

& noted A,. Since the maximum likelihood estimator of A, is not de-

-; ’ fined in general it is necessary to restrict the family of possible

| generators. Assume that A, can be expressed uniquely in the form

)

3
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.XlujAj, where Ay, .., A, are given bounded linear operators

J'

mapping B into H and Gy, «eo, Oy aTe real constants. Let ag, cens a:
denote the true values of the coefficients Gys seep O and write

them in a column vector as ao. The maximum likelihood estimator

&.l. of o¥ can be derived from (2.2) [cf. 4] and is given by

d.l. = c-lpa

where pj & fg(Aj(xt)’ dxt) s

¢y = [aen (X)), Ay (Xp)>dt.
3. Results.

An operator A:B + H is said to be dissipating if <Ax, x> < 0,
for all xeH,and syrmetric if <Ax, y> = <x, Ay>, for all x, yeH.
Assume that Ao is dissipating and symmetric. Since i is a compact
operator, see [15], i'Aa tH + H is compact. Thus i'Aa has a spectrum
consisting of countably many eigenvalues and since i'As is symmetric,
the eigenvectors belonging to district eigenvalues are orthogcnal,
Let the (strictly negative) eigenvalues of i*Ag be denoted {-2,, 021},
where )‘n > 0 and each eigenvalue is counted according to its multiplicity.
Let corresponding orthonormal eigenvectors be denoted {e , nz1}.
Assume that {e,, n21} is a CONS for H. The following condition is to
be imposed on operators A:B + H.

v 2
© 1 Ii'A;(e,.)l SRR

n
Theorem 3.1. Suppose that the operators Al, -+vs A, commute and

satisfy condition (€1). Then

(») 37—2-400 as T+ o

-
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(®) rr(a.r-a% 2 N, V)) a5 T + =, where V is the knk

. matrix (Vyy) given by

® <i*A%e _, i*A*c >

j n’ 2 n
j i'nzl A

This result will be proved through a series of Lemmata for
vhich the conditions of the Theorem are assumed to hold.

Leoma 3.32. 'P° —L-»Vj as T + w,
Proof. Fix nzl. Define processes YJ = <eps Aj(X)>, W e <o, A 0>
. .
for § = 1, 2, Then "t -l '2 is a tvo-dimensional Wiener process
e

with covariance (sat) §, where | = (94,) is 8 2x2 matrix with
O3y = <I°Aje,, 1°Afe >, Let ¢ = AS(e)). Then Y] satisties the
stochastic differential equation
ar) = o A (xde + anl, t2d
Y. 05(x).
But 4, (Ap(X,)) = (ABL%#3, X)) = (A3E*AS0,, X,)
" (J1A30,, X;)  since Ay and A, commte
= -3 (Ao,
T A

1‘husY -[ }nthﬂu dtt--an dttdll

Let
Pel1 %2 » Ty = P, U, = PY,.
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Then (zt) has diagonal covariance (sat)PIP° where
2

o - 12

PIP” = 11 %99

0 o

(Ut) setifies au, = A Updt + dz,.

o
NowYt-P'lut- U:+—m-l1: , 8o that

%22
2
ut
1 1 %2 2
thi-utuioo—z-;[u:]

and it follows from the independence of u1 and Uz snd the ergodic
theorea that

c
%]gY:Y:dt-'!lrz. a2.5. as T+ »,

<i*Afte_, i*Ale >
%f(l;(en’ Al(xt)> “n'AZ(xt)ﬁt * - %An Az =

a.8, as T+ », Since

- 5t I < nr AJ(X)> <o, A (X )>Mt, a.s.,

ns=1
the proof of the Lesma will be complete if we show that

- 1
%2 fo )>2dt_—"_¢o as m + »,
nem
uniformly in T. Now, since <e n? Al(xt)> is a one dimensional

Ornstein-Uhlenbeck process it is easily checked that

S« Al( > = Q-Ant Ax(%)’o

'”Al (e ) '2 o~2'nt

Var<o_, A;(X,)> = )




S XA IO

>
he
3
b
3

(A7

I3
3

oy s e
) .v:’,r"’;’w"‘; 3
RPN SRS YA,

o
Y

1

v

he
R

I3
U

N T e TR AT a e a P W T N TV AT LTATCY w1 Coar & R e QU A TR T AN NN N RN

2
[i*atCe ) |
FIGBon: MO € <oy, Mot ¢ —g—T
n
for all T > 0. The proof is completed using the fact that A, (xy)el
and condition (C1). 0

lemma 3.3. Llet A:B + H be a bounded linear operator. which commutes
with Ao and satifies condition (Cl). Then

RT = '];?-Ig“(xt)’ d"t) .._.2_. N(O, D) as T + =,

= |d%A%(e )|?
where D = -}Z Y a_,
n=1 n

Corollary 3.4. i fo(A;(X), W) —Bs 0 as T

Proof of Lemma 8.3, Let x_:H + H denote the projection onto sp(e;, ..., e,).
Denote

R = S Jolrah ), an)

-1
and let fn =2 Aj(e,;). Note that i‘(fn) e, Thus

‘n
g1 1 ffacg, oo,

where H: - ‘fn' wt>. The (lln, t 20), n=1, ..., n are independent
standard Wiener processes. By the proof of Lesma 3.2
[oAv(e ) |2
1 2 n
T I:«(xt), .ﬂ> dt -+ - a.8,
n

as T+e, forns1, ,.., m. Thus, by Xutoyant's Centwal Limit Theorem
for stochastic integrals (2, p. 405] it follows that

g:_g_.pu(o,n')ur--,whm
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« By [7, Theorem 3.2],

BlRy - 8712 = 3 [TIAKY) - w A |2
1y T 2
- B<e_, A(X,)>2dt
Tnzm-l!o e“ t

+0asn-+», uniformly in T > 0,
by the proof of Lemms 3.2. In particular K& —2—+ R as n + =,
uniformly in T > 0. By the usual method of interchange of limits
[13, p. 28] with respect to weak convergence, we conclude that

; n.r—-?-—-N(o.n)as'r-»o. 0

Civen Lemmas 3.2 and 3.3, the proof of Thecrem 3.1 now follows
along the lines of the proof given by Brown and Hewitt (4, p. 236]
for the one dimensional case.
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Remarks
a) MAnalogous versidns-offTheoren 3;Ik could be_ obtaimed for

other generalized Ornstein-Uhlenbeck processes considered in the
literature (6, 11, 12], provided the appropriate absolute continuity
results are svailable. However, onc would need to be very. careful} in

-guch cases, to avoid the problem of singularity.” Two .generalized Ornstein-

b e At D

Uhlenbe_}l: processes (diiven by the samc Wiemer process) on & space.of

-
s A

5 distributions cen have singular stationary measures, see [16, 171,
: b) It is clear from our method of proof that the assumption,
"{ey, n 2 1} is complete in H, can be weakened:to
{ . range (Aj) c span’ {°u' nzl}, forj=1, ..., k.
c) The commutativity assumption in Theorem 3.1 may appear restrictive,

but it is often satisfied in applications. For example, in the neural




respouse model of Walsh [11] it is of interest to estimate para-

noters 'l' 32 which represent characteristics of the neuron arising
in the following equation for the neuron potential V(x, t):

a%y

dv = (Sl-a-;f - BZV)dt + dv,

where W is white noise in space-time. V is a C[0, L] valued

diffusion process observed over time [0, T]. Theorem 3.1 is not

spplicable, but since the differential operator % and the identity
operator commute we expect that estimation of 81’ By is still

possible. Indeed, one way of doing this is to restrict amalysis to

the finite dimensionsl Ornstein-Uhlembeck process A"(t) = (Ag(t), ..., A (1)),
where A, (t) can be expressed [11. p. 247] in terms of the observed

process V. The unknown perameters ’1' B, eppear through the eigenvalues

lk of the separated problem, which in this case are given by

M = B, ¢ B,5°k°L%, k 2 0. The process A"(t) satisfies the stochastic
differential equation

aP(t) = -FAR(t)de + aB"(t),

where B%(t) is sn (nel)-dimensional Wiener process with covariance
(AR, R = (5,,) with o, defined in [11, p. 2461, F is the diagonal
matrix with diagonal elements Al:’ k=0, ..., n. The usual methods
[2, €h. 9] of estimation for finite dimensional diffusion processes
can be spplied to A"(t). Provided n 2 1, so that §,, 8, are
identifisble, the maximm likelihood estimator of (31. az) based on
cbeervation of A"¢t) is consistent and asymptotically normel.

; .“ R A -‘—‘ﬁ.-.'l. A I J’i
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