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Summary

=~ /" The assumptions and criteria used in existing analyses in determining the

regions and transition lines of pseudo-stationary oblique-shock-wave reflections /¢ r<¢
.. have been re-examined in order to improve the agreement between experiments and
computed data for regular (RR), single-Mach (SMR), complex-Mach (CMR)} and double-
Mach reflection (DMR).

It is shown that the relaxation lengths for vibration and dissociation deter-
mine whether frozen or equilibrium gas transition lines are applicable. For example,
at an initial temperature of 300 K and a pressure of 15 torr (where much previous
work was done) an equilibrium-gas analysis would not be required for shock Mach
numbers Mg < 9 in N,, Mg < 6 in 0,, Mg < 8 in air and Mg < 3 in CO,.

Yet,kspe available experimental data in N,, CH, and wery recent results for<=
air, which 'are based on the criterion (consistent with relaxation lengths) of the
angle B, between the incident and reflected shock wave, do not conclusively support
the frozen or equilibrium gas calculations for N;" and air. It does support C , as
an equilibrium gas contrary to a previous conclusion of agreement with I‘= 1.29.’///~

A new additional and necessary criterion for the transition from single to -
complex Mach reflection improves the agreement between analysis and experiment and
is consistent with the requirements of the relaxation length and the angle &+ i¢
However, it now appears that a more accurate criterion is required for the boundary
line between CMR and DMR.

A more detailed examination of the boundary-layer-displacgment slope at the
point of regular reflection appears to eliminate the $e—calléd von Newmann paradox,
and explains the persistence of regular reflection below the transition line for
the occurrence of Mach reflection. -s.

It is also shown that at the triple point the Mach stem can vary from being
perpendicular to the wedge surface in actual experiments by as much as -3.0° to
7.5°. Consequently, calculations of the triple-point-trajectory angle y on the
basis that the stem is perpendicular is not always well founded.

It is verified that at lower shock Mach numbers Mg and large wedge angles 6y, :
the experimental evidence shows that the transition lines for SMR # CMR and i
CMR * DMR converge at a point on the RR ¥ MR line, contrary to a previous simplified :
analysis. P
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Notation
Ar argon
‘ CMR complex mach reflection
€0, carbon dioxide
C p specific heat at constant pressure
CV specific heat at comstant volume
DMR double Mach reflection
Evib energy of vibrational modes
h specific enthalpy
1 incident shock wave
K kink
L ?@stance from wedge corner to incident shock wave along horizontal
ine
£ distance from wedge corner to kink or second triple point along
horizontal line
M Mach number
M, ¥ Mach stems
MR Mach reflection
Ms jncident shock wave Mach number
MxT flow Mach number in region 1 relative to triple point
MZK flow Mach aumber in region 2 relative to kink
My flow Mach number in region 2 relative to triple point
NR no reflection
N, nitrogen
0, oxygen
4 reflection point
P pressure
R gas constant
R, R' reflected shock waves
RR regular reflection
. s, §' slipstreams
SMR single Mach reflection
. T temperature
T, T triple points
u flow velocity
Ugy velocity of jncident shock wave relative to 1aboratory frase
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1. INTRODUCTION

When a planar shock wave collides with a sharp
compressive corner, four different types of reflec-
tion take place as a result of the shock-wave
reflection and the deflection of the shock-induced
flow /Refs. 1-4). The four types are called 1egular
reflection (RR), single-Mach reflection (SMR),
complex-Mach reflection (CMR) and double-Mach
reflection (DMR). The latter three reflections as
a group are called Mach reflection (MR). The two
types, RR and SMR, which occur also in steady
supersonic flows were first noticed by E. Mach in
1878 (Ref. 5). Much later, CMR and DMR were dis-
covered by Smith (Ref. 6) in 1945 and White (Ref.
7) in 1951, respectively, while working in shock-
tube flows. The four types are illustrated sche-
matically in Fig. 1.

The simplest type of reflection, RR, is char-
acterized by two shock waves, an incident shock
wave, 1, and a reflected shock wave, R, and their
point of intersection, P, on the surface of the
wedge. Depending on the wedge angle 8y and the
incident shock Mach number Mg, the intersection
point of the two shock waves, P, detaches from the
wedge surface and gives rise to MR. In MR a new
shock-wave system appears including Mach stem M,
triple point T, and slipstream (or contact surface)
S. In SMR the curvature of the reflected shock
wave is smooth. In CMR a kink K appears in the
reflected shock wave with a narrow region of curva-
ture reversal. In order for the kink to exist, a
band of compression waves must converge in the
region behind the reflected shock wave at the kink.
This band is usually too weak to be seen in actual
interferograms. In DMR the band of compression
waves converges to a second Mach stem M', the kink
becomes a second triple point T' and a second slip-
stream appears.

Several criteria have been proposed to define
the transition between RR and MR. von Neumann
(Ref. 8) proposed the detachment criterion, where
transition takes place (see Fig. 2) when the wedge
angle "y is decreased to a point where it forces
42 to exceed the maximum deflection angle 9y
(Ref. 9). This criterion is sometimes called
Lk oor Newmann oriterion. A mechantical-equilibrium
eriterion was proposed by Henderson and Lozzi (Ref.
10) on the basis that transition can only occur
smoothly without discontinuous changes in pressure.
This criterion can be formulated as 8)-6; = 93 = 0°.
These criteria can best be illustrated by using
pressure-deflection (p, 8) shock polars as shown in
Fig. 3. The reflected-shock polar R corresponds to
transition according to the detachment criterion.
The state behind the reflected shock wave jumps
from point A, which corresponds to a RR state, to
point B, which corresponds to a MR state. Conse-
quently, there is a pressure jump during the tran-
sition. The polar R' corresponds to transition
according to the mechanical -equilibrium criterion.
The state behind the reflected shock wave comes
along the p/pp axis from below as the wedge angle
decreases in the RR region. At point C the tran-
sition takes place and RR turns smoothly into MR.
After the transition, the state behind the reflect-
ed shock wave goes along the strong-shock portion
of the incident shock wave 1 to the right. Further
details are given in Ref. L. These criteria can be

expressed in another way as follows. The detach-
ment criterion is the limit for the two-shock

theory to have solutions and the mechanical-
equilibrium criterion is the limit for the three-
shock theory to have solutions. In other words,
the mechanical-equilibrium criterion corresponds
to x = 0° in the three-shock theory and occurs in
stationary supersonic flows. One more criterion
was suggested by Hornung et al (Ref. 11). Their
criterion is called the sonic criterion because
the transition takes place when the sonic point D
(where the flow behind the reflected shock wave is
sonic) on the reflected shock wave R'' coincides
with the p/pp axis, as shown in Fig. 3. This
criterion, however, gives a transition point which
is so close to the point of detachment that it
cannot be resolved experimentally.

The first precise transition-boundary map in
a (MS-GQ) or (Mg-6w) plane based on the two-shock
theory, the three-shock theory and the transition
criteria described above was given by Ben-Dor and
Glass for N, and Ar (Refs. 1, Z}. Ando and Glass
also gave a transition-boundary map for CO, (Ref.
13)}. Ben-Dor and Glass originally suggested, from
a comparison between experiments and calculations
in the transition-boundary maps, that in the range
of their data N, should be treated as an equili-
brium gas and Ar as a frozen gas (y = 1.667). Ando
and Glass, on the other hand, concluded that a
fictitious perfect-gas model with » = 1.290 for CO,
is the most appropriate for that gas. Although
their transition-boundary maps provide very useful
information for practical applications, it must be
concluded that any apparent agreement with experi-
ment is accidental. In reality, only transition
boundaries based on a frozen flow (v = 1.667 for
Ar and v = 1.40 for N,, 0,, air and C0,) and equi-
librium flow are consistent with relaxation length
concepts. The actual cxperimental data does not
agree with either model in transition-boundary maps.
Consequently, it must be concluded that better
criteria for the SMR # CMR and CMR ¢ DMR transitions
must be found, which would hold for all gases tested
to date.

A much better and fundamental assessment can
now be given, whether a flow is in equilibrium or
not, through the appropriate relaxation length as
represented by the angle £ between the incident and
reflected waves rather than by the secondary stan-
dard of agreement with Mg-8y plots. A good case in
point is the conclusion by Ando and Glass (Ref. 13)
that the fictitious perfect-gas (y = 1.290) model
for the Mg-%y plot is the one that agrees best for
CO, over the range 1 < Mg < 10. However, a detailed
examination of ¢ over this range shows that the flow
is in vibrational equilibrium because the vibration-
al relaxation lengths for Mg - 3 are all too small
(< 1 mm). On the other hand, for Ar, N,, O, and
air, this shock-tube data, by and large, can be
considered as consistent with perfect-gas (frozen)
states. The above leaves little doubt that even
more precise SMR # CMR and CMR # DMR criteria are
still required. A new necessary (but not sufficient)
condition for SMR * CMR transition is presented
which improves the agreement with experiment and is
consistent with relaxation lengths. It is also
shown that the experimental data (Refs. 13-16) do
not agree with the CMR # DMR transition line at
lower Mg and large By. In fact, the two lines merge
where the SMR # CMR transition line cuts the RR * MR
line. Basically, this arises from the fact that the
distance between the two triple points T and T' does
not remain constant but vanishes at the point of




intersection of the foregoing three transition
lines.

For nonstationary shock reflections, experi-
mental results show that transition occurs in
accordance with the detachment criterion. Experi-
ments also show that RR persists beyond the limit
of “he detachment criterion. This persistence has
been called the vorn Neumann paradox. Hornung et
al (Ref. 11) suggest that it may be explained in
terms of the displacement thickness of the boundary
layer on the wedge surface. Ben-Dor et al (Ref. 12)
showed that a persistent hysteresis loop exists in
the RR # MR transition in experiments which depend
on whether 9y is increased or decreased for a given
Ms. The reason for this persistence is still umn-
clear and will be discussed in Section 3.4. Once
RR terminates, three different types of Mach re-
flection can occur in nonstationary flows. White
(Ref. 7) noticed that CMR and DMR will occur when
the flow behind the reflected shock wave becomes
supersonic in a frzme of reference attached to the
triple point T (i.e., Mpr > 1, Fig. 2). Henderson
and Lozzi (Ref. 10) suggest that a band of compres-
sion waves must exist in a CMR and these compression
waves converge to a shock wave, the second Mach
stem, to form a DMR when Mpx > 1. The criteria for
transition from SMR to CMR and from CMR to DMR,
respectively, are taken as Mpy > 1 and Mpg > 1.

It is now also quite certain that the von Newmann
peradox can be explained on the basis of the viscous
boundary-layer-displacement thickness at the reflec-
tion point P of RR.

Some useful discussions on the effect of Mach-
stem curvature and its influence on calculating
precise values of the triple-point-trajectory angle
are given.

Comments are also presented in the appendices
on the nature of the solutions of the three-shock
theory, the effect of slipstream thickness and the
transition CMR # DMR.

2. ANALYSES

2.1 Method of Calculations

The basic equations and assumptions used in the
present calculations are the same as those used by
Ben-Dor (Ref. 3) unless, in some cases, the assump-
tions and boundary conditions are changed to evalu-
ate their effects on the solutions. The method
emp. >yed for the calculations is briefly described
below.

The phenomena are assumed to be pseudo-stationary
and all the velocities in the equations below are
those relative to a reference frame attached to a
point which moves with a constant velocity. The
reference point is the reflection point P, in RR,
and the triple point T, in MR, respectively (see
Fig. 2). Each region which is divided by shock
waves and a slipstream is designated by O to 3, as
shown in Fig. 2. The physical quantities on both
sides of each shock wave in the vicinity of the
reference point satisfy the following equations:

Conservation of tangential velocity:

pytan, = pjtan(¢i-9j) 1)

Continuity:
piuisinoi = pjujsin(¢i-6j) 2)
Normal momentum:
2. 2 2.2,

P;*0u; "sin °i = pj*ojuj sin®(¢; ej) (3)

Energy:
1 2.2 12,2,

hi + 5 u;"sin °i = hj t3 uj sin (oi Gj) 4)

where i and j are the upstream and downstream
values, respectively.

In the case of regular reflection, or the
two-shuek theory, two sets of equations for i = 0,
j=land i =1, j = 2 are solved under the bound-
ary condition 6) = 62. This means that the direc-
tion of the flow behind the reflected shock wave is
along the wedge surface. The physical validity of
the boundary condition will be discussed later in
Section 3.4. In the case of Mach reflection, or
the three-shock theory, three sets of equations
i=0,j=1;i=1,3=2;andi=0,3j =23 (i
is called ¢3 in this case) are solved under the
boundary conditions 63 = 83-6; and p2 = p3, which
mean that the flows are parallel and the pressures
are identical on both sides of the slipstream. In
the case of MR, it is also assumed that the Mach
stem is perpendicular to the wedge surface, which
is reasonable but not precise experimentally. This
assumption will be discussed in Section 3.2. The
boundary conditions 83 = 8]-62 is also discussed in
Appendix C. The computer program used to solve
these sets of equations for gbtaining the transi-
tion boundaries in the (Mg-6y) or (Mg-6,) planes
is shown in Ref. 30.

2.2 Role of Relaxation Lengths

When a shock wave is propagated through a gas,
the translational degrees and rotational degrees
of freedom of the gas molecules are excited to the
new state of equilibrium wichin the length of a
few mean-free-paths, which is the thickness of a
shock wave. The other internal degrees of freedom,
however, take a longer time to reach equilibrium.
In analyses of gasdynamic phenomena including
shock waves, the role of relaxation lengths is very
important. That is, if the relaxation length of an
internal degree of freedom is much longer than a
characteristic length of the phenomenon, the in-
ternal degree of freedom can be treated as frozen
at the initial state. If an internal degree of
freedom whose relaxation length is considerably
shorter than a characteristic length of the pheno-
menon it can be assumed to be in equilibrium
immediately behind the shock wave. The gas is in
nonequilibrium when the relaxation length and the
characteristic length lie between the two extreme
cases of frozen and equilibrium flow.

{n the problem of oblique-shock-wave reflec-
tions, the flow Mach number at the second triple
point is used as a criterion for the transition
from CMR to DMR. Therefore, the distance between
the first triple point T and the second triple
point T' (Fig. 1) can be considered as a character-
istic length since the state at the second triple
point depends on the relaxation process which
begins at the incident shock wave. Consider the
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angle & (Fig. 10), which is the angle between the
incident shock wave and the reflected shock wave.
If the latter is curved then a tangential line is
drawn at the triple point in order to measure §.

In this case, the length of the portion of the re-
flected shock wave required to draw a tangential
line may be considered as another characteristic
length. Define a practical resolved length on a
photograph. (Practical means that it is different
from the usual resolution determined from the
ability to separate two close points.) The prac-
tical resolved length depends on whether the photo-
graph is an interferogram, schlieren record or a
shadowgram, and generally it is harder to see the
exact position or direction of a shock wave on an
interferogram than on a schlieren record or a
shadowgram. It is reasonable to choose 1 mm as a
practical resolved length on an interferogram under
the conditions of the experiments in the present
study.

Strictly, it is not possible to determine one
single characteristic length for all phenomena of
shock-wave reflections. The measurement of an angle
has its characteristic length, which may be the
shortest one, and the criterion for transition
between CMR and DMR has another characteristic
length, which may be the longest one in the present
discussion. The two characteristic lengths differ
by a factor of about 10 in a typical case. If the
relaxation length has an intermediate value between
these two characteristic lengths, the phenomena
cannot be analysed by the simplified method used in
the present report, which assumes the internal
degrees of freedom as being either in equilibrium
or frozen. It is reasonable to assume that the
solution of this case lies between the two extreme
cases.

The characteristic lengths have an uncertainty
factor of about 10. It should be recalled that the
relaxation process itself does not have a precise
length for it takes a considerably longer distance
than the relaxation length [defined as (1 - 1/e) of
the final value] to reach the final equilibrium
state. This does not mean that an analysis based
on relaxation length is uncertain. As discussed
later in this section, the relaxation lengths vary
easily by a factor of 103 ~ 107 between Mg = 2 and
Mg = 10 under the same initial conditions, which is
much greater than the uncertainty of the character-
istic length and the relaxation process. In the
discussions which follow, a characteristic length
of 1 mm is chosen. This is essential as the most
quantitative discussion in the present report is
based on the values of various angles. Since the
relaxation process has a finite length, it is true
that the angle must be that of the frozen-gas case
in the infinitesimal vicinity of the intersection
point of two shock waves. It is not possible,
however, to measure the angle so close to the
intersection point. In an actual measurement, at
least 1 mm of a shock wave is required to measure
an angle. Consequently, the & and other angles
measured are those between a tangential line in a
1 mm region when the shock wave is curved. Con-

sequently, whether or not an actual transition of an
internal degree of freedom from the frozen to the
equilibrium state takes place in some finite

region over the transition Mach number, is deter-
mined from the condition, whether or not its relaxa-
tion length is longer than this characteristic
length.

In the present report, the frozen and equili-
brium-gas assumptions are defined as follows. The
frozen-gas assumption means that only the transla-
tional and rotational degrees of freedom are
excited to their equilibrium values and that the
internal degrees of freedom are all frozen at their
initial states. That is, vy = 1.667 for Ar and
Yy = 1.40 for N,, 0, and aiso for CO, (see Appendix
A). As discussed later in this section, the
internal degrees of freedom of the gases considered,
other than the vibrational degrees, can be assumed
as frozen at their initial states in the range of
the experiments, except for high Mach numbers for
C0,, since the relaxation lengths of the internal
degrees are much longer than the defined character-
istic length of the phenomena. Therefore, in this
analysis only vibrational excitation is the addi-
tional internal degree of freedom required for the
calculation of equilibrium-gas properties, as com-
pared with those for a frozen gas. A fictitious
perfect-gas case, which has a constant y of 1.29
for CO, is also computed, even though it has no
physical significance (see Appendix A). Neverthe-
less, the agreement of the goz data (experimental
and numerical) in the (Mg-0,) or (Mg-6y) planes is
excellent by accident and indicates the need for
better criteria for SMR Z CMR and CMR # DMR tran-
sition lines.

Figure 4 shows the vibrational relaxation
length of CO, (Ref. 17) in region 1 (the region
behind the incident shock wave) at the initial
conditions pg = 15 torr and Tp = 300 K. The
pressure, temperature and flow velocity in region
1 which are based on the frozen-gas assumption
(y = 1.40) are used in the calculation of the
relaxation lengths. The relaxation length is 1 mm
at Mg = 3. Therefore, CO, is considered to change
its behaviour from a frozen gas to an equilibrium
gas in a certain region at Mg = 3. Ando (Ref. 14)
discussed the vibrational relaxation of CO, in his
paper. He misinterpreted, however, the pressure
behind a shock wave as an initial pressure when
referring to the experimental results of Gaydon
and Hurle, for example. Consequently, he obtained
extremely long vibrational relaxation lengths and
concluded that the vibrational degrees of freedom
of CO, are frozen at their initial states under
the conditions of his experiments.

Figure 5 shows an interferogram for CO, at
Mg = 2.04, pg = 50 torr and Tg = 297.3 K taken by
Ando (Ref. 14). A relaxation process behind the
incident shock wave can be seen clearly. The
vibrational relaxation length at Mg = 2.04 is
predicted to be about 4 mm according to Fig. 4.
If the difference in the initial pressures between
the case shown in the interferogram and in Fig. 4
(which are 50 torr and 15 torr, respectively) is
taken into account, the relaxation length in the
case of the interferogram is predicted to be about
1.3 mm. The relaxation length behind the incident
shock wave in Fig. 5 is measured as 1.7 mm, which
is in quite good agreement with the prediction.

The dissociational relaxation length of CO, for
the same initial conditions as Fig. 4 is about 70
times longer than its vibrational relaxation length
and is about 2 mm at Mg = 10 (Ref. 17). There
might be some effect of dissociational excitation
near Mg = 10 on the transition boundaries and these
would have to be included for given initial condi-
tions in calculating the boundaries.
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Figure 6 shows the vibrational relaxation length
of N, (Refs. 18, 19). The initial conditions are
the same as Fig. 4 and the calculation of pj, Ty
and u) are based on a frozen-gas assumption (y=1.4).
Although there are two experimental curves, it is
probable that at Mach numbers Ms ~ 10 the vibra-
tional excitation affects the flow phenomena.

Figure 7 shows an interferogram of N, taken by
Ben-Dor (Ref. 4) at Mg = 8.06, which is the highest
Mach number in his N, experiments. The initial
pressure is 5.1 torr and temperature is 298.2 K.

A relaxation process is seen behind the incident
shock wave. (It is easier to see if a tangent line
is drawn along a fringe.)

The dissociational relaxation length in the
case of N, is much longer than its vibrational re-
laxation length like cther gases. The dissociation-
al relaxation length under the initial conditions
of Fig. 6 is about 200 mm, even at Ms = 15 (Ref. 20).
Therefore, the dissociution of N, can be neglected
in the range of experiments referred to in the
present report.

Figure 8 shows the vibrational relaxation length
of O, (Refs. 18, 19). The initial conditions and
the calculation of py, T}, uj are the same as those
in the case of N,. The vibrational relaxation
length is 1 mm at about Mg = 6 + 6.5 from both
references. The experiments referred to in the
present report are not for pure 0, but air. The
vibrational relaxation length of 0 in air may have
different values from those shown 1n Fig. 8, as the
collisions with N, molecules are more frequent than
with 0 However, it is reasonable to use the value
for pure 0, since N, is considered to have similar
collision properties to O,.

Figure 9 shows an interferogram of a double-Mach
reflection in air at Mg = 8.7, pg = 30.75 torr and
Top = 299 K taken by Deschambault (Ref. 21). It
shows a clear relaxation process behind the incident
shock wave. The relaxation length is not measured
since it is difficult to determine the precise point
in a finite interferogram at which the density has
approached the equilibrium value by 1/e from the
frozen value. The relaxation process seen in this
interferogram is interpreted as that of N, because
the relaxation length of N, at the conditions of
this interferogram is predicted to be about 2 mm,
from Fig. 6, which is in agreement with the relaxa-
tion length seen in the interferogram. No inter-
ferogram was available showing the relaxation
process in 0,, which occurs at a lower Mach number
than that in N,. This is considered due to the fact
that the concentration of 0, in air is only 20%, so
that the density change due to the relaxation of 0,

is probably too small to be seen in an interferogram.

The dissociational relaxation length of 0, at
Ms = 10, under conditions of Fig. 8, is about 30 mm
(Ref. 20). Consequently, the dissociation of O,
also can be neglected.

In the case of Ar, since Ar is a monatomic gas,
there is neither vibrational excitation nor dissoc-
iation. Therefore, Ar can be treated as a frozen
gas unless electronic excitation and ionization
begin to take place. In the range of experiments
referred to in the present report, electronic ex~
citation and ionization can be neglected and Ar can
be treated as a frozen gas.

A summary of the discussions in this section
and Section 3.1 are given in Table 1.

3. RESULTS AND DISCUSSIONS

3.1 Comparison of Experimental and Calculated
Results for &

As expected, the calculated results based on
the frozen-gas model differ from the equilibrium-
gas model. By comparing an experimental result
with the frozen or equilibrium-gas model for a
given flow property, we can determine which model .
is valid. It is important to choose a basic
quantity for comparison in order to avoid the
effects of other assumptions used in the calcula-
tions. From a practical point, the chosen property ¢
should be measured easily and accurately. Needless
to say, the conclusions from a comparison of models
must be consistent with the discussion on relaxa-
tion lengths.

The angle ¢ was chosen for this purpose. As
shown in Fig. 10, it is the angle between the
incident and reflected shock waves. The comparison
of £ is essentially equivalent to the comparison
of .', which is the angle between the incident
shock wave and the triple-point-trajectory path at
angle y (Fig. 10). The comparisons are identical
if an experimental result is compared with a cal-
culated result which has the same value of ew
(since & = 90° + By - «'). The use of £ or '
obtained experlmentally is not identical, if
compared to a calculated result which has the same
value of 6y as that of the experiment, as done in
the previous papers (since © = 90° + =+ \ - ('),
A knowledge of ( is then required and at presont
there is no precise way of calculating it. This
will be discussed further. A comparison of ¢ has
some advantages over ' when comparing reeults,
for ¢ is a monotonic function of %y at fixed Mg.
However, w' has a minimum point at a certain 5y
for some part of the Mach number range (Ref. 23).
Also, since & will be used as a new criterion for
transition between SMR and CMR {Section 3.3), it
is necessary to check the agreement between
measured values of & and the calculated results.

The important difference between the present
and previous comparisons (Refs. 14, 23) is that,
in the present comparison, the experimental values
of & are compared with calculated results for the
same 8, instead of By. It is because the two
incident wave angles of a Mach reflection, dg and
¢3, together with Mg show that the wave system
can be derived from 6y and x, respectively
(6g = 90° - By, o3 = 30 - YX). In the latter, the
Mach stem is assumed perpendicular to the wedge
surface at the triple point, which is not valid .
expcrxmenta]ly, as described in Section 3.2.
However, 6y and ¥ (or ¢0 and ¢3) are not inde-
pendent of each other. The three-shock theory i
allows us to choose only one parameter from Gw. v
x and &, besides Mg. Therefore, ew should be
chosen as the parameter since it has a valid
relation with ¢g, while x or 6, have only an .
assumed Mach-stem perpendicularity relation with
¢3 or both ¢3 and ¢g, respectively. Therefore,
comparison with a calculation having the same
Ow as the experiment is not suitable until an
accurate prediction of i is found. Consequently,
if we compare the results of an experiment with a




calculation having the same value of {y means,
effectively, that we are comparing * from two
different trajectory directions. Comparisons
using both ways are shown in Figs. 11 and 12, for
the case of CO,.

It is important to note that the experiments
which have different initial pressures have differ-
ent relaxation lengths even at fixed Mg and Tg. In
addition, factors such as the magnification factor
of the photograph, the direction and spacing fringes
in finite-fringe interferograms and a residual
initial fringe in infinite-fringe interferograms
should be considered in the reduction of experi-
mental data.

Figure 11 shows the experimental results for #
in CO, (Ref. 14) plotted in the (&-Mg) plane. The
number beside each experimental point shows the
value of %y measured by Ando. The values of & a..
determined from the given 8, and ..'. The solid
lines and the broken lines are the calculated
for frozen (: = 1.40) and equilibrium CO,, respect-
ively. Also a perfect-gas case (y = 1.29) is shown
by dotted lines. The experimental results show
quite good agreement with the calculated results
based on the equilibrium-gas assumption for the
entire Mach number and Uy ranges in which experi-
mental data were obtained. At low Mach numbers,
the difference between the calculated results of
each gas model becomes so small that it is of the
same order as the experimental error. This result
is consistent with the conclusion in Section 2.2,
that CO, begins to change its behaviour from a
frozen gas {y = 1.40) to an equilibrium gas at
about Mg = 3 for TO = 300 K.

Gvozdeva et al (Ref. 16) compared their experi-
mental results of CO, with their analysis in the
.,9-.,0 plane (according to their notation, .;0 and
.‘0 are equal to our ..' and ¢, respectively). They
concluded that the imperfect gas, including vibra-
tional excitation, showed good agreement. [t is
consistent with the present result although their
experiments were done at only one Mach number (they
quote a shock-wave velocity of 1600 m/s).

Figure 12 shows a plot using %, rather than v;
for the equilibrium and perfect-gas models. The
frozen-gas case (, = 1.40) was omitted as it gave
results in poor agreement with experiments. The
agreement is not as good as obtained in Fig. 11.
This illustrates the additional errors caused by
. when using “y rather than 9.

Ando (Ref. 14) compared his experimental data
(replotted on Fig. 11) with several models ranging
from a fictitious perfect gas (y = 1.29) to complete
equilibrium in vibration and dissociation for .'
Since he compared his experimental data with his
calculated results for the same A, rather than d,
the agreement was not very good. Instead he chose
to base his agreement in the (Mg-9,) or (Mg-6y)
plane transition boundaries as indicators of agree-
ment with analysis. In those planes the agreement
is accidentally good and he concluded that the
perfect-gas model (y = 1.29) was the best. However,
his comparison of ' with imperfect-gas cases
including excitation of thrce or four vibrational
modes showed the best agreement. This contradiction
was not resolved in his work. Consequently, we
must conclude that the SMR # CMR and CMR # DMR tran-
sition lines must be replaced by new criteria such

that better agreement is obtained in the (Mg-6y) or
(Ms-uw) planes for all tested gases.

Figure 13 shows a similar plot for N, of
Ben-Dor's data (Ref. 4) in the (Mg-°) plane. The
number beside each experimental point shows the
value of ¢, measured by Ben-Dor. In this case
(and for Ar, Fig. 15) the values of “ had to be
measured from the photographs in his report, since

nceither the values of * nor .' were listed. The
calculated results are shown for a frozen gas
(v = 1.4) (solid lines) and a vibrationally equi-

librium gas (broken lines) for each fixed ‘.

Here the agreement is not as clear-cut as in CO,.
The experimental Points lie closer to the equili-
brium liQes for '+, - 30° and closer to the fro:zen

N, for 2y - 30°.

Ando (Ref. 22) remeasured the vzlues of "; for
N, from Ben-Dor's original photographs and obtained
values different from those shown in Ben-Dor's
paper. All values but one obtained by Ando for ~;
have the same values, or greater, than those by
Ben-Dor. The greatest differcence was 1.5°. Ando's
measurements arc shown separately in Fig. 14. The
experimental results in Fig. 14 exhibit the same
general features as in Fig. 13. it is worth noting
that the error in the measurements is of the same
order as the difference between the frozen and
equilibrium-gas cases. Consequently, a clear con-
clusion cannot be drawn from this comparison.
However, the results do not contradict the previous
discussions on relaxation lengths. Therefore, N
can be treated as a frozen gas (v = 1.40) except
at high Mach numbers, Mg - 10. However, in the
case of CO, the error in the measurements does not
play as important a role since the differences
between the frozen and equilibrium-gas calculations
are larger tharn the experimental error and points
to the validity of CO, being in equilibrium for
Mg 3.

2

Figure 15 shows the (Mg-') plot for Ar derived
from Ben-Dor's data (Ref. 4). As Ar is not ex-
cited over the given Mg range only the frozen-gas
(v = 1.667) results are shown as solid lines for
each fixed 4&. Good agreement is obtained with
experimental results, although the experimental
$'s are slightly larger than the calculated re-
sults at higher 9y.

Figure 16 shows the (Mg-!) diagram based on
the experiments of Deschambault (Ref. 21), in air.
The solid and broken lines are the calculated
results for fixed ', for air as a frozen () = 1.4) ]
and equilibrium gas, respectively. The experi-
mental results do not show any clear-cut picture.
For example, at “y = 25°, the agreement favours
the equilibrium solution up to Mg -~ 9. Whereas, i
at G; = 35°, agreement is best with the frozen
line up to Mg = 9. The equilibrium lines are
also favoured for 4 < Mg < 6 at 8y = 35° and 45°.
Consequently, the experimental results for air
again do not show as a clear-cut experimental
decision between the frozen and equilibrium-gas
cases in N, and air. Quantitatively accurate
measurements are required since the differences
between the two models are not as large as in CQ,.

1t should be noted that the angle % was cal-
culated on the basis of conditions in state 1.
However, state 2 is also involved. Conditions in
state 2 depend on the wedge angle 8y and it is
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possible, for example, for state 1 to be frozen and
for states 2 and 3 to be in equilibrium. Conse-
quently, the present computer program will have to
be modified and the (Mg-3) plots will have to be
corrected at a future date. Better agreement may
result.

3.2 Effect of Variation of Mach-Stem Angle at
Triple Point from being Perpendicular to

Wedge Surface

The available analytical results for the triple-
point-trajectory angle x as a function of 6y and Mg
are not sufficiently accurate. For example, Ando
(Ref. 14) compared his predictions of x with the
experimental results [see Appendix B, Fig. Bl(a)(e)
in Ref. I4]. The experimental data did not agree
with his predictions based on various models of €O,
excitation. The fictitious perfect-gas model
(v = 1.29) accidentally agrced best with the experi-
mental data, and is inconsistent with the concepts
of relaxation lengths. This inconsistency and
fortuitous agreement can be partly attributed to
the assumption that the Mach stem is perpendicular
to the wedge surface as described below.

In the three-shock theory, the effective wedge
angle 7y plays an important role. That is, once a
value of b, is given at a fixed Mg, the directions
of the reflected shock wave and the Mach stem are
determined along with the flow variables from the
solution of the three-shock theory. In this se-
quence, a value of the actual wedge angle Oy is
obtained if the Mach stem at the triple point is
assumed perpendicular to the wedge surface. In
other words, assumptions other than the perpendic-
ular condition would give other values for fy.
This means that &, is a function of %y including
the assumption concerning the orientation of the
Mach stem to the wedge surface. Therefore, the
value of x is also affected by the orientation of
the Mach stem. In all previous calculations of
the three-shock theory (Refs. 1, 2, 13, 23), the
Mach stem was assumed perpendicular to the wedge
surface although discrepancies were observed ex-
perimentally owing to the lack of a better one.
This assumption is satisfied exactly at the foot
of the Mach stem to meet the boundary condition
that flows on both sides of the Mach stem must be
along the wedge surface (neglecting the effects of
the viscous boundary laver). It would also be
valid at the triple point if the Mach stem were
perfectly straight.

Experimentally, however, the Mach stem gener-
ally is curved and the angle ¢ between the Mach
stem at the triple point and the line perpendicular
to the wedge (see Fig. 10) has been found from
present experiments to have a concave and convex
distribution between -3° and 7.5°, respectively.
Figure 17 shows an example of a Mach stem in CO,
which is not perpendicular to the wedge surface.
The angle ¢ in this case is 7.5°. Calculations
using these values instead of ¢= 0° give different
results for x. The results, taking into account
the effects of ¢, were obtained graphically in
order to save computer time. Therefore, the re-
sults were not obtained for all experimental cases
and are given in round numbers in most cases.

Table 2 shows the measured values of € from exist-
ing photographs (Refs. 14, 4) and the calculated
values of ¢ which are consistent with values of
both 6& and x (and consequently with 6y). The
calculated values are given for the frozen, perfect

equilibrium-gas cases. The experimental results
for 6y less than 20° are not compared with calcula-
tions since for small wedge angles an error of
0.5° in x corresponds to more than an error of

3° in €. Therefore, the accuracy of the comparison
is poor.

In the case of CO,, the equilibrium-gas case
showed better agreement with experiments, contrary
to the comparison based on the assumption of ¢= 0°.
[Calculations based on the £ = 0° assumption agrees
best with the perfect (y = 1.29) case.] However,
there are still non-negligible discrepancies bet-
ween the calculated and experimental values of ¢.
In the case of N,, the equilibrium~gas case showed
rather good agreement with experiments, which seems
inconsistent with the discussion on relaxation
lengths. In the case of Ar, the discrepancies bet-
ween the calculated and experimental ¢ are smaller
than those of N, or CO,. This is due to the fact
that ¢ is close to 0° for Ar. The discrepancies
which remain even ii the effect of ¢ is taken into
account are considered to arise from other factors.
For example, the displacement thickness of the
slipstream between regions 2 and 3 violates one of
the boundary conditions of the three-shock theory,
and is discussed in Appendix C. Unfortunately, it
does not minimize the discrepancies.

It should be noted that the value of ¢ has a
significant effect on the solutions, especially on
x, when they are described as functions of §y. It
means that discussions arising from a comparison
of experimental results with solutions of the
three-shock theory (which includes the assumption

that + = 0°) are no longer accurate if they are
made by comparing the results which have the same
value of ‘4. However, the assumption that ¢ = 0°

does not affect the comparisons if the experi-
mental results are com?ared with analysis based

on the same value of 2. As noted previously,

¢ affects the values of 0y, whereas solutions
based on 9& are independent of ¢. Therefore, the
transition boundaries, except for RR # MR, are
more accurate in the (Mg-“y) plane than in the
{Ms-0y) plane as long as the available predictions
of x remain imprecise. However, the (MS—GQ) plane
suffers from the limitations that the transition
boundary lines are too close together, especially
at higher Mg, and it is more difficult to differ-
entiate between frozen and equilibrium-gas bound-
aries as well as to determine if experiment and
analysis of the various regions are in agreement.
In addition, the (Mg-fy) plane has a multi-valued
portion near the RR 2 MR boundary as described in
Section 3.4. A precise analytical determination
of x is therefore a much needed future require-
ment.

3.3 A New Additional Criterion for Transition
from SMR to CMR

In the previous sections, it was concluded that
CO; behaves as a gas in equilibrium except at low
Mach numbers. As shown in Fig. 18 there are sig-
nificant discrepancies between the experimental
data of the three types of MR and the calculated
transition boundaries based on an equilibrium-gas
assumption. These discrepancies are considered as
arising from inappropriate transition criteria.
The criteria Myp ~ 1 and Myg ~ 1 are only necessary
conditions for the transitions. The existence of
other necessary conditions for the transition from
SMR to CMR may push the boundary line into the CMR




region and the CMR to DMR line¢ into the DMR region.
This would improve the agreement significantly.

Complex-Mach reflection has been characterized
by the existence of a band of compression waves at
the kink behind the reflected shock wave whether
it can be seen in an interferogram or not (Refs.
10, 16). The condition for the existence of a band
of compression waves may be related to the angle ¢
between the incident shock wave I and the reflected
shock wave R at the triple point T (Fig. 10), as
follows.

Experimental results (Ref. 24) have shown that
the ratio between the distance from the wedge
corner to the kink along the horizontal line ¢ and
the distance from the wedge corner to the incident
shock wave along the horizontal line L is equal to
the ratio between the flow velocity behind the
incident shock wave (in the laboratory frame) uj,
and the incident shock-wave velocity ugy, except
for wedge angles near the RR boundary. That is,
/L = up,/ug; (see Fig. 19a). In other words, the
kink is moving with the flow velocity in region 1
as far as the horizontal component is concerned.
Therefore, it is seen that the flow velocity in
region 1 relative to the kink has only a vertical
component. This means that the flow moves downward
{or parallel to the incident shock wave) as seen
from a frame of reference attached to the kink
(Fig. 19b).

If we call the incident angles and the densities
behind the reflected shock wave on either side of
the kink as *1k, ®1Kk, .2, .3, as illustrated in Fig.
19¢, then the existence of a band of compression
waves is equivalent to the relation of .3 - 7 and
is also equivalent to ‘ciK—90°: f41x-90°! because
the flow variables upstream on either side of the
kink are the same. This means that the closer to
90° to the shock front that the incident streamlines
are, the stronger the shock wave, and consequently
the greater the density change across the wave.
There are four possible geometrical inclinations
for the reflected shock wave on either side of the
kink as illustrated in Fig. 19d. (It must be
remembered that a configuration which has a convex
angle to the upstream flow direction cannot maintain
a sharp corner like a kink. Only configurations A
and B of the four satisfy the condition |¢{K-90°
+1x-90°', and in both A and B the angle © is
greater than 90°. Therefore, * - 90° is considered
a necessary condition for the existence of a band
of compression waves, which is required for the
transition to CMR. (It is only a necessary condi-
tion becausc configuration C, which does not satisfy
the condition '$]k-90°

Figure 20 shows a plot of the experimental
values of # with shock Mach number Mg for the
various types of reflections for N,, Ar, CO, and
air. All experimental CMR but one in CO; lie
below the ¢ = 90° line, which means that they
satisfy the condition & - 90°. This provides good
evidence that ¢ - 90° is a necessary condition. It
must be pointed out that results in Fig. 20 do not
include any calculation or assumptions. They show
only the experimental relation between the SMR 2 CMR
boundary line and 4. It means that this is a direct
comparison between the new necessary condition and
the experimental data.

As mentioned, the new condition for transition
& - 90° is only a necessary condition. Therefore,

1$1k-90°!, also has & -90°)

the condition M21 - | remains along with the new
condition. The transition takes place when both
of these two conditions are satisfied. Conse-
quently, the term new criterion quoted below
includes both necessary conditions, and the criter-
ion MaT ¢ 1 is the former eriterion.

Figure 21 shows a transition boundary plot for
equilibrium CO; in the (MS-GQ) plane with emphasis
on the SMR # CMR transition. The solid line shows
the 'cw criterion and the broken line shows the
former criterion M1 = 1. One of the two SMR
points which was calculated in the CMR region of
the former criterion now lies in the SMR region of
the new criterion.

Figure 22 shows a similar transition boundary
plot in the (Mg-t) plane of frozen N, and air
emphasizing the SMR # CMR transition. The solid
line and the broken line show the transition
boundaries between SMR and CMR based on the reuw
criterion and the former criterion, respectively.
Most of the SMR points which were previously in
the CMR region now fall into the SMR region of the
new criterion. The experimental distribution of
SMR and CMR show very good agreement with the new
criterion line except for two points in air at
Ms ~ 8. This tendency is consistent with the
discussion on vibrational relaxation lengths for
0z and Nz2. Figure 23 shows the calculated transi-
tion boundary lines of the new criterion for
frozen (solid line) and equilibrium air (broken
line). It can be seen clearly in this figure
that the experimental boundary of air between
SMR and CMR approaches the equilibrium-air line
at high Mach numbers.

Figure 24 shows the calculated lines for Mpyr =1
and ¢ = 90° for Ar. In this case, the ¢ = 90° line
lies below the MyT = 1 line for Mg - 6 and slightly
above for Mg ' 6. The addition of the condition
£ - 90° makes little difference since the region
above both lines satisfies both necessary condi-
tions and therefore the line which lies above is
the new transition line, which is close to the
My = 1 line in this case.

It can be concluded that the new criterion,
composed of conditions M1 - 1 and ¢ >~ 90°, gives
a transition boundary line between SMR and CMR
which agrec 11 with the distribution of experi-
mental points for all gases tested using calcula-
tions consistent with ¢ and relaxation lengths.

There are also discrepancies in the transition
boundaries between CMR and DMR. In the case of
€0z, for example, as shown in Fig. 18, the equili-
brium-gas assumption gives a CMR < DMR transition
boundary line which is not in good agreement with
the experimental result if the boundary line is
based on the criterion Mk ¢ 1. Results for other
gases also have discrepancies. Perhaps an addi-
tional necessary criterion is required in the case
of the transition from CMR to DMR. However, no
additional criterion (Mpx - 1 is one of the neces-
sary conditions) has been found so far. Some
comnents on this problem are given in Appendix D.

It should also be noted that the CMR Z DMR
transition line is based on the assumption that
the distance (L-{) between the two triple points
T and T' (see Fig. 19a) remains finite. As noted
above, this is a reasonable assumption for the
gases investigated as long as 8, < 40° and Mg : 2.




- Tl o

That is, beyond this region it is found experiment-
ally that the second triple point T' approaches and
merges with the first triple point T (Refs. 13, 15).
Consequently, the CMR # DMR line approaches and
becomes coincident with the SMR # CMR line at the
RR # MR boundary at point P, as illustrated in Fig.
25. No analytical solution has been found for this
behaviour. It can be seen that an experimentally
drawn line in this region results in much better
agreement with the remaining data in the CMR and
DMR region.

3.4 Persistence of Regular Reflection (RR) into the
Region of Mach Reflection (MR) — von Newmann's
Paradox

Experimental results show that RR persists
beyvond the RR # MR boundary of the detachment
criterion. Figure 26 shows the persistence of
RR in the case of CO,. In this figure, the experi-
mental points are plotted in the (Ms-8y) plane
instead of the (Mg-9y) plane since it has a multi-
valued portion near the RR # MR boundary. [At the
RR boundary of the MR region, x has a finite value.
Therefore, 6, = By + x has a larger value than &,
at the boundary. On the other hand, 9& is equal
to Jy in the RR region. Consequently, the RR 2 MR
boundary corresponds to two separate lines (8, and
Ay + ¥) in the (Ms-9y) plane. A point between
these two lines in the (MS-BQ) plane corresponds
to two physical points, one in RR and the other
in MR.] Therefore, a discussion on the persistence
of RR is best made in the (Mg-6w) plane, unlike
the boundaries in the MR region which are best
described in the (Mg-8y) plane (see Section 3.2).
This inconsistency can be removed in the future if
an accurate prediction of Y can be found, then the
(Ms-9y) plane could be used throughout. As can be
seen in Fig. 26, RR persists down to 8, = 42° at
Mg = 7.2. The persistence depends on Mg and the
data points are well below the boundary of the
detachment criterion. However, the experimental
boundary is not unique. In 2 < Mg < 3, DMR points
were obtained at Oy = 48° in Ref. 26. In Ref. 22,
RR points were again obtained at a lower wedge
angle of Oy = 47°., This fact suggests that the
extent of the persistence depends on factors other
than Ms and 8y. Figure 27 shows the persistence of
RR in the case of air. No unique experimental
boundary exists in this case also, despite the fact
that the persistence is very apparent.

Hornung et al (Ref. 11) suggest that the persis-
tence of RR could be explained in terms of the
viscous boundary layer which develops behind the
reflection point P (Fig. 28) on the wedge surface.
In the viscous boundary layer produced after the
passage of the reflection point, the flow has
progressively lower velocities (and is zero at the
wall) than the flow in the free stream in a labora-
tory frame. However, the flow in the boundary
layer has higher velocities than the flow outside
in a reference frame attached to the reflection
point. This corresponds to the fact that the wedge
surface is moving with a velocity equal and opposite
to the incident shock speed from the reflection
point P. As a result, the displacement thickness
of the boundary layer has a negative value (see
Fig. 28). Therefore, the deflection angle through
the reflected shock wave is less than required
without the boundary layer. The displacement angle
64, or the angle between the flow affected by the
boundary layer and the actual wedge surface,
enables RR to persist to lower wedge angles because

the point at which the deflected angle through the
reflected shock wave increases to the maximum de-
flection angle and ©2; is now lower than that
without the displacement angle. It should be
pointed out that the displacement angle is not
equal to the difference in the transition wedge
angle caused by the boundary-layer effect. In
fact, the displaced wedge has a larger inclination
despite the fact that the displacement effect
lowers the transition wedge angle and also the
wedge angle in front of the incident shock wave

is still equal to the actual wedge angle 8y. Since
the reflected shock wave is of the weak family of
the two possible solutions, the angle w' is smaller
than the one without a boundary layer. Hornung

et al (Ref. 11) mentioned that the opposite was
observed experimentally. However, the present
analysis of previous experiments gives a smaller

w' than obtained from a calculation without the
boundary-layer displacement effect, as expected.

The angle w' is a very good indicator of the
boundary-layer displacement. Figure 29 shows a
(Mg-w«') plot for CO; experiments (Refs. 14, 22)
compared with calculations using several displace-
ment angles. There are no analytical solutions of
w' above the lines corresponding to the RR # MR
transition boundaries (for each 84). The experi-
mental w' are smaller than those for 84 = 0°. The
differences from the calculated line 84 = 0° are
larger when the wedge angle is lower, in other
words, closer to the MR region. This agrees quali-
tatively with the analytical fact that the effect
of the boundary-layer-displacement angle on '
becomes smaller at higher wedge angles. The experi-
mental results agree with a displacement angle of
8d = -1° ~ -2°. A quantitative discussion of this
value is given subsequently. Figure 30 shows
similar experimental results for air and N2. For
simplicity, only experimental points of 8, = 50°
are plotted and compared with calculations. /% th
case of air, the comparison is complicated because
atr and N» changes from a frozen tc an equilibriwm
gas at an intermediate Mach number. (The reason
why the frozen line 64 = 0° does not exist at high
Mach number is that €y = 50° with 84 = 0° (frozen)
is in the MR region.) At lower Mach numbers, the
experimental results agree approximately with the
calculation for a frozen gas with 8d = -1°. At
higher Mg, the tendency is for the points to
approach the equilibrium lines. Experimental
points for other 8y are compared with the 84 = -1°
case for frozen and equilibrium air in Fig. 31.
Other 6y show a behaviour similar to the case of
fw = 50°. Figure 32 shows the results for Ar. The
two available experimental points agree with the
calculation of 84 = -2°.

For a complete analysis, the displacement angles
must be based on boundary-layer theory (Ref. 29).
It is not possible to obtain a unique displacement
angle even if the initial pressure is given. The
displacement thickness itself can be calculated and
is shown in Table 3 for the case of air. The dis-
placement thickness is proportional to vx, which
means that the slope of the displacement thickness,
which is proportional tc 1/vX, becomes infinite in
the limit as x = 0. In other words, arbitrary
angles can be obtained by choosing a distance from
the reflection point in which the mean slope is
calculated. Here we face a problem similar to the
choice of a characteristic length in Section 2.2.
An appropriate distance should be chosen as the
distance for calculating a mean slope. It is




reasonable to choose 1 mm as the distance, similar
to the case of the relaxation length. The mean
slopes for 1 mm are given in Table 3 for the RRZMR
boundary in air. The angles lie between -1° and
-2° and are in good agreement with the present
comparison.

The RR # MR transition boundary lines with
several boundary-layer-displacement angles 0d are
compared with the experimental persistence of RR
in Figs. 26 and 27 for CO; and air, respectively.
In the case of CO,;, a displacement angle of -1°
changes the transition boundary by about 0.5°. All
experimental RR are above the equilibrium-gas case
of tg = -2°. At about Mg = 2, which is in the
region where CO; could be a frozen gas, RR persist
below 84 = -4° of the frozen-gas case and they
seem to correspond to about 64 = -5°. The transi-
tion from RR to MR is dominated by the flow at the
reflection point. Although it is meaningless to
assume that the flow properties in the infinite-
simal vicinity of the reflection point determines
the reflection phenomena, the region which domin-
ates the phenomena is considered to be much less
than 1 mm, which is the characteristic length
chosen in the discussion on relaxation lengths.
Consequently, the Mach number at which vibrational-
excitation effects begin to take place in the
transition is higher than Mg = 3. For the same
reason, the displacement angle which dominates the
transition must have a different value, which is
larger than that for a change in the angle o'.
Since the size of the region which dominates the
reflection phenomena is not known, no further
quantitative comparison is possible. The variation
of pressures must be taken into account in this
discussion, even in the frozen-gas case, since the
thickness of the boundary layer depends on the
pressure or Reynolds number. Figure 27 shows the
same comparison for air. Since air behaves as a
frozen gas in the region shown in Fig. 27, only
the frozen-gas cases are shown. Regular reflection
(RR) persists down to the transition line of 64=-2°
at lower Mach numbers and 64 = -4° at higher Mach
numbers. A further quantitative analysis is not
possible for the reasons already given for CO;.

Detailed calculations of the flow quantities
in the various states generated by pseudo-stationary
oblique-shock-wave reflections in tabular form, for
the convenience of the researcher, can be found in
Ref. 30.

4. CONCLUSIONS

The recent results on pseudo-stationary oblique-
shock-wave reflections were assessed based on
criteria associated with molecular relaxation
lengths, the basic angle § between the incident
shock wave and the reflected shock wave and
transition boundaries in the (Ms-6,) plane.

The following conclusions apply in the range
1 < Mg < 10; at Mach numbers lower than 3, CO:
behaves as a frozen gas (v = 1.40) and as an
equilibrium gas with vibrational excitation for
Mg > 3; nitrogen and air are frozen (y = 1.40)
below Mg = 6 + 9, depending on the initial pressure;
argon is frozen in the present Mach number range.
Dissociation and ionization can be neglected
(except for CO; at lower pressures) up to Mg = 10.

The curvature of the Mach stem affects the
triple-point-trajectory angle x significantly.
This discrepancy accounts for most of the imaccu-
racies of predicting x. There are, however, still
non-negligible discrepancies between the experi-
mentally-measured x and the calculated x even if
the effect of Mach-stem curvature is taken into
account.

The condition that the angle between the
incident shock wave and the reflected shock wave
is greater than 90° is an additional necessary
condition for the transition from SMR to CMR. The
addition of the new criterion improves the agree-
ment between analysis and experiments.

The persistence of RR is explained in terms of
the induced viscous boundary layer on the wedge
surface. The measured reflected-wave angles w'
agree with the calculated values which take into
account the boundary-layer-displacement effect.
The value of the boundary-layer-displacement angle
8d necessary to explain the persistence of RR
is reasonable compared with the calculation of
w'. Rigorous quantitative predictions are
difficult owing to the uncertainty in calculating
the boundary-layer-displacement angle.

Large discrepancies at the CMR ¢ DMR boundary
between calculated and experimental results remain.
In addition, the experimental results show that the
CMR 2 DMR line and the SMR # CMR line merge at
the RR line due to the merging of the two triple
points in DMR. An analytical prediction for this
effect is not available. Analytical predictions
for Mach-stem curvature and its relation to the
triple-point-trajectory angle % at low shock Mach
numbers are also required.
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Table 1

Range of experimental pressure and shock Mach number

where gases can be treated as frozen or equilibrium

for oblique-shock-wave reflections

Gas Frozen Equilibrium
CO2 Mg < 3* Mg > 3+
N2 Mg < 9* Mg > 9*
Air Mg < 6** Mg > 6**
Ar Whole range —_—

*at Py = 15 torr
**at p, = 50 torr

Table 2

Comparison of calculated and experimental values of ¢

(experimental values are measured from Ref. 14, 4)

€
€ (cal)

M (exp) Frozen Perfect Equilibrium

Gas (deg) s (deg)  (dep) (deg) (deg)
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Table 3

Boundary-layer-displacement thickness &* and boundary-layer-displacement angle ed

on wedge surface

= 300 K, based on Ref. 29)

(frozen air at RR Z MR boundary, Py = 15 torr, T

M

6*/i§ (meandvalue \
M cm over 1 mm)
1. -5.83x107>  -1.06 )
1. -6.74x107° -1.22
1. -6.82x10"° -1.24
1. -6.94x10"° -1.26
2. -6.90x10™>  -1.25
2. -6.79x107%  -1.23
5. -6.85x107°  -1.24
a. -7.10x1073 -0.29
5. -7.55x10"° -1.37
7. -8.41x107> -1.52
10. -9.84x107> -1.78
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FIG. 2 REGULAR AND MACH REFLECTIONS IN STATIONARY COORDINATES WITH i
RESPECT TO POINTS P AND T, RESPECTIVELY. _ i

0, 1, 2, 3 - REGIONS; I - INCIDENT SHOCK WAVE; R - REFLECTED

SHOCK WAVE; M - MACH STEM; P - REFLECTION POINT; T - TRIPLE

POINT; 6 - DEFLECTION ANGLE; ¢ - WAVE ANGLE; rm77rrrrr WEDGE; ?
+ - FLOW DIRECTION; ------ SLIPSTREAM; <« - DIRECTION OF

TRIPLE-POINT PATH.
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FIG. 3

—>

0 ]

SHOCK-POLAR ILLUSTRATING RR < MR TRANSITION BASED ON THREE
DIFFERENT CRITERIA,

I - INCIDENT SHOCK WAVE; R, R', R" - REFLECTED SHOCK WAVE AT
RR ¥ MR TRANSITION (R - DETACHMENT CRITERION AT A + B; R' -

MECHANICAL-EQUILIBRIUM CRITERION AT C; R'' - SONIC CRITERION
AT D - E); A, B, C, D, E - STATES BEHIND REFLECTED SHOCK WAVE

AT RR Z MR TRANSITION (A - RR STATE OF DETACHMENT CRITERION;
B - MR STATE OF DETACHMENT CRITERION; C - RR AND MR STATE OF
MECHANICAL-EQUILIBRIUM CRITERION; D - RR STATE OF SONIC
CRITERION; E - MR STATE OF SONIC CRITERION).
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VIBRATIONAL RELAXATION LENGTHS BEHIND SHOCK WAVES IN CO, .
INITIAL CONDITIONS: pgo = 15 TORR, Tp = 300 K (REF. 17).

FOR HIGHER OR LOWER INITIAL PRESSURES AT 300 K THE RELAXATION
LENGTHS ARE PROPORTIONATELY DECREASED OR INCREASED, RESPECTIVELY.
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FIG. 5 SINGLE-MACH REFLECTION IN €O, SHOWING VIBRATIONAL RELAXATION
PROCESS BEHIND INCIDENT SHOCK WAVE (FINITE-FRINGE INTERFEROGRAM) .,
U= 30°, Mg = 2.04, pg = 50 TORR, Ty = 297.3 K (REF. 14}.
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FIG. 6  VIBRATIONAL RELAXATION LENGTHS BEHIND SHOCK WAVES IN N, .
INITIAL CONDITIONS: po = 15 TORR, To = 300 K (REFS. 18, 19).
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FIG. 8  VIBRATIONAL RELAXATION LENGTHS BEHIND SHOCK WAVES IN O,.

INITIAL CONDITIONS: po = 15 TORR, T, = 300 K (REFS. 18, 19).
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FIG. 16

VARIATION OF ANGLE & VS SHOCK-MACH NUMBER AT Fl

To = 300 k, p, = 15

RR, — FROZEN AIR




FIG. 17  EXAMPLE WHERE ENTIRE MACH STEM IS NOT PERPENDICULAR TO WEDGE
SURFACE. By = 20°, Mg = 4.72, po = 14.5 TORR, T =.297.7 K,
CO> (REF. 14) ;
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FIG. 19(a) SCHEMATIC DIAGRAM ILLUSTRATING ASSUMPTION OF POSITION OF KINK

i« ) ——
A J——

OR SECOND TRIPLE POINT AND FIRST TRIPLE POINT.

flow vector in region 1

I in laboratory frame U4
flow vector
in region 1
(1) from kink
o |
T velocity vector of kink
in laboratory frame
same as Uy,
M

FIG. 19(b) SCHEMATIC DIAGRAM ILLUSTRATING FLOW DIRECTION IN REGION 1
RELATIVE TO KINK.
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FIG. 19(c) DEFINITIONS OF ¢ o, AND o'
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lal<ipl

(B) M (D)

FIG. 19(d) FOUR POSSIBLE GEOMETRIC CONFIGURATIONS OF REFLECTED SHOCK WAVE.
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FIG. 21 SMR ¢ CMR TRANSITION BOUNDARIES OF ''NEW" AND "FORMER" CRITERIA
FOR EQUILIBRIUM CO, .
————— NEW CRITERION, ces ams ww FORMER CRITERION. EXPERIMENTS:
A - SMR, V - CMR (REF. 14).
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FOR FROZEN N, AND AIR (y = 1.40).

NEW CRITERION, eme avem ~ae FORMER CRITERION.
N,: A - SMR, V - CMR (REF. 4); AIR:

EXPERIMENTS :

A - SMR, ¥ - CMR (REF. 21).
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TRANSITION BOUNDARIES OF NEW CRITERION.
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A - SMR, ¥ - CMR (REF. 21).
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SHOCK MACH NUMBER Mg

EXPERIMENTAL CONVERGENCE OF CMR I DMR BOUNDARY WITH SMR ¥ CMR
BOUNDARY AT RR # MR BOUNDARY FOR co, .
CALCULATED BOUNDARY: ewmammer FROZEN CO,, e ~— «=EQUILIBRIUM CO, .
EXPERIMENTAL POINTS: o - RR, A - SMR, V - CMR, O - DMR (REF. 26)
® - RR, ¥ - CMR, & - DMR (REF. 14)
& - RR, & - SMR, - DMR (REF. 22)
¥ - CMR, o - DMR (REF. 25)

== ¢ -== "= EXPERIMENTAL BOUNDARY BETWEEN CMR AND DMR.
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APPENDIX A

COMMENT ON ¢

SRFE

. €O,

The term perfect CO: was
13 and 14 to indicate a gas with a constant value of
y = 1.29 independent of temperature. However, from
the following discussion, CO; with a constant
v = 1.29 has no physical validity. At room tempera-
ture, the vibrational modes of (0. are partly ex-
cited. The doubly-degenerate bending modes, which
have a characteristic temperature of 960.2 K, are
excited to 14% of their full excitation and have a
contribution of 0.9R to Cy. The other two stretch-
ing modes contribute 0.7R to Cy. Consequently,
along with contributions from the translational
modes and rotational modes Cy = 3.47R at room tem-
perature, or y = Cp/Cy = 1.29 at room temperature.
However, behind a shock wave the translational and

used previously 1in Refs.

rotational temperatures immediately jump to the
Rankine-Hugoniot temperature :lg. Since the vib-
rational energy is too slow to participate, it
remains frozen on either side of the shock front
and the temperature Tlg can be computed using

v = 1.4 (Ref. 31). After a period (relaxation
time) the vibrational modes arec activated and

shar. in the energy through eqaxpartxtlon The
final equilibrium temperature Tlg - Tlg. .psiee
CO: with , = 1.29 has no physical basis. However,

it is sometimes uscd in engineering applications
to give an approximate answer for shock waves in
COz with vibrational excitation. The error
becomes increasingly worse with rising shock
Mach number (Ref. 31).

APPENDIX B

THREE-SHOCK THEORY

The three-shock theory provides a simple and
effective analys.s of oblique-shock-wave reflec-
tions. Even so, it includes some aspects which
are physically unreasonable or inconsistent with
experimental results. They are described below.

B.1

Behaviour of . as MS -1

The values of v at fixed 9, are approximately
constant at high shock Mach numbers Mg, both
experimentally and analytically. As Mg decreases,
the values of . increase except for large %y
Experimeuatally, x has maximum values near Mg = 2
and decreases for other Mg. The calculated results
of . from the three-shock theory, however, do not
have maxima for different 9y but coniinue to in-
crease as Mg » 1, as shown in Fig. A-1.

Ben-Dor (Ref. 3) proposed an alternative method
to obtain x at small wedge ~ngles (8w < 4°) which
does give maxima and may agree with experiment
despite his failure to obtain solutions of the
three-shock theory for small fw and low Mg. His
method is to assume that 6, at small dy coxnC1des
w1th the value ,at the no reflection (NR) boundary
’wNR and y = % NR - “w at small wedge angles. Des-
pite that his method gives a reasonable approxima-
tion to experiment results and is useful from an
engineering point of view, he gave no physical
explanation that “ at small 8w coincides with the
NR boundary. His method does not give the neces-
sary dependency of 6y (= wNR) for different 6y.
Since his suggestion is outside the three-shock
theory realm, being only an assumption, it does
not provide any clue for improving the three-shock
theory or an alter: ‘ve theory for the calculation
of . The tendency .» increase . as Mg + 1 is not

considered realistic, not only becausz it does not

agree with experimental results, but it also yields
a no-solution region in the (Mg-0,) plane, as des-

cribed in Appendir B.2.

The reason why the three-shock theory tails to
give reasonable solutions at low Mach numbers may
be as follows. The reflected shock wave is com-
posed of two parts, one is a reflected shockh wave
emanating from the triple point and the other 1s
a bow shock wave caused by the interaction ~f the
incident flow with the flow deflected by the wedge.
The two shock waves intersect at the kink or the
second triple point in CMR or DMR, respectively.

In SMR, the two shock waves blend smoothly so that
an intersection point cannot be seen. The three-
shock theory gives the position of only one of the
two shocn waves, which is the one emanating from
the triple point. The actual shape of the entire
reflected shock wave is considered to be determined
by the two shock waves mentioned above and their
interaction. At low Mach numbers, both the refloect
e¢d shock wave from the triple point and the bow
shock wave are weakh. The former, however, 1s con-
sidered to become weaker more rapidly than the
latter. Therefore, the position of the whole re-
flected shock wave is controlled by the bow shock
wave rather than the reflected shock wave from

the triple point. In the limit as the shock Mach
number of the bow shock wave approaches 1 (Mach
wave), or yw * 0°, the bow shock will intersect

the incident shock wave at a point “yw = -unp, which
is at a lower 2 than the limit of solution of the

w
threc-shock theory.

The reason is illustrated in Fig. A-2. Point
0 in Fig. A-2 was at the wedge corner when the
incident shock wave collided with the wedge corner
and it moves with the flow in region 1. Thercfore,
the flow in region 1 has a direction TO relative
to T and the bow shock wave in the vicinity of T is
normal to the flow. Since the bow wave is a Mach
wave, the flow velocity in region 1 relatnve to the
bow wave, or T, is sonic. If T is at ﬂwNR- the
flow Mach number in region 1 is also 1.0 according
to the criterion of the NR boundary. It means that




-

T, which is the intersection point of the bow shock
wave and incident shock wave in the limit of bow-
shock Mach number » 1, is at ewNR. Therefore, it
is reasonable to assume that, at low incident Mach
numbers and small wedge angles, the intersection
point of the extension of the bow shock wave and
the incident shock wave is nearer a point for which
it has S yp. Consequently, if the shape of the
reflected shock wave is dominated by the bow shock
wave, the bow shock wave will pull down the posi-
tion of the reflected shock wave emanating from

the triple point and eventually the position of the
triple point itself is also pulled down from the
position given by the solution of the three-shock
theory. This results in a smaller ; than given by
the solution of the three-shock theory.

It can be concluded that the three-shock theory
is inadequate when the shock wave emanating from
the triple point does not have a dominant effect
on the whole shape of the reflected shock wave. In
the region near the RR 2 MR boundary, experimental
results show that the position of the kink /L is
no longer equal to the ratio between the flow velo-
city behind the incident shock wave and the velocity
of the incident shock wave U}l;/Us;, This is also
considered to be caused by the bow shock wave.
Therefore, calculations which take into account the
effects of the bow shock wave are necessary as
Mg ~ 1.

B.2 No-Solution Region in the (Ms-v&) Plane

The regions in the (Mg-9y) plane have an addi-
tional region, cumpared with those in the (Mg-?y)
plane, namely a no-solution (NR) region. The flow
Mach number behind the incident shock wave relative
to the triple point must be M} - 1 for the existence
of a reflected shock wave at the triple point. At
a fixed Mg, M) decreases with decreasing 9, and at
a certain fy, Mj = 1. No reflected shock wave can
exist beyond this point. The line M} = 1 is the
boundary of the NR region.

It was thought that there are no solutions of
the three-shock theory in the region just above the
boundary of the NR region. In other words, it was
assumed that the NR boundary line corresponds to
the line %y = 0°. At higher Mach numbers Mg - 4,
the line 8, = 0° (strictly, the line which is the
limit of %, » 0°) coincides with the NR boundary
line within the error of calculations. At lower
Mach numbers, however, the line 2, = 0° separates
from the boundary of the NR region. (onsequently,
there arises a region between the vy = 0° line and
the boundary of the NR region in which no three-
shock-theory solution exists (that is, no physical-

(]

ly-realistic solution can exist even if solutions
with negative %, are possible). The non-solution
region for a gas with constant , = 1.4 is shown in
Fig. A-3.

Experimentally, many points exist in this no-
solution region. Consequently, the theory is
inadequate in this region. The existence of the
no-solution region corresponds to the fact that -
continues to increase as Mg -~ 1, as described in
Appendix B.1.

Since the existence of this no-solution region
is associated with the problem in Appendix B.1, the
resolution of this unrealistic region might be
possible in an analysis which takes into account
the effect of the bow shock, as described in
Appendix B.1.

B.3 Existence of Another CMR Region

Another strange result due to the three-shock
theory is that it indicates the existence of another
CMR region near the NR boundary. In this section,
the usual transition criterion between SMR and CMR,
MpT 2 1, is adopted. When viewing the variation
of MyT with 7y at a fixed Mg = 1.8 (Fig. A-4) for a
gas with constant , = 1.4, for example, M7 is 1.081
at "y = 45°. It means that the point P at Mg=1.8
and @y = 45° lies in a CMR region. The value of
M2t decreases as 'y, decreases. M7 is sonic at
Yw = 39.32° and then enters the SMR region. The
decreasing value of M1 is due to two causes. One
is that M;7 decreases with decreasing %y and the
other is that ) approaches 90° with decreasing “w.
The angle ¢ becomes 90° at about &, = 13° and
keeps increasing with decreasing “y to values
greater than 90°. An increase in ¢; - 90° has an
effect to increase My contrary to +] < 90°. At a
certain %y, this effect overrides the decreasing
effect duc to the decrease of MjT, and M1 berins
to increase. Eventually, MpT becomes sonic again
at about &y = 3°. At wedge angles below this value
of T, M2T is greater than 1, which means that it
is in another CMR region according to the usual
criterion.

This CMR region in the case of a gas with
constant , = 1.4 is shown in Fig. A-5. This CMR
region is not realistic because the validity of
the solutions of the three-shock theory is in doubt
in the region of small iy and low Ms, as described
in Appendices 8.1 and B.2. This additional CMR
region does not appear when the ncw condition
4 - 90° (see Section 3.3) is added ‘o the criterion
because % in this region is well below 90°.

APPENDIX C

EFFECT OF SLIPSTREAM THICKNESS

Only the flow direction and pressure are iden-
tical in regions 2 and 3 separated by the slipstream
but not the other physical quantities. Consequently,
a thermal and velocity layer results, not unlike a

shear or boundary layer. It can be seen from Figs.
S and A-10 (and other photographs in Refs. 1, 3, 4,
13 and 14) that this is an ideal way of generating a
shear layer through wave interactions. The layer is

4




APPENDIX A

COMMENT ON PERFECT CO;

13 and 14 to indicate a gas with a constant value of
¥ = 1.29 independent of temperature. However, from
the following discussion, CQ; with a constant

1 = 1.29 has no physical validity. At room tempera-
ture, the vibrational modes of CO; are partly ex-
cited. The doubly-degenerate bending modes, which
have a characteristic temperature of 960.2 K, are
excited to 14% of their full excitation and have a
contribution of 0.9R to Cy. The other two stretch-
ing modes contribute 0.7R to Cy. Consequently,
along with contributions from the translational
modes and rotational modes Cy = 3.47R at room tem-
perature, or y = Cp/Cy = 1.29 at room temperature.
However, behind a shock wave the translational and

The term perfect CO: was used previously in Refs.

rotational temperatures 1mmed1ately jump to the
Rankine-Hugoniot temperature lf. Since the vib-
rational energy is too slow to participate, it
remains frozen on either side of the shock front
and the temperature Tlg can be computed using

Y = 1.4 (Ref. 31). After a period (relaxation
time) the vibrational modes are activated and
share in the energy through equxpart1t10n The
final equilibrium temperature Tlg = Tlg. Ferfect
CO:z with » = 1.29 has no physical basis. However,
it is sometimes uscd in engineering applications
to give an approximate answer for shock waves in
COz with vibrational excitation. The error
beccmes increasingly worse with rising shock

M aumber (Ref. 31).

APPENDIX B

THREE-SHUCK THEORY

The three-shock theory provides a simple and
effective analysis of oblique-shock-wave reflec-
tions. Even so, it includes some aspects which
are physically unreasonable or inconsistent with
experimental results. They are described below.

B.1 Behaviour of . as M5 -1

The values of . at fixed 9, are approximately
constant at high shock Mach numbers Mg, both
expcrimentally and analytically. As Mg decreases,
the values of . increase except for large 9.
Experimentally, . has maximum values near Mg = 2
and decreases for other Mg. The calculated results
of . from the three-shock theory, however, do not
have maxima for different 9y but continue to in-
crease as M- + 1, as shown in Fig. A-1.

Ben-Dor Ref. 3) proposed an alternative method
to obtain . at small wedge angles (9y < 4°) which
does give maxima and may agree with experiment
despite his failure to obtain solutions of the
three-shock tizery for small 6y and low Mg. His
method is to assume that b, at small 8y coincides
thh the value ,at the no reflection (NR) boundary

“wNR ANd 4 = sNp - “w at small wedge angles. Des-
pite that his method gives a reasonable approxima-
tion to experiment results and is useful from an
engineering point of view, he gave no physical
explanation that ‘v, at small 6y coincides with the
NR boundary. His method does not give the neces-
sary dependency of Ow (= wNR) for different 6y.
Since his suggestion is outside the three-shock
theory realm, being only an assumption, it does
not provide any clue for improving the three-shock
theory or an alternative theory for the calculation
of .. The tendency to increasc : as Mg = 1 is not
considered realistic, not only because it does not
agree with experimental results, but it also yields
a no-solution region in the (Mg-6y,) plane, as des-
cribed in Appendix B.2.

The reason why the three-shock theory fails to
give reasonable solutions at low Mach numbers may
be as follows. The reflected shock wave is com-
posed of two parts, one is a reflected shock wave
emanating from the triple point and the other is
a bow shock wave caused by the interaction of the
incident flow with the flow deflected by the wedge.
The two shock waves intersect at the kink or the
second triple point in CMR or DMR, respectively.

In SMR, the two shock waves blend smoothly so that
an intersection point cannot be seen. The threce-
shock theory gives the position of only one of the
two shockh waves, which is the one emanating from
the triple point. The actual shape of the entirc
reflected shock wave is considered to be determined
by the two shock waves mentioned above and their
interaction. At low Mach numbers, both the reflect
ed shock wave from the triple point and the bow
shock wave are weak. The former, however, is con-
sidered to become weaker more rapidly than the
latter. Therefore, the position of the whole re-
flected shock wave is controlled by the bow shock
wave rather than the reflected shock wave from

the triple point. In the limit as the shock Mach
number of the bow shock wave approaches | (Mach
wave), or iy » 0°, the bow shock will interqect

the incident shock wave at a point 'y = wNR- which
is at a lower 9 than the limit of solution of the
threc-shock theor\

The reason is illustrated in Fig. A-2. Point
0 in Fig. A-2 was at the wedge corner when the
incident shock wave collided with the wedge corner
and it moves with the flow in region 1. Therefore,
the flow in region 1 has a direction TO relative
to T and the bow shock wave in the vicinity of T is
normal to the flow. Since the bow wave is a Mach
wave, the flow velocity in region 1 relative to the
bow wave, or T, is sonic. If T is at Q;NR' the

flow Mach number in region 1 is also 1.0 according
It means that

to the criterion of the NR boundary.
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laminar near its point of generation, the triple
point, and further on it becomes turbulent and
thicker. The thickness of the slipstream between
the two flows violates one of the boundary condi-
tions of the three-shock theory that the two flows
are parallel. In this appendix, the actual dis-
placement thickness of the slipstream between
regions 2 and 3 is not estimated. Only the effect
of an assumed displacement angle, which is the
slope of the displacement thickness at the triple
point on x is estimated in order to evaluate whether
or not this effect can explain the remaining dis-
crepancies of x between the experiments and the
analytical predictions.

Figure A-6 shows a comparison of calculated
results with and without displaccment angles of 1°
and 2°. The gas is equilibrium CO; at Mg = 5.

Since the figure shows the relation between by and
8y, the difference between the value along the
longitudinal and transverse axis is the value of .
A displacement angle of 2° can change the value of
x less than 1°, except at small wedge angles

(6w < 10°). This is insufficient to explain the
discrepancy in x (which is about 2° in a typical
case at Ms = 6 and 8y = 20°) because a displacement
angle of 6° is necessary to explain the discrepancy
and it is not likely to happen. It should be
pointed out here, however, that the effect of the
displacement angle is not negligibly small at

small wedge angles. The displacement angle should
be taken into account in calculations at small
wedge angles regardless whether use is made of the
three-sheck theory which takes into account the
effect of the bow shock wave, as suggested in
Appendix B.1.

APPENDIX D

COMMENT ON TRANSITION CRITERION FOR CMR TO DMR

The discrepancy between the calculated CMR # DMR
boundary and experiment is not as simple as for the
SMR # CMR boundary. In the case of CO; shown in
Fig. 18, the calculated boundary fails to account
for many CMR points which lie in the DMR region.
That is, the CMR % DMR boundary line must be shifted
upward to account for the experimental results,
whereas in the case of Ar shown in Fig. A-7, the
reverse occurs and the CMR # DMR line has to be
shifted downward. However, for N; and air, which
are shown in Figs. A-8 and A-9, respectively, the
experimental distributions agree well with the
calculated boundaries (except at lower Mg and large
9w when the two triple points approach and coincide
on the RR boundary line). All calculations were
done in accordance with the discussion on relaxation
lengths, that is, CO; as an equilibrium gas and Ar,
N2 and air as a frozen gas. These discrepancies are
considered due to at least two causes. One is
related to the classification of the experimental
results and the other is due to the inappropriate
transition criterion.

Experimentally, the distinction between CMR
and DMR is made by whether or not there is another
shock wave at the second triple point. [t is
difficult, however, to see a weak and short shock
wave in an interferogram. Consequently, the classi-
fication sometimes depends on the observers. For
example, the interferogram of Ar shown in Fig. A-10
was classified as a DMR by Ben-Dor (Ref. 4) and the
one of CO, shown in Fig. A-11 was classified as a
CMR by Ando (Ref. 14). There seems, however, no
essential difference between these two interfero-
grams, or one can, with greater assurance, classify
them just in reverse, that is, Fig. A-10 as a CMR
and Fig. A-11 as a '"MR. If so, the experimental

boundary of Ar may .ove towards the DMR region and

that of CO: towards the CMR region.

From the point of the criterion, a criticism
described below can be offered. At a flow Mach
number just over unity, a shock wave, if it is
formed, must be normal to the flow direction, other-
wise the Mach number of the normal component of the
flow is less than 1 and no shock wave could be
formed. As mentioned in Section 3.3, the flow comes
right above (parallel to the incident shock-wave
front), looked at from the reference frame attached
to the second triple point. In the region where
the transition from CMR to DMR takes place, the
angle & is larger than 90° (see Fig. 20). Therefore,
the flow will be deflected toward the second triple
point T' while passing through the reflected shock
wave, As a result, the second Mach stem M' must
slant below the horizontal line toward the Mach stem
M (see Fig. A-12). The shadowgraph shown in Fig. 17
is just inside the DMR region. The direction of the
flow after the deflection through the reflected
shock wave, looked at from the second triple point,
is calculated at an angle of about 5° toward the
second triple point from the vertical line. There-
fore, the second Mach stem should lie 5° below the
horizontal line toward the Mach stem. Exgerimentally,
however, the second Mach stem lies along the hori-
zontal line, or it seems to have an opposite inclin-
ation in the vicinity of the second triple point.
The second Mach stem seems to be formed as an exten-
sion of the bow shock wave rather than as a shock
wave normal to the flow in region 2 at the very
beginning of its formation. This difference is,
however, too small to explain the whole discrepancy
between the experiments and the calculated boundary,
especially in the case of CO;. It gives only a clue
to other necessary conditions for the transition
lines which may exist.




APPENDIX E

SOME FUTURE STUDIES

There are still many aspects to be studied ex-

perimentally and analytically in the area of oblique-
shock-wave reflections. Some of these are summarized

in this appendix in order to assist in the continua-
tion of the study of oblique-shock-wave reflections.

(a) Experimental persistence of RR beyond the tran-
sition boundary.

More experiments are required prior to further
analyses. Although the persistence of RR beyond the
transition boundary of the detachment criterion
itself is an apparent experimental fact, some ex-
perimental results seem inconsistent with each
other. That is, both RR and MR are cobtained in the
same region of the (Mg-6y) plane from the results
of different experiments (see Section 3.4). This
might be due to unknown factors such as a difference
in initial pressure and its effects on the boundary-
layer-displacement angle £4. A knowledge of the
exact position of the experimental transition boun-
dary and its dependence on controlled initial
conditions are required for further analyses of this
problem. The experimental data are required not
only at the boundary but also above and below the
boundary to obtain information on the behaviour of
quantities such as ..' (in RR) and x (in MR) when
approaching the RR ¢ MR boundary line.

(b) Convergence of the SMR 2 CMR and CMR # DMR
boundaries at the RR # MR boundary.

Experimental results show that the CMR Z DMR
bcundary approaches the SMR ¢ CMR boundary near
the RR boundary and they eventually converge at
the RR # MR boundary (see Fig. 25). This corre-
sponds to the experimental fact that ¢/L approaches
0 and Oy comes near to the RR # MR boundary. There
is no analytical prediction of the position of the
second triple point except for an empirical assump-
tion that (/L is equal to the ratio between the
velocity of the flow behind the incident shock wave
and the incident shock wave velocity Uly/us,. An
analytical method to predict the position o% the
second triple point, especially near the RR boun-
dary, is required. Experiments are also required
since few data are available aside from the existing
values of /L in this region.

(c) Prediction of the direction of the Mach-stem
curvature.

As described in Section 3.3, the Mach stem at
the tiple point is not perpendicular to the wedge
surface experimentally. This is because the Mach
stem has curvature. This discrepancy affects the
analytical solutions, especially the value of x.
For accurate analyses, the direction of the Mach
stem at the triple point must be predicted. A
semi-empirical formulation will be helpful until
a better solution is obtained, which requires
solving the two-dimensional flow field itself
without numerically smearing the shock fronts.

(d) Effect of the bow shock wave on the position
of the triple point.

As described in Appendix B.1, the three-shock
theory fails to predict x at low Mg and small 8,.
This is believed to be due to the effect of the bow
shock wave (see Appendix B.1). An alaytical method
to predict the strength of the bow shock wave and
its effect on the position of the triple point is
required.

{e) Transition boundaries in the MR region.

There is experimental impreciscness in the tran-
sition boundaries for the types of MR. The impreci-
sion in the classification between SMR and CMR
arises from the definition of CMR itself. In the
case between CMR and DMR, however, an interferogram
(which responds to changes in o unlike schlieren
to du/dx and shadowgraph to d2¢/dx2) contributes to
the uncertainty of the experimental transition line.
A shock wave is easier to distinguish in a shadow or
schlieren photograph rather than in an interferogram
(as noted above). It is true that an interferogram
includes more quantitative information than a
shadowgraph. Even so, experiments using shadowgraphs
are often required to give precise configurations
which determine the positions of the experimental
transition boundaries, especially between CMR and
DMR. Consequently, more than one optical method of
flow visualization should be used.
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FIG. A-3 NO-SOLUTION REGION IN (Ms-6y) PLANE FOR A FROZEN GAS y = 1.40. :
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FIG. A-11 AN EXAMPLE CLASSIFIED AS A CMR BY ANDO (REF. 14).
Bw = 10°, Mg = 9.21, po = 5.1 TORR, Ty = 296.9 K.
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FIG. A-12 SCHEMATIC DIAGRAM ILLUSTRATING THE DIRECTION OF SECOND MACH STEM

AT ITS VERY FIRST APPEARANCE.

SHOCK WAVE, — — — SLIPSTREAM, -——* FLOW DIRECTION
(RELATIVE TO T'), —+— «— HORIZONTAL LINE, I - INCIDENT SHOCK
WAVE, R, R' - REFLECTED SHOCK WAVE, M - MACH STEM, M' - SECOND
MACH STEM, T - TRIPLE POINT, T' - SECOND TRIPLE POINT, S - SLIP-
STREA, S' - SECOND SLIPSTREAM.
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