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one-half nondimensional curvature of element i,
B; = p§;
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s = H
Pi
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SUMMARY

A study was conducted on the aerodynamic properties of a flexible, inextensible
two-dimensional lifting membrane. Fabric wings have potential application to

a variety of Naval vehicles including for example air launched torpedoes, high
altitude RPV's, aerial targets, and ship launched decoys.

Flexible wings are potentially simple and inexpensive to manufacture and are
capable of being folded aud stored in a small space.

There are no known experimental results on the fundamental problem of a two-
dimensional lifting surface. The two known theories by Thwaites and Neilson
are complex and difficult to evaluate numerically. This study was intended
as a fundamental research investigation to obtain an understanding of the
basic physics of flow fields around two~dimensional flexible lifting surfaces.

A linear mathematical model was developed.

A limited wind tunnel test program was conducted to obtain information to
validate the theory. Comparison of theoretical and experimental results shows

good agreement within five percent for a range of angles of attack from -5°
to 8°. The combination of theoretical and experimental results accomplished

the purpose of providing an improved understanding of the physics of this
two-dimensional aero-structural problem.

This study is a summary of the first part of a two phase effort to investigate
the aerodynamic characteristics of flexible membrane lifting surfaces.
two will investigate the three-dimensional lifting membrane.

Phase
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THEORY FOR TWO-DIMENSIONAL MEMBRANE AIRFOIL

A theoretical procedure for calculating the 1lift, pressure distribution
and shape of a two-dimensional airfoil whose lifting surface is a flexible
inextensible membrane was developed and is described below.

The method consists of simultaneous solution of an aerodynamic equation
describing the relationship between the vorticity distribution on a two-
dimensional airfoil and the shape of the airfoil and a structural equation
describing the relationship between the shape of the membrane and_ the loading
on the membrane. The first equation is from thin-airfoil theory 1 and the
second equation is obtained from a balance of forces on an element of the
membrane. This second equation can also be viewed as the equation for the
bending of a plate in the limiting case of zero flexural stiffness<,

Together with these two equations there is an additional constraint which
must be applied. In terms of the physical system, i.e., the manner in which the
wind tunnel experiments were conducted, this constraint specifies the length
of the flexible membrane. The only known theoretical solution to this formu-
lation of the problem is found in the literature 34, However, those
solutions are complex since introduction of the length constraint makes the
resulting set of governing equations non-linear. A simpler formulation can
be obtained by applying a different constraint. As a consequence, the simulta-
neous solution of the aerodynamic and structural equations is obtained by
solving a set of simultaneous linear algebraic equations, a much simpler task.
Then, once the solution is obtained, the length of the membrane can be directly
calculated. These two approaches are depicted graphically in figure 1.

Following classical thin airfoil theory, the airfoil is modelled as a
sheet of vorticity of unknown strength §(x). The vortex sheet strength
is determined by the condition that there is no flow through the airfoil.
The camber of the airfoil is assumed to be small such that this boundary
condition can be applied on the x-axis rather than on the airfoil itself™.
From the geometry shown in figure 2, this relationship is:

C
dy 1 [ &) d8 &
o 8y

The Kutta condition must also be applied to this equation. This condition
sets the level of total circulation on the airfoil and can be expressed as:

Y(c) =0 )

The pressure difference across the airfoil at any chordwise location can
also be expressed in terms of the vortex sheet strength from the Kutta~Joukowski
law,

bp = p Uy(x) (3)
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Balancing forces on an element of the airfoil also yields a relationship
between the pressure difference, the curvature of the element and the tension in

the membrane as sketched in Figure 3.

2
dy (4)

This equation can be also derived from the one-dimensional plate
bending equation when the flexural rigidity of the plate is _assumed to be
negligible, that is the bending moment in the plate is zero“.

The final relationship which enters is the length of the membrane expressed
in terms of chord length,

¢ 1/2
.&=lj [1+(§Y-)2] dx = XL + 1
c c) dx

(5)

XL is referred to as the excess length.

. The tension in the membrane is assumed to be constant, that is, the
contribution of the shear or viscous aerodynamic forces on the membrane to
the tension can be neglected.

' Integration of equation (3) gives the expression for the 1lift on the

[ Cc
L= L Apdx = L p Uy(x) dx (6)

‘ membrane.

Since the tension is constant in the membrane, an alternate expression for
the 1ift can be obtained from equation (4),
.4y (7
- dx
c o

d
L=-'r[3§
p
o Equations (1), (3), (4), and (5) taken with the boundary condition (2)
{ can now be solved to determine the shape of the membrane, the vortex sheet
strength and the pressure distribution on the membrane aa Zell as the tension.
, A This 1is the approach taken previously in the literature ~>° . However, it is
considerably simpler to specify the tension T, solve simultaneously equations
(1), (3) and (4) with the boundary condition (2) and then determine the excess

length from equation (5) (figure 1).

T e e e .

The governing equations can now be placed in a form suitable for solution
on a digital computer. The membrane is broken up into p elements of length
g, as shown in figure 4. The vortex sheet is represented by a concentrated

from the leading edge of the element, and

line of strength Ti located at 1
A

ol
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the flow boundary condition is satisfied at a control point located at 3 c from
the leading edge of the element. It has been shown that taking this geémgtry

for the aerodynamic element will inherently result in the Kutta condition
(equation (2)) being satisfied as the number of elements becomes large 5, Figure
4 then shows this geometry for development of the aerodynamic equation. The
slore of each element is expressed in terms of an average slope defined in terms
of the slope at the leading and trailing edges of the element (figure 3). The

slope of element i is:

! -4
vy =7 (6 * 8 y) ax (8)

i
The non-dimensional curvature of the element is related to the slope change,

2-
=1 =1 dy
552 @ -8 =5 2 (9

The vortex strength on the element is non-dimensionalized by the free-stream

velocity and the chord.
T.
A i
Ty = 0c (10)

This can be expressed in terms of a non-dimensional vortex sheet strength as:

=T
Y]=T;pP (11)

The aerodynamic relationship (1) can then be expressed as,

~

P

T,

M fa- v)= L j
“(5( 2 =11+ 2G - 2

Introducing an aerodynamic influence coefficient,
1 (13)

Y @-v)=a,,TT, (14)

Non-dimensionalizing equations (3) and (4) by introducing the pressure
coefficient cp, and the tension coefficient, CT’ yvields:

- o7 (15)
(aCp)y = 2T; P
(ACP)i = - ZCT he) 61 (16)

228

L '.1 J
v
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Equations (15) and (16) can be combined to give:

~

r'i = - c,r Gi an

Now equations (8), (9), (14), and (17) can be solved simultaneously with
one additional condition that the trailing edge of the airfoil is on the x-axis.
These equations can be written in matrix notation as,

(] (N} = -3y - i=1....p (18)
.} = - ¢ 18 i=1....p (19)
? wi =0 i=1....p (20)
AL FORCH: ooy (21)
{8, = - 3 [E] {6,) Sool (22)

There are 4p + 1 equations and 4p + 1 unknowns,
T., 6., ¥ 3p unknowns

ej P + 1 unknowns

It is convenient to define the average slope with respect to the freestream velocity:

L -
IPI = ‘\bl a

=60, -0
eJ J

Introducing these variables eliminates & from all equations exceot (20). We
can also combine equations (20), (21) and (22) by eliminating e and defining
new matrices H* and G*, so that the set of equations is,

(A {ri} + 5-{¢i} =0 (23)
{?1} +Cp {81 =0 (24)

() {v}) + (64148} = {a} (25)
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H* and G* are now p x p matrices, and
T
{a} = {0,0 ......, - pa}

The various matrices involved in these equations are given in Table I.

This set of equations can now be directly solved after choosing the number
of segments, p, the angle of attack,o!, and the tension coefficient, Cy. Then
the pressure coefficient on the airfoil and the 1ift coefficient can be calculated
from

Acpi ) zri i (26)
and
C, = g 2?. 27)
Yoy

As a check on the results, the lift coefficient can also be expressed from
equation (7) as

P
C, =-2C.L §
. Tiap *
which can be written as

The excess length can now be calculated from equation (5).

P 1/2
w=%:1 pe+oyy -1 (30)
P a1 1
assuming that the slope is small
P

1 2
XL 2 - Z w- 1
2p {o, 1 (31)

In terms of the slope defined with respect to the freestream velocity,

wiswi+a
recalling that

I ¢. =0

j=1

it el
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so that

£ ' =-pa
i=1
P 2
XL = p 3 w' - g_ (32)

The excess length is calculated from equation (32) after equations (23) through
(25) have been solved. The approaches found in the literature consider the
tension as unknown and proceed to solve equations (23) through (25) simultan-
eously with equation (32). This can be seen to be a much more complex approach
as equation (32) is non-linear.

It is also possible to express e%Pations (23) through (25) in an alternate
form such that the unknown variables and ©; are replaced by variables which
do not depend directly on the segment 1ength The rate at which the solution

converges as the number of segments is increased can be readily determined.
If we introduce:

i=prl
(33)

By =P

Then the governing equations can be written as:
* ' = (34)

[A] {Yi} + 7 {yg) 0

{Y;} + CT {Bl} =0 (35)
(8] (W} + 3 [6*] 18;) = {a) (36)

The number of segments now appears as z coefficient and Y;. Bi’ Wi depend only
on the convergence rate.

One special case is of interest and that is the solution of this set of
equations when the angle of attack is zero. In this case the set of equations
becomes homogeneous and the value of C., cannot be specified before hand. In
this case it is convenient to combine these equations since finding specific
values of Cr is equivalent to an eigenvalue problem. Equations (34) through
(36) can be combined to yield the following equation,

OO REN TS RN RV RV o R O
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Equation (37) is now expressed in such a form that the eigenvalues of Cr
for the case in which®{ = 0 can readily be calculated.

Calculations with these equations indicate that the solution converges
relatively rapidly and that 20 segments are sufficient to obtain accurate
results. With some experience with the equations it is quite straight-forward
to find solutions for given values of the excess length corresponding to the
manner in which the experiments were performed.

These equations were programmed with a numerical solution on a digital
computer. Numerical solutions of the equations were evaluated for a range
of angles of attack, excess lengths and tension coefficients.

Figures 5 through 19 are typical membrane shapes and aerodynamic data
produced by the theory. Also shown on the figures is the predicted pressure
distribution associated with the test condition. The parameter LAMDA Thwaites
also shown on the figures is a non-dimensional parameter used by Thwaites
which is related to the membrane tension. LAMDA Thwaites is related to the
tension coefficient, Cr, in the following way:

LAMDA Thwaites - 4/CT

EXPERIMENTS ON A TWO-DIMENSIONAL INEXTENSIBLE MEMBRANE AIRFOIL

Experimental data were obtained for several membranes over a range of
excess material lengths corresponding to a practical range of angles of attack.
(The "excess material length" of a membrane is defined as the difference between
the length of the membrane and the chord expressed as a percentage of the chord
length). Data were obtained from tests performed on a 12" wide x 18" long x 4
mil Mylar membrane in the Princeton two-dimensional tunnel. This tunnel possesses
a 12" wide by 48" high test section.

Since there was no known previous experience in the testing of single
surface fabric wings, prior to the testing some preliminary exploratory work was
undertaken in the Princeton two-dimensional smoke tunnel to determine the sensi-
tivity of the results to several of the more obvious physical variables, such as,
material thickness, size of the membrane support rods, material porosity and the
effects of side leakage. Although the smoke tunnel is a low Reynolds number
facility, it proved to be useful in developing an understanding of the problem.
Indeed, considerable practical information was obtained which assisted in the
design of the final experimental apparatus. As a consequence of smoke tunnel
tests on several 18" long membranes the following results were obtained:

a) Membrane Thickness - Experiment failed to reveal any discernible differ-
ences in behavior between a 1/2 mil Mylar membrane when compared to a 14 mil
Mylar membrane. Indeed, several other non-porous materials possessing character-
istics similar to Mylar were tested and the results of these tests were identical.
Hence, membrane thickness was omitted in our considerations in the remainder of
this study. However, this conclusion was only substantiated for material thick-
ness to length ratios between 0.003% and 0.08%.

b) Leading Edge Radius - Leading edge supports of various radii were
examined. Experimental results indicated that if the leading edge radius is
less than 0.5 percent of the chord there was no measurable effect on the shape of
the membrane or the flow about the leading edge of the membrane. This result

8
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was obtained by comparison with the case in which the fabric alone provided
the leading edge support.

¢) Porosity - The porosity of the membrane material exhibited a large
effect on the shape of the aerodynamically loaded membrane. Increasing the
porosity of the material caused the point of maximum camber to move rearward
toward the trailing edge of the system. Generally, for the woven materials
that one would expect to employ in a lifting surface, i.e., dacron sail cloth,
the system should exhibit virtually no porosity. Thus, it is not surprising
that in the present set of tests, the last mentioned material acted in a non-

porous manner.

d) Side Leakage - It was discovered that leakage about the side edges of
the membrane had a considerable influence on the shape of the membrane. There~
fore, a need for careful consideration of the side seal problem in the experimen-

tal design investigation was clearly demonstrated.

From theoretical considerations, discussed previously, it was important to
insure that the tension developed within the membrane was measured in situ,
i.e., while the membrane was subject to aerodynamic loading in the wind

tunnel. A unique tension measuring system was developed that employed a strain
gauge embedded in the membrane. For this system it was critically important
that the neutral axis of the membrane and the strain gauge were coincident.

The experimental part of the present study considered the following
parametric variations:

An 18" long by 12" wide by 4 mil piece of Mylar was employed to construct
the membrane model. Experimental runs were performed with the Reynolds number
in the range of 1.3 x 10% Excess material length was varied from 0.2% to 5.7%
which induced a camber variation ranging from 3% to 15.5%. Finally, the
physical arrangement of the wind tunnel during the experiments is shown

in figure 20.

Data obtained from the experiments included lift, drag and membrane tension
with all quantities measured as a function of the excess length and angle of

attack.

Lift was calculated by utilizing thc membrane induced pressure distribution
on the tunnel floor and ceiling. Drag was ascertained from the momentum defici-
ency in the airfoil wake as measured with a drag rake. Tension was measured
employing the strain gauge implanted in the membrane. The membrane was supported
by two 1/2" x 1/8" elliptical rods which were free to rotate about their respective

axes.

Figures 21 through 24 show some of the basic aerodynamic data obtained
from our tests. In figure 21, we have recorded multiple plots of Cp vsef. Note
that for the two separate sets of experiments dated 2/23/82 and 4/3/82, the second
set of data were taken to broaden the base of the work, i.e., smaller excess
lengths, and to confirm the characteristics of the lifting curve slope changes for
the higher excess lengths. Observe that the theoretical flat plate 1lift line of
2W /radian is included on each plot to serve as a reference. The family of
1lift curves show that increasing the excess length of the membrane produces an
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upward displacement of the 1lift curve. Such a result is consistent with aerody-
namic theory since the larger the excess length the larger the airfoil camber.
Hence, the vertical separation reflects the increase in the airfoil camber. It
is also interesting to observe that membranes demonstrated a capability for
producing positive 1ift at negative angles of attack for all the excess lengths
tested. Flutter phenomena was observed under certain extreme conditions that
could lead to vibration problems in design applications.

It is clear from results of the 1ift data secured during the runs of 23 Feb-
ruary 1982 that when the excess lengths of the membrane are above XL = 1.69% there
is a progressively decreasing lift curve slope above ol= 0° for increases in
the excess length., Flow visualization studies utilizing tufts, indicate that
flow separation which is accompanied by small amplitude vibration is the cause
of this fall off in the 1lift curve slope.

AN

:

4

E In general, the airfoils exhibit a benign stall behavior. For the greater

: excess lengths, in particular, increasing the angle of attack above 10° did

[ not cause the 1ift to fall but rather it induced an increase in the aerodynamic
drag.

This reflects a 'self adjusting' feature whereby the point of maximum camber
on the fabric wing moves forward increasing the 1lift on the leading edge portion
of the wing as the region of separation on the trailing surface of the airfoil
increases,

The benign stall behavior was demonstrated in the wind tunnel test for all
excess lengths but high excess lengths are susceptible to dynamic problems and
problems of separation and therefore, offer the least potential for design
applications that require lift from increases of angle of attack.

Figure 22 shows a multiple plot of the drag force as a function of angle
‘ of attack with excess length as a parameter.

Coefficient of drag is a minimum at the zero angle of attack and increases
aonlinearly for increasing or decreasing angles of attack. Also the larger the
! excess length, which implies larger airfoil camber, the larger the drag for a
given angle of attack.

Coefficient of drag, C4, 1s essentially a single valued function at zero
angle of attack irrespective of excess length, this value is 0.015. Also the
coefficient of drag vs angle of attack curve develops a pocket around the zero ;
angle of attack where the drag rises more rapidly with angle of attack. The |
pocket in the drag curve narrows as the excess length increases indicating an '
increased sensitivity to angle of attack change as the excess length increases.

This effect is especially noticeable for the XL = 5.69% membrane.

{ The experimental drag polars of figure 23 indicate that increasing excess
length produces an increase in the 1lift. A limiting plateau is reached for the
' 1ift which depends on the value of the excess length and this limiting value is
‘ essentially constant as the drag increases. This is another representation of
the benign stall behavior seen in the 1lift curves of figure 21.
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Figure 24 shows the lift/drag ratios for the test runs of 23 February 1982.
It is evident that the maximum 1lift/drag ratios occur near the zero angle of
attack. However, the larger the excess length, the larger the 1lift to drag ratio
for zero angle of attack. This result reflects the ability of camber to generate
lift without producing drag. As the excess length of the membrane is decreased
the curves broaden especially for angles of attack above zero, i.e., o » 0, and
the maximum 1lift/drag ratio falls by approximately 20%. The narrowness of the
XL = 5.69% curve, i.e., the largest excess length tested, is evident. The large
rise in lift/drag ratio is a consequence of the high 1ift produced by the large
camber at zero angle of attack together with the low drag value. The sharpness
of this curve is associated with the well defined narrow drag pocket around
zero angle of attack associated with the high excess length.

The aerodynamic characteristics of the two-dimensional flexible inextensible
airfoil compares favorably with solid surface sectional data over a similar angle
of attack range at similar Reynolds numbers.

It should be noted that subsequent testing of a zero excess length membrane
revealed an angularity of +1° associated with the tunnel air flow. The experimen-

tal data plots have been corrected to the true zero reference.

COMPARISON BETWEEN THEORY AND EXPERIMENT

Figure 25 is a comparison of the theoretical and experimental 1lift curve
slopes for values of excess length, XL, of 0.21, 0.77, and 1.14. The comparison
is remarkably good with differences less than approximately +57 provided the
angle of attack lies in the range of -5° to +8° and the excess lengths are
confined to the values indicated. The theoretical curves on figure 25 can be
represented by the following equation:

° P
Co= ()" ;. oT26(xL)
360

The equation was deduced from a log log plot of the data on figure 25.

From the above equation it is obvious that the lift produced by a two-
dimensional flexible membrane exceeds, the lift of a flat plate by an amount
expressed approximately by 0.726 (XL.)® . The lift is a nonlinear function of
the excess length, XL, which is one of the main reasons for choosing tension
rather than excess length as the independent variable in the theoretical
solution.

In figure 26, we illustrate the comparison between the variation of the
tension coefficient, Cy, as a function ofe for both the experiments and the
theoretical computations. The comparison is good and it is apparent that at
the lower excess lengths the theoretical results are very good.

An empirical approximation to the theoretically derived coefficient of
tension CT vs ol curves is as follows:

Crm oL 05 12T
2%
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The equation was deduced from log log plots of the data on figure 26.

The value of the coefficient of temsion, CT corresponding tool= O: i.e.,
Cr = 1.727, may be shown to be an eigenvalue of the set of equations which we
have formulated. The experimental data agrees with this theoretical conclusion.
For this condition it is found that the shape of the membrane is symmetrical
with respect to the mid-chord position, i.e. the maximum camber is located
at the 50% chord position.

Under certain operating conditions the theory predicted the existence of
two separate and distinct 1lift coefficients for the same angle of attack. The
1lift coefficient which was obtained depended upon whether the value of the
tension coefficient, Cp, was greater than or less than the eigenvalue, 1i.e.

Cr = 1.727. Therefore, it was possible to obtain positive 1ift corresponding to
negative angles of attack and visa versa for tension coefficients below 1.727.

Note that the experimental results exhibited hysteresis loops when the
excess length, XL »0. In particular an inflection point was found to develop
in the membrane for the negative angles of attack. Further, when the angle
of attack,o/ >0° the membrane possesses a convex shape; when the angle of attack
&< 0; a concave/convex shape developed.

It is evident that the prediction of two lift coefficients for a single
angle of attack is the theoretical equivalent of the experimentally observed
hysteresis phenomena. To assist in this comparison figures 27 to 36 are com-
posite pictures of the theoretical and experimental membrane shapes where a
computer developed membrane shape is superimposed over a wind tunnel photograph.

The theoretical overlay also contains computed data on the lift, tension,
excess length and camber to be associated with a specific curve. Note that
the coefficient of pressure, CP, is the theoretical pressure distribution. If
the angle of attacke{=0 the membrane shape possesses an inflection point located
at the point where the coefficient of pressure equals zero. This can be seen
from theoretical results, since the two-dimensional membrane equation indicates
that the differential pressure across the membrane is directly proportional to
the curvature of the membrane.

Comparison of the theoretical membrane shapes with the wind tunnel membrane
shapes indicatesgood agreement over the range of values of excess length, XL,and
angle of attack considered in these experiments.

Figures 37 and 38 represent plots of the coefficient of 1lift, Cp, and the
coefficient of tension, Cr,as functions of the angle of attack. Comparison of
the theoretical predictions with experimental hysteresis loops illustrates the
close similarity of the results.

Observe that figure 39 is a sketch of the theoretically predicted coefficient
of tension, Cr,as a function of excess length,XL, with angle of attack serving as
a parameter. Near the CT coordinate axis are a series of sketches of the theore-
tically predicted membrane shapes assoclated with different angles of attack for
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a fixed excess length. These predicted shapes indicate that the point of maximum
camber starts forward of the mid-chord point for high angles of attack and moves
back to the mid-point as the angle of attack approaches zero. At the angle of
attackel= 0° the membrane shape is symmetrical about the mid-cord point and the
value of the coefficient of tension,Cr, is 1.727. As the angle of attack becomes
negative, the value of coefficient of tension falls below 1.727, an inflection
point develops near the leading edge of the membrane and the point of maximum
camber moves from the center of the membrane towards the trailing edge. Theory
indicates that for a given excess length there are several possible membrane
configurations depending on the value of Cy. However, it is important to observe
that each of these profiles possesses a different number of inflection points.

In the event that the coefficient of tension,Cp > 1.727,there are no inflection
points, and a single convex shape is produced. As the value of the coefficient
of tension,Cy,is reduced, shapes with multiple inflection points develop. In
practice the only membrane shapes observed are those with either zero or one
inflection point. Further, is is noted that the membrane shapes with the one
inflection point experience varying degrees of flutter.

Figure 39 is a sketch of a family of curves of theoretical coefficients of
tension, Cr,vs the excess length, XL, with angle of attack serving as a parameter.
The coefficient of tension, Cp = 1.727, is an eigenvalue and is the primary
tension value associated with zero angle of attack. The tension coefficient of
0.902 is a line connecting the vertical tangency points of the angle of attack
curves.

It can be seen from figure 39, i.e., the theoretical coefficient of tension,
CT'vs the excess length,XL,6 sketch, that hysteresis in the behavior of the system
is to be expected. If we reduce the coefficient of temsion, Cr,holding the
excess length constant, it is impossible to reach certain negative angles of
attack.

Assuming the membrane is moving from a positive to a negative angle of attack,
the largest or limiting negative angle of attack possible before the membrane "pops
through" is found from figure 39, where the particular excess length line crosses
the 0.902 tension coefficient line. This point will correspond to the tangent
point, i.e., dXL/dCT = 0 on the limiting angle of attack curve. Reducing the
angle of attack further will induce the membrane to "pop through" and assume a
single inverted curve shape producing negative lift. This inverted shape is
similar in every respect to its positive counterpart. Experimentally the membrane
"poppad through” at a Cy value close to unity rather than at the theoretically
predicted value of 0.902.

Figure 36 shows both a theoretical and experimental lift curve which shows
good agreement and illustrates the symmetrical behavior of the membrane as it
passes through the hysteresis loop.

From figure 39 it is clear that the larger the excess length the greater
the spread of the hysteresis curve since larger opposite signed angles of attack
are possible before pop through occurs. As mentioned earlier in this report,
various degrees of flutter phenomena were observed when cross over angles of
attack occurred, i.e., those angles of attack having passed through zero, which
develop 1lift in the direction opposite to the angle of attack. Preliminary wind
tunnel observation of the phenomena on the membranes used in the present tests
indicate the fluttering membrane exhibits a nodal point at about the 60% chord.

13
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] Further, the intensity and frequency of the flutter is dependent on excess

g length, the magnitude of the angle of attack and on the tunnel dynamic

, pressure. Figure 40 is a mapping of the approximate regions of flutter

; observed with the present membranes. Stroboscopic observations of the

: physical system indicate that the flutter frequency band is reasonably

: narrow for a fixed set of conditions. However, the change of frequency

' with angle of attack is quite dramatic and the frequency approaches zero

: just before the pop through point occurs. Also the intensity of the flutter
L as indicated by the amplitude of the flutter and the noise generated increases
1 rapidly soon after the system crosses the zero angle of attack. Finally

it reaches a peak at an angle of attack of approximately -2° and, then, falls
more slowly to zero activity as the pop through point is reached.

Previous efforts by others to construct a full scale fabric wing system
for an unmanned vehicle, resulted in complex vibration problems which may be
related to the flutter phenomena observed in the two-dimensional tests. Thus,
a future effort might study the flutter phenomenon in the two-dimensional
membrane as a introduction to the unsteady aerodynamic problems observed
in previously designed three-dimensional fabric wing systems.

CONCLUSIONS

A theoretical model based on linear aerodynamics which predicts the aero-
dynamic behavior of two-dimensional fabric airfoils was successfully developed
and validated. Wind tunnel tests were conducted on a variety of two-dimensional
membrane airfoils. The data provided validation for the theoretical model. Flow
visualization techniques contributed to the understanding of the physics of the
flow field.

Raw two-dimensional data from the wind tunnel tests are the basis of a
preliminary design data base.

The aerodynamic data collected on the two-dimensional membranes compares
favorably with solid surface sectional data. For all the membranes tested a
benign stall behavior was observed at all conditions tested.

This study showed that two-dimensional membranes produce lift that exceeds
the 1lift of a flat plate by approximately 0.726 (XL)’t within appropriate limits
of angle of attack and excess length.

In all experiments for which there was excess material in the membrane
positive 1ift was observed at negative angles of attack. Under some conditions
this was accompanied by various amounts of flutter.
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Figure 1. Two Approaches to Membrane Airfoil Theory
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