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On the equivalence of probability measures

Let 9 be a set (w denotes one of its elements) and A be a a-algebra of

subsets of 9. If (P,Q) is a pair of probability measures on A, we are interested

in describing the relations which may exist between P and Q.

To begin, suppose that P and Q are only a-finite and thatQ is a signed

measure. _

Q is absolutely continuous with respect to P (notation: Q<C P) if

Q(A) - 0 whenever P(A) - 0 and Q is singular with respect to P if there exists

a set A in A such that Q(A) - P(Q\A) 0 (notation: Q J_ P). When Q 4C P, Q

has the following representation:

Q(A) - f f(w)P(dw)

A

where f is measurable with respect to A and unique within a set of P-measure zero.

f is called the Radon-Nikodym derivative of Q with respect to P and usually one

writes dQ/dP for f.

The most general statement about the pair (P,Q) which is available is the

Lebesgue decomposition theorem

Q - Q1+ Q2 uniquely, where

(a) Q, is a a-finite signed measure and Q C P

(b) Q2 is a a-finite signed measure and Q2 1 P

Examples illustrating these concepts are easy to find and we shall give two.

Let: a 1 a, A - B[aJ (the Bore1 sets of R), Lob = Lebesgue measure.

1. Let P- Leb and Q- Gaussian measure with mean zero and variance 1, that is

-- I -



-2- - 2Accession For

x 2  Unannounced [

- Justificatlo
#(x) - - 2

Distribut on/

Q(A) =f *(x)P(dx) Availabilty Codes

A Avail and/or -
Dist Spec ial

Then Q 4c P and dQ/dP - *. Since #(x) > 0,

P(A) - f P(dx) - f 0-1 (x)*(x)P(dx) =f -(x)Q(dx)
A A A

Then P<< Q and dP/dQ - 0- . When both P<< Q and Q4c P, P and Q are said to be

mutually absolutely continuous (notation P = Q).

2. Let (x) xe [a,b]

Oab(X) =<b

St0 
xe I\a,b]

Set

Uab(A) f a 'X)P(dx)' P - Leb.

Ua,b is called the uniform measure on [a,b]. Q is as in 1.

One has

Ua'b(A) f # ab(x)s-'(x)Q(dx) , so that
A a

Ua,b4K Q and dUa,b/dQ - 0a,b . -1

Let Q (A) - Q(At[as,b]) and Q2 (A) - Q(AO(R\[a,b])). Then, if I x[a,b(X)

is one where 
& xs b and zero elsewhere,
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QI(A) E f I [a,b(X)Q(dx) - (b-a)f I [ab](x)(x)Ua,b (dx)
A A

so that Q 4c Ua,b and dQ /dUa,b ' (b-a)I a,b](X x. Furthermore,

Q2 ([a,b]) = Q(W) - 0 and Uab(R\[a,b]) 0, so that Q2 - Ua,b" Since

Q = QI +Q 21 (QlIQ 2) is the Lebesgue decomposition of Q with respect to Ua,b*

The problem of obtaining the Lebesgue decomposition is particularly

interesting and useful when 9 is a space of functions (or of classes of func-

tions) and P and Q are induced by stochastic processes. Typically 0 is C[O,T],

the space of continuous functions on [0,T], or L 2 [0,T], the space of equivalence

classes of almost surely equal functions on [0,T] which are square-integrable.

A is then the a-algebra generated by the open sets of 9. Thus if X: Ox [0,T]+ a

is a stochastic process with continuous paths, X: 0- C[O,T] defined by

X(w) = {X(w,t),O<t<T) is a measurable map, so that P . Po X- 1 is a probability

measure on the Borel sets of C[O,T]. More generally if F is a linear space of

functions f, PX is defined by relations of the type:

Pxft:(I(f),...,n (f )) E B) - P{w:(PI (X(w)),...,n(X(w))e B)

01'."'"4n being continuous linear functionals on F.

There are two major methods to obtain results about the absolute continuity

of measures PX and P Y. The first consists in choosing X and Y with probability

laws of the same type (two Gaussian, two diffusions, etc.) and using this type

* to characterize absolute continuity, or equivalence, and the second consists in

choosing for X a martingale (for example Brownian motion) and for Y a process

of the form V+ X, where V is of bounded variation. The privileged tool is then

stochastic calculus. We shall consider below a problm in the second category
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and motivate it from considerations which arise in statistical communication

theory. If V is independent of X. absolute continuity can in certain cases be

obtained if absolute continuity is known to hold for V non-random, without

IIf recourse to stochastic calculus.

In statistical comunication theory one tries to accurately transmit

information over communication channels. The information to be transmitted is

called a signal (S) and ImpedIments to accurate transmission are called noise

(N). The theory is statistical in the sense that S and N are stochastic pro-

cesses (impediments can only be known "on average" and information, like the

words of a language, has a random component: only the frequency of appearance

of given words can be approximated). Communication channels operate as "black

boxes": their description from basic physical principles is usually either

Impossible or too complicated to be of much use. The signal S is the input to

the box and the output is some function of S and N, say f(S,N). We shall con-

sider here the case of f(S,N) - S+ N, which has proved useful. Most communica-

tion systems are monitored continuously and the operator is given a function

{x(t), O_<t_<T) which can be noise or a distorted signal. So, the first aim is

to establish whether x is a realization of N, that is x(t) - N(M,t), for some

fixed w, or whether x is a realization of S+N, that Is x(t) - N(w,t)+S(w,t).

If a decision can be reached with no possibility of error, the problem is said

to be singular: F, the space of paths for N and S+ N, can be partitioned into

two measurable disjoint subsets F1 and F2 such that PN(FI)- P$S4 (F2) - 1. If

the requirement that a correct decision be always reached, say in case of no

signal, forces the user to ignore the data, the problem is said to be non-

singular: for every measurable subset F, of F, PN(FI) - I implies PS 4 (FI) = 1.

Singularity corresponds thus to the case P L $PN and non-singularity to theN S#N
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case P, B Pe In the latter case, a good decision procedure consists in

looking at dPs+N /dPN(x) and in deciding that a signal is present when this is

large (that such a procedure is good follows from the Neyman-Pearson lmma

of statistics). dP4A/dPN can always be thought of as the ratio of two densi-

ties, say +$ and V i

_ _ d[ + P N]

and the choice consists in deciding "no signal" if cPN(x) a Vs$ (x) and "signal"

if cDN(x) < VS+N(x) (for some adequately chosen c).

A classical problem of the type just described has the form: N is a

Gaussian process, but no frequency requirements are imposed on S. The results

which shall be stated have been obtained by C. R. Baker and A. F. Gualtierottl

(UT Electrical Engineering, Fall 1981).

The model:

(SI,A,P) is the basic probability space specified by the experiment and

the information as time evolves is contained in A = {At, 0 <t< T), where At is

a o-algebra of subsets of fl, and A tA, s< t --A a A ttS

(A) The noise N

Let 5-(wt) (8 (w~t),...,Sn(Wt)) , the processes 5k being independent,

Gaussian with independent increments and with continuous variance Bk(t)- EB2(wt)

(ESk(W,t)) - 0). 1 is adapted to A, that is 8(.,t) is measurable with respect to

At . The diagonal matrix with entries 0k(t) is denoted Z8 (t). It can be shown

that 8k is a continuous square integrable martingale with increasing process Bk

(one can choose for Sk the Wiener process Wk and then 0k(t) - t). F(t,x) is a

function defined on [O,TI x [O,Tj: it is measurable and F(tx) - 0 for x> t.
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T
Furthermore, it is assumed that f C(t,x),E (dx)F(t,x)> is finite f or all t.

0
N is then defined by

T
N(W't) f (Etx_8wd)

and is supposed mean square continuous, that is

E!N(.,tf - (,s J((t,x) _ p(s,x),E 8(dx)[F(t,x) - F(s,x)J)
0

is small when It-si is.

Remark: This choice of N is based on the Cramer-Hida representation: a second

order, mean square continuous stochastic process X can always be written in the

form

t
X(cd,t) f<(t,x),(w~dx)>

L7

where the B 'a have orthogonal increments. If X is Gaussian, Bis Gaussian.

However 8 can have an infinite number of components.

(B) The signal S

t
SNaat) f <F2(t,x),E 8(dx)s(W'x))

0

a is assumed optional, which Is a regularity condition Imposed by the recourse

to stochastic integration (the prototype of an optional process is a process

whose trajectories are functions f which are continuous to the right and have

limits to the left). A further assumption Is that

--- MED-2tfiftW.M M
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T

0

T
Remark: Let R N(s~t) -EN(.,s)I(.,t) -f t(t~x),z B(dx)F(t,x)> With RN,

0
one can associate a Hilbert space of functions HRN)in the following way:

n
on the vector space of functions I lk R N(*,tk), define

<n P n P

k a n R N(*,tk), 01 R~ N (..St)>li(R N k- 1 L-i1O tRNs-k

H(RN) is the completion of this vector space for the norm 11-11H (R) and is

called the reproducing kernel Hilbert space of R N. The name comes from the

relation

n n
<R N(-IX)I k~~~~ Ok RN(*tk)>H(R N) kIIak ~~

Since

n P -T n P
k 81 kR N(sI'tk) f < I kF(tk'x),Eg(dx) I IEso)

k-i 1-1 0 k-i

and

n ~ Tn

k-i1 0 k-i

one has here a representation of HR)

* b H(Rm) - (a(t) - 11(Jt,x),E5a(dx)A(x))
Ae subspace of L21Z8] generated by.E(t*-))
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T
(ai'H(R ) - (A(x),ZS(dx)i(x)>

One thus sees that the signal S has been chosen to belong to the reproducing

kernel Hilbert space of the noise. This is no coincidence: in many instances

this is a necessary condition for equivalence.

Example: Let N = W, a Wiener process on [0,T). Then

t T
H(R N) - ((t) - f a(x)dx, I a2(x)dx -

0 0

T

(aa)H(RN) - f a(x)&(x)dx - (acOL [0,T .
0

It can be shown that the process W (wt) - a(t) + W(wt) has a law PW equi-
avalent to PW, the law of W, if and only if ae H(RN). More generally, the law

P of the process Y is equivalent to PW "if and only if" Y has the form

t
Y(w,t) = f a(w,x)dx + W(w,x)

0

with
T

P { f a2(w,x)dx < - 1
0

(The i , indicate that many details concerning a and Y have been left out.)

We now have the following results:

I) There exists a measurable map T:Cn[O.T] * L2[0,T) (Cn[00T]T=

(f :[0,T] -RnP f is continuous)) such that N - To B and S+N To Z, where
t

Z(w,t) - J E8(dx)s(wx) + B(wt), provided PZ PB"
0

...... ... o l I I I I I II III I .- . -- ' ' . ., . ..a:
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II) If I) obtains, PS+N* P and

dPS+A/dPN (h) f dP z/dPBD /Nh(c

where P B/N'.h is the conditional law of B knowing that N = h.

III) P B/N=h is a point mass concentrated at m(t,h), with

m i(t,h) =- I -L[OT ' 2 OT
k=1

where (X k,4*k ) is an eigenvalue-eigenvector couple for the operator R Non
N T

L [0,TJ defined by (RN f)(t) I R N(tx)f(x)dx. N being mean square continuous,
2 ~0N

R N is continuous and thus RN has finite trace:

R N -k 0 * kF~ ([aeb](x) - <x'b)L [0,T ]a)
kc-1 2

t
The function f i(t,-) is given by f i(t,x) - f F i(x'u) i (du). Hence P N - almost

0
surely,

dPS+N/dPN (h) -dPZ/dPB (m(-,h))

One need thus define explicitly the function on Cn [0,T], dP z/dP B.

Let TI(c,t) - c(t), ce C. (0,TJ. It can be shown that if Z is the solution of

the stochastic differential equation

t
Z(W,t) I z B (dx)c&(Z(w,.),x) + B(w,t)

0
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where a(Z(w,.),x) is a function of Z(w,u), for u<x, then, PB - almost surely

T 1 T

dPz/dPB(C) - exp{ f'a(c,x),f(c,dx)) -. f <a(c,x),ZB(dx)a(c,x)> }
0

T
The term f (I(cx), I(c,dx)> is a stochastic integral with respect to the

0

process {l(.,t),te (0,T]} defined on the probability space (Cn[O,'I],B(Cn[O,l]),PB).

Since PB and P B/Nh are orthogonal, one cannot simply evaluate the exponential

containing the stochastic integral at the point m(-,h). However, one can ap-

proximate dPZ/dPB (m(o,h)) in LI [PN] sense, replacing dPz/dPB by any L,[PB]-

approximation, which is useful for practical applications.

The explicit representation of dPz/dPB is due to two facts: one is

Girsanov's theorem, which gives conditions under which the translation of a

martingale by a process of bounded variation is again a martingale with the

same local characteristics (in fact, in its generality, the theorem says that

the class of semimartingales, that is sums of martingales and processes of

bounded variation, is invariant under absolutely continuous changes of probability

measures), and the other is the characterization of Brownian motion as a continuous

martingale. Since these two facts are valid for example for processes with inde-

pendent increments, the results Just stated are valid for processes other than

the Gaussian ones. Finally, it is also possible to have a B with an infinite

number of components.

i'
I


