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On the equivalence of probability measures

Let Q be a set (w denotes one of its elements) and A be a g-algebra of
subsets of Q. If (P,Q) is a pair of probability measures on A, we are interested
in describing the relations which may exist between P and Q.

To begin, suppose that P and Q are only o-finite and that Q ‘:ls a signed
measure.

Q is absolutely continuous with respect to P (notation: Q« P) if

Q(A) = 0 whenever P(A) = 0 and Q is singular with respect to P if there exists
a set A in A such that Q(A) = P(2\A) =0 (notation: Q | P). When Q« P, Q

has the following representation:

Q(A) = [ f(w)P(dw) ,
A
where f is measurable with respect to A and unique within a set of P-measure zero.
f is called the Radon-Nfkodym derivative of Q with respect to P and usually one
wvrites dQ/dP for f.
The most general statement about the pair (P,Q) which is available is the

Lebesgue decomposition theorem

Q=Q,+Q, uniquely, where

(a) Q, is a o-finite signed measure and Ql «< P

(b) Q, 1s a o-finite signed measure and Q, | P
Examples illustrating these concepts are easy to find and we shall give two.
Let: 0 = R, A = B[R] (the Borel sets of R), Leb = Lebesgue measure,

1. Let P=Leb and Q= Gaussian measure with mean zero and variance 1, that is
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Then Q« P and dQ/dP = ¢. Since ¢(x) >0, AI

P(A) = [ P(dx) = [ ¢ 1 ()e(0)P(ax) = [ ¢7 (x)Qdx) .
A A A

Then P <« Q and dP/dQ = ¢'1. When both P« Q and Q« P, P and Q are said to be

mutually absolutely continuous (notation P =Q).

2. Let T,%}' x€ [a,b)
o, b(x) = a<b
0 x€ R\[a,b]
Set

Ua,b(A) = {¢a’b(x)l’(dx), P = Leb.

Ua b is called the uniform measure on [a,b]. Q is as in 1.
»

One has

U, (A = { ¢.’b(x)¢"(x)q(dx) , so that

-1

U,p<Q and dU_,/dQ=@ ¢

Let Q,(A) = Q(AN([a,b]) and Q,(A) = Q(AHR\[a,b]}). Then, if I[a,b](x)

is one where a<x<b and zero elsewhere,




Rt o ooy

Q,(a) = { I1a,p) (00 = (b-a)jA I, p)(R60COT, | (dx)

b
Q,([a,b]) = Q(¥) = 0 and Ua b(l\[a,b]) = 0, so that Q, l-Ua b* Since

so that Q, « Ua, and dQl/dUa’b = (b-a)I[a’b](x)¢(x). Furthermore,

Q= Ql4-Q2, (Ql’Qz) is the Lebesgue decomposition of Q with respect to Ua,b'
The problem of obtaining the Lebesgue decomposition is paftiéularly
interesting and useful when b is a space of functions (or of classes of func-
tions) and P and Q are induced by stochastic processes. Typically Q is C[0,T],
the space of continuous functions on [0,T], or L,[0,T], the space of equivalence
classes of almost surely equal functions on (0,T] which are square-integrable.
A is then the o-algebra generated by the open sets of Q. Thus if X: Qx [0,T]+ R
is a stochastic process with continuous paths, X: Q+C[0,T] defined by

X(w) = {X(w,t),0<t<T} is a measurable map, so that P, = Peg_l is a probability

X
measure on the Borel sets of C[0,T]. More generally if F is a linear space of

functions f, Px is defined by relations of the type:
Pplf: (0, (D),...,0 (£)) € B} = Plu: (¥, (X(w)),...,» (X(w))€ B} ,

¢1,...,¢n being continuous linear functionals on F.

There are two major methods to obtain results about the absolute continuity
of measures Px and PY' The first consists in choosing X and Y with probability
laws of the same type (two Gaussian, two diffusions, etc.) and using this type
to characterize absolute continuity, or equivalence, and the second consists in
choosing for X a martingale (for example Brownian motion) and for Y a process

of the form V+ X, where V is of bounded variation. The privileged tool is then

stochastic calculus, We shall consider below a problem in the second category
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and motivate it from considerations which arise in statistical communication
theory. If V is independent of X, absolute continuity can in certain cases be
obtained if absolute continuity is known to hold for V non-random, without
recourse to stochastic calculus.

In statistical communication theory one tries to accurately transmit
information over communication channels. The information to be transmitted is
called a signal (S) and impediments to accurate transmission are called noise
(N). The theory is statistical in the sense that S and N are stochastic pro-
cesses (impediments can only be known "on average” and information, like the
words of a language, has a random component: only the frequency of appearance
of given words can be approximated). Communication channels operate as "black
boxes”: their description from basic physical principles is usually either
impossible or too complicated to be of much use. The signal S is the input to
the box and the output is some function of S and N, say £(S,N). We shall con-
sider here the case of £(S,N) = S+ N, which has proved useful. Most communica-
tion systems are monitored continuously and the operator is given a function
{x(t), 0<t <T)} which can be noise or a distorted signal. So, the first aim is
to establish whether x 18 a realization of N, that is x(t) = N(w,t), for some
fixed w, or whether x i{s a realization of S+ N, that is x(t) = N(w,t) +S(uw,t).
If a decision can be reached with no possibility of error, the problem is said
to be singular: F, the space of paths for N and S+ N, can be partitioned into
two measurable disjoint subsets F, and F, such that PN(FI) -l’sm(l’z) =1, If
the requirement that a correct decision be always reached, say in case of no
signal, forces the user to ignore the data, the problem is said to be non-
singular: for every measurable subset F, of F, PN(PI) =1 implies PS-'-N(Pl) =1,

Singularity corresponds thus to the case PN L Ps W and non-singularity to the

P L . X P £ ) e
T v = P N S S
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case PN P$+N' In the latter case, a good decision procedure consists in

looking at dPM/dPN(x) and in deciding that a signal is present when this is
large (that such a procedure is good follows from the Neyman-Pearson lemma

of statistics). dPsm/dPN can always be thought of as the ratio of two densi-

ties, say DS+N and D~

dpP dp
Pon(A) = [ o / | atpgrrg |
A late+pg, 1/ atpyergy)

and the choice consists in deciding "no signal" if cDN(x) 2 Dsm(x) and "signal"
if cDN(x) < DS+N(x)' (for some adequately chosen c).

A classical problem of the type just described has the form: N is a
Gaussian process, but no frequency requirements are imposed on S. The results
which shall be stated have been obtained by C. R. Baker and A. F. Gualtierotti

(UT Electrical Engineering, Fall 1981).

The model:

(2,A,P) is the basic probability space specified by the experiment and
the information as time evolves is contained in A = {At’ 0< t< T}, where At is
a o-algebra of subsets of Q, and AtsA, s<t -»As <€ At'

(A) The noise N

Let B(w,t)= (B1 (w,t),.. .,Bn(w,t))t, the processes Bk being independent,
Gaussian with independent increments and with continuous variance Bk(t) = EBi(m,t)
(BBk(m,t)) = 0). B 1s adapted to A, that is B(-,t) is measurable with respect to
At‘ The diagonal matrix with entries 8, (t) is denoted zs(t). It can be showm
that Bl: is a continuous square integrable martingale with increasing process Bk
(one can choose for B, the Wiener process W, and then B, (t) =t). F(t,x) is a

function defined on [0,T] x [0,T]: it is measurable and F(t,x) =0 for x> t.
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T
Furthermore, it is assumed that | (E(t,x),Ig(dx)F(t,x)) is finite for all t.
0

N is then defined by
T
N(w,t) = [ (F(t,x),B(w,dx))
0

and is supposed mean square continuous, that is

T
EIN(-,t) = N(+,8)12 = [ (F(t,x) - F(s,x),Z5(dx) [F(t,x) - F(s,x)])
i 0

is small when |t-s| {is.

Remark: This choice of N is based on the Cramer-Hida representation: a second

order, mean square continuous stochastic process X can always be written in the

form

t
X(w,t) = [ ¢F(t,x),B(w,dx))
L, 0
where the Bk's have orthogonal increments. If X is Gaussian, B is Gaussian.
However B can have an infinite number of components.

(B) The signal S

t
S(u,t) = [ (E(t,x),Ig(dx)gw,x))
0

8 is assumed optional, which is a regularity condition imposed by the recourse
to stochastic integration (the prototype of an optional process is a process
vhose trajectories are functions f which are continuous to the right and have

limits to the left). A further assumption is that
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T
E [ (8w,0),E5(dx)s (w,x)) < =
0

T
Remark: Let Ry(s,t) = EN(+,s)N(.,t) = { (g(t,x),):s(dx)z(t,x)) . With R,

one can associate a Hilbert space of functions H(RN) in the following way:
n
on the vector space of functions } oy Ry(-,ty), define
k=1
n P
(1 I a8, Ryls,.t) .

n
B, R, (+,S ) -
2 NS uwy) kZ ,

P
% RN(.’tk)’ zz

1 1 1 L

H(RN) is the completion of this vector space for the norm "'"H(R ) and is
N
called the reproducing kernel Hilbert space of RN. The name comes from the

relation

n n
(RN(')X), kzl ak RN(',tk)>H(RN) = kzl (lk RN(x,tk) .

Since

n P T n P
k§ I o8 Rylayury) =/ < Zl a, E(t,,%),Ig(dx) | 8,F(s,,x))

1 8= 0 k= =]

and
n
)
k=

T n
, a Ry(u,t) = ]o (z(u.x).iil;(dx)kzl o F(t,,x))

one has here a representation of H(RN):

B(RN) = {a(t) = Z Q(t.x).tg(dx)é,(x))

Ae subspace of L,[Ig] generated by F(t,*)}




T
(a,i)“(RN) = f (éﬂx),zs(dx)éﬂxl>

One thus sees that the signal S has been chosen to belong to the reproducing
kernel Hilbert space of the noise. This is no coincidence: in many instances

this is a necessary condition for equivalence.

Example: Let N = W, a Wiener process on {0,T]. Then

t T
H(RN) = {a(t) = { a(x)dx, { a2(x)dx < =}

’ T
, (a,a)h(RN) - { a(x)a(x)dx = {a,a L, 00,11 °

It can be shown that the process Ha(u,t) = a(t) + W(w,t) has a law equi-

Pwa
valent to P, the law of W, if and only 1f ae H(RN). More generally, the law
P, of the process Y is equivalent to P, "if and only if" Y has the form
t
Yw,t) = [ a(w,x)dx + W(w,x)

0
with

T
P{[ a%w,x)dx < @} = 1
0

(The " " indicate that many details concerning a and Y have been left out.)
We now have the following results:
I) There exists a measurable map 'r:cn(o.'r] -+ tho,'rl (cn[o,'r) =

{f : [0,X] > ’"5 £ is continuous}) such that N = T* B and S+N = Te 2, where

t
Z(w,t) = ] ):B(dx)_s_(m,x) + B(w,t), provided Pz« Pn.
0




I1) If I) obtaims, PS+N « PN and

dPg  /dP, (h) = [ dP /dP_()P_ ., (dc)
S+ TN ¢_[0,1] Z'™'B B/N=h

where PB/N=h is the conditional law of B knowing that N = h,

I1I) PB/N=h is a point mass concentrated at m(t,h), with

( h) '{ <fi(t’.)’wk)L2[0,T] <h’wk>L2[0,T]
m, t, =

k=1 )‘k

where (Ak,wk) is an eigenvalue-eigenvector couple for the operator RN on
T
L2[0,T] defined by (RNf)(t) = {; RN(t,x)f(x)dx. N being mean square continuous,

RN is continuous and thus RN has finite trace:

N L -]

R" = kgl AV @ v, ([a@bl(x) = <x’b>L2[0,T]a)
t

The function fi(t,-) is given by fi(t,x) = { Fi(x,u) Bi(du). Hence Py - almost

surely,
dPg y/dPy (h) = dP,/dPy (m(:,h))

One need thus define explicitly the function on Cn[O,T], sz/dPB.
Let M(c,t) = c(t), c€C (0,T]. It can be shown that if Z is the solution of
the stochastic differential equation
t

2(w,t) = Zn(dx)g(g_(w,-),x) + B(w,t) ,
0

LSRN
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where a(Z(w,*),x) is a function of Z(w,u), for u<x, them, P, - almost surely

B

T
dp,/dp (c) = exp{{;(g(s_,X),H(g.dX)) - {ale,x),z (dx)alc,)) }

LN
‘@

T
The term f(g(_(_:_,x), H(g,dx)) is a stochastic integral with respect to the
0
process {Ili(-,t),te [0,T]} defined on the probability space (Cn[O,I],B(Cn[O,I]),PB).

Since PB and P are orthogonal, one cannot simply evaluate the exponential

B/N=h
containing the stochastic integral at the point m(-,h). However, one can ap-
proximate sz/dPB (m(+,h)) in Ll[PN] sense, replacing dPZ/dPB by any Ll[PB]—
approximation, which is useful for practical applications.

The explicit representation of dPZ/dPB is due to two facts: one is
Girsanov's theorem, which gives conditions under which the translation of a
martingale by a process of bounded variation is again a martingale with the
same local characteristics (in fact, in its generality, the theorem says that
the class of semimartingales, that is sums of martingales and processes of
bounded variation, is invariant under absolutely continuous changes of probability
measures), and the other is the characterization of Brownian motion as a continuous
martingale. Since these two facts are valid for example for processes with inde-

pendent increments, the results just stated are valid for processes other than

the Gaussian ones, Finally, it is also possible to have a B with an infinite

number of components.
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