AD-A135 202 EXPERIENCE WITH A REGULAR EXPRESSION COMPILER(U} 179
STANFORD UNIV CA DEPT OF COMPUTER SCIENCE
A R KARLIN ET AL. JUN 83 STAN-CS-83-972

UNCLASSIFIED MDA903-80-C-0107 F/G 9/2

END

e

NL .

10 ¢ b= 12
g 5 R
s

o

li2s g e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963 4

June 1983) Report No. STAN-CS-83-972

Experience with a Regular
Expression Compiler

by

Anna R. Karlin, Howard W. Trickey, and Jeffrey). Ullman

ADAIBS A0 2,

Contract MDA-903-~80-.C-0107

Department of Computer Science

Stanford University
Stanford, CA 94305

APPROVED FOR
PUBLIC Rg,
DISTRIBUT ION UNLIM!TLEEDAS

DT
& ; ' o
@ S D GV AT
s R G A
. DEC 11983 "
! S ¢)
e b

N A

EXPERIENCE WITH A REGULAR EXPRESSION COMPILER?t

Anna R. Karlin
Howard W. Trickey
~, Jeffrey D. Ullman
Stanford Univ., Stanford CA

The language of regular cxpressions is a uscful one for specifying certain scquential procesacs
at a very high level. They allow easy modification of designs (or circuits, like controllers, that
are described by patterns of events they must recognisc and the responscs they must make
to those patterns. This paper discusees the compilation of such expressions into ressonably
compact layouts. The translation of regular expressions into nondeterministic automata by
two different methods is discussed, along with the advantages of each method. A major
part of the compilation problem is selection of good state codes for the nondeterministic
automata; one successful strategy is explained in the paper.

I. The Regular Expression Language \

We shall give a briel introduction to the language of regular expressions; for more information on this

language and on nondeterministic finite automata, the reader is referred to Hopcroft and Ullman [1976].
Régular expressions consists of operators and operands. The opcrands are abstract symbols that represent

events in terms of combinations of wires. Events are assumed to occur at discrete times, so regular expressions

define syachronous systems.

Operators

The operators of our language are:

1. Juxtaposition (no operator) standing for sequencing of events. That is, if regular expressions R and §
each represent a set of events, then RS represents the set of events consisting of an event of R followed

by an event of S.

2. The + operator standing for union. Thus, R + S stands for the set of events that are either events of
R or events of S.

3. The unary postfix operator * standing for the closure, or “any number of” operator. Thus, R* stands
for any sequence (including the null sequence, denoled ¢) of events in R.

In our language we also use the shorthand opcrators:
4. R** stands for one or more occurrences of events in R, that is, RR®.

5. R? stands for scro or one occurrence of an cvent in R, that is, R +¢.

Example 1: Let a and b be eventas, i.e., abstract symbols of our Ianguage. Then ab stands for an a followed
[P ——— 3
1 Rescareh supporied by DARDPA contract MOA;’Q- C-0107 and NSF grant MCS-32-03408.

1

immediately by a b; ab® stands for sn a followed by any number of b's, i.c., {a,ab,abb,...}); ab** stands

for {ab,abb,...}. Also, a + b stands for cither an a or 8 &, and (a +)* stands for any sequence of a's and
b's, in any order. (0

Special Operands

A

In addition to abstract symbols as operands, we allow two other operands. -
1. A dot (.) is an operand that matches any combination of input wircs, i.e., it is always seen.
2. The symbol # is ncver seen, no matter what input wires are on. Although seemingly without purpose,

this symbol is easential when we usc state names in our expressions, as described below.

Line Declarations

Our expression language has declarations of five types: lines, symbols, outputs, states, and subexpressions.
The lines are wire names, from which the symbols are constructed. For example,

line x, y|8]

declares z to be the name of a wire, and y to be the name of a group of eight wires, which may be referred
to individually in symbol definitions as y[1},...,y(8].

Symbol Declarations

Symbols are the operands of regular expressions mentioned above. Each is defined by a set of wires that

must be on and a set that must be off. Thus,
symbol sap(x, y[1], -y(3])

declares that sbstract symbol zap is seen whenever wires z and y[1] are on, and wire y[3) is off. Any other
wires are ignored when deciding whether event szap is scea. Note that, unlike the usual conventions in
automata theory, we allow more than onc symbol to be seen at the same time. for example, we could define

symbol sip(y{1}, y[2])

and sce both zip and zap at the same time, if z, y[1}, and y[2] arc on, whilc y[3] is off.

Output Declarations

Output symbols are embedded in the regular expression and represent output wires. The exact rules
determining when an output wire is raised are complicated, and the details appear in Uliman {1983]. However,

the general idea is that if R is a regular expression, U is an output symbol and RU a subexpression of the
2

complete regular expression, then we raise outpul U immediately alter seeing a scquence of inputs that forms

an event of R. An example will help make the idcas known. If we declare
output U, V

and write the regular expression
sip (sip U + sap U V)*

then after the first event, which must be xip or no output is ever made, we look for any sequence of events
2ip and zap. Each time we sce zip, we raise output U, and each time we sec 36p we raise both U and V. If
at any time we see neither zip nor zap, we not only raise no output, but recognition of the regular expression

has “derailed,” and we never make any more output.

State Declarations

State names are used like “goto’s” in the regular expression. While the regular expression language is most

appropriately used in situations where there is little need for explicit state transitions, we bave fon.nd that

the occasional use of such transitions is almost cssential. With this feature, our language has all the power

of deterministic finite automaton languages, like SLIM (Henncssy [1981]), while also offering the expressive

power of regular expressions where that is more appropriate. We can declare s to be a state by the declaration
-state s

Then,rin the regular expression, there will be one occurrence of s followed by a colon; thus s : marks the
“label” position of s, where control transfers whencver it is determined that state s is entered. Often, we
find 2 : preceded by #, the symbol that is never matched, so that control docs not accidentally reach state
s without an explicit transfer to that state.

In the expression there can be any number of occurrences of s not followed by a colon; these are the
“goto’s” to state a. As with output symbols, a state symbol is activated when a match for the |->receding
regular expression is recogniscd. The reader should be reminded that because of the inherent nondeterminism
in the input recognition process defined by regular expressions, the use of states can be more general than
in a delerministic finite aulomaton language. For cxample, two or more golo's to different states could be

activated at the same time, causing us to be in both states at once.

Program Structure

The fth kind of declaration is a subcxpression, where an identifier is declared to ltﬁd for a regular

expression. Thus

i it A e T ik oI Ll e, v A kR = kA) it AR

line x

symbol
zero(-x)
one(x)

output OUT

)
.* onc one (one zcro! zerof)++ OUT

Fig. 1. Bounce filter regular expression.

subexp string = (sip + 1ap)*

declares string to stand for any sequence of zip’s and zap’s, so

string 1ip sip string

stands for any sequence of zip's and zap’s with at least two zip’s in a row.

After all declarations for a program, there is a single scmicolon, followed by a single regular expression.
The limitation to one expreasion is not significant, since there can be any number of output symbol occur-
rences in the expression. We can even use the # operand to simulate a multistate automaton by using an
expression of the form

statel: expressionl
+ ## state2: expression2

+ ## staten: expressionn

Presumably, each of the expressions has within it one or more state symbols, which cause transitions to

other states.

Example 2: A bounce filter is a device with a single input and single output; the output will gencraily agree
with the input, but we wish to ignore small “bounces,” .where for a smz.ll number of cycles the input changes
and then returns to its original value. For our example, we shall ignore one or two consecutive 0 or 1 inputa
that do not match their surroundings. The regular cxpression that defines this output as a function of the

input is shown in Fig. 1.

The first line of text declares z Lo be a wire; this wire is the only input wire in this example. The next
two lines declare zero and one to be abstract symbols, seen, respectively, when the input wire is off and on.
The fourth line declares OUT to be an output signal, the only output in this example. Then comes the
obligatory semicolon, and finally the cxpression itsell. The expression says that the output OUT is to be
raised whenever we sce an input pattern that requires the output to be 1. That is, we may see anything at

all (indicated by the .*), then two one’s and one or more groups represented by the cxpression

1

e

line cars, tol, tos

output RESET, HWYGREEN, HWYYEL, FARMGRN, FARMYEL

state highway, farm

symbol Litlaaten ap
carstol(cars, tol)

carsntol(cars, -tol) ”I E);
nocara{—cars) Dol T

timeup(tol) ' Y S 3]
notol(-tol) L P
switch(tos)
wait{-tos) :
’ fil Thuidony
highway: (nocars+notol)* HWYGREEN T {145 paran
carstol RESET S RAASTY LonEs
wait® HWYYEL switch farm RESET N JoeniLsad/er
+ # farm: carsatol* FARMGRN Sedt o sceedal
(nocars+timeup) RESET 1 '
wait* FARMYEL switch highway RESET : 4/
} N1
Fig. 2. Traffic light controller. mmed

one sero! sero!

that is to say, each group consists of a 1 followed by up to two optional ('s. The 1 from the first group forms
the third consecutive 1, along with the i’s that match the two carlier symbols one in the expression. After
these three 1's, there cannot be three 0's in a row, no matter how many groups are present, so the output

in response to any input that matches the pattern of the expression given in Fig. 1 should be 1. O

Example 3: Now, let us see how to write as a regular expression the famous traffic light controller from
Mead and Conway (1880]. This problm involves a light at the crossing of a highway and farm read. A
sensor dctects cars waiting on the farm road to cross the highway; its output is the line cars in Fig. 2. Two
timing signals are also used to control the light. The short time out signal, tos in Fig. 2, indicates that
cnough time has elapsed from the last time the RESET output signal was raised that a yellow light may
be turned to red. The long time out, tol in Fig. 2, is used to measure the minimum time, from the last
RESET, that we shall allow the highway to be green, even when cars are waiting on the farm road, and
also Lo measurc the maximum time that we shall allow the farm road Lo be green, cven if there is a steady
stream of cars on that road.

Let us examinc the parts of the expression in detail. Starting from the highway state, the subcxpression

(nocars + notol)*

matches any scquence of events in which either there are no cars waiting, or the long timeout interval has not

clapscd. As long as that is the case, the highway stays green, as reflected by the fact that the IWYCREEN
5

WIPRAY o e S S A

output follows this subcxpression. Then if both the cars and tol signal are on, the input no longer matches

(nocars + notol)*

but it matches the longer expression

(nocars + notol)* carstol

becausc the carstol symbol is seen wl;cnever both the wires cars and tol are on. Note that the output and
state symbols, such as HWYGREEN, are ignored when considering subexpressions of the complete expression
that might match the input.

In response to a match of the above expression we emit signal RESET, which starts the counter for
the purpose of measuring the time of the yellow light. Any input that matches the above expression also
matches

(nocars +notol)* carstol wait*

since wait can occur zero times in a match of wait*. Thus, at the same time RESET is signaled, HWYYEL
is also signaled, and the highway light turns yellow, while the farm road remains red.

As long as the short timeout period has not elapsed, wast will continue to be seen, so the above expression
will be matched, and IWYYEL, but not RESET, will be emitted continuously. Then, when switch, the
abstract symbol that represents the tos wire going on, is scen, we can no longer emit HWYYEL, becausc the
input seen since we entcred the highway state no longer matches the above expression. However,

(nocars + notol)* carstol wait* switch

is matched. Thus, we cmit the two following signals, farm and RESET. The first takes us to the farm
state, and since that state is followed by subexpression carsntol®, which is matched by Lthe empty string, we
immecdiately signal FARMGRN as well. That causes the farm road to become green and the highway red.
The cvents following the farm state are similar to those just discussed for the highway state, and we shall
omit a detailed description. -

We might note that although the traflic light is inherently a four-state device, we used only two states,
and in fact, we did so only for convenicnce; we could do without states altogether, There is really no need
for the farm state, because whenever we enter it, we would “fall through” to it anyway. We can do without
the highway if we put the closure opcrator around the whole expression, thus causing the cycle to rcpeat

indcfinitely. The state-free expression for the traflic light is

((nocars + notol)* IHIWYGREEN carstol RESET
wait® IWYYEL switch RESET
carsntol* FARMGRN (nocars + timeup) RESET
wait® FARMYEL switch RESET)*

T A AR 1Y

i Regular

/ Expressions \‘

-4 Before Type After Type

Compiler / Compiler

NFA Language

State Coder _ i

A

Minimiser i

|

PLA
Generator

Fig. 8. Outline of RE Compiler.
IL' The Compilation Strategy

Figure 3 outlines the way regular expressions are compiled into PLA’s. The language of nondeterministic
finite automata (NFA's) is used as an intermediate language. We shall not detail the language here, as it is
fairly conventional. The important thing to remember is that the nondeterministic states each correspond

to a single operand of the expression. There are two reasons we prefer to work from the NFA, rather than

coaverting regular expressions into deterministic automata and using standard state-coding heuristics.

1. Somctimes the regular expression is short, yet the number of states of the deterministic automaton is

:
H
)
}
v

enormous. We worked with one example of an expression, that described pattern matching with don't
care’s, where the regular expression has 72 operands, yet the detcrministic automaton has over eight
million states. By coding the NFA directly, we were able to get a PLA with 24 feedback wires, which

is only one more than the minimum possible for the implementation of an 8,000,000 state machine.

2. The regular expression gives us important clues to a good state coding. In particular, we shall sce below
that we can always find a ’LA implcmentation with one term per operand, i.c., one term per NFA state.
If we converted to a deterministic automaton, we might losc some of the useful information and wind

up with a PLA with more terms, unlcss we spent a great deal of effort optimising the coding.

The “before” and “after” type compilers are really implemented by a switch on a single compiler; we
shall discuss the difference below. The details of the compiling algorithms involved in trhalaﬁng regular
expressions to NFA's by cither method are found in Trickey [1982] and Ullman [1983].

' 7

PP

R

We have experimented with several strategics for the state coder. They all depend on knowing the

conflict matrix of the NFA, i.e, which pairs of states can be on at the same time. We shall have more to say
about these strategics later.

The output of the state coder is a PLA personality. This personality has the number of its terms reduced
1 by a program called GRY, written by llemachandra [1982] and based on algorithms described in Hachtel et
al. [1982). The output of the minimiser is fed to a PLA generator written by Kevin Karplus.

II. The Partition of Regular Expressions

L The first thing the regular expression compiler does is break up the given expression into manageable picces;
we try to have each picce represent about fifty operands. One of the important features of the regular
expression approach to design is that expressions can be broken up into subexpressions that have very little

interaction; in essence the outer expression “calls” the subexpression at exactly one place, and the call can

be represented by a pair of wires carrying a startup signal to the subexpression recogniser and a completion
signal back to the caller. For example, the bounce filter of Example 1 could have its expression broken into

main = .* one one subtt OUT
asub = one zero! zero!

It is important to realize that the circuit recognizing the subexpression can receive start signals more
than once, and may even be working on more than one “call” at a time, but this activity is a correct
implcmentation of regular expressions. W¢.e should also be aware that if there are state “goto’s” amnécting a
subexpression to its environment, then more than one pair of wires will be necessary for the interconnection.

Belore traaslating the subexpressions into NFA's, the compiler does a certain amount of ajgebraic man-
ipulation of the subexpression to reduce the number of NFA states needcd, if possible. For example, we left-
and right-factor expressions, so)

abe + ade

becomes
a(b + d)e

The motivation for splitting the expression into small pieces is that the PLA implementation degrades
in both speed and in area used per regular expression operand, as the number of opcrands grows. That is,
the area of a PLA for an n-operand expreasion could be proportional to n. The rcason we do not therefore
break the cxpression into PLA’s of sizc 1 is that the PLA cost also has an overhead term. The result is

that to get the lowest ratio of operands o PLA area we should use subexpressions of about 15-25 operands

for each PLA. However, because of the wasted area involved in putling many PLA's together, we prefer
8

3
t
|
b

somewhat morc than the optimal r;umbcr of operands per PLA to reduce the overhead due to PLA’s that
don’t quite fit together.

A previors incarnation of the compiler attempted to translate the expression directly to n‘ layout using
an algorithm of Floyd and Ullman [1982] that requires arca that grows only proportionally to the number
of operands. However, the network-of-PLA’s implementation was l;ound superior in practice. The reader
should also be aware of another approach to laying ?ut regular expression recognisers in lincar ares due to

Kung and Foster [1982], which we have not tried.

Another style of implementation is described in Ullman {1982], where regular expressions were translated
into the Igen logic language (Johnson (1983]) and thus implemented as Weinberger arrays. The area of such
implementations was found to be comparable to the PLA implementation. Theoretically we might expect
the Weinberger array approach to use less arca than PLA's, but to form circuits of very large aspect ratio
as the sise of the expressions compiled grows.

Thé reader is also referred to Trickey [1981] for a description of some experiments with the systematic
exploration of the different ways a regular expression could be partitioned into subexpressions, and the sub-
expressions converted to PLA's that would it together with little wasted area. It was found that significantly
improved layouts could be obtained, but the computation time grew exponcntially with expression sise. That

makes it doubtful the method could be applicd to expressions with more than a few hundred operands, unless

-some way of focussing the search for partitions were found.

IV. Before and After NFA Constructions

Now, let us rcturn to the two methods whereby NFA’s arc constructed from regular expressions. We begin .

either process by identifying each operand with a state.

Example 4: Consider the bounce filter of Example 2. We may number the operands of the expression from
left to right as follows.

-1* oney oney (oney zerog! zerog?)t+ OUT,

We may then associate with operand s the state N;.

In Fig. 4 we sce what looks like a transition diagram for a finite automnaton. It actually rcpresents the
successor relationship among the states or operands, i.e., which operands can follow which in the regular
expression. For example, there is an arc from Ng to N beeause after seeing a O corresponding to zeroy, we

could begin another group consisting of 'a 1 and up to two 0's, and such a group must begin with a 1 that

matches ones. We also have an arc from Ng to Ng, because after matching seros we could see another 0
]

e

=

et 2 w—————

¢) 72

start e=PpNp=eepp Nye—ee®p Nyeemdp Ny eedp Ng ——p Ng =~ N,
L4

Fig. 4. Successor relation for bounce filter.
that matched zerog. Finally, there is an are from Ny to N; because after sceing a match for zeros we have
seen an input that matches the subexpression prior to the OUT output and therefore must make the OUT

signal. See Ullman {1983] for the details on the algorithm used to compute the successor function. [

Whether we usc the before or the after interpretation of states, we can see transition diagrams like Fig.
4 as representing places that can be “active,” which we might represent by putting a marker on a subset of
the nodes. When we use the before interpretation, a marker at state N; tclls us we are ready to recognize
the operand corrcsponding to that state. Thus, if state N of Fig. 4 is active at a given time unit, it will
activate for the next time unit the states Ny, N, and N, provided an input 0 is seen. If the input is not 0,
those states will not be activated by Ny. Ny will not be active at the next time unit, unless it is activated

by a transition from Ny, its only predecessor.

Figure 5(a) shows the before interpretation of the NFA for the bounce filter. Each transition in Fig. 4 is
made on the input that corresponds to the state at the tail of the transition. Those states that correspond to
the opcrands that could match the first input seen, namely N, and N, are designated initial. A transition

amwo N7 causes the associated output, OUT, to be raised.

In the after interpretation of NFA's, each state represents a situation where we have already scen the
corresponding operand of the regular expression anﬂ are ready to recognize the symbol corresponding to
any of its successor states. Figure 5(b) shows the altcr interpretation of the bounce filter. In gencral, each
transition is labeicd by the symbol corresponding to the state entercd by the transition, while in the before
intcrpretation the same transition is cxccuted when the input matches the operand of the state that the
transition leaves. In the after interpretation, the start is a state itsclf, with transitions Lo its successors on
the appropriate inputs, as shown in Fig. 5(b). Finally, states associated with output symbols are no longer
states in any usclul scnse. Rather, transitions into such states, shown in Fig. 5(b) as associated with ¢,
mean that the states from which such a transilion is made are to raisc that oulput signal as soon as they

themselves arc entered.

10

. TR o and 5
R A 20 N) |

5 BN

start DN, —» N3 =B N; — N, —» Ns —> Ny —>N;

(a) Before method interpretation

I

start -) Ny —p N, -—-’ N,-—-‘P Nq—> N; ——)N.—-? N,

N

(b) After method interpretation
Fig. 8. Interpretations of bounce filter NFA.

Comparison of Methods

Neither method is uniformly superior to the other. The advantage of the before method is that when we
convert the NFA to a PLA, we need only one term per state (plus extra terms corresponding to transitions

from the initial states when the start signal is ra’sed). To see why, we have tc understand that each NFA

s AR 4305 RS A, R A AR vt W 2N S 0 OO Ao TIOR8 2 2 7

state is coded by turning on a subset of the feedback wires of the PLA; we shall discuss the method of

NPT

selecting the representation of each state shortly. In the before interpretation, we need for each state N a
term that checks

1. The code bits representing N were turned on at the previous time unit, and

2. The input corresponding to N is scen.

This tcrm must turn on all the wires in the or-plane that are nceded to represent any of the successors of

state N. It may be unclear at the moment how one represcnts NFA states (which may be on simultancously

in various combinations), unambiguously by turning on sets of bits; we shall cover the method in the next

section.

Example 53 Figure 8(a) shows the PLA constructed from Fig. 5(a) if we code stales Ny through Ny with a

single wire cach. (This turns out Lo be as good as we can do for the bounce filter NFA.) The left and right
1

it i SRS - < a7 N e o e ;

22122222 1100000
21212222 0010000
21221222 0001000
21222122 0001111
20222212 0001011
202122221 0001001
12222222 1100000
11222 222 0010000
S XNyNsNsN,NsN¢ - NyNaNyNoNsNeN;
(a) Before method PLA.
12222222 1000000
11222222 0100000
22122222 1000000
21122222 0100000
21212222 0010000
212211222 0001001
21222122 0001001
20222122 0000111
21222212 6001001
20222212 0000011
21222221 0001001
S XN{N3sNyN¢NsNg N NaN3NyNsNgN;

_ (b) After method PLA
Fig. 6. Before and after PLA's for bounce filter.
groups are the and- and or-planes. A 0 or 1 in the and-plane means that the wire rcpresented by the column
must be off or on, respectively, for the term corresponding to the row to be seen. A 2 in the and-plane means
“don’t care.” In the or-plane, 1's represent taps, so cach column is the logical “or” of the terms with 1's in

that column. Note that N7, the output, need not be fcd back.

The Birst six rows are the terms for states N, through Ng. For txample, row one says that if we are in
Ni, and the input “dot” is seen (i.e., the input may be 0 or 1, rcpresented by the 2, or “don't care, in the
input column, X), we turn on N; and Nj for the next time unit. Row two says that if state N; is on, and

the input is 1, turn on Nj for the next time unit.

The last two rows duplicale rows one and two, but with the start signal S replacing the wircs for N,
and Nj, respectively, in the term's conditions. Thus, these last two wires express the fact that N, and Ny
are on initislly. O

If we use the after interpretation of NFA’s then we must create for each state N, and each symbol a
Iabeling a transition out of that state, a-term to check that the state is on and that the input is scen; if so,

the succcssors of N on input a arc turned on in the or-plane for the next time unit. If succcasor M has an

e-transition to an output signal, then those terms that turn on M in the or-plane also turn on that output
wire.
Example 6: Figure 6(b) shows the after mcthod PLA for the bounce filter. For example, rows three and
four represent the transitions from Ny on “dot” and 1 to states N, and Nz, respectively. Notc that since N,
Ns, and Ng have e-transitions to Ny in Fig. 5(b), the last five rows of Fig. 6(b), which represent transitions
into those states, also turn on the output wire, which is N;. (3

If we compare Examples 5 and 6 we might get the impression that the before method is superior to the
after; each uses the same number of columns, and the after mcthod uses more rows. While it is typical that
the before method saves rows, it is often true that the after method saves columns because it allows better
NFA state codes. It just happens that for the bounce filter, no better state code is possible with the after
method.

V. Selecting NFA State Codes

We shall now take up the matter of how the compiler selects codes for states of an NFA. We first discuss
the notion of conflicting states, that is, pairs of states that can be on at the same tine. We show how the
conflict information determines the permissible state codes and we discuss a pa.rticular method for finding

legal codes.

Conflicting Symbols and States

Before discussing conflicting states, we need to define conflicting input symbols. Symbols @ and b conflict
if both can be on at the same time, i.e., there is no wire z that is on in the definition of a and off in the
definition of b, or vice versa. ’

If we are using the before interpretiation of an NFA, then we usc the following two rules to compute
pairs of states that conflict. Rule (1) initializes the set of conllicts; we then add conflicting pairs by rule (2)
until no more can be added.

1. Each state conflicts with itscll. All initial states conllict with one another.

2. Suppose N and M are stales that conflict, and thcy are associated with conlflicting symbols a and b.
(Note N = M is allowed.) Then for cach successor P of N and cach successor @ of M, P and Q
conflict.

There are similar rules that can be applied if we usc the after interpretation of NFA's; they are:

1. Each state conflicts with itaclf. If N and M arc initial states that arc associated with conflicting symbols,
then N and M conllict.

- Ao _
i T

W

TN,
CD .

Fig. 7. Example NFA.
2. Suppose N and M conflict, P is a successor of N and @ is a successor of M. Also suppose that P is
associated with symbol a and Q with b, and a and b conflict. Then P and Q conflict.
Note that the set of conflicts under the after interpretation is always a subsct of thase found under
the before interpretation. It is this eflect that explains why we often get better state codes with the after
method.

Example 7: Suppose we declare symbols by

line x, y

symbol a(-x, -y), b(x), <(y)
Then b and ¢ conflict. However, a and b do not conflict, because of wire z, and a and ¢ do not conflict
because of wire y.

Consider the NFA shown in Fig. 7. In the before interpretation, (Ny, N3) is a conflicting pair because
both are initial. Next, by rule (2) we find that (N3, N;) is conflicling because they are both successors of
the conflicting “pair” (N3, N3). Then, we find (N, N3) is a conflicting pair because they are, respectively,
successors of the states N3 and N2, which are conflicting and associated with conflicting symbols.

In the after interpretation, rule (1) yields no nontrivial conflicting pairs, because the s +t states N; and
N; are associated with nonconllicting symbols. However, the succcasors Ny and Ny of ta “rivial conflict
between Nj and itsclfl are associated with conflicting symbols, so (N3, N3) is a nontrivial conflicting pair.

There are no other nontrivial conflicts in the afier interpretation. [J

Legal Codes for NFA States

It is uscful to thiak of the conllict information as a conflict graph, with states for nodes and edges between
pairs of states that conflict. The compiler makes the simplifying assumption that any cliquet in the conflict

graph represents a sct of states that can all be on at the same Lime. Surcly if some sct of states can all be

1 A cllque is & act of nodes with sn cdge belween any two nodes in the set. The clique is maximal if no node outside the clique
has an cdge Lo cach member of the clique,

R el s e

. d

e A o e 4 =i

R,

on at once, then each pair of states in Lhe set conflicts, but the converse is not true; there could be three
different input sequences that lead, respectively, to states M and N, to M and P, and to N and P, yet oo
one inputl sequence turns on M, N, and P together.

Our decision to consider only conflicts between pairs, rather than all subsets, was so that the amount
of information handled by the compiler would grow only quadratically with the regular cxpression sise, not
exponentially as it would if we considered conflicts among arbitrary sets of states. The assumption tha} all
cliques represent conflicting sets is conservative, in the sense that it may prevent us from taking advantage

of some good codes for states but will not lead us into an error where we design a malfunctioning PLA.

When choosing codes for states, we make the following hypothesis, which is oriented toward the PLA
implementation of NFA's. We suppose that associsted with each state is a vector of k 0's, 1's, and 2's, with
2 standing for “don’t care.® Let C(N, i) be the i** position in the vector for state N. If state N is to be on,
then we turn on the i** feedback bit whenever C(N,i) = 1. If C(N,1) is 0 or 2, we do not turn on the i**
bit because of N, although it could be turned on because of some other state.

In the and-plane, when we must recognise that we are in state N, perhaps among others, we examine
the feedback bits. If C(N,5) = 1, we check that the §** feedback bit is 1; if C(N,t) = 0, we check that it
is 0, and if C(N,) = 2, we do not check the i** feedback bit. We must consider under what conditions the
code C allows us to int.zrpret all possible combinations of feedback bits correctly. There are two conditions
that together ensurc that we shall make the proper infcrences from the feedback bits.

1. When state N is on, we detect N. If C(N,1i) = 2, we do not check bit 1, so there are no constraints on
i as far as N is concerned. If C(N,1) = I, and N is on, we know bit ¢ will be turned on, 8o the test for
N will be met at bit ¢. Finally, if C(N,{) = 0, then we must be assured that no other state M that ‘
conflicts with N, and could therefore be on at the same time as N, has C(M,1) = 1. For if there were

such an M, then we could find bit 1 equal to 1, and fail to detect N even though it is on.

2. If N is detected, then N is on. Here, we must check that there is no (not necessarily maximal) clique
{M\,..., M, } that does not contain N but can forge the code for N. That is, for no such clique is it
the case that forall £, 1 < ¢ < k:

a) If C(N,i) =0, then for all j, C(M;,i) % 1.
b) If C(N,s) =1, then there is some j for which C(M;,i) = 1.

If no clique satisfies (a) and (b), then the code C satisfies condition (2).

Example 8: Figurc 8 shows a conflict graph. A possible 3-bit code for this sct of states ia:
15

Q

}

Fig. 8. Example conflict graph.

[

O%wzZX
- -
-0 N |
NN -

To check condition (1) we have only to examine the 0's. For example, C(N, 2) = 0, but there is no other
state conflicting with N that has 1 in its second bit. That is, only M conflicts with N, but C(M,2) = 2.

We must also check condition (2). For example, it looks like N and P together could forge Q, but
{N,P} is not a clique, because N and P do not conflict. []

Simple Coding Methods

The first coding method implemented, which we call the greedy method, is to look for maximal independent
sets in the conflict graph. An independent sct is a sct of nodes no two of which are connected b); an cdge. We
may partition the nodes into maximal independent sets by starting with any node and adding nodes that do
not conflict with sny of the nodes previously added, until no more can be added. The reiult is one maximal
independent set. We then remove the nodes of this set from the graph and start with another node‘to grow
another independent set, and s0 on. This method has been used for similar purpoees in several other works,
such as Haskin [1980] and Nagle, Cloutier, and Parker [1982].

Having obtained a partition into independent sets, we may binary code the states in each sct, omitting
the all-sero code, 30 a set of m states can be coded with [logg(m + 1)] bits. Each of the indcpendent sets
uscs bils of its own in the statc code, and the code for cach state has don’t carc's in the bits belonging to
the independent scts other than its own. This coding method works because the only possiblec combinations
of states have at most one from cach independent set. The bits for each set tell us which, if any, state from
that set is on. By not using the all-sero code for any state, we can detect the case where no member of an
indcpendent set is on.

Example 9: Consider the conflict graph of Fig. 9. We might start growing an indcpendent scl with state
' 16

N. We may add P and Q, because neither conflicts with N or with each other. However, we cannot add M
because it conflicts with N. Thus, we start a second indcpendent set with M, and the partition of Fig. 8 is
{{N,P.QL(M}}

The first of these scts requires two bits and the second one bit. The resulting state code is that given
in Example 8. O

The Clique Compatability Class Method

A second coding method tried is described in Ullman [1982]. It gave better codes than the greedy method
in some cases. We shall omit a description of that method and instead describe the most recent and most
successful coding method. This approach partitions the states into maximal clique compatibility classes
(MCCC's). An MCCC consists of a collection of cliques, such that no node of one cliguc is connected to a
node of another clique by an edge of the conflict graph.

We grow MCCC's by starting with maximal independent sets and growing them by adjoining nodes

.whenever possible. We can adjoin node N to clique @ if N is adjacent to every node in @ but N is adjacent

to no node in any of the other cliques in the MCCC. After partitioning the conflict graph into MCCC’s, we
code each MCCC in a manner to be described. We then find the overall state code by using a separate set
of bits for each MCCC, just as we did for independent sets in the greedy algorithm. Each state has its code

in the bits of its own MCCC and don't care’s elsewhere.

Coding MCCCOC’s

The basic idea is that we try to use the same code bits for as many cliques in the MCCC as we carni. We start

off coding each clique individually, and then try to combine the codes for different cliques. As the states of

one clique can be on or off in any combination, there is nothing bettcr than to use a one-hot code, i.e., use as
many bits as there are states in the clique, with each state given a code consisting of a 1 in a unique position
and 2's (don’t care) elsewhere.

Then, we combine cliques, in pairs, until we have combincd all pairs. The priorities for which pair to
combinc are as follows.

1. If there are two cliques or sets of cliques that bave codes with the same number of bits, combine them.
However, that number of bits must be at least two, i.c., we do not apply step (1) to a pair of cliques
consisting of one state cach. If there are two or more pairs that may be combined, p'icl; a pair that have
the shortest codes.

2. If no scts of cliques may be combined by rule (1), find the two cliques or sets of cliques with the shortest

17

c D E F
" @Q H
K7

Fig. 9. An MCCC.

codes (including codes of one bit), and combine them. However, do not choose a singleton clique unless

the number of singleton cliques is at least as great as the number of other sets of cliques

remaining.

The combination of two sets of cliques may have the side effect of combining with them a singleton
clique, as we shall sce. That is the reason we do not wish to pick singleton cliques for combination unless
there are so many that they cannot all be consumed in the combination of other cliques. In general, the
rules for combining the codes for two sets of cliques are the following.

1. If one code is shorter than the other, pad the shorter out with leading 0’s until they are of equal length.

2. Place a 0in front of all the _codes in one set and a 1 in front of all the codes of the other sct.

3. If there are remaining cliques consisting 6! a single state, choose onc and give it the code 10---0. It is
easy to prove by induction on the number of cliques combined that we never produce an all-zero’s code.

Thus, 10-- -0 will not be the same as the code of any other state in the set.

Example 10: Consider the MCCC shown in Fig. 9, where there are two singlcton cliques, two doubletons,
and one clique of sise three. The initial codes for the cliques are the following.

A 1 E 21
F 12
B 1
G 221
c 2 H 212
D 12 i1 122

Note that the bits for diflcrent cliques do not yet bear any relution to each other, so there is nothing wrong
with assigning the code 1 to both A and B, for example.

According to rule (1), our first task is to combine cliques CD and EF, since they are not singictons,
but have the same code length. Let us say we put 0 in frout of the codes for C and D and 1 in front of the

codes for E and F. We then add a singlcton, say B3, giving it the code 100. The result is a'sct of five states
with the following code:

18

e DO S W T Y

... .

100
o021
o12
121
112

wmOQW

Now, the set BCDEF and the clique GHI bave the same length e&de.nweombine them, consuming
the singleton A in the process. The resulting code is:

A 1000 F 0112
B 0100 ¢ 1221
C 0021 H 1212
D o012 I 1
E 0121

VL. Evaluation of the Compliier

We believe that the principal reason to express designs in the regular expression language is its ability to
accept descriptions of the patterns it must recognize and the responses it must make, in & flexible manner.
For example, additional patterns may be added to the description of a controller, and the compiler will
produce the necessary modifications without the user having to worry about tl_\e possibility of interactions
betwcen the new patierns and the old ones. Design systems based on deterministic automata do not have
this robustness. . .

However, it is also important that the design produced by the compiler be of good quality. We have
run several test cases, and these indicate that the compiler perforins well, in some cases better than obvious

hand designs of PLA's. We shall mention some of these trials here.

The Bounecs Filter

Here we do not do well; a PLA with about half the area of that of Fig. 8(a) can be designed.

The Trafic Light Controller

Using cither the before or after method, the compiler comes up with cssentially the same PLA as appears in
Mead and Conway [1980]. The only difference is that the compiler introduces an initialisation signal, which
is not really needed for the perpetually running traflie light.

The Pattern Matcher

We alluded above to a regular expresaion with 72 operands and an 8,000,000 state deterministic automaton.
' 19

! line input}2]

i symbol
sero{~input{1])
symbol one{-input|2])]’
output MISMATCH :

| .
! A
f (...
.. {. (sero .* one + one .* zero) +
(sero .* one + one .* zero) .)

+ :
(. (sero .* one + one .* sero) +
(sero .* one + ope .* zero)) .. 1
)
+
(. . (- (sero .* one + one .* sero) +
{3er0 .* one + one .* zer0))

z (sero .* one + one .* sero) +
(sero .* one + one .* ser0)) . .

)

)

)

MISMATCH

Fig. 10. Pattern matching regular expression.
This expression is shown in Fig. 10. Thé problem is to signal mismatches between the first eight symbols read
and the last cight read. Input 1 is represented by turning input|l] on and input|2] off; input 0 is represented
by the opposite, and don’t care, which matches anything, is represented by turning both input wires on. The
expression appears complicated, but the idea is that a mismatch between the first and last eight symbols can

be expressed recursively as either a m’smatch between the first four and the next-to-last four; ora mismatch
between the second four and the last four; these mismatches can be expressed as mismatches of two pairs,

and so on.

An obvious hand implementation of s PLA was attempted, using the straightforward idea that each of
the symbols to be remembered, the first eight and the Iast seven, would be coded by two bits, for 0, 1, and
don’t care. This approach requires 18 fcedback wires for the Rrst eight inputs, 14 more to remember the

most recent scven inputs, and four fecdback wires to represcnt a counter that counts up to cight, to tell the
PLA whether to remember its current input as one of the first cight symbols. As for terms of the PLA, we
need 16 to feed back the first eight inputs, 14 more to feed back and shift the seven most recent inputs,
18 to load the first eight symbols originally, 32 to detect misinatches, and cight to implement the counter.
Thus, the hand design uscs 34 feedback wires and 86 terma.

, In comparison, using the before method and the groedy state coder, we ecquire 28 feedback wires and 82
20

line x{3]
symbol

in0(x{1) -x{2])

in1(x[2] -x[1])

badin(x{1] x(2])

ack(x[3)

noin(~x[1] -x(2])

noack(-x{3])
output OUTA, OUTB, OUTC, ERROR
state statea, stated, statec
subexp somein = in0 + inl + badin
subexp waitin = noin + badin
subexp allbut0l = ack + badin

s

waitin® (
allbut0l ERROR +
in0 statea +
inl stated

)
+ # statea: noack® OUTA (
somein ERROR +
ack waitin® ('
allbut0l ERROR +
in0 stateb + -
inl statec

)

+ # stateb: noack® OUTB (
: somein ERROR +
ack waitin® (
allbut0! ERROR +
in0 statec + 1
inl statea 1t
) |
) i
+ # statec: noack® OUTC (
somein ERROR +

ack waitin® (
allbut0l ERROR +
in0 statea +
inl stated |
) ;
)

Fig. 11. Regular cxpression for transmitter.
terms. When we implemented the MCCC method of state coding, this number was reduced to 24 feedback

wires, which is only one more than the theoretical minimum. This problem is an example where the before

method yields |i;niﬁcmtli better results than the after method, as well as significantly better results thaa
the obvious hand design. '

2

And Or
Cols. Cols. Terms Area
Hand-Unoptimized 13 7 29 580
Hand-Optimized 13 7 23 460
Before Compiler 17 11 23 844
After Compiler 13 7 25 500

Fig. 13. PLA’s for communication protocol.
A Communieation Protocol

We designed the transmitter portion of the protocol for handling lost bits discussed in Aho, Ullman, and
Yannakakis [1979]. Briefly, that transmitter has two inputs, z[1] and z[2] telling it to send a 0 or 1 down the
channel, while z[3] is another input wire, used as an acknowledgement signal. The protocol works because
the transmitter sends one of three signals, a, b, and ¢, which we may view as arranged in a circle. To send a
0, the transmitter steps one around the circle and to send 1, it steps twice. States statea, stateb, and statec
are the states in which the transmitter is trying to send a, b, and ¢, respectively. We assume that signals
are not mutated, so any signal acknowledged must be the correct one. The regular expression program is

shown in Fig. 11.

In Fig. 12 we see the results of hand and mechanical generation of PLA's for the transmitter. A
straightforward hand design was optimized by GRY, to reduce the number of its terms. The results of the
before and after methods are shown after optimisation by GRY. We should be aware tblt when we count
columns in the and-plane, we count one column if a signal is needed either true or complemented, but not
both; if necded both ways we count two columns. This method of counting is realistic, provided the PLA
generator used does not force all wires to become true and com;;lemenzed pairs in the and-plane.

The “area” of the PLA in Fig. 12 is the product of rows and total columns, which is not precisely
accurate, but serves to measure approximately the area actually used by the PLA.

The reader should note that the results shown in Fig. 12 for the compiler are the result of the greedy
algorithm, not the MCCC algorithm. In both the before and after interpretations, the greedy method
schieves the smallest possible number of feedback wires. The MCCC algorithm uscs the same number of
bits to code the states as the greedy algorithm does, i.e., the number of feedback wires is the same, but
because of differences in the coding used, the number of terms after optimization was slightly larger when
the MCCC coder was ulql.

22

Psaman

" ———— e - e

References

Aho, A. V., J. D. Uliman, and M. Yannakakis (1979]. “Modeling communications protocols by automata,”
Proc. Twentieth Annual ACM Symposium on the Theory of Computing, pp. 267-273.

Floyd, R. W. and J. D. Uliman [1982]. “The compilation of reguiar expressions into integrated circuits,” J.
ACM 29:2, pp. 603-622.

Brayton, R. K., G. D. Hachtel, L. A. Hemachandra, A. R. Newton, and A. L. M. Sangiovaani-Vincentelli
{1982]. "A comparison of logic minimisation strategies using EXPRESSO: an APL program pa.chge for
partitioned logic minimizalization,” Proc. IEEE Intl. Coaf. on Circuits and Computeu.

Haskin, R. L. [1980]. “Hardware for searching very large text databases,” Ph. D. Theau, Dept. of Computer
Science, Univ. of lllinois, Urbana, Il

Hemachandra, L. A. [1982). *“GRY: a PLA minimiser,” unpublished memorandum, Dept. of Computer
Science, Stanford Univ., Stanford, CA.

Hennessy, J. L. [1881). “SLIM: a simulation and implementation language for VLSI microcode,” LAMBDA,
April, 1981, pp. 20-28.

Hoperoft, J. E. and J. D. Ullman [1979]. Introduction to automata theory, languages, and computation,
Addison-Wesley, Reading Mass.

Johnson, S. C. [1983]. “Code generation for silicon,” Proc. Tenth ACM Sympos:um on Principles of Pro-
gramming Languages.

Foster, M. J. and H.-T. Kung [1981]. “Recognize regular languages with programmable building blocks,” in
VLSI-81 (J. P. Gray, ed.), Academic Press, New York, pp. 75-84.

Mead, C. A. and L. A. Conway [1980]. Introduction to VLSI Systems, Addison-Wesley, Reading Mass.

Nagle, A. W,, R. Cloutier, and A. C. Parker {1982]. “Synthesis of hardware for the control of digital systems,”
IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems CAD-1:4, pp. 201-212.

Trickey, H. W. [1981]. “Good layouts for pattern recognisers,” IEEE Trans. on Computers C-31:8, pp.
514-520.

Trickey, H. W. [1982]. “Using NFA's for hardware design,” unpublished memorandum, Stanford Univ.,
Dept. of C. S.

Ullman, J. D. [1982). “Coinbining state machines with regular expressions for automatic synthesis of VLSI
circuits,” STAN-CS-82-927, Computer Science Dept., Stanford Univ., Stanford, CA.

Ullmaa, J. D. [1983). Algorithmic Aspects of VLSI, Computer Science Press, Rockville, Md.

PRSI Suiic mu

g1y

