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I Item 20 Continued

A conference summarizing ten years of work on the Singularity

Expansion M~ethod (SEM) and the Eigenmode Expansion Method (EI1) %..as

held at the Carnahan House of the University of Kentucky in tnovember

1980. The proceedings of this conference, originally due for

publication in Fall 1981, did not appear until the Spring of 1982

in Volume 1, NumbJer 4 in "Electromagnetics" (October-December

* 1981)

These proceedings contain two papers, one by C. L. Dolph and

one by A. G. Rarmnm hich reviews work on this subject. Thesb papers

are reproduced in Appendix I and II respectively of this report.

Subsequently C. L. Dolph submitted an expanded version of

A. 9. Ramm's paper to the Journal of Mathenmatical Analysis and hp-

plications [Vol. 86, No. 2, April 1982]. This paper was 2n1.t1t-d

"Mathematical Foundations of the Singularity and Eigenmode Exp:n;icn

M Methods (SF'1 and EEMM). In this author's opinion it represcnts the

best available mathematical treatment of the subjects it cevors. It

is reproduced here as Appendix III.

Section 5 of this paper entitled ProbleTs is still vialrlc.

There have been claims that, under some circumstances, the cot:FIeX

* roots of the Green's function for the exterior Dirichlet or th(,

Neumann Lnplacian are simple. To this author's knowlcdqe this i5

still an open problem.
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Final Scientific Report

A conference summarizing ten years of work on the Singularity

Expansion Method (SEM) and the Eigenmode Expansion Method (EEM) was

held at the Carnahan House of the University of Kentucky in November

1980. The proceedings of this conference, originally due for

publication in Fall 1981, did not appear until the Spring of 1982

in Volume 1, Number 4 in "Electromagnetics" (October-December

1981).

These proceedings contain two papers, one by C. L. Dolph and

one by A. G. Ramm which reviews work on this subject. These papers

are reproduced in Appendix I and II respectively of this report.

Subsequently C. L. Dolph submitted an expanded version of

A. G. Ramm's paper to the Journal of Mathematical Analysis and Ap-

plications [Vol. 86, No. 2, April 1982]. This paper was entitled

"Mathematical Foundations of the Singularity and Eigenmode Expansion

Methods (SF2 and EEM). In this author's opinion it represents the

best available mathematical treatment of the subjects it covers. It

is reproduced here as Appendix III.

Section 5 of this paper entitled Problems is still viable.

There have been claims that, under some circumstances, the complex

roots of the Green's function for the exterior Dirichlet or the

Neumann Laplacian are simple. To this author's knowledge this is

still an open problem. AIR oRCF OFFICE F SCIENTIFIC RE (Aps
NOTI cE 0? 3N3 'IAL r DTrC
This te'.nt,-nl reort has been 'ovieed and is
approved :1orp.. release IAWAFR 190_12.
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Although Ramm and Dolph have repeatedly emphasized that the

Picard method is only valid for a restricted class of surfaces, all

the work that this author has seen on equivalent circuits is based

on the validity of the Picard method and consequently must be con-

sidered of limited value.

Two other topics have been treated since the above conference.

The first of these appears in a paper "Converence of the T-matrix

Approach to Scattering Theory" , Journal of Mathematical Physics

Vol. 23 (6), June 1982, and its subsequent generalization in a

preprint by the same title, coauthored by G. Kristanson, A. G. Ramm,

and S. Str6m. This represents work done at the Institute of Theo-

retical Physics in Goteborg, Sweden, in the summer of 1982. In

contrast to the first paper on this subject, the second paper was

not done under the auspices of this grant.

These papers are reproduced as Appendices IV and V, respectively.

One large area still under investigation involves the use of

variational principles in these problems. It will perhaps be re-

called that M. S. Agranovitch carefully avoids these even though

he laid much of the foundations for the EEM and SEM in his appendix

"Spectral Properties of the Diffraction Problems" which is contained

in the book Generalized Methods of Normal Modes in Diffraction

Theory by N. Voytovich, B. Katsenelenbaum and A. Sivov, Moscow

(1977). More specifically he states "the formal Ritz method of

finding stationary values of the functions (see Chapter III) was not

analyzed"
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This problem has been around for a long time. A. G. Ramm, in

"Variational Principles for Resonances, II" , Journal of Mathema-

tical Physics Vol. 23 (6), 1982, developed an interesting approach

similar to that used in his paper on the T-matrix. This paper is

reproduced as Appendix VI.

This author has been exploring min-max theory in the hope of

obtaining error bounds for scattering problems. Earlier papers

"A Saddle Point Characterization of the Schwinger
Stationary Points in Exterior Scattering Problems",
J. Soc. Indust. Appl. Math. Vol 5, No. 3, September 1957.

"The Schwinger Variational Principles for One-Dimensional
Quantum Scattering" (with R. K. Ritt), Math. Zeitschrift
Band 65 (1956), 309-326.

If the orientation of the saddle could be determined a priori, it

appears possible to use relative cycle theory to obtain estimates.

A search of the literature has not been helpful in that, while

min-max theory is highly developed in the theory of games and in

control theory, fuzzy set theory, and critical point theory, no

error estimates appear to be known.

An earlier paper

"Symmetric Linear Transformations and Complex Quadratic
Forms" (with J. E. McLaughlin and I. Marx), Comm. Pure
Appl. Math. Vol. VII (1954), 621-632

-3-I



still has not been generalized to the infinite case.

Two other earlier papers

"A Critique of Singularity Expansion and Eigenmode Expansion
Methods" (with V. Komkov and R. A. Scott), Proc. of Confe-
rence on Acoustics, Electromagnetic and Elastic Wave- Scattering:
Focus on T-Matrix Approach, Pergamon Press (1980), 453-462.

"On the Relationship Between the Singularity Expansion Method
the Mathematical Theory of Scattering" (with S. K. Cho), IEEE
Trans. on Antennas and Propagation, V. AP-28, No. 6 (1980),
888-897.

are still pertinent to any evaluation of the SEM and EEM methods.

-4-
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APPENDIX I

ON SOME MATHEMATICAL ASPECTS OF SEM. EEM
AND SCATTERING

C. L. Dolph, The University of Michigan. Department of Mathematics,
Ann Arbor; M/ 48109

ABSTRACT

The relationship between the integral equations usually used in SEN! and
the scattering matrix is examined. Alternate integral equations which exhi-
bit only the poles of the S matrix are given. Examples are used for
illustration for a solvable case.

The analytic Fredholm theorem in Banach spaces is discussed and its
advantages for numerical calculations emphasized.

The relationship between EEM, SEM and the theory of nonselfadjoint
operators is briefly discussed.

INTRODUCTON

The ideas lying behind the Eigenmode Expansion Method (EEM) appear to
have been introduced for the first time by Kacenelenbaum in 1969 E6.4].
The Singularity Expansion Method (SE.1) was first introduced by Baum in
1971 (3.13 and shortly thereafter independently he introduced EEM (3.41. The
best review paper of these USSR contributions is that due to Voitovic,
Kacenelenbaum and Sivov (6.111 and that of the USA's contributions (in this
author's opinion) is that of Baum [2.2). The most complete review of the
Russian work through 1976 is the Russian book 16.111 by the above three
Russian authors. This book also contains a mathematics appendix by
M.S. Agranovic.

A glance at the official bibliography makes it clear that extensive
work has been undertaken and completed since these beginnings, and more will
be discussed in these preceeding.

In view of the extensive publications the author thought it might be
most useful to provide a brief guide to some of the recent mathematical
developments without excessive detail and without proofs.

This work was partially supported by the Air Force Grant 800204

Electromagnetics 1:375-383. 1981
02724343/1/04037509"2.25
Copyright 0 1981 by Hemisphere Publishing Corporation 375
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376 C. L. DOLPH

SEM

For the scaler wave equation an exterior Dirichlet problem would be
formally given by the first four of the following equations. The fifth
equation is the s .ution given in terms of generalized eigenfunctions which
are distorted plane waves playing the role of the plane waves used in the
Fourier integr*,s which occur when no obstacle is present. The functions
a(k) and £( M-rc related to the initial conditions. This last formula
has been rigorcus=' established by Shenk 16.921 in a manner similar to that
used by Ikebe [6.351 for the quantum mechanical case. Explicitly the genera-
lized'eigenft .-tio.s are defined by (6). (7) and (8). As will be discussed
below several different methods are available for the construction of V+

2

(1) a

at2

(2) U(x,0) - f1

3u(3) ! (x,o0) f

(4) U= 0 on r

ikt -ikt 3(5) U(x,t) 0,4(x,k)[n(k) e + 0 (k) e I d k
(27)3/2

(6) (a +k) 0

(7) 0_ o on r

(8) €_+ - + V,(x,k)

In contrast to the operator theory approach employing the continuous

spectr=m = enp1oys the Laplace transform which, after a suitable rotation
in the s-plane, can be defined by (9), (10), (11), and (12). Condition (10)
is one form of the raliation condition which is need to guarantee uniqueness
of all k , Im k ' 0

(9) V(xK,k) F U(x,t) e A t dt

.0

(10) AV + V2 v- -f

(11) V -0 on r

(12) 3V- ikv" 0(1x- 1 )

The funv'ion V(x,k) is sought in terms of the Green's function as
given in equation (13). The Green's function in this equation is not the
well-known Green's function of free space but is determined by (14), (15),
(16), and it% domains of analyti and meronm rphicity are given by the next
two statments (17) and (18). o Dolph, M-" od apl Thoe (6.25).

- A2 -



MATHEMATICL ASPECTS OF SEM, EEM AND SCATTERING 377

(13) V(xk) = G(x,y,k)f(y)dy

where G satisfies

(14) (A+ k2 )G = -6 (x-y) in n

(15) G - 0 on T

(16) - ikG = O(Ixl-')
alxI

(17) G(x,y,k) analytic Im k > 0

(18) G(x,y,k) meromorphic Im k < 0

Once V(yk) has been found the solution of the original problem can
be given in terms of the inverse Laplace transform.

If a > 0.5, Im k > -b, b > 0 and

(19) Iv) < c , IRe kJ -"
1+ lk a

Then for 0 < y < b

U(xt) = - V(x,k)e- iktd

Pushing the contour down yields [6.69]
n -ik.t - Imk it

(20) U(x,t) = e 3 V(x,k) + 0(e
j=l 3

The function V and k's which occur in this asymptotic formula
are the cemplex eigenfunctions and eigenvalues:

(21) V. + kV. = 0 in 93 3)9

(22) V. = 0 on r3
V. grows exponentially in x

2

Several comments are now in order:

(i) The estimate (19) is valid for the Dirichlet problem if the
body is (a) star-shaped and (b) non-trapping in the sense of Lax and
Phillips (6.52).

(ii) The method is not very useful since it involves the construction
of the Green's function and then the-determination of its poles.

(iii) It is an open problem to find conditions when the asymptotic series
(20) will actually converge.

Instead in SEM it is usual to employ the methods of potential theory.
For the exterior time-independent Dirichiet problem corresponding to the
time dependent problem we have been considering up until now, this involves
consideration of the following set of equations whichemploy the known Free
space Green's function.

- A3 -



378 C. L. DOLPH

(A+ k2)V= 0

V= -V. on r
inc ikjx- Zj

0 (x, Y) e 1

(23) V(x,k) 0

(24) I + B(k) d o() + A 00 0(x,x yd(Xd = 0

A = A (k) = -1

Using the Fredholm alternative the poles are sought as non-trivial
solutions of the homogeneous integral equation (24). Those which may occur
for real k correspond to eigenvalues of the associated interior Neumann
problem. As such, as we shall see, they occur because of the double-layer
assumption a.nd can be eliminated by other assumptions. As shown by Dolph
and Wilcox, see Dol.ph (6.961 they do not contribute to the scattered field
nor dao they apiear in it for any separable case.

The homo~eeois integral equation which occurs here can be treated
mathematically several different ways. Matin [3.9] employed Carleman's
Hilbert =sp .. tory but the analytic Fredholm theorem attributed to
Steinberg [6.41 is perhaps the most convenient since it is applicable in
more general Bana:h spacee. Since matrix approximations are used in the
numierical ca'c_":a:ion of the o.-es the choice of the Banach space of con-
tinuo,-s funct on5 is perhaz the most convenient. See Dolph and Cho (6.221

for a fuller discussion. For a Hilbert space the prcaf of the analytic
Fredholr theorem can be foind in Reed and Simon 16.841.

A~nalytic Vrdh:,i: .eorem - Steinberg [6.94]

Let O( ) set of bounded operators on the Banach space and let. K be

an open con=.ecteJ s, bset of the complex plane. T(K) is analytic in K if for
each k6 4 K

T(k) = n (k-k0 )
n  T e O(B)~n

Theorem. If T(k) is an analytic family of compact operators for k C K,
then either I - T(k) is. nowhere invertible in a , or else [I-T(k) - I is
meromorphic in K

If B is a separable F'ilbert space, the residues are finite rank
operators.

One way of e.liinating the poles which are not intrinsic to the exterior
scatt'ring ;,rchle: is to replace the Ansatz (23) of the double layer by the
conp2,'x comlrh.ation of a double and single layer as used by Brakhage and
Werner for the D'ri.1hlet problem 16.11) and by Kussmaul (6.50] for the
Neu _ann problem. In the latter case additional difficulties need to be
overc,:e beca.2s of the high order of the singularity.

For the Dir.,ch.et Przble~m the Ansatz

- A4 -



MATHEMATICAL ASPECTS OF SEM, EEM AND SCATTERING 379

V+(x,k) a f - it 0 0 (x,y)P(X)dyo
y- y

leads to the homogeneous integral equation:
I( iT (x,y) p (yd a = 0

(25) u (x) + f i) 0  0

T() =1 for Rek>0

- 0 for Re k < 0

This equation has only trivial solution for Im k > 0 and hence the only non-
trivial solutions can occur for Im k < 0 and as Ramm [6.721 has shown these
occur at the poles of a Green's function and are in fact the intrinsic poles
of SE%1.

The non-trivial solutions of this last equation for Im k < 0 also agree
with the poles of the S matrix. The S matrix is generally thought to con-
tain all intrinsic properties and in fact Lax and Phillips have given two
proofs of the fact that the S matrix uniquely determines the obstacle for
the Dirichlet problem -- see Theorem (5.6) cr. (6.52], Chapter V.

For the problem here it can be shown that the V (x,h) of (8) and the
S matrix are related by the formulas: (In the last equation the integral
operator is compact].

X = r, kw
-ikr

V (r,kw) = e is (E,k,w)+0(l))

S(k)-- m k() + Lk m(w)s (,k,w)*dSw

The complex eigenvalues are poles of S(k)

Derivations of these formulas can be found in Lax and Phillips f6.521,
in Schmidt [6.871 for the quantum case of the Schrodinger equation and for a
very general case in Shenk and Thoe [6.91. A physical derivation of the last
formula is due to Saxon 16.861 is also contained in Dolph and Cho [6.22).
This last pap.€r also contains an appendix in which a heuristic derivation of
the mathematical theory of scattering initiated by Jauch is given.

For the cylinder (24) becomes
, __ __ 001(asn 1 aU 0)3

ika a (l) ( sn
0) + 4 J0 ?(ka) H0  2 (a.)v0  = 0

and has solutions given by

2(-l)ni J (ka)en 0

- j (ka)H( 1
) (ka)

n n

The complex roots of the Hankel function are intrinsic, those of the deriva-
tive of the Dessel function well-known to be those of the associated interior
Neumann problem.

- A5 -



380 C. L. DOLPH

The Bra-hge-;erner equation corresponding to (25) is

2r sine

4 L 0  (ka) - "0 a

with a soti:,. cxibiting only intrinsic poles; namely

2 (-1 n- jn ka) e

-:a H n (ka) (3 nka) - inka) I

For this problem the conplex eigenfunctions are
V(r,6) = e i' (1) (k r )

M 0

where

2
(A+k )V = 0, V - 0, r = a

0

and the scattering rrutrix is given, as shown by Shenk and Thoe 16.911 to be

W H2) (ka)a e
l m9

5(k) , a e - ( )

FM(ka)m

In --os: c-.57- it is nvzessary to resort to matrix approximation or to
have rith:ds fc-r t-- cal ticns of the poles. In the case of the former.

-a,'- 6.721 ha; ESta!.-I-he the following:

POic:iZ.'i,-- with k. for which I + B(k) of (24)3
is not i.wvrtible. Let (f.} be an orthonormal basis

in F w L2(f) . Thein if
n:" - " c.f.

b.. t l+B(k)lfi,fj>

It follows that
ri

bI b.(klc. 0 o

k(n)
Let k , m = 1,2,3..., be the roots of

m

det b ij (k) = 0

Th~en t~ (imits Lim k k exist and are the poles of
n - km

the £-ze of the Greens function G Every pole of G can

be obtain in this way.

For this s. .- r.t.,indejoi,dt-nt Dirichlet problem the Eigenmode Expansion
meth .d would invuive the foll-'ding:

- A6 -



MATHEMATICAL ASPECTS OF SEM. EEM AND SCATTERING 381

2 -60 + k2

o -g on r

A~k)o = iki x-y Y)ydy

Ansatz

A =k)o - g on F

Alk)On  A nlk) n on r

Picard method gives
< gn >

1 n

when is this valid?

The Picard process is certainly valid for the cylinder and the sphere. In
fact as first noted by Kacenelenbaum, Sivov and Voitovic [6.11] for the cylin-
der they are explicitly given in the case of even e by

en (8) =cos no

X(k) =- -- Hn(ka)Jn(ka)

(r, ) - H(1)(ka)J (kr)cos n9 , r < a
n n n

H (1) (kr) Jn(ka) cos n8 . r > a
n n

While Dolph (6.20] appears to have been the first to suggest the use c
non-self-adjoint operators in scattering problem Agranovic in [6.1], [6.21,
(6.31 and Ranm [6.721, [6.731 appear to be the first to systematically apply
this idea. Ramm in particular considered the Hilbert space case. That is
Lot

H = L2 (r)

< f,9> = fcx)g(x) d

Then <Af,g> = <f,Ag > . This is real symmetry and A1A* i.e., A
is non-self adjoint.

Question. When is the Ansatz correct? Sufficient conditibn: AA*-A*A =0.-.(l)
i.e., A is normal . Then an orthogpnal basis can be found in H = L2 (F).
Here (1) requiressr inkl ( !-ll t-XJ I l z do 0

This last condition can be shown to be satisfied by the cylinder and sphere
but not for the ellipse or ellipsoid. In particular then any REM theory results
which use the Picard process and are used to construct equivalent circuits are
suspect in general.

-A7 -



382 C. L DOLPH

lefzre entering into what is known in the case when the operator A is
not r-.i.l the relation between SEM and EEM when the Picard process is valid
sheoud be mentioned.

In [2.2, -Baum discussed the matrix case ant showed that every zero of A(rk)
waii a pnle. :ore generally:

The Relation between SEM and EEM

Theoren (M.e:-=). The poles of G(x,y,k) are zeros of the eigenvalues

1 eik
lX

-y j
(26) n (k) = 0 G = 4y, 1x-yA

(27) G(x,y,k 0(x-y) - Go (xs,k)P(s,y,k)d7s

where ion

a eikl"YI

U n 21T-y-F pJ(y)di
x

3Go
+ 2 =2-

an

If the -;urator is not normal the situation is much more complicated in
general. One u.ually has to contend with root vectors as they occur in
the Jordan n-.r al for-.. The simplest example of their occurrence is in the
matrix iof ordinary differential equations with repeated roots. The
quest.ins of n are the root vectors complete, when do they form a basis
are i in reneral. There is one case when there is a simple theorem
concern--= c-: -.eness, namely if the operator is dissipative. An operator
A is said ts* t: . dissipative if

In- :, > > 0 .

Ma7. ; of t',: :erators in mathematical physics are dissipativ. For
e. -. le t .--, !:--e apace Creen's function is:rih!x-yj

4- (y) dy .

o.-. hds f ,r real k

Irn<:,>= - (x)y)d x d3 y

and the d-ita like bhavior of the kernel implies that

Im<A , >  j'il(x)I2d3x 0

A rigs ;ra:. prc:of of this can be found in Dolph (6.20).

Fa:., (v.72, has established a 'completeness theorem for such operators
vhich%. a7e a' t end nuclear.

Before stating his result note that if Sn(A) are the eigenvalues

of (A 112 .1 co:.'pact operator is called nuclear if SN (A) < -

T tiesr, I.. If A r: P + N where P is positive and compact, and 1; is
diss . .&ti and r. clear. Then the toot vectors of A are complfte.

- A8 -



MATHEMATICAL ASPECTS OF SEM, EEM AND SCATTERING 383

A simple pertinent example is given by

S e ikx-y (Y

• . € (yldoy

by taking P 4 ' [ y and No = (A-P) .4,v f
More informatiQn on root vectors and basic can be found in the

reference (6.34).

Finally, space limitations do not permit detailed discussion of many
topics important to the further development of this subject. These include
the weak perturbation of compact operators see (6.42, (6.55), (6.75) as
well as variational principles (6.74) and papers in press by Ramzu.

A
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APPENDIX II

ON THE SINGULARITY AND EIGENMODE EXPANSION
METHODS (SEM AND EEM)

A. G. Ramm. Mathematics Department, Kansas State University,
Manhattan, KS 66506

-eJ

INTRODUCTION

This is a brief summary of the invited talk given by the
author at the Lexington (November 1980) meeting. The purpose of
this paper is to formulate the mathematical problems important
for the SE. ard EE., to answer several basic questions and to
draw attention to certain unsolved problems. Some new resulLs
are also reported. The detailed presentation of the talk was
sent to the ..athematical Notes (ed. C. E. Baum) and submitted for
publication in the J. Math. Anal. Appl. The bibliography Is not
complete: only the papers in which the results mentioned i-. this
article appeared were included in the bibliography.

1. STATE',1L-7 OF THE EE;4 AND SE"'

Let !P be an exterior domain with a smooth closed boundary r,

D be the corresponding interior domain,

G £-4ix-JJ r, -Xl, Ag = fr G0 (ss',k)g(s')ds' and

u = F G0 (xrk)c(s)dx. The funution u solves the problem

2+2 = 0 in 0, = f, r(u/ar-iku) - 0 as r * (i)(V +k )u =0IQulr

provided that

Ag f (2)

If one ueS thz Laplace transform variable p, then p -ik, and
the half plan? Rep > 0 correspondz to the half-plane Imk > 0.
Engineers (6.41] - 12.21 tried to solve (2) by the formula

9 = X 1j fi, where, Af =.j f , I > I > ... and

f = c . This can be done if A = A* Is selTadjoint on
j=l ij j

H = L2 (). The operator A in'(2) is nonselfadJoint. Therefore:

1) it may have no eigenvectors (e.g. Ag = 1'rdx on H L2 [01]),
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386 A. G. RAMM

2) it may have not only eigenvectors but also root vectors 16.691.
(6.60,
3) It is-an open question whether one can expand an arbitrary
funtion f-H in -he series of eigenvectors and root vectors or A.

Of' course one is i-nterested In the rate of convergence of the
series In ei.e.n and root vectors and in algorithmns for calcula-
tion of the r. : vectors and eigenvalues of A. The outlined
method (EE:..) na.3 the following merits: 1) Instead of problem
(1) with a cn s spectrum in the unbounded domain we con-
sider problem ( w, ":ith a discrete spectrum on the compact mani-
fold r, 2) the res:;nance properties can be conveniently studied
by the EEM. A _1... ical study of the EEM was originated in
16.72), [6.731, [5.71j.

In order to describe SEM consider the problem

utt= V2u in R, U r = 0,-ult=0 = 0, utit.0 , r

The solution of this problem takes the form

u (2) - J_ exp(-ikt)v(x,k)dk, v -fOG(x,y,k)f dy ( )

where G Is the Green function for problem (I),

G 0 - fr O0(xsk)uds,. = aG(s,y,k) (5)

.3G 0  'GO0  dsG (6)
[I+T(.-:'] 2 Yra-., T(k)p = 2 - s f a , ds(6

W-, 2SUMe3 , that V- 0 2). From (5), (6) it follows that G is

'inI-mer.rh'o in k. This means that G is meomorphic on
the :h!oe :o_-.x l~ane k and its Laurent coefflicen.s are de-
generat'_-.kern.s rt(fit, - ran'k operators on H). If R C R3 then
G iz anaic in In k > 0. Thus v is meronorphic in k and analy-
t!Z in Tm k > 0. Let Us assume that

!v! cf t, -+ .1)- a > 1/2, IRe ki -', Im k = b (7)

where b is an arbtrary const;

lIm x'W -- as J * - urn k11 < Im k2 1 _ ... (8)

where ar. t; poles of v.

Note that (7)(S). From (7), (8) it follows (by moving
the con,)-r of Integration in (4) down) that

u(x,t) :!Cj(x,t)e:XP(-Ik t) + o(exp(-[Im knit)), t + (9)

Here c (:.,t ex:,-Ikt) = Res v(xk) exp(-ik t) at k =kj;

c- 0(: - ), wher--n is the order of the pole k Thus

-All-
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SINGULARITY AND EIGENMODE EXPANSION METHODS 387

we see that (7), (8) and the meromorphic character of v are suf-
ficient for the SE.MI of the form (9) (asymptotic SE!4). It is an
open qucst'lon if the series

u(x,t) = J cj(x,t) exp(-Ik t) (10)

converes. The validity of the EEM was discussed in[6.691, [6.681.

2. COMeIPLEX POLES OF GREEN'S FUNCTIONS

We saw in Section 1 that complex poles kJ are important. It

is interesting to answer the following questions: 1) how does
one calculate the poles? 2) are the poles simple? 3) do the
poles depend continuously on the scatterer? 4) Can one identify
the scatterer from the knowledge of complex poles? 5) what can
be said about Iccation of the poles and asymptotic behavior of
the ]ar:ge poleu nearest to the real axis? 6) are there any mono-
tonicity or other features in the behavior of the purely imaginary
poles? 7) What are the properties of the resonant states (natural
modes corresponding to the complex poles)? 8) What is the rela-
tionship between the poles and the eigenvalues Used In the EEN4?

We give soMe aLswers to the above questions. Three different
methods for ca!cuiation of the complex poles were given ln[6.71-2],
[6.68] and [6.74]. The first method is most general. It reduces the
problem to calculation of the values k at which a certain opera-

tor of tr.e type i + T(k), whe-e T(k) is a compact analytic opera-
tor function, is not invertible. These k J can be found by a

projection iethoi. The method is described in [6.71-21 (see also
[6.68]). Its conv-rgene is proved [6.71] The second method is a

variationai prnc ile for complex poles: k2 are the stationary

values of the runctio nal

K(u) = <Vu, Vu>/<u,u>, where <u,v> = lir 5 exp(-clxllinlxl)uvdx
-+C' (10')

and the integral is taken over Q. In[6.7 4] a certain system of
test functions was suggested but the rigorous Justification of
the numer!:a! procedure given in[6.74] is an open problem. In [6.681
a variational principle for the spectrum of compact nonselfadjoint
operators w-'s gLven. In [6.711 it was proved that the complex poles
of the Green's functions are the complex zeros of the eigenvalues
of certain integral operators. This gives the third method of
calculation of the poles: first, ore calculates the eigenvalues,
then one looks for their zeros. No numerical results are known
for the third method. It would be interesting to mhke numer~cal
experiments and to compare all tke three methods.

It is an open question whether the poles are simple. In[6.71]
It was proved th.t the poles are simple If the surface is of such
shape that the operator A in (2) is normal, i.e. AA* = A*A. In
(6.73] it w:as proved that this is so if' r is a sphere or a straight
line (linear antenna). Recently the author gave a simple example
of a multiple pole in the problem with third boundary condition:

- A12 -
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if (V 2) 0 in r lxl > 1, 3u/3r - 2u = cos 8 on Ixl = 1,

r(- -- iu) -0 as r . ,, then k = -21 is a pole of order 2 of

U(X,kC). GO?-"erially multiple poles are exceptions because small
pertu.batie. - z of the shape of the scatterer can destroy multiple
poles. On tht other hand, since the poles depend continuously on
r (see[(6.68! for precise definitions and proofs) it seems possible
that by co: ...u.us variation of r one can make a multiple pole
out of 2 s.-;e poles by merging. Nevertheless, no proof is known
that -he Gr.n'- function of the exterior Dirichlet Laplacian has
multiple p.-a for some F.

We have a.ready mentioned that the poles depend continuously
on r. It is not knou:n whether the set of complex poles deter-
mines the scatterer uniquely. A discussion of this question is
in [6.76land [ *]. Some information on location of the poles is
available: in [6.70] it was proved that the domain (Im k < 0,
1n kI < alogiRe k i + b, a > 01 is free from the complex poles

of the Green's function of the Schrodinger operator with a com-
pactly suopor'ted potential ; in 16.541 a similar result was proved
for the poles of the Green's function of the exterior Dirichlet
Laplacian; in (6.5) some heuristic arguments are given to show

that the donain {In k < 0, jrm ki < alRe kjI /3 + b, a > 0) is
free from the poles of the Green's function of the exterior
Dirichlet an-' "e umann Laplacians provided that r is strictly con-
vex and smooth; if r is not smooth (say F is a polygon) then there
exists a series cf poles k such that

IIn k-! ,C' (I k.) as j [6.6].

1. [6.531] wa- p'o,..e that there exist infinitely many purely
ima .lnr. y pzes of the Green's functions of the exterior Dirlchlet
Or Ne:ni~i n

CIA < 1 !; r Y; 2 11(y) .< lir sup y- 2  N(y) _< cR

where c 1.135370 ....... '(y) is the number of purely Imaginary
poles with j. -. I < y, the obstacle is star-shaped (this means
that all poin- f r can be seen from a point in D) and RI, R2

are the rai! o' spheres inscribed in and circumscribing D,
respectively. I" is Foi:ted out in ( *] that if D2  qDl, q > 1

() - '- , where =j)(l) (2)
then-i ) (-(y1-) are the poles of the
Green's funct!on of the exterior Dirichlet Laplacian in

r?1.M2 ), Pt j ._ ODPj = 1, 2, where R3\D denotes the complement

to D in R3. Thevofore in this case N2 (y) > N3 (y) and(1 (2), . M Oa)

1) > -. ,~ ....wer y are thd moduli of the purely imaginary
poles ;.Ith " ml . :iuli. In [6.53] Thcorem 3.5 0o, p. 751 says
that 1:,(y) < 1 (y). This statement contradicts: 1) the above

argum.'.., ar2 2) th" case when D1 and D2 are concentric bills arid

one a- c- c." :, 1 (y) and N2 (y) for y >> 1 and verify that

- A13 -
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N 2(y > : 1 (y). The argument in[6 .531 can be used if the assumption

0 C 0s3 Is replaced by the assumption 0 D 0s . We mention this

beza.;, e in the literature one can find references and citations
of Theorem 3.5 from [6.53] in Its wrong form. Using arguments from
[6.53 and azsu::i!nZ that D i, J=l, 2 are star-shaped and that

DI C D ,2 C D 3 one can see that N1(y) < 112 (y) < N3 (y). Here we

used the corrected version of Theorem 3.5 from [6.53]: If D1 C D2
and DI is star-shaped, then 11(y) < N2(y). This theorem is actu-

ally proved in [6.53] so that the misstatement of Theorem 3.5 in
16.53] is just a misprint.

Concerning the behavior of the resonant states, that is the
solutions of !he homogeneous problem (1) for k = a - iy, y > 0,
f(x) = 0), satisfying the asymptotic condition

u = x' expikx)=0 IxIjfj'fJ = f (n,y), n-- x -xl, (11)

at infinity, one can prove the following proposition: if
u exp(-ylxj)!xi _ 0 as lxi - then u - 0. From this it follows
that the resorant states (scattering modes) corresponding to a
complex pole k = a - iy grow at infinity exactly as

0(exp(ylxI )xV - . See also (6.43] Theorem 3. The relationship
between SE:,. and EEZ, is given in the following proposition(16.71-2],
[6.68]): the s&t of the co.,plex poles of the Green's functimn of
the exteror D_"richlet Laplacian coincide with the set of complex
zeros of the e.l:ne,;'alues X (k) of the operator A defined in (2).

n
It Is not knoc-.n at rhis time whether the order of a pole can be
calculated froi7 the multiplicity of zeros. One can construct
other operators with the eigenvalues vanishing at the complex
poles (6.68).

3. "ORTHOGO:'ALTTY" OF THE EIGE*MOiDES AND RESON'ANT STATES

By elgeno,:es (EM) we mean the eigenfunctions of the opera-
tor A defined in (2). This is a nonselfadjoint operator on

H = L2 (r) with the property [Af,g] = Lf,Ag], where [f,gl] = (f,g) =

r fg ds, (-,.) is the inner product in L2 (r, the bar denotes
complex conju,:3tlon. Suppose that Afai 

= X fi, [fj,fj] I 0, j
1, 2,... and the set (f} forms a basis of H. Then any fcH can

be repre:.enteI a . f = 1 cjf and cj = [f,f1. This can be

proved exactly as in the case of orthogonal Fourier series if one
takes Into aczoint that [fj,f m] = 0 for j P m. The last formula

follo;.s from the identity 0 [Afjpf ml -. [f ,Afm ]  (AJ-A M )

[fCsfm] if Aj X X m. If X =X m one can choose fj, fm so that

[ta,fnr = 0 for J 9 m. Thus the coefficients in the EE'* can be

easily calculated. If the root vectors are present the formulas
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390 A. G. RAMM

for t 'e &oefficients in root vectors can also be calculated ex-

"Orthoo-o..Ity" of the resonant states corresponding to dif-

ferent ccmplex peles kl, k2 holds in the following sense:

<'(.,kI), u(x,.2)> = 0, where <-,-> Is defined in (10') (See (6.741

and [* ] for ce:ale-).

4. 1O1"SL4OOTH B TUINDARE-S

The usual proof of the meromorphic nature of the Green's
function of the exterior Laplacian requires smoothness or r.
Indeed, it is based on the integral equation (6) and on the theorem

about the mercmorphic nature of the operator (I+T(k))-1 [6.80-3]. If
this theorem it is assumed that T(k) is a compact operator func-
tion analytic in k. If the surface r has edges or conical points,
the operator T(k) in (6) is no longer compact. Nevertheless the
theory is still valid provided that there are no cusps on r.
This follows fro.n the proposition (see [ * I for details): if
T) = T + Q(k) is an operator function on a Hilbert space H,
where Q(k) is a.atic in k for kcA, where A is a connected open
set in the co-.aex plane, ITless < I and I + T(k) is invertible

at so:m, potnt, then (T+'.(k))-l is finite meromorphic In A, (finite
merono.Thfc that the Laurent coefficients are operators of
fi.te rank). j" ils$, we mean inf Itf-KII, where K runs through

the set of all C.pact prators on

I- is k.,'wc, [6.12] tha T(0) I es< 1 provided that there arec

no eu_:rs or r. One c.in rcoa apply. the above proposition and con-
c U.. - i: ,) (and therefore G; see (5)) is merororphic and
its LB-.rent ccec. ients are ae-enerate kernels.

5. EXA:MFLES, CZ-tV-METS

1. A s.,..etrl. (with respect to the form [f,g] defined in section
3) nn:elfadff-t.- operatoor can have root vectorz. Example:

A 1 ( x (A-XI) -1 has a pole of order 2A =  Cl)  x,y = x VI + x2 (.

at . 0. The corresponding eigenvector is (i) and the root

vector is (1-a)

2. The fact tlat the algebraic problem to which" an oriinal Inte-
gral equILon .-az, reduced (e.g. by a projection rrethod) has elgen-
v..:ues ,-ea r,2t .uarantee that the original equ.atlon has. (See
(6.69], [6.691 and' * I for details and sufficient conditions under
whch. the eigen';a!ues of the algebraic problem converge to the
eig,..values of th-_. orl,:.In-il problem.)

3. -h..- operr:-:,r (l+T(,:)) - can. have mu1tiple poles and be dii-
gcn'-::zble (i.e. T(k) has no root vectors).

- A15 -
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SINGULARITY AND EIGENMODE EXPANSION METHODS 391

Example.: I +) 4k 2 0), (I+T(*A)) 1' (k-2 0lk1)
0k 0 (1+,2 N "l

k = C 4s a r'!e of order 2.

4. There exists an operator with the root system which forms a
basis of H but under a different choice of the root vectors the
root system o^ this operator does not form a basis of H (see [ * ]
for an example).

5. The set of complex poles of the Green's function of the
Schr~dirger operator does not define uniquely the potential if
there are bouni states [ * ].

6. If z is a complex pole of order m of (I+T(k)) -
, T(k,c) is

compact and analytic in k and c for [Ik-zi < a, Icl < b} and

T(k,O) = T(k) then. the poles z(E) of (I+T(k,)) - I can have a
branch point at c = 0 and ord z(c) < in. Moreover z() can be

represente2 b.: jUiseux series, i.e. by a series in pow2rs of c1
/ r

where r is so:e in.eger (see [ * I for details).

7. The multizlicity of the complex poles is not equal to the
ord--, of zeros of eigenvalues, generally speaking.

itwa ro-ed in [6.72J(see also[6.68]) that the set of complex
poles co-ncie w ith the set of complex zeros of the eigenvalues
of ce-tain tr.tegral equations. In the case we are concerned with
in th!s pc .er cne can have in mind the eigenvalues of the equa-
tie!, [l+?(k)] u. = i (k)uj, j = , 2,.... It was an open question

whether ':he ord:rs of' the zeros of Aj(k) are equal to the multi-

plicitie of th.e correspondJing poles. We shoe; by presenting an
exano~e that this is not so in general. Let us take as I + T(k)
a finite dimensional operator with the following matrix

o (k)k)l -1)]A~k) = ( ik) W- haeX k =X , A- k) = A- (k) -A-2(k)
0 k 1 0 A -1(k)

If >,(z) alan; 7m is the order of the zero, then z is the pole

of A W(k) of n.io>:iplicity 2m. It Is clear from this example that
the erde: of zeros of the eigenvalues will coincide with the

multip-,"ity of the corresponding poles iff A(k) is diagonalizable,
,hat is L.(P) has no root vectors. This example is sufficiently
rerera- becausze for a compact T the elgenvalues A # -1 have

fIni,, algetr.-c multiplicites and the corresponding root spaces
redu:. I + Tk, so that in the root spaces I + T(k) is a matrix

8. U~i-. the ideas given in 16.681 the author proved convergence
of tth. --r ... tr'x approach in scattering theory, widely used in

Aract1
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392 A. G. RAMM

9. A variational principle fur complex poles

In setctlon 3 it was mentioned that the complex poles of the
Green func.oin occur at the complex points k at which the homo-
geneous equ.tilon (2) has a nontrivial solution. Let Hq denote

the Soboiev space v.*. (r), and Ifiq denote the norm in Hq. Consider

the variational principle F(f) = IAfI = min, Iflo= 1. If ifl

is bais f H H0  nd (n) n
is a basis of H = , d f cj fj, then the problem

F~(n)) =m, 1 (n)1 O = n ,1
F(f~n ) " = min, If~n)10 1yields: I ajm(k)c m 

= 0, l <
n m. --
1 Ici I > 0. Thus (*) det a m(k) = 0. Let ks be the complexJ=l S

roots of (*). Then it can be proved that the set of the complex
limit points {k I of the set {k ( ) coincides with the set of the

5 s
complex poles of the Green function. This a new result. The
functional F(f) is real valued in contrast with the functional
K(u) in (10').

Problems

1) Is it tru that the root systems of A(k), T(k) form a Riesz
basi. cf Hr It is proved that these systems form a Riesz
basis ;:tb brackets (see [6.68] for a proof and definitions).
The authtr t hlnks that the answer is no.

2) Is there relation between the order of a complex pole and
the ultiplicity of the zeros of X n(k)?

3) Can the scatterer be uniquely identified by the set of com-
plex poles of the corresponding Green's function?

4) Prove that there are infinitely many complex poles k with

Re k. # 0 (In diffraction problems and noncentral potential
scat tering).

5) Are the cmplex poles of the Green's function of the exterior
Dirlchle or Neumann Laplacian simple?

6) Miake rumerical experiments in the calculation of the complex

7) Pr.ve cor.vere.ence of the numerical procedure for calculation
or thi. clplex polco suggested in [6.741.

8) F,.d a ther.retical approach optimal in some sense to approxi-
r,,,t a function f(t) by the functions of the form

Nm rn(iktt-I
N m=l exp(-ik t)t}{ c ere the numbers crj, mj, k

are to be found so that fN will approximate f(t) in some

- A17 -



SINGULARITY AND EIGENMODE EXPANSION METHODS 393

cptima1 way. Currently some methods (e.g. Prony method) are
used 1%: practice, but they are not optimal. This problem
seems be of general interest (optimal harmonic analysis
in comovLex domain).

9) 1.1hen can SEM in the form of (10) be justified?

Conclusion

We hope that it was shown in this paper that:

1) EE:4 is justified (in the generalized form of expansion in
root veitors).

2) SE., is justified in the asymptotic form (9).

3) LNumerical projection method for calculation of' the complex
poles is Justified.

4) There ara many interesting and difficult open problems in
the ee].

5) Nztca results and experiments are desirable.

Reference

*) Ramm, A.G., Mathematical foundations of the singularity
and eigenmode expansion methods,J. Math. Anal. Appl. (1981).
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APPENDIX IV

Convergence ot the -matrix approacn to scattering tneory ' APENI'A. G. Ramm v

Mathematics Department. Kans=State Uniuersioy, Manhatan, Kansas 66506

(Received 22 July 198 1; accepted for publication 13 November! 1)

The T-matrix numerical scheme is widely used in practice. Convergence of this scheme was not
proved. A proof of convergence is given in this paper.

PACS numbers: 03.80. + r, 11.20. - e, 02.30.Jr

'1. INTRODUCTION w| where i

At the internationa! sy.1posium on wave scattering'
most of the speakers poit.ed out that the T-matrix scheme
needed ajustification, i:s z:,ver;±zce as not proved. In Let (tjy) be the inverse matrix a, ;, l<jrm<n. Then cj,

this paper a proof of ccn. -gnce is given. This proof also 1 <j<n, can be calculated if u, I <j<n, are given. From for-

clarifies another basic .uz st:.n, narne:y, convergence of the mula (7) one calculates h,, and from formula (3) with h = h.
variational method of flinc.. ;:ai:; ara, poirts of function. one calculates the approximate solution u., to problem (I)-

als.' Many physical proble:s are tormulated as the prob- (2). The problem is to prove that (i) for sufficiently large n the

lems of finding stationary points and/or stationary values of matrix a,. in (8) is invertible, (ii) [(h, - h 1--*0 as n-* o,

some functionals. and these points are not ex:remal. A neces- where 11-11 is the norm in H. Actually, convergence will be

sary and sufficient condition for a stationary principle to be provedinH, ,where q depends onfand on the smoothness of

extremal is given in Ref. 2, p. 90. The standard T-matrix F. Let us assume forsimpliCity that FC C ".Then q depends

approach is described in Ref. 1. pp. 64. The principal differ- on the smoothness off if meas[F n suppf) > 0 (suppf is the

ence between the standard and our approach is as follows. In support off) and q is arbitrary if dist(suppf, F)> o.

the standard approach the scattered field is represented as The basic idea of the proof is very simple and is given in

the series in the outgo;ng spherical v. ayes and the coeffi- Sec. 2. In Sec. 3 some technical details are provided.

cients of the series are found from a ,inear system. One as- : ;
sumes that the series converges on I (the Rayleigh hypoth-
esis) which is not true in general. In cur approach one uses a 2. MAIN RESULT

basis of L 2'() and no di,=culties w-:n convergence arise. Theorem 1: System (S) is uniquely solvable for suli-
Let us describe a rn-difed T-matix approach to the ciently large n and 11h. - h 1-.0 as n-o* [without loss of

problem generality we assume that the operator I + T(k ) isinvertible;
V2 - k2)U = f in a, k>0 (1) see the proofbelow, n.l ofSec. 31.

ulr=O, r(u/dr-i .,-- as = x---- (2) A Proof. The basic idea is to factorize A in (6) as
*A = A, I + T(k)], where A, = A (0). T(k) = A o0

Here f2 is an exterior domrain wi"h a s-noth closed boundary X [A (k) - A (0)). TheoperatorA,> Oisabijection ofH, onto
rand D is a bou.ded dc...n. From the Green H + , while T(k) is compact in H, for any q (see, e.g., Ref. 2,
formula it follows that p. 287). The system (8) can be written as

(A,[ I+ T jh.,,j) = (v,;,), I <j<n. SinceA,>0 the form
~x) = ~jx) = g( xs)A (slds, xej? (3) (A0 u,f) is a scalar product which we denote by

"uf] = (A0 u,f). This-scalar product generates a norm
0 = viz) -"g( x,.r)h (sds, xeD (4) [u.u]" 2 = 1hA ,'2ull which is equivalent to the norm in

H_ /,. This follows from the fact thatA, is a pseudodifferen-
fpik ix -. ) h au tial elliptic operator of order - l and thereforeexpdi. gx-: h ( u 5)

4rx - Y aN ordA ow = A - " Thus (8) is of the form

Nis the unit normal to Fdirected in:o 12. lf h is found, then (I + T)h,, = (,6,),l j<n. Let w =,A 'v. Then
u(x) can be found from (3). Let us rewrite Eq. (4) as (v,O) = [w4, land h, + P., Th, = P.w, where P,, is the

orthoprojection in H- ,,2 on the linear span of ..... .. . "
Ah = Vs), Ah = f.' . , s-I. (6) Theoperatorl + T(k} ,k>0, can be assumed invertible (this

r will be shown in Sec. 3), and T(k) is compact on !, withLet (4j ],j = 1,2,... bc a basis ofH_ t/2, where_.
- = (r), H, ' H"1) are the Sobolev spaces, arbitrary q, - o < n< o. Therefore 11(t - P.)T fl,-.0 as

H .H i atsc n-co, and the norm is the norm ofoperators on H, (this will
(7) be explained in Sec. 3). Thus I - P. T = I + T - (I - P.)T

is invertible for sufficiently large n. This means that system

(8) is uniquely solvable for sufficiently large n. Furthermore,
,, , 8) h - h., + T)-'w- V+ P. T)P. w

"Supported by AFOSR S,"2C4. _-- B -i--P'lrT -'P. ]w, (10)
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where B = (I + T)-', P" I - P.. Thus verges to! in H = H, it converges tofin H_ 12. It is conve-
nient to have a system 1,j 1 which forms a basis in any ofw,Uh - h. l, <clI(J - Q.)-Q.P.wII, and iffi-H9 the seriesf= 1. ci~i converges in H,. For

<cIIQII, iP.,wI,. . c,c =const>0. (11) example, ifs ' is the unit circle and H. = H, (S ') then the

where Q. - P"TB. IIQ. 11,--0 as ,--o. If llwil, system Iexp(inx)/V2,rI forms a basis of H, for any q. The

= 11A7'ull, < c then (11) shows that ih., - h I,-0 as same property has the system I 'j I of the eigenfunctions of

n-- c and the rate of convergence is given by the rate of the Laplace-Beltrami operatoron r, but practically thissys.

decay of the magnitude 11PI"T Ii, as n-co. In order that tem is difficult to construct explicitly. Let us prove that for a

IIA i- 'I1, < it is necessary and sufficient that - , starlike domain D the system I Yj L ) 1, where = (8. 0) is a
This issoif f<l i i nbecauseia thiscase th H (.and point ona unit sphereS2and Y are the normalized spherical

its trace u,.E1. ,,-Our argument shows that iffEL 2(fl) harmonics, forms a basis in each ofM A domain is called
= H(2) the sm:thnriss of,'!r is even higher than we need. starlike if there exists a point 0 inside the domain such that

This completes th z pro~of. Theory of the H, spaces and the every point of the boundary of the domain can be seen from
trace theorems can be ib-nd in Rd. 4. this point. This means that the equation ofthe boundary is of

the form r = R (0, 0) = R '). where the origin is at the
point 0. It is well known that

3. ADDITIONAL DETAILS _" )(;'')d;' Y-

{) Let us show first tht 1+ T(k), k >0, is invertible. Q 0Y,. = r , j = 0.1,2....(1)Letussho fistth-le 4,r,,/ 2n + I

Since Tis compact, it is su.5ier:t to show that the nullity of where rj. 15-'j- The system I Yj,- 0.1,2...., forms
this operator is trivial. If [1 -z- T(k )]h = 0 then A (k)h an orthonormal basis ofH = L (S 2 and in any H. (S 2) the
= Ao[ + T(k )]h = 0. Therefore the function scalar product in H (S') can be defined as (u, u),

U(X) = fr g(x, slhds solves the homogeneous problem (1)- = - 'u Q d- qV)o, H= L '(S '), and (Y ,
12). It is well known that the sclution of({)-(2) is unique. = (2n + l)9(2m + I)q{Y#, Y,) = (2n + lq)(2m + l)96.,,,,
Thus ufx) . n 12. Ifk " is not an eigenvalue of the Dirichlet where 6., is the Kronecker delta.
Laplacian in D then uzx)--O i" D. and from the jump relation Lemma 1: The system I Yj [4) I forms a Riesz basis offH,
for the normal derivative of u cn. d crives that h = 0. Ifk 2 is H (r), provided that D is starlike,/"C -, and the ale-
the eigenvalueofthe Dirichlet Lap'acian inD, then the argu- meIts proided as stie, fC , a te -
ment is the same bu instead ofgix, y, k ) in (3)-(5) one should menrs of H. are considered as functions oftq' t

use the Green function g,,rx, y, k ) of the exterior of a small Proof Consider the eigenfunctions or the equation

ball B, CD. This ball is so c!oscn .hat k 2 is not an eigenvalue ". "(s'lds' .is) r,. -- s-s'I. sl. 12)
of the Di ichle" Laphpzian in D, = D \B,. Obviously such a Jr 4rr,, r.
ball can be found (-here are inni:ely many such balls). Since D is starlike one can rewrite this equation as

Remark 1: The idea of ?P!.yin_ g, (x, y, k) in order to
deal with the case when k 2 is z.n egenvalue of the interior Qo., = 0. p )di' , (131
problem was used in Ref. 3. L ,J R fl- R R'.')I

(2) Let us show that j! P 'AT-0asn--. Since 16, 1is wheres = R ()istheequationofthesurface rinthespheri-
a basis, one has 11 P 'fi!-0 --- -= for anyfE/. Since Tis cal coordinates,t" = (0, = ),0, () ,(R )),ds =p0 (f)d,
compact it can be .written as 7 = T. + d,, where pj I > 0, and d" = sin 0 dO do. The function
II d,N II < e.,,, c,-0 as N-. c. and T., is finite dimensional: po(4) = IR ; X R ; 1. where X denotes the vector product and
Tf =7-, (; /; )a," C.:arly, it is sufficient to prove that r =R (0, ,) is the parametric equation ofthesurfaceF. The

11 P1"Txf I <6.,, where .,--.0 as n- o. One has system I 'I of the eigenfunctions of the operator Q defined

II P"'".,1j< ... I! P'" ',.,, r'I in (13) forms an orthogonal basis of the weighted space
<411l!7.., II ,1 1I P'"1<5, 5, fj, where.,-.0 as n-. L 2(S2, po )). Since((**)0 <c<po( ) <c2thenorma]izedsys-
because 11 P'"'w, 11-O as n--e, I <j]<N. In this argument tem I Pop- ",j forms an orthonormal basis ofL 2(S 1).

1 11 can denote any r.or-.. ,'hat is essential is that P"'.0 Therefore this system is an image of the system [ Y ,
strongly. In particular one can use the norm of H_ .12 pro- j = 0,1,..., under a unitary transformation of L 2(S ):Uy,/ /'2 I/j

vided that the system 1 j , forms a basis ofH_,,,. Note that =Pj" "0 or 0=A UY. The operatorpo U is a bijec-
H_,,,DH, so that if he 14te. , I1 forms a basis ofH- W, tion of L 2(S 2) onto itself. Let us introduce the operator J~,
then every elementfR fcar b±e represented in the form - /,,j = 0,1,2,:.., where b, ere the normalized eigenfunc-
f= 21 ., co,, where the series converges in H_ ,,/. It does tions of Eq. (12). The operatorJdefined on thebasis elements
not converge in H. generally speaking, but there exist bases is isometric and can be extended to the isometric bijection
such that ifft.H then the above series converges in H. For JL 2(S')-.L 2(F) = H. Therefore ,t, = JpnUY,j
example, such a basis is the basis consisting of the eigenfunc- - 0,1,2,..., and Lemma I is proved for! = Ho. Forq #0 the
tions ofthe operator A0 see also Lemma I below). If (16 I is a system Y forms an orthogonal basis ofH,(S 2) and the space
basisoflf, then 1,4A6, I is a basis ofl, .,.This follows from HI = H,(rF) is metrically equivalent to 11,(S 2) because ris

the fact that A 0' is a bijection of 11, onto 1, JA 6 is an C diffeomorphic to S'. Thus the system I Yj I forms a basis
elliptic pseudodifferential operator of order - s). Since ifll, of H,(") for any q. If instead ofC - diffeomorphism one

<Il, for q <s, it is clear that if the series 1,'., c,iP con- assumes that FisC'diffeomorphic toS'. then I Y I formsa

1124 J. Math. Phys.. Vol. 23. No. 6, June 1982 A. G. Ramm 1124
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iA

biis ofH, q<l. Lemma I is proved. Since I + T is a bijection of H-, onto itself and Aa 1 is a

(31Let usconsider another projection method of solving bijection of f! onto H. -. the solution of (IS) tends to

Eq. (6) corresponding to the least squares method; namely 1+ T)-'wasn--o inH, if LHf, and in H,_.. ifvEI-.

Whb. - U. ,} = o. I< j4/, (14)

or

bjc .c- d,, j<n. (15)
'Acoustic, Electmmosnetic. and Elastic Wave Scatteing-rocus o T-wa-

where trix Approach. edited by V. Varadan (Pergamon, New York. 1950).
bj. = (AtA. AkO_). d = tv, A ,). (16) "A. G. Ramm. Theorand Applications of Some New Classes ofinteqMl

Equations (Springer, New York. 1980). .1
Since (b,is a positived.ne natrix (if ker A = (0 which 'A. 0. Ramm, -Investigation of the scattering problem in some domains

we assume for simplicity', tht system ( 15) is uniquely solv- with infinite boundaries," Vestnik Leningad Univ. Set. Math., Mech.,
able for any n. This syst~rn cai be c'btalred from the least Astron., N7, 45-66,(1963); N19. 67-76.119631. Math. Rev. 27 #483,28

#374.

squares method as a nec,:ssz n cor..Jition of the minimum of i. Lion and E. Magenes, Prblemesaux limito homagecsetapplica-

the functional lions (Dunod, Paris, 1968) Vol. 1.
mA. 0. Ramm. "Spectral properties of some ronselfadjoint operators and

I nh, - v112 = min, (17) some applications." in Spectrl Thoy ofDieret Opeatofs.Mathemat.
ral Studies. edited by V. 1. Knowles and R. Lewis (North Holland, Am-

or sterdam. 1981). pp. 349-354.

i(l+ T)h. -wj 2  =min, w=Ao'i. (18) 'A. G. Ramm. J. Math Phys. 23, 112 (19321.

Ii,

1125 J. Math. Phys.. Vol. 23, No. 6. June 1982 A. G.Ranin 1125
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Abstract

Convergence of the T-matrix scheme is proved under more general

assumptions than in A.G. Ramm, J. Math. Phys. 23, 1123-1125 (1982),

and for more general boundary conditions. Stability of the nume-

rical scheme towards small perturbations of data and convergence

of the expansion coefficients are established. Dependence of the

rate of convergence on the choice of basis functions is dis-

cussed.

Dependence of the quality of expansions in various spherical

waves on the shape of the obstacle is discussed.

PACS 03.80.+r, 11.20.-e, 02.30.Jr.
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I. Introduction

1. Let P be a bounded obstacle with the boundary r. Consider

the following problem:

C!g -- > 0 in SI'+S' (1)u.I~= b(2)

br 00(3)

where R is the exterior domain, and f is given. Later we discuss

other boundary conditions than (2),but the basic arguments and

conclusions will 3e similar to those for problem (1)-(3).

The corresponding scattering problem is as follows: find the

solution to Eq. (1) satisfying boundary condition (2) with f=O

and of the form u=u 0 +v, where v satisfies the radiation condition

(3) and u0 is the incident field. It is clear that this problem

reduces to problem (l)-(3) for v with f=-u on r. Therefore, we-
0

discuss in what follows problem 1-3). There is an extensive

literature about this problem. The existence and uniqueness of

the solution to this problem for Liapunov boundaries are estab-

lished long ago and are available in textbo6ks now [1]. The case

of nonsmooth boundaries was also treated [2]. Numerical methods

for solving problem (1)-(3) are known (finite differences, see

e.g. [3], numerical solution of the boundary integral equations

of the second and first kind [4]).

Our concern is with the T-matrix scheme [5]. This numerical
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scheme was widely used during the last decade in the problems

of acoustic, electromagnetic, and elastic wave scattering by

one and many bodies, for scattering from periodic structures

etc. [5-101.

Nevertheless the basic questions concerning convergence of the

scheme, stability of the numerical scheme towards small perturba-

tions of the data remained open. In [11] these questions were

discussed for the first time. Here the results from [11] are

strengthened and extended.

2. Let us describe the T-matrix scheme in a general formula-

tion. Let ( n} be a system of outgoing (not necessarily spherical)

waves, i.e.

0 S\ L (4)

r { T r ---- -, (5 )

From the Green's formula it follows that

bl LSjS1n n I
ku b VS4 Wi (6)

where u is the solution to (1)-(3) and N is the exterior unit nor-

mal on r (pointing out, into Z). Using boundary condition (2)

one writes (6) as

Jhis= f4n Vn)(7
r
where

fn Sftd (8)



h- r  (9)

The T-matrix scheme consists of the following. Let { j) be a

linearly independent and complete system of functions in

H 0=L 2 (r). Let

where c m )  1<j<m, are constant coefficients, which should be

defined from the linear algebraic system

m m

M~S j s (§M)12

One obtains this system if (10) is substituted in (7) and only

the first m equalities (7) are used.

3. Justifica-tion of the T-matrix scheme requires positive

answers to the following questions:

QI. Is (11) solvable for sufficiently large m?

Q2. Does hm -0 h, m-*? Here h is defined as in (9).nHO

Q3. Does C(M) -+ c.f m--? Is the convergence uniform in j, 1<j<c?

Q4. Does the equality h= E C. 4j hold, where c. are definedj=l
in Q3, and it is assumed that the limits c. exist?

Q5. How does the rate of convergence depend on the choice of the

systems {jj) {(1Pn)?
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Q6. Is the numerical scheme based on the equation (11) stable

towards small perturbations of f and the matrix a .?• n nj

Remark 1. In the literature [12] the following questions were

discussed: Is the set of equations (7) solvable? Is the solution

to (7) unique? These questions are easy to answer. The set of

equations (7) is solvable for any system {ip ) satisfying (4) and

(5): take the solution u to (1)-(3) (which does exist) and apply

Green's formula to yn and u to obtain (7). The solution to (7) is
n2

unique iff the system {pn } is closed in H0 =L2 () so that

j '~SO Vr 0 1=O (13)
r

This is equivalent to saying that any h H0 can be approximated

with prescribed accuracy c in the norm of H0 by linear combinations
m(E)

of the elements 1: Ih- E c.(c) ipjlI <c, i.e. the system {ij}"

is complete. We assume below that the system { n) is closed.

4. If one takes as 1 in (7) g(s,y)=g(s,y,k)= 42]lfs-y&

yO, and does not use equations (7) for n>1, then one gets the

integral equation

Actually, if (14) holds for yCBcV, where B is any ball lying

strictly in D, then (13) holds in D because both sides in (14)

are solutions to the Helmholtz equation in D and thereforejif

they are identical in B they are identical in D. If one lets

y;s'Er one obtains from (14) the boundary integral equation of

- A42 -
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the first kind

A =J (15)

where

bd.PI Ft - (16)

If one looks for a solution of (15) of the form (10) and uses a

projection method for finding c W one obtains the system

ZAcT nb (17)

where

and the bar denotes complex conjugation. The same questions

Q1-Q6 can be studied for system (17). In this case n n plays the

role of * n' but now there is no need to assume anything about the

properties of n in 1. In fact, n* are defined only on the surface

r. Questions Qi, Q2, Q5, Q6 were answered in [11] for the system (17)

under the assumtion that n=n and the system {0 forms a basis
of H_ The spaces H,=Wq (--<q< are defined as thespaces of

functions with q square integrable derivatives for q>O integer, and

as dual spaces (spaces with negative norm) for. q<O. For arbitrary

q<0 they can be defined as interpolating spacesor directly [13].

In the present paper we note that the result and arguments in
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[11] are valid under the weaker assumption that is a

complete system of linearly independent functions (not necessarily

a basis, see Sec. 2.3 below).

From the integral equation (14) one can go back to the sys-

tem (7) by assuming that

c~(,us) li eijclsl (20)

substituting (20) into (14) and equating coefficients in front of

j. From this point of view the integral equation (14) is equi-

valent to the system (7)-(8). In the literature expansion (20)

is used with y, being the outgoing spherical waves and j being

the regular (i.e. finite at the origin) solutions to Helmholtz'

equation. Matrix (18) will be identical to matrix (12) if

in (12) are chosen so that Ann= n. This corresponds to a specific

choice of the outgoing waves, since for any linearly independent
system of functions n in L2(r), the system nEAn will be a sys-

tem of outgoing waves whose boundary values on r form a linearly

independent system in L2 (r), provided that the operator A: L

.L2(r) has no zeros (i.e. An=04ln=0). This will be the case iff k2

is not an eigenvalue of the interior Dirichlet Laplacian in D.

2
In [11] it was noted that in the case when k is an eigen-

value of the Dirichlet Laplacian in D, one can use, instead of

g(x,y,k),the Green's function gE(x,y,k) and in this case the cor-

responding operator A will have no zeros. The function g. is the

Green's function of the Dirichlet operator,V2k 2 in the exterior

2
of a small ball BE situated in D, where B is so chosen that k

is not an eigenvalue of the problem
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(Vtk)O LLn 0 U;n~O LL

where 3B Eis the boundary of B , and P\B Cis the complement in

V to B

The above argz=ent shows that the analysis in [11] is applic-

able to eq~uationi (11) under some special choice of nin (12).
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2. Analysis of the T-matrix scheme

In this section we discuss questions Q1-Q6 formulated in

Sec. 1.3.

1. The system (11) is solvable for a given m iff

det(a )m 10. For the following analysis we need some defini-
fl) n,j1 -

tions and results from the theory of Hiibert spaces. These defi-

nitions and results are given in Appendix 1. In Appendix 3 some

results about convergence and stability of projection methods are

given.
We are interested in the properties of the coordinate systems

{ij and {ij} which imply positive answers to questions Qi, Q2,

Q3, and Q6. Let us write equation (7) as an operator equation

ah a: (7')

where the operator a is bounded and defined on all of H iff

(h Jt t<C- Il as , " >
n-I

If this inequality does not hold for all.hEH 0 , but the system

{qn ) is a basis of H0 , then a is densely defined (i,e, its domain

D(a) is dense in H0 ). Indeed, in this case the biorthogonal

system f n} is also a basis of H0 [17, p. 307], and any linear

combination Y cj jED(a).
j=1

The operator a transforms a function hEH 0 into a sequence

(h,vn)=f h in dS, 1<n<w. The range of a is dense in £2 providedr2
that for any sequence {dn}E£ the series E d nn (k ) converges inn=1n

H0 and the system {n I is w-linearly independent, i.e.

7 dnn=0;*dn= 0,Vn. Indeed, suppose that (ah,d)=0,V hCH0 , where the
n=1 n
parentheses denote the inner product in £2. Then fh E- dnndS=O. Since
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hcH 0 can be taken arbitrary it follows that E an Vn=O and

-1 n=1
dn=0,Vn. The operator a. will be bounded and defined on all of

£2 iff IlahHi >c ihi ,VhEH0 , ci>O. We use the same notation

for the norms in H 0 and k£2. This inequality can be written as

EI Th,) C1ii VhH RD >0

Therefore a and a are both bounded iff

Z -c, ~" n Ill< -< cz l l\  VhcHo, c,>O.

These inequalities hold iff the system { pj} forms a Riesz

basis of H0. Let us consider the truncated equations (7), i.e.

the system (11) as a projection method for solving (7'). Namely,

let 0, be an orthzprojection in k2 defined by the formula

Qmf =f (M. 0,,,...), and Pm be an orthoprojecftion in H 0

on the linear span of " The system (11) can be written

as

QmaP,.,, =Q ~ r~~n=  ,,.-- }_ cj 't' (11')

This equation is of the type. studied in Appendix 3 (see A3.2).

Conditions (A3.4) and (A3.5) are necessary and sufficient for

equation 1l') (i.e. (11)) to be uniquely solvable for all suffi-

ciently large ;'>r 0 and for the convergence

III

1hm - hil 0, -,. (21)

Conditions (A3.4) can be written in our case as
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CS Vm>M. , c>O (22)

where c .. c are arbitrary constants, a nj=(Ojn). Condition

(22) can be written as

where one should sum over repeated indices and the bar denotes

complex conjugation. This last inequality means that the following

matrix inequality holds

n > V m 0, C>O. (221)

Here (a)m is the truncated matrix: (a)m=(a nj) n ,J

=f j ,dS is the Gram matrix for the system {.). If X(O)(A(0))

denotes the minimal (maximal) eigenvalue of a self-adjoint matrix

0>0, then (22 holds if for example

n $up (aaem 0 >o (222

This condition is convenient from a practical point of view.

The conclusion is as follows: if (222) holds, then the projection

method (11) for solving equations (7) converges, i.e. equations

(11) are uniquely solvable for sufficiently large m>m 0 and

Ilhm-hIl O as m-, where h is the solution of (7). The second

equality (222) holds for example if the system {[j) forms a

Riesz basis of H0 . If we take *-=j on r, then a=O and inequality

1221) holds iff the first inequality (222) holds. Indeed, ifA - A48 -
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a=O, then (221) takes the form (a 2 )mc(a)m, m>m0 , a=a*. This

inequality holds iff the spectrum of (a)m is bounded away from

zero by a positive constant. To see this, let us use the spectral

theorem for the self-adjoint operator a>0:

( al- ~ C 8) SacLc(z4,) C
0

2 S2
where Et is tne resolution of the identity for a, min (t -ct)=--

2 2t>
t -ct>0 if t>c. Therefore the operator a -ca will be nonnegative

for some c>0 iff a>c>O where a is a positive constant and in this

case we can take c=c in the inequality (221). Note that [=j
where X is the con-stant in (222). If the system { j} is such that

2J
infX((O) M)>X>0 (in particular, if it is a Riesz basis of H0 ) then

mthe conclusion -*-. as above (after formula (222)).

Condition (A3.5) means that for m>m 0 the set of vectors

{a njn= 1<j<m is linearly independent. That is

m t
Teh (andMo (23)

This condition follows from (22) (see Remark 1 in Appendix 3

and formula (222)).

If (22) holds then system (11) is uniquely solvable for

all m>m, ar.- the function (10), where (c. ml, l<j<m, is the

solution of (11), converges in H0 to the solution of (7). The rate

of the converccnze is given by (A3.8). This rate depends on the

rate of convergence of (I-Pm)h to zero, i.e. on the rate of

.approximation of the function h=a if by the linear combinations

E j. Stability of the solution towards small perturbations of

thd operator (i.e. of the matrix a nj) and the right hand side f
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(i.e. the sequence (f n) follow from the result 1) in Section 2

of Appendix 3. Indeed, consider the perturbed system

(a' +E + -E

where bnJ and En are the small perturbations of the operator a and

the right hand side f, respectively. Let bnj be sufficiently small

in the sense that the operator b corresponding to the matrix bnj is

2
sufficiently small in. the norm: jibil <6. Here b: 0-Z can be con-

sidered as an operator which is defined as follows. The system

{gn Iis perturbed: ipn=4pn+r n. This perturbation generates the

perturbation b of a by the formula bh=(h, n ). The matrix bnj

is then defined as ( jn). If 11b1l <6 and 6<c where c is the

constant in (22) (or A3.4), then according to the result 1) in

Section 2 of Appendix 3 the perturbed system (11") will be uniquely

solvable for all sufficiently large m and the corresponding

hm E cj j will tend to h=a-f=(a+b)-1 (f+f ), where f
m j

Hf EII<C. Thus

In +1' (a+b' F_ +a' (~~jj cL~ (24)

The constant c' can be specified:

c'= t(a~bj11' + 11.9 !i'1ltl (a~bf 1. (25)

Here we used the identity (a+b) -1-a- 1 =-(a+b)- 1ba - I and the esti-

mate II (a+b)-l-a - ' 11511 (a+b)- ' 11 11 a-' 11 "i1 b~l , which follows

-from the identity.

The estimates (21), (24), (25) and the above arguments give

answers to Qi, Q2, QS, and Q6. We now pass over to a discussion
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of questions Q3, Q4.

Let us assume that

{4i} is a complete minimal system in H0  (26)

(For the definition of minimal systems and their properties used

below, see 1endix 1.) Then there exists a unique biorthogonal

system , (i,j)=6ij. Equation (11) can be written as) 1 1

(am)c (M=f i Its solution gives hm Ec( j. Therefore

C' = (h(, + 127)

Since thm-hil -0 we conclude that

C- rn-- (28)

Thus (26) inplies a positive answer to Q3. We have

Therefore the codition

ii
s.up 11 Vt'4 C < €(30)

implies that convergence in (28) is uniform .n j, 1<j<-. Condition

(30) holds, e. g. if

the systera {4j forms a Riesz basis of ( (31))0

i
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(gee Appendix 1). Condition (31) implies also the positive

answer to Q4. Indeed, if (31) holds then h can be written as

C. (32)

and the coafficients c 3 are uniquely determined by the element

h. On the other hand we know that

-h 0 rn - (33)

where

First, we conclude that 6j:c because

C. * ~ *.Lr' (35)
.~ 3 h,4)jI 1M.1 (hr,4 3 liC

Secondly, we see :romn (32) and (35) that the answer to Q4 is yes.

In the above analysis the basic assumptions were (22), (26),

and (31) and we explained which of these imply positive answers

to which of the basic questions Q1-Q6.

2. In this section we discuss the assumptions (26) and (31)

and a particular case of the matrix anj for which the convergence

analysis is straightforward. Note that (26) and (31) deal only with

one of the systems. Assumption (22) deals with the "interaction"

between the syst-eos {(i and {*j}.

Assumption (26) holds if the smallest eigenvalue of the matrix

-(0i,1j), 1<i,jm is bounded away from 0: X>X>0 (see Appendix

1). Assumption (31) holds iff the matrix *ij defines a bounded and

boundedly invertible operator on £2 (see Appendix 1). Since
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this is a selfadjoint matrix, this will be the case iff

Am A<> > 0

where Am (X ) is the maximal (minimal) eigenvalue of the matrix

J' 1_<i, j_<.

One caz r-easure the "interaction" between {4.} and (iv} by

the operator generated by the matrix a nj-6 njq nj. The assumptions

C~~~ njn n ) +13 -

is a compact operator on £2.

(I X-o, XCt 0 =2)

are sufficient for the unique solvability of (11) for all suf-

ficiently large " and for the convergence in L2: ic(m) cI{ 0,

mC, where c' .. cW m ,0,0 ...),c=a - lf, a is the operator on

I with the matrix an.. Indeed, assumptions (37), (372 and Fred-
n) -1 2

holm's alternative imply that a 1 exists, is defined on all of j2

and is bounded. Thi s fact and the special structure of a imply 4

the above statement about convergence. To see this, let us write

(11) as c (i)+Pmqc (,=f(m), where Pm is the orthoprojection in £2

onto the m-dimens:.onal space of vectors with components c.=0 for&3

j>m. Since q is czmpact and Pm I strongly in £2 one concludes that

IIq-pmql o, "--:. Therefore II (I+Piq)-1-(I+gj)-l1j+0, m--. This

proves the stateT.ent about convergence of c( m) to c.
0=2

If the system {4j. forms a basis of (r.) and f C2,then the)0

solution of (7) is h= 2 c.0. where c is the limit in £2 when in-co

(m)j= 1
of the solutions c to (11) and the solution to the equation
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ac=f. In this case (371).(372) due to Fredholm's alternative and

the uniqueness of the solution to the equation ac=O. Let us show

that ac=O>c=O. If the system {#j} forms a basis of H0 , then equa-

tions (7) and ac=f are equivalent. But the homogeneous equations

(7) have only the trivial solution if the system Pn} is'closed

in H L2 (r). (This assumption about { n) is very natural and was0in

made in the very beginning, see Remark 1 in the Introduction.)

Therefore, ac=O¢c=O. As our analysis shows, the behaviour of the

smallest and largest eigenvalue of the matrices ( i, j),(4,1

are of basic importance in an analysis of convergence and stability

of the T-matrix scheme. For the operators of the form a=I+q,

where q is compact, the projection scheme is discussed below in

subsection 4. In this case the justification of the projection

scheme can be easily obtained. In [11] the problem was reduced

to a projection scheme for the equation of the above form

(I+T)h=fwhere T was compact.

3. Let us discuss briefly the results in [11] from our

general point of view. The matrix analogous to Anj in (18) in the

paper [11] was of the form A nj=(A n4 ,), where the operator A

was defined in (15). It was noted in [11] that A=A0 (I+T(k)) where

A 0 in H0 =L
2(i() and T(k) is compact in H for any --<q<-. Further-

more, A0 : -H -H1 is a continuous linear bijection of Hq onto

H ie = [ ( I + T ( k ) )Thro ] ,ewhere u,v](A u,v)=(u,v)}_ and

(u,V) being the inner product in H . The operator I+T(k) was
q q*

assumed to be invertible. This can be done without loss of gene-

rality (see [11] and our argument in the end of section 1.4

above). If {j} forms a complete set of linearly independent func-

tions in H i our general argument shows that the system (17) is

uniquely solvable for sufficiently large m, and the answers to the
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remaining questions Q2-Q6 are similar to the ones given above

(see Sec. 2.4 below).

In particular, we have stability as m , of the numerical

scheme corresponding to system (17), with the matrix (A~j, n

and the operator A defined in (15), with respect to small pertur-

bations of the matrix A n and {b n. In [11] it was assumed that the

system g =  rm.. a basis of H i
system { I -os -b o This assumption is weakened here:

only completeness in H of the system {O.} is required. If a

linearly independent system {#j} is complete in H0 =L (), it will

be complete in H Indeed, H0 is dense in H_ Therefore fQr

any feH_ one can find fEFH0 such that lif-fEL_1< c: If the sys-

tem {4.) is complete in H0 , then one can approximate fE in H 0

by a linear combination: 11f Z cj()-I10<e. Since

11ull, luflj =one concludes that - c(c}j"1_,<c. This means

that the system .} is dense in _. (The same argument shows

that this systen will be-dense in Hq for any q<0.) This remark

simplifies the argument in [I1] in the case when we do not require
that the system {.: be a basis. In [11] a basis in L2 (U) was

constructed from the "distorted spherical harmonics" under the

additional assxr.ption that r is star-shaped (i.e. there exists

a point in D fror.m ..hich every point of r can be seen).

4. Let us outline a proof of convergence of the projection

method for so2ving the equation u+Tu=f in a 'Hilbert space H under

the assumzpi..Lon that T is compact and (I+T) is bounded. The

projection schc.e is as follows: the approximate solution urm is

sought in the form un= Z C .m), where 4.) is a complete set

of linearly independent elements in H. Let P denote the ortho-
n

projection onto the linear span of (01,..d } The coeffi-

cients c. are to be found from the equations
A55



(u'+Tum-f,#j)=0, 1<';<m. These equations can be written as an

operator equation Pmum+PmTum-Pmf=0. But Pmum=um and therefore

(I+PmT)um=Pf , or (I+T-rm)um=P f, where r,=(I-P )T. Since the

system {¢j} is complete, IIPmf-fjI-0 as m-- for any fixed feH.

Therefore I-P -0 strongly. This.and the compactness of T imply

that 11rmI1- 0 . Therefore the opdrator I+T-r is boundedly inver-

tible for sufficiently large m:

(I- T- V ' v= (v+T)[1- (Ie'T-'r]1.

-V (IVr VraVfl V ii lVrml\4.
j-o

-1

Here V=(I+T) . One can estimate the rate of convergence of

um =(I+P m T) P f to u=(I+T) 1 f. Indeed

- -o

III',,T 1 ' III4, lll-f1 i tfm 1  -\'~1Let PHmin ea b m a, and am<l, then

a

Vrn) V V -art.,
These estimates show that the rate of convergence of ur to u is

determined by c a, and IPf-f II The above argument is a par-

ticular case of a known general theory [14].

5. So far we have discussed the case of the Dirichlet boundary

condition (2). If one has the Neumann boundary condition

onE',f (2')h-- on ,
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then our arguments are essentially the same: equations (6) lead

to equations (7) with h=ulr, fn=flpnfdS, and now-the role of
r

in equation (7) is played by the functions 2
aN"

However, the integral equation corresponding to this case

will differ from (15). Indeed, in this case from (2') and the

formula

SQ~~LL C1
r

one obtains

b (14')

where h=u l r

Let y-s'cF in the above equation. Then, using the known

formula for the limit value on r of the potential of double

layer one obtains

h =Bh-2b(1)

where

r
If one has the impedance -boundary condition

on r (2")

then again from (6), one obtains (7) with h=u r, fn=f f4 dS and

now the functions - +yVn play the role of *n in equation (7).

Completeness of all these systems in 1I0=L2(r) for the case when
i - A57 -,



1P are outgoing spherical wavesor any system for which the

expansion

1 , (38)

holdsis easilv seen. For example, if

i0~so ,~n (39)
P

then (38) and (39) imply:

(Y., S) CIS 0 (40)

Therefore u(x)-fg( x,s) fdS solves the equation (V2+k2)u=0 in D and

in S1, and u!r=O. This implies that u=O in R. If u=0 in 1 and in

D then f=(--)+ - (-)=0. Here +(-) denote the limit values on

r from the interior (exterior).

I
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3. Numerical experiments

The purpose of the numerical computations presented here is

to test whet-er some commonly used complete set of functions,

e.g., outo7ing and regular spherical waves, also satisfies the

assumptic::'; . in the previous sections. Do they, for instance,

form a Riesz bsis? Are they good for expansion of functions

on r?

1. Before answering these questions it might be illustrative

to consider a sL.pler one-dimensional case, e.g.,

z _rnjtn2. 5 r M , K e0t]. (41)

This set of functions is a perturbation of the orthonormal basis

Jsin mx by ftors e x. Here the constant q can be taken as a

measure of: th -:c.ntricity of the object. The motivation for our

choice of tChe .... example will become clear from the considerations

given afte.r formlas (45). The Gram matrix of this model problem

can be calculated analytically. We have

n-n e. -j1T [n+m'n

-L= ', + 4(mtn, ] _l (42)

We deefine 'he condition number for an operator A as

K= IIAII. I : ' i 1

Notice that. the Gram matrix is always selfadjoint nonnega-

tive and the finite Gram matrix is positive definite, provided

- A59 -



the functions {pj} are linearly independent. Fora positive self-

adjoint operator the norms 1hAII and 11A - 1 j can be calculated

by the formulas h1AII =A, hJA II =;-, where X=min t, A=max t ,
tea (A) t~a CA)

and o(A) is the spectrum of A. In this case

K k A X(43)

Numerical data seems to show that even after normalization,

=F2-qmxthe perturbed system m e x sin mx, m=1,2,3,..., does not

2form a Riesz basis of L( [0, ir]). The non-normalized system (0j) is

not aRiesz basis because the necessary condition O<c<infm>_1
for a system {(m } to form a Riesz basis is violated. m>

In Table 1 we give the condition number K defined in equation

(43) for both {*m 1 and the normal "zed functions {0m/ llm0lI 1. Three

different tendencies are noticed:

1) An increase in condition number K as the truncation size
grows.

2) An increase in condition number K as the eccentricity grows.

3) The normalized functions have smaller condition number as
compared to non-normalized ones

2. We now consider the spherical waves, i.e.,

)V

RP_+,,o Yn(4 4)

Here h( 1 ) (kr) is a spherical Hankel function of the first kind and

j£(kr) is a spherical Bessel function. The spherical harmonics

Y (w), where w=(,O) is a unit vector, and e,O are the angular

spherical coordinates, are normalized in L 2(S 2 ), where S2 is the

unit sphere (n is a multi-index n=(Zm)).
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.For large oders (>>kr) in in and Rei n it is known [20]

that

For large orzdezz the spherical waves are essentially a pertur-

bation of the basis Yn(w) by a power of kr. This is the promised

motivation for the choice of the model example in (41).

In the numer.cal data given below we have also included the [
spherical harmonics Yn and the functions

(kr~)(46)

which are solt i n of the equation Au=0 in R. The factor k in

(46) was used in order for the factor kr to be dimensionless.

The Gram ratrix for these four systems has matrix elements,

which are double integrals over the unit sphere. We assume that

the equation of the surface r can be written as s=p(w), where

WeS 2 , and p is a smooth invertible function, so that w=p- (s).

In bur calculations the functions (44) and (46) were considered

on r, i.e. as function of s, where r= I sl , x=s on the surface r.

If the bodies are axially symmetric then the matrix elements of

the Gramins *:an be written as single integrals in 0, and for

simplicity we choose the surface of a spheroid, i.e.

(609/a, + COS /b) (47)
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where a and b are the semi-axes of the spheroid (6 is the polar

angle, so that b is the semi-axis along the axis of symmetry). The

mirror symmetry r()=r(R-O) implies that £ even and L odd do

not couple. Thus the elements of the Gram matrix are zeroes if

£+£' is odd. In this case we can change the enumerationof the

columns and rows in the matrix so that it becomes a block dia-

gonal matrix with two blocks. The size of the first block, which
2max+1

corresponds to the rows with even numbers, is 2 if £max is
maI

odd, and m-a+1 if Za is even. The size of the second block,
2 maxmI

which corresponds to the rows with odd numbers, is 2 if
9max is odd, and max2 if 'max is even.

The numerical computations seem to indicate that neither of

the systems {" n }, {Ret n},or {Xn) forms a Riesz basis of H-L 2 (r).

However, {Y n(p-(s))} forms a Riesz basis of H0 as has been

proven earlier [j. It is seen from Table 2 that the spherical

waves {gn 1, {Re-n 1, and {xn} are not good for expansions in the

sense that the condition number of the Gram matrix grows as the

truncation size increases. Indeed, in this more realistic example

the tendencies I)-3) discussed above for the model problem

seem to be valid, together with the additional observation

4) The systems {ip } and {Xnl have smaller condition
nutrber than {Rin .

The numerical data seems to indicate that the normalized

functions should be used for expansions of the surface field

since the corresponding Gram matrix has a smaller condition

number. Furthermore, there is an indication that for high trun-

cations the normalized systems { n } and {X n } are better than

{Re*n ) . However, the difference is not very considerable. A
n
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large condition number means that the Gram matrix is difficult to

invert numerically. It also means numerical instability, i.e.

strong dependence of the numerical results on the roundoff errors

and errors in the data.

It should be noted that the Gram matrix is identical to a

Q-matrix LE, in the T-matrix scheme for a special choice of ex-

pansion functions. Thussome of the properties mentioned above

might appear within this scheme for this special choice of the

expansion functions. It should also be noted that when the

T-matrix scheme is used to compute the scattered field, additional

operators enter, which tend to improve the situation. However, a

discussion of these aspects requires further investigation.
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4. Concluding remarks

There are several questions, raised by the T-matrix approach

to scattering, which require further study. We conclude by

giving a short list of such questions.

1) Try the system Vni)= j eI Ukkx-sfl -A

of outgoing waves for calculations. Here the system {n I is a
2n

complete system in H0 =L
2 (r). If the system {n} forms a Riesz ba-

sis of H_11 then the system {v n on r forms a Riesz basis of H0 .

This .was established in [11]. From the results in [11] it follows

that any solution of the problem (I)-(3) can be represented by

the series u= O c v which converges in Q up to the boundary.
n=1 n2

Indeed, assume (without loss of generality) that k is not an

eigenvalue of the Dirichlet Laplacian in D. Then the solution to

the problem (1)-(3) can be written as u(x)= ex(ik s s)ds
r 4 7r I x-SkL )

exS(iks'-sl)
where a is the unique solution to the equation 4 (s')dS=;

r
=f(s). If { n } forms a basis of L2 (F), then a= T c nnwhere the

n2 1 n=1
series converges in L (F). Therefore u(x)= E CnVn (x),where the series

n=1
converges unifo-mly in the closure of Q. This was the reason for

suggesting the system {vn instead of the usual outgoing waves (44),

which do not seem to form a Riesz basis on non-spherical surfaces.

The other reason for choosing {v } was that since the expansionn

of the solutions to Helmholtz' equation in the exterior domain in

the functions vn converges up to the boundary, no difficulties with

the Rayleigh hypothesis arise.

2) It was noted in Section 3.2 that the Gram matrices correspond

(for a particular choice of expansion systems) to a Q-matrix. More
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. extensive numerical experiments concerning the condition number

for various matrices a.. i  (i.e. Q-matrices) are called for.

This would provide a better basis for judging the performance of

specific choices if 'j and thus provide a more detailed answer

to Q5.

3) In the present article we have concentrated on "the null

field equa:ions" Ir51 (i.e. (7), (11) etc.) and the question of

obtaining a sol-ution on the surface r. In the T-matrix scheme one

furthermore computes the (truncated) transition matrix (T)m of

the form

(T')m~(48)

where the mxm mmatrices (Q')' (Q") are similar to the Q1 , Q2
m m

matrices in Ape..... 2. The exact (infinite) T-matrix is

independent of the expansion systems used on r. However, the

approximate truncated matrixcomputed according to (48),does con-

tain such a depenIence. It is of interest to investigate the rate

of convergence o. truncated forms like (48) to the true, infinite

transition matrix for the scatterer in question. It is then of

interest to exploit general constraints on the scattering matrix

such as unitarit- and symmetry (see e.g. [7] and the contribution

by P.C. Water-2n in [5]).

4) Extend the drscussion of [11] and the piesent work to the case

of a penetrable scatterer. Of particular relevance here is the

relation between the convergence rates in the expansion used for

the surface fields and their normal derivatives (one aspect of

this relation is treated in Appendix 2).
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5) Study the convergence questions for the T-matrix scheme for

scattering from obstacles with noncompact (infinite) boundaries.

In this context the work in [21]. will be useful. In [21)

the scattering problem was formulated and solved for domains with

non-compact boundaries. For the boundaries, which are locally Lia-

punov and such that outside of a sphere of arbitrarily large but

fixed radius the points of the boundary can be seen from a point

located outside the domain D (in this case infinite), it was proved

in [21] that the Schr6dinger operator with decreasing real-valued

potential has no positive discrete spectrum and the radiation condi-

tion selects a unique solution to the Dirichlet boundary value prob-

lem. The case of the third boundary condition was also treated.

Furthermore, the existence, uniqueness, and properties of the re-

solvent kernel G of the Schr6dinger operator were studied in detail.

In particularglobal estimates of G(x,y,k) and its derivatives,

uniform in a<k<C,O<a<C<,were obtained for Ix-yI-0 and Ix-yl--. it

was proved that the limit G(x,y,k+ic) as c-0, r>Odoes exist and is

attained uniformly in a<k<C. This was done for the boundaries r for

which p(s,F 0 ) (1 + Is) s 0 as Is I--, .1se. Here c>n, where n is the

dimension of the space, and rF0 is the boundary of the "canonical"

domain (the boundary of a cone if n>2, and of a wedge in the two-
e ikrdimensional case). It was proved [21] that G(x,y,k)= 4r u(v,y,k)-

"(1+o(1)) as Ixj=r - , xr- 1=v, where the functions u(v,y,k) are the

solutions of the scattering problem in the sense that they solve the

Schr6dinger equation and vanish on r. Furthermore, it was shown that

an arbitrary function feL 2 (S) can be expanded in a Fourier integral

in functions u and a Fourier series corresponding to the negative

discrete spectrum of the Schr6dinger operator. If the potential is
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equal to zero then the Fourier series part of the expansion is

absent. The wave operators were constructed in [21] with the

help of the eigenfunction expansions.
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Appendix 1: Some results from linear functional analysis.

1. The ga2 of subsuaces of a Hilbert space and a condition for

invertibilitv of the mixed Gram matrices %_,Pj)_

Let FI and H 2 be (closed) subspaces of a Hilbert space H.L

Then the gap cf HI and H is defined as1 2

where PI and P2 are the orthoprojections onto H1 and H2, respec-

tively. Clearly o<e<I, e(H1 ,H2 )=e(H 2 ,HI). It can be proved [14] that

rnax{ sup41I-P)11 ) sup 11('-PxY11.
e 14i xe H,

The following facts hold ([141, p. 252-260).

Lemnna i. Let G and Hn be n-dimensional subspaces of a Hilbert
n n

space H and 6(Gn.H n)<1. Then Gn and Hn have orthogonal bases

u1 , . . .u n and v 1...vn,respectively, and (uiIVj)= i6ij, 1<i,j<n,

where

03l i4.

Lemma 2. Let {¢.} and {¢j}, 1<j<m, be two sets of linearly inde-

pendent elemtents of H. Let 0< m and 0<p denote the smallest

eigenvalues of the matrices (Oi,) and ( ivAj), 1<i,j<m, respec-

tively. Let G M and Hn be linear spans of 01,.''''m and m I

respectively, and Am=(ip.), 1<i,j<m. Let O(G m,Hm)<1. Then Am

is invertible and

I
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where

2. Minimal systems.

A syst2m of elements is called minimal if none of the ele-

men-t.s belon-: -cthe closure of the linear span of the others.

A mininal s,., ste '. is called strongly minimal if

limA m=X >0, where ;k is the minimal eigenvalue of the Gram matrix

1ci-< . A-system {4)is called biorthogonal, to

the system {j4 if ij The biorthogonal systema(.
) ) 1 1

is uniquely defined if f the system {0j) is minimal.

A system {c.} f linearly independent elements of a Hilbert

space H is called' closed in this space if f for fEH the condi-

tions (f , t=0, Vj , imply that f =0.-

A system- {; .; o linearly independent elements of.H is called

compl1e te in H i.-f: ror any fell and any given positive number c>0
M (C) M(E)

one can fin- an E'.ement Z c j. such that Hlf- E c.$. jj<c. Here
j=1 j=1

the constants c. and the number m(e) depend on c and f.

A system {~}can be complete but not forming a basis of H
j,

(see n.3 belo.w for definitions of bases)..Example: H=L ([IO,1]),

*=3 , 0<j<-.. This system is complete in H, but is not a basis

of H. Compoleteness follows from the Weierstrass approximation

theorem. The fl that the system Nx3 is not a basis of 11 can al-

so be easily explained. Suppose that (x0) is a basis of H. Then

(see n.3 below) for any fell the series f= 2: c x3 converges in
2 j =0 i

L ([0, 1]). T herefore f is analytic in IxI<1 and cannot be an ar-

bitrary element of H1. in fact~from Miintz's theorem [16] it follows
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that the system {4.} is not even minimal (every Schauder's

basis is a minimal system). The Mntz's theorem says that the

system {xp j1, P0 =0, O<pl<p 2 < ..... is complete in L2([OIJ) iff there

exists an infinite subsequence p such that E 2
j=1 Pj

3. Bases

A system {Lj} is called a Schauder basis of a Banach space X

if any element xeX can be uniquely represented as x= E c , where
j=1 J

the series converges in the norm of X. A system {0} is called

a Riesz basis of a Hilbert space H iff oj=Thj, where {hi} is an

orthonormal basis of H and T is a linear bounded and boundedly

invertible operator (i.e. T- is bounded and defined on all of

H). A systeIm {¢} biorthogonal to a basis {0j) of H is also

basis of H.

A complete system {0jI in H is a Riesz basis of H iff the

Mz,!,.)ix Oij=(i, j), 1<i,j<co, generates a bounded and boundedly

invertible operat-or on

A complete system {j} in H is a Riesz basis of H iff there

exist positive constants a ,, a2 such that

m M 2. 2

for any m and any constants cj, 1<j~m. If {O. is a Riesz basis

then sup a 2' inf j>aj and similar inequalities hold
1 <iJ 1<j<-

for 11 .Il . In particular sup II jj1 <-. These results can be found
1<j< )

e.g. in [16] , [17] , [19]. In [15] the notion of the Riesz basis

with brackets is applied to some nonselfadjoint integral equations

arising in scattering theory.
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4. Tests for boundedness and compactness of a linear operator

2on .

Let (ai ), 1<i,j<-,be a matrix which is considered as a linear

operator A on £2. When is A bounded and when is A compact?

ere a n r "A; on..

Here and sum over the repeated indices.

, ai)saik k I4< Su? E, laija~kl X

Therefore

'/1o

The operator A is compact if sup ( E £ aija iki) <- and
1<k<- j=1 i=1

sup . 0 - - . (A1.2)

Lemma (Schur): Let a ij=aji and §up Ejaij j<M. Then lAIlI _M,

A: Z _£

Proof: It suffices to prove that I (Ax,x) 1_MII xl 2 one has
2(Ax,x) Ila*aL< Xlaihjl xi j2 <M IIxI[2

ijxj j _.l 2 - 13

5. Sace w..... reative norms [13

Let F. an'l :j be Hilbert space II+,cH and H+ is dense in H.

Let ueH , ;cH. Consider the completion H_ of H in the norm

where -j i*'+ denotes the norm in H and (f,u) denotes the inner
11 14 + f

product in H. The space H_ is a HilJbert space, 11+cHcH_, and

H is dense in 11-. -A71 -
A.!
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6. Bessel and Riesz-Fischer systems. Interpolation in Hilbert

space.

The basic equations (7) can be considered as an interpolation

2problem in the Hilbert space H (H=H0 =L (r) in our case), i.e.

the problem (h,-,n)=f , n=1,2,....

Definition 1: A system {in ) is called a Bessel system ifn
CO 2F j(h, n) 2<-, whenever hCH.

n=1
Definition 2: A system { n is called a Riesz-Fischer system if

n

the problem

, n (A1.3)

is solvable whenever (f }c2.

n

The set of sequences {(h, n)}, n>1, heH is called the moment space

M of (in]. The questions of interest are:

1) When does a sequence {f n}M? That is, when is the problem

(hn)=fn , n>'., solvable?

2) Is the solution unique?

3) How to construct the solution?

The answer to question 1 is given by

Proposition 1. In order that (A1.3) be solvable and lihl j<C it

is necessary and sufficient that

for any m arId any scalars an

The answer to question 2 was already given: the solution of the

problem (A1.3) is unique iff the system { n} is closed in H. The

following facts are useful [19].
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Proposition 2. If (A1.3) is solvable then it has a unique solution

of minimal norm.

Propositio" 3. The solution of

thj~n =in(A1 .4)

of minima... rorn, always exists, is unique, and can be found by the

formula

0 4%... 4Mt, (A1.5)'i
* Moreover, if (A .) is solvable and h is its unique solution of

minimal norr he

In, (A1 .6)
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Appendix 2. Discussion of some expansions occuring in the

T-matrix scheme for a penetrable scatterer

Using the Green's theorem one obtains the identity

where + denotes the limit value from the interior (see (44) for the

definition of Rei n). Assuming that the following series converge

in L2 (r)

(A2.2)
n

E- 8n (A2.3)
n

one substitutes the series in (A2.1) to obtain

0~ =jy X:181j S- Vn. (A2.4)

Truncating the series and using the first m equations in (A2.4)

one obtains a linear system, which can be solved for c {1 ) or d0 )

n n

In the case when n and Reipn are defined as in (44),it follows

f.cm the formoia

Re i -,- C1 -]aS = -'A (A2.5)

that the tr.incated linear system can be written as

Qd -U 1X)c~ Z A2.6)

where aIm)(d • .,d , c 1 = (c ... c and
S m m

- M. - _ _
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in, P_. I

(X is a known scalar, depending on the normalization of VF and
n

Ret ). Term zv term differentiation of (A2.2) would imply
n

c - 1, which is not consistent with (A2.6). That termwise

different.iaticn can not be used to obtain d (by taking d(1)=c 0 )

n n
in (A2.2)-(A2.3)) is most easily seen from the following example

in which r is a sphere of radius a and in which one keeps only

one term in the series (A2.2), so that the questions about conver-
(1) (aY() ic

gence of the series are irrelevant. Take u+=hn (ka)Y (w). sincen n

(V 2 + 2 )u =0 for I '<a and ul =0 1) (ka)Y (W),one finds that
hn( 1 ) (ka) ( O T fu+IL )=I"Jn (ka) -i fWkr)Y () (we assume that jn(ka)T0). Therefore

fl) (k) -n f

1K*

T ~ kh (kaV"(W).

Indeed

6(ka) (kn a' (ka [ ka t a 1
. -Q- h -a) n n jnkaka)k+)0-

The numerato: is the Wronskian of h(1 ) and j and is not zero.n n
The genera: explanation is that even if one can continue the

series (A2.2) analytically inside D in a neighbourhood of r, this

continuaticn nill be different from the solution u of the problem

(v+ku.o ;, 1 Ir U+ (A2.8)

so that on r, where w denotes the analytic continuationI N

of the ser.:-; (A2.2) in V. Indeed, u+=w on r and if au= on r

then u-w in V by the uniqueness of the solution to the Cauchy
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problem for Helmholtz' equation. But this leads to a contradiction

since w is singular at the origin (0ED).

If, instead of (A2.2) and (A2.3), we consider the expansions

=  QC n (A2.9)

__- -' -- (A2.10)

then the truncated matrix equation analogous to (A2.6) reads

n (A2..11)

where

a., Je s (A2.12)

(2)
Thus, assuming that (Q 2}, n,n'<mris invertible, we obtain

n) (A2.13)

(this result is used in the T-matrix apparoach to scattering from

a permeable body {6], [7]).

A relevant fact of more general nature is the following lemma.

Lemma Let

(v+ ,'~b-o ir.V , 1j.m
I~ Z "=,.

Assume that

j(so that the Green's function G Nfor the interior Neumann problem
'I - A76-



exists and is unique) and that the fc. M)}, jI<m, have been deter-

mined so that (where jj'I is the norm in H0 =L 2(F))

-M - N i < (A2.14)

Then

IL - tLm l C Z (A2.1 5)

Here and below c denotes various constants depending on r.

2 2avProof: Let U-UmE =V. Then (V +k )v=O in D and <e. We have

r

,Y _eD

and also

v(sa G4 . 3
P

The following cstirnate is known [1]

_Av
With h=-i-N we then have

~hcS|V(Sll 1E ¢

r

which implies

1lvil <CE

since the operator S: H 0 - H 0 ,(H 0 =L ())

SIs-si1.

is bounded. In factalso S: I 0 -+If is bounded. Therefore
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av
where is any tangential derivative of v. In the above it was

essential that the ~(m), 1<j<m,were determined so that (A2.14)

was valid. If, instead, the c!m) , j<m are chosen so that
IthA

and if we assume in this case that

(so that the Green's function GD for the interior Dirichlet prob-

lem exists and is unique) we have

ov '  144 0 Y ) N, CV

where N. is a direction which conicides with the normal to r on r.

FRowever, when we let x approach r, we do not obtain a bounded

operator on H0 ;n the present case. In fact, the estimate (A2.15)

does not imply

, S 0 (A2.17)

even in the case u Ir=fEC'. Here u is the solution to the problem

(V+I)LL~ Dr* I L, (A2.18)

and * solve the equation

Proof: If we consider the function f CL 2 (r, I1f, 1<c, then
11h- E c. .I <2e where h =f+f . Let u denote the solution of

(M)-(3) with f substituted by h.. One can see that 1- N cj 1j I
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can be as large as one wishes if f is chosen appropriately. In

fact, - can be even not defined on r. To see this one can take

k=O and D to be a circle of radius 1. Then

ir

.Lk L rI1 n

--- (A2.20)

.2If E Inh I=- the function (A2.20) has no limit in L (r) as
r-1-0. If 2 2nh 1 < ,then the limit does exist and

IIi(I h=-C n
=2wc can be as large as one wants if f is chosen approp-

riately.
A

I,

II

i

I
I,
I.
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Appendix 3. About projection methods.

1. Convergence of projection methods.

Let A be a linear bounded and boundedly invertible operator

from a Hilbert space H onto a Hilbert space G. Let P be them

orthoprojection onto Lm, where Lm is an m-dimensional subspace

of H, Lm+iDLm , and the sequence of the subspaces Lm is limit

dense in H, i.e. for any h6H the distance from h to Lm goes to

zero as m-. Let Qm be the orthoprojection onto Mm , where Mm

is an m-dimensional supspace of G, MM+? Mm, and the sequence

Mm is limit dense in G.

Consider the equation

Ah =f (A3.1)

and the projection method of its approximate solution

QmA.P, h. (A3.2)
The'question of when the following statement is true is then of

interest:

Equation (A3.2) is uniquely solvable for all sufficient-

ly large m and 11h m-hl*O m . (A3.3)

Here h is the solution of (A3.2). In the problem described in the

Introduction, h,= = c.m)., and Pm is the orthoprojection in
jzl 2H=L 2 (rM onto the linear span of 1'' m' G=t2I Qm is the ortho-

projection in Z 2 onto the linear span of the first m coordinate

vectors in t2 , i.e. onto the subspace of the vectors whose compo-

nents f vanish for n>m. The following theorem, which is a parti-

cular case of a more general result from [18] answers the above

question. - A80 - /



Theorem I. (:A3.3) holds iff

c1,Pr J Vrnlrn, 1 e1A,cO (A3..4)

and

Qm mH -, .(A3.5)

Remark 1. P- _ and Qm are projections onto m-dimensional spaces,

where m=1,2,... (this is the case we are interested in in this pa-

per) then (A3.4) implies (A3.5), because the.operator QmAPM:

P MH-QmG is an injective mapping between two m-dimensional spaces

and therefore this mapping is surjective.

Proof: 1) (A3.3) =;(A3.4-5). If (A3.3) holds then (A3.2) is

uniquely sol-j abe for m>m 0 and therefore (A3.5) holds. Further-

more, (Q A? f=hYfeG. Therefore (QAP 1 Q <c<-. HereMf f=,fG hrfr r. m -

and below c et various positive constants. Thus liP hill

II (Q AP n- C',h <c IQAP hil , i.e. (A3.4) holds.. Note that

-11
(QmAPm)-  QnAPm= where I is the identity in PmH (not in all of

H). 2 ) (A3.4-5) -=(A3.3). From (A3.5) it follows that (A3.2)

is uniquely olvable m>m 0. To show that 1lhmhI -)-, , consider

the equalities

QmPPi + Pnrn

which impl.:- that

Q - -m A  -mh. (A3.6)

Since the se-.uence of the subspaces 1am is limit dense in i one

-A81-
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has (I-P )h-0-ahEH. Therefore (A3.6) and (A3.4) imply that

Thus

Ihhhmi [Ih- Prh11 lPmh-hm1I 0 r -' 0 . (A3".8)

This completes the proof, which is borrowed from [18] (see also [22]).

2. Stability of the projection methods.

Suppose that (A3.3) holds for the operator A in (A3.1).

1) Will it hold for A+B where IIB1L <6 and 6>0 is sufficiently

small? The answer is yes.

2) Will it hold f-r A+B where B is compact and A+B is boundedly

invertible? The an=-wer is yes.

The proofs can be foTun-d in [18]. Since they are simple we give

them here for convenience of the reader. 1) Let 6 =c-E, IIB<6,

where c is the constant in (A3.4), 0<E<c. Then IIQm(A+B)Pmhil >

>c [IPht - 611 Ph[l =E IPhl . For the case when Qm and Pm are

finite dimensional projections onto m-dimensional spaces, Theorem 1

is applicable. (See Remark 1.) In the general case it is not dif-

ficult to show that (A3.5) holds, i.e. that the operator Q(A+B)Pm:
PmHMQmG is invertible:

m~ 
An

C--t

and j(QmAP.. Q mBP m  < 1c . Therefore conditions (A3.4-5) are

satisfied by the operator A+B and (A3.3) holds for the operator

A+B. 2) If 5 is compact then II(Q mAP m)- QmB - A-1 BII - 0, m-- .

because (QmAPm) -1-Qm A strongly. If A+B is invertible then so

is I+A -1B, and IIP hA-1 BPmh1l >c1 IJPmhll . Therefore
m - 1 -

-A82-



* •

3 c11 P1 + (Q'kPvm') QmPa hll >, cl P,,h + ABPMhlI

* ci1[(Q A ,,j Kg O NIP,,hl

Thus, condition (A3.4) holds for A+B. To check condition (A3.51

one notes that is invertibleQBPm is compact and %APm+

+QmBPm is one to one by virtue of (A3.4). By Fredholm's alterna-

tive one concludes that Qm(A+B)Pm is invertible and (A3.5) holds.

M1

-A83-
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Table I

Truncation size

Eccentricity 5 10 20 f 40

q=0.1 6 (4) 60 (40) B.103 (5-10 ) 2-108 (1.108

q=1/3 1-10' (80) 7-10 (4-104) 3.1010 (2-1010) >1016 (>1016)

q=1 8 s"io (5-103) 1-109 (6-108) >1016 WO 16 >1016)

The conditicn n K-.be-- K as a fuction different truncation sizes and eccentricities for

the model problem (see (41)). The corresponding condition number K for the norualized

functions Cm (€m, - is given in parentheses.

Table 2

Truncation size ( max; even or odd I-values)
5 even 5 cd:! 9 even 9 odd 19 even 19 odd

kat4
kb=2

4z 34 2-107(30) 1-109(50) >1016 (3-104) >1016(6-1D4

2e 1) .:.3} 5-106 (200) 2-108(400) >1016(1-106) >i0
1 6

(3-10

1 C; 3(5) 1o3[(} 2-106(50) 2.106(100) 1-1014(4104) 1.1014(0.105)

Y 3f3) 3 3) 4(4) 4(4) 4(4) 4(4)

ka=G6
kb 2

t 3003 40(5) 2-107 (40) 1"109(90) >1016 (1105) >1016(3.1051

Rein 400(4:0', 20(80) 4-10 4(500) 8-10 5(1-10 3)>10 16(1-108) >1016 (3-10 8

21C6) 2-04(10) 3-106(100) 3-106(200) 5_1014 (2-105) 4-1014(4-105)

y 7(7) 6(E) 9(9) 9(9) 10(10) 101I0)

ka-1O0
kb=2

9' 30(31 300(5) 2-107(50) 1109(100) >101612,10) >1016 (4-105

Re" : 1,31) 3(2) 60(30) - 600(200) 5-1014 (8-108) 7-1015(2109)

3fl-1 "!i) 2-103(10) 5"10 6(100) 4.106(300) 1-10 14(3-10 5) 71014(8105

y .. 1 2- 1 10(10) 30(30) 30(30) 40(40) 40(40)

The cc,.nition number K as a function of truncation sizes and

eccentricities for three different spherical waves (n), (Pe11).

[,n ) and the spherical harmonics (Y n). The correspondin9 condition

wi.aber for the normalized functions is given in parentheses.

rsO in all cases.
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-Variational principles for resonances. 11 APPENDIX vI
A. G. Ramm8)
Department of Mathematics, Kansas State University, Manhattan. Kansas 66506

(Received 23 June 1981; accepted for publication 7 August 1981)

Variational princip!es for calculating the complex poles of Green's function are given.

Convergence of the numerical procedure is proved.

PACS numbers: 03.65.Nk

I. INTRODUCTION II. A VARIATIONAL PRINCIPLE

This note is a continuation of Ref. 1, where the follow- The starting point is the following observation: k is a
ing problem was collsi.icred: complex pole of G (xy,k) iff the equation

(- V-- k2)u= 0 in l, -,?: = 0. (1) A

Heref2 is an exterior domain, is its closed smooth bound- -(sjffk)tdt=O lk <0,

ary, and D = H3\.O is bounded. Problem (1) has nontrivial g(s,t,k) = exp(ik Is - t I)/(4rrls - t 1), (5)
solutions if and only if(--iff) k is a complex pole kq of theGreen's function G (x,y,k ) of the exterior Dirichlet problem, has a nontrivial solution. This observation and some conse-
Gns f.uncasttionary aIaofthtionprinciple for resonances, quences are discussed in Ref. 3. For the coavenience of the
In Ref. I a stationary variational piclefresncs, reader let us note thati.e., complex poles k., was given W lt

k 2 = st{ (Vu,Vu)/(u,u) 1, (2) G = g- f x,tz) dt, (6)
where st is the symbol of stationary value,

where N, is the unit outer normal torat thepoint r. If k is a
(u,v) = lim expf - crln r)-'x) i:x) dx, complex pole of Goforder rone can multiply(6) by (z - k )

S-+OJ and takez--*k andx = sEr'. Thisyields Eq. (5)(see Ref. 3, pp.

f r= Ix (3) 290-291) withf#0.

f= L, . Let us formulate the following variational principle

In Ref. I the test functions for 2 v.e e tuken in the form F(f) -Af min, Ilf 1 = 1, (7)

x "( where (ff, is the norm in the Sobolev spacHp: = WP(I',
-- ,lf11 = If(- From the above observation ittollows that (7)

where n =x xl-', Y,., e th- phe-al harmonics, c,_ are has solutions and the min is zero if k A-,,, where k. are the

constants, k is a parar-nter, and gi. :;:O s a Ifixed smooth poles ofG (x,k f. Irk A kq then inffl/, , IAA, > 0. Indeed, if

function vanishing on/ nd equal t, 1 outside of some ball there exists a sequence 11f 11 = 1, IAf 1,- then
containing D. It wa nt pro'ed in R th, th e f.-f,1f 1l 1 Af= 0, and therefore k =k, (see Ref. 3, p.
procedure suggested t e pro nvergs. The question forrnu- 291). The only point which is to be explained is the conver-
ated in Ref 1 concer g tihe justi f..t; : of the numerical gence in H:f.---f. In Ref. 3 it is explained thatA is a pseudo-

approach is still open. The -,,irpose of this note is to formu- differential operator oforder - 1, that is,

late another variational pr..ciple fo calculating the com- alf-, - I< I'Mff, <0a2!I_ ,. (8)
plex poles kq and to p:five ;tc convergt rice of the numerical Here a ,a2 > 0 are some constants, - o <p< oo if Fc C -,

procedure. The method in R er. I is similar to Ritz's method. and the fact that k # k. was used essentiall if k # k, then
The method suggested in tli:s =:o:t ii sivilar to Trefftz's kerA _( f Af= 01 = 101 and A maps Hp onto H + ,. If

method. The advantage of th me: had is *hat one deals with 1A-f I ,-- and 11 f, I 1, then (8) with p = I shows that
the compact operators, while in Ref. , the operator was not 1fj,0 . This contradicts the equation II.fJ = 1. Therefore
compact. Our construction i. ,atural in the framework of
the singularity and eigei;ndrde ex;,3i"sion methods. 2 The inf IAfI,>0 if k #k,. (9)
convergence of the me:hd i1! be proved. A result which is ilf 1I

ofgeneral interest, as i r s er . t:, re author, is a construction, Consider a numerical method for solving problem (7).

ofa stationary variatior.i! p- i,:ipje :ad a proof of conver- Let I j I be a basis of H,

gence for a class of no.;- t.f-adjc.nt s) mmetric operators
(B' = B), which occur fr:.qiently in the scattering theory. f Ij*4* (10)

J-1

The necessary condition for F(f) to be minimal and

min F(f "') = 0, Ilf'"'1 -- 1, yields:

'Supported byAFOSR 8002-: ..A'.I ,bje.tclasification47AI0,78A45. , a,,,c,. =0 I <j<n, (1 I
SIIFO5, 35105. r-I

1112 J. Math. Phys. 23(6) Jjne 1982 0022-2488/82/081112-03S02.50 0 1982 American institute of RIpcs 1112
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aj. =.,.(k =(Af..Afj), IcJIV >0. (12) where

,~,~.(22)
Thus n

det a.(k) 0 1 cj~m (n. (13) In particular, our assumption means that

Let k denote the roots of Eq. (13). Our first result is (T T T+ T + TT I T (1 + TI{! + 1,

Theorem 1: There exists lim.-o, k "I -"k, and k. are (1+ P. T ~k " - f"=_0, k - kIce. (23)
the poles ofGreen's function G (x,,k ). Everypolek. isalimit where P. denotes the projection in Honto the bnear span of
of a sequence k ", where k '"'are the roots of (13). Conver- , ..... ,r. Equation (23) says that I + P. Tk is invertible
gence is uniform in q for any finite interval 1 q4Q. in thecircle Ik - kI <e. Ifn islargeenough thiimpliesthat

Proof- We will prove that: (i) Eq. ',! 3) has roots in the I + f(k Iis invertible in the circle (k - k, I <c. because
circle lk - k, I < if for any fixed e > 0 however small if (*) III + T(k) - V1+ P, T(k )J--,O asn--oo. Tisisacontra-
n > n(e) is large enough. ({iP Ufn > ?-(El and there are no points diction since I + T(k,) is not invertible. Let usexplain (0).
k, in the circle (k - z i < r then Eq. (!31 has no roots in the Weneedtoshowthat 11(I - P, )1fI---,Oasn--.o.Since T(k is
circle Ik - z I < e. An important part of the proof is the re- compact it can be written as TN, + BN, where l,,ll <d,.
duction of the problem to the problcr with the operator dv---.O as N--*o, and TN is a finite-dimensionaloperator. It
I + T(k ), where T(k) is compact, is sufficient to prove that I( - P, )T7v 1-0 as .---. With-

Let us fix e> 0 such that in the circle Ik:1k - k, I < E out loss of generality onecan assume that T,, isone-dimen-
- K., thereare nootherpoles. The operatorA = A (k) can be sional operator, Tf= (f,v)u. Then

written as i -l_,}T, II(1- P.)ull/v)l
A(k)--Ao[I+ T(kf]. (14) <11il Ifvll Ilu -P.ull--O as &--*o, (24)

where since P,.--I strongly. Thus the statement (i) is proved. Note

AO = A (0), A , = A0 >0 in H = L (F), that the orthogonality of/P, is not used in (24. In order to
prove (ii) we suppose that for any e, > 0, L, --A Eq. (13) has a

Af rdt (15) root k"I in the circle 1k - zJ <c and show that under this
r 4vr. assumption z has to be a pole of the Green's funaction. Theand assumption means that

T(k)=A "'[A(k)-Ao1. (16) [I+Tk("f)1P"=0, llPfII = 1 kAt-z. (25)

The operator A0 is a bijection of H, orto Ht 4.3 ; Since 11 f-111 = I, one can extract a weakly convergent in H
b11f10o.tAufh~b. flo, tl' .= cc:r.s: > 0, (17) subsequence which is denoted againf"l "ml- means

hcpRweak convergence). Since T(k) is compact the sequencewhilt" T(k) is compact as a map FPt: (see Ref. 3 for de-

tails) because A (k) - A is an operator with a nonsingular T(z)f1"1 converges strongly in H:

kernel. Let us rewrite functional (7) as T(zjfp'-T(k )f (26)

F(f) =jAId+ 7")f =iin, = . (18) On the other hand,

From (18) and (17) it folho,vs thal the problem (7) is (IT(k.) - Tiz)11--. (27)
equivalent to From (25H27) it follows that

F(f) = I(+ T)fl20= rin, llf- mmL. (19) fP"0..f' Uf. l = , (28)

The matrix of the system (11) can be written as and

(i.VO{I+ T)f.,(+ T)f), (20) [I+T(z)1f=0, llfll=l. (29)
where (.,.) denotes the scalar product which is metrically The proof is complete.
equivalent to the scalar product in H. This means that
d,(f,f)<(f,f)d(f, f)0 . w~here d, > C, and d2 are constants,
fsH is arbitrary. In the seqtel we wil! not discriminate be- Il. DISCUSSION
tween (.,.) and (.,.)0. This is ?ossib because ((I + T)f,1 S

1+ T)f}and((I+ Tf {! + rjf)0 nttain theirzerovalues . The variational principles(19)and(18)canbeviewed assimultaneously. The syst', I t) can bt considered as the the least square method. Let us consider instead of(13) and

system which corresponds .. the Ri:z method for functional (20) the following equation:
(19) with the test functiors fj. This completes the reduc- detb,.(k) =0,Iqomgn, bj,,--((+ T(k~f.,f). (30)
tion of the original problerm t.'. tne problem with the operator Arguments similar to the ones given in Ref. 3. pp. 192-193
I+ T(k), where T(k) is a cc mpact analytic-in-k operator show that: (ij For any e> 0 and k there existsa root P" of
function on H. To prove (i)lt us assume that for a fixede>0 9 -
and k. and all n there are n.- ,o is k " of Eq. (131 in the circle Eq. 30). such that 1k, -A ,')] <e ifn n{e). (ii IfA " is a" s~~quence of the roots of Eq. (30) and P',L-*R an,-*o, then
Ik - k I < e. The system (11) with the matrix (20) says that seq e of therenso (30)tand .kEq an-0} tenb

k. is a pole of the Green's function. Equation (30) can be
f(I + T)f"41, + T)f) = 0 I<j-4n,f"1 O, (21) viewed as a necessary condition for the linear system of the
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Galerkin method for the equation (I + T(k ))f= 0 to have a bj,, = b,,j. (42)
nontrivial solution. The Galerkin equation is of the form The proof is immediate.

(1'"1 + T(k )f"',j) =0 I<jgn, (31) Proposition 1: Assume (33) and (41). Then a necessary

wheref'" is defined in (22). The basic idea is that the poles k, condition for (40) is the system (31).
are the points at which the operator I + T(k ) is not inverti- Proof: The operator B I + T(k) satisfies (33). From
ble. These points can be found by the Galerkin method, by this and Lemma 1, Proposition I follows.

minimizing functional (19) or by some other method. It is Remark h The results olSec. III give a convergent nu-
interesting to note that the Galerkin equation (31) can be merical scheme for a stationary variational principle (32)

obtained also ai anecessa-v condition for thestationary vari- with a compact operator Tsatisfying condition (33), i.e.,
ational principle symmetric non-self-adjointness. Such operators occur fre-

quently in the scattering theory. A simple example is prob-
((1+ T~k))f,f) st, f! >, (32) lem (1). There are other examples in Ref. 4.

where st means stat;onar. :aLi-. This is not true for an arbi- Remark 2: A numerical scheme for calculating the re-
trary operator, but the operator B --i + T(k jisa symmetric sonances based on theorem I is as follows: (1) Calculate mar
non-self-adjoint operator on F1 = L '(F ), that is trix a,,, by formula (11). (2) Find roots of Eq. (13). The corre-

= B sponding solutions of() can also be calculated by this
B*---B or B (s.t) =-B s)B (t)] 3 numerical procedure: Findf|,' by formula (10) and

Therefore the necessary condition for (32j, which can be u'"1 - Afl"' is the approximate solution of(1), which con-
written as verges to the exact solution of (1) as n--- o. This exact solu-

(Bf,h)+(Bh,f)=O forall h-., (34) tion is of the form u = A k,)f,f= limf"' as n- 'co and Jim

here means the limit in H = L 2(r).
yields Remark 3: For numerical calculations instead ofpinci-

0 = (Bfh ) + ( B *f h) (Bfh I - 1B'). (35) pie (32) one should use the equivalent principle

Let h = v, where vIEH is an arbirary rt.ai-valued function. (A (k )f,f) = st, f11' >0. (43)
Thn (35) says that The equivalence of(43) and (32) follows from the fact that the

0 =B f+f). (36) necessary condition for (43) is the equation

Let h= iv. Then (35) says that A (k )f= Ao(I + T(k ))f= 0, 1111>0, (44)

0 = B(f-f). (37) which is equivalent to the necessary condition (38) for (32)
because kerA, = 10. If one takesf =J " as in (22), then the

From (36) and (37i it follows that th.e e.,:ion analog of(30) is

Bf=(I+ T(k))f=0, ilf!!> Q (38) det(A(k)f.,fj)=O Igm,jn, ,(45)

is a necessary condition for (321. and th- convergence of the numerical procedure follows
Our aim is to show that Eq. (3 1 :,s i ,,ecessary condition from the arguments given for Eq. (30).

for the problem

(Bf,f) =st, IjfIj >0. (39)
Let us takef =fl") and rewrite (39) a,

X b,,c, = st, by,.= (Sf,,, ~j. (40) 'A. G. Ramm, "A variational principle for resonances," J. Math. Phys. 21.
/.,a - l2032 (1980).

In general assumption (33 does not imply the equality 2A. G. Ramm, "Theoretical and practical aspects of the singularity and

b, b,,,. Therefore the folowing ler ma is of use. eigenmode expansion methods," IEEE Trans. Antennas and Propag. AP-
28,897 (1980).

Lemma 1: Assume (33) and 'A. 0. Ramm, Theory andapplicationsofsomenewclassesofintegmlequa-
fj =f, j= 1,2,.... (41) tions (Springer, New York, 1980).

0. Honl, A. Maue, and K. Westprahl, Theorie der Beugunq (Springer,

Then Berlin, 1961).

L - A90-

1114 J. Math. Phys., Vol. 23, No. 6, June 1982 A. G. Ramm 1114 ....

_ II I I L II . . . .. . S --. -


