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1.0 INTRODUCTION

Renewed interest in HF communication and the use of
over-the-horizon radar have created a need for compact and
reliable digital ionosondes that automatically scale the iono-
grams and give the important ionospheric parameters and the
vertical electron density profiles to the user in real time.
After decades of little progress in the ionosonde field mod-
ern digital techniques were finally applied to ionosondes
[Bibl and Reinisch, 1978; Grubb, 1979]. To solve the problem
of automatic ionogram scaling in a way that is applicable to
not only the mid-latitude but also to the high latitude and
the equatorial ionosphere requires an ionosonde that provides
adequate data even under disturbed ionospheric conditions.
Digisonde systems have successfully operated at the polar
cap (Thule, Greenland, 76°N), in the auroral region (Goose
Bay, Labrador, 5u4°N, geographic, 65°N geomagnetic) and near
the equator (Kwajalein, Marshall Islands and Natal, Brazil).
The automatic scaling and true height algorithms discussed in
this paper have been tested with Digisonde ionograms from
Goose Bay, Labrador which show spread F about 50% of the time.
The Air Force Geophysics Laboratory is operating the Goose Bay
Ionospheric Observatory since 1972 [Buchau, private communica-
tion]. The ionograms from this subauroral station display a
large variety of features: quiet and disturbed daytime re-
cordings, spread F during the night, the mid-latitude trough
moving over the station, fast variation of the ionospheric
parameters and frequent absorption events. Four months of
Goose Bay ionograms for the high sunspot year 1980 served as
data base for the evaluation of the scaling and true height
algorithms., Some 8000 digital ionograms for January, April,
July and September 1980 were processed on a CDC 6600 computer.
Since manual scaling of the more than 2000 hourly ionograms
was available it was possible to evaluate the performance of




the autoscaling algorithm., To our knowledge it is for the
first time that anybody succeeded to automatically scale a
large number of quiet and disturbed ionograms. Since March
1983, the Automatic Real Time Ionogram Scaler with True Height
Calculation (A.R.T.I.S.T.) is operating with the Gsose Bay
Digisonde., The A.R.T.I.S.T. is an 8086 based Digisonde sub-~
unit that determines the traces, parameters and profile within
one minute per ionogram.

In Section 2 we briefly describe the Digisonde 256
for which the A.R.T.I.S.T. was developed., Section 3 outlines
the scaling algorithm and the profile inversion method. Re-
sults of the comparison between manual and autoscaling are
shown in Section 4.
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2.0 DIGISONDE 256

A description of this new digital ionosonde is given
in a report by Bibl et al [1981]. 1In the context of this
report it is sufficient to summarize those features that are
relevant for the automatic scaling of ionograms. The spaced-
receiver drift-Doppler mode of operation will not be described.
The system generates for each ionogram scan sixteen independ-
ent ionograms identified by different observational parameters
from which all relevant information can be drawn. Best auto-
matic scaling results are obtained by monitoring the incidence
angle and the polarization of the incident signals together
with the Doppler shifts. Either 128 or 256 ranges can be sam-
pled, and range spacings of 2.5, 5.0 or 10 km can be selected.
For each pixel, amplitude (logarithmic) and phase (linear) is
given with 8 bits resolution. The frequency scan is either
logarithmic or linear (Af from 5 to 200 kHz). When high reso-
lution virtual height measurements are required groups of
closely spaced frequencies are transmitted and h'! is deter-
mined from the phase change with frequency. For a quiet iono-
sphere the resulting accuracy is a fraction of 1 km. To allow
operation in regions with high interference levels the 256
uses phase coherent signal integration over from 5§ to 512
pulses at each given sounder frequency. The high frequency
pulses have interpulse and intrapulse pseudo-random 180° phase
codes that suppress interference as well as high order multi-
ple echoes. For each ionogram frequency the interference
level is tested for three neighboring frequencies before
transmission; the frequency with the lowest noise level is
selected for transmission. The processing gain obtained from
this digital technique results in high quality ionograms
which can be automtically scaled.

The Digisonde is fully programmable from an on-site
terminal as well as remotély via telephone/modem connections.

id




Data recording on site is on magnetic tape, floppy disk or
film and hardcopy printout. The ionograms and/or the scaled
data and the electron density profiles can also be printed
remotely, ‘




3.0 SCALING ALGORITHM

The ideas and procedures for the automatic scaling
of digital ionograms have been published in a series of papers
[(Reinisch and Huang, 1982; Huang and Reinisch, 1982; Reinisch
et al, 1981; Reinisch and Huang, 1983]. It suffices to give:
a brief summary.

Ideal ionograms (Figure 1), recorded under quiet
conditions with a relatively low level of interference, pose
no difficulties for automatic scaling, yet they are useful to
illustrate some of the scaling procedures. (Manufacturers of
ionosondes generally select such quiet ionograms to demon-
strate system performance and the capability of automatic
scaling. We refer to Figures 3, 4 and 5 for examples of dis-
turbed ionograms which are successfully scaled by the ULCAR
algorithm.) The lower part of Figure 2 shows the amplitude
ionogram containing all signals. Removal of the non-vertical
and X-polarization signals results in the upper ionogram of
Figure 2, which is much easier to scale automatically. The
X-trace data are not discarded; they are used for the accurate
determination of foF2, For bottomside ionograms, the O-trace
is generally better presented than the X-trace and our auto-
scaling effort concentrated therefore on the O-trace. When
operating with a Digisonde 256, complete O and X ionograms are
available which will improve the determination of the profile
between the E and T layer.

It is important to emphasize that even at mid-lati-
tude the percentage of unusual or disturbed ionograms might
be as high as 30%. The basic concepts of the scaling proced-
ure must take this into account. In general, the vertical 0
and X echo traces must be found within spread F signals. Mul-
tiples and oblique echoes must be eliminated relying on the
amplitude, polarization and incidence angle information con-
tained in the Digisonde ionograms. This is only possible by

examining the ionogram in its entirety.
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To find the T trace the ionogram is surveyed for
heights larger than 160 km, and the "center window" (Figure
2) with the maximum signal energy is determined. A first
approximate trace, the baseline, is constructed by sliding a
searching window toward higher and lower frequencies. Two
hyperbolic functions

h} - 1

X =T * IFpT
and
a+b[f+7fH]

are fitted to the 0 and X amplitude pixels in order to deter-
mine foF2, the critical frequency of the F2 layer; f and fH
are the sounder and gyrofrequency, respectively.

The main difficulties for the E-region are the iden-
tification of E, Es and night E. To find the normal E trace
an analytic function is fitted to the amplitude pixels. The
function is derived from a parabolic profile and the three
parameters of the parabola, height, half width and peak den-
sity, are determined such as to maximize the average signal
amplitude of the ordinary vertical echoes traced out by the
h'(f) function. Continuous 0 echoes beyond foE are identified
as Es trace. To save CPU time, the search for the peak den-
sity (or foE) of the parabolic E-layer during daytime is lim-
ited to $0.3 MHz around a predicted median value.

As a special provision for high latitude stations,
the program allows the detection of particle ionization in
the E region, often called night E [King, 1962]. As soon as
the predicted foE values goes below 2.5 MHz, the program
tests for critical frequencies of up to 6 MHz, Figure 3 is
an example of a night E condition in Goose Bay with foE = 2.6
MHz at 20:19 local time.
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Finally the E-region data are investigated for a

sporadic E-layer trace. If a continuous echo trace with or-
dinary vertical echoes can be found for f > fE’ its highest

frequency is identified as foEs (foEs = 4.0 MHz in Figure 1

and 3.1 MHz in Figure 3). Figures 3 to 5 show scaling exam-
ples for quiet and disturbed ionograms.

Having h'(fi) it is of course possible to calculate
the electron density profile [for example, Doupnik anc Schmer-
ling, 1965]. Since the autoscaling method produces some oc-
casional wild points which are likely to adversely effect the
conventional lamination procedure we developed the profile-
fitting technique for the calculation of the F-region profile.
The F-profile is represented by a single analytical function
consisting of a modified sum of shifted Chebyshev polynomials
(Huang and Reinisch, 1982, p. 838, Eq. 6]. The idea of poly-
nomial fitting had been developed earlier by Titheridge [1967].
A parabolic approximation of the E-region profile is automat-
ically obtained in the E layer scaling routine. E and F pro-
files are joining smoothly allowing for a parabolic valley
between the E and F region. Comparisons between manual and
autoprofiles are given in Figures 6 and 7. The solid line
is the autoprofile. The stars indicate the profile obtained
from applying the conventional lamination method to the manu-
ally scaled data. An almost identical profile (squares) is

obtained when the lamination technique is applied to the
autodata.

Examples of automatic profile plots from ARTIST
system are shown in Figures 8 and 9 where the transition per-
iod for the morning rise on September 15, 1980 (Figure 8) and
the evening decline on April 1, 1980 (Figure 9) over Goose
Bay, Labrador, are shown.

12
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4.0 COMPARING AUTO- WITH MANUAL SCALING

A complete data base and trace identification are
the crucial steps on the way to automatic electron density
profiles. To test the performance of the A.R.T.I.S.T. more
than 8000 ionograms for January, April, July, and September
1380 from Goose Bay, Labrador, were processed. This data base
is representative of one year's data covering all seasons and
all types of ionospheric conditions. For the same months -
2200 hourly ionograms were manually scaled. The corresponding
autoscaled values were compared with the manual scaled h'F,
h'F2, fminF, foE, foEs, h'E and h'Es. The ARTIST program
separates the E-region parameters into day and night groups
to independently assess the accuracy of night E scaling.
Ionograms with technical errors were removed from the data
base. A complete description of the comparison can be found
in the Test and Evaluation Report by Reinisch et al [1982].

The critical frequency of the F2 layer is perhaps
the most important ionospheric parameter. The minimum accu-
racy requirement for a high latitude station like Goose Bay
was set to +1 MHz for 80% of all ionograms. Figure 10 shows
the error distributions for the month of January, Table 1
gives the statistics for all the data. It can be seen that
the minimum requirement is by far exceeded. The 1 MHz error
limit test is passed by 92% of the ionograms in January, 96%
in April, 97% in July and in September. Indeed, 90% of all
ionograms satisfy the 0.5 MHz error limit. The curve on the
left side of the figure shows the symmetry of the error dis-
tribution which is more or less Gaussian in shape, curves for
the other three months show similar features. The error sta-
tistics for the ionograms without spread F, i.e., daytime
ionograms, were established separately. It is satisfying to
see that the error curves for all ionograms (dashed curves)
are only about 10% lower than those for non-spread ionograms
(solid curves).
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Figure 11 displays the error distribution function
of MUF(3000) for January where the error is defined as the
percentage difference between the manual and autoscaled value
based on the manual reading. In July and September, over 90%
of all ionograms have less than 10% errors, in April 88% and
in January 80% (see Table 1). Averaged over the four months,
88% of all ionograms are scaled with a MUF(3000) error cof less
than 10%. If only non-spread ionograms are considered, the
statistics of all months improve to 96%. The significantly
higher percentage rates for the non-spread ionograms indicates
the uncertainty in the MUF definition for spread ionograms.

A clarification about our definition of MUF(3000) is in place
here. In the ARTIST program the F region h'(f) curve is
transformed into an oblique ionogram by multiplying each fre-
quency with the transmission factor M(h')

f = M(h')f

ob vert®

The transmission function M(h') is calculated for a distance

of 3000 km by fitting a polynomial to the URSI specified data
set [URSI Handbook of Ionogram Interpretation and Deduction,

Secton Edition, Nov. 1972, p. 21; World Data Center A Report

UAG-23].

The M(3000) propagation factor is derived from the
MUF(3000) by dividing it by foF2. The minimum accuracy re-
quirement of AM = 20,2 is fulfilled for 82% of all ionograms.
In January, which had the highest magnetic activity, only 78%
of all ionograms pass the 0.2 error test. For the other
three months the percentages are above 81%, see Table 1.

Table 2 summarizes the results for some of the
other parameters., The table presents the average values over
the four months of data except for the heights h'F, h'F2, and
h'E where the data is for the month of April only. This is
because the heights have been recalculated by a new procedure
that precisely determines the leading edge of the echo trace
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in the raw ionograms. The new method has only been applied

,,‘,,;E_,_,j._.,,&w _]
—

to the April data. The F region minimum heights are accurate
to 10 km 91% of the time for h'F and 97% of the time for
h'F2. The autoscaled results for h'E are accurate to +5 km

3 for 91% of the day ionograms and for 81% of the night iono-

; ' grams, foFl is found to within *,2 MHz 80% of the time.

3 For the E region the data are separated into day
; and night ionograms to better see the effect of the occur-
- : rence of night E which is contained in the foE column. Since
night E occasionally occurs already in the late afternoon the
day/night transition was made when the predicted foE goes be-

il aiitasi

low 2.5 MHz. For more than 92% of the day ionograms the foE
value is scaled within 0,2 MHz; the corresponding value is

71% for night E. For an error limit of 0.5 MHz, 88% of the
night ionograms are successfully scaled. The critical fre-

RS L O

quency of the sporadic E layer is autoscaled within 0.5 MHz
of the manual value for 84% of the day and 69% of the night
ionograms.

Automatic evaluation of the electron density pro-
files depends on the successful scaling of the ionogram traces.
Figures 1, 3, 4, and 5 show the A.R.T.I.S.T. can correctly
identify the trace under all types of conditions, yielding
accurate electron density profiles.
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