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0. Introduction

> T+ awthir
.M..__Slmad‘speut one half of the Spring 1983 semester at tLe Institute

for Mathematics and its Applications. Dur\lng that time he interacted with
colleagues, engaged in research, and gave two public lectures at the Iastitute:
' S Chaos in Phase Transitions, i~ d-

- S+t Dynamics of Phase Transitions.
h's —

~— The main thrust of Sitemrod's research was in two areas, specifically:

>4 Deberminiatic chaos in materials exhxbiting phase transitions, and
i) Admissibxlity criteria for weak solutions of the non-hyperbolic

conservation laws which describe dynamic phase transitions.

-

A detailed description of this research is given below,
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1. Chaos in Materials Exhibiting Phase Transitions

In recent work Holmes and Marsden (1981) have employed the Mel'nikov
(1963) technique to establish the existence of deterministic chaos in periodically
forced evolution equations. In this work Slemrod (in collaboration with J.E.
Marsden of the University of California, Berkeley) combined this program by

analyzing two problems arising from the vander Waals theory of phase transi-
tions [see vander Waals. (1893, 1979)],

The first problem considered was dynamic spinoidal decomposition.

Agsume we have a vander Waals fluid with isotherms as shown in Figure 1.
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Here p denotes the pressure given by the vander Waals constitutive
relation

R6 a
Pw,6) = == - Z (1.1)

R, b, a are positive constants, p is the density, w = 1/p the specific volume,
and 0 is the absolute temperature. Figure 1 sketches the vander Waals isotherms
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for 6 above, equal to, and below the critical temperature ecrit = 8a/27bR.

[A good reference 1s Fermi (1936).] For 60 <0, PW.6) has the following
features:

(n pw(W.Oo) <0 on (b,aU(B, ™,
(i) p (w,00) >0 on(a, B,

(iii) pw(a. 90) = pw(B. 60) =0.

The domain (b,a) corresponds to the fluid being liquid; the domain (B, )

corresponds to the fluid being vapor; the domain (a,f) is the unstable region and
is referred to as the spinoidal. Also the poiat Yo is where pww =0 on the

graph of the 90 isotherm (wo is the zero of RO w4 + a(w -b)3 = 0).

0
The fluid flow is thought of as taking place along the x-axis in a tube of

unit cross section of fixed volume. If 61 > ecrit the state w = wo will describe

a stable homogeneous configuration for the hydrodynamic equations [see Felder-
hof (1970), Slemrod (1982)] . We then "instaneously" quench the fluid by reducing
the temperature to 80 <6

erit’ The homogeneous state L will now be in the

unstable spinoidal region of the 90 {sotherm. We studied the effect of a small

periodic in time fluctuation of the absolute temperature about 6 _. Specifically

0.
we showed how the loss of stability of %o is accompanied by deterministic chaos

in that there will be a Poincaré-Birkhoff-Smale borseshoe in the dynamics.

The second problem considered is the effect of a small thermal perturbation,
periodic in space, of the form 8(x) = 90+ € cosQx, € small, on the equilibrium
configuration of an infinite tube of liquid under given applied load. In this case we
show there are solutions with the features of both metastable and co-existing
phases that exhibit spatial chaos.

It seems interesting to note that the above equilibrium result has features
in common with experimental observations presented by Dr. L. Zapas of NBS at
the IMA Workshop on Orienting Polymers, March 21-25, 1983.

The results of this research will appear as an IMA report and will be
submitted for publication.
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2. Admissibility Criteria for Weak Solutions of Conservation Laws

In recent years an ever-increasing number of people have taken up Gelfand's
(1963) program of parabolic regularization of quasilinear conservation laws. While
this work has usually been motivated by the search for reasonable admissibility
criteria for weak solutions of the conservation laws, it has also provided a tech-
nique for proving existence of solutions as well. Specifically in this regard we

. note the work of Oleinik (1857) for a scalar conservation law and the receat

remarkable results of DiPerna (1983) for a two-dimensional system of conserva-
tion laws. In light of this work Slemrod attempted to give (where possible) a
physical motivation to the Gelfand program with respect to the equations of com-~
pressible fluid flow.

Counsider a system of n conservation laws written in vector form

F(U), + G(U)_ = 0 (2.1)

where U(x,t) is an n~vector, < <x <, and t> 0. As is well known, the
{nitial value problem (2.1) and

U(x,0) = U0 (2.2

does not in general possess global smooth solutions if (2.1) is nonlinear, no
matter how smooth UO' Hence we are led to search for weak solutions of (2.1).
Unfortunately, there is a serious price to pay for enlarging the solution class,

pamely loss of uniqueness of solutions.

The Gelfand program of parabolic regularization attempts to give a way to
pick out the pbysically relevant weak solutions of (2. 1) and thereby, hopefully,
recover uniqueness of weak solutions of (2.1). Specifically Gelfand suggested that
the physically admissible solutions of (2. 1) sbould be limits of solution U‘ of
the "artifically viscous' equations

€ € €
RU )t+ G(U )x = eD(Ux)x (2.3

where D :Bn -—>R‘, €> 0 a small parameter. For example, the equations of
viscous {sothermal compressible fluid flow in Lagrange coordinates are

4




€ € €
+ = €
“t pw )‘ u

(2.4

w‘-uc-o
t X

€ ue\ 1 0
so that U =1 € and D= .

w 0 ©

Unfortunately D in this example is singular, whereas the recent results of

DiPeruna on existence of weak solutions of (2.1) as limits of (2. 3) require D
nonsingular.

Slemrod in his research attempted to give a physical justification for
nonsingulax D matrices based on the van der Waals-Korteweg gradient theory of
stress. Using this idea Slemrod was able to apply DiPerna's technique to prove
the existence of weak solutions of (2.4, € = 0) for all t> 0 when p is described
by the ecrit isotherm of Fig. 1.

This work will appear as an IMA report and will be submitted for
publication. ~
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